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Abstract The physical processes behind the production of
light nuclei in heavy ion collisions are unclear. The success-
ful theoretical description of experimental yields by thermal
models conflicts with the very small binding energies of the
observed states, being fragile in such a hot and dense envi-
ronment. Other available ideas are delayed production via
coalescence, or a cooling of the system after the chemical
freeze-out according to a Saha equation, or a ‘quench’ instead
of a thermal freeze-out. A recently derived prescription of an
(interacting) Hagedorn gas is applied to consolidate the above
pictures. The tabulation of decay rates of Hagedorn states into
light nuclei allows to calculate yields usually inaccessible
due to very poor Monte Carlo statistics. Decay yields of sta-
ble hadrons and light nuclei are calculated. While the scale-
free decays of Hagedorn states alone are not compatible with
the experimental data, a thermalized hadron and Hagedorn
state gas is able to describe the experimental data. Applying
a cooling of the system according to a Saha-equation with
conservation of nucleon and anti-nucleon numbers leads to
(nearly) temperature independent yields, thus a production of
the light nuclei at temperatures much lower than the chem-
ical freeze-out temperature is compatible with experimental
data and with the statistical hadronization model.

1 Introduction

In recent years, the production of light nuclei in (ultra-) rel-
ativistic heavy ion collisions has gained new interest. Exper-
imental measurements of the production of deuterons, tri-
tons, helium-3 and helium-4, their anti-particles, and also
hyper-tritons in high-energetic collisions by the ALICE col-
laboration at the LHC or a subset of these nuclei in low-
energetic collisions by the HADES collaboration at GSI
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introduce a fundamental question concerning their produc-
tion mechanism. It is unclear, why the experimental yields
can be described so well by thermal models as e.g. shown in
[1–3].

Under the assumption, that a thermalized system has
been built up, the binding energies of the observed states
are so small, that a survival in such a virulent system of
such fragile states at the chemical freeze-out temperatures of
O(150 MeV) is improbable. Therefore a later production of
these nuclei in the time evolution of the collision may be an
explanation.

Here the first ansatz is, that in the framework of coales-
cence, the production of high-mass resonances is governed
by the yields of the lower mass states [4–7], while still energy
conservation is not obeyed in this picture.

Another explanation relies on the assumption of detailed
balance, resp. the law of mass action, resp. a kind of Saha-
equation, which dictates the yields at later stages already
by the chemical-freeze-out conditions of the stable hadrons
[8]. Adjusting chemical potentials has also been introduced
in [9].

Recently, the additional idea has been discussed, that all
these observed yields do not originate from a thermalized gas
after a phase transition, but are generated by a ‘quench’ into
a state described by Hagedorn states and their decays [10].
Here the underlying picture is a so-called ‘self organized
criticality’ (SOC). Thus, instead being in a thermalized and
stable state, the system is assumed to be in a critical state,
where modifications in all extensions are possible, but keep-
ing the system in its (critical) state, and it just looks like it
would be in a stable state.

In Refs. [11,12] the authors have developed a prescrip-
tion of a microcanonical bootstrap of Hagedorn states with
the explicitly conserved baryon number B, strangeness S and
electric charge Q, which has been augmented by the consid-
eration of B, S and isospin I in [13]. It is a reformulation of
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the original concept by Hagedorn himself [14] according to
Frautschi [15], where the covariant formulation is analogous
to [16,17].

We are thus in the favorable situation to test the above
assumptions against experimental data. We will therefore
first show, that the Hagedorn states defined in our prescrip-
tion indeed (nearly) produce a scale independence concern-
ing their decay branching ratios. Nevertheless, these decays
modestly fail to describe the experimental yields. On the
other hand the assumption of a thermalized system of hadrons
together with Hagedorn states leads to a satisfactory descrip-
tion of the experimental data. Whether it is really a thermal
system at the freeze-out temperature, or a much cooler sys-
tem following a Saha equation, which finally produced the
observed particles, is not distinguishable within our frame-
work. Thus the criticism against thermal models by con-
fronting low binding energies with large temperatures is not
legitimate in our approach.

The paper is organized as follows. We start to recapit-
ulate the basics of the present Hagedorn state prescription
and elaborate on the extensions needed for the inclusion of
light nuclei. We first show the decay multiplicities assuming
a fixed mass Hagedorn state. Then we discuss theses multi-
plicities after decays of a thermal Hagedorn state gas. Finally,
we discuss the effect of cooling the Hagedorn state gas under
the assumption of keeping yields of stable nucleons constant
according to the Saha equation.

2 Hagedorn resonance prescription

We use the microscopic prescription developed in [11,12]
in its improved formulation described in [13]. In order to
pursue the extensions needed to include the light nuclei, we
will first review the basic equations as given in [13], which
are implemented into the transport framework GiBUU [18].

Before the advent of QCD, Rolf Hagedorn proposed in the
1960’s a concept describing hadrons as “fireballs, consisting
of fireballs, which consist of fireballs…” [14]. This yields a
density of (hadronic) states as function of mass as

τ(m) ∼ m−a em/TH , (1)

where a is a fit parameter and TH being the so-called “Hage-
dorn temperature”. Later, Frautschi invented a reformulation
[15], yielding a bootstrap equation,

τ(m) = τ0(m) +
∑

N

1

N !
[

V

(2π)3

]N−1

×
∫ N∏

i=1

[
dmiτ(mi )d

3 pi
]
δ(4)

(
∑

i

pi − p

)
.

(2)

Here V as a parameter is the volume of the Hagedorn states.
This may now be extended to respect the conservation of a set
of quantum numbers, denoted in the following by a subscript
C. Under the basic assumption, that only subsequent two-
particle decays participate (N = 2), the bootstrap equation
to be used simplifies to

τC(m) = τ 0
C(m) + V (m)

(2π)2

1

2m

∑∗

C1C2

∫∫
dm1dm2

× τC1(m1)τC2(m2)m1 m2 pcm(m,m1,m2) ,

(3)

which describes, how the mass degeneration spectrum of the
Hagedorn states τC(m) is built up from a low mass input
τ 0
C(m) and the combination of two lower lying Hagedorn

states. Here, as usual, 4m2 p2
cm = (m2−m2

1−m2
2)

2−4m2
1m

2
2,

and the special notation
∑∗ indicates, that the sum only runs

over ‘allowed’ quantum number combinations; τ 0
C(m) stands

for the inhomogeneity, i.e. the hadronic input, while the vol-
ume V (m) ≡ V is just a constant within the present model.
The quantum number vector C may stand for (BSQ) or
(BSI ) with B,S,Q,I indicating baryon number, strangeness,
electrical charge, and isospin. As elaborated in [13], the com-
bination (BSI ) is fully equivalent to (BSQ), but technically
preferable.

Selecting different values for the radius, R, and thus, via
V = 4πR3/3, also for the volume V of the Hagedorn states
in the bootstrap Eq. 3 yields different slopes and thus dif-
ferent values of the Hagedorn temperature as an intrinsic
parameter; larger radii yield steeper increase of the spec-
trum, thus smaller values of the Hagedorn temperature. The
default value R = 1.0 fm corresponds to TH = 167 MeV,
while R = 1.2 fm yields TH = 152 MeV (cf. also [11]).

We extend the prescription by the inclusion of light nuclei
as stable particles in the input to the bootstrap. Details of
the particles are listed in Table 1. The resulting Hagedorn
spectrum is only very slightly influenced by this addition;
differences are hardly visible in the plots, and values of cor-
responding slope fits are changed within the size of the sta-
tistical error bars only. Nevertheless, decays of high-mass
Hagedorn states now may end in light nuclei as final stable
particles.

In the spirit of ref. [19], also the inclusion of unstable res-
onances of light nuclei could be in order. For this, one would
first include these resonances into the Hagedorn bootstrap
as if they would also be stable particles. In a second step
one then would extend the transport code to implement their
decays into stable nuclei and hadrons, as also the decays of
hadronic resonances are treated. At the moment, this implies
deeper modifications of the algorithm itself and is left for
future studies. Differences of the yields of isobars as 4He
and 4Li, as proposed e.g. in [20], are not yet accessible in

123



Eur. Phys. J. A (2021) 57 :62 Page 3 of 8 62

Table 1 Properties of light nuclei. Listed are baryon number B, spin J , isospin I , and strangeness S

mass [GeV] B J I S

d =2H 1.876 2 1 0 0

t=3H, 3He 2.809 3 1/2 1/2 0
3
ΛH 2.992 3 1/2 0 −1

α =4He 3.728 4 0 0 0

our prescription. Anyhow, results similar to a simple thermal
model ansatz may be expected.

It is favorable for the (BSI ) prescription, that all of the
light nuclei are realized in their lowest isospin level, i.e. I = 0
or I = 1/2. The fact, that 3H and 3He are two different
charge states in a I = 1/2 system has to be respected when
multiplicity of a specific isospin state is calculated.

Identifying particles only according to their isospin value
does obviously not allow to respect modifications of the wave
function, which may be given by details of the ingredients,
as e.g. their charge states. Like the assumption of a common
volume of all Hagedorn state specific details between differ-
ent particle yields are not accessible within our prescription.

The second basic equation is the connection of the decay
width Γ of a specific Hagedorn state with its production cross
section σ , which is given by [13]

ΓC(m) = σ(m)

(2π)2

1

τC(m) − τ 0
C(m)

∑∗

C1C2

∫∫
dm1dm2

× τC1(m1)τC2(m2) p
2
cm(m,m1,m2) .

(4)

At the moment, the cross section is assumed to show no mass
dependence or any other details and is assumed to be a con-
stant. In the actual prescription, it is also directly connected
with the radius of the Hagedorn state by σ(m) ≡ σ = πR2,
i.e. σ = 31.4 mb for R = 1.0 fm.

Due to the tiny decay probabilities into light nuclei, Monte
Carlo studies of the decay chain are not feasible. Looking
only at the multiplicities of these light nuclei in the decays,
it is possible to tabulate these values. This is fully analogous
to the solution of the bootstrap equation or the calculation of
the decay width.

Starting from expression Eq. 4 for the total decay width,
(differential) partial branching ratios may be defined by
dividing every summand of this expression by its total,

dBC;C1,C2(m,m1,m2)

..= dm1dm2 τC1(m1)τC2(m2) p2
cm(m,m1,m2)∑∗

C1C2

∫∫
dm1dm2 τC1(m1)τC2(m2) p2

cm(. . . )
,

(5)

such that
∑∗

C1C2

∫∫
dB ≡ 1. It is interesting to observe,

that here for the relative branching ratios, contrary to the
decay width Eq. (4), the cross section σ(m) cancels out. The
number of a specific light nucleus (A = d, t, . . . , cf. Table 1)
a given Hagedorn state finally decays into is calculated as

n(A)
C (m) =

∑∗

C1C2

∫∫
dBC;C1,C2(m,m1,m2)

×
(
n(A)
C1

(m1) + n(A)
C2

(m2)
)

.

(6)

For this purpose, one has to initialize the input correctly, as
e.g.

n(d)
(2,0,0)(m) ..= δ(m − 1.876 GeV) ,

n(t)
(3,0,0.5)(m) ..= δ(m − 2.809 GeV) ,

. . . .

(7)

This quantity n(A)
C (m) gives the total fraction for the decay

into the light nucleus, i.e. the direct decay and also the indirect
decay chain aka feed-down via intermediate Hagedorn states.

The tabulation has to be done for all quantum numbers and
masses of the mother particle. As long as the ’final state’ A
has fixed quantum numbers and mass, as e.g. the states listed
in Table 1, the tabulation is manageable. When looking for an
extension of this tabulation to more states, the major problem
will be a mass distribution of the final states. In this case, the
tabulation will quickly exceed actual memory setups of the
HPC computer clusters. Thus a naïve extension of Eq. 6,
especially in the spirit of Ref. [8], is not feasible.

3 Decay cascade of Hagedorn resonances

The actual implementation of the Hagedorn bootstrap explic-
itly respects conservation of the quantum numbers. It is obvi-
ous, that the quantum numbers of the initial (mother) state
directly influences the yields of the different (daughter and
grandchild) states with different quantum numbers. (As an
example, starting with a Hagedorn state with B = 2 yields
obviously and considerable more nucleons than starting with
B = 0.)
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Fig. 1 The relative multiplicity of several species as function of the
Hagedorn state mass m for TH = 167 MeV. Different line colors indi-
cate different daughter particles, while line styles as indicated in the
plot show different (electrical) charge states

Calculating ‘stochastic’ averages (contrary to ‘statistical’
averages, which have thermal weights and chemical poten-
tials), one has to average over all possible quantum numbers
given by τC alone. While averaging over all quantum num-
bers which are accessible for a given Hagedorn state mass
m, one observes two general features:

– The overall yield grows linearly with the mass of the
Hagedorn state according 〈Ntot〉 � 0.27+1.44 GeV−1m
(see also [11])

– The relative yields are rather independent of the Hage-
dorn state mass, but obey mass thresholds.

The latter is illustrated in Fig. 1. Here all the results for
hadronic states are calculated by MC runs, while the yields
for the light nuclei are generated by the tabulation described
above. For d=2H, results from both approaches are available,
match identically, and prove the correctness of the tabula-
tion approach Eq. (6). Albeit fig. 1 also shows the different
electric-charge states separately, only for pions a slight dif-
ference between the charge states is visible. This is due to
isospin-symmetry violating decay channels of the hadronic
resonances.

Of course one has to take the previous statements about
the scaling behavior with some grain of salt, since they rely
on figures with logarithmic axis scaling. Nevertheless, for
large masses it seems hard to deduce the mass of the mother
particle just from relative yields.

It is now worth comparing these relative yields with exper-
imental yields. We take here the high-energy LHC data mea-
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Fig. 2 The multiplicities of given stable particles after Hagedorn and
hadronic decay cascades for a potential Hagedorn state with m =
10 GeV. The overall normalization is arbitrary fixed to the experimental
proton value. Experimental data by ALICE [21–26]. Results are shown
for two different values TH = 167 MeV and 152 MeV for the Hagedorn
temperature

sured by ALICE [21–26]. A comparison of the relative yields
of the decays of a Hagedorn state with m = 10 GeV with the
experimental data is shown in Fig. 2. Here, and also in all fol-
lowing figures, the absolute normalization will be fixed to the
experimental proton yield. As can be seen, a single Hagedorn
state with large mass is not able to describe the experimen-
tal multiplicities; the predicted distribution is too hard. Even
with a bootstrap with R = 1.2 fm and thus a (smaller) Hage-
dorn temperature of TH = 152 MeV, as described above,
higher mass states, especially the light nuclei, are overesti-
mated. Only a reduction of the Hagedorn temperature further
down to even lower values could yield a satisfactory descrip-
tion. Anyhow, this can only be achieved by further increasing
the Hagedorn state size [11].

While here the mass distribution looks thermal, it is only
governed by the Hagedorn temperature. Thus a SOC pre-
scription may lead to thermal (looking) yields. Concluding
from Fig. 2, the intrinsic Hagedorn temperature leads to a
mass dependence, which is too hard. This statement relies
on the results of the ad-hoc mass choice of m = 10 GeV.
Since the branching rations are mass independent only on a
logarithmic scale, the yields could change by looking into
them in more detail and by changing the mass. Nevertheless,
a qualitative change of the picture is not expected. There-
fore, we conclude this section with the statement, that within
our Hagedorn state decay scenario, a scale invariant decay of
Hagedorn state results in particle yields which are too hard,
i.e. show a slope parameter, which is too large.
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Fig. 3 Multiplicities as in Fig. 2, but now for a gas of thermalized (T =
149 MeV) hadron resonances and Hagedorn states (TH = 167 MeV)

4 Thermal Hagedorn resonance gas

Turning to the picture of a thermalized gas of hadronic and
Hagedorn resonances, an additional degree of freedom is
introduced by the temperature of the system. An integration
of the Hagedorn state mass spectra weighted by the well-
known textbook Boltzmann factor for a given mass m and
temperature T ,

n(m, T ) = 4π

(2π)3m
2T K2(m/T ) , (8)

with Kn indicating modified Bessel functions, is necessary.
Then the hadronic feed down of these thermal averaged
Hagedorn states has to be calculated. A fitting procedure
applied after the decays to fit the experimental data of pro-
tons and light nuclei yields a temperature of T = 149 MeV
for TH = 167 MeV and T = 144 MeV for TH = 152 MeV.
The results for the first setup are shown in Fig. 3; the differ-
ences to the second setup are nearly invisible.

Some comments are in order. First, the number of mesons
included in GiBUU is quite low compared to e.g. UrQMD
[27,28], or PDG [29]. Therefore also the mesonic yields in
these Hagedorn state decays may be underrepresented. This
is why we have used the baryonic sector only to fix the
temperature. Second, the yields of the strange mesons and
baryons are shown as is; no strangeness suppression factor
has been introduced. Third, these fits are meant to present
the overall success and are not intended to be high-precision
fits; therefore we just provide the resulting temperatures and
abstain to give χ2 values. And finally, we like to mention
the correspondence of the numerical values extracted here
(TH = 167 MeV, T = 149 MeV) with the pair of tempera-
tures extracted in [30,31] for the chemical freeze out temper-

atures for hadrons (148 MeV) and light nuclei (169 MeV),
while in our case this is just one exemplary choice for the
Hagedorn temperature. In our prescriptions, these tempera-
tures hold both for hadrons and light nuclei simultaneously.

It is obvious, that due to the additional degree of freedom
the agreement of the model is much better than in the previ-
ous section. But also the production channels of the different
particles is qualitatively different. In the picture of a thermal-
ized gas, one has a thermal contribution of stable particles,
while also the feed down from decays of higher lying reso-
nances contributes. So only approx. half of the final 2H may
be claimed to be (directly) thermal, while the other half stems
from decays of Hagedorn states. In the case of the higher
masses of the nuclei, the situation is even more extreme:
only approx. 20 % of 4He are thermal, while 80 % stem from
feed down. (Interestingly, this finding seems to depend on
the underlying Hagedorn temperature; for the lower Hage-
dorn temperature TH = 152 MeV, the relative contribution
of the feed-down decays is much larger.)

Therefore it would be worthwhile to study the influence
of higher-lying resonances of the nuclei, as e.g. in Ref. [19].
There the importance of these higher resonances was limited
to a level of 5 % at high-energy collisions at LHC and had
a sizable effect for low-energy collisions with large bary-
ochemical potentials. If one would expand the model pre-
sented here by all these higher resonances, one would also
expect a large occupation of these states, which would then
lead to a sizable contribution to the yields of stable nuclei
after hadronic feed down. Anyhow, as mentioned above, this
is left for a future study.

In order to illustrate, that the final yield of stable particle
is far from the spectrum of Hagedorn states before decay, we
indicate in Fig. 4 this spectrum in comparison to the final
yields. It is worth to emphasize, that here the normalization
both of the spectra ‘before decays’ and ‘after decays’ are
the same and the number of Hagedorn state with masses
comparable to that of e.g. α =4He are indeed seven orders
of magnitude larger.

5 Cooling of a Hagedorn gas with the constraint of
chemical non-equilibrium

One may apply the same criticism to the Hagedorn gas picture
as to a thermal model relying on a hadron resonance gas
alone: how could these loosely bound states survive at these
temperatures?

We thus will follow the arguments in [8], where the Saha
equation is the natural explanation how thermal yields behave
under the cooling of the system. The assumption that dur-
ing the cooling of the system the yields of stable particles
are frozen at the ‘chemical freeze-out’ (most important for
nucleons and antinucleons), chemical potentials for all res-
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Fig. 4 As Fig. 3, but here is also shown the mass distribution of all
potential Hagedorn states before decays

onances are fixed in their temperature dependence. While
in [8] it was possible to calculate a full ‘decay matrix’, this
is more involved for the prescription presented here, since
one would have to tabulate the decays of all quantum num-
ber states (BSI ) with mass m into stable hadrons. This asks
for the extension of Eq. (6) from light nuclei to all stable
hadrons. While possible in principle, it is a challenging task
due to computer memory constraints and not yet feasible.

Instead we apply a simplified setup, where we adjust
the chemical potentials before feed down and restrict to
baryon number. We introduce a chemical potential for the
absolute value of the particles baryon and anti-baryon num-
ber, μ|B|(T ), i.e. both the number of protons and antipro-
tons are fixed, while the yields of the other stable parti-
cles are not considered. In this case, with particle num-
bers given by eq. (8), the chemical potential is fixed
by exp(μ|B|(T )/T ) = Tcfo K2(mN/Tcfo)/(T K2(mN/T )),
wheremN = 0.938 GeV stands for the nucleon mass and Tcfo

indicates the chemical freeze-out temperature. The resulting
yields of light nuclei are displayed in Fig. 5. Within this
picture, the yields of the light nuclei are (nearly) constant
as function of the final temperature within a certain range.
With decreasing temperature all yields start to increase. This
behavior is not so pronounced for hyper-triton as for the other
nuclei. Here the lack of introducing a chemical potential for
the strange sector is visible.

This overall behavior has to be confronted with that of
the Boltzmann factors eq. (8), which would govern the tem-
perature behavior otherwise and lead to a nearly exponential
dependence of the yields as function of temperature (see the
discussion in [8]).

Also shown in Fig. 5 is the relative contribution of thermal
particles to the overall yield. With decreasing temperatures,
the relative importance of feed-down particles vanishes. This

Fig. 5 The yields of light nuclei, when the yields of stable nucleons
(protons and neutrons) and anti-nucleons are fixed to Tcfo = 149 MeV
with TH = 167 MeV. Solid lines indicate the total yields, while dashed
lines show the contribution of thermal particles only. The colored bands
indicate the experimental error bars of the data by the ALICE collabo-
ration

may be of interest, since it is well known from the results
of [32], that the decay products of thermally distributed par-
ticles are not thermal, but look effectively cooler (the slope
is steeper). Therefore a deeper inspection of the slopes of the
decay products could lead to new insights about the produc-
tion mechanism. Anyhow, this is beyond the possibilities of
our approach, where only the absolute numbers of the light
nuclei are accessible by the method relying on the tabulation
according Eq. (6).

In order to justify the Saha equation picture also within
the Hagedorn state prescription, we show in Fig. 6 the inter-
action rate of specific particles within a Hagedorn state gas.
Mass differences show up in slightly different curves. It is
now worth to realize some numbers. A value for the rate
of Γ = 0.2 GeV, as realized for temperatures T = 150-
160 MeV, directly translates in lifetimes τ = 1/Γ � 1 fm
and also represents the timescale of chemical equilibration of
the Hagedorn states. The given interaction rates guarantee,
that creation and destruction of the light nuclei proceed in
relative chemical equilibrium after the chemical freeze-out.
Please note, that this interaction rate is governed mainly by
the total Hagedorn state density. The introduction of μ|B|(T )

according to the Saha picture only slightly changes the total
density.

On the other hand, the binding energies of the light nuclei
are in the region 2.2–28.3 MeV.Only a quantum mechanical
treatment of the creation and disintegration of the (tightly)
bound light nuclei in an open thermal system can lead to defi-
nite conclusions, when in the evolution of the fireball the light
nuclei appear as bound states. This remains an outstanding
question.
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Fig. 6 The collision rate of pions, d =2H, and α =4He as function of
temperature of the Hagedorn state gas (σ = 30 mb)

6 Conclusions

Using directly a Hagedorn state prescription developed dur-
ing the recent years does not allow to calculate decay rates
into very rare channels as e.g. into light nuclei. Relevant rela-
tive decay branchings may go down to 10−9, which is below
any usual statistics available in Monte Carlo calculations by a
factor O(105). For the decays of Hagedorn states with given
quantum numbers and masses, a tabulation according to the
usual bootstrap has been developed and allows to access these
low yields. Since this tabulation only covers the number of
particles, no other observable than the yields may be calcu-
lated in this way; quantities like energy spectra or flow still
stay beyond reach.

The (relative) branching of Hagedorn states into stable
hadrons and light nuclei is found to be nearly independent of
the mass of the parent particle. Still, mass thresholds influ-
ence the yields and the above statement holds only true on a
level, where the yields are depicted on a logarithmic scaling.
The most general scaling behavior is reached for an averag-
ing over all possible quantum numbers without any chemical
potentials. Only this case is covered in this work.

The relative branchings are comparable to the experimen-
tal yields of the ALICE experiment. It shows that the Hage-
dorn state decays lead to an over-prediction of heavy mass
states. Even lowering the Hagedorn temperature within rea-
sonable ranges does not allow for a successful agreement.
Therefore the assumption of a scale-free system of Hagedorn
states is not sustained by our prescription, since the Hage-
dorn temperature is still too high compared to experimental
data.

On the other hand, the introduction of an additional degree
of freedom by assuming a thermalized system of Hagedorn

states, where in addition to the Hagedorn temperature also the
temperature of the gas sets a scale, a satisfactory description
of the experimental yields is achievable. With different values
of the Hagedorn temperature, varying the temperature of the
gas results in the same level of agreement.

As in a hadron-resonance-gas model also in the Hagedorn-
resonance-gas model the problem of the incompatibility of
the formation of bound sates with small binding energies per-
sists. Taking the notion of ‘chemical freeze-out’ seriously, all
yields of stable particles are fixed at this point. Therefore a
cooling below this temperature has to be considered akin to
the Saha equation; chemical potentials of the stable (anti-
)hadrons influence those of the unstable ones. In the present
work, a simplified prescription of using a chemical poten-
tial for the absolute value of baryon and anti-baryon number
has been shown. Even in such a exploratory picture, the final
yields of the light nuclei do only depend marginally on the
final temperature, when staying within a given range (as pro-
posed in [8]).

A temperature dependence may be observed when look-
ing at the ratio of ‘thermal’ over ‘all particles’; if the final
temperature is higher, the contribution of feed down parti-
cles may be larger. This could maybe be attacked by look-
ing theoretically at the energy spectra of the particles. Any-
how, these spectra are beyond the given analysis. Also, only
a description of experimental spectra using a realistic flow
profile could really pin down that point.

In the present work, only high-energy heavy ion colli-
sions have been covered. Here only the thermodynamical
properties of the Hagedorn state gas developed in our pre-
scription are used. Looking at the (very) low energy side,
as e.g. HADES at GSI, the full dynamical machinery imple-
mented in the transport code may be used and there, also
spectra of light nuclei may be calculated, maybe even with
respect to the centrality of the collisions. Multiple issues to
be discussed at these low energies are presented e.g. in [33].
This is left for future studies.
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