
Statistical Papers (2022) 63:181–195
https://doi.org/10.1007/s00362-021-01237-0

REGULAR ART ICLE

Understanding nonsense correlation between
(independent) randomwalks in finite samples

Uwe Hassler1 ·Mehdi Hosseinkouchack2

Received: 15 June 2020 / Accepted: 21 April 2021 / Published online: 6 May 2021
© The Author(s) 2021

Abstract
Consider two independent randomwalks. By chance, therewill be spells of association
between them where the two processes move in the same direction, or in opposite
direction. We compute the probabilities of the length of the longest spell of such
random association for a given sample size, and discuss measures like mean and mode
of the exact distributions. We observe that long spells (relative to small sample sizes)
of random association occur frequently, which explains why nonsense correlation
between short independent random walks is the rule rather than the exception. The
exact figures are compared with approximations. Our finite sample analysis as well as
the approximations rely on two older results popularized by Révész (Stat Pap 31:95–
101, 1990, Statistical Papers). Moreover, we consider spells of association between
correlated random walks. Approximate probabilities are compared with finite sample
Monte Carlo results.

Keywords Coin tossing · Concordance · Discordance · Maximum length of
association

Mathematics Subject Classification 60G50 · 62H20

1 Introduction

The puzzle why “we sometimes get nonsense-correlation between time-series” has
first been addressed in the seminal paper by Yule (1926). One model that he sug-
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gested to explain correlation between independent series was the random walk, called
“conjunct series the differences of which are random” by Yule (1926, p. 26). For inde-
pendent random walks Yule (1926, p. 33) provided experimental evidence, obtained
by drawing playing cards from shuffled packs, that “The frequency-distribution of the
correlations of samples of 10 observations [...] are much more widely dispersed than
the correlations from samples of random series”. His findings were accomplished by
the computer experimental evidence on spurious regressions by Granger and Newbold
(1974) for independent randomwalks of length 50, see also Palm and Sneek (1984) for
furtherMonte Carlo results. Phillips (1986) showed that nonsense correlation between
independent random walks is not a finite sample problem only. From Phillips (1986,
Thm.1) the limiting distribution of the sample correlation is available: it converges to
a nondegenerate random variable. More recently, Ernst et al. (2017) determined the
variance of this limit, and numerical evaluation showed that it equals 0.240522 (Ernst,
Shepp and Wyner (2017, p. 1807)). Of course, such findings cannot fully explain why
nonsense correlation occurs between random walks in small samples.1

In this note, we return to the finite sample puzzle. Yule (1926, Fig. 14) observed
that random walks may trend in the same direction (concordance) or in the opposite
direction (discordance) for certain periods of time. This is an intuitive explanation
for nonsense correlation: there will be cluster of association between independent
random walks. To add some rigour to this intuition, we would like to know: what is
the maximum length to be expected for such spells of concordance or discordance
given a fixed sample size? How large is the mode of this maximum length? And how
large is the probability to observe values equal to or even larger than the mode? These
questions will be answered by means of the corresponding probability distribution
given in Corollary 1, building on the little-known Hungarian paper by Székely and
Tusnády (1976-1979), see Révész (1990, Thm. 7) and Révész (2013, Thm. 2.7) for
a reference. For independent random walks of length n = 25 we learn for instance:
The probability that the maximum length of spells with consecutive concordance, or
consecutive discordance, is at least equal to 4 amounts to 84.76%. Hence, long spells
of random association (relative to the small sample size) are rather likely. The merits
of exact results will be demonstrated by comparison with approximations. Asymptotic
results in Proposition 2 can be traced back to Földes (1975), which is again aHungarian
paper referenced by Révész (1990, Thm. 6). Further, Gordon et al. (1986) provided
approximations that allows for correlated random walks, too, which will be evaluated
at the end of our note. Since no results for exact probabilities are available, we confront
the asymptotic results with finite sample Monte Carlo figures.

The rest of this paper is organized as follows. The next section motivates this study
with someMonte Carlo results. Section 3 becomes precise on random association and
provides the exact distributional result under independence. The latter is evaluated
numerically in Sect. 4 to shed light on why nonsense correlation is likely between
independent randomwalks in finite samples. Section 5 compares the exact results with
approximations. Section 6 is devoted to the extension of correlated random walks. A
short summary is contained in the final section.

1 Note that nonsense correlation is not limited to independent random walks but arises similarly due to
(neglected) time-variation in mean from series with constant autocovariance structure, see Hassler (2003,
Prop. 1).
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Understanding nonsense correlation... 183

Aword on notation before we begin. Let �x� denote the integer part of x ∈ R, with
fractional part {x} := x − �x�. Let logb stand for the logarithm to the base b, while ln
denotes the natural logarithm.

2 Some experimental evidence

Consider a bivariate random walk (Xi ,Yi )i=0,1,...,n defined by

Xi = Xi−1 + εi and Yi = Yi−1 + ηi , i = 1, . . . , n , (1)

where (X0,Y0) is an arbitrary starting value. Before we begin with the theory, let
us collect some experimental evidence. For computer simulation, the differences
(�Xi ,�Yi ) = (εi , ηi ) are drawn from a bivariate normal distribution:

(
εi
ηi

)
∼ N2

((
0
0

)
,

(
1 ρ

ρ 1

))
. (2)

We simulated random walks with (X0,Y0) = (0, 0) and computed the sample corre-
lation:

ρ̂ =
∑n

i=1(Xi − X)(Yi − Y )√∑n
i=1(Xi − X)2

√∑n
i=1(Yi − Y )2

.

Then we took the absolute value |ρ̂| (since it is known that ρ̂ varies symmetrically
around zero for ρ = 0). We report the average over 105 replications for growing
sample size. Clearly, there is massive evidence in favour of nonsense correlation for
ρ = 0, and the absolute correlation coefficients are of the same size for small n as for
large n, see Table 1. For moderate correlation ρ = 0.2, 0.4, the sample correlation still
exaggerates the true values, while ρ = 0.6 results in averages |ρ̂| ≈ 0.6, and ρ = 0.8
yields on average |ρ̂| ≈ 0.77, and these figures are rather robust over the sample size
n, too.

In this paper we offer the length of random association between independent ran-
dom walks or between moderately correlated random walks of small and medium
sample sizes as an explanation for nonsense correlation or exaggerated correlation as
documented in Table 1.

3 Spells of concordance and discordance

Wemaintain a bivariate randomwalk (Xi ,Yi )i=0,1,...,n defined by equation (1), where
(X0,Y0) is an arbitrary starting value. We now focus on independence (to be relaxed
in Assumption 2). More precisely, the differences (�Xi ,�Yi ) = (εi , ηi ) meet the
following set of assumptions.
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Table 1 Absolute value of
sample correlation, |ρ̂| n 25 50 100 200 400

ρ = 0 0.4246 0.4231 0.4215 0.4225 0.4228

ρ = 0.2 0.4451 0.4415 0.4404 0.4404 0.4400

ρ = 0.4 0.5015 0.5008 0.4997 0.4995 0.5018

ρ = 0.6 0.6052 0.6052 0.6031 0.6036 0.6058

ρ = 0.8 0.7649 0.7651 0.7658 0.7646 0.7647

Average over 105 replications of absolute values of sample correlations
of Gaussian random walks with starting values equal to zero

Assumption 1 Let (εi , ηi )i=1,...,n be a sequence of independent, identically distributed
and continuous random variables with

pε := P(εi < 0), P(εi > 0) = 1 − pε, pη := P(ηi < 0), P(ηi > 0) = 1 − pη,

pε, pη ∈ (0, 1).Further, εi and ηi are independent, andat least one of the probabilities
equals 1/2: pε = 1/2 or pη = 1/2.

Remark 1 Note that the asymptotic theory by Phillips (1986) or Ernst et al. (2017)
requires E(εi ) = E(ηi ) = 0, which we do not need. For Proposition 1 and 2 we just
need that the median of εi or ηi equals zero.

We say that the variables from (1) are concordant on the i th interval if Xi and Yi
move in the same direction; if they move in the opposite direction, they are called
discordant. In terms of the usual sign function this provides the following definition.

Definition 1 Concordance on the i th interval means that sign(�Xi�Yi ) = 1. Dis-
cordance on the i th interval means that sign(�Xi�Yi ) = −1.

Note that we rule out �Xi = 0 or �Yi = 0 with probability 1 by assumption. For
convenience, we define Ci as concordance indicator, taking on the value 0 if �Xi and
�Yi have the same sign:

Ci =
{
0 if sign(�Xi�Yi ) = 1
1 if sign(�Xi�Yi ) = −1

, i = 1, . . . , n . (3)

By Assumption 1, it holds that

p := P(Ci = 0) = 1 − pε − pη + 2pε pη = 1

2
= P(Ci = 1) .

Consider a subsequence of consecutive zeros in (Ci )i=1,...,n , called a zero run. Let Zn

stand for the length of the longest zero run, which corresponds to the length of the
longest spell without interruption where Xi and Yi move in the same direction. The
probabilities P(Zn = k) for given n can be expressed in terms of generalized Fibonacci
numbers. We adopt the most convenient definition for our purposes by Spickerman
and Joyner (1984, p. 327).
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Understanding nonsense correlation... 185

Definition 2 A Fibonacci sequence of order �, ( f (�)
m )m=1,2,... for � ∈ {1, 2, . . .}, is

defined by the linear difference equation

f (�)
m =

�∑
i=1

f (�)
m−i for m > � ,

with f (�)
m = 2m−1 for m = 1, . . . , �.

The trivial case � = 1 covers a sequence of ones. For � = 2, the usual Fibonacci
numbers are obtained. The case � = 3 has been called ‘tribonacci’ sequence, see
e.g. Spickerman (1982). The following table corresponds to Székely and Tusnády
(1976-1979, p. 149).

m 1 2 3 4 5 6 7 8 9

f (1)
m 1 1 1 1 1 1 1 1 1

f (2)
m 1 2 3 5 8 13 21 34 55

f (3)
m 1 2 4 7 13 24 44 81 149

f (4)
m 1 2 4 8 15 29 56 108 208

Trivially, P(Zn < k) = 1 for k > n. The general probability distribution is given
next. Révész (1990, Thm. 7) and Révész (2013, Thm. 2.7) stated it without proof
referring to Székely and Tusnády (1976-1979).

Proposition 1 Let (Xi ,Yi )i=0,1,...,n from equation (1) satisfy Assumption 1. It then
holds that

P(Zn < k) = f (k)
n+1

2n
, 1 ≤ k ≤ n .

Proof See Székely and Tusnády (1976-1979). For completeness and easier accessi-
bility, a separate proof is provided in the Appendix. �	
By Proposition 1, it immediately follows that

P(Zn = k) = f (k+1)
n+1 − f (k)

n+1

2n
, 1 ≤ k ≤ n . (4)

Further, Zn = 0 corresponds to a sequence of n ones with probability P(Zn = 0) =
1/2n .

More generally, we are interested in the length of the longest spell of consecutive
intervals where Xi and Yi are concordant or discordant without interruption. This
corresponds to the maximum length of zero runs or runs of ones in (Ci ). Let Sn stand
for this length of the longest spell of consecutive ones or zeros. With Proposition 1, it
is straightforward to establish the following distribution.
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186 U. Hassler, M. Hosseinkouchack

Table 2 Measures of Sn n = 25 n = 50 n = 100 n = 200 n = 400

expect 4.9799 5.9783 6.9774 7.9770 8.9768

var 2.6419 2.9983 3.2134 3.3401 3.4134

skew 1.2601 1.2173 1.1759 1.1465 1.1274

kurt 5.7909 5.6780 5.5361 5.4366 5.3742

Expected value, variance, skewness and kurtosis coefficients computed
with probabilities from Corollary 1

Corollary 1 Under the assumptions of Proposition 1 holds that

P(Sn < k) = P(Zn−1 < k − 1) = f (k−1)
n

2n−1 , 2 ≤ k ≤ n ,

and P(Sn < 1) = 0.

Proof See Appendix. �	

By Corollary 1, it immediately follows that

P(Sn = k) = f (k)
n − f (k−1)

n

2n−1 , 2 ≤ k ≤ n . (5)

From (4) and (5) one obtains with P(Sn = 1) = 21−n = P(Zn−1 = 0) that

P(Sn = k) = P(Zn−1 = k − 1) , k = 1, . . . , n , (6)

which will be used below.

4 Numerical work

Given the relation in (6), our numerical evaluation will be restricted to the length of the
longest spell of consecutive zeros or ones, Sn . The computation requires to determine
(generalized) Fibonacci numbers. We employ the recursion from Definition 2 and do
not bother about explicit solutions.

Statistical measures of Sn are given in Table 2, and they are illustrated by the plots in
Fig. 1. For the expected values from Table 2 one observes a logarithmic rate: Doubling
n adds roughly 1 to E(Sn); an asymptotic explanation for this feature will be given
in the next Section. While the variance mildly grows with n, the skewness and the
kurtosis decrease with the sample size. All in all, we find the spread in Sn rather small.

Looking more closely into the figures behind Fig. 1 reveals that the five outcomes
with highest probabilities including the most probably value (mode) cover roughly
90% of the probability mass:
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Fig. 1 P(Sn = k), k = 1, . . . , 15

P(3 ≤ S25 ≤ 7) = 0.9195 , P(4 ≤ S50 ≤ 8) = 0.8995 ,

P(5 ≤ S100 ≤ 9) = 0.8850 , P(6 ≤ S200 ≤ 10) = 0.8758 .

Table 3 looks more closely at the mode, modn . While Fig. 1 and Table 2 are restricted
to n = 2s ·25 for s = 0, 1, 2, . . ., we consider nowmore generally n = 2s · B and vary
B ∈ {25, 30, 35}. From Table 3 we observe a logarithmic rate, modn = �log2 n� =
s + �log2 B�;2 as with the expectation this feature calls for an explanation provided
in the next section. As we know from Fig. 1, the maximum probability decreases with
n. For large n this probability seems to settle around 0.25 or slightly below, and an
approximate explanation will be provided again in the next section. At the same time,
it is interesting to look at the probabilities for larger values, say larger than the mode,
P(Sn > modn): Throughout, the probability for the maximum length of a spell to
exceed the mode is varies only very little with s given n = 2s · B, but the probability
depends on B, which will be again clarified in the subsequent section. In any case we
observe large probabilities P(Sn > modn): Long spells relative to the sample size of
concordance or discordance will be the rule rather than the exception. This is in line
with the experimental evidence documented in Table 1 for no correlation.

5 Approximate results

In this section we compare our exact figures from Table 2 and 3 and Fig. 1 with
approximatefigures. The following approximation canbe traced back toFöldes (1975),
see Révész (1990, Thm. 6). Easier to access is the proof by Földes (1979), while

2 This holds for our choices of n. In fact, we verified that it holds for the majority of values of n, but we
found counterexamples, too, where modn = �log2 n� ± 1.
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188 U. Hassler, M. Hosseinkouchack

Table 3 Mode of Sn , n = 2s · B
n = B n = 2 · B n = 22 · B n = 23 · B n = 24 · B

B = 25 with �log2 25� = 4

modn = �log2 n� 4 5 6 7 8

P(Sn = �log2 n�) 0.2980 0.2768 0.2645 0.2574 0.2534

P(Sn > �log2 n�) 0.5496 0.5441 0.5423 0.5419 0.5418

B = 30 with �log2 30� = 4

modn = �log2 n� 4 5 6 7 8

P(Sn = �log2 n�) 0.2743 0.2601 0.2511 0.2456 0.2425

P(Sn > �log2 n�) 0.6255 0.6160 0.6119 0.6100 0.6091

B = 35 with �log2 35� = 5

modn = �log2 n� 5 6 7 8 9

P(Sn = �log2 n�) 0.2784 0.2627 0.2542 0.2495 0.2469

P(Sn > �log2 n�) 0.4102 0.4139 0.4167 0.4185 0.4196

modn denotes the finite sample mode of Sn ; the probabilities build on Corollary 1

extensions have been provided by Gordon et al. (1986, Thm. 1), see also Proposition 3
below. For this and the next section, remember the definition of the fractional part of
a real number x , {x} := x − �x�, with �·� being the usual floor function.

Proposition 2 Under the assumptions of Proposition 1 it holds uniformly for any
integer z that

P(Zn − �log2 n� < z) = Fn(z) + o(1) ,

where Fn(z) := exp
(−2−(z+1−{log2 n})).

Proof Földes (1979, Thm. 4). �	
Now we are equipped to turn to an approximation of Sn with Sn ≈ Zn + 1 building
on P(Sn = k) ≈ P(Zn = k − 1) for large n according to (6). The distribution of Zn

can be approximated by truncating a Gumbel distribution with distribution function
Fn . Let Vn be Gumbel distributed with parameters {log2 n} − 1 and 1/ ln 2 such that

E(Vn) = {log2 n} − 1 + γ

ln 2
and Var(Vn) = π2

6

1

ln2 2
,

where γ ≈ 0.5772 is Euler’s constant. It is known that Fn(v) = P(Vn ≤ v), v ∈
R, with Fn given in Proposition 2, the mode is mod(Vn) = {log2 n} − 1, i.e. the
density fn(v) is maximized at mod(Vn), and the median is med(Vn) = mod(Vn) −
ln(ln 2)/ln 2. We then have by Proposition 2 that Zn − �log2 n� ≈ �Vn� in the sense
that

P(Zn − �log2 n� ≤ z − 1) ≈ P(Vn ≤ z) = P(�Vn� ≤ z − 1).
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Understanding nonsense correlation... 189

Consequently,

Sn ≈ �Vn� + �log2 n� + 1 . (7)

Because of

P(�Vn� = z − 1) = P(z − 1 ≤ Vn < z) =
∫ z

z−1
fn(v)dv ,

the mode mod(Vn) with −1 < mod(Vn) < 0 suggests that mod(�Vn�) = −1. Hence,
(7) suggests that mod(Sn) = �log2 n�, which was observed in Table 3.

Remark 2 Note that the approximation in (7) builds on the convergence result in
Proposition 2, which, however, may not be interpreted as a limiting distribution: The
approximating random variable Vn with the distribution function Fn does not converge
with n, simply because the fractional part 0 ≤ {log2 n} < 1 does not.

More loosely speaking, it follows from Proposition 2 that (k = 1, 2, . . .)3

P(Sn ≤ k) ≈ P(Zn < k) ≈ exp
(
−2−(k+1−log2 n)

)
= Fn(k − �log2 n�) . (8)

Hence, P(Sn = k) can be approximated by Pn(k) defined as follows:

P(Sn = k) ≈ Pn(k) := Fn(k − �log2 n�) − Fn(k − 1 − �log2 n�) . (9)

As in Table 3, consider n = 2s · B such that �log2 n� = s + �log2 B� with {log2(2s ·
B)} = {log2 B}. Obviously, Pn(�log2(2s · B)�) is constant for all s,

Pn(�log2(2s · B)�) = exp
(
−2{log2 B}−1

)
− exp

(
−2{log2 B}) .

Since {log2 B} ∈ [0, 1), it is straightforward to verify that Pn(�log2(2s · B)�)
varies only between 0.233 and 0.250, which explains P(Sn = �log2 n�) in Table 3,
in particular Pn(�log2(2s · 25)�) = 0.2482, Pn(�log2(2s · 30)�) = 0.2383, and
Pn(�log2(2s · 35)�) = 0.2438. Similarly,

P(Sn > �log2
(
2s · B)�) ≈ 1 − Fn(0) = 1 − exp

(
−2{log2 B}−1

)
.

Again, for B ∈ {25, 30, 35} this very well explains the figures from Table 3 since

P(Sn > �log2
(
2s · B)�) ≈

⎧⎨
⎩
0.5422 for B = 25
0.6084 for B = 30
0.4212 for B = 35

.

3 Note that this is only a pragmatic approximation since Prop. 2 does not guarantee that P(Zn < k) =
P(Zn − �log2 n� < k − �log2 n�) equals exp

(
−2−(k+1−log2 n)

)
+ o(1) since k − �log2 n� is not a finite

integer z for growing n.
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Fig. 2 P(Sn = k) − Pn(k), see (9), k = 1, . . . , 15

Further, Fig. 2 displays selected differences of the exact and the approximate prob-
abilities, P(Sn = k) − Pn(k): (9) does a fairly good job in approximating the single
exact probabilities from Corollary 1 for n ≥ 100, while for n = 25 or n = 50 the
deviations may be considerable.

Using E(Vn) and Var(Vn), we could roughly approximate E(Sn) and Var(Sn), but
more elaborate results are available from the literature. Because of (6) we have

E(Sn) =
n∑

k=1

kP(Sn = k) =
n−1∑
k=0

(k + 1)P(Zn−1 = k) = E(Zn−1) + 1 .

Gordon et al. (1986, Thm.2) provided E(Zn) ≈ log2 n+γ /ln 2−3/2. It follows that

E(Sn) ≈ μn := log2 n + γ

ln 2
− 1

2
. (10)

More precisely, one has, see Guibas and Odlyzko (1980, Thm.4.1), that

E(Sn) = μn + r(n) + o(1) ,

where r(n) does not vanish but is small: |r(x)| ≤ 1.6 · 10−6 for all x according to
Guibas and Odlyzko (1980, p. 245). Due to r(n), Sn does not converge with n even if
demeaned by μn , see Remark 2. Still, the mean can be very well approximated as the
evaluation of (10) demonstrates:

A look at Table 2 demonstrates the close correspondance with the exact expectation
even for small n. Finally, Gordon et al. (1986, Thm.2) provided an approximation of
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Understanding nonsense correlation... 191

n = 25 n = 50 n = 100 n = 200 n = 400

μn 4.9766 5.9766 6.9766 7.9766 8.9766

the variance, too. Since Var(Sn) = Var(Zn) we have from their paper that

Var(Sn) ≈ π2

6 ln2 2
+ 1

12
≈ 3.5070 ,

see also Guibas and Odlyzko (1980, Thm. 4.1). This value independent of n does not
explain well the exact variances for small n given in Table 2.

6 Correlated randomwalks

Drawing from the paper by Gordon et al. (1986) we briefly consider an extensions
of Proposition 2. We now relax Assumption 1 and allow for correlation between the
random walks. In terms of the concordance from Definition 1, correlation allows for
P(Ci = 0) �= P(Ci = 1). Technically, this means we have a Bernoulli process without
symmetry, which is the model for tossing a coin that is not fair. The stronger the
positive correlation between the two random walks is, the larger is the probability of
concordance p,

p := P(Ci = 0) and q := 1 − p = P(Ci = 1).

Negative correlation implies p < 1/2.

Assumption 2 Let (�Xi ,�Yi )i=1,...,n be a sequence of independent, identically dis-
tributed and continuous random variables with 0 < p < 1.

From Gordon et al. (1986, Thm. 1) we have the following result, see also Arratia,
Gordon and Waterman (1990, Coro. 3).

Proposition 3 Let (Xi ,Yi )i=0,1,...,n from equation (1) satisfy Assumption 2. It then
holds uniformly for any integer z that

P(Zn − �mn,p� < z) = exp
(
−pz−{mn,p}

)
+ o(1) ,

where mn,p := log1/p(nq).

Proof The result follows from Gordon et al. (1986, Thm. 1); details are provided in
the Appendix. �	
Note that mn,1/2 = log2(n) − 1 and {log2(n) − 1} = {log2 n}, such that Proposition 2
arises as a special case. Further, Proposition 3 allows to approximate in the sense of
(8) that

P(Zn ≤ k) ≈ exp
(
−pk+1−mn,p

)
. (11)
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Table 4 Probabilities P(Zn > �log2 n�) for varying p

n n = 25 n = 50 n = 100 n = 200 n = 400
�log2 n� 4 5 6 7 8

Approximate

p = 0.23 0.0123 0.0057 0.0026 0.0012 0.0006

p = 0.42 0.1726 0.1472 0.1252 0.1062 0.0900

p = 0.50 0.3234 0.3234 0.3234 0.3234 0.3234

p = 0.58 0.4980 0.5504 0.6044 0.6590 0.7129

p = 0.77 0.7891 0.9090 0.9751 0.9966 0.9998

Monte Carlo estimates

p = 0.23 0.0111 0.0054 0.0027 0.0010 0.0004

p = 0.42 0.1574 0.1375 0.1207 0.1022 0.0893

p = 0.50 0.3139 0.3161 0.3174 0.3185 0.3224

p = 0.58 0.5166 0.5633 0.6135 0.6667 0.7183

p = 0.77 0.9297 0.9766 0.9955 0.9997 1.0000

Approximate probabilities from (11); Monte Carlo estimation builds on computer experiments with 105

replications

This formula underlies Table 4 dedicated to the effect of p on P(Zn > �log2 n�)
building on the approximation from (11). Our choices of p equal the probabilities if
(�Xi ,�Yi ) are jointly normal with a correlation of ρ: p = 0.23, 0.42, 0.5, 0.58, 0.77
arise from ρ = −0.75,−0.25, 0, 0.25, 0.75. It is intuitively clear that p > 0.5
increases the probabilites of long zero runs, and it does so dramatically e. g. for
p = 0.77. For p < 0.5 on the other hand, zero runs become less likely because
the random walks tend to drift in a discordant manner. This does of course not reduce
the correlation between the random walks. Let On stand for the length of the longest
sequence of ones in (Ci )i=1,...,n . It is clear from (11) that

P(On ≤ k) ≈ exp
(
−qk+1−μn,q

)
,

where μn,q is defined analogously to mn,p from Proposition 3: μn,q := log1/q(np).
Table 4 formalizes the following intuition: The stronger the correlation between the
random walks is, i. e. the larger |p − 0.5| is, the more likely are long runs of zeros or
ones in (Ci ), depending on the sign of p− 0.5. The approximate results from the first
panel of Table 4 are well supported by finite sampleMonte Carlo estimates for p being
not too large; for p = 0.77, however, the approximate figures are too conservative in
that the Monte Carlo estimates are sizeable larger.

7 Summary

There exists a well understood asymptotic theory why one gets nonsensical correlation
between independent long random walks, see Phillips (1986, Thm.1). In this note we
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focus on finite samples with a special interest on small sizes. What is, for instance,
the maximum length of random association (consecutive concordance or consecutive
discordance) between two independent random walks of sample size n = 50? Evalu-
ating Corollary 1, one can verify that the probability of themaximum length of random
association being equal to 5 amounts to 27.68% (see also Fig. 1). The exact probability
that thismaximum length is at least equal to 5 amounts to 82.09% (see Table 3), and the
expected value is 5.9783 (Table 2). Hence, long episodes (relative to the small sample
size) of random association occur frequently, which explains why nonsense correla-
tion arises between independent short random walks. We also included the case of
correlated randomwalks where long episodes of association are of course more likely,
see Table 4 for a quantification.
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Appendix

Let (Bi )i=1,...,n denote a sequence of independent Bernoulli trials with equal prob-
ability: P(Bi = 1) = P(Bi = 0) = 1/2. We call (Bi ) a Bernoulli-Laplace [BL]
process, which is the mathematical model for tossing a fair coin. Let Bn be the set
of all possible BL sequences of length n, such that #(Bn) = 2n , where #(S) denotes
the number of elements of some set S. By Assumption 1, the concordance indicators
(Ci )i=1,...,n from (3) form a BL process.

Proof of Proposition 1

By definition, Zn stands for the length of the longest zero run of a BL sequence. To
determine its probability distribution, we define the set Zn(k) ⊆ Bn containing all
sequences subject to Zn < k. By definition, P(Zn < k) = #(Zn(k))/2n . For brevity,
let N (k)

n := #(Zn(k)):

P(Zn < k) = N (k)
n

2n
.

Hence, we are left with determining N (k)
n . Obviously, N (1)

n = 1, since Zn(1) =
{(1, 1, . . . , 1)}. All sequences contained in Zn(2) necessarily begin with ‘1’ or with
‘0,1’ glued to sequences from Zn−1(2) and Zn−2(2), respectively. Consequently,
N (2)
n = N (2)

n−1 + N (2)
n−2. Analogously, all elements in Zn(3) are made up by ‘1’, ‘0,1’
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or ‘0,0,1’ followed by sequences from Zn−1(3), Zn−2(3) and Zn−3(3), respectively,
and so on. The general recursion becomes:

N (k)
n =

k∑
i=1

N (k)
n−i , 1 ≤ k ≤ n . (12)

To initialize this recursion, one requires starting values N (k)
m for m < k. In this case,

all zero runs are necessarily shorter than k, i.e. all elements in Bm satisfy Zm < k,
such that

N (k)
m = 2m , 0 ≤ m < k , (13)

which formally covers the case N (k)
0 = 1, too. By Definition 2 it holds that N (�)

m =
f (�)
m+1, m = 0, 1, . . ., which completes the proof.

Proof of Corollary 1

By definition, Sn is the maximum length of a spell (of zeros or ones). Denote by Sn(k)
the subset of Bn meeting Sn < k. Obviously, Sn(1) equals the empty set. Generally,
a new spell begins exactly when Ci+1 differs from Ci . Define the corresponding
difference indicator

Di =
{
1 if Ci+1 �= Ci

0 if Ci+1 = Ci
, i = 1, . . . , n − 1 .

By construction, P(Di = 1) = P(Di = 0) = 1/2, and (Di )i=1,...,n−1 is a new BL
process. Further, a zero run of length k − 1 in (Di ) is equivalent to a run of zeros or
a run of ones of length k in (Ci ). Therefore, #(Sn(k)) = 2 #(Zn−1(k − 1)), and with
the previous notation this mean that

#(Sn(k)) = 2 N (k−1)
n−1 = 2 f (k−1)

n , 2 ≤ k ≤ n . (14)

With P(Sn < k) = #(Sn(k))/2n , the proof is complete.

Proof of Proposition 3

Define as in Gordon et al. (1986) Vn,p := W/ ln(1/p) + {mn,p}, where W follows a
standard Gumbel distribution; note that Vn,1/2 = Vn from Sect. 5. The corresponding
distribution function is known to become

Fn,p(v) := P(Vn,p ≤ v) = exp
(
−e−(v−{mn,p}) ln(1/p)

)

= exp
(
−pv−{mn,p}

)
.
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From Gordon et al. (1986, Thm.1) we have that uniformly in z

P
(
Zn − mn,p ≤ z − 1

) = P
(�Vn,p� − {mn,p} ≤ z − 1

) + o(1) , (15)

see also Arratia, Gordon and Waterman (1990, Coro. 3). Using

P
(
Zn − mn,p ≤ z − 1 − {mn,p}

) = P
(
Zn − �mn,p� ≤ z − 1

)

together with

P
(�Vn,p� ≤ z − 1

) = P
(
Vn,p < z

) = Fn,p(z) ,

the claim follows.
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