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Abstract
We establish weighted Lp-Fourier extension estimates for O(N − k) × O(k)-invariant func-
tions defined on the unit sphere �N−1 , allowing for exponents p below the Stein–Tomas 
critical exponent 2(N+1)

N−1
 . Moreover, in the more general setting of an arbitrary closed sub-

group G ⊂ O(N) and G-invariant functions, we study the implications of weighted Fourier 
extension estimates with regard to boundedness and nonvanishing properties of the corre-
sponding weighted Helmholtz resolvent operator. Finally, we use these properties to derive 
new existence results for G-invariant solutions to the nonlinear Helmholtz equation 

where Q is a nonnegative bounded and G-invariant weight function.

1  Introduction

Starting with the pioneering work of Stein (cf. [11]), Tomas [15] and Strichartz [13], Fou-
rier restriction and extension estimates have been receiving extensive attention due to their 
various applications, especially to partial differential equations. For an overview on classi-
cal results and recent progress, we refer the reader to e.g. [5, 12, 14]. In its classical form, 
the famous Fourier extension theorem of Stein and Tomas (see e.g. [12, §8: Corollary 5.4]) 
states that the inverse Fourier transform F̌

𝜎
 of F ∈ L2(�N−1) given by

belongs to Lq(ℝN) for N ≥ 2 if q ≥ 2(N+1)

N−1
 and that

−Δu − u = Q(x)|u|p−2u, u ∈ W2,p(ℝN),

F̌
𝜎
(x) = (2𝜋)−

N

2 ∫
�N−1

ei𝜔⋅xF(𝜔) d𝜎(𝜔)
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with a constant C > 0 depending only on q and N. Here �N−1 denotes the (N − 1)−dimen-
sional sphere in ℝN and d� the induced Lebesgue measure on �N−1 . Due to the Knapp exam-
ple given by a characteristic function of a small spherical cap in �N−1 , this range of exponents 
is known to be sharp for arbitrary functions; see e.g [14, Chapter 4]. On the other hand, it 
is a natural question whether the range of exponents can be improved both by considering 
weighted Lq-norms and by restricting to functions having additional symmetries. A well-
known and classical observation in this context yields that case (1.1) holds for q >

2N

N−1
 and 

radial (and thus constant) functions F ∈ L2(�N−1) ; see e.g. [12, §8: Proposition 5.1].
In the present paper, we analyse this question for more general symmetries with respect 

to closed subgroups of O(N).
For this, we introduce the following definition.

Definition 1.1  Let q ≥ 1 , let G ⊂ O(N) be closed subgroup, and let Q ∶ ℝN
→ ℂ be a 

measurable function. We call (G, q, Q) an admissible extension triple if there exists a con-
stant C > 0 with

Here and in the following, a function F ∈ L2(�N−1) is called G-invariant if F(A�) = F(�) 
for every � ∈ �N−1 , A ∈ G . By the remarks above, ({id}, q, 1) is an admissible extension 
triple if q ≥ 2(N+1)

N−1
 and (O(N), q, 1) is an admissible extension triple if q >

2N

N−1
 . As a fur-

ther specific example, we mention the subgroup O(N − 1) ≅ O(N − 1) × {id
ℝ
} ⊂ O(N) 

which corresponds to axial symmetry with respect to a fixed axis in ℝN . Since a charac-
teristic function of a small spherical cap in �N−1—as considered in Knapp’s example men-
tioned above—is axially symmetric, the range for q with (O(N − 1), q, 1) being an admis-
sible extension triple cannot be extended beyond the value 2(N+1)

N−1
.

If, on the other hand, we consider weight functions Q ∈ Ls(ℝN) for suitable s < ∞ ; then, 
the range of exponents giving rise to admissible extension triples can be readily extended 
by applying Hölder’s inequality to the LHS of (1.2). In particular, this yields that 
({id}, q,Q) is an admissible extension triple if Q ∈ Ls(ℝN) for some s ∈ [1,∞) and 
q ≥ max

{
2s(N+1)

2(N+1)+s(N−1)
, 1
}

 . Moreover, (O(N),  q,  Q) is an admissible extension triple if 

Q ∈ Ls(ℝN) for some s ∈ [1,∞) and q ≥ max{
2sN

2N+s(N−1)
, 1}.

In the present paper, we are interested in weight functions Q ∈ L∞(ℝN) , where Hölder’s 
inequality does not yield an extended range of admissible exponents. The main aims of the 
paper are the following. First, we wish to detect a class of admissible extension triples cor-
responding to nontrivial subgroups of O(N) and corresponding to functions Q ∈ L∞(ℝN) 
which are not s-integrable for any s < ∞ . Second, starting from a range of admissible 
extension triples (G, q, Q), we wish to derive selfdual (Lp� , Lp)-estimates for the restriction 
of mappings of the form

to G-invariant functions in the Schwartz space S of rapidly decreasing functions in ℝN . 
Here R denotes the standard Helmholtz resolvent defined by Rf = Φ ∗ f  , where

(1.1)‖F̌
𝜎
‖Lq(ℝN ) ≤ C‖F‖L2(𝕊N−1)

(1.2)‖QF̌
𝜎
‖Lq(ℝN ) ≤ C‖F‖L2(𝕊N−1) for every G-invariant function F ∈ L2(𝕊N−1).

f ↦ RQf ∶= QR(Qf )

(1.3)Φ(x) ∶=
i

4
(2�|x|)

2−N

2 H
(1)
N−2

2

(|x|), for x ∈ ℝ
N�{0},
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is the fundamental solution of the Helmholtz operator associated with Sommerfeld’s out-
going radiation condition �ru(x) − iu(x) = o(|x|

1−N

2 ) , as |x| → ∞ . Here H(1)
N−2

2

 denotes the 

Hankel function of the first kind of order N−2
2

 . Moreover, we wish to derive corresponding 
nonvanishing results in the spirit of [3, Theorem 3.1]. Finally, we wish to deduce existence 
results for real-valued G-invariant solutions of nonlinear Helmholtz equations of the form

With regard to our first aim, we focus our attention to the subgroups

Moreover, we consider weight functions of the form Q
�
= �L

�

 for the set

where a > 0 is an arbitrary fixed number and 𝛼 > 0 . Since |L
�
| = ∞ , we have Q

�
∉ Ls(ℝN) 

for any 𝛼 > 0 , s < ∞.

Theorem 1.1  Let N ≥ 3 , k ∈ {1,… ,N − 1} , let 𝛼 > 0 , and let Q
�
= �L

�

 with L
�
 given in 

(1.6). Moreover, suppose that

and let

Then (Gk, q,Q�
) is an admissible extension triple for every q > 𝜆N,k,𝛼.

We note that, in Theorem 2.2, we shall in fact prove a generalization of this result for char-
acteristic functions of sets of the form L

�,� ∶= {x ∈ ℝN ∶ |x(N−k)| ≤ amax{|x(k)|−� , |x(k)|−�}} 
with 𝛼 ≥ 𝛽 > 0 . Regarding Theorem 1.1, we note in particular that �N,k,� = 0 for � =

k

N−k
 , so 

(Gk, q,Q�
) is an admissible extension triple for every q ≥ 1 in this case if also (1.7) is satisfied. 

More generally, the latter property holds if � ∈ (
k+1

2(N−k)
,

2k

N−k+1
) , since then we have 𝜆N,k,𝛼 < 1 . 

Comparing with the classical Stein–Tomas exponent, we have 𝜆N,k,𝛼 <
2(N+1)

N−1
 if

(see Fig. 1).

(1.4)−Δu − u = Q(x)|u|p−2u, u ∈ W2,p(ℝN).

(1.5)Gk ∶= O(N − k) × O(k) ⊂ O(N) for k = 1,… ,N − 1.

(1.6)L
�
∶= {x = (x(N−k), x(k)) ∈ ℝ

N−k ×ℝ
k ∶ |x(N−k)| ≤ a|x(k)|−�},

(1.7)𝛼 >
1

N − 1
if k = 1, 𝛼 < N − 1 if k = N − 1,

(1.8)�N,k,� ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2(N−1)−
2

�

N−2
, if k = 1;

max

�
2(N−k)−

2k

�

N−k−1
,
2k−2�(N−k)

k−1

�

, if 2 ≤ k ≤ N − 2;

2(N−1)−2�

N−2
, if k = N − 1.

k ≤ N − 1

2
, 𝛼 ∈

(
N + 1 − 2k

(N − k)(N − 1)
,∞

)

or

N − 1

2
< k <

N + 1

2
, 𝛼 ∈

(
N + 1 − 2k

(N − k)(N − 1)
,

k(N − 1)

2k − (N − 1)

)

or

k ≥ N + 1

2
, 𝛼 ∈

(

0,
k(N − 1)

2k − (N − 1)

)

.
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The main part of the proof of this theorem consists in a detailed asymptotic study of 
one-dimensional integrals which arise after integrating along the orbits of Gk . Here, the 
well-known bound

for the Fourier transform of the standard measure d�k on �k−1 will play a key role (see e.g. 
[12, §8: Theorem 3.1]).

We also remark that if (G, q, Q) is an admissible extension triple and Q� ∶ ℝN
→ ℂ is a 

measurable function with |Q′| ≤ |Q| in ℝN , then, by definition, (G, q,Q�) is also an admis-
sible extension triple. Consequently, the statement of Theorem  1.1 extends to functions 
Q ∈ L∞(ℝN) with |Q| ≤ c�L

�

 in ℝN for some c > 0.
Next we state our main result on (Lp� , Lp)-Helmholtz resolvent estimates for G-invariant 

functions. Here and in the following, for r ∈ [1,∞] , we let Lr
G
(ℝN) denotes the closed sub-

space of G-invariant functions in Lr(ℝN).

Theorem  1.2  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, let Q ∈ L∞
G
(ℝN) , and let 

q ∈ [1,
2(N+1)

N−1
] be such that (G,  q,  Q) is an admissible extension triple. Then for every 

p ∈

(
2N

N−1

2q

q+2
,

2N

N−2

]

 there exists a constant C > 0 such that

Here and in the following, SG ⊂ S denotes the subspace of G-invariant functions in the 
Schwartz space S.

| ̌d𝜎k(x)| ≤ C(1 + |x|)
1−k

2 , x ∈ ℝ
k

(1.9)
�
�
�
RQ(f )

�
�
�Lp

≤ C‖f‖Lp� forevery f ∈ SG.

1

2

2k−2α(N−k)
k−1

2(N−k)−2 k
α

N−k−1

2(N+1)
N−1

αk
N−k

Fig. 1   Admissible values of q for N = 6 and k = 2 depending on �
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Our proof of Theorem 1.2 is based on the strategy used in [7] and [8]; see also [3]. We 
recall that a selfdual estimate of the form (1.9) has been proved in [8] for the Helmholtz 
resolvent R in place of RQ in the range of exponents p ∈ [

2(N+1)

N−1
,

2N

N−2
] , while correspond-

ing non-selfdual estimates were obtained in [7]. Clearly, these already available (Lr, Ls)
-estimates for R extend, by approximation, to the weighted resolvent RQ in the case where 
Q ∈ L∞(ℝN) . Theorem 1.2 complements the selfdual estimate in [8], for RQ and G-invari-
ant functions, in the case where (G,  q,  Q) is an admissible extension triple for some 
q <

2(N+1)

N−1
 , which is equivalent to the inequality 2N

N−1

2q

q+2
<

2(N+1)

N−1
 . In fact, we will prove a 

non-selfdual generalization of Theorem 1.2 in Theorem 3.1.
Under the assumptions of Theorem 1.2, it follows, by density, that the weighted resol-

vent RQ extends to a bounded linear operator Lp
�

G
(ℝN) → L

p

G
(ℝN) . In our next result, we 

state that, under the same assumptions, a nonvanishing property in the spirit of [3, Theo-
rem 3.1] holds.

Theorem  1.3  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, let Q ∈ L∞
G
(ℝN) , and let 

q ∈

[

1,
2(N+1)

N−1

]

 be such that (G,  q,  Q) is an admissible extension triple. Moreover, let 

p ∈

(
2N

N−1

2q

q+2
,

2N

N−2

]

 . Then for every bounded sequence (vn)n ⊂ L
p�

G
(ℝN) satisfying 

|
|
|
|
|

lim sup
n→∞

∫
ℝN

vnRQ(vn) dx
|
|
|
|
|

> 0 , there exist—after passing to a subsequence—numbers 

R, 𝜁 > 0 and a sequence of points (xn)n∈ℕ ⊂ ℝN with

In the special (non-symmetric) case G = {id} , Q ≡ 1 , q =
2(N+1)

N−1
 , this theorem reduces to 

[3, Theorem 3.1]. Here we note that 2N

N−1

2q

q+2
=

2(N+1)

N−1
 if q =

2(N+1)

N−1
 . The general strategy of 

the proof of Theorem 1.3 is inspired by [3, Theorem 3.1]. However, additional difficulties, 
related to the fact that the multiplication with Q ∈ L∞(ℝN) does not map S into itself, lead 
to a somewhat more involved argument.

Theorems 1.2 and 1.3 are useful in the study of real-valued G-invariant solutions of the 
nonlinear Helmholtz equation (1.4) with a real-valued weight function Q ∈ L∞

G
(ℝN) , where 

G ⊂ O(N) is a given closed subgroup. In the following, we focus on dual bound state solu-
tions, which arise as solutions u ∈ Lp(ℝN) of the integral equation u = R

(
Q|u|p−2u

)
 , where 

R is the real part of the resolvent operator R ; see Sect. 5 for details. Our first main result in 
this context is the following.

Theorem  1.4  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, and let Q ∈ L∞
G
(ℝN) be a 

real-valued nonnegative function with Q ≢ 0 and with the property that

Moreover, let q ∈

[

1,
2(N+1)

N−1

]

 , and let p ∈

(

max
{

2N

N−1

2q

q+2
, 2
}

,
2N

N−2

)

 be such that (G, q,Q
1

p ) 
is an admissible extension triple. Then (1.4) admits a nontrivial G-invariant dual bound 
state solution.

�
BR(xn)

|Qvn(x)|
p� dx ≥ � , forall n.

(1.10)‖Q‖L1(BR(x))
→ 0 as �x� → ∞ for some R > 0.
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We recall that, by the Stein–Tomas inequality, (G, q,Q�) is an admissible extension tri-

ple for q =
2(N+1)

N−1
 and every closed subgroup G ⊂ O(N) and every Q� ∈ L∞(ℝN) . Recalling 

moreover that 2N

N−1

2q

q+2
=

2(N+1)

N−1
 in this case, we readily deduce the following corollary of 

Theorem 1.4.

Corollary 1.5  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, and let Q ∈ L∞
G
(ℝN) be a 

nonnegative function satisfying Q ≢ 0 and (1.10). Then (1.4) admits a nontrivial G-invari-
ant dual bound state solution for every p ∈ (

2(N+1)

N−1
,

2N

N−2
).

This corollary applies in particular in the non-symmetric case G = {id} , but it requires 
the asymptotic condition (1.10). On the other hand, in the case of special symmetries cor-
responding to the subgroups Gk defined in (1.5), we may drop assumption (1.10), as the 
following result shows.

Theorem  1.6  Let N ≥ 4 , let k ∈ {2,… ,N − 2} , and let Q ∈ L∞
Gk
(ℝN) be a nonnegative 

function with Q ≢ 0 . Then (1.4) admits a nontrivial Gk-invariant dual bound state solution 
for every p ∈ (

2(N+1)

N−1
,

2N

N−2
).

Finally, we point out that assumption (1.10) holds in particular for functions 
Q ∈ L∞(ℝN) satisfying |Q| ≤ c�L

�

 for some c, 𝛼 > 0 , where L
�
 is given in (1.6). Using this 

fact, the following corollary can be deduced from Theorems 1.1 and 1.4.

Corollary 1.7  Let N ≥ 3 , let k ∈ {1,… ,N − 1} , and let 𝛼 > 0 . Moreover, let Q ∈ L∞
Gk
(ℝN) 

be a nonnegative function with Q ≢ 0 and satisfying |Q| ≤ c�L
�

 for some c > 0 with L
�
 

given in (1.6). Then (1.4) admits a nontrivial Gk-invariant dual bound state solution for all 
p ∈ (�N,k,� ,

2N

N−2
) if one of the following holds: 

	 (i)	 k = 1 and 

	 (ii)	 k = N − 1 and 

	 (iii)	 2 ≤ k ≤ N − 2 and 

(1.11)𝜇N,1,𝛼 ∶=

⎧
⎪
⎨
⎪
⎩

2,
1

N−1
< 𝛼 ≤ N + 1

3(N − 1)
,

4N(𝛼(N−1)−1)

(N−1)(2𝛼N−3𝛼−1)
, 𝛼 >

N + 1

3(N − 1)
.

(1.12)𝜇N,N−1,𝛼 ∶=

⎧
⎪
⎨
⎪
⎩

4N(N−1−𝛼)

(N−1)(2N−𝛼−3)
, 0 < 𝛼 ≤ 3(N − 1)

N + 1
,

2,
3(N−1)

N+1
< 𝛼 < N − 1.
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We point out that, in contrast to Corollary 1.5 and Theorem 1.6, Corollary 1.7 allows to 
consider exponents p <

2(N+1)

N−1
.

To put our existence results for (1.4) into perspective, we recall some previous results. 
In [7], the existence of small complex solutions has been proved via the use of contraction 
mappings in dimensions N = 3, 4 , p = 3 and Q = ±1 . A variant of this technique is devel-
oped in [9], where continua of small real-valued solutions of (1.4) are detected for a larger 
class of nonlinearities. The dual variational approach to (1.4) was introduced in [3], where 
the existence of nontrivial dual bound state solutions was proved for p ∈

(
2(N+1)

N−1
,

2N

N−2

)

 and 
for nonnegative weight functions Q ∈ L∞(ℝN) ⧵ {0} which are either ℤN-periodic or sat-
isfy the uniform decay assumptions Q(x) → 0 as |x| → ∞ . Under additional restrictions on 
Q, this approach was extended to the Sobolev critical case p =

2N

N−2
 in [4]. Moreover, a dual 

approach in Orlicz spaces was developed in [2] to treat more general nonlinearities in (1.4). 
The defocusing case Q ≤ 0 in (1.4) and radial solutions are considered in [10]. We are not 
aware of any previous work where symmetries different from radial symmetry are used to 
extend the range of admissible exponents to values below the Stein–Tomas exponent 2(N+1)

N−1
 

and to overcome lack of compactness issues in the context of (1.4).
The paper is organized as follows. In Sect. 2, we derive a Fourier extension estimate for 

Gk-invariant functions, where Gk is defined in (1.5). In particular, we prove a generalization 
of Theorem 1.1. In Sect. 3, we provide weighted Helmholtz resolvent estimates relative to 
a given admissible extension triple, thereby giving the proof of Theorem 1.2. In Sect. 4, 
we study related nonvanishing properties, and we give the proof of Theorem 1.3. Finally, 
Sect. 5 is devoted to our main existence results for dual bound state solutions of (1.4).

We close this introduction by fixing some notation. Throughout the paper, 
we denote by Br(x) the open ball in ℝN with radius r > 0 and center at x. Moreo-
ver, we set Br = Br(0) and �N−1 for the boundary of B1 =∶ B . The constant �N rep-
resents the volume of the unit ball B1 in ℝN . For any element x ∈ ℝN , we write 
x = (x(N−k), x(k)) ∶= ((x1,… , xN−k), (xNk+1

,… , xN)) ∈ ℝN−k ×ℝk . Moreover by B(k) , we 
denote the unit ball in ℝk . By �L we denote the characteristic function of a measurable set 
L ⊂ ℝN . Furthermore, we shall indifferently denote by f̂  or F(f ) the Fourier transform of a 
function in ℝN given by

and by F̌
𝜎
 the inverse Fourier transform of an admissible functions F defined on �N−1 via

(1.13)𝜇N,k,𝛼 ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

4N(k−𝛼(N−k))

(N−1)(2k−1−𝛼(N−k))
, 𝛼 ≤ N + 2k − 1

(N + 1)(N − k)
,

2,
N+2k−1

(N+1)(N−k)
< 𝛼 ≤ (N + 1)k

N − 1 + 2(N − k)
,

4N(𝛼(N−k)−k)

(N−1)(2𝛼(N−k)−𝛼−k)
, 𝛼 >

(N + 1)k

N − 1 + 2(N − k)
.

Ff (�) = f̂ (�) = (2�)−
N

2 ∫
ℝN

e−ix⋅� f (x) dx

F̌
𝜎
(x) = (2𝜋)−

N

2 ∫
�N−1

eix⋅𝜔F(𝜔) d𝜎(𝜔).
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For 1 ≤ s ≤ ∞ , we abbreviate the norm on Ls(ℝN) by ‖⋅‖s . The Schwartz class of rapidly 
decreasing functions on ℝN is denoted by S . For any p ∈ (1,∞) , we always denote by 
p� ∶=

p

p−1
 the Hölder conjugate of p.

2 � Fourier extension estimates for Gk‑invariant functions

We recall that, for a function F ∈ L2(�N−1) , we define the (inverse) Fourier transform of 
Fd� by

For F ≡ 1 we use the notation

and will often omit the dimensional index if no confusion is possible. We point out that this 
function satisfies the key uniform bound

with a constant C = C(N) > 0 ; see e.g. [12, §8: Theorem 3.1].
For k ∈ {1,… ,N − 1} , we consider the closed subgroup Gk = O(N − k) × O(k) ⊂ O(N) . 

We first derive a useful expression for F̌
𝜎
 in the case where F ∈ C(�N−1) is Gk-invariant. 

Note that in this case F only depends on one variable r ∈ [0, 1] via the function

Lemma 2.1  Let k ∈ {1,… ,N − 1} and F ∈ C(�N−1) be Gk-invariant. Then we have

with hF given in (2.2). Moreover,

for all x ∈ ℝN.

Proof  By using slice integration (see e.g. [1, A.5]), we have

F̌
𝜎
(x) = (2𝜋)−

N

2 ∫
�N−1

ei𝜔⋅xF(𝜔) d𝜎(𝜔).

ď𝜎N(x) = (2𝜋)−
N

2 ∫
�N−1

ei𝜔⋅x d𝜎(𝜔)

(2.1)|ď𝜎N(x)| ≤ C(1 + |x|)
1−N

2 , x ∈ ℝ
N .

(2.2)hF ∶ [0, 1] → ℝ, hF(r) ∶= F(r�,
√
1 − r2�) for � ∈ 𝕊

N−k−1,� ∈ 𝕊
k−1.

(2.3)

F̌
𝜎
(x) = (2𝜋)

N

2

k𝛼k

N𝛼N

1

∫
0

rN−k−1(1 − r2)
k−2

2 hF(r)ď𝜎N−k(rx
(N−k))ď𝜎k(

√
1 − r2x(k)) dr

�F̌
𝜎
(x)� ≤(2𝜋) N

2

k𝛼k

N𝛼N

‖F‖L2(�N−1)
√
��N−k−1���k−1�

×

⎛
⎜
⎜
⎝

1

�
0

rN−k−1(1 − r2)
k−2

2 �ď𝜎N−k(rx
(N−k))�2 �ď𝜎k(

√
1 − r2x(k))�2

⎞
⎟
⎟
⎠

1

2

.
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for all x ∈ ℝN with hF given in (2.2), as claimed in (2.3). In particular, we get

	�  ◻

For 𝛼 ≥ 𝛽 > 0 and fixed a > 0 , we now consider the subset

We shall prove the following generalization of Theorem 1.1.

Theorem  2.2  Let N ≥ 3. Suppose we have 𝛼 ≥ 𝛽 > 0 , k ∈ {1,… ,N − 1} , Q = �L
�,�

 with 
L
�,� given as in (1.6), and

F̌
𝜎
(x) = (2𝜋)

N

2 ∫
�N−1

eix⋅𝜔F(𝜔) d𝜎(𝜔)

= (2𝜋)
N

2

k𝛼k

N𝛼N ∫
B(N−k)

(1 − �y�2)
k−2

2 eix
(N−k)y ∫

�k−1

eix
(k)
√
1−�y�2𝜇

× F
�

y,
√
1 − �y�2𝜇

�

d𝜎k(𝜇) dN−k(y)

= (2𝜋)
N

2

k𝛼k

N𝛼N

1

∫
0

rN−k−1(1 − r2)
k−2

2 ∫
�N−k−1

eix
(N−k)r𝜂 ∫

�k−1

eix
(k)
√
1−r2𝜇

× F
�

r𝜂,
√
1 − r2𝜇

�

d𝜎k(𝜇) d𝜎N−k(𝜂) dr

= (2𝜋)
N

2

k𝛼k

N𝛼N

1

∫
0

rN−k−1(1 − r2)
k−2

2 hF(r)ď𝜎N−k(rx
(N−k))ď𝜎k(

√
1 − r2x(k)) dr

�F̌
𝜎
(x)� ≤ (2𝜋)

N

2

k𝛼k

N𝛼N

1

�
0

rN−k−1(1 − r2)
k−2

2 �hF(r)� �ď𝜎N−k(rx
(N−k))� �ď𝜎k(

√
1 − r2x(k))� dr

≤ (2𝜋)
N

2

k𝛼k

N𝛼N

⎛
⎜
⎜
⎝

1

�
0

rN−k−1(1 − r2)
k−2

2 �hF(r)�
2dr

⎞
⎟
⎟
⎠

1

2

×

⎛
⎜
⎜
⎝

1

�
0

rN−k−1(1 − r2)
k−2

2 �ď𝜎N−k(rx
(N−k))�2 �ď𝜎k(

√
1 − r2x(k))�2dr

⎞
⎟
⎟
⎠

1

2

= (2𝜋)
N

2

k𝛼k

N𝛼N

‖F‖L2(�N−1)
√
��N−k−1���k−1�

×

⎛
⎜
⎜
⎝

1

�
0

rN−k−1(1 − r2)
k−2

2 �ď𝜎N−k(rx
(N−k))�2 �ď𝜎k(

√
1 − r2x(k))�2dr

⎞
⎟
⎟
⎠

1

2

.

(2.4)L
𝛼,𝛽 ∶= {x = (x(N−k), x(k)) ∶ |x(N−k)| ≤ amax

{
|x(k)|−𝛼 , |x(k)|−𝛽

}
} ⊂ ℝ

N .
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Suppose furthermore that q ≥ 1 and k ∈ {1,… ,N − 1} satisfy

Then there exists a constant C = C(N, k, �, �, a) with the property that

Proof  We shall prove (2.7) under the additional assumption

noting that for any 𝛼 ≥ 𝛽 > 0 and k ∈ {1,… ,N − 1} , the set of values q satisfying (2.6) 
and (2.8) is non-empty. Moreover, by interpolating with the trivial estimate

we can remove the extra assumption (2.8) a posteriori.
In the following, the letter C stands for positive and possibly different constants depend-

ing only on N, k, �, � and a. Let F ∈ C(�N−1) be a Gk-invariant function. Without loss of 
generality, we assume that ‖F‖L2(�N−1) = 1 . Using Lemma 2.1, we can write

where we have used that |Q|q = Q due to the special choice of Q as a characteristic func-
tion. In the last line, we have set

Using the definition of Q and the estimate (2.1), we deduce that

(2.5)�N,k,�,� ∶= max

{
2k − 2�(N − k)

k − 1
,
2(N − k) −

2k

�

N − k − 1

}

.

(2.6)

⎧
⎪
⎨
⎪
⎩

k = 1, 𝛽 >
1

N−1
and q >

2(N−1)−
2

𝛼

N−2
or

2 ≤ k ≤ N − 2, q > 𝜆N,k,𝛼,𝛽 or

k = N − 1, 𝛼 < N − 1, and q >
2(N−1)−2𝛽

N−2
.

(2.7)
�
�
�
QF̌

𝜎

�
�
�q

≤ C‖F‖L2(�N−1) for every Gk-invariant function F ∈ C(�N−1).

(2.8)q < 4,

�
�
�
QF̌

𝜎

�
�
�∞

≤ (2𝜋)−N
√
��N−1�‖F‖L2(�N−1),

(2.9)

�
�
�
QF̌

𝜎

�
�
�

q

q
= �

ℝN

�[QF̌
𝜎
](x)�q dx = �

ℝN

Q(x)�F̌
𝜎
(x)�q dx

≤ C �
ℝN

Q(x)

1

�
0

r
(N−k−1)

q

2 (1 − r2)
k−2

2

q

2 �ď𝜎N−k(rx
(N−k))�q�ď𝜎k(

√
1 − r2x(k))�q dr dx

= C

1

�
0

r
(N−k−1)

q

2 (1 − r2)
k−2

2

q

2 �
ℝN

Q(x)�ď𝜎N−k(rx
(N−k))�q�ď𝜎k(

√
1 − r2x(k))�q dx dr

= C

1

�
0

r
(N−k−1)

q

2
−(N−k)

(1 − r2)
q

4
(k−2)−

k

2Hk(r)dr,

Hk(r) ∶= ∫
ℝN

Q

�

x(N−k)

r
,

x(k)
√
1 − r2

�

�ď𝜎N−k(x
(N−k))�q �ď𝜎k(x

(k))�q dx.
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where the last equality follows since 𝛼 ≥ 𝛽 > 0 by assumption and therefore

Combining (2.9) and (2.10), we can estimate

with

and

(2.10)

Hk(r) = �
ℝk

�ď𝜎k(x
(k))�q

× �
�x(N−k)�≤ armax

��
�x(k) �
√
1−r2

�−𝛼

,
�

�x(k) �
√
1−r2

�−𝛽
�

�ď𝜎N−k(x
(N−k))�q dx(N−k) dx(k)

≤ C �
ℝk

(1 + �x(k)�)
q
1−k

2

× �
�x(N−k)�≤ armax

��
�x(k) �
√
1−r2

�−𝛼

,
�

�x(k) �
√
1−r2

�−𝛽
�

(1 + �x(N−k)�)
q
1−(N−k)

2 dx(N−k) dx(k)

= C

∞

�
0

sk−1(1 + s)
−

q

2
(k−1)

armax

��√

1−r2

s

�
𝛼

,

�√

1−r2

s

�
𝛽

�

�
0

tN−k−1(1 + t)
−

q

2
(N−k−1)

dt ds

= C

√
1−r2

�
0

sk−1(1 + s)
−

q

2
(k−1)

ar(1−r2)
𝛼

2 s−𝛼

�
0

tN−k−1(1 + t)
−

q

2
(N−k−1)

dt ds

+ C

∞

�
√
1−r2

sk−1(1 + s)
−

q

2
(k−1)

ar(1−r2)
𝛽

2 s−𝛽

�
0

tN−k−1(1 + t)
−

q

2
(N−k−1)

dt ds,

max

⎧
⎪
⎨
⎪
⎩

�

s
√
1 − r2

�−𝛼

,

�

s
√
1 − r2

�−𝛽⎫
⎪
⎬
⎪
⎭

=

�

(1 − r2)
𝛼

2 s−𝛼 0 < s <
√
1 − r2;

(1 − r2)
𝛽

2 s−𝛽 , s ≥ √
1 − r2.

(2.11)
‖
‖
‖
QF̌

𝜎

‖
‖
‖

q

q
≤ C

(

I
(1)

k
+ I

(2)

k

)

(2.12)I
(i)

k
∶=

1

∫
0

r
(N−k−1)

q

2
−(N−k)

(1 − r2)
q

4
(k−2)−

k

2H
(i)

k
(r) dr for i = 1, 2
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We first estimate I1
k
 , and we note that

for 0 < r < 1 . Here we used in the last step that (1 − q

2
)(k − 1) − 𝛽(N − k) < −1 since by 

(2.6) we have

Combining (2.12) and (2.13), we conclude that

where the integral on the RHS is finite due to (2.8). As a consequence, I(1)
k

≤ C1 with a 
constant C1 = C1(N, k, 𝛽, a) > 0.

Next we consider I(2)
k

 , and we distinguish the following cases.
Case 1: q(N − k − 1) < 2(N − k).
In this case, we estimate as follows:

Here we used in the last step that k − 1 − 𝛼(N − k) + 𝛼
q

2
(N − k − 1) > −1 since by (2.6) we 

have

H
(1)

k
(r) ∶=

∞

∫
√
1−r2

sk−1(1 + s)
−

q

2
(k−1)

ar(1−r2)
�

2 s−�

∫
0

tN−k−1(1 + t)
−

q

2
(N−k−1)

dt ds,

H
(2)

k
(r) ∶=

√
1−r2

∫
0

sk−1(1 + s)
−

q

2
(k−1)

ar(1−r2)
�

2 s−�

∫
0

tN−k−1(1 + t)
−

q

2
(N−k−1)

dt ds.

(2.13)

H
(1)

k
(r) ≤

∞

�
√
1−r2

s
(1−

q

2
)(k−1)

ar(1−r2)
�

2 s−�

�
0

tN−k−1 dt ds

≤ CrN−k(1 − r2)
�

2
(N−k)

∞

�
√
1−r2

s
(1−

q

2
)(k−1)−�(N−k)

ds ≤ CrN−k(1 − r2)
(1−

q

2
)
k−1

2
+

1

2

𝛽 >
1

N − 1
in case k = 1 and q >

2k − 2𝛽(N − k)

k − 1
if 2 ≤ k ≤ N − 1.

I
(1)

k
≤ C

1

�
0

r
(N−k−1)

q

2 (1 − r2)
q

4
(k−2)−

k

2
+(1−

q

2
)
k−1

2
+

1

2 dr = C

1

�
0

r
(N−k−1)

q

2 (1 − r2)
−

q

4 dr,

H
(2)

k
(r) ≤

√
1−r2

�
0

sk−1

ar(1−r2)
�

2 s−�

�
0

t
N−k−1−

q

2
(N−k−1)

dt ds

≤ Cr
N−k−

q

2
(N−k−1)

(1 − r2)
�

2
(N−k)−

�

2

q

2
(N−k−1)

√
1−r2

�
0

s
k−1−�(N−k)+�

q

2
(N−k−1)

ds

= Cr
N−k−

q

2
(N−k−1)

(1 − r2)
k

2 for r ∈ (0, 1).
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We thus conclude that

We now consider
Case 2: q(N − k − 1) ≥ 2(N − k).
In this case, we choose � ∈

(
q

2
(N − k − 1) − (N − k) , min

{
q

2
(N − k − 1),

q

2
(N − k − 1) +

k

�
− (N − k)

})

 , 
and we estimate as follows:

We thus conclude that

Combining (2.14) and (2.15), we conclude that I
(2)

k
≤ C2 with a constant 

C2 = C2(N, k, 𝛼, a) > 0.
Going back to (2.11), we deduce that

where the constant on the RHS only depends on N, k, �, � and a. The proof is thus fin-
ished. 	�  ◻

We note that Theorem 1.1 is a direct consequence of Theorem 2.2, since the assump-
tions of Theorem 1.1 imply those of Theorem 2.2 in the case � = �.

Moreover, we have the following duality property.

q >

2(N − k) −
2k

𝛼

N − k − 1
in case k < N − 1 and 𝛼 < N − 1 if k = N − 1.

(2.14)

I
(2)

k
=

1

�
0

r
(N−k−1)

q

2
−(N−k)

(1 − r2)
q

4
(k−2)−

k

2H
(2)

k
(r) dr ≤ C

1

�
0

(1 − r2)
q

4
(k−2) dr < ∞.

H
(2)

k
(r) ≤

√
1−r2

�
0

sk−1

ar(1−r2)
�

2 s−�

�
0

tN−k−1(1 + t)
�−

q

2
(N−k−1)

dt ds

≤
√
1−r2

�
0

sk−1

ar(1−r2)
�

2 s−�

�
0

t
N−k−1+�−

q

2
(N−k−1)

dt ds

≤ Cr
N−k+�−

q

2
(N−k−1)

(1 − r2)
�

2
(N−k+�)−

�

2

q

2
(N−k−1)

√
1−r2

�
0

s
k−1−�(N−k+�)+�

q

2
(N−k−1)

ds

= Cr
N−k+�−

q

2
(N−k−1)

(1 − r2)
k

2 for r ∈ (0, 1).

(2.15)

I
(2)

k
=

1

�
0

r
(N−k−1)

q

2
−(N−k)

(1 − r2)
q

4
(k−2)−

k

2H
(2)

k
(r) dr ≤ C

1

�
0

r𝛿(1 − r2)
q

4
(k−2) dr < ∞.

‖
‖
‖
QF̌

𝜎

‖
‖
‖

q

q
≤ C(C1 + C2),
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Lemma 2.3  Suppose that a closed subgroup G ⊂ O(N) , q ≥ 1 , and Q ∈ L∞
G
(ℝN) are given 

with the property that (G,  q,  Q) is an admissible extension pair in the sense of Defini-
tion 1.1. Then there exists a constant C > 0 with

In particular, this holds if G = Gk and N, k, �, �, q and Q satisfy the assumptions of 
Theorem 2.2.

Proof  Let f ∈ SG and F ∶= Q̂f ||�N−1 ∈ L2(�N−1) . Then we have

and therefore ‖F‖L2(�N−1) ≤ C‖f‖q� , as claimed. 	�  ◻

3 � Resolvent estimates for G‑invariant functions

For N ≥ 3 , the radial outgoing fundamental solution of the Helmholtz equation 
−Δu − u = �0 in ℝN is given by

where H(1)
N−2

2

 denotes the Hankel function of the first kind of order N−2
2

 . For a function 

f ∈ S(ℝN) the convolution u ∶= Φ ∗ f ∈ C
∞(ℝN) is a solution of the inhomogeneous 

Helmholtz equation −Δu − u = f  which satisfies the Sommerfeld outgoing radiation condi-
tion �ru(x) − iu(x) = o(|x|

1−N

2 ) , as |x| → ∞ . Moreover, it is known (see [6]) that, in the 
sense of tempered distributions, the Fourier transform of Φ is given by

As a consequence of a classical estimate of Kenig, Ruiz and Sogge (see [8, Theorem 2.3]), 
the mapping f ↦ Φ ∗ f  for f ∈ S(ℝN) extends as a continuous linear operator

for 2(N+1)
N−1

≤ p ≤ 2N

N−2
 . Moreover, non-selfdual (Lr, Lp� )-estimates for R were established by 

Gutiérrez in [7, Theorem 6]. The aim of this section is to establish a similar estimate for 
the operator RQ defined by RQ(f ) ∶= f ↦ Q[Φ ∗ (Qf )] , where G is a closed subgroup of 
O(N) and Q ∈ L∞

G
(ℝN) is a weight function. The main result of this section is the following 

generalization of Theorem 1.2.

�
�
�
Q̂f ���N−1

�
�
�L2(�N−1)

≤ C‖f‖q� for every f ∈ SG.

‖F‖2
L2(𝕊N−1)

= �
𝕊N−1

�QfF d𝜎 = (2𝜋)−
N

2 �
𝕊N−1

�
ℝN

e−ix𝜃f (x)Q(x) dx F(𝜃) d𝜎(𝜃)

= (2𝜋)−
N

2 �
ℝN

f (x)Q(x) �
𝕊N−1

eix𝜃F(𝜃) d𝜎(𝜃) dx ≤ ‖f‖q�‖QF̌𝜎
‖q ≤ C‖f‖q�‖F‖L2(𝕊N−1)

(3.1)Φ(x) ∶=
i

4
(2�|x|)

2−N

2 H
(1)
N−2

2

(|x|), for x ∈ ℝ
N�{0},

(3.2)Φ̂(�) = (2�)−
N

2
1

|�|2 − (1 + i0)
∶= (2�)−

N

2 lim
�→0+

1

|�|2 − (1 + i�)
.

R ∶ Lp
�

(ℝN) → Lp(ℝN)
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Theorem  3.1  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, let Q ∈ L∞
G
(ℝN) , and let 

q ∈

[

1,
2(N+1)

N−1

]

 be such that (G,  q,  Q) is an admissible extension triple. Moreover, let 
p, r ∈ (1,∞) satisfy

Suppose moreover that

and that

if q < 2 . Then there exists C > 0 such that

Remark 3.2 

	 (i)	 In the special case r = p , the assumptions of Theorem  3.1 reduce to 
p ∈

(
2N

N−1

2q

q+2
,

2N

N−2

]

 . Hence Theorem 1.2 follows directly from Theorem 3.1.

	 (ii)	 The assumption q ∈

[

1,
2(N+1)

N−1

]

 implies that condition (3.3) covers the (nonempty) 

condition N−2
N

≤ 1

p
+

1

r
<

N−1

N+1
 considered in [7, Theorem 6].

	 (iii)	 Geometrically, the conditions (3.3), (3.4) and (3.5) can be formulated for the point 
(
1

p
,
1

r
) to be contained in the trapezoid in (0, 1) × (0, 1) spanned by the points 

 with part of the boundary being excluded due to the fact that some of these inequali-
ties are strict (see Fig. 2). In the case q = 2 , this trapezoid degenerates to a triangle.

In order to prove Theorem  3.1, we adapt the strategy of [7] and [8]; see also [3]. 
Throughout the remainder of this section, we fix a closed subgroup G ⊂ O(N) and 
Q ∈ L∞

G
(ℝN) . We first note the following lemma which is a basic consequence of complex 

interpolation.

Lemma 3.3  Let 1 ≤ q < ∞ and let � ∈ S be a radial function. Suppose furthermore that

(3.3)
N − 2

N
≤ 1

p
+

1

r
<

q + 2

2q

N − 1

N
.

(3.4)max

{
1

r
,
1

p

}

<
N − 1

2N
if q ≥ 2,

(3.5)

2q

(N − 1)(2 − q)

1

p
−

(N − 1)q − 2(N − 3)

2N(2 − q)
<

1

r

<
(N − 1)(2 − q)

2q

1

p
+

(N − 1)[(N − 1)q − 2(N − 3)]

4qN

(3.6)
�
�
�
RQf

�
�
�r

≤ C‖f‖p� for all functions f ∈ SG(ℝ
N).

(
N − 3

2N
,
N − 1

2N

)

,

(
N − 1

qN
,
N − 1

2N

)

,
(
N − 1

2N
,
N − 3

2N

)

and

(
N − 1

2N
,
N − 1

qN

)

,

(3.7)‖Q[� ∗ (Qu)]‖2 ≤ CD‖u‖q� and
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with constants C,D > 0 . Suppose furthermore that p, r ∈ (1,∞) satisfy

where

Then we have

with

Proof  Since � ∈ S is radial, the convolution with � maps G-invariant functions to G-invari-
ant functions. Moreover, by assumption we have

for all u, v ∈ SG . By duality, we therefore have

Note that, by (3.9), the point ( 1
p
,
1

r
) is contained in the closed symmetric triangle in ℝ2 

spanned by the points ( 1
q
,
1

2
) , ( 1

2
,
1

q
) and (0, 0). Hence we can write

(3.8)‖Q[� ∗ (Qu)]‖∞ ≤ CD1−N‖u‖1 for all u ∈ SG(ℝ
N)

(3.9)
dq,1

p
≤ 1

r
≤ min

{
1

2
+

1

q
−

1

p
,
dq,2

p

}

,

(3.10)dq,1 = min

{
q

2
,
2

q

}

and dq,2 = max

{
q

2
,
2

q

}

.

(3.11)‖Q[� ∗ (Qu)]‖r ≤ CDAr,p,q‖u‖p� for all u ∈ SG(ℝ
N),

(3.12)Ar,p,q ∶=
2qN

q + 2

(
1

r
+

1

p

)

− (N − 1).

�
ℝN

vQ[� ∗ (Qu)]dx = �
ℝN

uQ[� ∗ (Qv)]dx ≤ ‖u‖2‖Q[� ∗ (Qv)]‖2 ≤ CD‖u‖2‖v‖q�

(3.13)‖Q[� ∗ (Qu)]‖q ≤ CD‖u‖2 for all u ∈ SG.

(3.14)
1

p
=

�

q
+

�

2
,

1

r
=

�

2
+

�

q
with �,� ≥ 0, � + � ≤ 1.

Fig. 2   Reflected Riesz diagrams for 1 ≤ q < 2 (left) and q > 2 (right)
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With � ∶= 1 − (� + �) , we thus have

so complex interpolation of the inequalities (3.7), (3.8) and (3.13) gives

Solving (3.14) yields � + � =
2q

q+2

(
1

r
+

1

p

)

 and therefore � = 1 −
2q

q+2

(
1

r
+

1

p

)

 . Hence 
(3.11) follows from (3.15). 	�  ◻

Next we decompose the fundamental solution Φ as in [7] and [3]. For this, we fix 
� ∈ S(ℝN) such that �̂ ∈ C

∞

c
 is radial, 0 ≤ �̂ ≤ 1 and �̂ = 1 for ||�| − 1| ≤ 1

6
 , �̂(�) = 0 for 

||�| − 1| ≥ 1

4
. We then write

Accordingly, we write

As shown in [3, Section 3], we have

and

In particular, by the Hardy Littlewood Sobolev inequality, we have the following.

Lemma 3.4  For every pair of numbers p, r ∈ (1,∞) satisfying

the convolution operator f ↦ Φ2 ∗ f  defines a bounded linear map from Lp� (ℝN) → Lr(ℝN).
Consequently, the operator R

2
Q
 also defines a bounded linear map from 

Lp
�

(ℝN) → Lr(ℝN) in this case.

Next we turn to the operator R1
Q
.

Proposition 3.5  Let q ∈ [1,∞) be given such that (G, q, Q) is an admissible extension tri-
ple. Moreover, let p, r ∈ (1,∞) satisfy

with dq,1, dq,2 defined in (3.10). Then there exists C > 0 such that

1

p�
=

�

q�
+

�

2
+

�

1
,

1

r
=

�

2
+

�

q
+

�

∞
,

(3.15)‖Q[� ∗ (Qu)]‖r ≤ CD�+�−�(N−1)‖u‖p� = CD1−�N‖u‖p� for all u ∈ SG.

Φ = Φ1 + Φ2 with Φ1 = � ∗ Φ, Φ2 = Φ − Φ1.

RQ = R
1
Q
+R

2
Q

with R
i
Q
(f ) ∶= Q[Φi ∗ (Qf )], i = 1, 2.

(3.16)|Φ1(x)| ≤ C(1 + |x|)
1−N

2 for x ∈ ℝ
N

(3.17)|Φ2(x)| ≤ Cmin{|x|2−N , |x|−N} for x ∈ ℝ
N ⧵ {0}.

1

p
+

1

r
≥ N − 2

N
,

(3.18)
dq,1

p
≤ 1

r
≤ dq,2

p
and

1

p
+

1

r
<

q + 2

2q

N − 1

N
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Proof  Let � ∈ S(ℝN) be such that �̂ ∈ C
∞

c
(ℝN) is radial, 0 ≤ �̂ ≤ 1 with �̂ ≡ 1 for 

||�| − 1| ≤ 1

4
 and �̂ ≡ 0 for ||�| − 1| ≥ 1

2
 . By construction of Φ1 , we then have Φ̂1 = Φ̂1�̂ , 

which means that Φ1 = (2�)−
N

2 Φ1 ∗ � and therefore

Choose � ∈ C
∞

c
(ℝN) radial with 0 ≤ � ≤ 1 , �(x) = 1 for |x| ≤ 1 , �(x) = 0 for |x| ≥ 2 . Moreo-

ver we define �j ∈ C
∞

c
(ℝN) by �0 = � and �j(x) = �(2−jx) − �(2−(j−1)x) for j ∈ ℕ , x ∈ ℝN . 

Then we have the dyadic composition

Using (3.16), we find that

where the constant C > 0 is independent of j. Using that ̂Φj

1
 is radial, we get, with Plancher-

el’s theorem and Lemma 2.3,

where the constant does not depend on j. Consequently, we thus have

Moreover, we have

which implies that

Since the assumption (3.18) implies (3.9), we may apply Lemma 3.3 to the radial kernel 
Φ

j

1
∗ � ∈ S(ℝN) and deduce that

�
�
�
R

1

Q
f
�
�
�r

≤ C‖f‖p� for all functions f ∈ SG(ℝ
N).

R
1
Q
f = Q[Φ1 ∗ (Qf )] = (2�)−

N

2 Q[Φ1 ∗ � ∗ Qf ] for f ∈ S.

Φ1 =

∞∑

j=0

Φ
j

1
with Φ

j

1
= �jΦ1

‖
‖
‖
Φ

j

1

‖
‖
‖∞

≤ C2−
j(N−1)

2 , for all j,

�
�
�
�

�

Φ
j

1
∗ �

�

∗ (Qf )
�
�
�
�

2

2

= C �
ℝN

�
̂
Φ

j

1
(�) �̂ Q̂f (�)�2 d� ≤ C

7

4

�
1

4

rN−1�
̂
Φ

j

1
(r)�2 �

𝕊N−1

�Q̂f (r�)�2 d�(�) dr

≤ C‖Φ
j

1
‖2
2
‖Qf‖2

q�
≤ C2j‖Qf‖2

q�
for all f ∈ SG,

�
�
�
�
Q
�

Φ
j

1
∗ �

�

∗ (Qf )
�
�
�
�2

≤ C2
j

2 ‖Qf‖q� for all f ∈ SG.

‖Φ
j

1
∗ �‖∞ ≤ ‖Φ

j

1
‖∞‖�‖1 ≤ C2−

j(N−1)

2 , for all j,

�
�
�
�
Q
�

Φ
j

1
∗ �

�

∗ (Qf )
�
�
�
�∞

≤ C2−
j(N−1)

2 ‖Qf‖1 ≤ C2−
j(N−1)

2 ‖f‖1 for all f ∈ SG.

(3.19)
�
�
�
�
Q
�

Φ
j

1
∗ �

�

∗ (Qf )
�
�
�
�r

≤ C2
j

2
Ar,p,q‖f‖p� for all f ∈ SG
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with Ar,p,q given in (3.12). By assumption (3.18), we have Ar,p,q < 0 . Since, as remarked 
above, Φ1 = (2�)−

N

2 Φ1 ∗ � , we deduce that

with C0 = C(2𝜋)−
N

2

∞∑

j=0

2
j

2
Ar,p,q < ∞ . The proof is finished. 	�  ◻

We may now complete the

Proof of Theorem 3.1  Let M denote the set of points ( 1
p
,
1

r
) ∈ (0, 1) × (0, 1) such that (3.6) 

holds with some constant C > 0 . By combining Lemma 3.4 and Proposition 3.5, we see 
that ( 1

p
,
1

r
) ∈ M if

Hence the closure of M contains the points (N−1
qN

,
N−1

2N
) , (N−1

2N
,
N−1

qN
) and therefore also the 

line segment between these points. Moreover, by [8, Lemma 2.2(b)], M also contains the 
open line segment between the points (N−3

2N
,
N−1

2N
) and (N−1

2N
,
N−3

2N
) . Hence, if q ≥ 2 , complex 

interpolation yields that M contains all points ( 1
p
,
1

r
) ∈ (0, 1) × (0, 1) with the property that 

1

r
,
1

p
<

N−1

2N
 and that

i.e., all points ( 1
p
,
1

r
) ∈ (0, 1) × (0, 1) satisfying (3.3) and (3.4). Hence the theorem is proved 

in the case q ≥ 2.
If q < 2 , complex interpolation yields that M contains all points ( 1

p
,
1

r
) ∈ (0, 1) × (0, 1) 

satisfying (3.21) and with the property that ( 1
p
,
1

q
) lies above the line through the points 

(
N−1

2N
,
N−3

2N
) , (N−1

qN
,
N−1

2N
) and below the line through the points (N−3

2N
,
N−1

2N
) , (N−1

2N
,
N−1

qN
) . This is 

precisely the set of points ( 1
p
,
1

q
) ∈ (0, 1) × (0, 1) satisfying (3.3) and (3.5). The proof is 

thus also finished in this case. 	�  ◻

4 � Nonvanishing for G‑invariant functions

Our next aim is to deduce a nonvanishing theorem for the operator RQ and G-invariant 
functions, where again G ⊂ O(N) is a closed subgroup and Q ∈ L∞

G
(ℝN) is a given weight 

function. We restate Theorem 1.3 for the reader’s convenience.

Theorem  4.1  Let N ≥ 3 , let G ⊂ O(N) be a closed subgroup, let Q ∈ L∞
G
(ℝN) , and let 

q ∈

[

1,
2(N+1)

N−1

]

 be such that (G,  q,  Q) is an admissible extension triple. Moreover, let 

�
�
�
R

1
Q
f
�
�
�r

= �
�QΦ1 ∗ (Qf )��r = (2�)−

N

2 ��Q(Φ1 ∗ �) ∗ (Qf )��r

≤ (2�)−
N

2

∞�

j=0

�
�
�
Q(Φ

j

1
∗ �) ∗ (Qf )

�
�
�r

≤ C0‖f‖p� for all f ∈ SG

(3.20)
dq,1

p
≤ 1

r
≤ dq,2

p
and

N − 2

N
≤ 1

p
+

1

r
<

q + 2

2q

N − 1

N
.

(3.21)
N − 2

N
≤ 1

p
+

1

r
<

q + 2

2q

N − 1

N
,
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p ∈

(
2N

N−1

2q

q+2
,

2N

N−2

]

 . Then for every bounded sequence (vn)n ⊂ L
p�

G
(ℝN) satisfying 

|
|
|
|
|

lim sup
n→∞

∫
ℝN

vnRQ(vn) dx
|
|
|
|
|

> 0 , there exist—after passing to a subsequence—numbers 

R, 𝜁 > 0 and a sequence of points (xn)n∈ℕ ⊂ ℝN with

The remainder of this section is devoted to the proof of this theorem. For this, we fix 
N ≥ 3 and q ∈

[

1,
2(N+1)

N−1

]

 such that (G, q, Q) is an admissible extension triple. Moreover, 
we keep using the notation of the previous section, so we write Φ = Φ1 + Φ2 and 
RQ = R

1
Q
+R

2
Q
 . We need to analyse the operators R1

Q
 and R2

Q
 separately. We start by 

proving the following variant of Proposition 3.5 for the operator R1
Q
.

Proposition 4.2  Let � ∈ S(ℝN) be such that �̂ ∈ C
∞

c
(ℝN) is radial, 0 ≤ �̂ ≤ 1 with �̂ ≡ 1 

for ||�| − 1| ≤ 1

4
 and �̂ ≡ 0 for ||�| − 1| ≥ 1

2
.

Moreover, let � ∈ C
∞

c
(ℝN) be radial with 0 ≤ � ≤ 1 , �(x) = 1 for |x| ≤ 1 , �(x) = 0 for 

|x| ≥ 2 , and let �k(x) = �(2−kx) for k ∈ ℕ.

Finally, let p ∈ (
2N

N−1

2q

q+2
,∞) and Ap,q ∶=

N

p

4q

q+2
+ 1 − N < 0 . Then there exists C > 0 

such that for k ≥ 1 we have

for all functions f ∈ SG.

Proof  Let k ∈ ℕ . Using the given function � , we let Φj

1
 , j ∈ ℕ ∪ {0} be defined as in the 

proof of Proposition  3.5. The proof of this proposition yields, in particular, inequality 
(3.19) with r = p , which writes as

with Ap,q ∶= Ap, p, q =
N

p

4q

q+2
+ 1 − N , cf. (3.12). Moreover, by construction, we have the 

dyadic decomposition

and therefore

(4.1)�
BR(xn)

|Qvn(x)|
p� dx ≥ � , for all n.

�
�
�
Q
�
[(1 − �k)Φ1] ∗ � ∗ (Qf )

��
�
�p

≤ C
2

k+1

2
Ap,q

1 − 2
Ap,q

2

‖f‖p�

�
�
�
�
Q
��

Φ
j

1
∗ �

�

∗ (Qf )
��
�
�
�p

≤ C2
j

2
Ap,q‖f‖p� for j ∈ ℕ and all functions f ∈ SG

(1 − �k)Φ1 =

∞∑

j=k+1

Φ
j

1
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for all functions f ∈ SG , as claimed. 	�  ◻

Lemma 4.3  Let p >
2N

N−1

2q

q+2
 and suppose that (vn)n ⊂ SG is an Lp′-bounded sequence with

Then

Proof  Let, as in the assumptions of Proposition 4.2, � ∈ S(ℝN) be such that �̂ ∈ C
∞

c
(ℝN) 

is radial, 0 ≤ �̂ ≤ 1 with �̂ ≡ 1 for ||�| − 1| ≤ 1

4
 and �̂ ≡ 0 for ||�| − 1| ≥ 1

2
 . Moreover, let 

wn = � ∗ (Qvn) . Then we have

for all n ∈ ℕ by Young’s inequality, so (wn)n is also a bounded sequence in Lp� (ℝN) by 
assumption. Since Φ̂1 = Φ̂1 �̂ , we have (2�)

N

2 Φ1 = Φ1 ∗ � . Therefore, with �k defined as 
in Proposition 4.2, we can write

for every n, k ∈ ℕ , where

by Hölder’s inequality and Proposition 4.2. Since Ap,q < 0 , it follows that

�
�
�
Q
�
[(1 − �k)Φ1] ∗ � ∗ (Qf )

��
�
�p

≤
∞�

j=k+1

�
�
�
�
Q
��

Φ
j

1
∗ �

�

∗ (Qf )
��
�
�
�p

≤ C‖f‖p�

∞�

j=k+1

2
j

2
Ap,q

= C
2

k+1

2
Ap,q

1 − 2
Ap,q

2

‖f‖p� ,

lim
n→∞

sup
y∈ℝN ∫

B
𝜌
(y)

|Qvn|
p� dx = 0, for all 𝜌 > 0.

∫
ℝN

Qvn[Φ1 ∗ (Qvn)] dx → 0, as n → ∞.

(4.2)‖wn‖p� ≤ ‖�‖1‖Qvn‖p� ≤ ‖�‖1‖Q‖∞‖vn‖p�

(2�)
N

2 ∫
ℝN

Qvn[Φ1 ∗ (Qvn)] dx = ∫
ℝN

Qvn[Φ1 ∗ � ∗ (Qvn)] dx

= ∫
ℝN

Qvn[�kΦ1 ∗ � ∗ (Qvn)] dx

+ ∫
ℝN

Qvn[(1 − �k)Φ1 ∗ � ∗ (Qvn)] dx,

�
�
�
�
�
�
�
�
ℝN

Qvn[(1 − �k)Φ1 ∗ � ∗ (Qvn)] dx

�
�
�
�
�
�
�

≤‖vn‖p����Q
�
[(1 − �k)Φ1] ∗ � ∗ (Qvn)

��
�
�p

≤C 2
k+1

2
Ap,q

1 − 2
Ap,q

2

�
�vn

�
�
2

p�
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For fixed k ∈ ℕ , we now choose R = 2k+1 , which implies that �k ≡ 0 on ℝN ⧵ BR . Decom-
posing ℝN into disjoint N-cubes {Zl}l∈ℕ of side length R, and considering for each l the N− 
cube Z′

l
 with the same center as Zl but with side length 3R, we find

where we used (4.2) in the last step. By assumption, it now follows that

(4.3)sup
n∈ℕ

|
|
|
|
|
|
|
∫
ℝN

Qvn[(1 − �k)Φ1 ∗ � ∗ (Qvn)] dx

|
|
|
|
|
|
|

→ 0, as k → ∞.

�
�
�
�
�
�
�
�
ℝN

Qvn[
�
𝜂kΦ1

�
∗ 𝜑 ∗ (Qvn)] dx

�
�
�
�
�
�
�

=

�
�
�
�
�
�
�
�
ℝN

Qvn[
�
𝜂kΦ1

�
∗ wn] dx

�
�
�
�
�
�
�

≤
∞�

l=1
�
Zl

⎛
⎜
⎜
⎝

�
�x−y�<R

�Φ1(x − y)� �Qvn(x)� �wn(y)� dx

⎞
⎟
⎟
⎠

dy

≤ ‖Φ1‖L∞

∞�

l=1
�
Z�
l

�Qvn� dx�
Z�
l

�wn� dx

≤ ‖Φ1‖L∞

⎡
⎢
⎢
⎢
⎢
⎣

∞�

l=1

⎛
⎜
⎜
⎜
⎝

�
Z�
l

�wn� dx

⎞
⎟
⎟
⎟
⎠

p�⎤
⎥
⎥
⎥
⎥
⎦

1

p�

⎡
⎢
⎢
⎢
⎣

∞�

l=1

⎛
⎜
⎜
⎜
⎝

�
Z�
l

�Qvn� dx

⎞
⎟
⎟
⎟
⎠

p
⎤
⎥
⎥
⎥
⎦

1

p

≤ ‖Φ1‖L∞(3R)
2N

p

⎡
⎢
⎢
⎢
⎣

∞�

l=1
�
Z�
l

�wn�
p� dx

⎤
⎥
⎥
⎥
⎦

1

p� ⎡
⎢
⎢
⎢
⎢
⎣

∞�

l=1

⎛
⎜
⎜
⎜
⎝

�
Z�
l

�Qvn�
p� dx

⎞
⎟
⎟
⎟
⎠

p

p� ⎤
⎥
⎥
⎥
⎥
⎦

1

p

≤ ‖Φ1‖L∞(3R)
2N

p 3
N

p� ‖wn‖Lp�

⎡
⎢
⎢
⎢
⎣

sup
l∈ℕ �

Z�
l

�Qvn�
p� dx

⎤
⎥
⎥
⎥
⎦

p

p�
−1
⎡
⎢
⎢
⎢
⎣

∞�

l=1
�
Z�
l

�Qvn�
p� dx

⎤
⎥
⎥
⎥
⎦

1

p

≤ ‖Φ1‖L∞(3R)
2N

p 3N‖wn‖Lp�

⎡
⎢
⎢
⎢
⎣

sup
y∈ℝN �

B
3R

√
N
(y)

�Qvn�
p� dx

⎤
⎥
⎥
⎥
⎦

p

p�
−1

‖Qvn‖

p�

p

p�

≤ ‖Φ1‖L∞‖Q‖
1+

p�

p

∞ ‖𝜑‖1(3R)
2N

p 3N‖vn‖
1+

p�

p

p�

⎡
⎢
⎢
⎢
⎣

sup
y∈ℝN �

B
3R

√
N
(y)

�Qvn�
p� dx

⎤
⎥
⎥
⎥
⎦

p

p�
−1

,
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The claim now follows by combining (4.3) and (4.4). 	�  ◻

Regarding Φ2 , we make use of the following variant of [4, Theorem 2.5].

Lemma 4.4  Let 2 < p ≤ 2N

N−2
 and suppose that (vn)n is a bounded sequence in Lp� (ℝN) such 

that

Then

Proof  The claim follows from [4, Theorem 2.5] in the case where vn ∈ S for every n ∈ ℕ . 
If (vn)n is an arbitrary bounded sequence in Lp� (ℝN) , we first recall that, by Lemma 3.4, 
there exists a constant C > 0 with

Moreover we choose, by density, ṽn ∈ S with ‖vn − ṽn‖p� ≤ 1

n
 for every n ∈ ℕ . The assump-

tion then implies that also

and therefore

by [4, Theorem 2.5]. Moreover,

and thus also

(4.4)∫
ℝN

Qvn[
(
�kΦ1

)
∗ � ∗ (Qvn)] dx → 0 as n → ∞ for every k ∈ ℕ.

lim
n→∞

sup
y∈ℝN ∫

B
𝜌
(y)

|vn|
p� dx = 0, for all 𝜌 > 0.

∫
ℝN

vn[Φ2 ∗ vn] dx → 0 as n → ∞.

‖Φ2 ∗ v‖p ≤ C‖v‖p� for every v ∈ Lp
�

(ℝN).

lim
n→∞

sup
y∈ℝN ∫

B
𝜌
(y)

|ṽn|
p� dx = 0, for all 𝜌 > 0

∫
ℝN

ṽn[Φ2 ∗ ṽn] dx → 0, as n → ∞

�
�
�
��ℝN

[vn(Φ2 ∗ vn) − ṽn(Φ2 ∗ ṽn)] dx
�
�
�
�
=
�
�
�
��ℝN

(vn − ṽn)Φ2 ∗ (vn + ṽn) dx
�
�
�
�

≤ C‖vn − ṽn‖p�‖vn + ṽn‖p� ≤
C(1 +

1

n
)‖vn‖p�

n
→ 0 as n → ∞
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as claimed. 	�  ◻

We are now in position to finish the proof of Theorem 4.1:

Proof of Theorem 4.1  Let (vn)n ⊂ L
p�

G
(ℝN) be a bounded sequence, and suppose by contra-

diction that (4.1) does not hold. Then we have

By density, we may choose ṽn ∈ SG with ‖vn − ṽn‖p� ≤ 1

n
 for every n ∈ ℕ , which implies 

that ‖Qvn − Qṽn‖p� ≤ ‖Q‖∞

n
 for all n and therefore also

Combining Lemma 4.3 (applied to ṽn ) and Lemma 4.4 (applied to Qṽn ), we then deduce 
that

Moreover, by Theorem 1.2 we have

Consequently, we also have that ∫
ℝN

vnRQvndx → 0 as n → ∞ , contrary to the assumption. 

The claim thus follows. 	�  ◻

5 � Dual variational framework and G−invariant solutions

Let G ⊂ O(N) be a fixed closed subgroup, and let Q ∈ L∞
G
(ℝN) be a nonnegative fixed 

weight function with Q ≢ 0 . We now focus our attention to the equation

∫
ℝN

vn[Φ2 ∗ vn] dx → 0 as n → ∞,

lim
n→∞

sup
y∈ℝN ∫

B
𝜌
(y)

|Qvn|
p� dx = 0, for all 𝜌 > 0.

lim
n→∞

sup
y∈ℝN ∫

B
𝜌
(y)

|Qṽn|
p� dx = 0, for all 𝜌 > 0.

∫
ℝN

ṽnRQṽndx = ∫
ℝN

Qṽn[Φ1 ∗ (Qṽn)] dx + ∫
ℝN

Qṽn[Φ2 ∗ (Qṽn)] dx → 0 asn → ∞.

�
�
�
��ℝN

[vnRQvn − ṽnRQṽn] dx
�
�
�
�
=
�
�
�
��ℝN

(vn − ṽn)RQ(vn + ṽn) dx
�
�
�
�

≤ ‖vn − ṽn‖p�‖RQ(vn + ṽn)‖p ≤ C‖vn − ṽn‖p�‖vn + ṽn‖p

→ 0 as n → ∞.
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To prove the existence of nontrivial real-valued solutions of (5.1), we will use the dual 
variational approach introduced in [3] and consider the operator KQ formally defined as 
KQf = Q

1

p R(Q
1

p f ) , where R denotes the real part of the Helmholtz resolvent operator R , 
i.e., Rg = (ReΦ) ∗ g with the fundamental solution Φ defined in (1.3).

To analyse the mapping properties of KQ and to set up a variational framework, we 
assume, as in Theorem 1.4, that q ∈

[

1,
2(N+1)

N−1

]

 and p ∈

(

max{
2N

N−1

2q

q+2
, 2},

2N

N−2

)

 are fixed 
such that (G, q,Q

1

p ) is an admissible extension triple. The following is an immediate 
consequence of Theorem 3.1.

Lemma 5.1  Let p̃, r ∈ (1,∞) satisfy (3.3) with p̃ in place of p, and suppose moreover that 
(3.4) holds with p̃ in place of p if q ≥ 2 , and that (3.5) holds with p̃ in place of p if q < 2.

Then the operator KQ is bounded as a map Lp̃
�

G
(ℝN) → Lr

G
(ℝN).

We note that Lemma 5.1 applies in particular in the case r = p̃ = p , so

We also note the following immediate corollary of Lemma 5.1.

Corollary 5.2  There exist 𝜎1 < p < 𝜎2 with the property that KQ is bounded as a map 
L
�
�
i

G
(ℝN) → L

p

G
(ℝN) and as a map Lp

�

G
(ℝN) → L

�i

G
(ℝN) for i = 1, 2.

Next we note the following variant of [3, Lemma 4.1].

Lemma 5.3  The operator KQ ∶ L
p�

G
(ℝN) → L

p

G
(ℝN) is locally compact, i.e., the operators

are compact for every bounded and measurable set B ⊂ ℝN.

Proof  Let B ⊂ ℝN be bounded and measurable, and fix s ∈
[
2(N+1)

N−1
,

2N

N−2

)

 with s ≥ p , i.e., 
s′ ≤ p′ . By [3, Lemma 4.1], the operator 𝟙BKQ ∶ Ls

�

(ℝN) → Ls(ℝN) is compact. By duality, 
the operator KQ𝟙B ∶ Ls

�

(ℝN) → Ls(ℝN) is therefore also compact.
Next, let (vn)n ⊂ L

p�

G
(ℝN) be a sequence with vn ⇀ 0 in Lp

�

G
(ℝN) . Then we have 

wn ∶= �Bvn ⇀ 0 in Lp
�

G
(ℝN) , and thus also in Ls�

G
(ℝN) , since B has finite measure. By the 

compactness property mentioned above, it follows that KQ�Bvn = KQ�Bwn → 0 strongly 
in Ls

G
(ℝN) . Moreover, it follows from Corollary  5.2 that the sequence of functions 

KQ�Bvn = KQwn , n ∈ ℕ is bounded in L�1
G
(ℝN) for some 𝜎1 < p . Since 𝜎1 < p ≤ s , it thus 

follows by interpolation that there exists � ∈ (0, 1] with

(5.1)−Δu − u = Q(x)|u|p−2u, u ∈ Lp(ℝN).

KQ is a bounded operator L
p�

G
(ℝN) → L

p

G
(ℝN).

KQ𝟙B ∶ L
p�

G
(ℝN) → L

p

G
(ℝN) and 𝟙BKQ ∶ L

p�

G
(ℝN) → L

p

G
(ℝN)

‖KQ�Bvn‖p ≤ ‖KQ�Bvn‖
1−�
�1

‖KQ�Bvn‖
�

s
→ 0 as n → ∞.
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Hence the operator KQ𝟙B ∶ L
p�

G
(ℝN) → L

p

G
(ℝN) is compact, and by duality it follows that 

also 𝟙BKQ ∶ L
p�

G
(ℝN) → L

p

G
(ℝN) is a compact operator. 	�  ◻

As in [3], we now introduce the (dual) energy functional

Then J is of class C1 with

Moreover, we have

Lemma 5.4  If v ∈ L
p�

G
(ℝN) is a critical point of J, then u = RQ

1

p v is a real-valued solution 
of (5.1) of class W2,q(ℝN) ∩ C

1,s(ℝN) for q ≥ p , s ∈ (0, 1).

Proof  Let w ∈ Lp
�

(ℝN) , and let wG ∈ Lp
�

(ℝN) be defined by

where � is the Haar-measure of G. Since v is G-invariant, it follows that

and therefore

Consequently, we have |v|p�−2v = KQv in Lp(ℝN) , which implies that u = RQ
1

p v satisfies the 
equation

The claim now follows by [3, Lemma 4.3]. 	�  ◻

Next we note that the functional J has a mountain pass geometry. More precisely, we 
have:

Lemma 5.5 

	 (i)	 There exists 𝛿 > 0 and 0 < 𝜌 < 1 such that J(v) ≥ 𝛿 > 0 for all v ∈ L
p�

G
(ℝN) with 

‖v‖p� = �.
	 (ii)	 There is v0 ∈ L

p�

G
(ℝN) such that ‖v0‖p′ > 1 and J(v0) < 0.

J ∶ L
p�

G
(ℝN) → ℝ, J(v) =

1

p� ∫
ℝN

|v|p
�

dx −
1

2 ∫
ℝN

v[KQv](x) dx.

J�(v)w = ∫
ℝN

(|v|p
�−2v − KQv)w dx for v,w ∈ L

p�

G
(ℝN).

wG = ∫
G

w◦Ad�(A), i.e., wG(x) = ∫
G

w(Ax)d�(A) for x ∈ ℝ
N ,

∫
ℝN

(|v|p
�−2v − KQv)w dx = ∫

ℝN

(|v|p
�−2v − KQv)[w◦A] dx for all A ∈ G

∫
ℝN

(|v|p
�−2v − KQv)w dx = ∫

ℝN

(|v|p
�−2v − KQv)wG dx = J�(v)wG = 0

u = RQ|u|p−2u in Lp(ℝN).
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	 (iii)	 Every Palais–Smale sequence for J is bounded in Lp
�

G
(ℝN).

	 (iv)	 There exists a Palais–Smale sequence for J at the mountain pass level 

 where Γ = {𝛾 ∈ C([0, 1], L
p�

G
(ℝN)) ∶ 𝛾(0) = 0, ‖𝛾(1)‖p� > 𝜌, J(𝛾(1)) < 0}.

Proof  Since p > 2 , the parts (i)-(iii) are proved in [3, Lemma 4.2] for G = {id} , and the 
proof remains the same for general closed subgroups G ⊂ O(N) . Moreover, the positivity 
of the mountain pass level c defined in (5.2) is a direct consequence of (i) and (ii), which 
also shows that the set Γ is nonempty. Finally, the proof of the existence of a Palais–Smale 
sequence for J at level d is exactly the same as the proof of [3, Lemma 6.1]. Here we note 
that periodicity of Q was assumed in [3, Section 6], but this property is not used in Lemma 
6.1. 	�  ◻

Proposition 5.6  Let (vn)n ⊂ L
p�

G
(ℝN) be a Palais–Smale sequence of J with 

c ∶= lim
n→∞

J(vn) > 0 . Moreover, suppose that one of the following conditions hold: 

	 (A1)	 For some R > 0 , we have lim
�x�→∞

‖Q‖L1(BR(x))
= 0.

	 (A2)	 For every R > 0 we have lim
|x|→∞

NG(x,R) = ∞ , where, for R > 0 and 
x ∈ ℝN ⧵ {0} , NG(x,R) denotes the maximal number of elements of a subset H ⊂ G 
with BR(Ax) ∩ BR(A

�x) = ∅ for A,A� ∈ H.

Then, after passing to a subsequence, we have

where v ∈ L
p�

G
(ℝN) ⧵ {0} is a critical point of J.

Proof  We first note that (vn)n is bounded by Lemma 5.5. Consequently, since Lp
�

G
(ℝN) is 

reflexive, there exists v ∈ L
p�

G
(ℝN) such that

Moreover,

by assumption, which implies that

Since moreover (G, q,Q
1

p ) is an admissible extension triple by assumption, Theorem 1.3 
applies and yields 𝛿,R > 0 and a sequence of points (xn)n ⊂ ℝN such that, after passing to 
a subsequence,

(5.2)d ∶= inf
𝛾∈Γ

max
t∈[0,1]

J(𝛾(t)) > 0,

vn ⇀ v in Lp
�

(ℝN),

(5.3)vn ⇀ v in Lp
�

(ℝN).

lim
n→∞∫

ℝN

vnKQvn dx =
2p�

2 − p�
lim
n→∞

(

J(vn) −
1

p�
J�(vn)vn

)

=
2p�

2 − p�
c > 0

lim
n→∞

|
|
|
|
|
|
|
∫
ℝN

vnR
Q

1
p
vn dx

|
|
|
|
|
|
|

> 0.
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We claim that (xn)n has to be bounded. To see this, we argue by contradiction and assume 
that, after passing to a subsequence again, |xn| → ∞ . We distinguish two cases.

Case 1: (A1) holds.
In this case we put �n ∶= Qp−1vn�BR(xn)

 , and we note that (�n)n is a bounded sequence in 
Lp

�

(ℝN) . Moreover, we have

as n → ∞ . By Corollary 5.2, there exists 𝜎 > p′ and C > 0 with the property that

whereas, since 𝜎′
< p′ and by Hölder’s inequality,

Since ‖Q‖L1(BR(xn))
→ 0 by (1.10), it thus follows that ‖�n‖�′ → 0 as n → ∞ . Here we note 

that, by an easy covering argument, (1.10) holds for every R > 0 if it holds for one R > 0 . 
Going back to (5.5), we thus deduce that

which contradicts (5.4).
Case 2: (A2) holds.
In this case, it follows from (5.4) and the fact that vn and Q are G-invariant that

as n → ∞ , which contradicts the boundedness of the sequence (vn)n in Lp� (ℝN).
Since in both cases we have reached a contradiction, we conclude that (xn)n is bounded. 

Therefore, making R larger if necessary, we can assume that (5.4) holds with xn = 0 for all 
n ∈ ℕ . Now for any fixed G-invariant function � ∈ C

∞

c
(ℝN) , any r > 0 and n,m ∈ ℕ we have

(5.4)�
BR(xn)

|Q
1

p vn|
p� dx ≥ 𝛿 > 0, for all n ∈ ℕ.

(5.5)

�
BR(xn)

�Q
1

p vn�
p� dx = �

ℝN

�vn�
p�−2vn�ndx = J�(vn)�n + �

ℝN

vnKQ�ndx

≤ o(1)���n
�
�p +

�
�
�
�
�
�
�
�
ℝN

vnKQ�n dx

�
�
�
�
�
�
�

= o(1) + ‖vn‖p�‖KQ�n‖p

‖KQ�n‖p ≤ C‖�n‖�� for n ∈ ℕ,

‖�n‖�� = ‖Qp−1vn‖L�� (BR(xn))
≤
�

�BR(xn)

�Q�
p��� (p−1)

p�−�� dx

� p�−��

p���

‖vn‖p�

≤ �
‖Q‖L1(BR(xn))

� p�−��

p��� ‖Q‖

�
p��� (p−1)

p�−��
−1

�
p�−��

p���

∞ ‖vn‖p�

∫
BR(xn)

|Q
1

p vn|
p� dx → 0 as n → ∞,

‖Q
1

p vn‖
p�

p�
≥ NG(xn,R) �

BR(xn)

�Q
1

p vn�
p� dx ≥ NG(xn,R)� → ∞
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So by assumption and the local compactness of KQ , as stated in Lemma 5.3, we get that 
(|vn|

p�−2vn)n∈ℕ is a Cauchy sequence in Lp(BR) . Consequently, |vn|p
�−2vn → ṽ strongly in 

Lp(BR) for some ṽ ∈ Lp(BR) , and passing to a subsequence also pointwisely almost every-
where on BR . This clearly implies that vn → |ṽ|p−2ṽ almost everywhere on Br . Now (5.3) 
and the uniqueness of the weak limit gives ṽ = |v|p

�−2v and

which implies that v ≠ 0.
For every G-invariant function � ∈ C

∞

c
 , we now have

using the local strong convergence of |vn|p
�−2vn and the continuity of linear operator 

KQ ∶ L
p�

G
(ℝN) → L

p

G
(ℝN) . By density, it now follows that J�(v)w = 0 for every w ∈ L

p�

G
(ℝN) , 

i.e., v ∈ L
p�

G
(ℝN) ⧵ {0} is a critical point of J. 	�  ◻

We now have all the tools to complete the proofs of our main existence results for non-
trivial G-invariant dual ground state solutions as stated in the introduction.

Proof of Theorem 1.4 (completed)  By Lemma 5.5(iv), there exists a Palais–Smale sequence 
(vn)n in Lp

�

G
(ℝN) for J at the mountain pass level d > 0 . By Proposition 5.6, we have vn ⇀ v 

in Lp
�

G
(ℝN) after passing to a subsequence, where v ∈ L

p�

G
(ℝN) is a nontrivial critical point 

of J. Here we note that assumption (A1) of Proposition 5.6 is satisfied by (1.10). The proof 
is finished by Lemma 5.4. 	�  ◻

Proof of Corollary 1.5  Since Q
1

p ∈ L∞(ℝN) , it follows by the classical Stein–Tomas estimate 
that (G, q,Q

1

p ) is an admissible extension triple for q =
2(N+1)

N−1
 . Since

�
�
�
�
�
�
�
�
ℝN

�
�vn�

p�−2vn − �vm�
p�−2vm

�
� dx

�
�
�
�
�
�
�

=

�
�
�
�
�
�
�

J�(vn)� − J�(vm)� + �
Br

�KQ(vn − v) dx

�
�
�
�
�
�
�

≤ �
�J

�(vn) − J�(vm)
�
�‖�‖p� +

�
�
�
𝟙Br

KQ(vn − vm)
�
�
�p
‖�‖p� .

0 < 𝛿 ≤ �
BR

|Q
1

p vn(x)|
p� dx → �

BR

|Q
1

p v|p
�

dx, as n → ∞

J�(v)� = ∫
ℝN

�v�p
�−2v� dx − ∫

ℝN

�KQ(v) dx

= lim
n→∞

⎡
⎢
⎢
⎣
∫
ℝN

�vn�
p�−2vn� dx − ∫

ℝN

�KQ(vn) dx

⎤
⎥
⎥
⎦

= lim
n→∞

J�(vn)� = 0

p ∈

(
2(N + 1)

N − 1
,

2N

N − 2

)

=

(
2N

N − 1

2q

q + 2
,

2N

N − 2

)

,
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the assumptions of Theorem 1.4 are satisfied and yield the existence of a nontrivial solu-
tion v ∈ L

p�

G
(ℝN) of (1.4). 	�  ◻

Proof of Theorem  1.6  As above, it follows by the classical Stein–Tomas estimate that 
(Gk, q,Q

1

p ) is an admissible extension triple for q =
2(N+1)

N−1
 , whereas

Moreover, since 2 ≤ k ≤ N − 2 , we have

where NG(x,R) is defined as in Proposition 5.6. This fact is noted without proof in [16, 
Proof of Corollary 1.25], and we give the short proof here for the reader’s convenience. In 
fact, (5.6) follows already from the fact that the minimal orbit dimension of Gk is 
min{k − 1,N − k − 1} and therefore greater than or equal to one by assumption. In particu-
lar, for every n ∈ ℕ and � ∈ �N−1 , there exists 𝜀 > 0 and a subset H

𝜃
⊂ G with 

B
�
(A�) ∩ B

�
(A�

�) = ∅ for every A,A� ∈ H
�
 . Moreover, by a straightforward compactness 

argument, 𝜀 > 0 can be chosen to depend only on n and not on � ∈ �N−1 . Hence, if R > 0 is 
given, x ∈ ℝN satisfies |x| ≥ R

�
 and � equals x

|x|
 , we have BR(A�) ∩ BR(A

�
�) = ∅ for every 

A,A� ∈ H
�
 and therefore NG(x,R) ≥ n . This shows (5.6).

Hence assumption (A2) of Proposition 5.6 is satisfied, and thus the proof is completed 
as the proof of Theorem 1.4. 	�  ◻

Proof of Corollary 1.7  We first note that Q satisfies the asymptotic condition (1.10). Indeed, 
since 0 ≤ Q ≤ c�L

�

 for some c > 0 by assumption, it suffices to show that

To see the latter, it suffices to consider a sequence (xn)n = (x(N−k)
n

, x(k)
n
) ⊂ ℝN−k ×ℝk 

with x(N−k)
n

= 0 for all n ∈ ℕ and rn ∶= |xn| = |x(k)
n
| → ∞ as n → ∞ . In this case we have 

|x(k) − x(k)
n
| < R for x ∈ BR(xn) and therefore

with constants C > 0 . Hence (5.7) holds.
Next, we first consider the case k = 1 . By Theorem  1.1, additionally the condition 

𝛼 >
1

N−1
 is required and we set � =

2(N−1)−
2

�

N−2
 . By case distinction we see that 

p ∈

(
2(N + 1)

N − 1
,

2N

N − 2

)

=

(
2N

N − 1

2q

q + 2
,

2N

N − 2

)

.

(5.6)lim
|x|→∞

NG(x,R) = ∞ for every R > 0,

(5.7)|L
𝛼
∩ BR(x)| → 0 as |x| → ∞ for every R > 0.

|L
𝛼
∩ BR(xn)| ≤ �

{

|x(k)−x
(k)
n |<R

}
�

{|x(N−k)|≤a|x(k)|−𝛼}
dx(N−k) dx(k)

≤ C �
{|x(k)−x

(k)
n |<R}

|x(k)|−(N−k)𝛼 dx(k)

= C �
|z(k)|<R

|z(k) + x(k)
n
|−(N−k)𝛼 dx(k) ≤ C �

|z(k)|<R

(
|x(k)

n
| − R

)−(N−k)𝛼
dx(k)

= C(rn − R)−(N−k)𝛼 → 0 as n → ∞
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�N,1,� = max
{

2N

N−1

2�

�+2
, 2
}

 for 𝛼 >
1

N−1
 . Thus by Theorem  1.1, we may fix any 

q ∈
(
�N,1,� , p

)
 with p ∈

(

�N,1,� ,
2N

N−2

)

 such that (G1, q, �L
�

) is an admissible extension tri-

ple. Since 0 ≤ Q
1

p ≤ c
1

p �L
�

 , it follows that also (G1, q,Q
1

p ) is an admissible extension triple. 
Thus Theorem 1.4 applies and yields that (1.4) admits a dual bound state solution.

The case k = N − 1 now follows similarly: Consider additionally 𝛼 < N − 1 , set 
� =

2(N−1)−2�

N−2
 and observe that for 𝛼 < N − 1 the expression �N,N−1,� is chosen such that 

�N,N−1,� = max
{

2N

N−1

2�

�+2
, 2
}

 . Then, for q,  p as above with �N,N−1,� instead of �N,1,� we 

conclude that (GN−1, q,Q
1

p ) is admissible extension triple and Theorem 1.4 again yields the 
existence of a dual bound state solution of (1.4).

If 2 ≤ k ≤ N − 2 and p ∈

(

�N,k,� ,
2N

N−2

)

 again a case distinction shows that 
�N,k,� = max{

2N

N−1

2�

�+2
, 2} , where � ∶= �N,k,� is given in Theorem  1.1. Consequently, by 

Theorem 1.1, we may fix q ∈ (�N,k,� , p) with max{
2N

N−1

2q

q+2
, 2} < p <

2N

N−2
 and the property 

that (Gk, q, �L
�

) is an admissible extension triple. As above, it follows that also (Gk, q,Q
1

p ) 
is an admissible extension triple. Again, Theorem 1.4 applies and yields that (1.4) admits a 
nontrivial dual bound state solution. Thus the claim holds in this case as well. 	�  ◻

Remark 5.7  We note that Corollary  1.7 extends to the case where L
�
 is replaced by the 

more general class of sets L
�,� considered in Theorem 2.2. For this, one has to additionally 

assume 𝛽 >
1

N−1
 if k = 1 . Then the statement of Corollary 1.7 holds with �N,1,� . If k = N − 1 

the statement holds with the same value �N,N−1,� . For 2 ≤ k ≤ N − 2 the value �N,k,� needs 
to be replaced by max

{
2N

N−1

2�

�+2
, 2
}

 , where now � = �N,k,�,� is given in (2.5)
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