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The advancement of medical technology has led not only to an increase in life

expectancy but also to a rise in aging-related diseases. Aging promotes meta-

bolic disorders, in turn affecting cardiovascular health. Derailment of biologi-

cal processes in the pancreas, liver, adipose tissue, and skeletal muscle

impairs glucose and lipid metabolism, and mitochondrial function, triggering

the development of diabetes and lipid-related disorders that inflict damage on

cardiac and vascular tissues. Long noncoding RNAs (lncRNAs) regulate a

wide range of biological process and are one of the key factors controlling

metabolism and mitochondria. Here, we discuss the versatile function of

lncRNAs involved in the metabolic regulation of glucose and lipid, and mito-

chondrial function, and how the dysregulation of lncRNAs induces the devel-

opment of various metabolic disorders and their cardiovascular consequences.
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The increase in life expectancy over the past decades

has led to a fast growth of the aged population,

prompting a rise in the prevalence of cardiovascular

diseases (CVD) and a 3-fold increase in treatment

costs [1,2]. Aging promotes the development of meta-

bolic disorders, such as obesity, diabetes mellitus, insu-

lin resistance, and dyslipidemia, as it deranges

biological processes that lead to an adverse metabolic

profile [3–5]. In turn, metabolic disorders promote pre-

mature aging of the cardiovascular system, leading to

various pathologies, including the reduced regenerative

capacity of cardiomyocytes (from 1% per year at age

20 to 0.4% at 75 years) [6], myocardial hypertrophy

and fibrosis [7,8], diastolic dysfunction, endothelial

dysfunction, reduced vascular elasticity, and chronic

vascular inflammation [9–12].
Metabolic impairment in tissues, such as the liver,

skeletal muscle, pancreas, and adipose tissue, is a key

element that can derail cardiovascular health by pro-

moting the development of the metabolic syndrome

[13]. The liver, for instance, plays a vital role in the

systemic and local metabolism of lipids and glucose

and is one of the main peripheral organs prone to

insulin resistance [14,15]. The pancreas is involved in

central and peripheral glucose metabolism by secreting

insulin and maintaining normal blood glucose levels

[16]. Skeletal muscle plays an important role in sys-

temic glucose homeostasis [17], and adipose tissue acts

not only on lipid storage and thermogenesis but also

on releasing factors regulating the overall body metab-

olism [18]. Fine-tuning of these physiological processes

ensures their proper function. In this review, we dis-

cuss the role of long noncoding RNAs (lncRNAs) in

maintaining the homeostasis of metabolic processes

and mitochondrial function (Table 1, Table S1) and

how dysregulation of this noncoding nucleic acid

impairs metabolism in various organs, increasing the

risk of developing CVD.

Evolutionary conservation, structure,
and function of long noncoding RNAs

The advancement of sequencing technologies has led

to the discovery that the human genome is largely

transcribed into RNA, but only a minor fraction of it

(~ 3%) is translated into protein, while the majority

(~ 97%) represents a variety of ncRNAs, including

lncRNA, microRNA (miRNA), circular RNA (cir-

cRNA), small nucleolar RNA (snRNA), ribosomal

RNA (rRNA), and transfer RNA (tRNA) (Fig. 1).

lncRNAs are defined as nonprotein-coding RNA tran-

scripts longer than 200 nucleotides and their role in

metabolism-related cardiovascular disease is increasingly

recognized [19–21]. It is estimated that the human

genome contains approximately 100 000 lncRNAs

[22,23]. However, only less than 5% of human

lncRNAs have been functionally characterized, partly

due to poor genomic sequence conservation between

species [24,25] and to functional heterogeneity, which

cannot yet be entirely assessed using currently avail-

able methodologies [26–28]. Nevertheless, lncRNAs

have been identified across species in syntenic genomic

regions. These so-called locus conserved lncRNAs usu-

ally display conserved function [29,30]. It is plausible

that the 3D structure of lncRNAs be evolutionarily

conserved. Interestingly, there is an increasing number

of lncRNA transcripts in the more complex species

and lncRNA expression is highly tissue-specific, sug-

gesting that lncRNAs promote species-specific features

and organ complexity and play a crucial role in the

evolution towards more complex organisms [31,32].

Similar to mRNAs, lncRNAs are transcribed by

RNA polymerase II from genomic loci with similar

chromatin states and are often 50-capped, spliced, and
polyadenylated [33]. lncRNAs can be transcribed from

a different genomic location relative to protein-coding

genes: intergenic regions (lincRNA), intronic regions,

overlapping with a specific gene on the same or the

opposite strand, opposite strand of the promoter

region, and enhancer region [29,34]. In contrast to

mRNA, lncRNAs tend to be shorter, have fewer but

longer exons, are expressed at relatively lower levels,

and lack a translated open reading frame [33]. Never-

theless, some RNAs that were previously identified as

lncRNAs turn out to have open reading frames allow-

ing them to be translated into so-called micropeptides

[27,35,36]. These transcripts are by definition no longer

bona fide ncRNAs. Nevertheless, they are still catego-

rized as a specific class of lncRNAs as they may play

bifunctional roles as RNA and peptide [35,37].

The majority of lncRNAs are localized in the

nucleus and associated with chromatin, while some

fractions localize to the cytoplasm [33,38]. The func-

tion of lncRNAs is dependent on their subcellular

localization. lncRNAs form lncRNA-DNA, lncRNA-

protein, and lncRNA-RNA complexes and can orga-

nize chromosomal architecture [39–41], facilitate the

formation of ribonucleoprotein complexes, and medi-

ate gene transcription and post-transcriptional modifi-

cation [24]. Nuclear lncRNAs can regulate gene

transcription by mobilizing transcription factors

[42–44], guiding chromatin remodeling complexes to

the correct locations to promote histone modifications

[45–47], acting as an enhancer [48,49], regulating

translocation of transcription factors between nucleus

and cytoplasm [50], and controlling splicing of
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Table 1. LncRNAs involved in glucose and lipid metabolism and mitochondrial function.

lncRNA lncRNA function Mechanism of action Main target Model Pathology Ref.

Adipogenesis

Plnc1 Chromatin

modification

Promotes adipocyte

differentiation

PPARc-2 ob/ob mice Obesity [127]

uc.417 Chromatin

modification

Impairs adipogenesis p38/Mapk Cold stimulated

mice

Obesity [146]

lncBATE10 Decoy Promotes full brown

fat differentiation

Celf1 Browning-treated

mice

Obesity [145]

Hoxa11-as Induces transcription Promotes

adipogenesis

C/EBP-a human primary

ADSCs

Obesity [133]

AC092159.2 Induces transcription Promotes

adipogenesis

TMEM18 Human visceral

preadipocytes

Obesity [134]

Sra1 Induces transcription

of PPARc-

dependent gene

expression

Promotes adipocyte

differentiation

PPARc Mice fed with

HFD

T2D, obesity [86]

Paral1 Induces transcription

of PPARc-

dependent gene

expression

Promotes

adipogenesis

RBM12/CoAA/

PPARc

ob/ob mice/

human WAT

Obesity [131]

lnc-U90926 Inhibits transcription Inhibits adipogenesis PPARc, FABP4,

adiponectin

ob/ob mice Obesity [137]

PU.1as Inhibits translation Inhibits adipogenesis PU.1 Mouse AT/3T3-L1

cells

Hyperlipidemia,

IR, T2D

[130]

AdipoQ-AS Inhibits translation Inhibits adipogenesis Adiponectin Mice fed with

HFD

Obesity [136]

Tincr miRNA sponging/

ceRNA

Promotes adipocyte

differentiation

miR-31 Human primary

ADSCs

Obesity [128]

TCONS_

00041960

miRNA sponging/

ceRNA

Inhibits adipogenesis miR-204-5p/miR-

125a-3p

Rat bone marrow

mesenchymal

stem cells

Osteogenic

differentiation

[135]

lncBATE1 Protein binding Promotes formation

and maintenance of

brown adipocytes

capable of

thermogenesis

hnRNP U Mouse

preadipocytes

Obesity [144]

Cholesterol metabolism

Lexis Enhancer Inhibits cholesterol

biosynthesis

Ribonucleoprotein

Raly

High-fat and

cholesterol diet-

fed mice

Atherosclerosis [110]

Chrome MiRNA interaction Promotes cholesterol

efflux

miR-27b, miR-33a,

miR-33b and miR-

128

High-fat diet-fed

macaque/human

primary

hepatocytes

Atherosclerosis,

CAD

[116]

ARSR Unknown Promotes cholesterol

biosynthesis

Akt/SREBF2/

HMGCR

High cholesterol

diet-fed mice

NAFLD, NASH [100,101]

Neat1 Unknown Promotes

adipogenesis

miR-342-3p THP-1 cells Atherosclerosis [122]

lnc-HC Unknown Inhibits cholesterol

metabolism

SREBP1c/PPARc/

miR-130b-3p

High-fat and

cholesterol diet-

fed mice

Lipid disorders

and NAFLD

[113]

Glucose metabolism

lncLGR Binding to repressor Supresses

glucokinase activity

Ribonucleoprotein L Fasted mice Fasting [84]

Meg3 ceRNA Promotes insulin

production

miR-214/EZH2 Obese mice,

diabetic mice

T2D [76–80]
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Table 1. (Continued).

lncRNA lncRNA function Mechanism of action Main target Model Pathology Ref.

Pluto Chromatin

modification

Regulates b-cell

development

PDX1 Human b-cells T2D [68]

Uc.322 Induce transcription Promotes insulin

secretion

PDX1/FOXO1 Mouse b-cells T2D [82]

Miat MiRNA sponging Promotes insulin

resistance

miR-139 Obese mice T2D, obesity [83]

Nonratt021972 Unknown Interacts with

phospho-Akt

p-AKT Diabetic rats T2D [85]

Dreh Unknown KD impairs glucose

metabolism

GLUT4 Mouse myotubes T2D [89]

Tug1 Unknown Mediates glucose

metabolism

PDX1/GLUT2 NOD mice T2D [81]

H19 MiRNA sponging Promotes b-cell

development

Let-7 Islets of new-

born and adult

rats

Diabetes [69]

H19 Decoy/inhibit

transcription

Improves glucose

metabolism

p53 Hep2G cells, H19

silencing in mice

Diabetes [70]

H19 MiRNA sponging Improves insulin

sensitivity

Let-7 Insulin resistant

mice, patients

with diabetes

Diabetes [72]

MALAT1 Unknown Induces capillary

degeneration,

microvascular

leakage, and retinal

inflammation

p38/MAPK STZ-induced

diabetic rats and

db/db mice

Diabetes [93,94]

Gas5 Riborepressor/

Inhibits transcription

Promotes wound

healing and

negative regulation

of cholesterol efflux

TAF15/Abca1 HUVECS/diabetic

foot ulcers mice/

ApoE�/� mice

T2D,DFU,

hyperglycemia,

CAD

[95,96]

Anril Scaffold Regulation of

glucose and fatty

acid metabolism

PRC2/ADIPOR1/

TMEM258/VAMP3

Peripheral blood

from patients, T-

Rex 293 (HEK

293) cell

MI, CAD [90–92]

slincRAD Unknown KD impairs adipocyte

development

Unknown Mice Obesity [88]

Lipid efflux and lipid metabolism

Mexis Enhancer Promotes cholesterol

efflux

Abca1 LXR KO mice Atherosclerosis,

CAD

[114]

APOA1-AS Inhibits transcription Negative regulation

of HDL biosynthesis

ApoA1 HepG2 cells/

African Green

Monkeys

Atherosclerosis [119]

Dynlrb2-2 Unknown Promotes cholesterol

efflux

Abca1/GPR119 ApoE�/� mice Atherosclerosis [115]

AC096664.3 Unknown mediates LDL-

induced cholesterol

accumulation

PPARc/Abcg1 VSMC/THP-1/

HUVEC cells

Atherosclerosis [117]

H19 Induce transcription,

regulation of mRNA

stability

Induces high-fat and

high-sucrose diet-

induced steatosis

PTBP1 Primary

hepatocytes,

H19 KO mice

NAFLD [105]

H19 MiRNA sponging Attenuate high-fat

diet-induced

myocardial injury

miR-29a Mouse model of

obesity, palmitic

acid-treated

cardiomyocyte

cell line

Obesity [106]
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pre-mRNAs [51,52]. Cytoplasmic lncRNAs can regu-

late mRNA stability and control their translation

[53,54], act as a scaffold and stabilize ribonucleopro-

tein complexes [55,56], mediate protein phosphoryla-

tion and activate signaling pathways [57,58]. lncRNAs

have also been shown to be able to sponge miRNAs

(competing endogenous RNA, ceRNA) (Fig. 2)

[59,60]. A similar function is also displayed by cir-

cRNAs, which are not classified as lncRNAs due to

several differentiating characteristics, such as the circu-

lar shape, exon-originated, and the lack of 50–30 polar-
ization, capping, and polyadenylation [61–63]. In

addition, lncRNAs can be secreted in extracellular

vesicles, potentially facilitating cell-to-cell communica-

tion [14] and play an essential role as structural ele-

ments of nuclear bodies, in particular paraspeckles and

nuclear stress bodies [64–66]. Interestingly, lncRNA

molecules may not by themselves regulate the expres-

sion of their downstream target. lncRNA upperhand

(Uph), for instance, does not affect the level of its host

and target gene Hand2 in its mature form. However,

inhibition of Uph transcription reduces Hand2 expres-

sion via reducing chromatin acetylation state at Hand2

enhancer region [28].

Table 1. (Continued).

lncRNA lncRNA function Mechanism of action Main target Model Pathology Ref.

H19 Chromatin

modification

BAT differentiation,

protects against

diet-induced obesity

and improves

insulin sensitivity

and mitochondrial

biogenesis

MBD1 H19 KO and

transgenic mice

fed with HFD

Obesity [141]

MALAT1 Regulation of protein

stability

Promoted hepatic

steatosis and insulin

resistance

SREBP1c HepG2 cells, ob/

ob mice

Steatosis [103]

BM450697 Inhibits transcription Control LDL uptake LDLR/SREBP1a HepG2 cells/

primary

hepatocytes

Familial

hypercholesterolemia

[121]

lncLSTR Enhancer Maintain lipid

homeostasis

TDP-43 ApoE�/� mice Hyperlipidemia [124]

Mitochondrial function

Plscr4 MiRNA sponging Promotes MFN2

expression

miR-214 Mouse CM, TAC

mice

Hypertrophy [153]

CARL MiRNA sponging Inhibits mitochondrial

fission

PHB2 Mouse CM, I/R

injury mice

Cardiotoxicity [154]

Cmdl-1 Phosphorylation Inhibits mitochondrial

fission

DRP1 H9c2 cells Cardiotoxicity

after DOX

treatment

[119]

Cerox1 MiRNA sponging Promotes

mitochondrial

respiration

miR-488-3p N2A cells,

HEK293T cells

[155]

Caren Unknown Impairs mitochondrial

respiration

Hint1 Mouse CM, TAC

mice

Heart failure [157]

AsncmtRNA-2 Unknown Promotes

senescence

hsa-miR-4485/hsa-

miR-1973

Aged mice/

HUVECS

Aging [162]

Lipcar Unknown Upregulates TGF-b

pathway

TGF-b/Smad Human atrial

fibroblasts

Atrial fibrillation [158–

160]

Triglyceride metabolism

B4GALT1-AS1/

lncSHGL

Enhancer Reduces triglyceride

content

hnRNPA1/CALM Obese mice/

NAFLD mice

Obesity, NAFLD,

T2D

[112]

APOA4-AS mRNA stability Positively regulates

serum triglyceride

content

HuR/APOA4 ob/ob mice/

human liver

Fatty liver disease,

obesity

[120]

lncHR1 Unknown Reduces triglyceride

synthesis

SREBP1c Mice fed with

HFD

[109]

Blnc1 Scaffold Increases triglyceride

synthesis

EDF1 Mice fed with

HFD/obese mice

Obesity, NAFLD,

T2D

[102,142]
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Long noncoding RNAs in glucose
metabolism

Abnormal glucose metabolism plays an important role

in the development of diabetes. Several lncRNAs have

been shown to regulate glucose metabolism and are

associated with the pathology of type 2 diabetes by

targeting pancreatic b-cell development, insulin synthe-

sis and secretion, and insulin signaling in various tis-

sues [20]. The pancreas maintains blood glucose level

by the secretion of insulin from b-cells. Defects in the

development of b-cells predispose individuals to abnor-

mal glucose metabolism and associated disease such as

diabetes [67]. lncRNA pancreatic and duodenal home-

obox (PDX1) locus upstream transcript (PLUTO) has

been shown to regulate b-cell development. Expression

of PLUTO is lower in the islets of patients with type 2

diabetes and with impaired glucose tolerance. PLUTO

affects 3D chromatin structure and promotes interac-

tions between the promoter of PDX1, and its upstream

enhancer cluster, enhancing the transcription of this

gene [68]. Another lncRNA implicated in b-cell differ-
entiation is H19, one of the first identified lncRNAs,

which is paternally imprinted and maternally

expressed. H19 is highly expressed during embryonic

development and repressed after birth. H19 promotes

the proliferation of b-cells through inhibition of

miRNA let-7, leading to activation of the Akt signal-

ing pathway [69]. In the liver, H19 inhibition in vivo

induces insulin resistance, with subsequent hyper-

glycemia and impaired glucose and pyruvate tolerance.

Mechanistically, H19 silencing increases the occupancy

of p53 on the FoxO1 promoter, leading to increased

FoxO1 transcription levels in the nucleus and upregu-

lation of gluconeogenic gene expression [70]. In con-

trast, H19 level was elevated in diet-induced diabetic

mice. H19 knockdown in hepatocytes reduces pro-

moter methylation, and consequently, induces the

expression of Hnf4a, a master regulator of gluco-

neogenic enzyme transcription, promoting excessive

hepatic glucose production, hyperglycemia, and insulin

resistance [71]. The reason behind the seemingly oppo-

site role of H19 in the liver is unclear. H19 also regu-

lates insulin signaling in the skeletal muscle. H19 was

significantly lower in the muscle tissue of diabetic

patients and rodents with insulin resistance. Here, H19

acts as a molecular sponge to inhibit let-7 miRNA.

The reduction of H19 level increases let-7 bioavailabil-

ity with subsequent reduction in expression of let-7

target genes, resulting in impaired insulin sensitivity

Fig. 1. Noncoding RNA family. The majority (~ 97%) of the genome is noncoding. Noncoding RNA (ncRNA) family can be classified into

ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), small nucleolar RNA (snRNA), long noncoding RNA (lncRNA), circular RNA

(circRNA), and many other ncRNAs. LncRNAs can act in the nucleus, in the cytoplasm, and in mitochondria, upon being transferred into

them. The majority of lncRNAs are transcribed within the nucleus, whereas a fraction of them originates from the mitochondrial genome.
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Fig. 2. The mode of action of lncRNAs. LncRNAs exert their effects depending on their subcellular localization. In the nucleus lncRNAs can

induce or inhibit gene transcription by (A) guiding transcription factors, (B) controlling splicing of pre-mRNAs, (C) mediating chromatin/histone

modifications, and (D) modifying chromatin architecture. Cytoplasmic lncRNAs can (E) regulate mRNA stability, (F) act as a scaffold for

ribonucleoprotein complexes, (G) mediate protein phosphorylation, (H) act as a miRNA sponge, and (I) encode micropeptides.
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and increased blood glucose level [72]. Furthermore,

H19 enhances insulin sensitivity by activating the

adenosine monophosphate-activated protein kinase

(AMPK) signaling pathway, which increases glucose

uptake and mitochondrial biogenesis. The atypical

dual-specificity phosphatase DUSP27/DUPD1 acts as

a downstream effector of H19 to interact and activate

AMPK in muscle cells (Fig. 3) [73]. Interestingly,

extracellular vesicle-mimetic nanovesicle-containing

H19 was effective in the treatment of diabetes-

associated chronic wounds. H19-containing nanovesi-

cle displays the ability to counteract the inhibiting

effect of hyperglycemia on angiogenesis in vitro and

in vivo [74].

The expression of another lncRNA maternally

expressed gene 3 (Meg3) is increased in the peripheral

Fig. 3. LncRNA-mediated tissue-specific metabolic processes. An overview of lncRNAs affecting metabolic or mitochondrial function in vari-

ous tissues, as described in the text. lncRNAs inhibit or induce metabolic processes, including (A) b-cell development and insulin synthesis

in the pancreas, (B) insulin uptake, glycogenesis, and triglyceride metabolism in the liver, (C) lipid uptake and cholesterol efflux in macro-

phages, (D) preadipocyte differentiation in adipose tissue, (E) insulin and glucose uptake in skeletal muscle, (F) and mitochondrial function.
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blood mononuclear cells (PBMCs) from patients with

type 2 diabetes [75], indicative of its role in glucose

metabolism. Meg3 suppressed the expression of inhibi-

tory transcription factors Rad21, Smc3, and Sin3a, via

enhancer of zeste homolog 2 (EZH2)-driven H3K27

methylation in pancreatic b-cells, leading to increased

expression of a key factor in insulin biosynthesis,

MafA, in vivo and in vitro (Fig. 3) [76]. The absence of

Meg3 contributes to the development of diabetic

microvascular complications [77]. Meg3 expression is

downregulated in the retinas of STZ-induced diabetic

mice and endothelial cells upon high glucose exposure.

Meg3 knockdown induces retinal capillary degenera-

tion, microvascular leakage, and inflammation in vivo.

In vitro, Meg3 knockdown impairs retinal endothelial

cell proliferation, migration, and tube formation. This

endothelial effect of Meg3 is mediated by the activa-

tion of phosphatidylinositol-3-kinase (PI3K)/Akt sig-

naling [77]. In contrast, inhibition of Meg3 augments

endothelial cell sprouting and improves perfusion in

the hind limb ischemia model [78]. In addition, Meg3

is upregulated in hepatocytes of mice fed with a high-

fat diet [79]. The knockdown of Meg3 decreases the

expression of FoxO1 and its downstream targets phos-

phoenolpyruvate carboxykinase and the glucose-6-

phosphatase and improves glucose tolerance and insu-

lin sensitivity in liver tissue [80]. The discrepancy in

the role of Meg3 in regulating glucose metabolism in

different tissues is unclear.

Another lncRNA regulating glucose metabolism is

TUG1, a highly enriched lncRNA in the pancreas,

which has been shown to maintain pancreatic b-cell
function. Knockdown of TUG1 induces apoptosis of

and decreases insulin secretion in b-cells in vitro and

in vivo [81]. lncRNA ultraconserved 322 (uc.322) is

also highly expressed in pancreatic tissue, where it

induces the expression of the insulin transcription fac-

tors PDX1, and thereby promoting insulin secretion

[82]. LncRNA myocardial infarction associated tran-

script (MIAT) or Gomafu, a nuclear-enriched lncRNA,

promotes hepatic insulin resistance by acting as a miR-

139 sponge and de-represses the expression of its target

gene FoxO1, which plays an important role in gluco-

neogenesis and glucose production in hepatocytes [83].

Another lncRNA playing a role in hepatic glucose

metabolism is lncRNA hepatic glucokinase (GCK)

repressor (lncLGR). LncLGR is induced by fasting in

mice. Overexpression of lncLGR to mimic fasting sup-

presses GCK expression and reduces hepatic glycogen

content. lncLGR binds to nuclear ribonucleoprotein L,

a transcriptional repressor of GCK, thereby establish-

ing a lncRNA-mediated mechanism that regulates hep-

atic GCK expression and glycogen deposition [84].

lncRNA NONRATT021972 shows increased levels in

the liver of diabetic rats, which is associated with an

increase in blood glucose levels. The knockdown of

NONRATT021972 enhances Akt phosphorylation,

hepatic glucokinase expression, and hepatic glycogen

synthesis (Fig. 3) [85].

Several lncRNAs exert their functions in adipocyte

glucose metabolism. LncRNA steroid receptor RNA

activator 1 (SRA1) was the first lncRNA identified to

regulate adipogenesis [86]. SRA1 binds to PPARc in

3T3-L1 adipocytes and enhances PPARc expression

and transcriptional activity. SRA1 also increases

CCAAT/enhancer-binding protein-a (C/EBPa) expres-

sion and other adipocyte genes and promotes glucose

uptake and phosphorylation of Akt and FOXO1 in

response to insulin [86]. In contrast, another study

shows that SRA1 silencing improved insulin sensitivity

and glucose tolerance in vivo (Fig. 3) [87]. lncRNA

slincRAD also displays a pivotal function in the adi-

pose tissue. slincRAD downregulation impairs the

development of adipose tissue, leading to abnormal

glucose and lipid metabolism and generating a thin

phenotype in mice [88].

In addition to the pancreas, liver, and adipocytes,

lncRNAs play a pivotal role in regulating glucose

metabolism in other tissues. lncRNA Dreh regulates

glucose metabolism in skeletal muscles. The absence

of Dreh in myotubes reduces glucose concentrations

in the culture medium and increases glucose trans-

port, while in C2C12 skeletal muscle cells it increases

glucose transporter 4 (GLUT4) protein levels [89].

Furthermore, lncRNA ANRIL or CDKN2B‑AS1 has

been described as a genetic risk factor for coronary

artery disease [90], and its expression level is associ-

ated with left ventricular (LV) dysfunction after

myocardial infarction (MI) [91]. In a mechanistic

study using HEK293T and HeLa cells, knockdown of

ANRIL decreases the expression of ADIPOR1,

TMEM258, and VAMP3, which are important genes

in the regulation of glucose and fatty acid metabo-

lism. ANRIL acts as a scaffold forming complexes

with several molecular components acting as tran-

scriptional activators or repressors. ANRIL recruits

and interacts with PRC1 and PRC2 leading to the

silencing of the INK4b‑INK4a locus [92]. LncRNA

metastasis associated with lung adenocarcinoma tran-

script 1 (MALAT1), which has been renamed to

nuclear-enriched noncoding transcript 2 due to its

enrichment in the nucleus, plays an important role in

the progression of insulin resistance and diabetic

microvascular complications [93]. MALAT1 was

upregulated in PBMCs from patients with diabetes

[75]. MALAT1 promotes proinflammatory phenotype
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of endothelial cells treated with high glucose [94] and

its expression is significantly upregulated in the retinas

of STZ-induced diabetic rats. MALAT1 activates p38/

MAPK signaling pathway to dysregulate retinal

endothelial cell function, which leads to pathological

microvascular growth under diabetic conditions [93].

LncRNA growth arrest-specific 5 (GAS5), another

nuclear-enriched lncRNA, is associated with the

prevalence of diabetes. Decreased GAS5 levels in

patient serum were associated with the increased risk

of diabetes [95]. GAS5 is also involved in the regula-

tion of wound healing in diabetic patients with

foot ulcer (DFU). GAS5 is downregulated in the

skin tissues of DFU patients along with the expres-

sion of HIF1A. Mechanistically, GAS5 induces HIF1A

expression by interacting with TAF15. GAS5 overex-

pression promotes cell proliferation, tubule formation,

and wound healing in HUVECs exposed to hyper-

glycemia [96].

Long noncoding RNAs in lipid
metabolism

Dysregulation of lipid metabolism is a well-known risk

factor for cardiovascular diseases. In atherosclerosis,

for instance, lipid disorders promote lipoprotein accu-

mulation within the arterial wall [97]. Accumulation of

triglycerides within hepatocytes leads to the develop-

ment of nonalcoholic fatty liver disease (NAFLD), the

most prevalent chronic liver disease in developed coun-

tries, which is closely associated with increased risk of

type II diabetes, atherosclerosis, and other cardiovas-

cular events [98,99]. LncRNAs regulate cholesterol and

triglyceride metabolism, lipid transport, and bile acid

excretion, and dysregulation of their expression profile

has been associated with the development of car-

diometabolic diseases.

Long noncoding RNAs in cholesterol and

triglyceride metabolism

Cholesterol and triglyceride synthesis is an important

part of lipid metabolism. lncRNAs participate in regu-

lating transcription factor sterol regulatory element-

binding proteins (SREBP), which controls the expres-

sion of enzymes required for cholesterol, triacylglyc-

erol, and fatty acid biosynthesis. LncRNA activated in

renal cell carcinoma with sunitinib resistance

(lncARSR) induces the expression of 3-hydroxy-3-

methyl-glutaryl-coenzyme A reductase (HMGCR), the

rate-limiting enzyme of cholesterol synthesis, and pro-

motes hepatic cholesterol biosynthesis in vivo. Mecha-

nistically, lncARSR activates the PI3K/Akt pathway,

increasing the expression of mature SREBP2, a key

transcription factor of HMGCR [100]. lncARSR con-

tributes to the development of NAFLD and nonalco-

holic steatohepatitis (NASH). The expression of

lncARSR increased both in NAFLD patients and a

NASH mouse model, and in hepatocytes exposed to

fatty acids. LncARSR induced hepatic lipogenesis by

promoting SREBP1c expression via activation of the

PI3K/Akt/mTOR pathway [101].

Another lncRNA, brown fat lncRNA 1 (Blnc1),

augments the induction of SREBP1c in primary hepa-

tocytes and increases the expression of triacylglycerol

biosynthesis genes, leading to the progression of hep-

atic steatosis and insulin resistance through LXR acti-

vation. Mechanistically, Blnc1 interacts with EDF1,

which acts in concert with LXR transcriptional com-

plex to activate the lipogenic gene program [102].

LncRNA MALAT1 also plays a role to induce lipid

accumulation in the liver, which might in turn con-

tribute to LV dysfunction in patients with MI as its

expression is upregulated in the circulation of these

patients presenting with co-morbidities, including dia-

betes and hypercholesterolemia [91]. MALAT1 expres-

sion increases in hepatocytes exposed to palmitate and

in the liver of ob/ob mice, promoting hepatic steatosis

and insulin resistance. MALAT1 silencing suppresses

palmitate-induced lipid accumulation and the increase

of nuclear SREBP1c protein in HepG2 cells. Mecha-

nistically, MALAT1 forms a complex with SREBP1c,

inhibiting its ubiquitination, thereby increasing the sta-

bility of the nuclear SREBP1c protein [103]. LncRNA

H19 plays also a pivotal role in regulating lipid metab-

olism. H19 expression is upregulated in hepatocytes

exposed to fatty acids and in high-fat diet-induced

fatty liver models. H19 functions as a lipid sensor by

interacting with the RNA-binding polypyrimidine

tract-binding protein 1 (PTBP1) to modulate hepatic

metabolic homeostasis. H19 RNA interacts with

PTBP1 to facilitate its association with SREBP1c

mRNA and protein, leading to increased stability and

nuclear transcriptional activity. Silencing of H19 pre-

vents high-fat and high-sucrose diet-induced steatosis

[104]. Further, H19 was upregulated in oleic acid-

induced steatosis and high-fat diet-induced NAFLD.

H19 activation induces lipid accumulation by upregu-

lating both the MLXIPL transcriptional network and

the mTORC1 signaling axis, including SREBP (Fig. 3)

[105]. In contrast, H19 suppresses the levels of cardiac

inflammatory cytokines in high-fat diet-fed mice by

inhibiting miR-29a, leading to de-repression of its tar-

get gene IGF-1 [106], and alleviates cardiac defects by

inhibiting mitochondrial apoptosis [107]. H19 also

inhibits excessive mitophagy by limiting Pink1 mRNA
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translation, thus alleviating cardiac damage that occurs

during obesity [108]. The effect of H19 in promoting

steatosis in the liver while protecting against high-fat

diet-induced inflammation in the heart seems conflict-

ing and may be due to the tissue type-selective func-

tion of this lncRNA.

Other lncRNAs, such as lncHR1, inhibit SREBP1c

in the liver. lncHR1 overexpression inhibits the activa-

tion of SREBP1c and fatty acid synthase and

decreases triglyceride synthesis and lipid droplet for-

mation in hepatocytes exposed to oleic acid and high-

fat diet-fed mice [109]. LncRNA liver-expressed liver

X receptor (LXR)-induced sequence (LeXis) is a

chromatin-associated lncRNA whose expression is

upregulated in the liver of mice fed with a Western

diet. LeXis interacts with ribonucleoprotein RALY

and inhibits RALY-mediated recruitment of RNA

polymerase II to the promoters of cholesterol biosyn-

thesis genes, including SREBF2 and HMGCR, pro-

moting a reduction in serum and hepatic cholesterol

levels [110]. The potential of LeXis as a gene therapy

has been tested on an atherosclerotic model. En

face lesion analysis on low-density lipoprotein recep-

tors (LDLR) knockout animals treated with AAV8

vector expressing LeXis showed significantly reduced

atherosclerotic burden as compared with control mice

[111]. LncRNA B4GALT1-AS1 and its mouse homo-

log lncSHGL have been shown to be downregulated in

obese mice and patients with NAFLD. Overexpression

of lncSHGL in the hepatocytes reduces triglyceride

content and alleviates hyperglycemia, insulin resis-

tance, and steatosis in obese diabetic mice via activa-

tion of the PI3K/Akt pathway and inhibition of

mTOR/SREBP1c [112]. Lnc-HC also targets SREBP1c

and is implicated in NAFLD [99]. Lnc-HC negatively

regulates hepatocyte cholesterol metabolism by reduc-

ing Cyp7a1 and ATP-binding cassette transporter

(Abca1) expression. Furthermore, lnc-HC downregu-

lates PPARc mRNA and protein levels and suppresses

hepatocyte lipid droplet formation. Silencing of lnc-

HC induces PPARc expression and increases triglyc-

eride levels, an effect that seems to be mediated by

miR-130b-3p expression (Fig. 3) [113].

Long noncoding RNAs in lipid efflux

Lipid efflux and reverse cholesterol transport play an

important role in lipid homeostasis to remove and

transfer excess lipids from the intracellular compart-

ment. One of the key proteins in cholesterol efflux is

the membrane-bound transporter Abca1, which trans-

ports excess cholesterol from cells to the corresponding

apolipoprotein. LncRNA MeXis is one of the

lncRNAs that induces Abca1 gene expression. Silenc-

ing of MeXis in vivo leads to a reduction of Abca1

expression. Further, loss of function of MeXis in

mouse bone marrow alters chromosome architecture at

the Abca1 locus, impairs macrophage cholesterol

efflux, and accelerates the development of atheroscle-

rosis. Mechanistically, MeXis interacts with and guides

promoter binding of the transcriptional co-activator

DDX17, leading to induction of the LXR-dependent

transcription of Abca1 in macrophages [114]. LncRNA

DYNLRB2-2 was induced by oxidized LDL, which

leads to Abca1-mediated cholesterol efflux and inhibits

inflammation via G protein-coupled receptor 119 in

THP-1 macrophage-derived foam cells [115]. Another

lncRNA promoting Abca activity is lncRNA choles-

terol homeostasis regulator of miRNA expression

(Chrome), a primate-specific lncRNA that is elevated

in the plasma and atherosclerotic plaques from CAD

patients. Chrome promotes cholesterol efflux and high-

density lipoprotein (HDL) biogenesis by inhibiting a

set of functionally related miRNAs that repress genes

in those pathways. Conversely, Chrome knockdown in

human hepatocytes and macrophages increases the

levels of miR-27b, miR-33a, miR-33b, and miR-128,

thereby reducing the expression of their target gene

and associated biological functions [116]. Another

lncRNA, AC096664.3, mediates LDL-induced choles-

terol accumulation via the PPARc-Abcg1 pathway.

Oxidized LDL decreases AC096664.3 levels in vascular

smooth muscle cells and THP-1 macrophages, leading

to reduced Abcg1 expression. Downregulation of

AC096664.3 decreases Abcg1 level through inhibition

of PPARc expression [117]. Other lncRNAs display a

negative effect on Abca1. LncRNA GAS5, for

instance, inhibits the expression of Abca1 by binding

to EZH2, which promotes triple methylation of lysine

27 in the Abca1 promoter region. GAS5 is highly

expressed in THP-1 macrophage-derived foam cells in

coronary heart disease and its silencing increases

cholesterol efflux and inhibits intracellular lipid accu-

mulation in THP-1 macrophage-derived foam cells and

in homozygous apolipoprotein E knockout mice

(Fig. 3) [118].

Lipoprotein also plays an important role in regulat-

ing lipid metabolism by binding and transporting

lipids to various tissues. Two antisense lncRNAs,

APOA1-AS and APOA4-AS, regulate the formation

and function of lipoproteins. APOA1-AS is a negative

transcriptional regulator of APOA1, the major compo-

nent of HDL. Downregulation of APOA1-AS pro-

motes ApoA1 gene expression through the recruitment

of suppressor of zeste 12 homolog and the histone-

modifying enzyme lysine-specific demethylase 1 to the
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ApoA1 promoter [119]. APOA4-AS is a regulator of

APOA4, a major component of HDL and triglyceride-

rich lipoprotein particles, and controls liver triglyceride

secretion. The expression of APOA4-AS and APOA4

is abnormally upregulated in ob/ob mice and patients

with hepatic steatohepatitis. APOA4-AS knockdown

reduced APOA4 expression, leading to a decrease

in serum triglyceride content and total cholesterol in

ob/ob mice. Mechanistically, APOA4-AS directly inter-

acts with an RNA-binding protein human antigen R

(HuR), and stabilizes APOA4 mRNA [120].

Long noncoding RNAs in lipid uptake and

excretion

LDLR in the liver plays a vital role in ingesting and

removing LDL particles from circulation. When accu-

mulated in the blood, LDL undergoes oxidative modi-

fications allowing its cellular uptake by CD36 and

scavenger receptors. lncRNA BM450697 acts as a reg-

ulator of LDLR in hepatocytes. BM450697 decreases

LDLR mRNA levels by inhibiting the interactions of

RNA polymerase II and SREBP1a at the LDLR gene

promoter [121]. Lncrna NEAT1 expression signifi-

cantly increases in THP-1 macrophages treated with

oxidized LDL. NEAT1 downregulation in THP-1 cells

inhibited CD36 mRNA expression and decreased Oil-

Red staining levels, total cholesterol, and triglyceride

content through the modulation of miR-342-3p (Fig. 3)

[122].

Excess lipid excretion is regulated by bile acid

metabolism. Nuclear farnesoid X receptors (FXR) con-

trol genes that are involved in bile acid synthesis,

including Cyp8b1 and Cyp7a1 [123]. LncRNA liver-

specific triglyceride regulator (lncLSTR), displays an

essential function in lipid homeostasis through regulat-

ing the bile acid pathway. Mice with a liver-specific

depletion of lncLSTR display a reduction in plasma

triglyceride levels. LncLSTR forms a complex with

TDP-43 to enhance the expression of Cyp8b1, an

enzyme in the bile acid synthesis pathway, leading to a

reduction in apoC2 expression through the FXR-

mediated pathway. lncLSTR depletion enhances

apoC2, leading to activation of lipoprotein lipase and

increased plasma triglyceride clearance. Thus, lncLSTR

maintains systemic lipid homeostasis through the regu-

lation of the TDP-43/FXR/apoC2-dependent pathway

[124].

Long noncoding RNAs in adipogenesis

Adipogenesis is the process by which preadipocytes

develop into mature white, brown, or beige adipocytes,

contributing to both lipid storage and clearance. Dis-

turbance of this biological process underlies the devel-

opment of cardiovascular risk factors, such as obesity,

which promotes insulin resistance and atherosclerosis

[125]. Transcriptomic analysis of primary preadipo-

cytes, brown and white adipocytes revealed differential

expression of hundreds of lncRNAs, indicating their

vital role in adipogenesis. These lncRNAs may interact

with the promoters of key adipogenic transcription

factors, such as PPARc and C/EBPa [126]. In white

adipocyte differentiation, lncRNA SRA1 promotes

preadipocyte differentiation to white adipocyte via its

binding to PPARc and co-activates PPARc-dependent
gene expression [86]. Another lncRNA promoting adi-

pocyte differentiation is Plnc1. Plnc1 is enriched in

adipose tissue and its expression increases in the adi-

pose tissue of obese mice. Plnc1 knockdown reduces

PPARc, C/EBPa, and adipocyte protein 2 expressions,

preventing differentiation of ST2 adipogenic cell line

and bone marrow stromal cells into mature adipocytes.

Plnc1 inhibits methylation of the CpG region in the

promoter region of PPARc2 and thus enhances its

transcriptional activity and thereby increases PPARc2
transcription [127]. lncRNA terminal differentiation-

induced ncRNA (TINCR) regulates differentiation of

human adipose tissue-derived mesenchymal stem cells

by acting as a ceRNA for miR-31 to target C/EBPa
[128]. Similarly, Meg3 promotes 3T3-L1 preadipocyte

differentiation by acting as a miR-217 sponge [129].

Antisense lncRNA PU.1AS also regulates adipogene-

sis by forming an RNA duplex with PU.1 mRNA

and inhibiting PU.1 mRNA translation [130]. In

addition, Paral1 and NEAT1 also positively regulate

adipogenesis of white adipocytes. Paral1, in particu-

lar, acts through interaction with the paraspeckle

component and hnRNP-like RNA-binding protein 14

(RBM14/CoAA) to guide PPARc to promote adi-

pogenic gene expression [131,132]. Furthermore,

LncRNA HOXA11-AS1 was upregulated in patients

with obesity. Silencing of HOXA11-AS1 suppresses

adipocyte differentiation, leading to reduced transcrip-

tion of adipogenic genes, including C/EBPa, DGAT2,

CIDEC, and perilipin [133]. Another lncRNA,

AC092159.2, is positively associated with body mass

index (BMI) and obesity. Overexpression of this

lncRNA promotes adipocyte differentiation by induc-

ing transcription of transmembrane protein 18

(TMEM18) (Fig. 3) [134].

Conversely, GAS5 displays an inhibitory effect on

the adipogenesis of 3T3-L1 cells through its repressive

effect on miR-21a-5p, leading to improved expression

of PTEN. LncRNA TCONS_00041960 has also been

shown to suppress adipogenesis of rat bone marrow
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mesenchymal stem cells by acting as a ceRNA, which

forms a complex with miR-125a-3p and miR-205-5p to

regulate anti-adipogenic gene glucocorticoid-induced

leucine zipper (GILZ) and Runx2, respectively, leading

to PPARc inhibition and repression of adipocyte dif-

ferentiation [135]. lncRNA AdipoQ-AS, inhibits adipo-

genesis by translocating from the nucleus to the

cytoplasm to form complex with adiponectin (AdipoQ)

mRNA to suppress the mRNA translation in mouse

primary preadipocytes and adipose tissues of mice fed

with high-fat diet [136]. Obese mice have a low level of

lnc-U90926 in subcutaneous and visceral adipose tis-

sue. Upregulation of lnc-U90926 inhibits 3T3-L1 adi-

pocyte differentiation by suppressing mRNA levels of

PPARc2, fatty acid-binding protein 4 (FABP4), and

adipoQ (Fig. 3) [137].

Brown and beige adipose tissues are responsible for

thermogenesis and are regulated by several key

transcription factors, including PPARc, PPARc co-

activator 1a (PGC1a), C/EBPb, PR domain-

containing 16 (PRDM16), and early B-cell factor 2

(EBF2) [138,139]. De novo reconstruction of human

adipose transcriptome shows approximately 900

lncRNAs that are specifically detected in brown adi-

pose tissue (BAT), 169 of which are conserved human

lncRNAs that regulate their adjacent mRNAs [140].

H19, for instance, shows inverse correlations with

BMI in humans. H19 expression in BAT increases

upon cold activation and decreases in obesity. H19

promotes oxidative metabolism and mitochondrial

respiration in brown but not white adipocytes.

In vivo, H19 protects against diet-induced obesity and

improves insulin sensitivity and mitochondrial biogen-

esis, whereas loss of H19 promotes weight gain.

Mechanistically, H19 recruits paternally expressed

gene (PEG)-inactivating H19-MBD1 complexes and

acts as BAT-selective PEG gatekeeper [141]. Blnc1

and several key transcriptional regulators of BAT,

including EBF2 and PPARc, are highly expressed

during brown adipocyte differentiation [142]. Blnc1

forms a ribonucleoprotein complex with nuclear

ribonucleoprotein U (hnRNPU) and EBF2 or zinc fin-

ger and BTB domain-containing 7b to promote ther-

mogenic gene program, leading to brown and beige

adipocyte differentiation [142,143]. lncBATE1 is

enriched in BAT and the loss of lncBATE1 reduces

BAT-selective gene expression in primary brown adi-

pocytes through interaction with hnRNPU [144].

lncBATE10, another BAT-enriched lncRNA, pro-

motes full brown fat differentiation and white fat

browning program by decoying Celf1 from PGC1a,
protecting PGC-1a mRNA from repression by Celf1

[145]. Another lncRNA acting as a negative regulator

of brown and beige adipocyte differentiation is

lncRNA uc.417, which impairs adipogenesis and ther-

mogenic gene program in brown adipocytes by

inhibiting phosphorylation of p38 mitogen-activated

protein kinase (MAPK), which is essential for BAT

activation (Fig. 3) [146].

LncRNAs affecting mitochondrial
function and structure

Mitochondria regulate various cellular processes,

including oxidative phosphorylation, biosynthetic

pathways, redox homeostasis, ion exchange, and pro-

grammed cell death. Mitochondrial dysfunction under-

lies the impairment of cardiac and vascular cells,

leading to the development of various cardiovascular

pathologies [147–149]. Deranged glucose and lipid

metabolism can disturb mitochondrial structure and

function. Disturbed mitochondrial homeostasis

induced by aging or impaired glucose and lipid metab-

olism is considered a major driver of cardiac cell senes-

cence. Aged mitochondria produce less ATP and form

excessive reactive oxygen species (ROS) with detrimen-

tal effects on cells [150,151]. Mitochondrial fission and

fusion are important processes in mitochondrial home-

ostasis and a disrupted balance between those two is

observed in many age-related diseases [152]. Genes

involved in fission are dynamin-related protein 1

(Drp1) and mitochondrial fission 1 protein (Fis1) while

the mitofusin genes (Mfn1 and Mfn2) and OPA1 are

responsible for outer and inner mitochondrial mem-

brane fusion, respectively. In cardiomyocytes, lncRNA

Plscr4 regulates this process via downregulating the

expression of miR-214. This in turn leads to a moder-

ate increase in Mfn2 expression and a protection

against angiotensin II-induced mitochondrial dysfunc-

tion. Disrupting this balance by inhibition of Mfn2

can lead to cardiac hypertrophy in vitro and in vivo

[153]. Another lncRNA that changes mitochondrial

morphology is Cardiac apoptosis-related lncRNA

(CARL), which can suppress mitochondrial fission and

apoptosis in cardiomyocytes via the miR-539/

prohibitin 2 (phb2) axis. CARL can directly bind to

and inhibit miR-539 from suppressing its downstream

target Phb2. The prohibitin genes are localized in the

inner mitochondrial membrane (IMM) and play a role

in maintaining the shape of mitochondria [154].

Cardiomyocyte mitochondrial dynamic related

lncRNA 1 (CMDL-1) is another lncRNA involved in

maintaining mitochondrial biology. It was downregu-

lated in cardiomyocytes after treatment with doxorubicin,

a chemotherapeutic agent that often leads to cardiac

toxicity. This lncRNA regulates post-transcriptional
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modification by enhancing phosphorylation of fission

protein Drp1 at Serine-637, leading to the deactivation

of this protein. Overexpressing this lncRNA in car-

diomyocytes prevents mitochondrial fission and apopto-

sis induced by doxorubicin treatment (Fig. 3) [155]. The

lncRNA cytoplasmic endogenous regulator of oxidative

phosphorylation 1 (Cerox1) is a post-transcriptional

regulator of mitochondrial complex I catalytic activity

[156]. This lncRNA binds to miR-488-3p, which regu-

lates multiple electron transport chain proteins, and

blocks the effect of this miRNA. Therefore, increased

Cerox1 expression leads to increased levels of complex 1

proteins and enzymatic activity, and decreases

ROS production [156]. Another lncRNA enriched in

cardiomyocytes and regulating mitochondrial function

is lncRNA cardiomyocyte enriched transcript (Caren)

[157]. This lncRNA was upregulated in the hearts of

aged mice of 24-months old. In vivo studies revealed

lower levels of Caren in mice that underwent TAC sur-

gery compared with sham control, while overexpression

resulted in resistance to developing heart failure (HF).

Proteomics of Caren overexpressing and knockdown

mice compared with corresponding littermates revealed

metabolic pathways as the most enriched. The number

of mitochondria in the heart and mitochondrial DNA

(mtDNA) content was significantly higher in Caren

overexpressing mice, while Caren deficient mice had

reduced respiratory chain capacity. Caren decreases the

translation of an mRNA transcribed from a distant gene

encoding for Hint1 protein, which activates the ataxia

telangiectasia mutated (ATM)-DNA damage response

(DDR) pathway and reduces mitochondrial respiratory

capacity in cardiomyocytes. Hence, Caren maintains

cardiac function by inactivating the DDR and activat-

ing mitochondrial biogenesis [157]. With mitochondrial

dysfunction as one of the hallmarks of aging, these

lncRNAs may serve as a potential therapeutic target in

age-related pathologies such as CVD.

Mitochondrial DNA-transcribed
lncRNAs

All lncRNAs described so far are transcribed from the

nuclear DNA. However, lncRNAs transcribed from

mitochondrial DNA (mtlncRNAs) also play a role in

CVD and aging. Most of the mtlncRNAs are antisense

transcripts of mitochondrial transcribed genes since

the number of noncoding regions on the mtDNA is

relatively small [158]. LncRNA predicting cardiac

remodeling (LIPCAR), for instance, plays a role in

several cardiac pathologies. It was first described as a

predictor for survival in HF patients [159]. In patients

with type 2 diabetes it is inversely associated with LV

diastolic dysfunction [160]. A functional study in atrial

fibrillation (AF) showed that LIPCAR regulates AF

by modulating the TGFb pathway and upregulating

LIPCAR in arterial fibroblast increased cell viability

and proliferation [161]. ASncmtRNA-2 is another

mtlncRNA that plays a role in CVD [162].

ASncmtRNA-2 was upregulated in the aortas of old

mice and in human umbilical vein endothelial cells

undergoing replicative senescence. Interestingly, the

expression of miR-4485 and miR-1973, which show

perfect homology to the double-strand region of

ASncmtRNA-2 and partly originate from a mitochon-

drial transcript, was also induced in replicative senes-

cence. Overexpression of ASncmtRNA-2 in endothelial

cells resulted in the accumulation of cells in G2/M

phase. Therefore, it is plausible that this lncRNA plays

a role in cardiovascular senescence by participating in

cell cycle arrest through the production of miR-4485

and miR-1973. Deep sequencing analysis also revealed

the presence of 3 other mtlncRNAs in human tissues,

namely lncND5, lncND6, and lncCyt B [158]. The func-

tional role of these mtlncRNAs is not known yet.

Since these are antisense transcripts of mitochondrial

genes, it is suggested that they play a role in the regu-

lation of expression of mitochondrial transcribed genes

or in nuclear-mitochondrial communication (Fig. 3).

Conclusions

LncRNAs play a key role in regulating a wide range

of metabolic processes. These metabolic lncRNAs

(metaboLncs) can regulate glucose metabolism by

modulating b-cell development and thereby insulin

production and secretion, and glucose uptake. They

also modulate cholesterol and triglyceride synthesis,

lipid uptake, efflux and excretion, adipose tissue devel-

opment, bile acid synthesis, and mitochondrial func-

tion. metaboLncs display their metabolic function not

only in major metabolic tissues, such as pancreas,

liver, skeletal muscle, and adipocytes, but also in the

main cardiovascular cell types, including cardiomy-

ocytes, endothelial cells, and vascular smooth muscle

cells. metaboLnc dysregulation contributes to various

metabolic disorders such as insulin resistance, NASH,

NAFLD, obesity, and type 2 diabetes, leading to com-

plications including chronic wounds, retinopathy,

atherosclerosis, myocardial infarction, heart failure,

and other CVD. One lncRNA can regulate different

metabolic processes or mitochondrial functions in dif-

ferent tissues and these regulatory functions can be

protective or detrimental in different cell types. It is

plausible that opposite functional effects depend on

the disease model used, but they could also be due to
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the tissue-specific functions of a given lncRNA. This is

of importance when lncRNA therapeutics are consid-

ered to specifically target a lncRNA only in the partic-

ular tissue of interest. Most lncRNAs are transcribed

in the nucleus and some are transported into mito-

chondria to regulate various mitochondrial functions.

Interestingly, some lncRNAs are encoded by mtDNA,

the so-called mtlncRNAs, showing how diverse these

noncoding transcripts are and how they may regulate

metabolic processes to maintain homeostasis in the

cardiovascular system. Lastly, as many metaboLncs

have proven functional involvement in metabolic dis-

orders, their potential as therapeutic targets or

biomarkers is likely. Small molecules targeting

lncRNAs and RNA interference using antisense

oligonucleotides or small-interfering RNAs are promis-

ing therapeutic strategies for the treatment of meta-

bolic disorders and should therefore be further

investigated in the near future.
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