

Supporting Information

Mixed-Valence Compounds as Polarizing Agents for Overhauser Dynamic Nuclear Polarization in Solids**

Andrei Gurinov, Benedikt Sieland, Andrey Kuzhelev, Hossam Elgabarty, Thomas D. Kühne, Thomas Prisner, Jan Paradies, Marc Baldus, Konstantin L. Ivanov[†], and Svetlana Pylaeva*

ange_202103215_sm_miscellaneous_information.pdf

1. Synthesis

1.1. Synthesis of N¹,N⁴,N⁴-tetrakis(4-methoxyphenyl)benzene-1,4-diamine¹

The synthesis was performed analogous to the synthesis of triarylated amines. A 10 mL crimp vial with magnetic stir bar was charged with 4-iodoanisol (257.4 mg, 1.10 mmol, 4.4 eq.), tris(dibenzylidene-acetone)dipalladium(0) (8.3 mg, 0.01 mmol, 0.04 eq.), XPhos (26.0 mg, 0.06 mmol, 0.22 eq.), sodium *tert*-butoxide (147.7 mg, 1.54 mmol, 6.16 eq.) and 1,4-diamino benzene (27.0 mg, 0.25 mmol, 1.0 eq.) and 1,4-dioxane (1.65 mL). The mixture was stirred for 5 h at 110°C, then cooled to RT and quenched with EtOAc (4 mL). After filtration over Celite, the solvent was removed under reduced

pressure. Column chromatography (silica, gradient CH/EE 10:1 to 5:1, $R_f(5:1)=0.49$) and precipitation three times from MeOH (100 mL) gave a nearly colourless, amorphous solid (722.6 mg, 68 %).

¹**H-NMR** (500 MHz, C₆D₆, 303 K, δ [ppm]): 7.15-7.11 (m, 8H, CH_{Ar}), 7.07 (br., 4H, CH_{Ar}), 6.76-6.69 (m, 8H, CH_{Ar}), 3.31 (s, 12H, CH₃).

¹³C-NMR (176 MHz, C₆D₆, 303 K, δ [ppm]): 156.4 (4C, C_q), 143.9 (2C, C_q), 142.6 (4C, C_q), 126.4 (8C, CH_{Ar}), 124.2 (4C, CH_{Ar}), 115.5 (8C, CH_{Ar}), 55.4 (4C, CH₃).

¹⁵**N-NMR** (71 MHz, C₆D₆; 303 K, δ [ppm]): 91.4.

Mass (ESI; [m/z]): calculated [M⁺] 532.2362, found [M⁺] 532.2368.

1.2. Synthesis of N¹, N¹, N³, N³-tetrakis (4-methoxyphenyl) benzene-1, 3-diamine¹

The synthesis was performed analogous to the synthesis of triarylated amines. A 10 mL crimp vial with magnetic stir bar was charged with 4-iodoanisol (257.4 mg, 1.10 mmol, 4.4 eq.), tris(dibenzylidene-acetone)dipalladium(0) (8.3 mg, 0.01 mmol, 0.04 eq.), XPhos (26.0 mg, 0.06 mmol, 0.22 eq.), sodium *tert*-butoxide (147.7 mg, 1.54 mmol, 6.16 eq.), 1,3-diamino benzene (27.0 mg, 0.25 mmol, 1,0

eq.) and 1,4-dioxane (1.65 mL). The mixture was stirred for 5 h at 110°C, then cooled to RT and quenched with EtOAc (4 mL). After filtration over Celite the solvent was removed under reduced pressure. Column chromatography (silica, gradient CH/EE 10:1 to 5:1, $R_f(10:1)=0.19$) and precipitation three times from MeOH (100 mL) at -20 °C gave a nearly colourless, amorphous solid (391,0 mg; 37 %).

¹**H-NMR** (300 MHz, C₆D₆, 303 K, δ [ppm]): 7.13-7.07 (m, 8H, CH_{Ar}), 7.04 (t, ⁴J_{HH}=2.2 Hz, 4H, CH_{Ar}), 7.02 (t, ³J_{HH}=8.1 Hz, 1H, CH_{Ar}), 6.73 (dd, ³J_{HH}=8.1 Hz, ⁴J_{HH}=2.3 Hz, 2H, CH_{Ar}), 6.70-6.64 (m, 8H, CH_{Ar}), 3.29 (s, 12H, CH₃).

¹³C-NMR (176 MHz, C₆D₆, 303 K, δ [ppm]): 156.6 (4C, C_q), 150.5 (2C, C_q), 142.0 (4C, C_q), 130.3 (1C, CH_{Ar}), 127.0 (8C, CH_{Ar}), 115.4 (9C, CH_{Ar}), 114.8 (2C, CH_{Ar}), 55.3 (4C, CH₃).

¹⁵**N-NMR** (71 MHz, C₆D₆, 303 K, δ [ppm]): 94.5.

Mass (ESI, [m/z]): calculated $[M^+]$ 532.2362, found $[M^+]$ 532.2363.

2. Sample preparation

For DNP measurements, the corresponding closed shell molecule (15 μ mol, 1 eq.) was dissolved in 1,1,2,2-tetrachloroethane (1.0 mL, 90D:10H) and the solution was added to the oxidizing agent (15 μ mol, 2.6 mg, 1 eq.). The mixture was vigorously shaken, and a sample was immediately taken for measurement. This yielded a 15 mM concentration of the radical in the sample.

Substance	CAS-number	molecular	amount of	mass	volume
		weight	substance	[mg]	[mL]
		[g/mol]	[mmol]		
N ¹ ,N ¹ ,N ³ ,N ³ -Tetrakis(4-	No CAS-No.	532.64	0.015	8.0	
methoxyphenyl)benzene-1,3-diamine					
N ¹ ,N ¹ ,N ⁴ ,N ⁴ -Tetrakis(4-	No CAS-No.	532.64	0.015	8.0	
methoxyphenyl)benzene-1,4-diamine					
Nitrosyl hexafluorophosphate	16921-91-8	174.97	0.015	2.6	
1,1,2,2-Tetrachlorethane-d2	33685-54-0				0.9
1,1,2,2-Tetrachlorethane					0.1
α,γ-Bisdiphenylene-β-phenylallyl	35585-94-5	495.63	0.02	7.4	

For EPR measurements, the corresponding closed shell molecule (15 μ mol, 1 eq.) was dissolved in 1,1,2,2-tetrachloroethane (1.0 mL); and the solution was added to the oxidizing agent (15 μ mol, 2.6 mg, 1 eq.). The mixture was vigorously shaken. 0.01 - 0.03 mL of the mixture was taken out of the solution and dissolved in 0.9 ml of 1,1,2,2-tetrachloroethane. A sample was immediately taken for measurement. This yielded a 0.1 - 0.5 mM concentration of the radical in the sample.

Substance	CAS-number	molecular	amount of	mass	volume
		weight	substance	[mg]	[mL]
		[g/mol]	[mmol]		
N ¹ ,N ¹ ,N ³ ,N ³ -Tetrakis(4-	No CAS-No.	532.64	0.015	8.0	
methoxyphenyl)benzene-1,3-diamine					
N ¹ ,N ¹ ,N ⁴ ,N ⁴ -Tetrakis(4-	No CAS-No.	532.64	0.015	8.0	
methoxyphenyl)benzene-1,4-diamine					
Nitrosyl hexafluorophosphate	16921-91-8	174.97	0.015	2.6	
1,1,2,2-Tetrachlorethane	33685-54-0				1.9
α,γ-Bisdiphenylene-β-phenylallyl	35585-94-5	495.63	0.02	7.4	

3. Simulations results

DFT Results: BMK/EPR-III calculation of hyperfine coupling constants

$53 \\ 52 \\ 45 \\ 45 \\ 13 \\ 14 \\ 46 \\ 50 \\ 46 \\ 50 \\ 46 \\ 50 \\ 50 \\ 19 \\ 46 \\ 50 \\ 50 \\ 10 \\ 46 \\ 50 \\ 50 \\ 10 \\ 46 \\ 7 \\ 40 \\ 7 \\ 28 \\ 57 \\ 57 \\ 57 \\ 50 \\ 46 \\ 41 \\ 62 \\ 36 \\ 61 \\ 36 \\ 61 \\ 36 \\ 61 \\ 36 \\ 61 \\ 36 \\ 61 \\ 36 \\ 61 \\ 36 \\ 61 \\ 61$						
Atom MHz	Atom MHz	Atom MHz	Atom MHz			
1 C(13) -2.22777	19 C(13) 10.11654	37 O(17) -2.72128	55 H(1) 1.30580			
2 C(13) 0.80459	$20 \ O(17) \ -2.72136$	38 C(13) -0.61766	56 H(1) $1./1/91$			
3 C(13) 0.80401	$21 \ O(17) \ -2.72137$	39 C(13) -0.01700	57 H(1) -2.78046			
4 C(13) - 2.22772	22 C(13) -0.01769	40 H(1) -2.13757	58 $H(1)$ 1.20088			
5 C(13) 0.80400	25 C(15) -0.01709	$41 \Pi(1) -2.13757$	59 H(1) -2.76040			
0 C(13) 0.80400 7 N(14) 19 10095	24 N(14) 10.10005 25 C(12) 16 77101	$42 \Pi(1) -2.13757$	$00 \Pi(1) 1.20000$			
8 C(13) -16 77127	25 C(13) -10.77101 26 C(13) -16 77102	43 H(1) -2.78034 77 H(1) 1 26690	62 H(1) -3 30635			
9 C(13) - 16 77128	20 C(13) -10.77102	44 H(1) 1.20050 45 H(1) 1.90851	63 H(1) -0.06781			
10 (13) 8 93840	27 C(13) -4 65712	46 H(1) -3 30648	64 H(1) 1 71795			
10 C(13) - 0.550+0 11 C(13) -4 65737	29 C(13) 6 09124	47 H(1) -2 78055	65 H(1) 1 30567			
12 C(13) 6.09145	30 C(13) -6.14693	48 H(1) 1.26690	66 H(1) -0.06781			
13 C(13) -6.14719	31 C(13) 8.93835	49 H(1) 1.90851	67 H(1) 1.71797			
14 C(13) 10.11652	32 C(13) -4.65712	50 H(1) -3.30648	68 H(1) 1.30566			
15 C(13) 8.93841	33 C(13) 6.09122	51 H(1) -0.06786	69 C(13) 10.11641			
16 C(13) -4.65738	34 C(13) -6.14692	52 H(1) 1.30581	70 H(1) 1.90847			
17 C(13) 6.09146	35 C(13) 10.11642	53 H(1) 1.71788	71 H(1) -3.30634			
18 C(13) -6.14719	36 O(17) -2.72127	54 H(1) -0.06785	72 H(1) -2.13757			

CASSCF(3,3)/def2-TZVP results	: Loewdin spin densities
-------------------------------	--------------------------

$53 \\ 52 \\ 45 \\ 45 \\ 45 \\ 46 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 46 \\ 7 \\ 40 \\ 41 \\ 62 \\ 31 \\ 31 \\ 40 \\ 31 \\ 31 \\ 40 \\ 31 \\ 31 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 4$					
1 C 0.081212 2 C 0.034608	19 C 0.035023	37 O 0.000539 38 C 0.000066	55 H 0.000245		
3 C 0.010948	21 O 0.007196	39 C 0.000079	57 H 0.000005		
4 C 0.029455	22 C 0.001105	40 H 0.000651	58 H 0.000001		
5 C 0.014506	23 C 0.001082	41 H 0.000339	59 H 0.000023		
6 C 0.035018	24 N 0.015281	42 H 0.000650	60 H 0.000031		
7 N 0.365500	25 C 0.003234	43 H 0.000661	61 H 0.000040		
8 C 0.068956	26 C 0.001726	44 H 0.000198	62 H 0.000132		
9 C 0.068516	27 C 0.000326	45 H 0.000211	63 H 0.000000		
10 C 0.032065	28 C 0.000220	46 H 0.000819	64 H 0.000018		
11 C 0.011452	29 C 0.003042	47 H 0.000640	65 H 0.000017		
12 C 0.026451	30 C 0.003173	48 H 0.000199	66 H 0.000000		
13 C 0.011756	31 C 0.001548	49 H 0.000211	67 H 0.000019		
14 C 0.035657	32 C 0.001498	50 H 0.000801	68 H 0.000018		
15 C 0.031541	33 C 0.001696	51 H 0.000000	69 C 0.001430		
16 C 0.011302	34 C 0.001624	52 H 0.000248	70 H 0.000060		
17 C 0.025903	35 C -0.001168	53 H 0.000275	71 H 0.000172		
18 C 0.011471	36 O 0.000392	54 H 0.000001	72 H 0.000266		

4. EPR results

The g-tensors of all studied radicals were obtained from simulation of G-band EPR spectra with EasySpin program² using function pepper, corresponding to the solid-state regime. Obtained g-tensor are listed in table.

Radical	Solvent	Line width at 10% intensity	g tensor
BDPA	TCE	70 MHz	2.00292 2.00269
			2.00238

1-4-amine	TCE	130 MHz	2.00359
			2.00309
			2.00288
1-3-amine	TCE	115 MHz	2.00349
			2.00296
			2.00283

Table S1. Simulated g-tensors for the set of studied radicals.

Spectroscopic properties of studied radicals at 295 K in TCE: the isotropic hyperfine constants (a_{iso}, n - number of equivalent nuclei) and peak-to-peak line widths (LW). The X-band EPR spectra were simulated with EasySpin program² using function garlic.

Radical	giso	a _{iso} / MHz		LW / mT	
		¹ H (n)	¹⁴ N (n)	Gaussian	Lorentzian
BDPA	2.002663	5.20 (4) 5.57 (4)	-	0.1102	0.1138
1-4-amine	2.003186		16.00 (2)	0.3480	0.1024
1-3-amine	2.003093	4.78 (2)	9.09 (2)	0.2106	0.2325

Figure S1. CW EPR spectra of radicals in TCE at room temperature.

5. DNP results

Figure S2. Enhancement as a function of MW power for different components of the field profile for 1-3-amine radical.

- 6. Literature
- (1) Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. **2007**, 129 (34), 10354 10355
- (2) Stoll, S.; Schweiger, A. J. Magn. Res. 2006, 178, 42 55