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Abstract

In the last two decades, our understanding of human gene regulation has im-
proved tremendously. There are plentiful computational methods which focus
on integrative data analysis of humans, and model organisms, like mouse and
drosophila. However, these tools are not directly employable by researchers
working on non-model organisms to answer fundamental biological, and evo-
lutionary questions. We aimed to develop new tools, and adapt existing soft-
ware for the analysis of transcriptomic and epigenomic data of one such non-
model organism, Paramecium tetraurelia, an unicellular eukaryote. Paramecium
contains two diploid (2n) germline micronuclei (MIC) and a polyploid (800n)
somatic macronuclei (MAC). The transcriptomic and epigenomic regulatory
landscape of the MAC genome, which has 80% protein-coding genes and short
intergenic regions, is poorly understood.

We developed a generic automated eukaryotic short interfering RNA (siRNA)
analysis tool, called RAPID. Our tool captures diverse siRNA characteristics
from small RNA sequencing data and provides easily navigable visualisations.
We also introduced a normalisation technique to facilitate comparison of mul-
tiple siRNA-based gene knockdown studies.

Further, we developed a pipeline to characterise novel genome-wide endoge-
nous short interfering RNAs (endo-siRNAs). In contrary to many organisms,
we found that the endo-siRNAs are not acting in cis, to silence their parent
mRNA. We also predicted phasing of siRNAs, which are regulated by the RNA
interference (RNAi) pathway. Further, using RAPID, we investigated the aber-
rations of endo-siRNAs, and their respective transcriptomic alterations caused
by an RNAi pathway triggered by feeding small RNAs against a target gene.
We find that the small RNA transcriptome is altered, even if a gene unrelated
to RNAi pathway is targeted. This is important in the context of investigations
of genetically modified organisms (GMOs). We suggest that future studies need
to distinguish transcriptomic changes caused by RNAi inducing techniques and
actual regulatory changes.

Subsequently, we adapted existing epigenomics analysis tools to conduct
the first comprehensive epigenomic characterisation of nucleosome positioning
and histone modifications of the Paramecium MAC. We identified well posi-
tioned nucleosomes shifted downstream of the transcription start site. GC con-
tent seems to dictate, in cis, the positioning of nucleosomes, histone marks
(H3K4me3, H3K9ac, and H3K27me3), and Pol II in the AT-rich Paramecium
genome. We employed a chromatin state segmentation approach, on nucle-
osomes and histone marks, which revealed genes with active, repressive, and
bivalent chromatin states. Further, we constructed a regulatory association
network of all the aforementioned data, using the sparse partial correlation net-
work technique. Our analysis revealed subsets of genes, whose expression is
positively associated with H3K27me3, different to the otherwise reported neg-
ative association with gene expression in many other organisms.

Further, we developed a Random Forests classifier to predict gene expression
using genic (gene length, intron frequency, etc.) and epigenetic features. Our
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model has a test performance (PR-AUC) of 0.83. Upon evaluating different
feature sets, we found that genic features are as predictive, of gene expression,
as the epigenetic features. We used Shapley local feature explanation values,
to suggest that high H3K4me3, high intron frequency, low gene length, high
sRNA, and high GC content are the most important elements for determining
gene expression status.

In this thesis, we developed novel tools, and employed several bioinformatics
and machine learning methods to characterise the regulatory landscape of the
Paramecium’s (epi)genome.
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Kurzfassung

In den letzten zwei Jahrzehnten hat sich unser Verständnis der menschlichen
Genregulation enorm verbessert. Es gibt eine Fülle von computergestützten
Methoden, die sich auf die integrative Datenanalyse von Menschen und Model-
lorganismen wie Maus und Drosophila konzentrieren. Diese Werkzeuge können
jedoch nicht direkt von Forschern eingesetzt werden, die an Nicht-Modellorganismen
arbeiten, um grundlegende biologische und evolutionäre Fragen zu beantworten.
Unser Ziel war es, neue Werkzeuge zu entwickeln und bestehende Software für
die Analyse von transkriptomischen und epigenomischen Daten eines solchen
Nicht-Modellorganismus, Paramecium tetraurelia, einem einzelligen Eukaryoten,
anzupassen. Paramecium enthält zwei diploide (2n) Keimbahn-Mikrokerne
(MIC) und einen polyploiden (800n) somatischen Makronukleus (MAC). Die
transkriptomische und epigenomische Regulationsmechanismen des MAC-Genoms,
das 80% proteinkodierende Gene und kurze intergene Regionen aufweist, ist
bisher nur wenig verstanden.

Wir haben ein generisches, automatisiertes Analyse-Tool für kurze inter-
ferierende RNAs (siRNAs) in Eukaryoten entwickelt, genannt RAPID. Unser
Tool erfasst diverse siRNA-Charakteristika aus kleinen RNA (sRNA) Sequen-
zierungsdaten und bietet leicht navigierbare Visualisierungen. Wir haben auch
eine Normalisierungstechnik eingeführt, um den Vergleich von mehreren siRNA-
basierten Gen-Knockdown-Studien zu erleichtern.

Darüber hinaus haben wir eine Pipeline zur Charakterisierung neuartiger
genomweiter endogener kurzer interferierender RNAs (endo-siRNAs) entwick-
elt. Im Gegensatz zu vielen anderen Organismen fanden wir heraus, dass die
endo-siRNAs in Paramecium nicht in cis wirken, um ihre Eltern-mRNA zu in-
hibieren. Wir haben auch die Phasenlage der siRNAs vorhergesagt, die durch
den RNA-Interferenz (RNAi) Signalweg reguliert wird. Weiterhin untersuchten
wir mit Hilfe von RAPID die Aberrationen von endo-siRNAs und ihre jeweiligen
transkriptomischen Veränderungen, die durch einen RNAi-Signalweg verursacht
werden, der durch die Zuführung kleiner RNAs gegen ein Zielgen ausgelöst wird.
Wir fanden heraus, dass das Transkriptom der kleinen RNAs verändert wird,
auch wenn ein Gen, das nicht mit dem RNAi-Signalweg in Verbindung steht, als
Ziel gewählt wird. Dies ist wichtig im Zusammenhang mit Untersuchungen von
gentechnisch veränderten Organismen (GVOs). Wir schlagen vor, dass zukün-
ftige Studien transkriptomische Veränderungen, die durch RNAi-induzierende
Techniken verursacht werden, von tatsächlichen regulatorischen Veränderungen
unterschieden werden müssen.

Anschließend adaptierten wir bestehende Epigenomik-Analysetools, um die
erste umfassende epigenomische Charakterisierung der Nukleosomenposition-
ierung und Histonmodifikationen des Paramecium MAC durchzuführen. Wir
identifizierten präzise positionierte Nukleosomen, die in 3’-Richtung von der
Transkriptionsstartstelle verschoben sind. Der GC-Gehalt scheint in cis die Po-
sitionierung von Nukleosomen, Histonmarkierungen (H3K4me3, H3K9ac und
H3K27me3) und Pol II in dem AT-reichen Paramecium-Genom vorzugeben.



viii

Wir verwendeten eine Technik zur Segmentierung des Chromatinzustands mit-
tels der Position von Nukleosomen und Histonmarkierungen, deren Ergebnis
Gene mit aktiven, repressiven und bivalenten Chromatinzuständen aufzeigte.
Außerdem konstruierten wir ein regulatorisches Assoziationsnetzwerk aus allen
oben genannten Daten, indem wir die sogenannte Sparse Partial Correlation
Network Methode verwendeten. Mit unserer Analyse fanden wir Gene, deren
Expression positiv mit H3K27me3 assoziiert ist, wohingegen diese Histonmarkierung
in anderen Organismen üblicherweise mit einer negativen Genexpression in
Verbindung gebracht wird.

Weiterhin entwickelten wir einen Random forests Klassifikator zur Vorher-
sage der Genexpression unter Verwendung von genetischen (Genlänge, Intron-
Frequenz, etc.) und epigenetischen Merkmalen. Unser Modell hat eine Test-
genauigkeit (PR-AUC) von 0,83. Bei der Evaluierung verschiedener Gruppen
von Merkmalen haben wir festgestellt, dass genetische Merkmale genauso viel
zu der Vorhersage der Genexpression beigetragen haben wie die epigenetischen.
Wir benutzten die sogenannten Shapley local feature explanation values, die
nahelegen, dass hohe H3K4me3, hohe Intron-Frequenz, geringe Genlänge, hohe
sRNA und hoher GC-Gehalt die wichtigsten Elemente für die Bestimmung des
Genexpressionsstatus sind.

In dieser Arbeit haben wir neuartige Werkzeuge entwickelt und verschiedene
bioinformatische und maschinelle Lernmethoden eingesetzt, um die regulatorischen
Mechanismen des (Epi-)Genoms von Paramecium zu charakterisieren.
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Zusammenfassung

Einführung
Das Verständnis der menschlichen Genregulation ist für die Verbesserung der
Gesundheitsversorgung von größter Bedeutung. Mehrere Konsortialprojekte
wie die Encylopedia of DNA Elements (ENCODE) und das International Hu-
man Epigenome Consortium (IHEC) haben unser Verständnis von Transkrip-
tomik und Epigenomik enorm verbessert. Forscher haben zahlreiche integra-
tive Datenanalysetools entwickelt, um die Projekte der Konsortien zu ergänzen.
Allerdings sind die vorhandenen Tools auf menschliche Daten oder wenige an-
dere Modellorganismen, wie Maus und Drosophila, zugeschnitten. Oft sind diese
Tools nicht direkt von Forschern anwendbar, die an Nicht-Modellorganismen
arbeiten. Die Forschung an Nicht-Modellorganismen ist entscheidend für die
Beantwortung mechanistischer biologischer und evolutionärer Fragen.

Paramecium tetraurelia ist ein freilebender einzelliger Eukaryote (Zellen mit
eingekapselter DNA). Sie werden als Modellorganismus verwendet, um unsere
Grundlagen in der Zell- und Evolutionsbiologie zu erweitern, da sie mehrere
ungewöhnliche Eigenschaften aufweisen. Ihre große Zelloberfläche (50−300µm)
besteht aus Basalkörpern und Zilien (haarähnliche Auswüchse), was morpho-
genetische Studien ermöglicht. Diese Studien zeigten die Existenz einer nicht-
mendelschen zytoplasmatischen Vererbung der Zilienanordnung (Beisson and
Sonneborn, 1965). Paramecium weist mehrere Arten der Fortpflanzung auf.
Sie können sich selbst befruchten (Autogamie) oder eine Konjugation mit an-
deren Paarungspartnern eingehen und sich ungeschlechtlich fortpflanzen. Die
verschiedenen Paarungstypen (oder "Geschlechter") (Sonneborn, 1947) und die
Expression von Oberflächenantigenen (Epstein and Forney, 1984) sind weitere
Beispiele für zytoplasmatische Vererbung. Die Expression der Oberflächenanti-
gene ist gegenseitig exklusiv, d.h. es wird jeweils nur ein Antigen exprimiert.
Die Expression eines spezifischen Oberflächenantigens wird als Serotyp beze-
ichnet. Die Serotypen zeigen eine Anpassung an die Umgebung, z. B. kann
die Temperatur eine Verschiebung von einem Serotyp zum anderen bewirken
(Matsuda and Forney, 2005).

Ein weiteres interessantes Merkmal von Paramecium ist ihr Kerndimor-
phismus. Sie tragen zwei Keimbahn-Mikrokerne (MIC) und einen somatischen
Makronukleus (MAC). Der MIC ist diploid und transkriptionell inaktiv. Der
MAC ist transkriptionell aktiv und weist Polyploidie (800n) auf (Beale and
Preer, 2008). Der ursprüngliche MAC zerfällt nach jedem sexuellen Reproduk-
tionszyklus, wenn sich eine Mutterzelle teilt und vier Tochterzellen bildet. Ein
neuer MAC, der sich aus der befruchteten zygotischen MIC durch genomische
Umlagerung entwickelt, wird als Entwicklungs-MAC (Van Houten, 2019) beze-
ichnet. Es ist bekannt, dass kleine RNA (sRNA) und andere nicht-kodierende
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RNA (ncRNA) die genomischen Umlagerungen eines Entwicklungs-MAC epi-
genetisch kontrollieren (Beisson et al., 2010). Während der ungeschlechtlichen
Vermehrung (oder des vegetativen Wachstums) teilt sich eine Zelle in zwei
Tochterzellen. Die Teilung von MIC und MAC erfolgt auf mitotische bzw. ami-
totische Weise (Simon and Plattner, 2014). Über ein Jahrzehnt der Forschung
am MAC von vegetativem Paramecium, zeigte die Rolle von sRNAs bei der
Kontrolle der Serotyp-Expression (Marker et al., 2010).

Die Hauptnahrung von Paramecium sind Bakterien. Dies ermöglicht es
den Forschern, genetisch veränderte Bakterien, die eine doppelsträngige RNA
(dsRNA) tragen, an Paramecium zu füttern und die genetischen Veränderun-
gen zu untersuchen, die dadurch auftreten. Mehrere Studien nutzten diese
Fütterungstechnik, um RNA-Interferenz (RNAi) Signalwege in Paramecium zu
verstehen (Galvani and Sperling, 2002). Der RNAi-Signalweg hängt von der
RNA-abhängigen RNA-Polymerase (RDR) und dem Enzym Dicer (DCR) ab,
um kurze interferierende RNAs (siRNAs) zu erzeugen (Carradec et al., 2015;
Marker et al., 2014). Wenn die Dicer-Spaltung in regelmäßigen Abständen auf
einer dsRNA stattfindet, wird dies als Phasing bezeichnet und die resultierenden
siRNAs werden als phased-siRNAs bezeichnet. Diese siRNAs könnten wiederum
die Genexpression regulieren, entweder auf transkriptioneller oder auf posttran-
skriptioneller Ebene (Moazed, 2009; Zhang, 2009). Während wir wissen, wie die
exogene dsRNA, die Paramecium zugeführt wird, zu siRNAs prozessiert wird,
kennen wir die endogene Zusammensetzung der kleinen RNA von vegetativem
Paramecium nicht.

Die regulatorische Rolle der nicht-kodierenden DNA, der intergenen Regio-
nen und Introns, ist in vielen Organismen gut untersucht. Die intergenen Re-
gionen beherbergen regulatorische Elemente wie Promotoren, Enhancer und
Silencer, die verschiedene epigenetische Modifikationen wie DNA-Methylierung
und Histon-Methylierung aufweisen. Diese regulatorischen Elemente und In-
trons kontrollieren zusammen die Genexpression in verschiedenen Organismen
(Elkon and Agami, 2017). Die MAC-Genom-Annotation von Paramecium er-
gab eine hohe Proteincodierungsdichte von 80%, die die höchste unter den
freilebenden Eukaryoten ist. Daraus ergeben sich kurze intergene Regionen
von durchschnittlich nur 352 bp, was die Frage aufwirft, wie das Epigenom des
Paramecium MAC organisiert ist.

In dieser Arbeit haben wir es uns zum Ziel gesetzt, neue Werkzeuge zu
entwickeln und bestehende Software für die Analyse von transkriptomischen
und epigenomischen Daten von Paramecium anzupassen.

RAPID: Ein automatisiertes Werkzeug zur Anal-
yse kleiner RNAs
Die zahlreichen existierenden sRNA-Analysetools konzentrieren sich in erster
Linie auf die Vorhersage und Analyse von micro RNAs (miRNAs) und piwi-
interacting RNAs (piRNAs). Sie sind oft nicht in der Lage, systematisch und au-
tomatisiert mehrere Proben zu vergleichen und geeignete Normalisierungsstrate-
gien für die siRNA-Analyse zu verwenden.



xi

Wir haben ein automatisiertes Werkzeug zur eukaryotischen siRNA-Analyse
entwickelt, genannt RAPID. Unser Tool erfasst diverse siRNA-Charakteristika
aus sRNA-Sequenzierungsdaten und bietet leicht navigierbare HTML Visual-
isierungen. Zu den siRNA-Merkmalen, die RAPID erfasst, gehören strangspez-
ifische Reads und nicht-templierte Nukleotide. Wir haben auch eine Normal-
isierungstechnik eingeführt, um den Vergleich von siRNA-basierten Gen-Knockdown-
Proben zu erleichtern. Wir haben zudem eine Software zur Analyse der differ-
entiellen Expression, DESeq2, integriert. RAPID ist für die öffentliche Nutzung
als Conda-Paket und über GitHub (https://github.com/SchulzLab/RAPID)
verfügbar. Die Nützlichkeit und Benutzerfreundlichkeit von RAPID lassen sich
an den über 16.000 Conda-Downloads zum Zeitpunkt der Erstellung dieser Ar-
beit ablesen.

Genomweite Analyse von RNAi-Mechanismen
in Paramecium
Zusätzlich zu RAPID entwickelten wir eine Pipeline zur Charakterisierung des
ersten genomweiten sRNA-Profils vom vegetativem MAC in Paramecium mit
vier verschiedenen Serotypen (51A, 51B, 51D, 51H). Wir identifizierten 1.618 en-
dogene kurze interferierende RNAs (endo-siRNAs), die von proteinkodierenden
Genen produziert werden. Wir haben keine Mikro-RNAs entdeckt. Des Weit-
eren fanden wir heraus, dass die Mehrheit der endo-siRNAs (973 von 1.618) in
den vier analysierten Serotypen vorkommt, die als Gene associated with small
RNA clusters (GSRCs) bezeichnet werden. Die Mehrheit der GSRCs zeigte
eine positive Korrelation mit der mRNA-Expression. Die positive Korrelation
deutete darauf hin, dass die Endo-siRNAs in Paramecium nicht strikt in cis
agieren, um ihre Eltern-mRNA zu inhibieren, im Gegensatz zu vielen anderen
Organismen (Moazed, 2009; Zhang, 2009). Wir haben auch die Phasenlage
der siRNAs vorhergesagt, die durch den RNA-Interferenz (RNAi) Signalweg
reguliert wird, welche wiederum durch die RDR-Enzyme (RDR1 und RDR2)
vermittelt wird.

Des Weiteren untersuchten wir mit Hilfe von RAPID die Aberrationen von
endo-siRNAs und ihre jeweiligen transkriptomischen Veränderungen, die durch
einen RNAi-Signalweg verursacht werden, der durch die Zuführung von sRNAs
gegen ein Zielgen ausgelöst wird. Wir fanden heraus, dass das Transkriptom
der sRNAs verändert wird, auch wenn ein Gen, das nicht mit dem RNAi-Weg
in Verbindung steht, als Ziel gewählt wird. Dies ist wichtig im Zusammen-
hang mit Untersuchungen von gentechnisch veränderten Organismen (GVO),
da mit RNAi behandelte Organismen als GVO-frei gelten und zunehmend zur
Bekämpfung von Viren- und Schädlingsresistenzen in Bakterien und Pflanzen
eingesetzt werden. Wir schlagen vor, dass zukünftige Studien transkriptomis-
che Veränderungen, die durch RNAi-induzierende Techniken verursacht werden,
von tatsächlichen regulatorischen Veränderungen unterschieden werden müssen.

Wir identifizierten auch mehrere sRNAs in den intergenen und anderen
nicht-kodierenden Regionen des MAC-Genoms. Wir stellen die Hypothese auf,

https://github.com/SchulzLab/RAPID
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dass viele der sRNAs, insbesondere die aus nicht-kodierenden Regionen, wahrschein-
lich an der Regulierung der Polyploidie des MAC von Paramecium beteiligt
sind. Allerdings sind zukünftige Experimente notwendig, um eine solche Hy-
pothese zu bestätigen. Während wir die erste genomweite Analyse der sRNAs
mit RAPID und anderen Werkzeugen dokumentiert haben, sind ihre Regula-
tionsmechanismen noch unklar.

Epigenomische Eigenschaften des makronukleären
Genoms von Paramecium
Die Annotation des vegetativen MAC-Genoms von Paramecium ergab eine hohe
Proteincodierungsdichte von 80%, die höchste unter den frei lebenden Eukary-
oten. Daraus ergeben sich kurze intergene Regionen von nur 352 bp, was die
Frage aufwirft, wie der MAC von Paramecium reguliert wird. Daher verlagerten
wir unseren Fokus auf das Verständnis der epigenomischen Eigenschaften des
MAC, die bis dahin noch nie charakterisiert worden waren. Mit Hilfe von
Nukleosomen-Positionierungssoftwares identifizierten wir präzise positionierte
Nukleosomen, die in 3’-Richtung der Transkriptionsstartstelle (TSS) verschoben
sind. Wir fanden heraus, dass die Introns von Nukleosomen flankiert werden,
was darauf hindeutet, dass sie eine Rolle bei der Regulierung der Spleiß-Effizienz
spielen.

Die Nukleosomen und die epigenetischen Markierungen (H3K4me3, H3K9ac
und H3K27me3) befanden sich entlang der Genstruktur und waren in den
nicht-kodierenden Regionen um die Gengrenzen herum weniger angereichert.
Sie waren auch direkt proportional zu verschiedenen Genexpressionsgruppen,
einschließlich H3K27me3, das in anderen Organismen oft mit stillen Genen
assoziiert ist (Bannister and Kouzarides, 2011). Der GC-Gehalt scheint in
cis die Positionierung von Nukleosomen, epigenetischen Markierungen und des
RNA-Polymerase-Enzyms (Pol II) im AT-reichen Paramecium-Genom zu bee-
influssen. Wir verwendeten einen Ansatz zur Segmentierung des Chromatinzu-
stands (ChromHMM) auf Nukleosomen und Histonmarkierungen, der Gene mit
aktiven, repressiven und bivalenten Chromatinzuständen aufzeigte. In multi-
zellulären Organismen sind Gene in bivalenten Domänen, die sowohl H3K4me3-
als auch H3K27me3-Markierungen tragen, mit der Regulation der Zelldifferen-
zierung während der Entwicklung durch das Pausieren der Genexpression ver-
bunden (Voigt, Tee, and Reinberg, 2013; Sen et al., 2016; Blanco et al., 2020).
Unter den Genen mit bivalenten Domänen in Paramecium fanden wir jedoch
keine Anreicherung von pausierenden Genen. Daher ist die Rolle der bivalenten
Domänen in Paramecium noch unklar.
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Statistische Analyse der Regulation der makro-
nukleären Genexpression in Paramecium
Wir konstruierten ein genregulatorisches Assoziationsnetzwerk, indem wir die
sogenannte Sparse Partial Correlation Network Methode auf verschiedene epi-
genetische Markierungen, Nukleosomen, sRNA und Genexpressionsdaten an-
wandten. Wir beobachteten gemeinsame positive Assoziationen von H3K4me3
mit mRNA und H3K9ac mit H3K4me3. Wir beobachteten auch eine negative
Assoziation für H3K27me3 mit mRNA, insbesondere für die pausierten Gene.
Allerdings zeigten die Gene, die nur H3K27me3-Markierungen trugen, eine pos-
itive Assoziation für H3K27me3 und mRNA, was die Rolle von H3K27me3 in
Paramecium weniger klar macht.

Zusätzlich verwendeten wir Methoden des maschinellen Lernens, um in-
härente Genexpressionsmuster zu verstehen. Wir konstruierten einen auf überwachtem
Lernen basierenden Random forest Algorithmus, um die Genexpression als
hoch oder niedrig zu klassifizieren, indem wir genetische (Genlänge, Intron-
frequenz, GC-Gehalt und intergene Länge) und epigenetische Merkmale (His-
tonmarkierungen, Pol II, MNase und sRNA) konstruierten. Unser Modell hat
eine Testgenauigkeit (PR-AUC) von 0,83. Bei der Auswertung verschiedener
Gruppen von Merkmalen haben wir festgestellt, dass die genetischen Merkmale
genauso viel zu der Vorhersage für die Genexpression beigetragen haben, wie
die epigenetischen. Weiterhin haben wir die sogenannte Shapley additive ex-
planations (SHAP) Technik auf unser Random forests Modell angewendet, um
allgemeine Genexpressionsmuster abzuleiten. Folglich berichten wir, dass die
fünf wichtigsten Merkmale eines hochexprimierten Gens eine hohe H3K4me3-
Häufigkeit in seinem Genkörper, eine hohe Intronfrequenz, eine geringe Gen-
länge, ein hoher sRNA-Gehalt und ein hoher GC-Gehalt sind. Der vermutete
Zusammenhang zwischen der Intronfrequenz und der Regulierung der Genex-
pression, der durch die SHAP-Analyse aufgedeckt wurde, ist bisher noch nie für
Paramecium berichtet worden.

Schlussfolgerung
In dieser Arbeit haben wir ein neuartiges Werkzeug, RAPID, entwickelt, um
eine generische eukaryotische siRNA-Analyse durchzuführen, und es als Conda-
Paket und über GitHub (https://github.com/SchulzLab/RAPID) öffentlich
verfügbar gemacht. RAPID ist jedoch keine vollständige Lösung für die siRNA-
Analyse. Einige der möglichen Erweiterungen von RAPID beinhalten die Er-
fassung von Attributen auf Sequenzebene, wie z. B. die Erstellung von Sequen-
zlogos von konservierten siRNA-Sequenzen oder die Identifizierung von siRNA-
Zielregionen.

Wir haben eine Pipeline entwickelt, um das erste genomweite endo-siRNA-
Profil vom vegetativem MAC in Paramecium zu charakterisieren und dessen
Regulationsmechanismen besser zu verstehen. Wir zeigten die transkriptomis-
chen und endo-siRNA-Aberrationen, die durch die RNAi-induzierende Tech-
nik, die Fütterung, ausgelöst werden. Wir berichten zum ersten Mal über

https://github.com/SchulzLab/RAPID
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die epigenomischen Eigenschaften des MAC von Paramecium. Wir haben ver-
schiedene Methoden der Bioinformatik und des maschinellen Lernens eingesetzt,
um die regulatorischen Mechanismen des (Epi-)Genoms von Paramecium zu
charakterisieren.

Während wir die erste genomweite Analyse der sRNAs mit Hilfe von RAPID
und anderen Werkzeugen dokumentiert haben, sind ihre Regulationsmechanis-
men noch unklar. Zukünftige Analysen sind erforderlich, um die Ziele der
sRNAs zu identifizieren. Unsere Ergebnisse deuten darauf hin, dass die sR-
NAs wahrscheinlich nicht direkt auf mRNAs abzielen, sondern in ein kom-
plexes Netzwerk von sRNA-Protein-Interaktionen eingebunden sind, um das
Genom zu regulieren. Es ist wichtig zu beachten, dass die Paramecium-Zellen in
einer Kultur in ihrem vegetativen Entwicklungszyklus nicht synchronisiert sind.
Das bedeutet, dass sich verschiedene Zellen in unterschiedlichen epigenomis-
chen/transkriptomischen Zuständen befinden. Dadurch können die Ergebnisse
nur einen Durchschnitt der individuellen polyploiden MAC abbilden. Um ein
besseres Verständnis der verschiedenen Chromatinzustände zu erhalten, wären
Einzelzellmessungen nötig. Allerdings sind die experimentellen Methoden zur
Gewinnung von Einzelzelldaten in Paramecium derzeit nicht verfügbar.

Wir glauben, dass unser Beitrag das Verständnis der kleinen RNA-omischen
und der epigenomischen Regulation der Genexpression in den Makronuklei von
Paramecium verbessert hat.
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Chapter 1

Introduction

The existence of inheritable units (now called genes) was reported by Gregor
Mendel in 1865. However, it was not until 1944 these inheritable units were
discovered to be Deoxy ribonucleic acid (DNA). This was arguably the defining
moment of modern biology and genetics. This discovery led to the characteri-
sation of the double helical DNA strands, and subsequently the central dogma
of biology, which outlined how a protein coding gene is formed (McCarty, 2003;
Cobb, 2017). Figure 1.1 depicts the steps involved in the central dogma of
biology. DNA is transcribed into Ribonucleic acid (RNA) by the process of
transcription. RNA further acts as a template to synthesise protein through a
process termed translation. Proteins perform most of our bodily functions. Any
mishap in these steps can lead to diseases. Hence, researchers try to understand
the functioning of all the genes, which can systematically help us cure diseases.

History shows us that the understanding of biology was a crucial step in the
development of human health (Sallam, 2010). The discovery of antibiotics is
one such instance, which saves millions of deaths. With a motto of improving
human health, the successful human genome project was designed. The aim was
to characterise all the genes, understand the function of all the genes, and by
extension live disease free. The first draft of the human genome sequence was
published in 2003 (Collins, Morgan, and Patrinos, 2003). Soon after that, we
started unveiling the curtains of the functional role non-(protein) coding DNA
through the 2012 encyclopedia of DNA elements (ENCODE) project (Pennisi,
2012). In addition, the past decades brought epigenetics to the forefront of
research. Epigenetics is the “study of mitotically and/or meiotically heritable
changes in gene function that cannot be explained by changes in DNA sequence”
(Felsenfeld, 2014).

The continual development of new technologies helps us to unravel new bi-
ology and translate them to disease prevention or treatment. For instance, next
generation sequencing (NGS) methods were extensively employed in the EN-
CODE project. We employ similar NGS techniques in clinics today to sequence
a patient’s genome. Thanks to the lowering costs of NGS, we can sequence hun-
dreds of patients genomes’ today for a fraction of the cost of the human genome
project (Di Resta et al., 2018). Sequencing a patient’s genome is crucial to
determine the disease causing changes in DNA (variant/mutation) in coding
and non-coding regions of their DNA (Zhang and Lupski, 2015; French and Ed-
wards, 2020). Identifying a patient’s disease variants translates to development
of personalised therapies (Momozawa and Mizukami, 2021). Such personalised
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Transcription

Translation

DNA

RNA

Protein

Figure 1.1: The central dogma of biology: The hereditary
unit, double stranded DNA, through transcription forms a single
stranded RNA. In the next step, translation, the RNA molecule
gets translated to protein, which performs various bodily func-
tion. This figure is created by me with the help of DNA/RNA

images obtained in 2016 (Somersault1824 ).

therapies are already available for diseases like cancer (Krzyszczyk et al., 2018)
and to treat human immunodeficiency virus (HIV) infection (Lengauer, Pfeifer,
and Kaiser, 2014).

The most recent technological addition, in the last decade, which facilitates
personalised therapies, is the CRISPR-Cas genome editing tool. The CRISPR-
Cas system is capable of making precise cuts on both DNA strands, for example,
where a disease causing variant is identified. Following the cut, the DNA repair
system takes over, during which the disease causing variant can be modified or
new genetic information can be inserted (Charpentier and Doudna, 2013), with
up to 38% success. Applications of CRISPR-Cas can range from treating blood
disorders, like thalassemia, to hereditary blindness (Ledford, 2020). However,
this editing system is not a one-stop solution. A recent study, published in
2019, introduced an improvised method, prime editing, which has enhanced
precision than the CRISPR-Cas system. The prime editing technique cuts only
one of the DNA strands and does not rely on the cell’s repair system. The
study claims, prime editing, "could correct up to 89% of known genetic variants
associated with human diseases" (Anzalone et al., 2019). I believe, we are
slowly navigating towards a future where almost every disease can be cured,
with personalised therapies.
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1.1 Role of model organisms
The 20th century saw a rise in the use of model organisms to understand bio-
logical mechanisms. They were systematically chosen to facilitate experimental
work, with properties including small size, fast growth, short developmental
(gestation) time, and tractable. The most commonly used model organisms
are the bacterium Escherichia coli, the nematode worm Caenorhabditis elegans,
the mustard plant Arabidopsis thaliana, the fruit fly Drosophila melanogaster,
the zebra fish Danio rerio and the mouse Mus musculus (Fields and Johnston,
2005). Let us have a look at the following two examples on the resourcefulness
of model organisms.

The landmark discovery of DNA was, in part, motivated by the infamous
Griffith experiment (O’Connor, 2008). Frederick Griffith experimented on the
fatality of mice, by injecting them with different strains of pneumonia causing
bacteria Streptococcus pneumoniae (Griffith, 1928). His experiments proved the
existence of a transformative substance in S. pneumoniae cells. These results
motivated Oswald Avery to isolate the transformative material, DNA (Avery,
Macleod, and McCarty, 1944).

The aforementioned CRISPR-Cas system was also a product of a model or-
ganism research. In 1987, researchers were investigating an alkaline phosphatase
enzyme coding gene, iap, in E. coli. A sequence analysis of the iap gene revealed
short repeat sequences, which were flanked by short and unique DNA segments,
of unknown biological significance (Ishino et al., 1987). These regions of un-
known significance are today referred to as clustered regularly interspaced short
palindromic repeats (CRISPR) (Charpentier and Doudna, 2013). CRISPR-Cas
system’s efficiency was also shown using different model organisms like zebra
fish (Hwang et al., 2013), S. pneumoniae, and E. coli (Jiang et al., 2013).

Almost all of what we know about the basic cellular and molecular aspects
were found with the help of model organisms (Russell et al., 2017). However,
the rise of large consortia projects, like the 100,000 genomes project, churn out
gigantic human data sets. Alongside advancements in computational power,
and artificial intelligence methods, we may be able to solve the still open fun-
damental questions of biology with human data. This raised a debate on the
resourcefulness of model organisms.

Fields and Johnston claim that in a few decades time, likely, all fundamen-
tal biological questions of simple model organisms will be answered. However,
they suggest the use of model organisms will persist with changes to their ap-
plication. They argue that model organisms will still be the experimental play
ground to test new mechanistic hypothesis; develop novel technology; test new
drugs; and serve as disease models to understand disease pathways (Fields and
Johnston, 2005). Not everyone completely agrees with Fields and Johnston.
Hunter argues that to test new drugs the relevance of model organisms may be
questionable. There have been cases where drugs tested on model organisms,
including primates, showed promising results, and yet invoked high allergic re-
sponses in humans. Such examples are used to question the relevance of model
organisms in drug testing. Hunter adds, the advancements in stem cell research,
human tissue culture, and the development of organoids challenge the need for
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model organisms in drug development. He says, the use of model organisms
will eventually be phased out, once the fundamental mechanistic questions are
solved (Hunter, 2008).

The same technological advances, which threaten the need for model organ-
isms, have paved the way for an increase in the study of Non model organ-
isms (NMO). NMOs are not so commonly used model organisms. While model
organisms were simply a convenience tool, NMOs help us expand our fundamen-
tal cellular understandings, and address evolutionary questions. Several species
of the unicellular organism, Volvox, lives in colonies which acts as our bridge
to answer the evolution of multi-cellular life (Herron, 2016). Killifish (Notho-
branchius furzeri), and naked mole-rat (Heterocephalus glaber) are two NMOs,
which improve our understanding of ageing and potentially even stop ageing in
humans (Kim, Nam, and Valenzano, 2016; Buffenstein and Ruby, 2021).

1.2 Paramecium as a model organism
One of the NMOs is Paramecium, a free-living unicellular eukaryote (cells with
encapsulated DNA). They gained traction among researchers for several rea-
sons. Their large cell surface (50 − 300µm) is composed of basal bodies, and
cilia (hair like outgrowth), which enables morphogenetic studies. These stud-
ies showed the existence of non-mendelian cytoplasmic inheritance of ciliary
arrangements (Beisson and Sonneborn, 1965). Other evidence of cytoplasmic
inheritance were observed in the different mating types (or "genders") (Son-
neborn, 1947), and the expression of surface antigens (Epstein and Forney,
1984). The surface antigen expression shows adaptation to the environment,
for instance, temperature (Matsuda and Forney, 2005). Paramecium also ex-
hibits several modes of reproduction. They can self fertilise (autogamy) or
engage in conjugation with other mating pairs, and can reproduce asexually.
Adding more curiosity towards Paramecium, is their nuclear dimorphism. They
carry two germline micronucleus (MIC), and a somatic macronucleus (MAC).
The MIC is diploid and transcriptionally inactive. The MAC is transcription-
ally active and exhibits polyploidy (800n). The MAC disintegrates after every
sexual cycle. A new MAC develops from the fertilised zygotic MIC, as a re-
sult of genomic rearrangements. Small RNA (sRNA), and other non-coding
RNA (ncRNA) mediated epigenetic control is known to exercise the genomic
rearrangements of a developmental MAC (Beisson et al., 2010). During asex-
ual reproduction (or vegetative growth), a vegetative cell separates into two
daughter cells. Over a decade of research on the MAC of vegetative Parame-
cium, showed the role of sRNAs in controlling surface antigen gene expression
(Marker et al., 2010). The prime diet of Paramecium is bacteria. This allows
researchers to feed genetically modified bacteria to them, and study the genetic
changes caused. Several studies exploited this method to understanding their
RNA interference (RNAi) pathways (Galvani and Sperling, 2002; Carradec et
al., 2015; Marker et al., 2014).
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1.3 Outline of the thesis
In this thesis, we make several contributions to the communal understanding of
gene regulatory mechanisms in the vegetative MAC of Paramecium tetraurelia.
We created methods and tools to investigate the properties of sRNAs. We took
an integrative approach to understand the epigenomic orchestration of gene
expression, by employing multitude of bioinformatics and statistical/machine
learning methods on multi-omics data.

Chapter 2 introduces the reader to the biological and statistical concepts,
and also briefly describe the bioinformatics methods used in this thesis. In
Chapter 3, we describe an automated sRNA analysis tool, RAPID, which we
developed. We utilise RAPID and other existing bioinformatics methods, to
characterise the endogenous sRNA landscape of P. tetraurelia and shed light
on their biogenesis and function in Chapter 4. The MAC genome annotation of
P. tetraurelia revealed their high protein coding density of 80%, highest among
the free living eukaryotes. This results in short intergenic regions of mere 352
base pairs, raising the question: Where are the regulatory controls of located in
Paramecium’s MAC? We answer this question, at least in part, in Chapter 5. In
the next chapter 6, we apply network construction and statistical learning meth-
ods on the data from the chapters 4 and 5 to understand the general patterns
of gene expression in the vegetative Paramecium’s MAC. The final Chapter 7
summarises our findings. We also delineate the individual contributions of all
our collaborators involved in the projects at the end of Chapters 3 to 6.
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Chapter 2

Background

This chapter will briefly introduce the reader to the biological concepts and
computational methods used in this thesis. It also provides a brief overview of
the basic biology of Paramecium tetraurelia.

2.1 Eukaryotic gene expression
Organelles are defined structures in a cell which performs several functions.
Some examples include mitochondria - the power house of a cell - and nucleus.
All organisms, which possess membrane bound organelles are called eukaryotes.
An eukaryotic nucleus enveloped by a nuclear membrane contains the hereditary
genetic material, DNA.

DNA is made of two helical strands composed of four nucleotides (or bases)
adenine (A), guanine (G), thymine (T), and cytosine (C). These two strands are
called sense and antisense strand running in the direction of 5′ (read as 5 prime)
to the 3′, and vice versa, respectively. The sense and antisense strands are often
referred to as forward and reverse or plus and minus strands, respectively. The
two strands are complementary to each other and are held together due to the
chemical pairing rules of these nucleotides. Nucleotide A always pairs with T,
and nucleotide G pairs with C (Watson et al., 2003).

We introduced the central dogma of biology in Figure 1.1 showing that a
DNA gets transcribed to RNA, through transcription, and RNA gets translated
to protein. This process is also called gene expression (Watson et al., 2003).

2.1.1 Transcription
RNA is a single stranded molecule made of the same nucleotides as of DNA,
except for thymine (T) which is replaced by an uracil (U). Figure 2.1 illustrates
the process of transcription. Transcription always occurs in the direction of
5′ − 3′, and is mediated by an enzyme called RNA polymerase. Hence, the
antisense DNA strand (whose orientation is in 3′ − 5′) acts as the template
strand for transcription. RNA polymerase enzyme binds to DNA sequence,
upstream of a gene, called promoter in order to start the transcription and
create the RNA transcript.
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Figure 2.1: Transcription: DNA unwinds such that the anti-
sense strand (3′ − 5′) is accessible to the RNA polymerase en-
zyme to form a single stranded RNA transcript. This figure is a
courtesy of the National Human Genome Research Institute.

2.1.2 Splicing
The DNA of a gene consists of few structural elements namely the exons, introns,
and the untranslated regions (UTRs), as shown in Figure 2.2. The UTRs in
the left and right end of a gene are called the 5′ and the 3′ UTR respectively.
Exons are the only parts of DNA which eventually codes for proteins. All other
structures introns, UTRs, and regions in between genes (intergenic DNA) are
referred as non-coding DNA.

In the nucleus, the newly formed RNA transcript contains all these struc-
tural elements as well. Introns are excised from this RNA transcript through
splicing. In many organisms, a combination of different exons can also get ex-
cised along with introns to create different proteins from the same gene. This
process is called alternative splicing. Following splicing, the spliced transcript
undergoes some post-transcriptional modifications, like 5′ capping and poly-A
tailing, to form a messenger RNA (mRNA) (Figure 2.2). The mRNA further
gets transported out of the nucleus to get translated as protein. The UTRs, and
the post transcriptional modifications are crucial for the stability of the mRNA,
which in their absence would get degraded quickly (Mignone et al., 2002).

2.1.3 Translation
During translation, an mRNA molecule is processed by ribosomes to produce
proteins. The ribosomes are made of two major sub units: a small 40S unit
and a big 60S unit. The 40S unit traverses through the mRNA, and reads the
mRNA as words of three nucleotides (three-letter code or codon). The 60S
unit identifies the transfer RNAs (tRNAs), carrying the aminoacids respective

https://www.genome.gov/
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Figure 2.2: Gene structure: The different structural elements
of a gene is illustrated. The RNA transcript contains all the
structural elements found in a DNA. Through splicing the in-
tron regions are eliminated to form an mRNA. This figure is a
courtesy of the National Human Genome Research Institute.

to the codon, and synthesises a polypeptide chain of amino acids. Once the
polypeptide chain is synthesised, they fold into a minimal energy state called
proteins (Watson et al., 2003).

There are 64 possible codons from the four nucleotides, and there are only 20
amino acids. A mapping of these codons to the respective aminoacids is called
the genetic code of the organism. Apart from the 20 amino acids, the codons
also contain the start and stop signals to indicate the ribosomes on where to
initiate and terminate the translation process. The genetic code of humans is
shown in Figure 2.3.

2.2 Non-coding DNA
By definition, the non-coding DNA does not code for proteins. However, they
are crucial in regulating the gene expression. For instance, in many organisms,
introns regulate alternative splicing and enhance gene expression (Jo and Choi,
2015). Promoters, enhancers, and silencers are few other regulatory elements
harbored from non-coding DNA. Promoters are non-coding DNA immediately
upstream of a gene, where the RNA polymerase binds to initiate the RNA tran-
scription (Maston, Evans, and Green, 2006). Enhancers and silencers are often
found several 1000 base pairs (bps) up or downstream of a gene. Proteins can
bind to these enhancers (or silencers) to activate (or repress) the transcription
of one or more genes (Pennisi, 2012). Not all non-coding DNA act as binding
sites, many of them undergo transcription to produce ncRNAs. The ncRNAs
can be broadly classified as long- and short- ncRNAs.

The short ncRNAs are less than 200 nucleotide (nt) in length, which per-
form a wide range of functions. For instance, the tRNAs and ribosomal RNAs
(rRNAs) help in translating the mRNA to a protein. Other short ncRNAs like

https://www.genome.gov/
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Figure 2.3: Genetic code of humans represented in a circular
fashion. The codons should be read in the direction of the arrows
(inside to outside), to know their respective aminoacid. This
figure is available for public use from Wikipedia (Wikimedia,

2021).

micro RNA (miRNA) and short interfering RNA (siRNA) can block protein
production, by interfering in the translation process. More information on that
will follow in Section 2.4.

Long ncRNAs are more than 200 nt in length. They are known to be involved
in DNA repair, when the DNA is damaged due to extensive exposure to ultra
violet rays, heat shock, etc (Ratti et al., 2020). They are also known to control
gene expression, indirectly, by yielding short ncRNAs (Wilusz, Sunwoo, and
Spector, 2009). However, the common mode for long ncRNAs to regulate gene
expression is by partnering up with chromatin remodelling enzymes (Moran,
Perera, and Khalil, 2012; Han and Chang, 2015). But, what is a chromatin?

2.3 Organisation of DNA
The eukaryotic DNA is efficiently organised in to chromosomes such that they
can be packed in to a nucleus of few microns in size. The chromosomes are
made of smaller sub-units called chromatin fibers. A chromatin fiber consists of
DNA packaged around proteins called histones. Figure 2.4 shows a schematic
view of the organisation of DNA.

The histone proteins are composed of a core unit and a flexible tail with few
amino acids. There are different kinds of histone proteins: H1, H2A, H2B, H3
and H4. A complex of eight histone proteins, two H2A, two H2B, two H3 and
two H4, is called a histone octamer. When a 146 bp long DNA molecule wraps
around this histone octamer, it is termed a nucleosome. Multiple nucleosomes
are connected like "beads on a string" by linker DNA of length up to 80 bp.
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Figure 2.4: An illustration of the organisation of DNA. DNA is
packaged with histone protein in different stages of compaction:
euchromatin, heterchromatin and chromosome. This figure is a
courtesy of the National Human Genome Research Institute.

The H1 protein is quintessential for further compaction of DNA, as it further
coils the nucleosomes into chromatin fibers.

There are two types of chromatin fibers: heterochromatin and euchromatin.
Heterochromatin is a highly condensed form of chromatin where the nucleo-
somes prevent the accessibility of DNA, and hence blocking transcription. On
the contrary, euchromatin is loosely packed DNA, which enables the latter to
be accessible by DNA binding proteins, like RNA polymerase.

2.3.1 Chromatin modifications
Cells can efficiently transition between euchromatic and heterochromatic states
in order to control gene expression (Figure 2.5). This regulation is achieved
through chromatin modifications or DNA methylation. The methylation of
some cytosine bases in the DNA are known to be associated with heterochro-
matin formation, mediated by the enzymes called DNA methyl transferases.
These modifications are inheritable through several mechanisms like genomic
imprinting, and are called epigenetic modifications, as they are not directly
changing the genetic sequence.

The chromatin modifications which occur on the histone proteins are called
histone modification/marks (HM), which include modifications like methyla-
tion, acetylation and phosphorylation. The nomenclature for describing a HM
is to state the histone protein whose tail is modified, followed by the one letter

https://www.genome.gov/
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Figure 2.5: An overview of the epigenomic modifications,
which can influence the eu- and hetero- chromatin formation,
controlling the gene expression. The green cylinders represent
histones, wrapped with DNA (like a black thread). The different
modifications are shown on the legend. This figure is a courtesy

of Fabian Müller (Müller, 2017).

code of the amino acid and then the modification type. For instance, H3K27me3
refers to the trimethylation of the aminoacid lysine occurring at the 27th posi-
tion on the tail of histone protein H3.

Histone methyl transferases, histone acetyl transferases are some of the en-
zymes, which are responsible for methylation and acetylation, respectively. On
the other hand, histone deacetylases and demythlases are responsible for remov-
ing the methylation and acetylation, respectively. These enzymes interact with
several other proteins, and ncRNAs to regulate the chromatin modifications.

By regulating the transition of chromatin states, HMs are indirectly regulat-
ing gene expression. Some of the well studied HMs in several organisms, which
we also discuss in this thesis, are H3K4me3, H3K27me3 and H3K9ac. The
commonly known association of the HMs and gene expression are as follows:
H3K4me3 and H3K9ac are associated with active gene expression; H3K27me3
is associated with not expressed (or silent) genes (Bannister and Kouzarides,
2011).

2.4 RNA interference
RNA interference (RNAi) is another widely known mechanism to regulate gene
expression either at transcriptional or post-transcriptional level, using small
RNA molecules in eukaryotes (Figure 2.6). In order to silence the gene ex-
pression, when the RNAi process triggers DNA or chromatin modifications, it
is termed Transcriptional Gene Silencing (TGS). When the RNAi process de-
grades an mRNA or inhibits the translation of an mRNA to protein, through
a cascade of biomolecular processes, it is called Post Transcriptional Gene Si-
lencing (PTGS) (Moazed, 2009; Zhang, 2009).
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Figure 2.6: A representation of the transcriptional, and post-
transcriptional gene silencing mechanisms. This figure is a cour-

tesy of Martin Simon.

2.4.1 Small RNAs
Small RNAs are usually 18 − 30 nt in length. There are several members of
the small RNA family including micro RNA (miRNA), short interfering RNA
(siRNA), piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA), and
trans-acting RNA (taRNA). The miRNAs and siRNAs are the two well studied
members of the sRNA family in the context of RNAi (Carthew and Sontheimer,
2009). There are diverse pathways of biogenesis for miRNAs and siRNAs, in
different organisms (Meister and Tuschl, 2004). Regardless of their biogenesis
and functional diversity, the starting point is always a double stranded RNA
(dsRNA).

2.4.2 Short interfering RNAs
A dsRNA can be produced by different mechanisms: (i) a single stranded
RNA (ssRNA) can get converted to a dsRNA by the enzymatic activity of
RNA Dependent RNA polymerase (RDR) (Figure 2.7A) or (ii) bidirectional
transcription (Figure 2.7B). This dsRNA can be processed by Dicer (DCR)
enzyme into siRNAs, called primary siRNAs (1o). The primary siRNAs can
load onto proteins (called argonaute) and degrade a target mRNA. There are
different ways to degrade a target mRNA. For example, in plants, the primary
siRNAs cleaves a targeted mRNA. The cleaved mRNA is then converted in to
dsRNA by RDR, which is further diced by Dicer to produce secondary siRNAs
(2o). These secondary siRNAs can further target another mRNA, similar to
primary siRNAs. If the Dicer cleaving occurs at regular intervals in a dsRNA,
it is called phasing and the resulting siRNAs are called phased-siRNAs. On
the contrary, C. elegans follows a dicer independent mechanism, using RDR to
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Figure 2.7: A representational view of the siRNA (A,B) and
miRNA (C) biogenesis. A) A ssRNA transcribed from a gene,
becomes dsRNA by RDR activity which further gets processed
by an enzyme Dicer (DCR) to produce siRNAs. B) A dsRNA is
produced from bidirectional transcription, further processed by
DCR as siRNAs. C) Transcription of inverted repeats resulting
in a dsRNA, processed by DCR producing miRNAs. This figure
is created by me with the help of DNA/RNA images obtained

in 2016 (Somersault1824 ).

directly produce 2o siRNAs from the 1o siRNA targeted mRNA (Allen et al.,
2005; Baulcombe, 2007). An interference mechanism is described as acting in
cis, if the same gene, which produced the initial dsRNA is silenced; otherwise,
it is called trans-acting.

2.4.3 Micro RNAs
The dsRNA source for a miRNA is derived often from a single stranded RNA
produced from a near complementary 20-50 bp inverted repeats, which folds in
to a dsRNA, forming a hairpin loop (Figure 2.7C). This dsRNA with hairpin
loop is called pre-miRNA, which gets further processed by Dicer (or Drosha)
(Li and Patel, 2016) to form miRNAs. The miRNAs are on average 22 nt in
length, and are involved in several regulatory pathways. As the functional role
of miRNA is a broad topic, and as this thesis does not focus on miRNA, but
siRNAs, I merely point the reader to a recent review of miRNAs (Gebert and
MacRae, 2019).

2.5 Sequencing methods
The most commonly used method in the recent decades to measure gene ex-
pression and epigenetic modifications is sequencing.
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Figure 2.8: A schematic illustration of Sanger sequencing is
shown. The fragmented DNA to be sequenced is subjected to
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to electrophoresis, where the synthesised fragments are size sep-
arated. On the left, the synthesised fragments are shown. On
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2.5.1 DNA sequencing
The process of unraveling the order of nucleotide arrangement in a DNA is
DNA sequencing. One of the oldest such technique is Sanger sequencing, which
is shown in Figure 2.8. The basic idea is sequencing by synthesis, i.e. to
synthesise the complementary strand of the DNA sequence of interest.

First, the DNA sequence of interest is extracted through chemical methods,
and is fragmented into multiple pieces. Subsequently, these fragments are added
in to four different mixtures. All mixtures contain the DNA polymerase enzyme,
nucleotides, and a primer. In addition, to each mixture only one of the di-deoxy
forms of the four different nucleotides is added. This mixture is sufficient to
start a polymerase chain reaction (PCR).

In a PCR, the primer gets hybridised to the DNA fragment, upon which the
DNA polymerase starts synthesising the complementary strand of fragmented
DNA. However, if a di-deoxy nucleotide gets incorporated the PCR stops. The
PCR is carried out for multiple cycles, and each cycle stops at different positions
of the complementary strand synthesis.

In the next step, the synthesised DNA strands are subjected to gel electro-
pheresis. Gel electrophoresis is a simple technique where DNA, upon application
of mild electric current, gets separated according to their molecular weight (in
our case, decreasing length of the synthesised DNA). Figure 2.8 shows a typical
electrophoresis setup. The four wells in the gel are loaded with the synthesised
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Figure 2.9: A schematic representation of Illumina’s NGS
methodology. Following purification of the cDNA fragments lig-
ated with adapters, the library is loaded on the flow cell. In
the flow cell, bridge amplification is performed to enable for-
mation of cluster of single stranded DNA reads. Subsequently,
sequencing by synthesis is performed in massively parallel man-
ner producing the sequence reads. This figure is a courtesy of

Florian Schmidt

DNA strands from the four different mixtures carrying the different di-deoxy
nucleotides. The wells are named after the respective di-deoxy nucleotides. Af-
ter the electrophoresis is complete, the DNA sequence of interest is obtained by
reading the name of the corresponding well wherever a fragment is observed in
the gel. These read outs are referred as reads.

In order to sequence the human genome, a similar approach called shotgun
sequencing was employed. It took approximately 13 years to complete the
human genome project with an approximate cost of 300 million United States
Dollar (USD). With the technological advancements we have today, a human
genome can be sequenced in three days at an approximate cost of 1000 USD.
These advancements are broadly categorised as Next Generation Sequencing
(NGS). I will only briefly mention how one of the NGS techniques work, in the
Section 2.5.2. For a detailed review on the latest NGS methods, I would like to
direct the reader to these review articles (Heather and Chain, 2016; Shendure
et al., 2017).
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2.5.2 RNA-seq
The quantity of RNA found in a cell (or sample) corresponds to the respective
gene’s expression. The most common technique to measure RNA is RNA-seq. If
the entire RNA content of the organism is sequenced, it is termed transcriptome.

After biochemically isolating the RNA, different types of RNA, like small
RNAs and mRNAs, can be isolated with specific protocols. For instance, to
isolate mRNAs researchers often employ a poly-A tail enrichment or rRNA
depletion (Stark, Grzelak, and Hadfield, 2019).

A generic RNA-seq involves two major steps (i) library preparation and (ii)
sequencing by sequencers provided by different companies like Illumina, Roche,
etc. I’ll discuss an Illumina based workflow below, which is also depicted in
the Figure 2.9. First, RNA is converted into a complementary DNA (cDNA),
which is subsequently fragmented into small pieces. Adapters are added to both
5′ and 3′ ends of the fragmented cDNA. Next, a PCR is performed to amplify
the number of copies of these cDNA. The library preparation is complete, after
a clean up of the free floating adapters or a size selection of fragments from the
PCR enriched fragments.

In order to perform sequencing, the library is loaded on to a flow cell. The
flow cell is like a glass slide whose surface is bound with complementary oligonu-
cleotides of 15-30 bp in length, to which the adapters in the library gets attached.
Further, the bound DNA fragments are amplified by a bridge amplification
technique, which produces clusters of identical single stranded DNA sequences.
Following amplification, Illumina performs sequencing by synthesis technique.
One of the prime differences to the approach, described earlier in Section 2.5.1,
is the use of fluorescent labelled nucleotides as reversible terminators instead of
the di-deoxy nucleotides. This enables the use of image processing techniques
to infer the added nucleotides in each sequencing cycle. Depending on the ex-
perimental conditions, we will end up with millions of fragmented reads from
the sequencer.

2.5.3 MNase-seq
For a gene to be expressed, their corresponding nucleosomes should be accessible
for transcription. Leveraging this principle, researchers created the micrococcal
nuclease (MNase) sequencing method, which can help us study the properties
of DNA associated with nucleosomes.

A schematic overview of this method is shown in Figure 2.10. The his-
tone proteins and the DNA surrounding it are first cross-linked using specific
chemicals. Next, they are digested by the micrococcal nuclease enzyme, which
degrades all DNA that are not linked to proteins. Following the MNase di-
gestion, reverse cross-linking retrieves only the DNA, which were bound to the
histone proteins (Cusick et al., 1981). Subsequently, these DNA reads can be
prepared as a library and are subjected to a sequencing technique, similar to
what was described in Section 2.5.2. In order to control for experimental bias,
a control MNase-seq is performed with a very mild quantity of MNase. The
reads from the control are often subtracted from the MNase-seq experiment,



18 Chapter 2. Background

or, a ratio of reads from the MNase-seq over the control is used in downstream
analyses.
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Figure 2.10: An overview of the steps involved in MNase-
seq and ChIP-seq is shown. Both approaches start with cross-
linking DNA with proteins bound to DNA followed by digesting
the unbound DNA. For MNase-seq, sequencing is carried out
on the purified DNA obtained from reverse cross-linked protein-
bound DNA. For ChIP-seq, an additional immunoprecipitation
step is carried out to precipitate the protein/histone mark of
interest with the corresponding antibody, before proceeding to
sequencing. The green cylinders represent histones, wrapped
with DNA (like a black thread). The different modifications, the
RNA polymerase enzyme Pol II, and the respective antibodies
are shown on the legend. This figure is created by me with the

nucleosomes obtained from Fabian Müller (Müller, 2017).
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2.5.4 ChIP-seq
MNase-seq helps us sequence all the DNA, which are bound with histone pro-
teins. However, there are multiple epigenetic modifications, which controls the
gene expression (see Section 2.3.1).

Chromatin immunoprecipitation (ChIP)-seq is widely used to study epige-
netic modifications, and other proteins which bind with DNA, like transcription
factors. ChIP-seq is simply sequencing of DNA, which are precipitated with an-
tibodies specific to our protein of interest. Antibodies are Y-shaped proteins,
which can bind with other specific proteins.

Figure 2.10 shows a schematic overview of ChIP-seq. Similar to MNase-
seq, the proteins are first cross-linked with DNA. Following which the unbound
DNA (free or any protein binding) can be digested with nucleases (e.g., MNase).
The remaining protein bound DNA is subjected to antibodies, which target the
protein of our interest. For instance, we can introduce antibodies designed to
precipitate only DNA bound with H3K4me3 modifications. This step is called
immunoprecipitation (IP). Following IP, reverse-crosslinking will yield only the
DNA, which can subsequently be sequenced.

RNA polymerase is a crucial enzyme, which transcribes the DNA to RNA.
There are several types of RNA polymerases. RNA polymerase II (or Pol II) is
the enzyme, which is involved in transcribing protein coding genes. If needed,
they can pause the transcription process, thereby effectively regulating gene
expression. In order to study such genes, which are regulated using the pausing
mechanism, the genomic loci bound with Pol II enzyme needs to be known. To
that end, we can use ChIP-seq with a Pol II specific antibody (Figure 2.10).

While performing a ChIP-seq experiment, a control is preferably performed
along side. The control is often an antibody not specific to our protein of
interest. Instead of a control antibody, researchers also often use input DNA
as control. The input DNA is the DNA isolated from cells before performing
any kind of enzyme digestion or antibody selection. The reads from the control
experiments are often subtracted or only a ratio of reads from the ChIP-seq
experiment over the control is used in downstream analyses.

2.6 NGS data processing tools
Once the sequencing reads are obtained in the infamous FastQ format, there
are a few standard steps as shown in the Figure 2.11, which is by no means a
one-size fits all pipeline. Nevertheless, I will briefly describe these steps and
the respective publicly available tools we used as part of this thesis.

2.6.1 Preprocessing
For all the sequencing data sets used in this thesis, we performed the same
preprocessing steps mentioned in Figure 2.11. First, a quality check is performed
using the fastqc (Andrews et al., 2015) tool, where one can check the basic
statistics like average read length, their sequence quality distribution, presence
of adapters, GC content, etc. Subsequently, the adapters shall be removed, and
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Figure 2.11: An example NGS data processing workflow is
shown.

if needed a read size based filtering can be performed using TrimGalore (Martin,
2011).

2.6.2 Alignment
Following quality control, the sequenced reads are often aligned to the genome
of the respective organism, using alignment tools like bowtie2 (Langmead and
Salzberg, 2012). However, for RNA-seq data sets from organisms with splicing,
special splice-aware aligners, like STAR (https://github.com/alexdobin/STAR),
should be used.

2.6.3 Quantification
Subsequent to alignment, one needs to quantify the number of reads aligning
to different genomic loci of interest. One of the most commonly used tools for
this purpose is bedtools (Quinlan and Hall, 2010). The authors of bedtools
befittingly describe it as following: "Collectively, the bedtools utilities are a
swiss-army knife of tools for a wide-range of genomics analysis tasks".

There are other specific purpose driven tools, like Salmon (Patro et al., 2017)
for RNA quantification. The aforementioned alignment step can be skipped, us-
ing Salmon, and the RNA reads mapping to each gene/transcript are quantified
in a time-efficient manner.

https://github.com/alexdobin/STAR
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Quantification metrics

There are two commonly used quantification metrics in this thesis (i) read counts
and (ii) Transcripts Per Million (TPM). Read counts are simply the number
of aligned reads in a particular genomic loci. However, read counts is not an
appropriate measure if we want to compare different samples/loci, as they can
have differences caused due to sequencing depth and the length of the genomic
loci. The TPM metric attempts to normalise for these differences. Let us
say a genomic loci, i, has Ri number of aligned reads and li is the length of the
genomic loci (in kilo base pair (kbp)). T is the total number of reads sequenced.
TPM of i can be calculated as

TPMi =
Ri

li
∗ 106

RPK
, (2.1)

where reads per kilobase (RPK) is given by,

RPK =
∑
i∈I

Ri

li
, (2.2)

with I being the set all the quantified genomic loci. As the sum of TPM values
will be identical between all samples, it makes comparison between samples
more appropriate than read counts.

2.6.4 Differential analysis
After quantification of reads, another common analysis is to compare them
between multiple samples or cell types or different experimental conditions.
For instance, which genes expression levels are significantly different in heart
and lung. To this end, a Differential Expression (DE) analysis is performed,
using tools like DESeq2 (Love, Huber, and Anders, 2014), to identify genes
which are differentially expressed with statistical significance.

2.6.5 Functional enrichment analysis
Once we identify some differentially expressed genes, the next logical question,
to investigate, is the function of the differentially expressed genes. To this end,
researchers use functional enrichment analysis.

Gene ontology (GO) is a hierarchical set of terms, which annotate biologi-
cal process, cellular component and molecular function of all known genes. A
functional enrichment analysis aims to identify statistically overrepresented GO
terms associated with a given list of genes. While there are numerous tools out
there to perform GO analysis, we resorted to using Ontologizer (Bauer et al.,
2008).
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2.7 Small RNA analysis tools
There are a myriad of sRNA analysis tools available, which can be broadly
categorised as (i) prediction tools and (ii) analysis tools. These tools differ a
lot in their portfolio and user-friendliness.

2.7.1 Prediction tools
As mentioned earlier there are diverse types of sRNA like miRNA, siRNA,
piRNA, etc. The prediction tools use the NGS data sets to predict novel small
RNA loci. Such methods often employ: sequence comparisons with known
sRNA databases; or computational approaches to calculate the sequence and
structural properties of sRNAs in order to predict novel sRNAs. Some exam-
ples of such tools include miRDeep2 (Friedländer et al., 2012), and ShortStack
(Johnson et al., 2016).

miRDeep2, as the name suggests, is predominantly aimed at accurately pre-
dicting miRNAs and has been shown to have high accuracy in several organisms.
It predicts known and novel miRNAs from any sRNA data, using a multi-tiered
algorithm, which probes for hairpin loops (a signature of miRNAs), miRNA
secondary structure and stability. They are also capable of distinguishing pre-
and mature miRNAs. While there are several competing tools, the high accu-
racy of miRDeep2 makes it a valuable resource to be part of several analysis
tools like Oasis (Capece et al., 2015).

ShortStack discovers de novo sRNA clusters (genomic loci) in any given
sRNA data set. ShortStack identifies islands of sRNA reads, which are con-
tiguous and have a user-defined number of aligned sRNA reads. Another user-
defined value, padding, controls when two contiguous islands should be merged.
These crucial parameters enable the user to account for known sRNA charac-
teristics of an organism. The padded islands of sRNA are defined as the de novo
sRNA clusters. There are more steps in refining these sRNA clusters, which are
not discussed here, but can be read in their publication (Johnson et al., 2016).
ShortStack is one of the few tools, which does not focus primarily on miRNA or
piRNAs, but provides generic sRNA characterisation along side. We employed
ShortStack on our data sets to identify novel sRNA producing loci, which will
be discussed in the Chapter 4.

2.7.2 Analysis tool
The analysis tools are meant to aid researchers in analysing properties of sRNA
from the NGS data. By definition, such tools aggregate statistical properties of
sRNAs from the NGS data and provide graphical illustrations. These analysis
tools are often an automated or semi-automated workflow of different compu-
tational tools, similar to Figure 2.11, but optimised to handle different types of
sRNA. Some examples of such tools include sRNAtoolbox (Rueda et al., 2015),
and piPipes (Han et al., 2015).
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sRNAtoolbox comprises of 8 different tools to profile the expression of miR-
NAs; to visualise aggregate miRNA statistics; to identify differential miRNA
expression; to visualise the miRNA alignments in a genome browser; to perform
functional enrichment analysis; and to predict miRNA targets. In essence, it
has a suite of downstream analysis workflows to analyse miRNAs of interest.

piPipes is another analysis pipeline aimed at extracting useful information
related to only piRNAs, as they possess considerable differences to miRNAs.
For instance, the ping-pong signature, where 10 nucleotides in the 5′−end of
23− 36 nt piRNAs show sequence complementarity in the sense and antisense
reads, is seen only in the piRNAs. Apart from identifying these signature,
piPipes also provides an illustrative summary of the results. The diversity of
such analysis tools, and their diverse abilities are summarised in Chapter 3.

2.8 Chromatin analysis tools
Thanks to the research communities around the world, we have plentiful tools for
chromatin analysis. In this thesis, we predominantly used (i) Sparse partial cor-
relation network (SPCN) (Lasserre, Chung, and Vingron, 2013), (ii) DANPOS
(Chen et al., 2013), (iii) deepTools (Ramírez et al., 2016), and (iv) ChromHMM
(Ernst and Kellis, 2017). I’ll briefly describe below their functionalities, in the
context of this thesis.

2.8.1 Sparse partial correlation network analysis
Researchers often resort to Pearson correlation analysis in order to under-
stand the relationship between different types of data. For instance, how
does H3K4me3 correlate with mRNA expression, or how does H3K4me3 and
H3K27me3 correlate. Pearson correlation coefficient (r) gives the linear rela-
tionship between two variables. For a data set of n samples, with paired x
and y values, {(x1, y1), ..., (xn, yn)}, we can calculate the Pearson correlation
coefficient using the Equation 2.3. The coefficient takes the range of [−1, 1]. A
positive correlation would suggest that x and y are directly proportional, and
a negative correlation would suggest they are inversely proportional.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.3)

While correlations can show the relationship between two variables, they do
not reveal causality and are susceptible to confounding factors. For instance,
consider the observation that an increase in ice cream sales on the beach cor-
relates with shark attacks. This correlation clearly cannot be a causation. The
confounding factor here is, a third variable, warm temperature. When the
temperature is warm, people go to swim in the sea, hence the increase in ice
cream sales on beach and shark attacks. The variables ice cream sales and
warm temperature is said to be collinear. Of course, there are other hidden
(often unmeasured) confounding factors for the sharks to swim near the shore,
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like ocean currents, breeding season of prey fish, etc. If those variables are also
measured, they are likely to be multicollinear and can confound the causal anal-
ysis of shark attacks. Similar to the ice cream sales example, biological data can
also be multicollinear. This challenges the causal interpretation of correlation
between two observed variables. However, we can resort to partial correlation.

Partial correlation removes the effect of an observed confounding variable
from the two variables, whose partial correlation is being calculated. We use
the sparse partial correlation network (SPCN) method (Lasserre, Chung, and
Vingron, 2013), which is improvised up on the partial correlation to construct
an undirected network of associations. The SPCN method is a statistically
powerful technique, when there are large number of samples (e.g. genes), and
few variables (e.g. epigenetic marks). In the SPCN network, an edge is drawn
between two nodes (variables), only if a significant partial correlation coefficient
is observed between them. The first step involved in SPCN construction is to
calculate a partial correlation matrix, P , as shown below (Algorithm 1).

Data: Data matrix X, with D variables (X = X1, ..., XD), and n
samples

Result: Partial correlation matrix, P where
Pij = Cor(Xi, Xj|X\{Xi, Xj}); and Cor is the correlation

for d = 1, ..., D do
Rank dth column of data matrix X
Replace data in the dth row, with the corresponding rank

end
Calculate a covariance matrix for the rank transformed X
Apply matrix inversion (

∧
) on the covariance matrix

The row and column normalised partial correlation matrix, P is
obtained by Pij = −

∧
ij√∧
ii

∧
jj

Algorithm 1: Pseudocode to construct a partial correlation matrix
(Lasserre, Chung, and Vingron, 2013).

In the next step, a cross validation approach is applied on the data set, by
first splitting them into 10 subsets. Keeping aside one subset (t), rest of the
data is used to construct, M , a partial correlation matrix (Algorithm 1). In M ,
the partial correlations are ranked according to their multiple hypothesis testing
corrected, q-values. The partial correlations in M are modified as zero, if their
respective q−values are above a set threshold. Hence, sparseness is introduced
to the partial correlation matrix, M . Further, using the subsets (except t), we
aim to predict a variable, say Xi, using a linear function of the other variables
who have non-zero entries in M . We calculate the predictive error of the linear
function using the subset, t. We optimise the q−value threshold, such that the
predictive error is minimal. These steps are repeated 10 times, with each time
using a different subset as t.

Further, the individual entries of the actual partial correlation matrix, P ,
is set to zero, if the respective entries in at least three of the ten M sparse
matrices are zero. A graphical version of the resulting P is the sparse partial
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correlation network, which has edges only between the nodes whose partial
correlation values are non-zero.

Although the SPCN network reveals statistically significant associations (or
edges), it is limited to the variables analysed. However, biology is usually
more complex, and many unmeasured variables are likely to be involved in an
association network. If new variables are measured and included in the analysis,
the SPCN associations will be susceptible to change.

2.8.2 DANPOS
DANPOS is primarily a nucleosome (or MNase-seq) analysis software, which ac-
counts for factors like nucleosome position shifts while calculating a nucleosome
occupancy peak. A peak is defined as a genomic locus, where there is an enrich-
ment of the nucleosome reads in relation to the control experiment. Although,
primarily aimed at nucleosome analysis, DANPOS also contains programs tai-
lored to identify peaks from histone marks or other protein based ChIP-seq.
In addition, DANPOS provides a profiling tool to analyse the distribution of
chromatin features in genomic loci of interest.

2.8.3 deepTools
deepTools is an user-friendly tool suite, primarily designed for ChIP- and MNase-
seq data analysis. They feature a range of tools to perform quality control,
normalise multiple data sets, and comparative visualisation of genomic features
across multiple data sets. For instance, normalisation can be performed against
the control experiments using the bamCompare. In addition, multiple data sets
can be normalised against each other using different scaling or normalisation
methods using multiBamSummary. Further, as a quality control measure, ex-
perimental replicates can be checked for how well they correlate with each other
using plotCorrelation. The two comparative visualisation features, plotHeatmap
and plotProfile, can be used to compare how reads are distributed across differ-
ent genomic features like exons, introns, UTRs, etc.

2.8.4 ChromHMM
Researchers often investigate several histone marks at a time. While tools,
like DANPOS, can provide insights into individual histone mark distribution
across genomic loci, a combinatorial approach is not feasible with such tools.
Although, the SPCN approach explains an undirected network epigenetic marks,
they cannot directly provide genomic feature level granularity of the networks.

ChromHMM is a probabilistic model, based on multivariate hidden markov
model (HMM). It infers a user-defined number of chromatin states, for any
given set of chromatin mark data. First, the genome is binned into small win-
dows (default 200 bp), and the aligned reads in these windows are binarised
(present/absent) based on a Poisson background distribution. Following which,
the bins are categorised into different states, where a state represents the avail-
ability of the combination of one or more chromatin associated data. This
process is termed chromatin state segmentation.
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ChromHMM relies on the user to set the number of hidden states K to
be identified. The emission distribution of a hidden state, is the probabil-
ity distribution of the combination of one or more chromatin associated data.
ChromHMM models the emission distribution with a product of independent
Bernoulli random variables (Ernst and Kellis, 2017). The mathematical notion
can be described as the likelihood of the observed data to be in the hidden
states. Formally,

• k is a hidden state among the number of possible hidden states (k =
1, ..., K).

• m is the chromatin associated data (e.g. H3K27me3) among all the avail-
able chromatin associate data (m = 1, ...,M).

• pk,m is the emission parameter showing the probability of the chromatin
associated data m to be present in a hidden state, k.

• c is a chromosome of all available chromosomes (c = 1, ..., C), and

• ct is the tth 200 bp interval (or user-defined) on chromosome c, where t =
1, ..., Tc and Tc is all the non-overlapping 200 bp intervals on chromosome
c.

• vct,m denotes the availability (1 or 0) of the chromatin associated data (m)
at an interval ct.

• At an interval ct, a combination of different chromatin associated data is
denoted as vct = (vct,1, ..., vct,m).

• The transition probability from state i to j, where i, j ∈ (1, ..., K), is
denoted as bij.

• c1 is the first 200 bp interval on a chromosome. The probability of c1
being in the state i, is denoted as ai, where i ∈ (1, ..., K).

• sc is the hidden sequence of states in chromosome c, such that sc ∈ SC ,
where SC is the set of all possible of sequence of states.

• sct is the state on chromosome c at a 200 bp interval t for the sequence of
states sc.

P (v|a, b, p) =
∏
c∈C

∑
sc∈SC

asc1

(
TC∏
t=2

bsct−1 ,sct

)
TC∏
t=1

M∏
m=1

p
vct,m
sct,m(1− psct ,m)(1−vct,m)

(2.4)
For the parameters (a, b, and p) defined above, the likelihood of the observed

data v is defined as the Equation 2.4. ChromHMM uses the Baum-Welch al-
gorithm to perform the expectation-maximisation while training the HMM pa-
rameters.
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In addition to defining the hidden states, ChromHMM also facilitates an en-
richment analysis of the identified chromatin states in different genomic features
of interest. For example, a chromatin state with a combination of H3K4me3
and H3K36me3 is identified by ChromHMM. This can be called an active state,
as both of those histone marks are associated with active gene expression.
ChromHMM can also report us whether such an active state is enriched in
exonic or intronic regions.

While ChromHMM can identify different states, the biological interpreta-
tion have to be handled by the researchers. Similarly, the researchers have to
experiment with the different number of states for ChromHMM, as there is no
rule of thumb.

2.9 Statistical learning methods
Statistical learning is a set of computational/statistical methods used to un-
derstand the relationship of different variables in a data set. Broadly, they are
classified as supervised and unsupervised methods. Supervised methods aims to
predict an output from a set of input variables. To achieve this the supervised
methods use a data set of inputs with known outputs. For instance, given the
age and maximum heart rate of a patient, can we predict/classify whether the
patient has a risk of heart disease or not. Unsupervised methods does not use
data sets with any known outputs, but can still reveal relationships or structures
in data. For instance, given a set of patients gene expression values from heart,
can we identify groups of genes/patients with similar expression patterns. We
predominantly use only supervised classification methods in this thesis. Hence,
the following sections will brief about some of those methods. For a detailed
description of these methods, I would like to refer the reader to the Introduction
to Statistical Learning book (James et al., 2013).

2.9.1 Supervised classification
In a supervised classification problem, there are a set of quantitative/qualitative
variables called predictors (or features) and their respective categories, a quali-
tative response variable called class. The process of creating a statistical model
to predict the class of the predictors is training a classifier.

Formally, a data set is represented by a matrix X ∈ Rn×p and vector Y ∈
Rn. Every row in this data set is a sample. Each sample is a (Xij, Yi) pair,
i ∈ (1, ..., n) and j ∈ (1, ..., p), where n represents the number of samples and
p represents the number of predictors. The relationship between X and Y , is
represented as

Y = f(X) + ε. (2.5)

In equation 2.5, f is a function of X and ε is a random error term independent
of X. But, f(X) is unknown, i.e. we do not have the actual function that
derives Y from a given X. In reality, the task of finding Y is difficult. Hence, Y
has to be predicted, with the function f(X). As we do not know f , we estimate
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Predicted / Actual Yes No
Yes True Positive (TP) False Positive (FP)
No False Negative (FN) True Negative (TN)

Table 2.1: An illustrative confusion matrix for a hypotheti-
cal model classifying whether a gene is expressed or not. Yes -

Positive class; No - Negative class

f̂ , with the available samples (X, Y ) to predict Ŷ as

Ŷ = f̂(X). (2.6)

This process of estimating the function f , with available samples (X, Y ) is called
training. The aim is to estimate a function, f̂ , such that it fits the data as close
as possible to the actual f (James et al., 2013). The methods, used in this
thesis to estimate f̂ , are discussed in the subsequent sections.

Model assessment metrics for classification

There are several metrics to evaluate the performance of a classifier. Let us say,
hypothetically, we have a classifier, which is trained on some epigenetic marks
(predictors or features) to classify whether a gene is expressed or not (class). If
the gene is (not) expressed, we call it positive (negative) class. As we have the
actual class information for the training data, a common way to evaluate the
classifier is to create a confusion matrix by comparing the predictions against
the actual class (Table 2.1). True Positive (TP) and True Negative (TN) are
the samples, which are correctly predicted as positive and negative class, re-
spectively. The False Positive (FP) and False Negative (FN) are the samples,
which are erroneously classified as positive and negative class, respectively.

With the confusion matrix as basis, several other derived measures are often
used. These measures include accuracy (equation 2.7), precision (equation 2.8),
and recall (equation 2.9). Accuracy reports the ratio of the number of correctly
classified predictions among all samples. Precision reveals how many of the
predicted positive class is correctly classified. Whereas the recall denotes how
many of the samples with actual positive class is correctly classified. All of
these measures are in the value range of [0, 1], with 1 being the best.

acc =
TP + TN

TP + TN + FP + FN
(2.7)

pre =
TP

TP + FP
(2.8)

rec =
TP

TP + FN
(2.9)

Another commonly used performance metric is the area under the precision
recall curve (PR-AUC). The precision and recall values are plotted as a curve,
and the area under this curve is the PR-AUC. An area of 1 indicates a perfect
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classifier with all samples being correctly classified. This measure is especially
useful in case of imbalanced data sets (Davis and Goadrich, 2006).

Cross validation

The model assessment metrics are useful measures. However, if such measures
are applied on all the training data, we will not know how the model performs
on a new sample data (never seen before by the model). In other words, we
would need to ensure the model is simply not memorising the training data and
achieving higher performance. Hence, resampling methods like cross validation
(CV) is used. The idea is to first split the available data randomly into k−folds.
Next, using the data from k − 1 folds the model is trained. This model’s
performance is calculated, say using precision, only for the data from the kth
fold. This process is repeated k-times, with each time setting aside a different
fold of data for testing. The final performance of the model is reported as an
average of the performance metric from the k iterations.

2.9.2 Decision trees
The basic idea behind decision trees is to split the predictor space into multiple
regions, such that the regions identified have the majority of the points from a
single class. An illustration of a decision tree is shown in Figure 2.12.

Let us consider a toy example. We want to predict the risk of heart disease
in a patient based on two predictors. The two predictors are age (X1), and
maximum heart rate (X2). We divide the predictor space (X1 vs X2) of our
training data, into J distinct non-overlapping regions (R1, R2, ..., RJ). An opti-
mal value of t is identified along the predictor axes X1 or X2, in order to identify
the non-overlapping regions, such that many points in the region belong to the
same class. This can be represented as a tree, as shown in Figure 2.12B. The
optimal t values act as the decision nodes, and the regions are the leaf nodes. In
order to make a prediction, say for a new patient, the decision tree is traversed
from the root node till reaching a leaf node. The new sample is assigned the
same class as the majority of observations in the leaf node. In order to find
the non-overlapping regions with majority of points from the same class, often
the Gini index (Equation 2.10) is used. Gini index calculates the total variance
across all classes as,

G =
K∑
k=1

p̂jk(1− p̂jk), (2.10)

where K is the total number of classes. p̂jk is the proportion of training data
points belonging to kth class in the jth region. Gini index takes a range of [0, 1].
A Gini index of 0 represents a pure node with all samples belonging to the same
class.

The advantage of decision trees is their ease of interpretation, which mimics
human decision making. However, the disadvantage is the high variance. When
a decision tree yields different results, for different random subsets of data, then
the tree is said to have high variance.
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Figure 2.12: (a) The predictor space stratification is shown
here. X1 and X2 are the predictors. Ri are the non-overlapping
regions splitting the predictor space, where i ∈ 1, 2, 3. (b) A
tree representation of the stratification is shown. This figure is
adapted from the book - An Introduction to Statistical Learning

(James et al., 2013)).

2.9.3 Bagging
Bagging aims to reduce variance in statistical methods, by averaging over a
set of values. The application of bagging on decision trees is illustrated in the
Figure 2.13. First, the available training data is bootsrapped, i.e. randomly
sampled with replacement to create multiple (say B) subsets. For each of these
B subsets, a decision tree is built. If we want to predict the class of a new
sample, B predictions are obtained from B decision trees. The final prediction
is the majority vote from all the individual predictions made by the B trees.

While bagging reduces the variance in decision trees, it suffers from another
problem. The B trees created are highly correlated, as the same set of predictors
are considered while constructing each tree. If there is a strong predictor among
all the available predictors, the B trees will have likely used this predictor in
all the trees. This needs to be avoided, as it may cause a model to fail in real
time, for example, if the strong predictor value is not available.

2.9.4 Random Forests
The Random Forests model (Figure 2.14) also employs the bagging approach,
but aims to decorrelate the trees. Here, while constructing each decision node of
a decision tree from a bagged data set, only a random subset m of the available
p predictors are considered. The rest of the steps are same as bagging. The
recommended choice for the number of predictors in the subset, m ≈ √p.
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Figure 2.13: The bagging methodology is depicted here. The
squares in the first lane are the actual training data set. Different
colored rows show individual training samples and each column
represents a predictor. The second lane shows the bootstrapped
subsets (sampling with replacements). The third lane shows the
corresponding decision trees for each bagged data set. The last
row depicts that, to make a final prediction for a new sample,

majority votes of individual predictions are considered.
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Figure 2.14: The Random Forests classifier construction is
shown here. We start with a bagged data set (similar to Figure
2.13. While constructing the decision tree, before making each
decision node, we consider only a random subset of predictors.
The final prediction of a new sample is done using majority

voting of individual predictions.



32 Chapter 2. Background

2.9.5 Artificial neural networks
Neural networks are a class of statistical learning algorithms heavily inspired
from the biology of the brain. The brain is made up of millions of neurons,
which are the learning units. We learn from experimenting with the real world.
For instance, "I should not touch a hot plate" is a decision, which a kid learns
after accidentally touching the hot plate few times.

Figure 2.15 shows a simple artificial neural network consisting of three layers,
namely, input layer, hidden layer and output layer. The input layer has nodes,
which are essentially the predictors, and the hidden layer consists of the neurons
(or perceptrons). The output layer is, in principle, the class predictions. A
neuron, connected with the input layer, is a mathematical operation.

Each input is randomly initialised with a weight. Following which, the neu-
rons calculate the sum of the linear combination of the input values (predictors)
and the randomly initialised weights for each input node. Further, the neurons
apply an activation function and transmits the value to the output layer. The
activation functions are usually non linear, in order to smooth the output. This
output is, in essence, the probability of the input sample being classified to
a particular class. The model learns to improve its performance with enough
training data, by experimenting with the weights of the input nodes. This
type of simple artificial neural networks are also known as feed forward net-
works (Goodfellow, Bengio, and Courville, 2016). When the number of neurons
and the hidden layers used are manifold, such models are termed deep neural
networks.

2.9.6 Model interpretation
A statistical model is said to be interpretable, if humans can understand the
reasoning behind the decision (prediction) of a model. For example, decision
trees are interpretable, as it mimics human decision making. The need for
interpreting the statistical models have risen tremendously, with the rise of
the so called black-box models like deep neural networks. Such sophisticated
black-box models have high performance, but loose their interpretability. Model
interpretability is essential, as it can help us ensure the models are fair, robust,
and trustworthy (Doshi-Velez and Kim, 2017).

There are two types of model interpretation: (i) when a model explains
how often a particular feature is used while making a prediction, termed global
interpretation and (ii) when a model explains one sample (or data instance) at
a time, termed local interpretation. Both global and local interpretations are
useful. However, the importance of the local interpretations are in the rise with
statistical learning applications being increasingly used in medical applications.
For instance, the statistical model should clarify the doctor, based on which
information (feature), it diagnosed (or classified) the patient to have a heart
disease or cancer. Without such granular information, the doctor would not be
able to prescribe the right course of treatment. Please note that, I only briefly
discuss the interpretable method used in this thesis. Interpretability is an active
area of research, and I would like to refer the reader to the Interpretable Machine
Learning book (Molnar, 2019).
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Figure 2.15: A simple artificial neural network is illustrated.
The input layer contains the predictors. Each input is associated
with a weight, and connected to a neuron in the hidden layer.
The neurons perform the mentioned mathematical operation and
applies a non-linear activation function (e.g. f(z)). The output

layer returns the prediction values.

Shapley additive explanations (SHAP) values

Shapley additive explanations (SHAP) is an interpretability method, which aims
to provide local interpretations. SHAP works based on Shapley values, which
were originally developed, in game theory research, by Lloyd Shapley (Shapley,
1953). In a game played by a group of people, when the game is complete,
the Shapley values help us to fairly distribute the reward according to the
contributions of all the players. The contributions of the players are also termed
coalitions. In other words, the average marginal contribution of a player among
all possible coalition of players is called Shapley value.

In the setting of a statistical model, the prediction task is the game and
each predictor (or feature) is a player of the game. The reward is the actual
prediction of a particular sample (or data instance). Using Shapley values,
we can calculate what is the average contribution of each player towards the
reward, among all possible coalition between players. First, for a data instance,
we calculate its prediction probability to be in any class with a combination
of subset of features. Then, we remove one random feature from this subset
and calculate the prediction probability again. The difference in prediction
probability, when the random feature is removed, is the marginal contribution
(or importance) of the removed feature to the overall prediction probability. We
repeat these steps for all possible combinations of feature subsets. The average
of all the marginal contributions to all possible feature subset combinations of a
feature is the Shapley value of that feature. A pseudocode to estimate Shapley
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value for a single feature is shown in Algorithm 2.

Data: Data matrix X, data instance of interest x, number of iterations
M, machine learning model f, and feature of interest j

Result: Shapley value for the feature j of data instance x
for m = 1, ..., M do

draw random instance z from data matrix X
choose a random permutation, o, of the feature values
Order instance x: xo = (x1, ..., xj, ...xp)
Order instance z: zo = (z1, ..., zj, ...zp)
Construct new instance with feature j:
x+j = (x1, ..., xj−1, xj, zj+1, ...zp)
Construct new instance with out feature j:
x−j = (x1, ..., xj−1, zj, zj+1, ...zp)

Compute marginal contribution: φm
j = f̂(x+j)− f̂(x−j)

end
Compute Shapley value as the average: φj(X) = 1

M

∑M
m=1 φ

m
j

Algorithm 2: Pseudocode to calculate Shapley values for a single feature.
This pseudocode is adapted from the Interpretable Machine Learning book
(Molnar, 2019).

With increasing number of features, Shapley estimation can be extremely
time consuming. Hence, model specific approaches have been introduced. For
instance, TreeExplainer is a time efficient Shapley value estimator designed to
address tree based models like Random Forests (Lundberg et al., 2020). We
make use of this estimator in Chapter 6.

2.10 Paramecium tetraurelia
Paramecium tetraurelia is a non-model organism. As mentioned in the in-
troduction, this thesis is about understanding the regulatory landscape of the
transcriptome of Paramecium. Hence, this section is dedicated to more details
about the fascinating biology of Paramecium.

2.10.1 Cell biology
Figure 2.16 shows the structural components of the free-living unicellular eu-
karyote, Paramecium. Paramecium is one of the first micro organisms to be
observed in a microscope in the late 17th century (Van Houten, 2019). These
50 − 300µm cells are covered with hair like structures, called cilia. The cilia
helps the Paramecium to swim, and sweep their food closer to the oral groove.

The oral groove directs the food to the mouth in order to ingest other micro
organisms, like amoeba, bacteria, etc. The ingestion happens through phago-
cytosis, where the outer cellular membrane engulfs the food and forms a food
vacuole. As the food vacuole moves towards the anal pore to get egested, the
enzymes from the cytoplasm help digest the food. In addition, they also have
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Figure 2.16: An illustration of the cellular structures of
Paramecium. This figure is available for public use from

Wikipedia (Wikimedia, 2017).

special structures called the radiating canals, to collect excess water and cyto-
plasmic waste materials. The radiating canals empty the excretory products
into the contractile vacuole, which helps the osmoregulation (water and ionic
content of the cell) (Beale and Preer, 2008).

Paramecium exhibits nuclear dimorphism with two germline micronuclei
(MIC), and a somatic macronuclei (MAC). The MIC is diploid (2n) and tran-
scriptionally inactive, while the MAC is transcriptionally active and exhibits
polyploidy (800n). Ploidy refers to the number of paired chromosomes. While
the ploidy information is estimated for Paramecium, the exact number of chro-
mosomes remains unknown (Aury et al., 2006).

2.10.2 Life cycle
Paramecium exhibits several modes of reproduction. They can self fertilise
(autogamy) or engage in conjugation with other mating pairs, and can reproduce
asexually.

Asexual reproduction

Figure 2.17 shows the asexual (vegetative) mode of reproduction. Asexual re-
production is the process when an "adult" Paramecium splits itself into two
daughter cells. It is also termed vegetative growth. During the early stage
of the vegetative cycle, the cells start elongating, which will eventually break
through cytokinesis to form two daughter cells. In the mean time, the two
germline MIC duplicates itself by a process called mitosis, meaning they are ge-
netically identical copies. The MAC gets elongated amitotically, and gets split
between the two daughter cells (Van Houten, 2019). The mechanisms behind
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Figure 2.17: The asexual (or vegetative) reproduction cycle in
Paramecium is shown. This figure is adapted from (Van Houten,

2019).

how the vegetative MAC maintains the 800n polyploidy, albeit dividing ami-
totically, is not well understood. Please note that "adult" is used loosely, as a
vegetative cycle lasts only about 5 hours and by the end of it, the Paramecium
cells are already fit to enter the next asexual cycle. Owing to the nature of re-
production, Paramecium does not undergo chronological aging. However, they
have been shown to lose their vitality. That means, they are unable to undergo
reproduction after about 200 vegetative cycles (Aufderheide, 1986).

Sexual reproduction

Paramecium enters sexual reproduction, when they experience stressful condi-
tions like starvation. They have different mating types (more loosely genders),
and genetic screens have shown that only certain mating types are compati-
ble with each other. Some species of Paramecium have up to 23 mating types
(CHEN, 1946). Under stress, the cells can either mate with the right mating
type, or undergo autogamy (self-fertilisation) in the absence of the right mating
type (Van Houten, 2019).

Figure 2.18 shows the sexual mode of reproduction. First the mating pairs
enter into conjugation, by forming a cytoplasmic bridge. The cells undergo
nuclear reorganisation through meiosis. Meiosis results in four haploid (1n) MIC
of which three of them disintegrate. The remaining one MIC divides, by mitosis.
Each cell in the conjugation pair now exchanges one of their MIC with the other
through the cytoplasmic bridge. After this exchange, the conjugation is broken.
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Figure 2.18: The sexual reproduction cycle in Paramecium
is shown. This figure is available for public use (Carter and

Learning, 2021).
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Now, the cells fuse their two haploid MIC to form a diploid MIC. Following that,
the diploid MIC undergoes three rounds of mitosis to produce eight diploid
MIC. At this stage, the original (or parental) MAC disintegrates, and four of
the eight diploid MIC transform into MAC. Subsequently, two rounds of cell
division produces four daughter cells. Currently sRNAs, and other ncRNA
mediated epigenetic control mechanisms are known to regulate the genomic
rearrangements of the developmental MAC (Beisson et al., 2010).

2.10.3 Serotypes in Paramecium

Antigens are protein or complex cellular sugar material, which can trigger an
immune response in an organism to produce antibodies (Wichterman, 1986).
As these proteins, in Paramecium, include the cilia and the cell surface, they
are known as surface antigens. These surface antigens are from a multigene
family, which are known to express more than 11 surface antigen genes. The
surface antigen gene expression is mutually exclusive, i.e., only one antigen is
expressed at a time. The expression of a specific surface antigen is called a
serotype. In Paramecium, these serotypes are named as a combination of the
laboratory stock of paramecium (stock 51), and the expressed surface antigen.
For instance, serotype 51A is the expression of the surface antigen gene A in
the stock 51 Paramecium. Among the different Paramecium serotypes (namely
51A, 51B, 51D, and 51H), it has been shown that their entire transcriptomic
profile is altered (Cheaib et al., 2015). It has also been shown that a shift in the
serotype can occur with changes in environmental conditions like temperature
(Simon, Marker, and Schmidt, 2006). Over a decade of research on the MAC
of vegetative Paramecium, showed the role of sRNAs in controlling serotype ex-
pression (Marker et al., 2010). However, the complexity of sRNA molecules that
are active in the Paramecium MAC and their function are poorly understood.
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Chapter 3

RAPID: An automated small
RNA analysis tool

This chapter summarises our work published in a peer-reviewed article (Karunanithi,
Simon, and Schulz, 2019).

3.1 Motivation
Advancements in NGS technology, and lowering costs have enabled researchers
to unravel novel biological mechanisms. We have seen in Chapter 2, the di-
verse regulatory roles of different classes of sRNAs like siRNA. The interest in
siRNA research has grown in the past decades, because of their therapeutic
potential (Patwardhan et al., 2017). Application of siRNA in drug discovery
and therapy demands a better understanding of siRNA biogenesis and behavior.
Several sequence level properties, like read length and strand of origin, are cru-
cial in discerning the siRNA biogenesis mechanisms and function of siRNA. The
sheer number of publicly available tools show the importance and complexity
of analysing the diverse classes of sRNA data sets.

There are two broad categories of sRNA analaysis tool based on their func-
tion: (i) prediction tools and (ii) analysis tools. The prediction tools employ di-
verse computational strategies to predict different classes of sRNA like miRNA,
piRNA, etc. Some examples of these tools include Shortstack (Johnson et al.,
2016), miRDeep2 (Friedländer et al., 2012), iMir (Giurato et al., 2013), Piano
(Wang et al., 2014), etc. The analysis tools perform annotation and gene on-
tology (GO) enrichment of the sRNAs. Some examples of such analysis tools
are miRTools2 (Wu et al., 2013), iSmart (Panero et al., 2017), and CPSS (Wan
et al., 2017).

The existing analysis tools are often hard coded to work only on certain
organisms like humans or mouse. This poses a challenge to researchers of un-
common model organisms, as there is little user flexibility in the existing tools.
Although, few tools like sRNAtoolbox (Rueda et al., 2015), Oasis (Capece et
al., 2015), and ncPRO-Seq (Chen et al., 2012) provide user-flexibility, they
lack insightful graphical analysis. They are often not adept in systematic, and
automated multiple sample comparison employing appropriate normalisation
strategies for sRNA analysis. In essence, the myriad of existing sRNA analysis
tools are less flexible or they do not capture functionalities which are crucial to
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understand siRNA biogenesis and functions. In Table A.1 we provide a compar-
ison of non-exhaustive list of sRNA analysis tools and their abilities to address
eukaryotic siRNA properties.

3.2 Project objectives
In this context, we wanted to create a generic siRNA analysis tool which enables

1. in depth analysis of eukaryotic siRNA,

2. automated visualisation of diverse siRNA properties, and

3. multiple sample comparisons with appropriate normalisation methods.

3.3 Tool description
Keeping our objectives in mind, we developed an offline sRNA analysis tool:
Read Alignment, Analysis, and Differential PIpeline (RAPID). This section
describes the different modules of our tool, shown in Figure 3.1.

3.3.1 Basic module
The first RAPID module is rapidStats, which invokes Bowtie2 (Langmead and
Salzberg, 2012) to perform sequence alignment, with user defined options to
remove contaminants. Following alignment, RAPID quantifies several statistics
such as read length distribution, soft-clipped nucleotides, strandedness, and nu-
cleotide content. RAPID can also use alignment files (BAM/SAM) created by
other aligners. We efficiently process the alignments, and capture the afore-
mentioned statistics using SAMtools (Li et al., 2009), BEDtools (Quinlan and
Hall, 2010), and custom Perl, Shell, and R scripts. The statistics captured by
this module serve as input for other modules.

3.3.2 Normalisation module for multi-sample compari-
son

The second RAPID module, rapidNorm, aims to facilitate an unbiased com-
parison of genes or regions across multiple siRNA samples. Other than the
sequencing depth itself, siRNA studies pose an additional challenge during nor-
malisation. For instance, to understand RNA interference (RNAi) mechanisms
and how the siRNA homeostasis is maintained, often a gene or siRNA region is
knocked down. One such knockdown strategy is to introduce large amounts of
siRNAs, called primary siRNAs, against the knockdown gene or any siRNA re-
gion. Consequentially, secondary siRNA production is triggered by the primary
siRNAs. These primary and secondary siRNAs, which are also sequenced, can
add up to millions of reads in the total library size. More information on RNAi
can be read in Chapter 2.
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Figure 3.1: The pipeline of our tool RAPID is depicted. Green
boxes are executables. Blue, and orange boxes represent input,
and output files respectively. The executable RAPID modules
are: (i) rapidStats module performs reference alignment and
quantifies the expression of user-defined genes and/or regions.
(ii) rapidNorm facilitates sample (or gene) wise comparison of
genes/regions (or samples) after appropriate normalisation. (iii)
The rapidVis module provides multiple visualisations represent-
ing the information obtained from rapidStats and rapidNorm.
Selective screenshots from the output of our case studies are
shown in the boxes. (iv) rapidDiff is the differential expression

analysis module implementing DESeq2.
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To our knowledge, there are no normalisation methods specialized for knock-
down based siRNA studies. However, many methods have been proposed to
normalise mRNA-seq data, which can be broadly categorized in two classes: (i)
total count scaling (TCS) methods and (ii) methods which utilize quantities
like median log-fold change, among all genes between mRNA-seq experiments.
To be able to use the latter methods, siRNA loci annotation should be avail-
able, and should assume that most of the siRNA loci between samples are not
differentially expressed.

In model organisms like Paramecium tetraurelia, little is known about the
localisation, and expression variability of endogenous siRNA loci. Hence, the
second class of methods may not be applicable. However, the disadvantage of
TCS methods is that the used normalisation factors were shown to be biased by
highly expressed genes in the data set (Dillies et al., 2013). In case of knockdown
samples, TCS methods will be heavily skewed because of the millions of primary,
and secondary siRNAs associated with the knockdown gene or region.

In mRNA-seq data, a variant of the TCS method (Sultan et al., 2008) was in-
troduced, where normalisation is achieved by scaling through a factor that esti-
mates the difference in the number of reads mapped between samples. Similarly,
we propose a variant of the TCS method for knockdown based siRNA studies.
We term this variant as KnockDown Corrected Scaling (KDCS) method, where
we remove from the estimated total library size, all reads that map against the
knockdown genes, this quantity is denoted K below. Assume read count R for
a region of interest that we want to compare between samples. T is the total
number of reads mapping to the genome, and K is the number of reads mapping
to the knockdown gene. We compute the normalised read count R̂:

R̂ = R · M

T −K
, (3.1)

where M is the maximum over all values (T1 − K1), ..., (Tn − Kn) over all n
samples.
RAPID uses the KDCS method, by default. Hence, in the absence of knockdown
genes, the normalisation works as the normal TCS method. However, in order to
provide flexibility with the choice of normalisation for knockdown free analysis,
we have also incorporated size factor-based normalisation from DESeq2 (Love,
Huber, and Anders, 2014). If an user can safely assume that most of the genes
or regions between samples are not differentially expressed then they can use
the DESeq2 normalisation. In essence, rapidNorm reports normalised values
for all the statistics captured in the rapidStats step when the user has multiple
samples to analyse. We demonstrate the use of our KDCS normalisation method
in Section 3.4.

3.3.3 Visualisation module
For a better interpretation of sequencing data, we need smart visualisations.
The rapidVis module of our tool can automatically generate visualisations of
the statistics captured in the previous modules. Using Rmarkdown (http:
//rmarkdown.rstudio.com), RAPID generates easily navigable HTML reports.

http://rmarkdown.rstudio.com
http://rmarkdown.rstudio.com
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This module contains two modes: statistics and comparison mode. The statis-
tics mode takes as input the rapidStats output file, and provides various single
category plots detailing on the distribution of read length, strandedness, soft-
clipped nucleotides, and coverage plots for each gene/region analyzed. In addi-
tion, this report also provides combinations of the aforementioned properties.
For instance, how does strandedness differ across different read lengths. The
comparison mode accepts the rapidNorm analysis output file, and equips the
user with qualitative reports (Heatmaps, Principal Component Analysis (PCA),
Multi Dimensional Scaling (MDS)) of samples. All plots are shown both in
normal and log scale such that the user can directly incorporate them into
publications.

3.3.4 Differential analysis module
Differential Expression (DE) analysis is one of the common downstream anal-
ysis in comparative studies. RAPID offers the user with this functionality by
incorporating the DESeq2 package. Upon invoking the rapidDiff module, raw
counts are utilized from the output of the rapidStats module to perform DE
analysis, with default parameters of DESeq2. Results of the DE analysis in-
clude intuitive plots (such as MA Plot, Heatmap, PCA) and the list of DE
genes/regions.

3.3.5 Usage and availability
We have made available a conda recipe for RAPID through the bioconda chan-
nel (Grüning et al., 2018). This ensures ease of installation by avoiding depen-
dencies. We strongly recommend using RAPID from https://anaconda.org/
bioconda/rapid as a conda recipe. Nevertheless, it can also be freely accessed
from https://github.com/SchulzLab/RAPID.

3.4 Case Study
One of the unique features of RAPID is the KDCS normalisation that can
correct for the excess of sRNAs introduced in knockdown experiments in ex-
perimental approaches utilized in many diverse organisms. In this section,
we discuss an use case to demonstrate the effectiveness of KDCS normali-
sation. An in-depth use case based documentation is provided at https:
//rapid-doc.readthedocs.io/en/latest/.

3.4.1 Problem setup
A knockdown study on P. tetraurelia investigates the molecular mechanisms of
different sets of trans-acting RNAi components (Götz et al., 2016). ICL is a
gene in P. tetraurelia, which is not involved in the RNAi machinery. Hence,
ICL is knocked down as a control in the original study by introducing millions
of primary siRNAs against ICL (see 4.1.2). We downloaded, and preprocessed

https://anaconda.org/bioconda/rapid
https://anaconda.org/bioconda/rapid
https://github.com/SchulzLab/RAPID
https://rapid-doc.readthedocs.io/en/latest/
https://rapid-doc.readthedocs.io/en/latest/
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the five publicly available ICL knockdown data sets (NCBI Accession ID: PR-
JEB13116) from this study. In these data sets, we wanted to quantify and
compare their sRNA read counts of four example sRNA regions (which are in
the original study different constructs of the ND169 gene).

3.4.2 Methodology
As the five data sets are knockdowns of the same ICL gene, we expect that all
data sets behave the same. They are simply biological replicates of the same
system. To compare the sRNA accumulation of the example sRNA regions
across these five data sets, we need to normalise them for sequencing depth and
knockdown. As mentioned ealier, very little is known about the localization
and expression variability of endogenous small RNA loci in P. tetraurelia. This
may violate the assumption of normalisation methods such as DESeq2, which
assumes that majority of regions remain unchanged in different samples. Nev-
ertheless, we applied DESeq2 normalisation, our KDCS normalisation, and an
often used TCS normalisation on our case study data.

Normalisation should reduce the variance in read count per region. Hence,
to evaluate the different normalisation methods, we used coefficient of variation
(CoV). CoV is the ratio of standard deviation to mean of the data set. For a
gene or region of interest, i, with n samples, CoV is represented as

CoVi =
σi
µi

, (3.2)

where σi and µi are the standard deviation and mean of the gene or region
of interest i in the n samples, respectively. A smaller CoV suggests a better
performance of a normalisation method, as normalisation should reduce the
variance.

3.4.3 Results
Figure 3.2 shows the CoV values of the raw, and normalised sRNA read counts,
for four example regions that had been studied by Götz et al., 2016. We can
observe from Figure 3.2, that the KDCS method performs better in all the
regions, compared to the generic TCS method. It also achieves as good or better
than the DESeq2 normalisation for this example. All normalisation approaches
are better than using no normalisation, which strongly argues for their use.
This experiment suggests that our KDCS method is a better alternative to the
TCS method and is applicable when few regions are known.

3.5 Conclusion
We created an automated small RNA analysis pipeline, RAPID. It is an offline,
open-source, and user-friendly tool designed to simplify eukaryotic siRNA data
analysis. RAPID is not an exhaustive analysis or annotation pipeline. With an
available set of siRNA (or other sRNA) loci, our tool can be used to analyze
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Figure 3.2: The effect of different normalisation methods on
sRNA regions (x-axis) studied in Götz et al., 2016 are assessed
using the coefficient of variation (y-axis; lower is better) of the
read counts obtained from RAPID. Raw - No normalisation;
KDCS - KnockDown Corrected Scaling; TCS - Total Count Scal-
ing; DESeq2 - size factor-based normalisation from DESeq2
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single or multiple sRNA samples at ease with the aid of different normalisa-
tion techniques. The diverse set of visualisations generated by RAPID will
enhance the understanding of any sRNA-based study. RAPID is available for
free use and can be used over the command line. It is available at the GitHub
repository https://github.com/SchulzLab/RAPID. A detailed user tutorial
can be accessed from this repository. The resourcefulness, and user-friendliness
of RAPID can be demonstrated by the 16,000+ conda downloads, at the time
of writing this thesis.

3.6 Contributions
The basic design of the pipeline, and the KDCS normalisation method was done
by Prof. Dr. Marcel H. Schulz. I restructured, added improvements on all the
modules, especially the visualisations, created a conda package, and performed
the use cases. The features we capture in rapidStats module were advised by
Prof. Dr. Martin Simon. A detailed list of my contributions in the development
of RAPID can be seen at our GitHub page https://github.com/SchulzLab/
RAPID/graphs/contributors.

https://github.com/SchulzLab/RAPID
https://github.com/SchulzLab/RAPID/graphs/contributors
https://github.com/SchulzLab/RAPID/graphs/contributors
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Chapter 4

Genome wide analysis of RNAi
mechanisms in Paramecium

This chapter summarises our work published in two peer-reviewed articles (Karunanithi
et al., 2019; Karunanithi et al., 2020). Parts of this chapter have also been orally
presented in two conferences: (i) Ciliate Molecular Biology conference 2018
in Washington DC, USA, and (ii) GDRE 2017: Conference on Paramecium
[Epi]genome Organization, Dynamics and Evolution, Nohfelden, Germany.

4.1 Background
RNA interference (RNAi) is widely known to regulate gene expression either
at transcriptional or post-transcriptional level, using small RNA molecules in
eukaryotes. In order to silence gene expression, when RNAi triggers DNA or
chromatin modifications it is termed Transcriptional Gene Silencing (TGS).
When a RNAi process degrades an mRNA or inhibits the translation of an
mRNA to protein, through a cascade of biomolecular processes, it is called Post
Transcriptional Gene Silencing (PTGS) (Moazed, 2009; Zhang, 2009). Please
refer to Chapter 2 for more information on RNAi.

4.1.1 RNAi plays defense
RNAi is known to act as a natural defense mechanism against viral infections in
plants. Studies have also shown the existence of RNAi-dependent small RNAs
acting against viral infections in mammals (Li et al., 2013; Maillard et al., 2013).
Recently the United States Food and Drug Administration even approved a first
RNAi based drug, patisiran, to treat people with polyneuropathy. Nevertheless,
there is still a lot to be understood at a systemic level on the functioning
of RNAi. There are several more such drugs being tested in clinical trials.
This impressive feature of using RNAi in medicine, took years of effort from
researchers to artificially trigger RNAi (Setten, Rossi, and Han, 2019).

4.1.2 RNAi as a molecular tool
RNAi can be triggered in cells or species when they consume artificially intro-
duced regulatory dsRNA through their food or from the environment (Whangbo
and Hunter, 2008). This artifical dsRNA is called exogenous RNA. This method
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Figure 4.1: RNAi feeding pathway in Paramecium: A) A
representation of feeding in Paramecium is shown. Engineered
E.coli expressing dsRNA of interest is fed to Paramecium. B)
The fed dsRNA is processed by different enzymes to produce
primary (1o) and secondary (2o) siRNAs. This figure is created
by me with the help of DNA/RNA images obtained in 2016

(Somersault1824 ).

has been first made available in Caenorhabditis elegans (Fire et al., 1998). In
Paramecium, RNAi is achieved by feeding the Paramecium cells (Figure 4.1A)
with the Escherichia coli bacteria carrying engineered dsRNA (Galvani and
Sperling, 2002).

4.1.3 Exogenously induced RNAi pathways in Parame-
cium

Figure 4.1B shows a representation of the exogenous RNAi processing pathway
in Paramecium. When an exogenous dsRNA is introduced in Paramecium, two
RDR enzymes (RDR1 and RDR2) amplify it, and then use Dicer (DCR1) to
produce 23 nt primary (1o) siRNAs. The mechanism of secondary (2o) siRNA
production in Paramecium is unclear. However, the 2o siRNAs are less abundant
than 1o siRNAs (Marker et al., 2010; Carradec et al., 2015; Marker et al., 2014).
While we know how the exogenous RNA fed to Paramecium is processed, we do
not know the endogenous small RNA composition of vegetative Paramecium.
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4.2 Research objectives
In this context, we defined the following objectives:

1. Define a genome wide small RNA profile of vegetative Paramecium

2. Identify the possible sources, and mechanism of action of the defined small
RNAs

3. Clarify if environmental RNA, introduced by feeding technique, affect
small RNA profile and transcriptome

4.3 Data and methodology
All the methods related to the work discussed in this chapter are described here.
The biological steps involved in creating our data sets are not discussed, as it
is beyond the scope of this thesis. However, the background chapter includes,
in brief, the idea behind many of these biological methods.

4.3.1 Data set description and retrieval
We categorize the data sets in this work into two groups: (i) Cluster definition
data, and (ii) Analysis data.

Cluster definition data

In order to characterize small RNA clusters from the Wildtype (WT) serotypes
51A, 51B, 51D, and 51H, we sequenced sRNA data sets, two replicates each.

Analysis data

Wild type: We obtained the mRNA expression data from a recent study of
our collaborators for the WT serotypes 51A, 51B, 51D, and 51H of P. tetraurelia
(Cheaib et al., 2015), three replicates each (European Nucleotide Archive (ENA)
Accession: PRJEB9464). For the same biological replicates, we sequenced
sRNA data sets (four WT serotypes, three replicates each) in order to have
paired sRNA and mRNA expression data.

RdRP mutants: We created two mutant strains of WT serotype 51A,
namely 51A-RDR1 and 51A-RDR2 lacking the enzymes RDR1 and RDR2, re-
spectively. We sequenced three replicates of sRNA and mRNA data for these
RdRP mutants. These data sets are publicly accessible at ENA (Accession: PR-
JEB25903). Details on how these mutants are created is beyond the scope of this
thesis. However, this information can be found in our publication (Karunanithi
et al., 2019).
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RNAi knockdown: Using the RNAi by feeding technique, we knocked
down the genes ND169, and DCR1 of WT serotypes 51A (and 51B), result-
ing in knocked down strains namely 51A-ND169 (and 51B-ND169) and 51A-
DCR1 (and 51B-DCR1), respectively. We performed sRNA (two replicates
each) and mRNA (three replicates each) sequencing on RNAi knockdown sam-
ples for both 51A and 51B serotypes. These data sets can be accessed at ENA
(Accession: PRJEB33364). The feeding fragments used for the gene ND169
(GeneID: PTET.51.1.G0210080) and DCR1 (GeneID: PTET.51.1.G0700179)
are scaffold51_21 : 137857 - 138267 and scaffold51_70 : 312063 - 313251, re-
spectively.

4.3.2 Sequencing data preprocessing
All sequencing data sets were trimmed for adapter sequences using Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) which
employs cutadapt (Martin, 2011) using a stringency cutoff of 10.

Small RNA data preprocessing

Small RNA reads of length shorter than 21 nt were removed from our analysis,
as they are potential RNA degradation products.

4.3.3 Small RNA cluster definition
The replicates of the cluster definition data sets, after preprocessing, were
merged and then aligned using the alignment module from ShortStack (ver-
sion 3.4) (Johnson et al., 2016), with default parameters. Reads were aligned
to the P. tetraurelia MAC genome (version 2;stock 51). By downsampling we
ensured the alignments had equal number of reads in all samples, in order to
avoid sequencing depth biasing the cluster identification. These downsampled
alignments of each WT serotype were subjected to the cluster calling module
of ShortStack to identify small RNA clusters. We used a minimum alignment
coverage (mincov) of 20 alignments, with a padding (pad) of 100 bp. The
padding parameter merges distinct clusters within 100 bp as a single cluster.
The identified clusters from each WT serotype were unified as one consistent set
of clusters, called Small RNA Clusters (SRCs), enabling unbiased comparison
across serotypes. Unification of clusters was performed using mergeBed (from
BEDtools v2.23; default parameters) (Quinlan and Hall, 2010), which unified
clusters with at least 1 bp overlap.

4.3.4 Boundary modification of SRCs and definition of
endo-siRNAs

We investigated them in the Integrative Genomics Viewer (IGV) (version 2.3.91)
(Robinson et al., 2011) against the MAC genome annotation of P. tetraurelia
(Stock 51; version 2). We identified several SRC loci with non-specific gene
boundaries (see B.1). For instance, one SRC locus could overlap with more than
one gene, just by few bps as the average intergenic distance of P. tetraurelia

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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genome is only 352 bp. As we wanted to compare small RNA accumulation with
gene expression data, SRC loci with non-specific gene boundaries would cause
bias in such downstream analyses. Hence, we first removed SRC loci which
did not overlap with any protein-coding gene. Of the remaining SRC loci, we
modified the ones with non-specific gene boundaries, by subjecting a SRC-gene
overlap to two conditions; (i) if the gene was covered by more than 80% and the
SRC locus was covered at least by 20%, then the SRC’s boundary was limited
to the gene’s boundary. This removed non-specific gene overlaps. However, this
condition also removed genes which can genuinely overlap with multiple SRCs
to achieve some biological function. In order to account for such cases, another
condition was introduced (ii) if the gene was covered at least by 10% and the
SRC was covered by more than 80%, such SRCs were retained without any
boundary changes. This filtered and boundary modified SRC loci are termed
endo-siRNAs, short for endogenous small interfering RNAs. We have used the
SRCs only to show their general properties, phasing characteristics, and their
genome distribution. All other analyses utilizes endo-siRNAs.

4.3.5 Quantification of sRNA reads
We quantified the sRNA reads using the RAPID software for all SRCs and
endo-siRNAs. RAPID was run with default parameters, which only considers
error-free alignments but allows multi-mapping reads (-k 100; -k is the bowtie2
parameter controlling the number of multi-mapping reads to be reported in
alignments). We use the mean of replicates in all analyses, unless mentioned
otherwise. The quantification of SRCs were used only to describe their general
characteristics and to study their genome wide distribution. All other quanti-
tative analysis were limited to the endo-siRNAs.

4.3.6 Normalization of sRNA reads
For all comparative analyses of sRNA data sets, we used the normalized counts
using the TCS method implemented in RAPID. Further, we converted these
values to TPM using RAPID, which we also refer to as sRNA accumulation.
We utilized the KDCS method of RAPID while normalizing the sRNA read
counts of RNAi knockdown samples to adjust for the feeding associated small
RNAs. Analyses pertaining to individual wildtype serotypes use only the SRCs
with a TPM value greater than one, denoted serotype specific SRCs.

4.3.7 Quantification of mRNA expression
We quantified the mRNA expression of all the P. tetraurelia transcripts from
the MAC genome annotation (version 2; stock 51), using Salmon (version 0.8.2;
default parameters) (Patro et al., 2017). We used the mean of replicate ex-
pression, in TPM units, unless mentioned otherwise. We excluded the feeding
regions, and 100 bps upstream and downstream to account for alignment arti-
facts, from the transcripts for the respective RNAi knockdown samples.
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4.3.8 Clustering of expression data
We created heat maps of the endo-siRNA and mRNA expression data and
performed hierarchial clustering of samples with complete linkage using an eu-
clidean distance measure. We made use of the R package gplots (version 3.0.1.1).

4.3.9 Comparative analysis of sRNA and mRNA in wild-
type

We calculated Pearson correlation between mRNA expression and sRNA accu-
mulation using all WT serotype replicate measurements. We had two special
cases while associating endo-siRNAs with mRNAs. First case is when a gene
encompassed multiple endo-siRNAs, we used the sum of all such endo-siRNA’s
accumulation to correlate with the respective gene’s mRNA expression. Second
case is when an endo-siRNA mapped to multiple genes, we used that endo-
siRNA’s accumulation to correlate with each gene’s mRNA it mapped to.

Quantification of sRNA in exon-exon junctions and introns

To investigate the source of sRNA, we quantified the accumulation of sRNA in
the exon-exon junction (EEJ), and introns. We obtained the list of introns from
the ParameciumDB (https://paramecium.i2bc.paris-saclay.fr/) (Arnaiz
et al., 2007). Using the exon information from the MAC genome annotation
(version 2; stock 51), we defined an EEJ as 18 bps upstream and downstream
of an exon-exon boundary.

4.3.10 Phasing prediction
We predicted phased loci, from our downsampled sRNA alignments, using the
(P -score) method (Howell et al., 2007). The genome is scanned in windows of
size 253 bp considering 11 registers of length 23. Each register is made of 23
bins; one phased and 22 non-phased bins. We used the P -score to calculate the
enrichment of sRNA reads on both strands in phased registers. If a window
(loci) has a minimum of 20 reads, at least 3 (out of 22) distinct phased bins
in that window has sRNA reads for each strand, and a P -score > 10 then that
window is predicted as phased.

4.3.11 Annotation of SRCs and endo-siRNAs
Using the genome annotation file of P. tetraurelia (Stock 51; version 2) down-
loaded from the parameciumDB and BEDtools (intersectBed; version 2.23)
(Quinlan and Hall, 2010), we annotated the identified serotype specific SRCs
in to different genomic categories. Annotations mapping to the number of
protein-coding genes were handled separately using the endo-siRNAs in order
to avoid the non-specific gene boundaries described above.

https://paramecium.i2bc.paris-saclay.fr/
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Pseudogene annotation

Pseudogenes are non-functional copies of functional genes in a genome. As pseu-
dogenes were not part of the P. tetraurelia MAC genome annotation, we used
the PseudoPipe (Zhang et al., 2006) software to predict pseudogenes. Pseu-
doPipe performs a comprehensive homology search of the protein coding genes
in a genome followed by several filtering criteria like homology score, intron-
exon structure, and frameshift mutations. We used the default parameters,
except for one change. P. tetraurelia’s genetic code differs from other organ-
isms. Specifically the codons UAA and UAG codes for the aminoacid glutamine
instead of acting as a stop codon. So, we adapted the software’s tblastn (-D 6)
step of the software to accommodate the modified genetic code.

4.3.12 Differential expression analysis
Using the WT samples as control, we performed a differential expression (DE)
analysis of endo-siRNAs raw read counts for each RNAi knockdown and RdRP
mutant samples. We had the same setup for mRNA samples, except that we
used the raw mRNA read counts obtained from HTSeq (version 0.9.0) (Anders,
Pyl, and Huber, 2014). We used the R/Bioconductor package DESeq2 (version
1.18.1) (Love, Huber, and Anders, 2014) to perform the DE analysis. Follow-
ing the DE analysis, endo-siRNAs (or mRNAs when applicable), with a false
discovery rate lesser than 0.05 (FDR<0.05) were considered as differentially
expressed with statistical significance.

4.3.13 Off-target analysis
We created all possible 23−mers from the feeding regions, used in the RNAi
knockdown samples of both ND169 and DCR1 genes, as well as their reverse
complement 23−mers. We aligned these 23−mers against the rest of the P.
tetraurelia MAC genome (version 2; stock 51). We used the bowtie2 (Langmead
and Salzberg, 2012) aligner to perform local alignments (−−local) and report
up to 100 distinct alignments for each read (−k 100). Further, we identified the
genes overlapping with a unique exact match from these alignments.

4.3.14 Gene ontology enrichment
Using the Gene ontology (GO) association file downloaded from Parameci-
umDB, we performed GO enrichment analysis using Ontologizer (version 2.0)
software (Bauer et al., 2008) with default parameters except for using the
parent-child union method, and Benjamini-Hochberg correction method for
multiple testing. We considered GO terms with a multiple testing corrected
p-value < 0.05 as statistically significant. We used all P. tetraurelia genes as
the population set.
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Figure 4.2: Overview of the small RNA cluster definition work-
flow. The first row visualises the different WT serotypes accord-

ing to a transcriptome analysis (Cheaib et al., 2015)

4.3.15 Nomenclature
• Results of all sequencing experiments are termed samples. Eg. 51A is a

wildtype sample

• The abbreviations of wildtype samples are WT (Eg. 51A); RDR1/RDR2
mutant samples are RDR1/RDR2 (Eg. 51A-RDR1); ND169/DCR1 knocked
down samples are ND169/DCR1 (Eg. 51B-ND169)

• When an experiment is repeated more than once for a sample, we get
replicates. Replicates are enumerated following the sample name. Eg.
51B-ND169-1

4.4 Results and discussion

4.4.1 Definition of small RNA clusters (SRCs)
Paramecium undergoes diverse transcriptomic alterations in different WT serotypes
(51A, 51B, 51D, 51H) as shown in the heat maps of Figure 4.2. A genome wide
small RNA profile of Paramecium had never been documented. So, we set out
to characterize a genome wide profile of small RNAs in these four WT serotypes.
Using the workflow shown in Figure 4.2, we identified 2602 SRCs, with none
of them predicted as canonical miRNAs by the ShortStack algorithm. We ob-
served that the majority of the SRCs are between 100 and 1000 bps in length
(Figure 4.3A), with a predominant sRNA length of 23 nt (Figure 4.3B). We
quantified the expression of 2602 SRCs in all WT serotypes, and observed that
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Figure 4.3: Characteristics of the SRCs: A) Length distribu-
tion of SRCs. B) Number of serotype specific SRCs (y-axis)
detected in the WT serotype samples (replicates were merged),
stratified according to the predominant small RNA length (dicer
call), where N means that no predominant length could be found.
C) Heatmap of normalized sRNA read counts after hierarchical
clustering (Euclidean distance measure) of the SRCs (rows) for

all WT serotype replicates (columns).

the individual serotypes clustered according to the expression of SRCs (Figure
4.3C). This suggested us that individual serotypes are distinguishable based on
the expression of SRCs. Hence, we used a cut-off on the expressed small RNA
accumulation (TPM>1), to define 2236, 2058, 2393, and 2012 SRCs as serotype
specific SRCs in WT serotypes 51A, 51B, 51D, and 51H, respectively.

4.4.2 Majority of SRCs are in protein-coding genes
We investigated which genomic regions produce small RNAs, by overlapping the
identified SRCs against the genome annotation of Paramecium. The genome
annotation included protein-coding, and other non-coding RNA like tRNA, 5S
rRNA, snoRNA, snRNA. As pseudogenes were not part of the publicly avail-
able annotation at ParameciumDB, we predicted pseudogenes using Pseudopipe
software (see 4.3.11) and included them in our analysis. We show the number
of serotype specific SRCs that overlap with distinct annotated genomic regions
in Figure 4.4A. We found that the majority of SRCs (≈ 1300) overlap with
protein-coding genes. As we were interested in analysing their source and func-
tion in downstream analyses, we investigated some of them in IGV browser. We
found that many SRCs had non-specific gene boundaries, which we rectified (see
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Figure 4.4: Annotation of SRCs: A) Serotype specific SRCs
expressed in the wildtype serotype (replicates were merged) sam-
ples were overlapped with annotated regions. Each annotated
element is counted only once (distinct counting) and the num-
ber of elements of the different types (colors) is shown on the
y-axis for all 4 WT serotypes. B) sRNA accumulation (log10
TPM, color scale) in SRCs overlapping different genomic anno-
tations (rows) and restricted to small RNA length (x-axis) for
51A serotype. C) Length distribution of sense (green) and an-
tisense (red) sRNAs mapping to protein-coding genes in 51A

serotype.

4.3.4). After boundary modifications, in total, we retained 1618 serotype spe-
cific SRCs overlapping with protein-coding genes, which we called endo-siRNAs
(short for endogenous small interfering RNAs). We observed that only few
SRCs were found in various non-coding RNA loci. However, when we account
for the fact that only ≈ 3% of the Paramecium genome is non-coding, we ob-
served that almost all of the non-coding RNA loci produce small RNAs. For
instance, in serotype 51A, 1,220 SRCs were in genes (≈ 3% of 40,460), 117 in
pseudogenes (≈ 5% of 2435 pseudogenes), 212 in intergenic regions (≈ 0.4% of
39,156), 135 in tRNAs (≈ 68% of 198 annotated tRNAs), 16 in snRNAs (100%),
24 in 5S-rRNAs (≈ 96% of 25 5S rRNAs), 108 in snoRNAs (≈ 76% of 142 an-
notated snoRNAs) and 50 in the category of other RNAs with diverse functions
(≈ 7.2% of 689 other RNA loci). Further, we investigated the read length and
strand distribution of small RNAs across all annotation types. Figure 4.4B
shows that 23 nt is the predominant length across all annotation types in WT
serotype 51A. Figure 4.4C shows the presence of both strands of small RNA
reads, across different read lengths in the genes loci of 51A. Appendix Figure
B.4 shows that the same information holds true for all other WT serotypes, and
annotation. The predominance of 23 nt sRNAs, in both strands suggests that
(i) they are not mRNA degradation products, and (ii) they are likely products
of the RNA interference machinery.
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4.4.3 Common set of protein-coding genes with endo-
siRNAs

We were curious to find out whether there is a common set of protein-coding
genes which overlap with our endo-siRNAs among all four WT serotypes. Using
the protein-coding genes which overlap with our endo-siRNAs in each serotype,
we created a set-intersection plot (popularly called UpSet plot) shown in Figure
4.5A. We observed that 973 protein-coding genes were found to be common
among all four WT serotypes, which overlap with our endo-siRNAs. These are
termed, Genes associated with Small RNA Clusters (GSRCs). A GO enrichment
analysis on these GSRCs showed enrichment of wide range of biological processes
including gene expression, translation, structural molecular activity, and cellular
biosynthetic processes. This suggested that GSRCs play a crucial role in the
functioning of Paramecium.

4.4.4 mRNAs are a predominant source of small RNAs
in GSRCs

We queried the mRNA expression data to see if there are differences between
our GSRCs and other genes. Figure 4.5B shows a box plot of mRNA expression
among GSRCs and other genes, for all serotypes. In all serotypes, GSRCs had a
higher median expression compared to other genes, found to be statistically sig-
nificant (Wilcoxon test, P < 0.05). Further, we wanted to investigate whether
mRNAs of the GSRCs can be a source of endo-siRNAs. To this end, we anal-
ysed the small RNA content of 708 GSRCs, which had at least one exon-exon
junction (EEJ). Figure 4.5C shows a box plot of the total sRNA read counts
in the EEJs and introns for the 708 GSRCs. Except in 51H serotype, we do
not observe any sRNA reads in introns. In all serotypes, the sRNA content, in
comparison to introns, is found to be higher in EEJs with statistical significance
(Wilcoxon test, P < 0.05). This suggests clearly that endo-siRNAs are mRNA
products of GSRCs.

Next, we investigated whether there is a correlation of mRNA and sRNA
content of the 973 GSRCs. Figure 4.5D shows the distribution of gene wise
Pearson correlation coefficient values. We observe both positive and negative
Pearson correlation coefficient values. Following multiple testing correction,
only≈ 8% of the correlations were statistically significant (FDR < 0.05). In the
absence of a clear trend for all GSRCs, we found that 71 and 3 GSRCs showed
statistically significant positive and negative correlation values, respectively.
Based on GO enrichment analysis, we did not find any unique functions enriched
for these set of positively and negatively correlated genes. Nevertheless, the
positive correlations with endo-siRNAs suggest, that the majority does not act
in cis to silence their parent mRNA, unlike in typical miRNA-based RNAi.

4.4.5 Phasing of small RNA occurs in Paramecium

We hypothesised, based on the 23 nt small RNA predominance in both strands,
that the RNAi machinery is involved in production of endo-siRNAs. To test
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Figure 4.5: Genes associated with SRCs: A) Set intersection
plots for endo-siRNAs overlapping with protein-coding genes
across serotypes. Genes consistently overlapping in the 4 wild-
type serotypes, are called Genes associated with SRCs (GSRCs).
B) Boxplot of mRNA expression (y-axis, log2 TPM) in the 4
wildtype serotypes of GSRCs (red) and other expressed genes
(green). C) Boxplot of total sRNA reads (y-axis; log2) in the
exon-exon junctions (EEJ; red), and introns (green) of GSRCs.
D) A histogram of the number of GSRCs (y-axis) plotted against
the Pearson correlation of mRNA expression and total sRNA (x-

axis) of all WT replicates.
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Figure 4.6: Phased small RNA loci : A) Example IGV screen-
shot of identified phased cluster, C909, annotated as a gene (ID:
PTET.51.1.G0170152). B) Heatmap of normalized sRNA read
counts after hierarchical clustering (Euclidean distance measure)
of the phased endo-siRNAs (rows) for all WT serotype replicates
(columns). C) Total number of phased endo-siRNAs observed

in all WT serotypes.

that hypothesis, we predicted phased small RNA loci from our data and over-
lapped them with our endo-siRNA loci (see 4.3.10). A visual example of a
phased endo-siRNA locus is shown in Figure 4.6A as an IGV screenshot. Fig-
ure 4.6B shows a clustered heat map of the small reads in phased endo-siRNAs
across different serotypes. We observed that serotypes clustered based on the
phased endo-siRNA read counts, demonstrating again the diversity of endo-
siRNA abundance in different serotypes. Further, we overlapped the phased
loci with our endo-siRNAs. Figure 4.6C shows the fraction of phased and un-
phased endo-siRNAs. While 51D serotype had the highest number of phased
endo-siRNAs, all serotypes had at least ≈ 10% of endo-siRNAs as phased. Fur-
ther we found that only ≈ 12% of GSRCs were phased (not shown in plots).
If the known RNAi machinery were to be the only source of endo-siRNAs in
our case, we should have seen a phasing of all endo-siRNA or GSRCs. The
contrary suggests that, different endo-siRNAs are produced through different
mechanisms.

4.4.6 Phased endo-siRNAs depend on two RDR enzymes
The RDR enzymes (RDR1 and RDR2) are part of the RNAi machinery. Their
role in siRNA biogenesis after processing the exogenous RNA (environmental
RNA) is well documented by previous works in Paramecium (Carradec et al.,
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2015; Marker et al., 2014). We have seen in the previous sections, the RNAi ma-
chinery plays a role in creating the endo-siRNAs. In order to confirm that, we
created RDR1 and RDR2 mutant data sets of wildtype Paramecium expressing
serotype 51A. The total small RNA reads of the endo-siRNAs (Figure 4.7A),
and the mRNA expression (Figure 4.7B) in our mutant data sets (51A-RDR1,
and 51A-RDR2) are statistically significantly lower than the respective wild-
type serotype 51A (Wilcoxon test, P < 0.05). This indicates clearly that both
RDR1 and RDR2 play a role in the biogenesis of endo-siRNA as well. Further,
we analysed the fold changes of the mutants over the wildtype samples. The
total sRNA accumulation (Figure 4.7C) fold change of phased endo-siRNAs is
statistically significantly lower than the unphased endo-siRNAs. This suggests
that the phased endo-siRNAs are dependent on the RDR enzymes, and other
endo-siRNAs are likely to have a different biogenesis mechanism. On the con-
trary, when we analysed the mRNA expression fold change (Figure 4.7D), we
observed that the fold change of phased mRNAs (i.e. genes which overlap with
phased endo-siRNAs) are statistically significantly higher expressed than the
unphased mRNAs. This observation suggests that phased endo-siRNAs tend to
act negatively in cis to silence the parent mRNA. However, we do not see a per-
fect negative correlation of all the phased endo-siRNAs and respective mRNAs.

4.4.7 Drastic alterations of the endo-siRNA repertoire
in control feeding

While inducing RNAi by feeding (see 4.1.2), researchers commonly feed against
a gene unrelated to the phenomenon under study and use that as control (even
treat it as similar to wildtype). However, the genome wide changes caused due
to feeding have never been documented in Paramecium. We exploited our endo-
siRNA data to study the genome wide changes caused by feeding in two wild-
type serotypes (51A, and 51B). In both these serotypes, we created two knocked
down data sets of two genes and sequenced their small RNA, and mRNA (dis-
cussed in next section). The two genes knocked down by feeding are namely (i)
ND169, a gene known to be unrelated to the feeding pathway, as control and
(ii) DCR1, the dicer gene known to be involved in the feeding pathway, which
processes the dsRNA into siRNA. Figure 4.8 (A and B) shows a heat map of the
normalized endo-siRNA read counts in wildtype and knocked down samples of
serotype 51A and 51B, respectively. We observed that different subsets of endo-
siRNAs undergo changes in their abundance in different knockdown samples.
The wildtype samples clustered separately from the rest of the knocked down
samples. Surprisingly, ND169 knocked down samples clustered together with
the DCR1 knocked down samples. As ND169 is thought to be not involved in
feeding pathways, we expected ND169 knocked down samples to cluster with the
wildtype samples. This suggests that samples with control feeding are not sim-
ilar to wildtype samples. We show the quantitative changes between wildtype
and knocked down samples using the abundance of endo-siRNAs in all samples
(replicates were merged) in Figure 4.9 (A and B). We observed a statistically
significant reduction (Wilcoxon test; P−value < 0.05) of endo-siRNAs in the
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Figure 4.7: RDR mutant analysis: A) Box plots of the to-
tal small RNA read counts (y-axis; log10) from the WT, and
mutant samples (51A-RDR1, and 51A-RDR2). B) Same as (A),
but showing the mRNA expression (y-axis; log10 TPM). C) Box-
plots of total sRNA fold change (y-axis; log10 mutant/WT) in
each mutant is shown. Boxplots are grouped based on whether
an endo-siRNA is predicted as an unphased, or phased locus.
(B) Same as (A), but shows the mRNA fold change (y-axis;
log10 mutant/WT). The P-values indicated are from a two-tailed

Wilcoxon test.
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A B

Figure 4.8: Endo-siRNAs in knockdown: Heatmap of normal-
ized sRNA read counts after hierarchical clustering (Euclidean
distance measure) of the 1,618 endo-siRNAs (rows) for all repli-
cates (columns) respective to the serotype 51A (A) and 51B (B)

is shown.

knocked down samples compared to the wildtype in both serotypes 51A and
51B. In addition, the difference between the median sRNA read counts is less
among the knocked down samples. These observations further strengthen our
claim that control feeding is not similar to wildtype. We performed a differen-
tial expression analysis of the endo-siRNAs between the wildtype and knocked
down samples. Using the differentially expressed genes in each knocked down
sample, which were statistically significant (FDR < 0.05), we created set inter-
section plots for both serotypes separately (Figure 4.9 C and D). In serotypes
51A and 51B, the DCR1 feeding samples have 371 and 367 DE endo-siRNAs,
respectively. Of them approximately 70% of the endo-siRNAs (257 in 51A; 254
in 51B) are differentially expressed in ND169 feeding as well, which suggests
they are a common response to the knock down experiments (or the feeding of
exogenous dsRNA).

We performed a GO enrichment analysis to investigate whether genes asso-
ciated with the DE endo-siRNAs have any overrepresented GO terms. We iden-
tified diverse functions and processes associated with these genes. Following are
some of the significantly enriched terms: cofactor metabolic process, pteridine-
containing compound metabolic process, single-multicellular organism process,
multicellular organism process, developmental process, and others. These re-
sults suggest that feeding interferes with a diverse set of pathways irrespective
of the feeding gene.



4.4. Results and discussion 63

2.7e−37

4.4e−23

0.00018

0

5

10

15

51A 51A−ND169 51A−DCR1
Serotype

N
or

m
al

iz
ed

 s
R

N
A

 r
ea

d 
co

un
t (

lo
g2

)

A

1.2e−44

1e−43

0.89

0

5

10

15

51B 51B−ND169 51B−DCR1
Serotype

N
or

m
al

iz
ed

 s
R

N
A

 r
ea

d 
co

un
t (

lo
g2

)

B

C D

Figure 4.9: Quantification and differential expression of the
1,618 endo-siRNAs: (A and B) Boxplots of the 1,618 normalized
endo-siRNA read counts (y-axis; log2) of serotype (51A and 51B,
respectively) and their knockdowns (ND169 and DCR1). The
P-values indicated are from a two-tailed Wilcoxon test. (C and
D) Set intersection plots of differentially expressed endo-siRNA
clusters in the knockdown serotype against each WT serotype

for 51A, and 51B, respectively.
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Figure 4.10: Knockdown effects on the transcriptome:
Heatmap of mRNA expression after hierarchical clustering (Eu-
clidean distance measure) of all the mRNAs (rows) for all repli-
cates (columns) respective to the serotype 51A (A) and 51B (B)

is shown.

4.4.8 Feeding technique deregulates gene expression
In order to investigate the effect of feeding on gene expression, we performed
the same set of analysis as described in the previous section, but for the mRNA
expression data. A heatmap of the gene expression values (Figure 4.10 A and
B) shows the clustering of replicates based on mRNA expression. We observed
that there are large changes in the mRNA transcriptome after ND169 and DCR1
feeding. We observed that wildtype samples clustered separately, yet again, in
both serotypes. However, the ND169 feeding replicates (except one replicate in
serotype 51A) clustered relatively closer to the wildtype replicates than what
we observed in endo-siRNA analysis (Figure 4.8 A and B). To observe the
quantitative differences among wildtype and feeding samples, we checked the
distribution of mRNA expression (Figure 4.11 A and B). We observed a statis-
tically significant reduction (Wilcoxon test; P−value < 0.05) of mRNAs in the
knocked down samples compared to the wildtype in both serotypes 51A and
51B. In addition, we also observed a statistically significant difference between
the median mRNA expression among the knocked down samples. These obser-
vations assert why the control feeding samples clustered (Figure 4.10 A and B)
closer with wildtype.

Subsequently, we performed differential gene expression analysis between the
wildtype, and feeding samples. Figure 4.11 (C and D) shows set intersection
plots of the statistically significantly differentially expressed genes for serotypes
51A and 51B, respectively. In both serotypes, DCR1 feeding has the highest
and unique set of DE genes. However, approximately 30-40% of the DE genes
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Figure 4.11: Quantification and differential expression of the
knockdown transcriptome: (A and B) Boxplots of genome-wide
mRNA expression (y-axis; TPM) of serotype (51A and 51B, re-
spectively) and their knockdowns (ND169 and DCR1). Reads
mapping to the feeding-associated regions was removed prior
to expression quantification. The P-values indicated are from a
two-tailed Wilcoxon test. (C and D) Set intersection plots of dif-
ferentially expressed (D.E.) mRNA in the knockdown serotypes

against each WT serotypes for 51A, and 51B, respectively.
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in DCR1 are commonly found in the ND169 control feeding as well. It seems
likely that genes, which are uniquely differentially expressed in DCR1, are due to
direct effects of DCR1 being involved in endo-siRNA accumulation. In contrast,
commonly differentially expressed genes are probably deregulated as a response
to the feeding process rather than the causal effect of the knocked-down gene.

When we performed a GO enrichment analysis of these common DE genes,
we observed diverse sets of biological processes like nucleoside phosphate metabolic
process, gene expression, biosynthetic processes, ATPase activity, proteolysis,
etc. These results indicate that feeding affects a diverse set of pathways, which
seem to be involved in the general depletion of endo-siRNAs and mRNAs that
we observe.

4.4.9 Off-target effects are unlikely to cause the observed
drastic changes

The knocked down experiments are designed very carefully to avoid hitting
unintended targets. Nevertheless, we wanted to verify if the drastic changes in
endo-siRNAs and mRNAs we observe in knocked down (or feeding) samples are
caused due to off-target effects (see 4.3.13). We found few exact matching off-
target genes: five, and two for ND169, and DCR1 feeding regions, respectively.
Of them, only a couple of off-targets are differentially expressed (see B.5). With
this data we can cautiously conclude that a large number of DE genes are
unlikely to be an off-target effect, but a general response to the massive dsRNA
feeding.

4.5 Key conclusions
We reported the first genome wide endogenous small RNA profile of the vege-
tative Paramecium. While we did not discover any miRNAs, we identified that
many endo-siRNAs are produced from the protein-coding genes. We confirmed
the source of endo-siRNAs as mRNAs for a subset of endo-siRNAs, which are
commonly expressed in different wildtype serotypes. In contrast to many or-
ganisms, we observed that endo-siRNAs do not strictly act in cis to silence
their parent mRNA. We predicted phased small RNA loci and experimentally
verified that they are products of the RNA interference machinery mediated
by the enzymes RDR1 and RDR2. Future work is necessary to address the
biogenesis, functional pathways of the subsets of endo-siRNAs whose source are
not protein-coding genes, and the plausible trans acting pathways.

We also documented the aberrations of endogenous small RNA profile, and
subsequently the respective transcriptomic alterations in different serotypes of
Paramecium caused by feeding, a technique widely used to induce RNAi. Our
study encourages RNAi researchers to cautiously select appropriate controls,
and differentiate between the changes in expression caused by the feeding tech-
nique itself, and the actual regulatory changes. Our observation is crucial at
a point when RNAi treated organisms are considered as free of Genetically
Modified Organisms (GMOs), and being increasingly used to combat viral and
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pest resistance in bacteria and plants. Our results warrant a cautious systemic
investigation, while studying the effects of RNAi using the feeding technique.

4.6 Contributions
The work presented in this chapter includes contribution from several colleagues
and collaborators. Sequencing library preparation, knock down and mutant ex-
periments were carried out by our wet-lab collaborators namely (in alphabetical
order of last names) Miriam Cheaib, Franziska Drews, Gilles Gasparoni, Jas-
min Kirch, Simone Marker, Marcello Pirritano, Angela M. Rodriguez-Viana,
Martin Simon, and Raphael de Wijn. Sequenced data sets were trimmed by
Karl Nordström. Vidya Oruganti generated the small RNA clusters (and their
phasing prediction). All other data and analysis presented in this chapter were
performed by me under the supervision of Prof. Dr. Martin C. Simon and Prof.
Dr. Marcel H. Schulz.
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Chapter 5

Epigenomic characteristics of the
Paramecium macronuclear
genome

This chapter summarises our work aimed at understanding the epigenome of
Paramecium tetraurelia.

5.1 Background
The role of non-coding DNA, intergenic regions and introns, in gene regulation
is widely studied. The intergenic regions host regulatory elements like promot-
ers, enhancers and silencers. These regulatory elements and introns together
control gene expression in several organisms (Nelson, Hersh, and Carroll, 2004;
Shabalina and Spiridonov, 2004; Elkon and Agami, 2017). More information
on non-coding DNA can be found in Chapter 2.

The macronuclear genome annotation of Paramecium revealed their coding
density to be the highest among free living eukaryotes (Zagulski et al., 2004;
Arnaiz et al., 2007). Table 5.1 shows the comparative statistics of different
genomic features in Paramecium and humans. The highly condensed Parame-
cium genome (Figure 5.1) has short intergenic regions, with an average length
of merely 352 bp, and small introns of mean size 25 bp. This raises the question
on how the macronuclear genome expression is regulated.

In the previous chapter 4, we described the small RNA landscape of the
vegetative MAC and their possible roles in regulating gene expression. Epige-
netic inheritance of gene expression such as mating type or serotype determi-
nation has been phenotypically observed in Paramecium (Chalker, Meyer, and
Mochizuki, 2013; Orias, Singh, and Meyer, 2017; Pilling et al., 2017). Exten-
sive studies have also shown the epigenetic orchestration of programmed genome
rearrangements in developing macronuclei (Betermier and Duharcourt, 2017).
Molecular studies have also shown the role of chromatin assembly factors in
programmed DNA elimination (Ignarski et al., 2014). Further, a study charac-
terizing the transcriptomic landscape of the MAC genome alludes an epigenetic
regulation of expression (Cheaib et al., 2015). However, the epigenome of the
vegetative MAC remains uncharacterized.
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Figure 5.1: A genome browser view showing the comparison
of intergenic regions in P. tetraurelia and Homo sapiens. Green
arrow heads represent the direction of transcription in the an-
notate genes. This figure was created by Franziska Drews using

the Geneious software https://www.geneious.com/.

Category P.tetraurelia H.sapiens

Genome size 72 Mb 3.1 Gb
Protein coding genes 40,460 22,802

Mean gene size 1,084 bp 62,825 bp
Mean intron size 25 bp 3,365 bp
Coding density 80% 3.3%

Mean intergenic size 352 bp 1500 bp

Table 5.1: Comparative statistics of different genomic features
in P.tetraurelia and H.sapiens.

5.2 Research objectives
In this context, we defined the following objectives:

1. Does the Paramecium’s MAC genome have epigenetic features genome
wide?

2. What is the relation of epigenomic changes with Paramecium gene ex-
pression?

5.3 Data and methodology
All the methods related to the work discussed in this chapter are described here.
The biological steps involved in creating our data sets are not discussed, as it is
beyond the scope of this thesis. However, the background chapter includes the
idea behind these biological methods in brief. All data sets presented in this
chapter are from the WT serotype 51A of P. tetraurelia.

5.3.1 Expression data
We quantified the mRNA expression of all the P. tetraurelia transcripts from
the MAC annotation (version 2; stock 51), using Salmon (version 0.8.2; default
parameters) (Patro et al., 2017). The mRNA expression data was obtained
from ENA with accession number PRJEB9464 (Cheaib et al., 2015).

https://www.geneious.com/
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5.3.2 ChIP-Seq data and preprocessing
We sequenced four replicates each of MNase, H3K4me3, H3K27me3, and H3K9ac.
We sequenced one replicate of Pol II ChIP. As a control for ChIP data, we cre-
ated three replicates of Input. As a control for MNase, we created four replicates
of naked DNA. All sequencing data sets were trimmed for adapter sequences us-
ing Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/), which employs cutadapt (Martin, 2011) using a stringency cut-
off of 10. Using deeptools (Ramírez et al., 2016) we performed quality control
of replicates (multiBamSummary and plotCorrelation tools). We downsampled
one replicate each of H3K4me3, H3K9ac, and Input ChIP, which had rather
high coverage.

5.3.3 Alignments
After preprocessing, all MNase, Pol II and histone ChIP-seq reads were aligned
to the macronuclear genome of P. tetraurelia (stock 51). We aligned them
using the local mode of bowtie2 (Langmead and Salzberg, 2012) with default
parameters except the seed alignment mismatch parameter, which was set to 1
(-N 1). These alignments were used in all subsequent analysis except for the
analysis mentioned in 5.3.6 and 5.3.7. These exceptions were performed by our
collaborator Abdulrahman Salhab, who aligned all reads with GEM mapper
(Marco-Sola et al., 2012) to the macronuclear genome of P. tetraurelia (stock
51). All replicates were merged in the downstream analysis, unless mentioned
otherwise.

5.3.4 Occupancy quantification
For all MNase, Pol II and histone ChIP-seq samples, we used DANPOS2 (Chen
et al., 2013) to quantify the respective control normalized occupancy values.
We used the dpos functionality of DANPOS2 for MNase and Pol II occupancy
and the dpeak functionality for histone ChIP-seq experiments. Default param-
eters were used for all functionalities of DANPOS2. Following the occupancy
calculations we made use of the profile functionality of DANPOS2 to visualise
occupancy distributions in a genomic annotation of interest.

Intron visualisation

For all introns, we created a 20 bp window centred on the first and last intron
base of the 5’-exon-intron junction (EIJ) and the 3’-intron-exon junction (IEJ),
respectively. We plotted the occupancy profile for 200 bp around this window
with the centre of x-axis representing the junctions (see 5.4).

5.3.5 Pausing index
We defined a region starting at 30 bp upstream of the Transcription Start
Site (TSS) till 300 bp downstream of the TSS as the Transcription Start Site
Region (TSSR), and a region starting at 300 bp downstream of the TSS till

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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the transcription end site (TES) as gene body (GB). We removed genes which
had fewer than 10 reads in the TSSR. If R is the number of reads (TPM), then
Pausing Index (PI) is calculated as the ratio of the reads in the TSSR over GB
as shown in the below equation (Gates et al., 2017).

PI =
RTSSR

RGB

(5.1)

5.3.6 Signal enrichment visualisation
Using the plotProfile and plotHeatmap functionality of deeptools2, we created
the scaled enrichment plots of different chromatin features. In these plots, the
gene body region was scaled to 500 bp unless mentioned otherwise. In Figure
5.5 only one replicate is shown.

5.3.7 Segmentation analysis of chromatin marks
We employed ChromHMM (Ernst and Kellis, 2017) to perform genome wide seg-
mentation of the histone marks (H3K27me3, H3K4me3, H3K9ac), and MNase
data. We binarized the genome into 200 bp bins based on a Poisson background
model using BinarizeBam function. Further, the LearnModel function was used
to learn a 5 state (-numstates) chromatin state model. Other parameters were
set to default. We used the OverlapEnrichment function of ChromHMM with
default parameters, to annotate the states with respect to the MAC genome
annotation (stock 51; version 2) (Arnaiz et al., 2007). To identify genes over-
lapping with chromatin states at least by 80%, we used intersectBed (-f 0.8)
function of BEDtools (version 2.23) (Quinlan and Hall, 2010).

5.4 Results and discussion

5.4.1 Well positioned nucleosomes are found near the
TSS

To investigate the distribution of nucleosomes in the MAC genome of Parame-
cium, we performed MNase-seq analysis. Using the DANPOS2 software, we
identified the positions where nucleosomes are enriched. We observed a well
positioned +1 nucleosome located ≈ 100 bp downstream of the TSS (Figure
5.2A). As shown in Figure C.1, the shifted +1 is not uncommon in other organ-
isms (Mavrich et al., 2008; Xiong et al., 2016). In contrary to many organisms,
we found that the subsequent nucleosomes (+2, +3, etc.) in the gene body are
less prominent. This does not seem to be an averaging effect on diverse gene
length groups (Figure 5.2B). Interestingly, we also found a prominent peak be-
fore the +1 nucleosome. We investigated whether this is a -1 nucleosome or an
effect of short intergenic regions.
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Figure 5.2: Nucleosome characteristics: A) The average
MNase signal (y-axis) of all genes relative to their distance to
TSS (x-axis) is shown for Paramecium. B) Same as A, but genes

are split in different length groups (in bps).

5.4.2 Nucleosome positioning is influenced by intergenic
distance

We categorized genes into different subsets based on their orientation and in-
tergenic distance to their upstream gene. Figure 5.3A shows a schematic of the
start-to-start (SS), and start-to-end (SE) orientation. Further, we also created
four sub-groups of the SS and SE genes based on different intergenic distance
cutoffs, which can be seen in the table in Figure 5.3A. We plotted the average
MNase signal (Figure 5.3B) for the different gene subgroups in relative distance
to TSS and TES position. Although the nucleosomes in the gene body were less
prominent, we observed well positioned nucleosomes also at the TES. In Figure
5.3, we can observe that the abundance of the -1 nucleosome decreases with
increasing intergenic distance in both SS and SE oriented genes. This shows
that they are the +1 or the last nucleosome of the upstream gene, if they are
in SS or SE orientation, respectively. We also observed that the +1 nucleosome
shifts further downstream of the TSS with shorter intergenic distances (Figure
5.3C). These results show that intergenic distance influences the nucleosome
positioning.

5.4.3 Expression levels are proportional to nucleosome
abundance

Next, we investigated how the nucleosome abundance relates to gene expression.
So, we categorized the genes into three gene expression groups as 19,090 high
expressed (TPM > 2), 20,001 low expressed (0 < TPM <= 2) and 1,369 silent
(TPM = 0) genes. Figure 5.4 shows that the abundance of nucleosomes is
proportional to the gene expression groups in three gene structural elements
namely TSS, introns and TES. The silent genes have very feeble amount of
nucleosomes. The introns are mostly free of nucleosomes, but we observed
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Figure 5.3: Intergenic distance influences nucleosome position-
ing: A) Schematic representation of the gene sub-groups we used
in the analysis. The table shows the counts of genes in the re-
spective intergenic distance groups of each gene orientation. B)
The average MNase signal (y-axis) of all genes relative to their
distance to TSS or TES (x-axis) is shown for different gene ori-
entation groups based on their intergenic distance. C) Same as
B, but the x-axis showing relative distance to TSS is zoomed in

for the SS orientation gene groups.
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Figure 5.4: Nucleosome abundance correlates with gene ex-
pression: The average MNase signal (y-axis) of different gene
expression groups are shown relative to their distance (x-axis)

to TSS (A), intron junction (B) and TES (C).

two nucleosome peaks at the intron boundaries (Figure 5.4B). The Paramecium
genome is known to be alternative splicing free. Nevertheless, it has been shown
that efficient intron definition is crucial for splicing efficiency (Jaillon et al., 2008;
Saudemont et al., 2017). Hence, the well positioned nucleosomes at the intron
boundaries suggest that nucleosome positioning is likely important for efficient
splicing. Additionally, it also suggests that during evolution the mean intron
size of 25 bp is possibly influenced by the length of the linker DNA between the
nucleosomes.

5.4.4 Cis-determination of epigenetic marks
In addition to the MNase, we sequenced histone-ChIP (H3K4me3, H3K9ac and
H3K27me3) and Pol II-ChIP. Consequently, we wanted to investigate how these
different epigenetic marks are distributed in a gene specific manner. We also
investigated the GC content distribution, as they were shown to influence nucle-
osome positioning in other organisms (Fenouil et al., 2012). To this end, we cre-
ated input normalized signals using deepTools. Figure 5.5 shows a heatmap of
the signals along the gene body (scaled to 500 bp), and 1000 bp up/downstream
of the gene body in decreasing order of gene length in each expression category.
An occupancy profile of the epigenetic marks, MNase, Pol II, and GC content
can be seen in Figure C.2. First, we found that there is a clear phasing of nucle-
osomes along the gene body except for the silent genes. Similarly, we observed
clear phasing in all the epigenetic marks, Pol II and GC content as well. In
all the heat maps, we observed a signal depletion at the gene boundaries (TSS
and TES). Subsequently, we checked for the pairwise Pearson correlation of the
normalized gene body signals (Figure C.3) of the epigenetic marks, MNase, Pol
II and GC content. We found that the GC content has the highest positive
correlation with Pol II (r = 0.77) and MNase (r = 0.73).

However, studies have reported that the combination of the size selection
step in MNase-seq and the preference of MNase enzyme to cut at GC-rich
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regions can lead to false association of GC content and nucleosome placement
(Chung et al., 2010). In order to verify that, we created 147 bp bins of the
genome. Next, we calculated the Pearson correlations of the read counts of raw
MNase, and naked DNA in these bins with their GC content (Figure C.4). We
observed a significantly higher correlation of GC content with the raw MNase
(r = 0.6) than the naked DNA (r = 0.3). These observations indicate that the
GC content plays a dominant role in determining the positioning of epigenetic
marks in an AT-rich Paramecium genome, similar to other organisms (Fenouil
et al., 2012).

An intriguing aspect is that high expressed genes have high H3K27me3 (in
other organisms associated with repressed genes) content spread throughout
gene body (Figures 5.5 and C.2). Also, H3K27me3 shows a strong positive
correlation with other epigenetic marks, GC content and Pol II as well (Figure
C.3). This suggests that H3K27me3 possibly also plays a non-repressive role in
Paramecium’s macronuclei.

5.4.5 Lack of measured epigenetic signals in predomi-
nant loci

To gain insights into combinatorial distribution of epigenetic signals genome
wide, we used ChromHMM and identified chromatin states. Figure 5.6A shows
a heatmap of the identified chromatin states with the signal contribution of each
epigenetic mark to the respective state. Figure 5.6B shows the annotation of
each state in different genomic elements, with the enrichments specific to each
column. Further, we analysed the mRNA expression of genes (Figure 5.6C)
which overlap with a chromatin state by at least 80%. We note that because of
this overlap condition, we can analyse only ≈ 30% of the protein-coding genes.

Active state

State-1 comprises of genomic loci with increased coverage of activation-associated
marks (H3K4me3, H3K9ac), decreased coverage of repression-associated mark
(H3K27me3) and MNase (Figure 5.6A). The segment annotation of State-1
shows that they are enriched in TSS regions (Figure 5.6B), with a median ex-
pression (Figure 5.6C) of ≈ 0.8 TPM (log10). In other organisms, H3K4me3
and H3K9ac are often associated with active gene expression (Bannister and
Kouzarides, 2011).

Repressive state

Genomic loci with high H3K27me3 signal comprise State-3, which is in contrast
to State-1. State-3 is highly enriched in exonic regions. Although we only have
97 genes in this state, they show a large range of mRNA expression values. This
further supports our observation that H3K27me3 likely plays a non-repressive
role.
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Figure 5.5: A heatmap showing the signal distributions of
H3K27me3, H3K4me3, H3K9ac, MNase, GC content, and Pol
II stratified according to gene expression groups. The signal
shown is for the gene body (TSS to TES; scaled to 500 bp) and
1 Kbp upstream and downstream of gene body. This figure was

created by Abdulrahman Salhab.
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Figure 5.6: Identification of chromatin states: A) The chro-
matin states predicted by ChromHMM are shown as a heatmap.
Each row corresponds to a chromatin state, and each column
represents different epigenetic marks. Darker colour of an epi-
genetic mark in a particular state indicate that there is a higher
probability of observing that epigenetic mark in that state. B)
Heatmap showing the enrichment of a chromatin state (row) in
different genomic annotations (columns). Enrichment values are
obtained from overlap enrichment functionality of ChromHMM
with a column specific colour scale (min-max scaled). C) Box
plots showing the mRNA expression (y-axis; log10 TPM+1) of
genes whose loci overlap at least by 80% with the respective
chromatin states. This figure’s elements A and B were recreated
by me, by the ChromHMM segmentation performed by Abdul-

rahman Salhab.
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Nucleosomal state

State-5 predominantly is composed of MNase and faint H3K4me3 signals. The
State-5 annotation shows the highest enrichment among the TSS and TES re-
gions (Figure 5.6B). The genes in State-5 shows a wide range of mRNA expres-
sion values (Figure 5.6C), although lower than States 1 and 2. This coincides
with our earlier observations that MNase signals correlate with different gene
expression groups (Figures 5.4 and 5.5).

Ambiguous states

The states 2 and 4 present rather peculiar patterns. State-2 has all the anal-
ysed epigenetic marks, while State-4 has almost no epigenetic marks (very faint
MNase signal can be seen).

Interestingly, the entire genome is enriched for State-4 (Figure 5.6B) and it
shows the lowest median expression of all states (Figure 5.6C). Subsequently,
we investigated the GC content distribution of all the genes, whose loci overlap
at least by 80% with the respective chromatin states (Figure C.5). We observed
that the genes in State-4 has the lowest median GC content. In spite of the
library optimisation strategies to minimise GC-bias, AT-rich genomic regions
may still pose a challenge in NGS sequencing and alignment (Browne et al.,
2020). In addition, all our ChIP- and MNase-seq experiments used in the seg-
mentation analysis are normalised against control experiments. Nevertheless,
there are likely AT-rich genomic regions where neither the ChIP/MNase nor
the control experiment performed well, leading to sequencing and alignment
artifacts. Hence, the AT richness of the genes in State-4 is likely a contributing
factor to their observed low median expression (Figure 5.6C).

On the contrary, State-2 where both active and repressive marks are present
shows the highest median expression. In multicellular organisms, State-2 is
usually attributed to bivalent domains, which orchestrate cell differentiation
during development through paused expression states (Voigt, Tee, and Reinberg,
2013; Sen et al., 2016; Blanco et al., 2020).

5.4.6 Paused genes are enriched in chromatin state with
lowest expression

In order to investigate whether pausing occurs in Paramecium, we calculated a
Pol II pausing index (PI) as shown in Equation 5.1, after removing genes which
did not have at least 10 reads in the Transcription Start Site Region (TSSR).
We labelled genes with a PI > 1.5 as Paused, and the rest as Not paused.
The Pol II profile (Figure 5.7A) shows that the abundance of Pol II steadily
decreases after the TSS. We also observed that there is a statistically significant
difference in the median expression of 8,480 paused and 26,395 not paused genes
(Figure 5.7B).

Further, we investigated the number of paused genes in each chromatin state
(Figure 5.7C). Studies have shown that bivalent domains influence the pausing
of gene expression (Blanco et al., 2020). In contrast, we did not find an enrich-
ment of paused genes in our bivalent domains (State-2). However, we found
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Figure 5.7: Pol II pausing occurs in Paramecium: A) Dis-
tribution profile showing the Pol II signal stratified according
to the pausing status of genes. The signal shown is for the
gene body (TSS to TES; scaled to 500 bp) and 1 Kbp upstream
and downstream of the gene body. B) Box plots showing the
mRNA expression (y-axis; log10 TPM+1) of genes which are
paused and not paused. C) For the genes whose loci overlaps
at least by 80% with a chromatin states we show the number
of paused/unpaused genes and their The P-values indicated are

from a two-tailed Wilcoxon test.

that chromatin State-4 to be enriched in paused genes. A chi-squared signifi-
cance test for enrichment was found to be statistically significant P < 2.2e−16
(Figure C.6). With our analysis, the role of bivalent domains is unclear in
Paramecium. Nevertheless, an enrichment of paused genes in the State 4 is in-
teresting, as State-4 also has the lowest MNase signal (Figure 5.6A), and lowest
median GC% (Figure 5.7D). This suggests that GC content is likely an influ-
ence in keeping the chromatin open for transcription similar to other organisms
(Fenouil et al., 2012). However, as discussed in the previous Section 5.4.5, we
cannot rule out that the AT richness of the genes in State-4 is confounding their
low median expression, and low MNase signal.

5.5 Key conclusions
We report the first insights into the epigenomic characteristics of the macronu-
clei of Paramecium. We have shown that their nucleosomes are well positioned
and shifted downstream of the TSS. The epigenetic marks (H3K4me3, H3K9ac,
and H3K27me3), and Pol II are located along the gene structure and are less en-
riched in the non-coding regions around the gene boundaries. GC content may
influence, in cis, the positioning of epigenetic marks, and Pol II. The introns
are flanked by nucleosomes, which suggests a role in splicing regulation.

The highly condensed genome of Paramecium has several chromatin states.
We characterized bivalent chromatin domains, whose role is unclear. We found
the genome to be enriched in regions, which lack the measured epigenetic signals.
We found that there are paused genes, which show lower median gene expression
than the not paused genes. We acknowledge that our analysis raises novel
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questions on the epigenetic regulation in Paramecium’s MAC, which can be
addressed only with future experiments.

5.6 Contributions
The work presented in this chapter includes contribution from several colleagues
and collaborators. Sequencing library preparation, and sequencing were carried
out by our wet-lab collaborators namely (in alphabetical order of last names)
Miriam Cheaib, Franziska Drews, Gilles Gasparoni, Jasmin Kirch, Martin Jung,
Simone Marker, Marcello Pirritano. Sequenced data sets were trimmed by Karl
Nordström. Figures 5.5, C.2, and the chromatin state segmentations were done
by Abdulrahman Salhab. All other data analysis presented in this chapter were
performed by me under the supervision of Prof. Dr. Martin C. Simon and Prof.
Dr. Marcel H. Schulz.
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Chapter 6

Statistical analysis of
macronuclear gene expression
regulation in Paramecium

6.1 Background
In chapter 4, we characterised endo-siRNAs and showed that mRNAs are a pre-
dominant source of the small RNAs in the Genes associated with Small RNA
Clusters (GSRCs). Correlation analysis of the endo-siRNAs and the mRNAs re-
vealed that endo-siRNAs do not strictly act in cis to silence their parent mRNA.
In chapter 5, we reported about the epigenomic characteristics of the vegeta-
tive MAC, and showed that abundance of the epigenetic marks are enriched in
the genic regions. We also showed that the epigenetic marks are proportional
with different gene expression groups (high/low/silent). Nevertheless, there are
many aspects that are not clear from the simple analyses in the previous chap-
ter. Hence, we wondered whether we can resort to more advanced statistical
and machine learning methods to improve our understanding of the epigenetic
regulation of macronuclear gene expression in Paramecium.

Researchers have employed machine learning methods to classify gene ex-
pression or predict gene expression levels quantitatively in other organisms.
These methods can be broadly classified in two groups: methods, which use (i)
DNA sequence features and (ii) epigenomic features. The methods which use
the DNA sequence features, predominantly depend on capturing the sequence
variations in large windows upstream of the TSS (Beer and Tavazoie, 2004;
Vilar, 2010; Bessière et al., 2018). A recent study, using deep learning meth-
ods, was able to quantitatively predict gene expression merely from the DNA
sequence in the promoter regions, in humans and mouse (Agarwal and Shen-
dure, 2020). However, the window sizes around the TSS are usually several kilo
base pairs. Paramecium has a mean gene size of only 1,084 bp. Hence, such
large window sizes will create a lot of gene overlaps, and likely confound the
prediction algorithm. If we remove overlapping genes from the analysis, a vast
majority of the genes will be left out from our analysis, as the MAC genome is
80% protein coding with an average intergenic region of size 352 bp.

The latter group of methods, uses epigenomic features like histone marks and
Pol II data. One such example is the study using support vector machines to
classify protein coding gene expression in humans (Cheng et al., 2011). Another
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study constructed a random forests model on histone marks data from humans
to classify gene expression as high or low (Dong et al., 2012). DeepChrome
is a recent approach which applies deep learning methods on histone marks
data to efficiently understand the complex interactions of histone marks and
gene expression (Singh et al., 2016). Many more studies have also shown that
epigenetic data is highly predictive of gene expression (Karlić et al., 2010; Huang
et al., 2011).

6.2 Research objectives
In this context, we wanted to explore the following objectives:

1. How are epigenetic signals, small RNAs, and gene expression related to
each other quantitatively?

2. Can we build an association network of epigenetic signals, small RNAs,
and gene expression?

3. How accurately can we classify high and low expressed genes by applying
machine learning on our data?

4. Can we identify general patterns of high/low expressed genes using model
interpretation methods?

6.3 Data and methodology

6.3.1 RNA data
We used the WT serotype 51A data described in the Section 4.3.1. We quantifed
the sRNA accumulation (in TPM) of all genes in this data set using our RAPID
software (See Chapter 3). Similarly, we used the mRNA data of serotype 51A
as described in Section 4.3.7.

6.3.2 Epigenetic data
We used all the ChIP data sets produced as part of the previous chapter de-
scribed in Section 5.3.2. We used the occupancy values as calculated in Section
5.3.4. Further, we used bedtools to count the reads in different bins around the
TSS and TES, as shown in Figure 6.1. All bin signals were normalised to the
bin size and log2 transformed with a pseudocount of 1.

6.3.3 Sparse partial correlation network analysis
We performed the SPCN analysis using the scripts, with default parameters,
made available by the authors http://spcn.molgen.mpg.de/index.html.

http://spcn.molgen.mpg.de/index.html
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6.3.4 Classification of gene expression
The workflow of our machine learning based gene expression classification task
is presented in Figure 6.4.

Data and feature definition

We removed the 1, 369 silent genes (TPM = 0), as it will lead to a heavily unbal-
anced data set. We used the remaining 19, 090 high expressed (TPM > 2), and
20, 001 low expressed (0 < TPM < 2) genes in our analysis. For these genes we
defined different feature sets. We used the normalised gene body based signals
of the following as Epigenetic features: H3K4me3, H3K27me3, H3K9ac, Pol II,
MNase, and H3K4me3/H3K27me3 ratio. We used the following Genic features:
gene length, intron frequency, intergenic length, and GC content of genes. We
joined the Epigenetic features, Genic features and sRNA accumulation in genes
(TPM) as a super set called All features. We reserved 10% of the high and low
expressed genes to test our model, and used the rest for model training.

Model/classifier selection

We used the Experimenter application of WEKA machine learning workbench
(version 3.8.4) (Frank, Hall, and Witten, 2016) to explore different machine
learning algorithms: decision tree, neural networks (one layer with three sigmoid
neurons), and random forest. The parameters of each algorithm were left to
default. Each experiment was performed 10 times with different random seeds.
Further, each experiment followed a 10-fold cross validation (CV) approach.
Hence, we created 100 models for each algorithm. We evaluated the performance
of the models using the area under the precision-recall curve (PR-AUC), and
chose the best classification algorithm for subsequent steps. The steps described
here are shown in green boxes in Figure 6.4.

Feature set evaluation and model interpretation

We trained three different models for the different feature sets (All, Epigenetic,
Genic), using the best performing algorithm identified in previous step. We
evaluated these models on the test data using the PR-AUC metric, to choose
our final classifier. We implemented these steps using the scikit-learn module
(Pedregosa et al., 2011) for python3. On the final classifier, we applied the
TreeExplainer algorithm available from the SHAP python module (Lundberg
et al., 2020), to explain the importance of each feature in our test data. The
steps described here are shown in yellow boxes in Figure 6.4. We switched to
python for these steps of our workflow, as the SHAP package was unavailable
for WEKA.



86Chapter 6. Statistical analysis of macronuclear gene expression regulation in
Paramecium

0.0

0.1

0.2

0.3

0.4

0.5

Gene body TES−200 bp TSS−150 bp TSS−50 bp TSS+150 bp TSS+300 bp
Bin

P
ea

rs
on

 c
or

re
la

tio
n 

w
ith

 m
R

N
A

Measure

MNase
H3K27me3
H3K4me3
H3K9ac
Pol II

Figure 6.1: Epigenetic signals in the gene body correlate with
gene expression: A bar chart showing the Pearson correlation
coefficient (y-axis) of mRNA and different measurements (colors;

see legend) in different bins (x-axis).

6.4 Results and discussion

6.4.1 Epigenetic signals in the gene body correlate with
gene expression

Studies have shown the enrichment of various histone marks in different gene
regions like promoters, and gene body and their correlation to active gene ex-
pression or silent genes (Cheng et al., 2011; Dong et al., 2012). We have seen
earlier that our histone marks showed enrichment in different regions, around
the TSS or gene body (Figure 5.5). Hence, we first set out to systematically
investigate the correlation of gene expression with epigenetic signals in different
bins of the annotated gene region. The bins were designed such that we can
capture the variations in the enrichment of the different measurements (MNase,
histone marks, and Pol II) in different genic loci. We considered the following
bins: 50 bp or 150 bp upstream of the TSS (TSS−X bp), 150 bp or 300 bp
downstream of TSS (TSS+X bp), gene body (TSS to TES), and 200 bp up-
stream (in the gene body) of TES (TES−200 bp). Figure 6.1 shows the Pearson
correlation of the normalised epigenetic marks, MNase and Pol II in different
bins with the mRNA expression. We observed a positive correlation in all the
bins, with gene body signals showing the highest correlation (0.28 < r < 0.46)
for all epigenetic marks, MNase and Pol II. This supplements our earlier obser-
vation (Figure C.2) that for most genes the epigenetic signals, MNase, and Pol
II were spread through out the gene body. Hence, the subsequent analysis were
performed using the gene body bin based signals.
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6.4.2 Multicollinearity of epigenetic measurements
Since the gene body signals of all the epigenetic marks showed positive corre-
lation with mRNA expression, we aimed to understand whether there is mul-
ticollinearity among the different epigenetic measurements. In other words, we
wanted to investigate whether there is a linear relationship between some of the
measured epigenetic marks. We included sRNA accumulation in the gene body
of the respective genes as well in our analysis to gain further insights into the
regulatory roles of sRNA.

Figure 6.2 shows a pair plot of all the variables we investigated. The diagonal
of this plot shows a histogram of the signal distribution of individual variables.
The scatter plots (below the diagonal), show the relationship of two variables
and their respective Pearson correlation values are shown above the diagonal.
We observed strong positive correlations between all histone marks, MNase, and
Pol II (0.65 < r < 0.85), showing their multicollinearity. Alongside the positive
correlation of mRNA with epigenetic marks (0.28 < r < 0.46), we also observed
a positive correlation of sRNA accumulation in gene body (r = 0.43) with
mRNA. This supports the idea that, genome-wide, small RNAs are involved in
gene regulation, as we observed earlier in Chapter 4.

In addition, we found a positive correlation of GC content and mRNA (r =
0.45), alongside the other epigenetic marks (0.69 < r < 0.77). We have also
seen earlier that GC content likely determines the placement of nucleosomes,
and other epigenetic marks (Section 5.4.4). These results together suggests that
the GC content plays a major role in orchestrating the regulatory landscape of
the AT-rich Paramecium genome.

Interestingly, we found a strong positive correlation (r = 0.74) of H3K27me3
and H3K4me3. However, we observed that the positive correlation of H3K27me3
with mRNA (r = 0.28) is lower than that of the H3K4me3 with mRNA (r =
0.46). Such strong correlation between H3K27me3 and H3K4me3 posed a ques-
tion, whether there is some cross-reactivity of histone antibodies used in the
experiments. Our collaborators verified this and found no evidence of antibody
cross-reactivity (Figure D.2).

The high correlation, alongside the bivalent marks (H3K4me3 and H3K27me3)
we observed in Figure 5.6, can in part be due to the bulk measurements made
in thousands of Paramecium cells with a 800n polyploid genome. In order to
verify this, we calculated a log ratio of H3K4me3 and H3K27me3 (Figure D.1A),
and found it to be positively correlated (r = 0.24) with mRNA expression. We
refer to the ratio as K4K27ratio from here on. Figure D.1B shows the distri-
bution of mRNA expression in different K4K27ratio groups. Only 7700 genes
(≈ 20%) showed equal amounts of H3K4me3 and H3K27me3 (log K4K27ratio
= 0), whose median mRNA expression value is the lowest of all groups. Figure
D.1B shows that 20438 genes (≈ 51% of the genome) have higher H3K27me3
signal than H3K4me3 (log K4K27ratio < 0), whose median expression is sta-
tistically significantly lower than the genes with higher H3K4me3 signal (log
K4K27ratio > 0; 10920 genes). These results suggest that our bulk measure-
ments on polyploid cells are likely contributing to the observed multicollinearity.



88Chapter 6. Statistical analysis of macronuclear gene expression regulation in
Paramecium

Figure 6.2: Multicollinearity of epigenetic marks: The distri-
bution plot of the gene body signals of MNase, epigenetic marks,
Pol II, GC content, sRNA expression, and mRNA expression are
shown along the diagonal. The Pearson correlation coefficients
(above the diagonal) are shown for the respective variables men-
tioned along the x- and y-axis of each box. The y-axis of scatter
plots (below the diagonal) belongs to the variable mentioned
along the horizontal line of that plot. mRNA and sRNA are
measured in TPM units. All values shown are log2 transformed

with a pseudocount of 1, except for the GC content.
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6.4.3 Sparse partial correlation network of epigenetic marks,
sRNA, and gene expression

Correlations can show the relationship between two variables, but they do not
reveal causality and are susceptible to confounding factors. Collinear variables
can be seen as an extreme case of confounding. We have seen our data is
multicollinear, which makes the interpretation of our correlations of epigenetic
marks with gene expression challenging. However, we can resort to partial
correlation. Partial correlation removes the effect of an observed confounding
variable from the two variables, whose partial correlation is calculated. We
denote partial correlation coefficient as rxy,z, where x and y are the variables
of interest, and z represents one or more confounding variables. We aimed to
construct a network of the MNase, histone marks, Pol II, mRNA and sRNA with
their edges showing true regulatory connections, which cannot be explained
by confounding factors. To this end, we used the sparse partial correlation
network (SPCN) method, a special case of partial correlation, on our data
(Lasserre, Chung, and Vingron, 2013). The SPCN method favours precision
over completeness. Hence, the absence of edges should be interpreted with
caution.

Commonly known association of epigenetic marks with gene expres-
sion are revealed

Figure 6.3 shows the network constructed by the SPCN method. The blue and
red edges represent positive and negative sparse partial correlation values, which
are shown as edge labels. We observed 13 out of 21 possible edges in our net-
work, as shown in the Figure 6.3. The edges MNase-H3K4me3 (rxy,z = 0.12),
MNase-Pol II (rxy,z = 0.26), MNase-mRNA (rxy,z = 0.14), and H3K4me3-
mRNA (rxy,z = 0.36) are very much expected. The importance of open chro-
matin in gene expression is well known for over a decade (Li, Carey, and Work-
man, 2007). Similarly, the association of H3K4me3 with Pol II mediated active
gene expression is widely studied (Bernstein et al., 2005; Liu et al., 2005; Zhang
et al., 2009). Surprisingly, we did not observe an edge between Pol II and
mRNA in our data, meaning their rxy,z = 0. However, we observed earlier a
Pearson correlation coefficient of 0.39 between Pol II and mRNA. Subsequently,
we checked the contribution of confounding factors causing the difference be-
tween the Pearson correlation coefficient and the partial correlation coefficient
(Figure D.3). We observed that H3K4me3 is the major confounding factor, not
only between Pol II and mRNA, but for most of the associations.

We also noticed a commonly observed association, H3K9ac-H3K4me3, with
a strong partial correlation (rxy,z = 0.58). H3K9ac is known to be associated
with active gene expression, similar to H3K4me3. The co-occurrence of the
histone marks H3K9ac and H3K4me3 has also been shown in mammals using
Co-ChIP measurements (Weiner et al., 2016). We also found an edge between
H3K9ac and Pol II (rxy,z = 0.26). In other organisms, H3K9ac is associated
with the pause-release cycle of Pol II (Gates, Foulds, and O’Malley, 2017).

We found an association of H3K27me3 and MNase (rxy,z = 0.3), along-
side few unusual associations: H3K9ac with H3K27me3 (rxy,z = 0.32), and
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Figure 6.3: The sparse partial correlation network identified
by the SPCN method is shown. The nodes show variable names
(histone marks, Pol II, MNase, mRNA, and sRNA). The edges
show a true association between the variables. The partial cor-
relation coefficients are mentioned along side the edges. The
edges with positive (or negative) partial correlation coefficients

are shown in blue (or red).

H3K27me3 with Pol II (rxy,z = 0.35). We questioned the repressive role of
H3K27me3, based on two of our earlier observations: (i) H3K27me3 is spread
over the whole gene body, and (ii) is directly proportional to different gene ex-
pression groups (please see Figures 5.5 and C.2). In that light, it makes sense
to see a positive partial correlation coefficient between H3K9ac, H3K27me3,
MNase, and Pol II.

Associations with small RNAs

We also observed two edges for sRNA, one with mRNA (rxy,z = 0.2), and an-
other with H3K27me3 (rxy,z = 0.09). The sRNA-mRNA edge suggests that
genome wide the sRNA accumulation is relevant for regulating gene expression.
This coincides with our earlier observation that endo-siRNAs show a predomi-
nantly positive correlation with mRNA, suggesting that they do not strictly act
in cis to silence their parent mRNA (see Section 4.4.4).

Similarly, the sRNA-H3K27me3 edge suggests an alternative pathway of
our sRNAs to mediate gene expression by collaborating with H3K27me3. For
instance, the developing zygotic MAC of Paramecium has been shown to de-
pend on sRNAs, to deposit H3K27me3 marks in regions, which need to be
eliminated during development (Frapporti et al., 2019). In other organisms,
the RNA-induced transcriptional silencing (RITS) complex helps the siRNA
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production. Subsequently, these siRNAs influence the methylation enzymes
to promote heterochromatin formation. This process effectively silences gene
expression (Holoch and Moazed, 2015). While, the sRNA-H3K27me3 associa-
tion we observed merely suggests such a silencing role, future experiments are
necessary to confirm this hypothesis.

Curious case of repressive associations

The last two edges we discuss are H3K27me3-mRNA (rxy,z = −0.15) and
H3K9ac-mRNA (rxy,z = −0.13), whose Pearson correlation coefficients were
positive, 0.33 and 0.37, respectively. The negative partial correlation coeffi-
cient of H3K27me3-mRNA suggests a canonical repressive role of H3K27me3.
However, we have seen through out this dissertation that H3K27me3 is likely
not associated with repressed genes in Paramecium. Hence, we were curious
whether there is a subset of genes whose expression show negative association
to H3K27me3. To this end, we filtered genes, which have only H3K27me3 signal
(i.e. no other histone mark signal is present for those genes). For this subset
of genes, we found the H3K27me3-mRNA partial correlation coefficient to be
0.13. This suggests that the canonical repressive association of H3K27me3 with
mRNA is still debatable in Paramecium.

In other organisms, histone marks are often associated with Pol II pausing
(Gates et al., 2017). Hence, we investigated whether the paused genes (see
Section 5.4.6) show negative association of mRNA expression with H3K27me3
and H3K9ac. For the paused genes, we found a negative partial correlation
coefficient for the H3K27me3-mRNA (rxy,z = −0.16), and H3K9ac-mRNA
(rxy,z = −0.13) association. While it is uncommon, several genes were re-
ported to be repressed in the presence of H3K9ac in other organisms (Ha et al.,
2011; Lai et al., 2017). These results show that the association of H3K27me3
with gene expression is less clear in Paramecium. One possibility is that each
polyploid Paramecium chromosome undergoes histone modifications at different
rates, and the bulk measurements are confounding the analysis. Future work,
preferably at single-cell resolution, is necessary to investigate such a hypothesis.

6.4.4 Classification of gene expression
The results, we showed so far, demonstrate the complexity of the gene expression
landscape in Paramecium. We wanted to decipher the general characteristics
of genes which are highly expressed in Paramecium based on our data. To this
end, we aimed to construct a supervised binary classifier to classify genes as
high or low expressed. Figure 6.4 shows an overview of our machine learning
analysis.

Classifier/model selection

We tested several binary classification algorithms on the training data set con-
sisting of All features, using the WEKA software. We trained 100 models for
each algorithm. We evaluated our models using area under the precision and
recall curve (PR-AUC). A PR-AUC of 1.0 is a perfect model with 100% of genes
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Feature set(s):
Genic: Gene length, Intron frequency, 
Intergenic length, GC%
Epigenetic: MNase, H3K4me3, 
H3K27me3, K4K27ratio, H3K9ac, Pol2
All: Genic, Epigenetic, and sRNA

19,090 high and 20,001 low 
expressed genes

Quantify feature 
sets

Training data (90%) Testing data (10%)

Model/Classifier selection
Algorithms: Decision tree, Neural 
networks, Random forests
Feature set used: All
Evaluation: k-fold cross validation

Selected classifier
(Random forests)

Train random 
forests classifier for
each feature set

Performance 
evaluation

Final classifier
(Random forests 
with All features)

Model interpretation
SHAP

Figure 6.4: Workflow of the machine learning analysis is
shown. Green and yellow boxes show that they are implemented
using WEKA machine learning workbench and Python scikit-

learn package, respectively.

correctly classified as high or low. The mean PR-AUC value of the 100 models
of each algorithm is shown as a bar plot in Figure 6.5. The jittered points are
the PR-AUC of each of the 100 models evaluated. It shows that the models are
robust, as their deviation from the mean PR-AUC is minimal. For our training
data, the models with random forests algorithm showed the best performance
with a PR-AUC of 0.82.

Feature set evaluation

As we have seen that the random forests algorithm performs best, we wanted
to evaluate how different feature sets perform. To this end, we trained random
forests model using the different feature sets: All, Epigenetic or Genic, and
evaluated their performance on the test data. Figure 6.6 shows the precision
and recall curve of the random forests model with different feature sets. The
random forests model using the feature set All was found to be the best with
a PR-AUC value of 0.83. The models with Genic, and Epigenetic features
performed fairly well with a PR-AUC of 0.75, and 0.77, respectively.

6.4.5 Model interpretation
We wanted to know which of the features are used for classifying a given gene
as high or low expressed in our best performing random forests model with All
features. We employed the SHAP method to interpret our model.

Gene level feature effects

We can understand for any given gene, using the SHAP values, how each fea-
ture contributed to classify the gene as high or low expressed. Figure 6.7 shows
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Figure 6.5: Model performance (y-axis; area under the
precision-recall curve (PR-AUC)) is shown for the different clas-
sification algorithms (x-axis). Models are evaluated by WEKA
in a 10-fold cross validation approach for 10 repetitions of each
algorithm (100 models in total). The PR-AUC of the 100 models
are jittered on the bar, with the mean PR-AUC written above
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B) PTET.51.1.G0720209 – Correctly predicted as low expressed

A) PTET.51.1.G1420025 – Correctly predicted as high expressed

Figure 6.7: Force plots of SHAP values for two example genes
(A and B) are shown. The base value shown (0.4997) is the
average predicted probability of the model. The value at f(x)
shows the predicted probability of the gene of interest. The fea-
ture values of each gene are shown below the red or blue arrows.
The width of the arrows are determined by the respective fea-
ture’s SHAP value, i.e. the large width of an arrow shows a
high importance of the feature. A feature is colored red or blue
depending on whether that feature contributes to increase or

decrease the f(x) from the base value, respectively.

the force plots of two example genes, which were correctly predicted as high
or low expressed by our classifier. In Figure 6.7A, we can see that the gene
(PTET.51.1.G1420025) is classified as high expressed, because of the contri-
butions from H3K4me3, intron frequeny, GC content, and so on. Figure 6.7B
shows that the contributions of H3K4me3, gene length, and K4K27ratio are
resulting in the prediction of the gene (PTET.51.1.G0720209) to be classified
as low expressed. We can see that the order of features in Figure 6.7A and 6.7B
are different from each other. Such plots are useful to know the feature effects
of each gene’s prediction.

Global feature importance

While it is good to know the feature importance of individual genes, by means
of force plots, it would be beneficial to know a global importance of all features.
Figure 6.8 shows a global feature importance plot for our test data set, which
is measured by the mean absolute SHAP values. As we mentioned earlier, a
high mean absolute SHAP value depicts a high importance of the respective
feature in classifying a gene as high or low expressed. Figure 6.8 shows that,
unsurprisingly, H3K4me3 is the most important feature globally. Further, we
can see that intron frequency, gene length, sRNA, and GC content are in the
top five globally important features. We found none of the other epigenetic
features (H3K27me3, H3K9ac, MNase, K4K27ratio, Pol II) in the top five im-
portant features. The multicollinearity of epigenetic marks likely plays a role
in these factors being treated as less important. Interestingly, we observed that
H3K27me3 is the least important factor for our models. However, it is not
clear from Figure 6.8, for instance, whether a high or low H3K27me3 signal is
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Figure 6.8: Global feature importance plot for our test data set
is shown here. The mean absolute SHAP values (x-axis) shows
the average impact of the feature (y-axis) on the model output.
A high mean absolute SHAP value shows a high importance
of the respective feature in classifying a gene as high or low

expressed.

required to classify a gene as high or low expressed. To this end, we created a
feature effect summary plot.

Global feature effects

The feature summary plot (Figure 6.9) combines the force plot and the global
feature importance plot, which we discussed earlier. For instance, let us inves-
tigate the interpretation of the gene at the right most point (gene) of H3K4me3
(x-axis: 0.24). This gene has a high H3K4me3 value. A positive SHAP value of
0.24 shows that the high H3K4me3 value of this gene increases the prediction
probability of this gene to be classified as high expressed, by a factor of 0.24.
However, we will use this plot to discuss only the global patterns, and not the
individual instances.

We observed that for a gene to be classified as high expressed the following
are required: high H3K4me3, high MNase, low H3K9ac, high Pol II, and high
GC content. We had discussed earlier, in this thesis, the importance of GC
content in nucleosome placement, histone marks, and Pol II. Hence, it makes
sense to see that genes with such characteristics are highly expressed. Gene
expression prediction models on other organisms have shown the association
of histone marks and GC content, as well (Singh et al., 2016; Agarwal and
Shendure, 2020). Interestingly, owing to the debate on the role of H3K27me3
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Figure 6.9: A summary plot showing the global feature effects
is shown. The features (y-axis) are in the order of global feature
importance. The SHAP value is shown on the x-axis. Each dot
in the figure represents a gene, and the color gradient depicts
the feature value in scale from low to high. The overlapping
dots are jittered in the y-axis direction. A high feature value
of H3K4me3 (located at x-axis: 0.24) of this gene can increase
it’s prediction probability to be classified as high expressed, by

a factor of 0.24.
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through out this thesis, we noticed that a high H3K27me3 content contributes
to a prediction of high expression, although it is the least important feature.

Our classification model also suggests that a high intron frequency, and
low intergenic length are characteristics of high expressed genes. This relation
is, to our knowledge, not known in Paramecium. However, the role of intron
frequency in regulating gene expression is widely studied in plants, and other
eukaryotes (Deshmukh, Sonah, and Singh, 2016; Shaul, 2017). In organisms like
Caenorhabditis elegans and Arabidopsis thaliana, studies have shown that in the
absence of promoter regions, introns can increase gene expression (Rose, 2019).
As we have discussed earlier (Table 5.1), the Paramecium genome is highly
condensed and has very short intergenic regions, leaving very little room for
promoter regions. Hence, the high intron frequency likely modulates the gene
expression in Paramecium. We also found low gene length, and high sRNA to
be characteristics of high gene expression in our model. The inverse relationship
between gene expression and gene length has been shown in several organisms
(Duret and Mouchiroud, 1999; Brown, 2021). The high sRNA content predict-
ing high gene expression supplements our earlier observation that endo-siRNAs
are likely not acting in cis to silence their parent mRNA (see Section 4.4.4).

6.5 Key conclusions
In this chapter, we showed the inherent multicollinearity in different epigenetics
marks and their positive correlation with gene expression. We constructed an
association network of the epigenetic marks, MNase, Pol II, sRNA and mRNA
expression using sparse partial correlation network analysis. While we found
several common associations, we found a positive association of H3K27me3
with mRNA, for genes which carry only H3K27me3 signals. However, paused
genes showed negative partial correlation coefficient of H3K27me3 and mRNA.
Our observations make the role of H3K27me3 in Paramecium less clear. We
constructed a supervised learning based classifier which predicts high and low
expressed genes with a test PR-AUC of 0.83. Not only did we build a classifier,
we inferred the general patterns of high or low expressed genes in Parame-
cium using a model interpretation technique called SHAP. Consequently, we
reported that a high expressed gene requires the following top five features:
high H3K4me3, high intron frequency, low gene length, high sRNA, and high
GC content. The SHAP analysis also revealed the plausible role of intron fre-
quency in Paramecium’s gene expression machinery.

6.6 Contributions
The data used in this chapter was created as part of the works presented in
Chapters 4 and 5. I merely re-purposed these data for the analysis presented in
this chapter, all of which were performed by me under the supervision of Prof.
Dr. Martin C. Simon and Prof. Dr. Marcel H. Schulz.
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Chapter 7

Summary and outlook

Understanding of human gene regulation is paramount for improving health-
care. Several consortia projects like the encylopedia of DNA elements (EN-
CODE), and the International Human Epigenome Consortium (IHEC) have
improved our understanding of transcriptomics and epigenomics tremendously.
Researchers have developed numerous integrative data analysis tools to sup-
plement the consortia projects. However, the existing tools are tailored to
human data or few other model organisms, like mouse and drosophila. Often,
these tools are not directly employable by researchers working on non-model
organisms. Non-model organisms research is crucial for answering mechanis-
tic biological and evolutionary questions like, how did multicellular organisms
evolve?

Paramecium tetraurelia is a free-living unicellular ciliate, and a non-model
organism to understand non-mendelian genetics, and epigenetics. Paramecium
exhibits nuclear dimorphism with two germline micronuclei (MIC), and a so-
matic macronuclei (MAC). The MIC is diploid and transcriptionally inactive,
while the MAC is transcriptionally active and exhibits polyploidy (800n) (Beale
and Preer, 2008). During sexual reproduction, after fertilisation, a diploid MIC
develops into a polyploid MAC by the fusion of several mitotic MIC and disin-
tegration of the original (or parental) MAC. The mitotic MIC transitioning to
a MAC is called the developmental MAC, which undergoes several genomic re-
arrangements. Paramecium also undergoes asexual (vegetative) reproduction,
by separating into two daughter cells (Van Houten, 2019).

Decades of research on the developmental MAC have unraveled the crucial
role of methylated histone marks, and small RNAs in controlling the genomic
rearragements of a developmental MAC (Beisson et al., 2010). The vegetative
MAC is known to express mutually exclusive surface antigens, a multigene fam-
ily, ensuring expression of different serotypes (Wichterman, 1986). Paramecium
switches their serotypes based on environmental changes, like temperature (Si-
mon, Marker, and Schmidt, 2006). Small RNAs are known to play a role in
controlling the expression of surface antigen genes in vegetative MAC (Marker
et al., 2010). The prime diet of Paramecium is bacteria. Researchers fed ge-
netically modified bacteria to Paramecium, and have shed light on the RNA
interference (RNAi) pathways in vegetative MAC. The RNAi pathway depends
on the RNA dependent RNA polymerase (RDR), the Dicer (DCR) enzyme to
generate short interfering RNAs (siRNAs) (Carradec et al., 2015; Marker et
al., 2014). However, the transcriptomic and epigenomic regulatory landscape
of the MAC genome, which has 80% protein-coding genes and short intergenic
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regions, is poorly understood. In this thesis, we aimed to develop new tools,
and adapt existing softwares for the analysis of transcriptomic and epigenomic
data of Paramecium.

We developed an automated eukaryotic siRNA analysis tool, called RAPID.
Our tool captures diverse siRNA characteristics from small RNA sequencing
data, and provides easily navigable HTML visualisations. Some of the siRNA
characteristics, RAPID captures include strand specific reads, and non-templated
nucleotides. We also introduced a normalisation technique to facilitate the com-
parison of siRNA-based gene knockdown samples. We have also integrated dif-
ferential expression analysis software, DESeq2. RAPID is made available for
public use as a Conda package. Nevertheless, RAPID is not a one-stop solution
for siRNA analysis. Some of the possible extensions of RAPID include captur-
ing sequence-level attributes like, creating sequence logos of conserved siRNA
sequences, or identifying siRNA target sites.

In addition to RAPID, we developed a pipeline to characterise the first
genome wide small RNA profile of vegetative MAC of Paramecium. We iden-
tified many endogenous short interfering RNAs (endo-siRNAs) are produced
from protein coding genes, which were confirmed through splice junction anal-
ysis. We did not discover any micro RNAs. In contrast to many organisms,
we observed that the endo-siRNAs do not strictly act in cis to silence their
parent mRNA. We also predicted phasing of siRNAs, which are regulated by
the RNAi pathway. Further, using RAPID, we investigated the aberrations of
endo-siRNAs, and their respective transcriptomic alterations caused by RNAi
inducing technique, called feeding. Our findings alert RNAi researchers to se-
lect appropriate controls, and differentiate between the changes in expression
caused by the feeding technique itself, and the actual regulatory changes. Our
observation is crucial at a point when RNAi treated organisms are considered
GMO-free (free from genetically modified organisms), and are being increasingly
used to combat viral and pest resistance in bacteria and plants.

We also identified several sRNAs in the intergenic, and other non-coding
regions. In another ciliate, Oxytrichia trifallax, sRNAs are shown to regulate
the copy number of small chromosomes which carry only one gene (Khurana
et al., 2018). We hypothesise that many of our sRNAs, especially the ones
from non-coding regions, are likely to be involved in regulating the polyploid of
the Paramecium’s MAC. However, future experiments are necessary to confirm
such a hypothesis. While we documented the first genome-wide analysis of the
sRNAs, using RAPID and other tools, their regulatory mechanisms are still
unclear. Future analysis are required to identify the targets of the sRNAs.
Small RNA target prediction is an active field of research. Predominant of
existing tools primarily focus on bacterial small RNAs, and identify merely
mRNA targets (King, Vanderpool, and Degnan, 2019; Wright et al., 2014).
In Paramecium, the mRNAs are majorly positively correlated with sRNAs.
Hence, it is likely that the sRNAs are not targeting mRNAs, but are involved
in a complex landscape of sRNA-protein interaction to regulate the genome.
In order to identify such interactions, the RNA and protein family domains of
Paramecium needs to be queried. It is safe to say, that we have only laid the
foundation for understanding the role of RNAi in Paramecium.
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The vegetative MAC genome annotation of Paramecium revealed a high
protein coding density of 80%, highest among the free living eukaryotes. This
results in short intergenic regions of mere 352 bp, raising the question on how the
Paramecium’s MAC is regulated. Hence, we shifted our focus to understand
the epigenomic characteristics of MAC, which has never been characterised
before. Using nucleosome positioning softwares, we identified well positioned
nucleosomes, which are shifted downstream of the transcription start site (TSS).
We found that the introns are flanked by nucleosomes, which suggests they play
a role in regulating splicing efficiently.

The nucleosomes, epigenetic marks (H3K4me3, H3K9ac, and H3K27me3),
and Pol II are located along the gene structure and are less enriched in the non-
coding regions around the gene boundaries. They were also directly proportional
to different gene expression groups. GC content seems to influence, in cis,
the positioning of nucleosomes, epigenetic marks, and Pol II in the AT-rich
Paramecium genome. We employed a chromatin state segmentation approach,
on nucleosomes and histone marks, which revealed genes with active, repressive,
and bivalent chromatin states. In multicellular organisms, genes in bivalent
domains, carrying both H3K4me3 and H3K27me3 marks are associated with
orchestration of cell differentiation during development, through pausing of gene
expression (Voigt, Tee, and Reinberg, 2013; Sen et al., 2016; Blanco et al., 2020).
However, among the genes with bivalent domains in Paramecium, we did not
find an enrichment of paused genes. Hence, the role of bivalent domains in
Paramecium is still unclear. Further, in order to confirm the bivalent domains,
Re-ChIP experiments may need to be performed.

Further, we constructed a gene regulatory association network by applying
the sparse partial correlation network method on different epigenetic marks,
nucleosomes, small RNA and gene expression data. We observed common pos-
itive associations of H3K4me3 with mRNA and H3K9ac with H3K4me3. We
also observed a negative association for H3K27me3 with mRNA, especially for
the paused genes. However, the genes which carried only H3K27me3 marks
show positive association for H3K7me3 and mRNA, which makes the role of
H3K27me3 in Paramecium less clear.

It is important to note that, the Paramecium cells in a culture are not
synchronised in their vegetative development cycle. This means different cells
are under different epigenomic/transcriptomic states. The bulk epigenomic and
transcriptomic measurements of the polyploid MAC are likely to confound our
analysis. We would need to perform single cell data analysis of Paramecium
to gain a better understanding of the different chromatin states. However, the
experimental methods for obtaining single cell data in Paramecium are currently
not available.

Next, we resorted to advanced machine learning methods to understand in-
herent patterns in the data. We constructed a Random Forests classifier, to
classify gene expression as high or low, using Genic (gene length, intron fre-
quency, etc.) and Epigenetic features (histone marks, Pol II, MNase, etc.). Our
model has a test performance (PR-AUC) of 0.83. Upon evaluating different fea-
ture sets, we found that genic features are as predictive of gene expression, as
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the epigenetic features. Further, we applied the SHAP technique, on our Ran-
dom Forests model, to infer general gene expression patterns. Consequently, we
reported that the top five features of a high expressed gene are high H3K4me3,
high intron frequency, low gene length, high sRNA, and high GC content. The
role of intron frequency in gene expression regulation, revealed by SHAP anal-
ysis, has never been reported before in Paramecium.

The prediction model could be improved by incorporating DNA-sequence
features, for example, using one-hot encoding of fixed windows around the TSS
of genes, and applying deep convolutional neural networks. In mammals such
methods have been successfully applied to predict gene expression both quanti-
tatively and qualitatively (Beer and Tavazoie, 2004; Vilar, 2010; Bessière et al.,
2018). However, the window sizes around the TSS are usually several kilo base
pairs. Paramecium has a mean gene size of only 1,084 bp. Hence, such large
window sizes will create a lot of overlaps, and likely confound the prediction
algorithm. If we remove overlapping genes from the analysis, a vast majority of
the genes will be left out from our analysis, as the MAC genome is 80% protein
coding with short intergenic regions. Hence, we decided to use a prediction
model, such that we can infer global gene expression patterns of all expressed
genes.

There are several open questions, apart from the aforementioned, in relation
to MAC genome regulation. For instance, in the Paramecium’s MAC, where are
the transcription factor binding sites located in such short intergenic regions?
Does Paramecium have distal regulatory elements, which are brought together
through 3-D organisation of the genome?

In a nutshell, we developed novel tools, adapted existing bioinformatic meth-
ods, applied machine learning methods to shed light on the small RNA-omic and
the epigenomic orchestration of gene expression in Paramecium’s macronuclei.
We believe that our findings pave the way to better our communal understand-
ing of regulatory omics.
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A.1 Supplementary tables
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RAPID 3 3 3 3 3 x 3 3 3 3 3 3 3 3 x x x
smallRNA toolkit(Moxon et al., 2008) x x 3 NA x 3 x x x x x x x x x x 3

sRNA toolbox(Rueda et al., 2015) x x 3 NA 3 x x x x x x x x 3 3 x 3

Oasis(Capece et al., 2015) x x x x x x 3 3 x x x x 3 3 3 3 3

CPSS(Wan et al., 2017) x 3 x NA x 3 x x x x x x x x 3 3 3

iSmart(Panero et al., 2017) x x x NA 3 3 3 3 x x x x x 3 3 3 3

iSRAP(Quek et al., 2015) x 3 x NA 3 x 3 3 3 x x x x 3 x x x
PiPipes(Han et al., 2015) 3 3 x NA 3 x x x x 3 3 x x 3 x x 3

ncPRO-Seq(Chen et al., 2012) x 3 3 NA 3 x x x x x x x x x 3 x 3

UEA sRNAworkbench (Mohorianu et al., 2017) 3 3 3 x 3 x x x x x x x 3 3 x 3 x
NGSToolbox (Rosenkranz et al., 2015) x x 3 NA 3 x x x x x x x x x x x 3

SePIA (Icay et al., 2016) x 3 x NA 3 x x x x x x x x 3 x x 3

SPAR (Kuksa et al., 2018) x 3 x NA x 3 3 x x x x x x x x 3 3

Table A.1: Comparison of RAPID with other tools is shown.
3- Feature supported, x - Feature not supported, NA - Feature
is not in the scope of this tool. For instance, Knockdown cor-
rected normalisation feature is NA for CPSS, because it does
not support multiple sample comparison. The full description
of the column headers are listed in Table A.2. Note: This list
is not exhaustive. Tools whose primary focus is on identify-
ing/annotating different classes of small RNAs are not included.
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Supporting Feature Description
Contaminant removal Is there an option to remove set of contam-

inants (microbial, ribosomal, etc.) from the
read files?

Supports other aligners Does the tool support alignment files from
other tools, instead of performing their own
alignment?

User-defined gene/region Could the user specify a list of regions to per-
form downstream analysis?

Knockdown corrected normalisation Does the tool enable multiple-sample com-
parison by facilitating normalisation tech-
niques specific to sRNA knockdown studies?

Offline Can the tool be used offline?
Hardcoded genomes Is the tool generic? i.e. Is the tool’s abil-

ity somehow limited to a set of pre-defined
genomes?

Quantitative, and Qualitative Plots Does the tool support informative plots to
gain understanding of the analyzed data
(multi-dimensional scaling (MDS), principal
component analysis (PCA))

Multi-sample comparison plots Does the tool provide a comprehensive view
of multiple samples (not just differential
analysis)? For instance, how does the read
distribution vary across multiple samples in
different genes of interest?

Differential analysis Is the tool equipped with modules to perform
pairwise differential analysis?

Enrichment analysis support Is there any support to perform functional
enrichment within the tool

Interactive interface Does the tool have an interactive interface,
or plots?

miRNA or piRNA specific? Is the tool specific to analyze miRNA or
piRNA only?

Table A.2: Table describing the supporting features of RAPID
mentioned in the column headers of Table A.1.
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B.1 Supplementary Methods

B.1.1 SRC Boundary Modifications
Before correlating sRNA accumulation with mRNA expression, we did a quick
scan of SRCs in IGV Browser (version 2.3.91). This investigation of SRCs
showed occurrences of non-specific boundaries.

What are non-specific boundaries?
Consider example in Supplementary Figure B.1. When performing an annota-
tion overlap (intersectBed; bedtools v2.23), of a SRC region (C1732; shown in
the above figure) overlaps with three genes. Whereas, only one gene is respon-
sible for the SRC in the example, two neighboring genes got included in the
overlap as well. This is due to the expansion of the SRC localization, which
could have been due to one or more of the following reasons: (i) Alignment
artifacts, (ii) Padding parameter in Shortstack, and (iii) Unifying the identified
clusters from different serotypes to obtain the SRC. In the example in Sup-
plementary Figure B.1, one could see the interplay of all three reasons for the
expansion of SRC localization. We decided to explore the effect of unification
of clusters in introducing non-specific overlaps, as the other two reasons are not
entirely with in our scope.

How many genes are introduced because of unification?
From the Supplementary Figure B.2, we can observe that, we are introducing a
lot of new distinct genes. There is a small effect on other annotation categories
as well, but it is meagre.

How many clusters are introduced because of unification?
From the Supplementary Figure B.3, we can see that because of the cluster
merging we are introducing approximately 50% extra clusters in individual
serotypes.
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Boundary modification criteria
In order to correct for these non-specific partial overlap problems, we tried
filtering SRCs with different overlap percentage to a gene.

Category-1: Should overlap at least 70% of a gene

This rather strict condition, removed all SRCs which overlap multiple genes and
naturally, retained genes which overlap multiple SRCs. The table below shows
the summary of SRCs, Genes and its overlaps with each other.
Number of SRCs overlapping Multiple Genes
No. of SRCs No. of overlapping genes
1687 1
Number of Genes overlapping Multiple SRCs
No. of Genes No. of overlapping SRCs
1243 1
120 2
38 3
12 4
6 5
2 6

Category-2: Should overlap at least 10% of a gene

This rather relaxed condition, retained most SRCs which overlap with multiple
genes and a well as, retained genes which overlap multiple clusters. The table
below shows the summary of SRCs, Genes and its overlaps with each other.
Number of SRCs overlapping Multiple Genes
No. of SRCs No. of overlapping genes
1643 1
189 2
11 3
1 5
Number of Genes overlapping Multiple SRCs
No. of Genes No. of overlapping SRCs
1645 1
123 2
36 3
11 4
3 5

Category-3:

As a trade-off, we tried altering the SRC boundaries for non-specific overlaps.
i.e. In a gene-cluster overlap, if the gene is covered > 80% and the SRC is
covered at least by 20%, then the SRC’s boundary is limited to the gene’s
boundary. Doing so, limits the non-specific overlaps. But, this condition missed
genes with multiple clusters being overlapped. So, we added another criteria.
If the gene is covered > 10% and the cluster is covered more than 80%, those
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SRCs are retained with out any boundary changes. The table below shows the
summary of SRCs, Genes and its overlaps with each other.
Number of SRCs overlapping Multiple Genes
No. of SRCs No. of overlapping genes
1335 1
32 2
1 3
1 4
Number of Genes overlapping Multiple SRCs
No. of Genes No. of overlapping SRCs
1283 1
87 2
15 3
2 4

As a results of these two conditions, we arrived at 1618 SRCs in total, which can
be used for comparing with mRNA expression. These set filtered and boundary
modified 1618 SRC loci are termed endo-siRNAs, short for endogenous small
interfering RNAs. They will be utilised in all downstream knockdown and
mutant analysis, unless mentioned otherwise.

B.2 Supplementary Figures
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Figure B.1: The localization of SRC C1732 in different
serotypes is shown. In the bottom panel the SRC boundaries
before and after modification along with the gene annotation is

shown.
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Figure B.2: The effect of unification in the number of distinct
features identified is shown. SRCs expressed in the wildtype
serotype (51A, 51B, 51D, 51H; replicates were merged) samples
were overlapped with annotated regions. Each annotated ele-
ment is counted only once (distinct counting) and the number
of elements of the different types (colors) is shown on the y-
axis for all 4 serotypes. Predicted represents the distinct feature
annotations while using the Shortstack’s prediction results di-
rectly (i.e. Before unifying them to form SRCs). TPMFiltered
represents what we call serotype specific SRC (i.e. SRC with a

TPM > 1 in each serotype).
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Figure B.3: The number of SRCs identified in each wildtype
serotype is shown. The type Predicted represents the distinct
feature annotations while using the Shortstack’s prediction re-
sults directly (i.e. Before unifying them to form SRCs). TPM-
Filtered represents what we call serotype specific SRC (i.e. SRC

with a TPM > 1 in each serotype).
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Figure B.4: Supplementary figure for Figure 4.4. Left to
right: A heatmap of sRNA accumulation (log10, color scale) in
SRCs overlapping different genomic annotations and restricted
to small RNA length (x-axis) for serotypes 51A, 51B, 51D and
51H is shown. Barplots showing the length distribution of sense
(green) and antisense (red) sRNAs mapping to different genomic
annotations in serotypes 51A, 51B, 51D and 51H is shown.

Figure B.5: Differential expression status of different off-target
genes
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C.1 Supplementary Figures

Figure C.1: Nucleosome occupancy profiles at the TSS is
shown for all genes of different organisms.
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Figure C.2: Distribution profile showing the signals of
H3K27me3, H3K4me3, H3K9ac, MNase, GC content, and Pol
II stratified according to the gene expression groups. The signal
shown is for the gene body (TSS to TES; scaled to 500 bp) and

1 Kbp upstream and downstream of gene body.
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Figure C.3: Scatter plots of the GC content (x-axis) and the
normalised read counts in the gene body for MNase, H3K27me3,
H3K4me3, H3K9ac, and Pol2. The counts are normalised to the
gene body length, and log2 transformed with a pseudocount of
1. The GC percentage is calculated for each gene. The Pearson
correlation values are mentioned on the top left corner of the

plots.
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Figure C.4: Scatter plots of the GC content (x-axis) vs bin-
length normalised read counts (y-axis; log2) of raw MNase and
naked DNAmeasured in 147 bp bins of the genome. The Pearson
correlation values are mentioned on the top left corner of the

plots.
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Figure C.5: GC content of the genes (y-axis) overlapping at
least 80% with a chromatin state (x-axis) is shown.
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Figure C.6: A mosaic plot is shown for the enrichment of
paused or unpaused genes (y-axis) in each chromatin state (x-
axis). This mosaic plot shows the calculated chi-squared residu-
als, and to be interpreted as follows. The bar height and width
represent the paused genes counts (scaled to 100%), and the to-
tal number of genes in each state (scaled to 100%). The blue
and red colour indicate that the observed value is higher or lower
than the expected value if the data were random, respectively.
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Figure D.1: A) The distribution plot of K4K27ratio (i.e.
H3K4me3/H3K27me3) and mRNA are shown along the diag-
onal. The Pearson correlation coefficients (above the diagonal)
are shown for the K4K27ratio and mRNA, and their scatter
plots are shown below the diagonal. belongs to the variable men-
tioned along the horizontal line of that plot. The y-axis of scatter
plot belongs to K4K27ratio, and x-axis belongs to the mRNA.
Note: mRNA is shown in TPM units, and log2 transformed
with a pseudocount of 1. B) The mRNA expression (y-axis; log2
1+TPM) is shown for genes with different H3K4me3/H3K27me3

ratio (x-axis; log2).
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Figure D.2: A western (dot) blot showing that the histone
mark antibodies used, are not cross-reacting with other histone
marks. The rows represent the α− chain of the antibody used.
The columns show the histone marks peptide, which the anti-
bodies are supposed to recognise. A dot shows that the antibody
recognises the respective histone mark peptide. The last column
shows a negative control, which is not expected to show a dot.
Please note that, we used the histone marks peptides designed
for Homo sapiens(Hs), although the Paramecium histones (H3)

have few mismatches in the H3 peptide tail.
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Figure D.3: A heat map showing the ranks of the contribution
of confounding factors (columns) to the difference they cause
between the Pearson correlation coefficient (r) and the partial
correlation coefficient (rxy,z) of each correlation pair (rows). The
confounding factors are colored as per their rank (mentioned in
the rectangles; 1-5). The highest confounding factor is ranked 1,
and the least confounding factor is given the rank 5. The black

rectangles denote the correlation pair.
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E.1 Peer-reviewed publications

First authorships
1. Exogenous RNAi mechanisms contribute to transcriptome adaptation by

phased siRNA clusters in Paramecium, 2020, Nucleic acids research 47
(15), 8036-8049. doi: https://doi.org/10.1093/nar/gkz553

2. Automated analysis of small RNA datasets with RAPID, 2019, PeerJ 7,
e6719. doi: https://doi.org/10.7717/peerj.6710

Shared first authorships
1. Epiregio: analysis and retrieval of regulatory elements linked to genes,

2020, Nucleic acids research 48 (W1), W193-W199. doi: https://doi.
org/10.1093/nar/gkaa382

2. Feeding exogenous dsRNA interferes with endogenous sRNA accumula-
tion in Paramecium, 2020, DNA Research 27 (1). doi: https://doi.
org/10.1093/dnares/dsaa005

Co-authorships
1. Broad domains of histone marks in the highly condensed Paramecium

macronucleus, 2021, manuscript in communication. bioRxiv doi: https:
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2. Two Piwis with Ago-like functions silence somatic genes at the chromatin
level, 2021, RNA Biology. https://doi.org/10.1080/15476286.2021.
1991114
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involved in heterochromatin formation, 2018, MDPI Genes 9 (2), 117.
doi: https://doi.org/10.3390/genes9020117
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E.2 Conference talks
1. Genome-wide small RNA profiling in Paramecium tetraurelia, Ciliate Molec-

ular Biology Conference, Washington, DC, USA, July 17-23, 2018.

2. Dynamic transcriptome adaptation by endogenous small RNA diversity in
Paramecium tetraurelia GDRE 2017, Conference on Paramecium Epigenome
Organization, Dynamics and Evolution, Nohfelden, Germany, October 3-
6, 2017.

E.3 Poster presentations
1. Epiregio: analysis and retrieval of regulatory elements linked to genes,

ISCB Recomb Systems Genetics conference 2020, Virtual event, November
16-19, 2020.

2. Genome-wide small RNA profiling in Paramecium tetraurelia, 27th Con-
ference on Intelligent Systems for Molecular Biology (ISMB) and 18th
European Conference on Computational Biology (ECCB) 2019, Basel,
Switzerland, July 21-25, 2019.

3. Cell type specific prediction of monoallelically expressed genes from hu-
man epigenomes, 17th European Conference on Computational Biology,
Athens, Greece, Sep 8-12, 2018

4. Genome wide prediction of monoallelic gene expression from human epige-
netic data, 22nd International Conference on Research in Computational
Molecular Biology (RECOMB) 2018, Paris, France, April 21-24, 2018

5. Automated analysis and comparison of multiple small RNA datasets with
RAPID, GDRE 2017: Conference on Paramecium Epigenome Organiza-
tion, Dynamics and Evolution, Nohfelden, Germany, October 3-6, 2017.

6. Automated analysis and comparison of multiple small RNA datasets with
RAPID, Joint 25th Annual International Conference on Intelligent Sys-
tems for Molecular Biology (ISMB) and 16th European Conference on
Computational Biology (ECCB) 2017, Prague, Czech Republic, July 21-
25, 2017.

E.4 Teaching assistant
1. Computational epigenomics course (summer semester 2021, summer semester

2020)

2. Workshops on analysis of RNA- and ChIP-seq data (winter semester
2020/2021, summer semester 2019)
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E.5 Academic volunteering
1. Young researchers session coordinator, German conference on Bioinfor-

matics (2020)

2. Equal opportunity working group specialist, MaxPlanck PhDnet

E.6 Reviewer activities
1. BMC Genomics - 2021, 2020, 2017

2. ECCB Conference - 2020

3. PLoS Computational Biology - 2019

4. ISMB ECCB Conference - 2019

5. F1000 research - 2018

6. ISMB Conference - 2018
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