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Abstract 
Clean water is fundamental to human health and ecosystem integrity. However, 
water quality deteriorates due to novel anthropogenic pollutants present at 
microgram per liter concentrations in urban water cycles (termed micropollutants). 
Wastewater treatment plants (WWTP) have been identified as major point sources 
for aquatic (micro-)pollutants. Chemical and ecotoxicological analyses have shown 
that conventional biological WWTPs do not fully remove micropollutants and 
associated toxicities, which is often because of mobile, polar and/or recalcitrant 
compounds. To minimize possible environmental risks, advanced wastewater 
treatment (AWWT) technologies could be a promising mitigation measure. Multiple 
processes are therefore being developed and evaluated such as ozonation and 
ozonation followed by granulated activated carbon (GAC) or biological filtration.  
Assessing the performance of these combined AWWTs was the focus the TransRisk 
project. Within this project, this thesis accomplished four major goals. Firstly, the 
preparation of (waste)water samples was optimised for in vitro bioassays. 
Acidification, filtration and solid phase extraction (SPE) were tested for their impact 
on environmentally relevant in vitro endocrine activities, mutagenicity, genotoxicity 
and cytotoxicity. Significantly different outcomes of these assays were detected 
comparing neutral and acidified samples. Sample filtration had a lesser impact, but 
in some cases retention of particle-bound compounds could have caused significant 
toxicity losses. Out of three SPE sorbents the Telos C18/ENV at sample pH 2.5 
extracted highest toxicity, some undetected in aqueous samples. These results 
indicate that sample preparation needs to be optimised for specific sample matrices 
and bioassays to avoid false-positive or -negative detects in effect-based analyses. 
Secondly, the above listed in vitro toxicities were monitored in a protected region for 
drinking water production in South-West Germany (2012−2015). Out of 30 sampling 
sites surface water and groundwater were the least polluted. Nonetheless, a few 
groundwater samples induced high anti-estrogenic activity that prompted further 
monitoring. The latter included a waterworks in which no toxicity was detected. 
Hospital wastewater also had elevated in vitro toxicities and hospitals are, thus, 
relevant intervention points for source control. The biological WWTPs were effective 
in removing most of the detected toxicity, and the selected bioassays proved to be 
pertinent tools for water quality assessment and prioritisation of pollution hotspots.  
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Thirdly, the in vivo bioassay ISO10872 based on Caenorhabditis elegans (C. 
elegans) was adapted for this thesis. Using this model, a median effect 
concentration (EC50) for reproductive toxicity of the polycyclic aromatic hydrocarbon 
β-naphthoflavone (β-NF) of 114 µg/L was computed which is slightly lower than 
reported in the scientific literature. β-NF induced cyp-35A3::GFP (a biomarker in 
transgenic animals) in a time and concentration dependent manner (≤ 21.3–24 fold 
above controls). β-NF spiked wastewater samples supported earlier hypotheses on 
particle-bound pollutants. Reproductive toxicity (96 h) and cyp-35A3 induction 
(24 h) of biologically treated and/or ozonated wastewater extracts and growth 
promoting effects of GAC/biologically filtered ozonated wastewater extracts were 
observed. This suggested the presence of residual bioactive/toxic chemicals not 
included in the targeted chemical analysis. It also highlighted the importance of 
integrating multiple (apical and molecular) endpoints in wastewater assessments. 
Fourthly, five in vitro and the adapted C. elegans bioassay were integrated into a 
wastewater quality evaluation (developed within TransRisk). Out of the five AWWT 
options, ozonation (at 1 g O3,applied/g DOC, HRT ~ 18 min) combined with non-
aerated GAC filtration was rated most effective for toxicity removal. All five AWWTs 
largely removed estrogenic and (anti-)androgenic activities, but not anti-estrogenic 
activity and mutagenicity, which even increased during ozonation. This has been 
observed in related studies and points towards toxic transformation products. These 
results also emphasized the need for implementing an effective post-treatment for 
ozonation. The results from a parallel in vivo study with Lumbriculus variegatus and 
Potamopyrgus antipodarum conducted on site at the WWTP (using flow through 
systems) were in accordance with the C. elegans results. In this context, C. elegans 
can be further implemented as sensitive, feasible and ecologically relevant model. 
In conclusion, this thesis shows how optimised sample preparation, long-term (in 
vitro) environmental monitoring, sensitive and ecologically relevant (in vivo) 
bioassays as well as innovative evaluation concepts, are pivotal in improving the 
removal of micropollutants and their toxicities with AWWTs. Future research should 
further develop and evaluate measures at sewer systems, conventional biological, 
tertiary and other advanced treatment technologies, as well as sociopolitical 
strategies (e.g., source control or natural conservation) and restoration projects. The 
effect-based tools optimised in this thesis will support assessing their success.
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1 General introduction 
1.1 Urban water cycle and the emission of wastewater 
Along human history natural water cycles are becoming increasingly interconnected 
with anthropogenic activities, infrastructures and emissions. While in 2014 54% of 
the world population resided in urban areas, this rate was predicted to increase to 
65% until 2050 (Brooks et al. 2020, World Health Organization 2016). This growth 
will also lead to massive expansion and intensification of water usage and demand, 
conveying key challenges to global water and wastewater management. These 
challenges are associated with other major environmental concerns such as climate 
change, resource depletion and habitat/biodiversity impacts (e.g., Rockström et al. 
2009, Stamm et al. 2016). 
Water represents the largest mass influx into urban areas (Philip et al. 2011). Due 
to the high demand on water, 4.5 x 1012 m3 of water is withdrawn from freshwater 
resources every year. This approximates to one third of the total existing amount 
(Jackson et al. 2001). Fresh water is mainly extracted from groundwater and surface 
water, whereby its extraction relies on various qualitative, quantitative, economic 
and regulatory aspects. To produce drinking water it is essential to remove water-
borne pathogens and contaminants. Depending on the initial water quality this 
requires basic (e.g., boiling for disinfection) to advanced (e.g., reverse osmosis) 
treatment processes. The application range of (treated) water is extremely versatile. 
Households mostly use tap and bottled water, while consuming 7% of the total 
extracted water. Industry needs 22%, while the largest amount (65%) is consumed 
by agriculture (Jackson et al. 2001). Figure 1 illustrates main water usage sites and 
wastewater fluxes. Wastewater is generated where water usage is accompanied by 
degradation of the provided quality. Wastewater in urban areas is generally 
collected via drainage networks and sewer systems that merge into wastewater 
treatment plants (WWTP). In WWTPs influent wastewater is treated by elaborate 
processes (multi-barrier principle), because WWTP effluents have to fulfill regulated 
quality standards to be permissible for discharge into receiving water bodies. The 
main goal of wastewater treatment thereby is that no biological/ecological risks are 
posed to humans and the environment (Tchobanoglous and Burton 1991). Once 
this requirement is fulfilled the water cycle can begin anew. 
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Figure 1. Urban water cycle scheme indicating major entities including inputs (green lines), 
flows (blue lines), outputs (brown lines) and impacting factors (grey lines, Philip et al. 2011)  

1.2 Wastewater treatment plants as point sources for aquatic 
pollution  
In 2012 approximately half of European surface waters did not match a “good 

ecological status” (European Commission 2012, European Parliament and Council 
2000). Large parts of surface water pollution is caused by WWTPs (European 
Commission 2012, Malaj et al. 2014, Pal et al. 2010, Triebskorn et al. 2017, 2019). 
Their contribution will likely increase along the ongoing urbanization and growing 
world population (compare 1.1). Raw (untreated) municipal wastewater generally 
consists of 99% water and 1% waste. The waste fraction contains nutrients, 
(dissolved) organic matter, bacteria and other particulate matter (including nano- 
and microplastic) as well as toxic pollutants (e.g., Bruni et al. 2019, Tchobanoglous 
and Burton 1991, Triebskorn et al. 2019, Stamm et al. 2016). Due to its hazard 
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potential wastewater is treated by series of physical, chemical and biological WWTP 
processes that categorize into primary, secondary and where applicable tertiary and 
advanced treatment. Each of these stages (further) reduces the content of specific 
wastewater constituents. Preliminary treatment excludes grease, oil, debris, grit and 
odor before primary treatment separates out floating and settling materials (e.g., in 
primary clarifiers). Secondary treatment mainly reduces organic matter and 
suspended solids; most commonly by activated sludge processes (Prasse et al. 
2015). Tertiary treatment aims at enhanced denitrification and removal of 
phosphorus, bacteria and virus, by coagulation, flocculation, precipitation and/or 
filtration. Waste sludge is mostly withdrawn during primary settling and/or the 
biological stage. It has to undergo separate treatment in digesters, centrifuges or 
presses that prepare it for final disposal (e.g., by incineration) or reuse (compare 
‘peak phosphorous’, Cordell et al. 2009). Treated wastewater either becomes 

discharged into surface waters or marine environments or may be allocated for 
reuse depending on its final quality (e.g., in industry, irrigation or prospectively 
reclaimed water, Tchobanoglous and Burton 1991). 
Wastewater quality has been characterized by physical parameters, such as odor, 
turbidity or TSS (compare figure 16), chemical parameters such as pH, salinity, 
nitrogen (e.g., total nitrogen (TN) computed as sum concentration of NH4+, NO2- and 
NO3-), phosphorus (e.g., total phosphorus (Ptotal)), sulfate/sulfides (SO42-/S2-), 
biological/chemical oxygen demand (BOD/COD), dissolved organic carbon (DOC), 
often extended by adsorbable organic halides (AOX) or benzene, toluene, xylenes 
(BTEX), and biological parameters such as bacteria, viruses or parasites. Several 
of these parameters constitute, contribute or indicate aquatic pollution, if released 
at excessive amounts into water bodies. Most countries thus regulate their 
discharge through setting permissible limits (e.g., European Council 1991, US EPA 
2002). Other parameters such as the BOD5, which refers to the BOD of a 
wastewater sample within a 5 day incubation period, are used as quantitative 
indicators of the contained biodegradable compounds. Despite that these 
parameters represent “sums” of relevant physicochemical attributes/chemicals 
specific (micro)pollutants may not be captured. For this reason, several regulations 
have included so called priority pollutants based on their toxicity and other 
environmentally relevant criteria such as persistence (European Parliament and 
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Council 2000, US EPA 1972). Priority pollutants that have to be monitored such as 
heavy metals, polycyclic aromatic hydrocarbon (PAH), different pesticides, 
endocrine disrupting chemicals (EDCs) and industrial chemicals, whose usage has 
to be restricted over the next decades. Moreover, if compliance with directives (e.g., 
Urban Waste Water Directive, European Council 1991) is not fulfilled, such as 
permissible discharge limits, immediate actions should be taken (e.g., technical 
WWTP and/or source control measures). In addition, several contaminants have 
been placed onto watch lists to become priority pollutants such as of the water 
framework directive (WFD, European Parliament and Council 2013), or are part of 
additional regulation such as for industrial wastewaters (e.g., indirect emissions). 
Nonetheless, the vast majority of known and emerging pollutants remains 
unregulated as well as incompletely removed during conventional biological 
wastewater treatment (compare 1.2.1). This circumstance has defined WWTP as 
major point sources for (micro)pollutants and potentially associated  risks in aquatic 
ecosystems. Several of these pollutants were repeatedly made responsible for 
adverse effects on different aquatic species (1.3) and regionally conflicted with 
environmental quality standards (EQS, a presently non-legislative ecotoxicological 
complementation to chemical permissible limits). Although EQS proved to be useful 
in protecting aquatic organisms to certain extend, they have been defined for only a 
few compounds up to present (Escher et al. 2018, Malaj et al. 2014, Tousova et al. 
2017). In addition to these challenges, most pollutants do not fully mineralize during 
different wastewater treatments, triggering the emission of unknown TPs. TPs may 
show higher toxicity than their parental compound (Boxall et al. 2004, Cao et al. 
2020b, Cwiertny et al. 2014, Knoop et al. 2018, Larcher et al. 2012, Ma et al. 2019, 
Schlüter-Vorberg et al. 2015). The overall situation has thus initiated numerous 
research projects on the detection and characterization of wastewater-borne 
(micro)pollutants/TPs (1.2.1) and has strongly challenged WWTP to further reduce 
emissions such as by technical upgrades (1.2.2). 
1.2.1 Environmental behavior and biological impacts of wastewater-borne 
(micro)pollutants 
Concerns in the late 1960s focused on WWTP as causes for eutrophication and 
declining fish populations (e.g., Karlson et al. 2002, Pihl et al. 1991). Thereafter, the 
discharge of so called macro-pollutants (including nutrients, organic matter, salts 
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and acids) was brought under control (Schwarzenbach et al. 2006). In the 1980s the 
attention shifted to hazardous organic chemicals. Persistent organic pollutants 
(POPs), such as PAH or polychlorinated biphenyls (PCBs), but also heavy metals, 
were widely investigated and regulated (UNEP 2005). Through ugrading WWTPs 
(e.g., enhancing biodegradation and sludge adsorption) and source control 
measures (e.g., at industrial sites) many POPs were reduced to levels of lesser 
concern (Prasse et al. 2015, Völker et al. 2019). In the last two decades instrumental 
chemistry has advanced in a way that organic pollutants occurring at trace 
concentrations could be reliably detected. According to their concentration in the 
nanogram to microgram per liter range these pollutants were termed “micro-
pollutants” (Kümmerer 2011). Micropollutants have been classified (Kümmerer 
2011, Ribeiro et al. 2015) according to: 
 Their anthropogenic function such as pharmaceuticals and personal care 

products (PPCPs), biocides, nutrient-related or industrial chemicals (such as 
brominated flame retardants or surfactants). 

 Their chemical structures such as phenols, phthalates or polyhalogenated 
compounds involving perfluorinated compounds or brominated diphenhyl ethers. 

 Their mode of action (MoA) such as EDCs or anti-neoplastics.  
Many micropollutants show (pseudo)persistent characteristics, a high mobility in the 
water cycle and/or low sorption rate (De Baat et al. 2020, Reemtsma et al. 2016, 
Richardson 2009). Several micropollutants were thus detected at nanogram per liter 
concentrations in groundwater (Heberer 2002) and raw drinking water (Benotti et al. 
2009). Nonpolar micropollutants often show high biodegradability, their hydrophobic 
properties however also facilitates accumulation to sediments and/or in aquatic biota 
(Brown et al. 2007, Fick et al. 2010). Munz et al. (2018) detected this phenomena 
for 63 (semi)polar micropollutants. Bioaccumulation phenomena generally imply 
further risks of trophic transfers (e.g., Park et al. 2009, Stylianou et al. 2018). Albeit 
significant hazards to humans could so far be prevented (such as by multi-barrier 
principle in the production of drinking water), ecotoxicological effects and ecological 
impacts are well documented in the scientific literature (e.g., Stamm et al. 2016, 
1.3). The following passages shall summarize a few relevant examples hereof. 
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EDCs, environmental hormones and WWTP discharges containing these 
compounds have been associated with reproductive impairments in wild fish and 
other species (Jobling et al. 1998, 2002, Sumpter 2005, Tetreault et al. 2011, 
Wagner et al. 2017). Although suspected causative agents, such as estrone (E1), 
estradiole (E2) or ethinylestradiole (EE2) are generally effectively removed during 
activated sludge treatments (e.g., to 83%, 99% and 78% for E1, E2 and EE2, Ternes 
et al. 1999), these compounds nonetheless indicated high potencies at very low 
concentrations. EE2 for instance disturbed egg fertilization and sex ratios of fat head 
minnows at a lowest observed effect concentration (LOEC) of 0.32 ng/L (Parrott and 
Blunt 2005). It was further shown to cause in situ feminization of males at longer-
term exposure to 5–6 ng/L (Kidd et al. 2007). Thus their measured environmental 
concentrations (MECs) often range above their reported effect concentrations (EC, 
Quednow and Püttmann 2008). Other EDCs such as the industrial chemical 
nonylphenol (priority pollutant WFD) caused feminization in fish at a LOEC of 
8.2 µg/L. Despite its ban in several countries nonylphenol was detected at up to 
4.1 µg/L in surface waters and 1 mg/kg in river sediments (Soares et al. 2008, World 
Health Organization 2002). The UV filter octinoxate (or 2-ethylhexyl-4-
methoxycinnamate) was recently added to the WFD watch list (Ramos et al. 2015, 
European Parliament and Council 2013). Its accumulation in sediments (at µg/kg) 
and in aquatic biota (up to several hundred µg/kg) is thought to be associated with 
toxicological effects (Kaiser et al. 2012). Markedly, only little is known about its 
occurrence and behavior in WWTPs (compare 1.2.2).  
Low ECs were also observed for different pharmaceuticals, such as carbamazepine, 
diclofenac or metoprolol. Diclofenac was reported to induce tissue-specific damage 
in rain bow trout at a LOEC of 1 µg/L (Triebskorn et al. 2007). Albeit WWTP influent 
concentrations of diclofenac and carbamazepine are relatively low, both compounds 
indicated poor removal rates during activated sludge treatment (Abbas et al. 2018, 
Calisto and Esteves 2009) and were detected in surface waters in the microgram 
per liter range (Gros et al. 2006, Zhou et al. 2009). High plasma concentrations of 
diclofenac were quantified in rainbow trout exposed to diluted treated wastewater 
(Brown et al. 2007). High bioconcentration factors were quantified for other 
pharmaceuticals (Burns et al. 2010, Fick et al. 2010). Antibiotics, excreted by 
humans or livestock represent another problematic group of pharmaceuticals which 
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stimulated (multi-)resistant mechanisms in sludge bacteria (Bruni et al. 2019, Rizzo 
et al. 2013, Triebskorn et al. 2017). Accordingly azithromycin, clarithromycin and 
erythromycin, detected in treated wastewaters, surface water and groundwater (up 
to the microgram per liter range), were included into the mentioned recent WFD 
watch list (European Parliament and Council 2013).  
Biocides are another frequently detected pollutant group in aquatic compartments 
(e.g., Abbas et al. 2018). Pesticides of different classes normally occur at low 
concentrations in WWTP influents (e.g., < 1 µg/L, Köck-Schulmeyer et al. 2013). 
Many pesticides are recalcitrant towards conventional biological wastewater 
treatment (Köck-Schulmeyer et al. 2013, Sadaria et al. 2016). They are also widely 
distributed in natural waters due to their extensive agricultural application. In 
addition certain neonicotinoids indicated diffusion into surface waters from 
groundwater (Morrissey et al. 2015). Many pesticides and their formulations/TPs 
have been associated with toxicity, including carcinogenicity, reproductive toxicity, 
hepatotoxicity and/or neurotoxicity in different non-target species (Cao et al. 2020a, 
Dabrowski et al. 2014, Sanchez-Bayo and Hyne 2014). Although newer generations 
of pesticides are equipped with comparably short environmental half-lifes, 
ecological and human health risks prevail. For instance several neonicotinoids 
discharged from WWTPs were observed to exceed regulatory threshold. However, 
adverse effects on aquatic invertebrates also occurred below threshold 
concnetrations (Münze et al. 2017). Many pesticides have thus to be stringently 
regulated or had to be phased out in the past (European Parliament and Council 
2013, US EPA 2011). Other biocides, such as antifouling agents, are often 
underrepresented in regulative assessments, despite their high production volumes 
and potential toxicity (e.g., Dafforn et al. 2011). 
Foodstuff-related chemicals, such as artificial sweeteners, are often used as 
chemical indicator substances due to their aquatic persistence and mobility (e.g., 
Abbas et al. 2018, Seitz and Winzenbacher 2017). For a number of these chemicals 
even health risks were reported. It was for instance observed that the food additive 
“E 321” butylhydroxytoluol (2,6-di-tert-butyl-4-methylphenol, BHT) produces a 
metabolite that apparently caused DNA damage in rat and mice (Fries and 
Püttmann 2004). BHT entering the aquatic environment through WWTPs was 
detected in surface water (< 1.6 µg/L), groundwater (< 2.2 µg/L) and wastewater 
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(< 0.3 µg/L, Barbosa et al. 2016). It was thus also placed on the WFD watch list 
(European Parliament and Council 2013). In general, more (eco)toxicological data 
has been obtained on BHT, its TP(s) and other nutrition-related chemicals, to 
stringently exclude risks to humans and the environment.  
Although older generations of POPs do not (regularly) exceed permissible 
thresholds any more, WWTP effluents are considered as prevailing source of certain 
PAH and PCBs (Abdel-Shafy and Mansour 2016, Forsgren 2015). Their emission is 
probably linked to their on-going industrial application and high production volumes 
(e.g., Bergqvist et al. 2006, Blanchard et al. 2004). Many hydrophobic POPs 
“escape” wastewater treatment bound to residual TSS (e.g., Marttinen et al. 2003, 
McLaggan et al. 2012). In surface waters they often accumulate in sediment sinks 
that are documented to exert toxic effects to bottom-dwelling organisms (e.g., Ahlf 
et al. 2002). Due to this fact sediments were integrated as one of the monitoring 
targets (besides the water phase and aquatic biota) of the WFD (European 
Parliament and Council 2008). Other than point sources, diffuse emissions including 
those from registered contamination sites or resulting from man-made disasters 
such as oil spills (Kim et al. 2019c), represent relevant sources of hazardous POPs. 
1.2.2 Advanced wastewater treatment technologies for the additional removal 
of (micro)pollutants and residual toxicity 
In response to the growing awareness about residual (micro)pollutants and toxicity 
in conventional-biological WWTP effluents, advanced wastewater treatment 
(AWWT) technologies were proposed as mitigation measure (e.g., Barbosa et al. 
2016, Rizzo et al. 2019, Völker et al. 2019). Predominant AWWT technologies under 
investigation are advanced oxidation processes (such as ozonation or UV 
treatments), adsorptive technologies (such as powdered or granulated activated 
carbon), pressure-driven membranes (such as ultrafiltration or reverse osmosis), ion 
exchangers and air stripping techniques (Tchobanoglous and Burton 1991).  
Advanced oxidation processes are classified by producing reactive oxidizing 
species. These specimens are mainly hydroxyl radicals (•OH) such as formed from 
hydrogen peroxide (H2O2) or from ozone (O3). The latter two are directly introduced 
into the wastewater matrix. Hydroxyl radicals and ozone unspecifically react with 
wastewater constituents leading to stepwise degradation/transformation of the 
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attacked compounds/TPs (Schindler-Wildhaber et al. 2015). Advanced oxidation 
processes can be installed as pretreatment step for enhancing micropollutant 
biodegradability in subsequent treatment stages or as post-treatment step for 
oxidizing residual micropollutants and DOC (e.g., Bougrier et al. 2007, Rizzo 2011, 
Yeom et al. 2002). Under optimised conditions advanced oxidation processes, such 
as (catalytic) ozonation, (photo-)Fenton processes, wet peroxide/air or 
electrochemical oxidation and photocatalysis, indicated moderate to high 
(compound- and matrix-specific) removal rates (e.g., Klavarioti et al. 2009, Knopp 
et al. 2016, Ribeiro et al. 2015). Due to this potential ozonation has already been 
implemented at the national scale in a few countries (Gottschalk et al. 2009, 
Barbosa et al. 2016). Certain wastewater constituents delimit the effectivity of 
advanced oxidation processes such as high natural organic matter (NOM) content 
scavenging reactive oxidizing species introduced into the wastewater matrix. Other 
drawbacks are the generation of secondary wastes (most Fenton processes), 
demanding process parameters (e.g., low pH for conventional Fenton processes or 
elevated temperatures for wet peroxide oxidation), dependency on ambient 
conditions (e.g., solar light for photocatalysis), and low mineralization potential (e.g., 
ozonation at economic ozone doses and realistic HRTs as limited by DOC content). 
Moreover, advanced oxidation processes can generate TPs that obligate post-
treatment. Many TPs can derive from a single oxidized compound, while the total 
number and physicochemical properties of the resulting TPs remains difficult to 
predict at present. TPs are currently classified based on their origin such as the 
mentioned technical TPs (from AWWT). Furthermore, natural TPs involve 
human/bacterial metabolites or solar degradation products (Escher and Fenner 
2011). Prominent examples of TPs formed during ozonation are bromate (generated 
in the presence of bromide) and brominated TPs (in the presence of organic matter) 
as well as N-Nitrosodimethylamine (NDMA, Schindler-Wildhaber et al. 2015, Wu et 
al. 2019).  
Adsorptive wastewater treatment by granulated or powdered activated carbon 
(PAC) is known for its effective removal of non-polar to moderately polar 
micropollutants and their toxicity (Prasse et al. 2015). Due to its granular structure 
GAC is packed into bed filters, whereas PAC is added to the wastewater and 
removed by subsequent filtration after defined contact times (Boehler et al. 2012). 
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(Micro)pollutant removal and the large capacity of these technologies base on the 
porous structure of charcoal, exhibiting a large surface that allows for hydrophobic 
interactions and chemical binding. Both processes have several advantages, such 
as a comparably low energy demand (PAC ≥ GAC) and a high removal effectivity 
(often PAC ≥ ozonation, e.g., Altmann et al. 2014). Moreover, the micropollutant 
removal normally proceeds without the generation of TPs. Their major disadvantage 
is that there capacity can become saturated, once all accessible binding palces are 
occupied. Then, these techniques need to be regenerated such as by heating them 
up to very high temperatures. They also suffer from variable sorption rates towards 
different compounds (Prasse et al. 2015). Biologically activated carbon (BAC) is 
thus being tested as an alternative that demonstrated to effectively decrease 
concentrations of DOC, nitrogen and of a number of recalcitrant micropollutants 
(Chen et al. 2017, Reungoat et al. 2012). BAC systems use fixed beds filled with 
GAC to support the growth of bacteria, which degrade the respective 
(micro)pollutants. Due to their performances in terms of micropollutant and toxicity 
retention all three technologies (GAC, PAC and BAC) have been implemented at 
various scales at WWTPs (e.g., Boehler et al. 2012, Mailler et al. 2014, table 4). 
However, for all activated carbon processes, highly polar chemicals may not be fully 
removed (Prasse et al. 2015, Reemtsma et al. 2016, Völker et al. 2019). Other 
biologically-activated filter materials are also being examined such as expanded 
clay in the biological filters (BFs) used in the TransRisk project (Knopp et al. 2016, 
1.5). 
Membrane based technologies have widely been utilized such as in reverse 
osmosis to desalinate sea water or in membrane bioreactors as an alternative to 
activated sludge processes (Schneider et al. 2020, Tchobanoglous and Burton 
1991). Lately, ultrafiltration, microfiltration or nanofiltration that are distinguished by 
different standard pressures and pore sizes were tested as promising AWWT 
technologies (e.g., for polishing final effluents or indirect potable reuse). Thereby 
the molecular weight cut-off and other membrane criteria determine the rates and 
types of retained compounds/particles (Oulton et al. 2010). Promising variations of 
these technologies are being developed, such as forward osmosis and membrane 
distillation (Tchobanoglous and Burton 1991). Although processes, such as reverse 
osmosis and nanofiltration can produce particle-free effluents of very high quality 



11 

(Stalter 2010), major disadvantages are their high energy demand and production 
of a (highly) enriched retentates that requires independent costly treatment (Perez-
Gonzalez et al. 2012). Membrane technologies are in a number of cases combinable 
with certain biotechnological applications. Enzymes, such as laccases, lignin 
peroxidase, manganese peroxidase, purified from funghi, bacteria or plants 
respectively are therefore immobilized on membranes. In addition, these enzymes 
can be dissolved in bioreactors, freely or mounted onto carriers (e.g., Demarche et 
al. 2012). In nature, they degrade/modify certain chemicals, organic matter or 
biomass. These functions can be also be used to degrade several hormones, 
phenols, plasticizers, PAH (Demarche et al. 2012, Kim and Nicell 2006), EDCs, 
antibiotics (Becker et al. 2017) and other pharmaceuticals in different wastewater 
matrices. As enzyme technologies are only recently being transferred to the 
treatment of wastewaters, their potential seems by far not exceeded (such as 
regarding the full range of micropollutant degradations and large-scale technical 
application). 
AWWT technologies may be combined with each other, as far as economically 
feasible and once an individual technology alone does not provide the demanded 
wastewater quality. This is mostly realized by additional post-treatment such as in 
the combination of ozonation with sand-, activated carbon or biological filtration 
(Knopp et al. 2018, Prasse et al. 2015, Völker et al. 2019) and other promising 
process combinations (e.g., Knopp et al. 2018, Yang et al. 2017). The latter may for 
instance be realized by “hybrids” of technologies such as in biological membrane 

assisted carbon filtration (e.g., van Hege et al. 2002). AWWT have been 
benchmarked for their efficacy by means of chemical, ecotoxicological and 
microbiological analyses (compare 1.3–1.5 and 2.4). A prominent example in this 
regard is given by the combination of ozonation with sandfiltration or activated 
carbon filtrations, which demonstrated high removal rates for a large set of 
micropollutants, TPs as well as toxicity that withstood or was generated during 
ozonation (da Costa et al. 2014, Magdeburg et al. 2014, Knopp et al. 2016, Stalter 
et al. 2010, Wu et al. 2019, table 3−4). Other wastewater treatment systems 
currently under investigation as independent or post/tertiary treatments are 
biologically-activated filtrations (including riverbank filtration or retention soil filters), 
constructed wetlands and/or aquifer recharge (e.g., Li et al. 2014, Zhang et al. 
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2014). Although many of these technologies and treatment processes are 
considered promising in further reducing wastewater-borne micropollutants and 
toxicity (e.g., Bundschuh et al. 2011b, Hicks et al. 2016), more interdisciplinary 
research is needed for their holistic evaluation and comparison. 
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1.3 Ecotoxicological characterization of water and wastewater 
quality by in vitro and in vivo bioassays 
Ecotoxicological methods are essential to environmental risk assessments and 
monitoring, as they study the biological responses of (micro)pollutants or 
environmental samples (e.g., Backhaus et al. 2019, Brack et al. 2017). Bioassays 
are mostly combined with chemical analyses to classify/identify the drivers and 
conditions of (micro)pollutant-based effects (e.g., Maier et al. 2016, Neale et al. 
2017, Sonne et al. 2018, Stamm et al. 2016). Challenges arise from various aspects, 
such as the large number of contaminants in urban water cycles, their occurrence 
at mostly low concentrations, selecting the appropriate sampling, sample 
preparation and detection methods as well as breaking down the overall complexity 
and variability of aquatic ecosystems (Eggen et al. 2004, Stalter et al. 2013, figure 
1–2). These circumstances also have to be considered when planning, conducting 
and evaluating environmentally relevant investigations on AWWT. 
Sampling guidelines are also compiled and adapted to achieve this goal (Prasse et 
al. 2015, Völker et al. 2019) such as for different environmental compartments and 
sampling modes (e.g., grab versus composite samples or extraordinary conditions 
such as heavy rain falls or proximity to pollution hot spots). In all cases, proper 
sampling and sample handling is crucial to minimize deviation from in situ conditions 
(Baker and Kasprzyk-Hordern 2011, Hillebrand et al. 2013). Albeit immediate testing 
is imperative, storage periods of several days or weeks leading to degradation of 
target compounds can sometimes not be avoided. Sample freezing for instance is 
regularly applied to slow down physicochemical and microbial processes that take 
place during storage. Microorganisms are further targeted by filtration (e.g., at pore 
sizes < 0.2 µm) as well as by the addition of acids or preservatives. In accordance, 
suitable storage vessels (e.g., amber glass for organic pollutants) and conditions 
(e.g., storage temperature) have to be defined. Each of these techniques beholds 
advantages and disadvantages that have to be balanced with a higher 
environmental relevance of field investigations (compare below). 
Untreated wastewater samples may serve for whole effluent toxicity (WET) 
estimations (Norberg‐King et al. 2018). Dilution series must be prepared to 
investigate ECs related to different endpoints. Sample preparation may also 



14 

increase sensitivity and feasibility (compare effect directed analysis, EDA, or toxicity 
identification evaluations, TIE). Other bioassays do not require this steps due to their 
high sensitivity (e.g., Backe and Field 2012, Völker et al. 2019, Escher et al. 2014, 
2018). Sample preparation is moreover practiced to reduce matrix interferences and 
for reasons of sample stabilization. Sample extraction and enrichment are common 
sample preparation approaches that involve techniques such as ultrasonic, solvent, 
soxhlet, liquid-liquid or SPE, freeze-drying, passive sampling and purge-trap-
methods (De Baat et al. 2020, Prasse et al. 2015, Zwart et al. 2018). Many of these 
techniques are known to behold specific selectivity and effectivity towards different 
chemicals and environmental matrices (compare 2.1 and Abbas et al. 2019).  
Ecotoxicological methods comprise field (in situ), semi-field (such as mesocosms) 
and laboratory studies using in vivo (whole organisms) and in vitro (cells) bioassays. 
In in vitro an in vivo bioassays different organisms/cells become exposed to 
individual compounds, synthetic mixtures or environmental samples (e.g., Klaassen 
2007, Escher et al. 2017, Stamm et al. 2016). Bioassays are thereby capable of 
integrating and detecting the effects of multiple pollutants also referred to as mixture 
toxicity. Therefore, bioassays can be used as proxy of environmental toxicities, 
albeit full assessment of the latter generally requires (additional) higher tier testing 
(figure 2). Moreover, for optimal test strategies a well-defined set of parameters 
need to be considered such as organismal sensitivities, targeted endpoints, 
expected contaminant concentrations and other exposure related conditions 
(Prasse et al. 2015). To assess a widest feasible range of ecotoxicological effects 
in vivo bioassays should ideally be conducted using species from different 
taxonomic groups, trophic levels (such as producers or primary/secondary 
consumers) or specific habitats (such as aquatic or benthic/sediment dwelling, Rizzo 
2011, Schlüter-Vorberg et al. 2017, Wernersson et al. 2015). Ecotoxicological 
assessments thus often include invertebrates such as the water flea Daphnia magna 
(D. magna, Organisation for Economic Cooperation and Development, OECD 
2012), plants such as the duckweed Lemna minor (L. minor, OECD 2006), and fish 
species such as Danio rerio (D. rerio, zebrafish, ISO 1996) or Oncorhynchus mykiss 
(O. mykiss, rainbow trout, OECD 1992). These tests are often adapted or modified 
such as in case of the fish early-life stage test. In vivo assays are often combined 
with in vitro test systems in so called batteries of bioassays (compare below). 
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Figure 2. Ecotoxicological test procedures including their estimated ecological relevance, 
influencing factors and reproducibility/specificity (left, Connon et al. 2012). Each test 
examines different patches of toxicological cause and effect pathways (right). 
In vitro bioassays utilize bacterial or eukaryotic cells (including recombinant cell 
lines) to screen for non-specific toxicity (e.g., cytotoxicity) as well as specific toxicity 
pathways / MoA (e.g., Escher et al. 2020, Rehberger et al. 2018, 2.2). In vitro 
systems are known for their high reproducibility and feasibility (figure 2) and are thus 
used for large-scale initiatives in predictive toxicology such as the Tox21 or ToxCast 
database (Brooks et al. 2020). Nonetheless they incorporate a lower predictive 
power regarding population-relevant effects than in vivo bioassays. Thus they are 
mainly used in mechanistic studies (e.g., on receptor interactions or cellular stress / 
metabolic responses) and MoA-based screenings of environmental samples as well 
as for substituting animal testing (e.g., Burgess et al. 2013, Martin et al. 2010, 
Escher et al. 2014, Norberg‐King et al. 2018). They also became important 
(prospective and retrospective) monitoring tools including water and wastewater 
regulations (e.g., European Parliament and Council 2000, Leusch et al. 2017, 
Wernersson et al. 2015). A recent sound concept in this regard are effect based 
trigger values used as ecotoxicological (MoA-specific) complementation to EQS 
(Daniels et al. 2019, Escher et al. 2018, Itzel et al. 2019).  
In vivo and in vitro bioassays have fundamentally shaped the current 
(eco)toxicological knowledge and large knowledge base on hazardous substances 
in the urban water cycle. A database query in the Web of Science (Clarivate 
Analytics, USA) searching for the term “wastewater toxicity” for instance indexed 
5,547 publications referring to the topic and 410 publications containing these words 
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in the title of the respective studies (Web of Science 2017). Of these publications 
601 and 41 respectively were published only in 2016, while some of the earliest date 
back to the 1970s (e.g., Esvelt et al. 1973). The number of relevant publications 
increases once keywords synonymous or related to toxicity (such as “adverse 

effects”, “negative impacts”, “hazards”, “risks”, “detoxification”) or to wastewater 

(such as “WWTP discharges”, “sewage treatment” or “municipal effluents”) are 

included or if specific bioassays, endpoint, pollutant groups and treatment 
technologies are searched.  
This exemplary database query indicates the broad research on WWTP discharges 
including their environmental risks. Only a fraction of these studies identified 
plausible causative agents of the observed effects. This circumstance is particularly 
complex because of the vast number of existing and newly developed chemicals 
that are presently not or insufficiently assessed. The authors of these studies thus 
generally concluded towards unknown compounds and sample constituents not 
covered by target chemical analyses and/or their cumulative effects to be 
responsible (e.g., Abbas et al. 2018, Backhaus and Karlsson 2014, Maier et al. 
2016, Thrupp et al. 2018). Through these studies it also became apparent that 
neither the reduction of target (micro)pollutants, nor of the DOC content, may 
correlate to the removal of toxicity. Effect-based methods (comprising in vitro, in vivo 
and in situ) are thus imperative to complement on chemical analyses (compare 
above) and to establish the missing line(s) of evidence (Backhaus et al. 2019, De 
Baat et al. 2020, Leusch et al. 2014). Moreover, the development of new methods 
and optimisation of current test strategies as well as further integration into 
(waste)water-related regulations should be urged (e.g., Pal et al. 2010, Reemtsma 
et al. 2016, Rizzo 2011, Schwarzenbach et al. 2006, Völker et al. 2019).  
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1.4 Caenorhabditis elegans in ecotoxicological research 
1.4.1 Ecology and establishment as biological model organism  
Caenorhabditis elegans (C. elegans) belongs to the diverse animal phylum 
Nematoda (roundworms). It was firstly described by Maupas (1899) who discovered 
it in humus rich soils in Algeria. In later years, it was also identified in freshwater 
habitats (i.e., Hirschmann 1952). C. elegans generally prefers temperate regions 
and, as a bacterivore, microorganism-rich habitats such as rotting fruits and plants 
(Hope 1999). Like other nematodes, it plays an important role in soil and benthic 
food webs (Yeates et al. 1993, Traunspurger 1997), wherein it is eaten by predating 
nematodes and omnivore insects. If present in unfavorable environments (compare 
1.4.2 and 1.4.4) it can assume a so called dauer state. Dauer larvae ingested by 
invertebrates were observed to be (passively) disseminated to more distant 
locations (Félix and Braendle 2010). First laboratory isolates were gained early on 
(Nigon 1949). Since then, the growing knowledge on C. elegans reflects in more 
than 15,000 published articles up to 2010, including its complete cell lineage, fully 
sequenced genome and other major discoveries (e.g., Chalfie 2009, Félix and 
Braendle 2010). Its genetic and functional correlations to humans (Corsi 2006, Kim 
et al. 2019c, Leung et al. 2008) were used to elucidate biochemical pathways of 
human diseases such as Alzheimer, Diabetes or obesity (Tejeda-Benitez and 
Olivero-Verbel 2016a). Similar to Drosophila melanogaster it implies typical 
advantages of a biological model, including a well-described morphology, small 
transparent body (well observable with differential interference contrast (DIC) 
microscopy), fast reproduction cycle, large brood size, facile cultivation, low 
maintenance costs (e.g., frozen stocks that can be kept for months), rather invariant 
development, amenability to genetic crosses and an extensive spectrum of methods 
(e.g., Altun and Hall 2009, Hope 1999, Sulston and Horvitz 1977). Despite these 
advantages a few experimental limitations exist, such as a rather impermeable 
cuticule, and similar to other laboratory models, the reconstruction/extrapolation of 
in situ environmental conditions, has to be considered when applying C. elegans as 
ecotoxicological model. Therefore, well-defined and adapted culturing practices 
(Hunt 2016) as well as result verification in the light of higher tier studies (compare 
figure 2 and chapter 2.3) have been recommended as promising way forward. 
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1.4.2 Development and reproduction 
C. elegans exists as hermaphrodites (XX) and males (X0) incorporating five pairs of 
autosomes with ~18,000 genes. Hermaphrodites mainly self-fertilize producing 
genetically identical offspring. Males arise by spontaneous non-disjunction at a rate 
of 0.1%. Mating increases the genetic variability, including a population proportion 
of males of up to 50% (Altun and Hall 2009). Adults can grow to an average length 
of 0.8–1.1 mm during a short life cycle of about 3.5 days (figure 3). The 
hermaphrodite life span counts 12–20 days under standard laboratory conditions 
(optimal feeding, 20° C). C. elegans can survive 4–8 times longer as dauer larvae 
(Cassada and Russell 1975, Golden and Riddle 1984, figure 3). Under favorable 
conditions adult hermaphrodites may lay up to 280–300 eggs in total (Byerly et al. 
1976), but the number of fertilized eggs can increase to 1200–1400 upon mating 
(Hodgkin 1988). Byerly et al. (1976) observed the life cycle to be temperature 
dependent and a continuous temperature of > 25°C causes sterility. 

 
Figure 3. C. elegans life cycle (Altun and Hall 2009) and scanning electron microscope 
image of an adult hermaphrodite (J. Berger, Max-Planck-Institute for Developmental 
Biology, Germany). Illustration indicates pharynx (green), intestine (pink), proximal and 
distal gonad (dark blue), uterus with developing eggs (light blue) and developmental data. 
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The genetics of C. elegans proved to be relatively amenable, which could hint on 
alternative ecological specializations (Félix and Braendle 2010, 1.4.4). Adult 
hermaphrodites count 959 somatic nuclei and approximately 2000 germ cells. Males 
incorporate 1031 somatic nuclei and about 1000 germ cells (Alberts et al. 2002). 
Somatic cells differentiate into various tissues and compartments, such as neurons, 
muscles, hypodermal cells, reproduction system, intestine, pharynx, excretory 
system and glands (Sulston and Horvitz 1977). C. elegans also implies a sensory 
system that reacts to various environmental signals (1.4.4). In addition, C. elegans 
shows a wide range of behavioral traits such as feeding, defecation, egg laying, 
locomotion, learning as well as social behavior (e.g., Rankin 2002, De Bono 2003). 
1.4.3 Xenobiotic metabolism 
C. elegans has a versatile xenobiotic metabolism that reflects its evolutionary 
adaption to heterogeneous habitats and various external stressors. This involves 
traits such as its sensory system that can trigger avoidance behaviors towards 
contaminated food or pathogenic bacteria (Sambongi et al. 1999, Lindblom and 
Dodd 2006). Primary exposure sites for environmental chemicals, small particles 
and other ingestible materials are pharynx and intestine. In contrast, the 
permeability of its cuticle seems rather low (Chisholm and Xu 2012). In the intra-
cellular space xenobiotics are recognized by ligand activated transcriptional factors, 
such as nuclear hormone receptors (NHRs) or the maternally-inherited skinhead-1 
(SKN-1), that regulate different detoxification genes (figure 4). DNA sequencing and 
homology analyses thereby revealed 284 genes coding for NHRs; five times more 
than in vertebrates. However, the majority of C. elegans NHRs are currently 
considered orphan (An and Blackwell 2003, Antebi 2006, Inoue et al. 2005, 
Mendelski et al. 2019, Taubert et al. 2011).  
Similar to most organisms, detoxification in C. elegans proceeds through three 
phases. Phase 1 (transformation) is characterized by the modification of xenobiotics 
through cytochromes P450 (CYPs) and short-chain dehydrogenases (SDRs). Pan 
et al. (2016) report on 83 C. elegans and 57 human cyp genes, while the overall 
evolutionary diversity of cyps estimates to 39,417 isoforms in 236 species. CYPs 
generally change the polarity of target molecules by adding chemical groups (see 
2.3.2 for examples). Phase 2 (conjugation) genes, such as glutathione-s-transferase 
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(GST) or UDP-glucuronosyl-transferase (UGT) further increase the solubility of their 
targets. They are also responsible for directing their excretion, which is performed 
by transport proteins. The latter belong to phase 3 (excretion) and include adenosine 
triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoproteins 
(PGP 1–4), and other efflux pumps (Lindblom and Dodd 2006). Modified xenobiotics 
that are excreted into the gut lumen are subsequently removed by defecation. 

 
Figure 4. Detoxification in an intestinal cell of C. elegans (Lindblom and Dodd 2006) 
Toxic effects of xenobiotics often go in hand with the formation of reactive 
intermediates, such as reactive oxygen species (ROS). Several detoxification genes 
protect C. elegans against ROS, such as GSTs, catalases, superoxide dismutases 
(SODs) or glutamylcysteine synthetase (e.g., gcs-1, An and Blackwell 2003, Inoue 
et al. 2005). Other (chemical) stress related genes are heat shock proteins (HSPs), 
metallothioneins (e.g., mtl-1 and mtl-2) or abnormal dauer formation 16 (DAF-16, 
Freedman et al. 1993, Morimoto 1998). The human p53 ortholog cep-1 (Rodriguez 
et al. 2013) is also known to participate in protective and regulatory mechanisms 
associated with chemical/stress responses. The complex metabolic interplay of 
these genes is the basis for cellular integrity and homeostasis. If detoxification 
capacities are exceeded damage may propagate and irreversible effects may occur.  
1.4.4 Environmental toxicology 
Early studies on environmental factors and cues investigated responses to food 
sources, temperatures (e.g., Klass 1977), heavy metals (e.g., Popham and Webster 
1979), gamma-radiation (Yeargers 1981), UV light (Hartman and Herman 1982) and 



21 

pharmaceuticals (e.g., Höss and Weltje 2007). These studies prepared the ground 
for C. elegans as a toxicological model (Leung et al. 2008, Hägerbäumer et al. 2015, 
Williams et al. 2017, Wilson and Kakouli-Duarte 2009) used for the assessment of 
anthropogenic chemicals, technical materials and environmental samples including 
sediments, soils, sludge or waste (table 2). C. elegans has also been involved in 
microcosm studies and community analyses (e.g., Hägerbäumer et al. 2015, Mueller 
et al. 2020a, Wang et al. 2015, Wilson and Khakouli-Duarte 2009, table 2). The 
nematode thereby proved to be a versatile tool for answering toxicokinetic (Burns et 
al. 2010, Chen et al. 2016, 2018, Kim et al. 2019a, Liu et al. 2019, Mueller et al. 
2020b, Offermann et al. 2009, Ristau et al. 2015, Roh et al. 2014, 2016, Spann et 
al. 2015, Stylianou et al. 2018) and toxicodynamic research questions (compare 
below).  
C. elegans studies have examined a panoply of apical endpoints including mortality 
(e.g., Coomans and Vanderhaeghen 1985, Williams and Dusenbery 1990), life 
span, reproduction (e.g., Anderson et al. 2001, Leung et al. 2010), fertility/fecundity 
(e.g., van Kessel 1989, Popham and Webster 1979), population growth rate (e.g., 
Ohba and Ishibashi 1984), growth (e.g., van Kessel 1989, Ohba and Ishibashi 
1984), morphology (e.g., Ohba and Ishibashi, 1984, Popham and Webster 1979) 
and development (e.g., Coomans and Vanderhaeghen 1985, Ohba and Ishibashi 
1984). Most apical endpoints incorporate midpoints or secondary endpoints such as 
life span, larval arrest or morphological defects for development (e.g., Tejeda-
Benitez and Olivero-Verbel 2016a) and reproductive delays, decreased progeny or 
reduced fertility for reproduction (e.g., Tejeda-Benitez and Olivero-Verbel 2016a). 
Behavioral endpoints include feeding, locomotion (e.g., Williams and Dusenbery 
1990, Boyd et al. 2003, Anderson et al. 2004), chemotaxis, avoidance and motility 
(e.g., Bargmann 2006, Li et al. 2020, Sambongi et al. 1999). These are 
complemented by cellular and molecular endpoints, such as apoptosis, disruption 
of membranes, mitochondria, chromosomal aberrations, cell cycle inhibitions, 
reversible and irreversible DNA damage (e.g., Allard et al. 2013, Behl et al. 2016, 
Leung et al. 2010), gene expression profiling (e.g., Peter et al. 1996, de Pomerai et 
al. 2008, Reichert and Menzel 2005, 2.3.3), energy budget (e.g., McLaggan et al. 
2012). Other complementations are given by interactions of toxicity pathways such 
as in behavioral neurotoxicity (e.g., Williams and Dusenbery 1990, Liu et al. 2020).  
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1.5 Integration of this thesis into the present state of research 
This thesis was embedded in the research project TransRisk dealing with the 
“characterization, communication and minimization of risks from novel pollutants 
and pathogens in the water cycle” (www.transrisk-projekt.de). Anthropogenic 
(micro-)pollutants vastly contribute to aquatic pollution. The characterization of their 
realistic hazards and feasible mitigation options has become imperative. Due to their 
incomplete removal in conventional biological WWTPs, AWWT technologies are 
being implemented to (further) reduce their emission. This thesis particularly aims 
at the ecotoxicological evaluation of the effectivity of the AWWT processes 
ozonation and ozonation coupled to GAC/biological post-filtration, which was 
targeted in the following key challenges and knowledge gaps: 
1) Sample preparation is pivotal for the accurate detection and quantification of 
micropollutants and toxicity (Prasse et al. 2015, Völker et al. 2019). Nonetheless, 
current methods are mainly optimised for chemical analyses (Escher et al. 2005, 
Prasse et al. 2015), but not for effect-based detections (Bistan et al. 2012, Stalter et 
al. 2016, Wagner and Oehlmann 2010). In our study we optimised three major 
methods - acidification, filtration and SPE - for in vitro analysis. In earlier studies, 
acidification was capable of modifying pollutants in different water matrices (Baker 
and Kasprzyk-Hordern 2011, US EPA 2010, Vanderford et al. 2011), filtration 
altered specific in vitro activities compared to untreated samples (Dagnino et al. 
2010, Janex-Habibi et al. 2009, Routledge 2003) and SPE selectively enriched 
(micro)pollutants. This situation can cause under- or over-estimations of actual 
hazards. We optimised these techniques using eleven in vitro bioassays and 
different (waste)water matrices. Based thereon specific preparation procedures and 
optimised methods were recommended (3.1 and Abbas et al. 2019). 
2) A long-term environmental monitoring was conducted in a protected region in 
Baden-Württemberg, Germany, using in vitro bioassays screening for endocrine 
activities, mutagenicity and genotoxicity. Up to 33 sites representative for the water 
cycle were sampled during five campaigns (2012–2014) including wastewater, 
surface water, groundwater and drinking water. In vitro bioassays were 
accompanied by a chemical monitoring of 92 chemical indicators (Anna Bollmann 
unpublished results, Seitz and Winzenbacher 2017). Main objectives were to 
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determine the types and levels of ecotoxicological in vitro potentials, to localize 
eventual pollution hot spots, to indicate environmental and/or human hazards as 
well as to generate data sets for before-and-after-comparisons of WWTP upgrades 
(2.2). The obtained results further supported regional stakeholders (e.g., waterworks 
and municipalities) in their sustainable (waste)water management plans. 
3) An in vivo bioassay based on ISO10872 and the model C. elegans 
(Haegerbaeumer et al. 2019, Höss et al. 2012, Wilson and Khakouli-Duarte 2009) 
was adapted for this thesis. This involved apical (reproduction and growth) and 
molecular endpoints (CYP-35A3 related xenobiotic metabolism in a transgenic 
strain, Menzel et al. 2007). Proof-of-principle experiments were conducted using the 
reference PAH β-NF (Forsgren 2015, Leung et al. 2010) and different (waste)water 
samples (aqueous, spiked and extracted) comprising the described conventional 
biological and AWWTs. An influence of TSS was also analysed, because particle-
bound pollutants may alter bioavailability (Offermann et al. 2009, Spann et al. 2015, 
Stylianou et al. 2018, table 2). Cumulative effects due to background contaminations 
were hypothesized (Backhaus and Karlsson 2014, Thrupp et al. 2018). The adapted 
bioassay allowed for the combined assessment of developmental and reproductive 
toxicity (DART) and CYP-35A3 induction (2.3 and Abbas et al. 2018). Novel test 
systems and strategies have been rated highly important, because standard 
bioassays may be insensitive in detecting relevant water quality deficiencies (Berger 
et al. 2016, Schwarzenbach et al. 2006, Sonne et al. 2018, Wigh et al. 2018). 
4) The AWWTs ozonation and ozonation with GAC/biological post-filtration were 
evaluated for their (micro)pollutant/toxicity removal capacity. The ecotoxicological 
part of this evaluation was performed with a battery of in vitro and on-site in vivo 
assays previously applied in related wastewater assessments (e.g., da Costa et al. 
2014, Gartiser et al. 2010, Giebner et al. 2018, Magdeburg et al. 2012, 2014, Maltby 
et al. 2000, Stalter et al. 2010, 2011, Triebskorn et al. 2017). This thesis thereby 
examined (the above mentioned) five in vitro and C. elegans bioassay for their 
usefulness at the laboratory-scale. The detections made by these assays were 
integrated into a ‘wastewater quality evaluation matrix’ (developed in TransRisk, 
Ternes et al. 2017) that rated ozonated coupled to GAC filtration as most effective 
AWWT option (out of five, 2.4). The evaluation concept may readily be transferred 
to future evaluations of WWTPs. 
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2 General discussion 
2.1 Optimising sample preparation for in vitro bioassays 
Sample preparation methods can bias the quantification of the original toxicity of 
environmental samples (e.g., Neale et al. 2018). Main reasons for this are 
modifications/losses of sample constituents during sample processing/storage 
and/or interfering environmental factors (Daughton 2003, Maruya et al. 2016). This 
chapter discusses ways to reduce such artifacts at different preparational/analytical 
steps of an in vitro analysis. Bioassay-based optimisations have scarcely been 
performed despite their apparent relevance for realistic hazard assessment and 
monitoring. Characteristic challenges in this endeavor were previously studied by 
Bistan et al. (2012), Macova et al. (2010), Neale et al. (2015) and Stalter et al. 
(2016). Based thereon the present optimisation focuses on the influence of sample 
acidification, filtration and SPE on the outcome of eleven in vitro bioassays testing 
17 (waste)water samples representative for the urban water cycle. 
2.1.1 Sample acidification 
Acidification is commonly used for stabilization of (non-)target compounds during 
sample storage. The present experiments focused on possible ecotoxicological 
discrepancies between neutral (untreated) and acidified samples that would emerge 
during a 24 h storage period. Significant differences occurred regarding different 
endocrine activities and cytotoxicity. The degree of this discrepancy was higher at 
certain sampling points (e.g., highest for raw wastewater) and in a number of in vitro 
bioassays (e.g., highest in the yeast anti-estrogen screen, YAES). However, no 
obvious reason or trend became apparent, such as sample toxicity or the 
specificities of the respective in vitro bioassay. From these findings it was thus 
concluded that 1) the added sulphuric acid can modify (bioactive) sample 
constituents (e.g., in an unspecific manner) and bioassay outcomes, 2) Possible 
sample modifications by microbes contained in neutral samples may or may not 
have a more severe effect on the outcome of an in vitro bioassay than those 
mentioned under 1). Both situations (1 and 2) thus demand further research to fully 
clarify the advantages/disadvantages of testing native or acidified samples, and to 
allow their analytical comparison to other sample stabilization techniques (such as 
sample filtration or sample freezing).  
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To this end, neutral samples were recommended for ecotoxicological assessments, 
because higher toxicity was detected. It is also known that the chemical composition 
of samples may be altered by pH shifts and acid-based hydrolyses (Baker and 
Kasprzyk-Hordern 2011, Stalter et al. 2016, Prasse et al. 2015, Vanderford et al. 
2011). Such an alteration was possibly observed by Bollmann et al. (unpublished 
results) who performed a non-target screening on a wastewater sample (that was 
also tested in this thesis, Abbas et al. 2019). In this screening the researchers 
detected an overlap of compounds of only 72−75 % between the neutral and 
acidified sample aliquot. In addition, acidified samples require further preparation 
steps, such as neutralisation prior to bioassays, not to compromise bioassays test 
organisms.  
2.1.2 Sample filtration 
Filtration has several advantages such as isolation of particulate matter and/or 
sample sterilization (e.g., Janex-Habibi et al. 2009, McLaggan et al. 2012). Earlier 
bioanalytical comparisons also illustrated potential drawbacks such as significant 
losses of detectable endocrine activity. These losses seemed to originate from the 
retention of TSS-bound compounds (also hypothesized by Abbas et al. 2018) which 
was also suggested in earlier studies (Dagnino et al. 2010, Janex-Habibi et al. 2009, 
Routledge 2003, Shieh et al. 2016) that also described hydrophobic 
(micro)pollutants to adsorb to filter membranes. In this context Ng and Cao (2015) 
published the article “What Exactly Are You Filtering Out?” wherein they suggest to 
better adjust filter materials to the aims of an investigation. 
In several samples the present in vitro bioassays detected higher endocrine 
activities in filtered samples than the corresponding unfiltered samples. This was 
explained as the in vitro test systems applied in this thesis can be activated and/or 
inhibited by agonistic or antagonistic compounds respectively. Such interactions in 
wastewater samples have been reported earlier (Ihara et al. 2014, Itzel et al. 2019, 
Rao et al. 2014, Zwart et al. 2018). Thus a selective retention of (particle-associated) 
antagonists during filtration could have allowed an increased receptor binding of 
agonist in the respective filtrates, and vice versa. In addition, agonist/antagonists 
could have been “washed off” from their particle-bound states during filtration. In this 
way they could further have altered their ratio in the filtrates. Despite these findings, 
most samples showed similar activity levels regarding unfiltered and filtered 
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samples, which suggested that most environmental hormones and EDCs remained 
dissolved in the aqueous phase of the respective samples (e.g., due to their 
hydrophilicity /polarity, 1.2.1).  
Filtration unpredictably modified the composition and in vitro activities/toxicity of 
(waste)water samples. This situation may lead to misinterpretations of bioassay 
results including under- and over-estimations of actual hazards (e.g., Burton 2000, 
Dagnino et al. 2010). For the effective application of filtration in ecotoxicology further 
compound, sample type and bioassay specific optimisations are recommended. 
2.1.3 Solid phase extraction  
Micropollutants detection often requires sample enrichment, such as by SPE, to 
increase quantification limits (LOQs) and for reducing matrix interferences (Prasse 
et al. 2015, Wagner and Oehlmann 2011, Wagner et al. 2013). SPE methods have 
been optimised for the recovery of different pollutant classes (Baker and Kasprzyk-
Hordern 2011, Leusch et al. 2012, de Alda and Barcelo 2001) focusing on 
methodical parameters, such as sample pretreatment, SPE sorbents or different 
extraction modes (Pietrogrande and Basaglia 2007). These optimisations also 
involved different evaluation methods such as multivariate statistics (e.g., Harju et 
al. 2015, Polo et al. 2005, Yang et al. 2014). Most studies used defined standard 
solutions, while a few further validated their results using complex environmental 
samples. The present investigation focused on benchmarking six SPE methods for 
their recovery of endocrine activity, genotoxicity and cytotoxicity from real 
(waste)water samples. These methods combined three SPE sorbents (Oasis HLB, 
Supelco ENVI-Carb+ and Telos C18/ENV) with two extraction pH (7 and 2.5). All 
SPE sorbents were eluted with a methanol:acetone (1:1) mixture (figure 5). 
Moreover, a multivariate evaluation via the Pareto algorithm was integrated 
(compare Abbas et al. 2019).  
The multivariate optimisation approach demonstrated that the highest endocrine 
activities and genotoxicity were recovered by the Telos C18/ENV sorbent. Highest 
cytotoxicity was obtained by the Oasis HLB sorbent. By the optimised SPE method 
certain endocrine activities, such as estrogenicity, (anti-)androgenicity and dioxin-
like (AhR) activity, were only detected after sample enrichment. In line with these 
results the Telos C18/ENV and Oasis HLB indicated effective recoveries of 
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cytotoxicity (Escher et al. 2005, Stalter et al. 2011, 2016) and estrogenicity (Bistan 
et al. 2012, Wagner and Oehlmann 2011) in other optimisation studies. Regarding 
the putative causative agents of these activities/toxicity the composite material of 
the Telos C18/ENV and the amphipathic material of the Oasis HLB were previously 
described to extract compounds with various physicochemical properties (e.g., 
Leusch et al. 2012). It is also thought that the applied in vitro bioassays can be 
activated by heterogeneous chemical compounds. In addition, Stalter et al. (2016) 
suggested that the ENV material of the Telos C18/ENV and the Oasis HLB seem 
capable of adsorbing polar cytotoxic compounds. Wagner and Oehlmann (2011) 
suspected non-polar chemicals to act as causative agents of the estrogenicity that 
they had extracted from bottled mineral water using a C18 material. It remains to be 
clarified whether (and how) these results apply to the present recovery rates. Most 
extractions in this study were more effective at an acidic sample enrichment pH 
(Abbas et al. 2019). The multivariate Pareto evaluation however favored a neutral 
sample extraction pH and SPE by the Telos C18/ENV as optimal method. This 
difference resulted from the integration of the parameter cytotoxicity. The latter was 
rated as potential indicator of a higher overall pollutant load including environmental 
hormones and EDCs (compare figure 6 and further discussion). 
More effective extraction at acidic pH were also obtained by Misik et al. (2011) and 
Stalter et al. (2016) for the endpoints mutagenicity and cytotoxicity respectively. In 
their study Stalter et al. (2016) compared different SPE sorbents applied to 
disinfected drinking water, whereas Misik et al. (2011) had extracted biologically-
treated and ozonated wastewater using a C18 sorbent. In the general context of 
SPE of bioactive/toxic compounds Escher et al. (2005) mention that short-term 
acidification may increase the recovery of weak acids and ionized (micro-)pollutants, 
while weak bases or zwitterions might be lost. Stalter et al. (2016) however also 
argue that short-term acidification (compare 2.1.1 and Abbas et al. 2019) can 
already degrade SPE matrices and/or modify dissolved organic matter constituents 
in aqueous samples.  
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Figure 5. Two SPE methods designed as parallel and sequential protocols optimised for in 
vitro bioassays in the course of this thesis and within the TransRisk project. 
These results point out the necessities in further optimising SPE methods for in vitro 
bioassay-based (as well as chemical) assessments and monitoring. Therefore, 
several optimisation parameters and experimental set ups described in the scientific 
literature seem promising. Different SPE sorbents and extraction modes (e.g., 
comparing eluting solvents of different polarities) improved the recovery of target 
compounds and TPs (e.g., Chang et al. 2009, Kern et al. 2009, Stalter et al. 2016). 
Bollmann et al. (unpublished results) connected three SPE cartridges (C18e, C18 
and activated carbon) in a serial manner (‘Sequential SPE’ in figure 5) for the 
extraction of different (waste)water samples. Using the eluting solvents hexan, 
diisopropyl ether, methanol and acetone different extractions were performed. 
These could be used for separate (sample pre-fractionation) or combined (“total 

extract”) analysis. In addition, these extracts were tested in the previously described 
in vitro bioassays. The sequential methods performed equally well than the ‘Parallel 

SPE’ method (figure 5) for most of the endocrine activities and cytotoxicity. Merging 
the individual solvent fractions into a “total extract” has not been compared. 
Another SPE parameter that proved to be particularly relevant for bioassay analyses 
is the final enrichment factor at which an extract is tested. SPE enrichment factors 
were compared in previous studies (Escher et al. 2014, Macova et al. 2010, Tang 
et al. 2013). Escher et al. (2009, 2014) used 103 in vitro bioassays for 
“Benchmarking Organic Micropollutants in Wastewater” by applying a concept that 

compared the estrogenicity, genotoxicity and cytotoxicity of extracted wastewater 
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samples along the enrichment factor required to produce an effect (compare figure 
6 in this context). Extracted samples also built the basis for EDA to identify possible 
causative agents (Burgess et al. 2013, Brack et al. 2017, Neale et al. 2017, Schulze 
et al. 2017, Tang et al. 2014). Samples with low contamination level such as 
groundwater and certain endpoints without toxicity thresholds such as genotoxicity 
often require high sample enrichment factors (up to 100, Keiter et al. 2006, Stalter 
et al. 2016). This circumstance may further be required for extracting surface waters 
or wastewater from AWWT stages, due to their generally low contamination levels.  

  
Figure 6. Estrogenic activity in extracted hospital wastewater (HOS) and a WWTP influent 
(INF) quantified as mean 17β-estradiol equivalents (ng E-EQ/L)  standard error of the 
mean (SEM). Telos C18/ENV (“Telos”) and Oasis HLB (“HLB”) were applied as SPE 
sorbents. Different sample concentration factors (0.625−10 fold) were used to investigate 
concentration response relationships. In 5−10 fold concentrated samples cytotoxicity 
occurred (). Dashed line = limit of quantification. Unpublished result jointly obtained by I. 
Schneider and A. Abbas. 
Nevertheless, exhaustive sample concentration may bear the risk of introducing 
artifacts such as from the (co)enrichment of matrix components and/or leaching 
materials (Leusch et al. 2014, Macova et al. 2010). Control samples such as 
procedural blanks are thus imperative for any bioanalysis involving SPE extracts 
(Stalter et al. 2016). High concentration factors (below toxic concentrations of 
keeping solvents) often indicate unspecific toxicity masking other endpoints (Escher 
et al. 2020). In contrast, at (very) low concentration factors the investigated effects 



30 

may be diluted out. In addition, interpolation from lower to higher enrichment factors 
(and vice versa) was rated rather unfeasible due to mostly non-linear concentration 
response relationships (figure 6). For analyzing SPE extracts the performance of 
preliminary range-finding experiments has thus been recommended (Tang et al. 
2014, Escher et al. 2014).  
Further optimisation potential was also allocated to loading modes and sample 
volumes. In a study by Macova et al. (2011) extraction of higher sample loading 
volumes (0.5–4 L) lowered the detection limit for cytotoxicity (Alliovibrio fisheri), 
estrogenicity (E-Screen), dioxin-like activity (AhR-CAFLUX) and genotoxicity (umu 
test) by up to 8 to 10 fold. As previously stated higher sample loading volumes may 
go in hand with an increased risk of artefacts and may require extended sample 
preparation, such as additional sample filtration. Schulze et al. (2017) developed an 
automated on site SPE device that can process sample volumes up to 50 L. In their 
experiments such sample volumes enhanced the recovery and enrichment of (ultra-
)low concentrated (micro)pollutants and different in vitro activities, such as 
mutagenicity or (anti-)estrogenic activities. This technique (also termed large 
volume SPE, LVSPE) seems particularly useful for surface water and groundwater 
monitoring as well as investigations requiring a high number of parallel experiments 
on the same sample/extract. LVSPE also requires elaborate equipment and 
handling, such as the preparation of special circulation blanks. Automated and/or 
on-site SPE methods were also implemented with beneficial outcomes in several 
ecotoxicological studies (e.g., Henneberg et al. 2014, Prieto-Rodriguez et al. 2013). 
Additional potential lies in optimising SPE methods for an enhanced recovery of 
volatile, (highly) polar and particle-associated compounds that are mostly lost during 
conventional sample processing and/or standard SPE procedures (compare below). 
Significantly different test results were for instance obtained in the E-Screen, once 
a keeping solvent was added before full evaporation of the eluting solvent (Wagner 
and Oehlmann 2010). This measure indicated the presence of estrogenic 
compounds that volatilized during evaporation without adding a keeping solvent. In 
an investigation by Stalter et al. (2016) solvent evaporation of wastewater extracts 
without solvent exchange (dimethyl sulfoxide, DMSO) diminished the recovery of 
cytotoxicity. These studies show how simple sample preparation steps can 
significantly improve the effectivity of standard SPE methods. However, according 
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to Stalter et al. (2016) and others (e.g., Benner and Ternes 2009, De Baat et al. 
2020), the effective extraction of volatile, (highly) polar and unknown compounds 
however remains one of the main challenges in optimising the preparation of water 
and wastewater samples. 
In perspective, optimised SPE methods offer specific advantages for in vitro 
bioassay-based environmental assessments and monitoring. Among their important 
benefits are an improved preservation, enrichment, detection and identification of 
micropollutants and toxicity (compare 2.2−2.4). SPE methods have previously 
facilitated the classification of (putative) causative agents (Itzel et al. 2020) 
exhibiting estrogenicity (Allinson et al. 2010, Ma et al. 2005, Routledge 2003, Zhao 
et al. 2015), anti-estrogenicity (Tang et al. 2014), dioxin-like (Allinson et al. 2011, 
Ma et al. 2005) and retinoic acid-like activities (Allinson et al. 2011, Sawada et al. 
2012), genotoxicity (Keiter et al. 2006) or cytotoxicity (Allinson et al. 2010, Ma et al. 
2005). If the same SPE extracts are applied in parallel in selected in vitro and in vivo 
test systems this can provide valuable insights regarding observed physiological 
effects (e.g., Hugget et al. 2003, Schneider et al. 2020). Another way forward will be 
to compare optimised SPE methods with particular sampling or other sample 
extraction techniques (such as SPME, passive samplers or purge-and-trap 
methods) and to broaden the knowledge on their benefits, limitations and further 
options for optimisation. 
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2.2 In vitro bioassays as environmental monitoring tools – case 
study of a water protection region in Southwest Germany 
In vitro bioassays are important tools for ecotoxicological assessments and 
environmental monitoring. They are routinely applied to investigate unspecific 
toxicity as well as specific MoAs. MoA based bioassays can serve as indicators of 
different bioactive/toxic contaminants such as herbicides or EDCs (e.g., Escher et 
al. 2014, Wagner et al. 2017). The in vitro activity of these pollutants has often been 
verified using in vivo test systems. For certain EDCs the induction of vitellogenin 
served as biomarker for reproductive toxicity (e.g., Huang et al. 2016, Stalter et al. 
2015). In this way in vitro and in vivo results were associated with suspected or 
identified compounds (compare EDA). Nevertheless, once the selected assays lack 
specificity and sensitivity respective toxicants may remain undetected. Clarification 
of causative agents thus resembles a complex task. In vitro bioassays for baseline 
or reactive toxicity (such as cytotoxicity) are known to integrate compounds with 
multiple MoAs (e.g., Escher et al. 2014, 2020, Riss and Moravec 2004, Tang et al. 
2014). Although cytotoxicity has helped to draw correlations to in vivo effects (e.g., 
Stalter et al. 2015), several studies involving iceberg experiments demonstrated that 
most cytotoxic agents remained unknown (e.g., Neale et al. 2014, Tang et al. 2014). 
However, cytotoxicity assays proved to be beneficial tools in (high-throughput and 
preliminary) environmental screenings and prioritisation of pollution sites.  
In the present thesis an environmental monitoring was conducted that involved six 
sampling campaigns at up to 30 sampling sites within a water protection region in 
Southwest Germany (compare Seitz and Winzenbacher 2017). Water and 
wastewater samples from relevant sites were screened for different endocrine 
activities (according to Routledge and Sumpter 1996, Stalter et al. 2011, Wagner et 
al. 2013), mutagenicity (based on ISO11350), genotoxicity (according to ISO13829) 
and cytotoxicity (occurring in these cellular test systems). The in vitro investigation 
was accompanied by a detailed chemical monitoring program (Anna Bollmann 
unpublished results, Seitz and Winzenbacher 2017) to investigate potential 
correlations with respective chemical indicators. In the course of this monitoring, 
high endocrine activities were detected in hospital, raw and to lesser extend 
biologically-treated wastewater with predominantly (anti-)estrogenic and partially 
androgenic activities.  
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Figure 7. Anti-estrogenic activities in aqueous samples quantified as mean 4-
hydroxytamoxifen equivalents (mg OHT-EQ/L)  SEM. A total of 14−19 sampling sites were 

analyzed in April 2012 and February 2014 respectively including WWTP influents (1a, 2a, 
4a), effluents (1b, 2b, 3b, 4b), a filtered WWTP effluent (3c), hospital wastewaters (5a, 5b), 
surface waters (6, 12, 13), samples from a rain water collection / retention / infiltration basin 
(7a, 8b, 8b) as well as groundwater hotspots (9−11). Results jointly obtained by I. Schneider 
and A. Abbas in collaboration with the TransRisk project partners. 
In contrast, genotoxic and mutagenic potentials were rarely detected in raw and 
treated wastewater. Extracted hospital wastewater however indicated both 
genotoxicity and mutagenicity at increased rates. None of these toxicities including 
cytotoxicity was detected in surface water or groundwater throughout the entire 
monitoring. These results were in line with the scientific literature, whereby 
cytotoxicity and genotoxicity were mainly detected in extracted wastewater or 
(highly) polluted surface water (e.g., Baumstark-Khan et al. 2005, Escher et al. 
2014, Macova et al. 2011). The fact that groundwater generally exhibits no or 
insignificant toxicity unless affected by landfills or contamination sites (e.g., Baun et 
al. 2000) was also supported by the present monitoring results. In vitro 
activities/toxicities were further investigated in the context of WWTP efficiencies. 
Their removal efficiencies were compared to identify and prioritize plausible pollution 
sources in the model region. All surveyed WWTPs (Langenau, Halzhausen, 
Steinhäule) indicated an effective removal of estrogenic, androgenic, genotoxic and 
mutagenic potentials (figure 8). This is of particular relevance as a few of the 
receiving streams of WWTPs show high wastewater fractions and flow through 
water protection zones of increased vulnerability. 
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Figure 8. Estrogenic (left) and anti-estrogenic (right) activities in raw (dark grey bars) and 
biologically-treated (white bars) wastewater samples from three WWTPs (using activated 
sludge) presented as mean 17β-estradiol (ng E-EQ/L) or 4-hydroxytamoxifen (mg OHT-
EQ/L) equivalents  SEM, respectively. Results base on five monitoring campaigns (2012–

2014, n = 40−48). Negative percent values (above white bars) represent the estimated 
removal rate towards the respective activity. Results jointly obtained by I. Schneider and A. 
Abbas. 
The extensive reduction of these in vitro activities was reported for other WWTPs 
(e.g., Allinson et al. 2011, European Commission 2012, Giebner et al. 2018, Sawada 
et al. 2012). Their retention indicates the biodegradability and/or sludge adsorption 
of the respective (micro)pollutants during activated sludge treatments (Margot et al. 
2013, Leusch et al. 2014, Dagnino et al. 2010). Notwithstanding the suitability of the 
applied in vitro bioassays for evaluating WWTP efficiencies, care should be taken 
when different test systems probing for the same endpoint are compared (e.g., 
AYES, E-screen, ER-calux, ER-GeneBlazer or YES for estrogenicity) and/or once 
different sample preparation methods were used to obtain a result (e.g., Magdeburg 
et al. 2014, Jia et al. 2015). Unlike the other in vitro potentials, anti-estrogenic activity 
seemed less effectively removed at a few investigated WWTPs (figure 8). Residual 
anti-estrogenic activity in treated wastewater was also observed by Ihara et al. 
(2014), Itzel et al. (2020) and Rao et al. (2014), who stated the need for further 
research on this endpoint in water and wastewater assessments.  
Markedly, elevated anti-estrogenic activities were recurrently recognized in one of 
the groundwater hotspots (sample 10 in figure 7). These hotspots are known to be 
impacted by a nearby landfill (Wolfram Seitz, personal communication) so that they 
were previously prioritized for chemical monitoring. The present ecotoxicological 
monitoring of these hotspots included the examination of their most proximate water 
intakes and wells used for the extraction of raw drinking water (figure 9). Three 
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important aims were pursued in this investigation: 1) the detection of relevant in vitro 
activities, 2) to ensure an effective water treatment, if these activities would occur 
and 3) to narrow down putative causative agents in groundwater (e.g., if natural or 
anthropogenic chemicals) and their potential sources, such as WWTPs or 
agricultural run offs.  
 

 
Figure 9. Anti-estrogenic activities presented as mean 4-hydroxytamoxifen equivalents (mg 
OHT-EQ/L)  SEM of aqueous grab samples taken from groundwater intakes (1−6) and 

groundwater wells (1−2) in the model region in October 2013 (n = 8). Outlet = polished 
groundwater from a local waterworks. Reference = raw groundwater from large depth. 
Results jointly obtained by I. Schneider and A. Abbas in collaboration with the TransRisk 
project partners. 
As an outcome, one groundwater intake (sample 5-1 and 5-2), but none of the other 
prioritized sampling sites indicated any relevant anti-estrogenic activity. Importantly, 
no activity was detected in drinking water from a supply pipe (sample ‘outlet’) and in 
groundwater used for the production of drinking water after minor treatment (sample 
‘well 1’ and ‘well 2’). These results were obtained using aqueous grab samples of 
the sampling campaign in October 2013 (figure 9). Samples taken during the 
subsequent monitoring (February 2014) from the same sampling sites served for 
follow up examination. For possible effect confirmation these samples were 
prepared by SPE. The high anti-estrogenic activity previously detected in sample 5-
1 (figure 9) could not be confirmed (remaining at the level of the LOQ, results not 
shown). Moreover, the parallel chemical monitoring at these sampling sites also did 
not showed any relevantly increased concentrations of (micro)pollutants. 
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Up to present, only a small number of chemicals are known for anti-estrogenic 
effects. One chemical thereof that was included in the chemical monitoring program 
was 1H-benzotriazole (Abbas et al. 2018). Benzotriazole was reported for in vitro 
anti-estrogenicity by Harris et al. (2007) as well as to be responsible for different in 
vivo effects (Seeland et al. 2012). However, MECs of 1H-benzotriazol at all 
monitored sites (e.g., 30−90 ng/L in the groundwater hotspots) were far below its 
reported ECs (e.g., several milligram per liter in the YAES). Nonetheless, Harris et 
al. (2007) also computed a predicted no effect concentration (PNEC) of 60 µg/L 
based on further literature data. Moreover, other antagonist of the human estrogen 
receptor capable of activating the YAES could have been present in the analyzed 
groundwater samples. Known or suspected anti-estrogens in the medical and 
ecotoxicological literature are for instance the anti-neoplastic drugs fulvestrant (ICI 
182780, e.g., Hu et al. 1993), raloxifene (Matsumoto et al. 2004), tamoxifen and a 
number of its derivatives/TPs (Knoop et al. 2018, Sohoni and Sumpter 1998, Stalter 
et al. 2011, Zhao et al. 2011) as well as the insecticide hexachlorcyclohexan (Li et 
al. 2008), several flame retardants (Di Benedetto 2009, Martin Wagner personal 
communication, Zhang et al. 2014), the disinfectants hexachlorophene, 
pentachlorophenol and the vitamin K3 (Jung et al. 2004), the PAHs dibenz[a,h]-
anthracene, 6-hydroxy-chrysene, 2,3-benzofluorene and benzo(a)pyrene (Tran et 
al. 1996). However, these compounds were not expected to occur at all or at 
relevant concentrations in the analyzed samples. Whereas potential mixture toxicity 
effects remained to be investigated. A number of natural compounds have been 
discussed to imply anti-estrogenic potentials or to be capable of influencing the 
outcome of in vitro bioassay (e.g., Janosek et al. 2007, Neale et al. 2015). As 
substances such as humic or fulvic acids represent natural soil constituents, they 
seem (more) likely to occur at milligram per liter concentrations in groundwater. 
Follow up investigations thus seem essential to clarify on the nature of the anti-
estrogenic activities in aqueous and extracted samples. Unlike for groundwater, 
anti-estrogenic pharmaceuticals might explain the high anti-estrogenicity detected 
in hospital wastewater (sample 5a and 5b, figure 7). These compounds are regularly 
administered in oncology departments such as in the hospital referring to sample 
5a. Patients undergoing hormone therapies may furthermore emit these 
pharmaceuticals into sewage collected from households.  
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Hospital wastewater moreover exhibited high anti-androgenic activity. This activity 
may derive from anti-androgenic drugs used in cancer therapy. Regularly 
administered drugs in this regard are bicalutamide (e.g., Blackledge 1993), 
flutamide (e.g., Grover et al. 2011, Sohoni and Sumpter 1998, used as positive 
control in the YAAS) and its metabolite hydroxyflutamide (e.g., Kusk et al. 2011), 
nilutamid (e.g., Gaillard 1996), enzalutamid (e.g., Gordon et al. 2017) and 4-
hydroxytamoxifen (compare anti-estrogens above). Zwart et al. (2018) detected the 
drugs amitriptyline (anti-depressant) and celecoxib (anti-inflammatory drug) in 
surface water, which may also be administered in the analyzed hospital. Both 
compounds exhibited anti-androgenic properties. However, their individual 
concentrations might not reach EC in the YAAS. Other anthropogenic chemicals 
with experimented anti-androgenic potential are 1H-benzotriazole (Fent et al. 2014), 
the plasticizers bisphenol A (BPA, e.g., Li et al. 2008, Sohoni and Sumpter 1998) 
and benzyl butyl phthalate (BBP, Li et al. 2010, Sohoni and Sumpter 1998), the 
industrial chemicals nonylphenol and octylphenol (e.g., Li et al. 2010) as well as 
several pesticides, such as a degradation product of dichlordiphenyltrichlorethane 
(DDT, e.g., Laudet and Gronmeyer 2002, Sohoni and Sumpter 1998), r-
hexachlorcyclohexan, hexachlorobenzene (Li et al. 2008), iprodione, linuron, 
metabolites of vinclozolin, methoxyclor and procymidone (Rempel and Schlenk 
2008, Urbatzka et al. 2007). Henry and Fair (2013) investigated anti-androgenic 
activities for perfluorooctane sulfonate, perfluorooctanoic acid and triclosan. An 
EDA by Urbatzka et al. (2007) identified a number of these compounds in surface 
waters. The authors further concluded towards unknown anti-androgenic causative 
agents. Regarding the present samples non-pharmaceutical compounds such as 
identified by Muschket et al. (2018) and Urbatzka et al. (2007) or quantified in the 
course of this thesis (1H-benzotriazole, compare above) seem unlikely to occur in 
hospital wastewater or only at very low concentrations including their potential 
release from sources such as polycarbonate (BPA) or polyvinylchloride (BBP) 
plastic materials. It also remains to be investigated to which extend NOM 
constituents that were supposed to interfere with the human androgen receptor 
(Bittner et al. 2012) may occur in hospital wastewater (at relevant concentrations). 
However, due to elevated concentrations and known potencies of the mentioned 
anti-androgenic pharmaceutical they remained the main suspects. As all of the 
investigated hospitals connect to WWTPs precautionary measures seem advisable 
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to verify their elimination during wastewater treatment as well as to prevent their 
excessive discharge into the environment, such as during heavy rain events. This 
may similarly pertain the genotoxic and mutagenic potentials detected in hospital 
wastewater. 
The presented in vitro bioassay results support the scientific consensus on their 
usefulness in environmental monitoring and ecotoxicological assessments. 
Although extrapolations from in vitro to in vivo systems can be attached to 
uncertaincy (Henneberg et al. 2014, Huang et al. 2016, Prasse et al. 2015, 
Rehberger et al. 2018, Schneider et al. 2020), in vitro bioassays are 
nonewithstanding beneficial tools for the detection of hazard potentials and MoA-
based classification of (micro)pollutants and (waste)water samples. Due to this they 
were furthermore integrated in a (waste)water quality evaluation concept developed 
in the course of the TransRisk project (2.4). In addition, several under-investigated 
endpoints / MoAs are presently implemented in in vitro bioassay based wastewater 
assessments (Daniels et al. 2019, Escher et al. 2014). These assays amongst 
others indicated the presence of mostly undetected EDCs (e.g., glucocorticoids or 
progestogens) calling for further research. 
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2.3 In vivo bioassays for the ecotoxicological assessment of 
wastewater – the case of Caenorhabditis elegans   
2.3.1 Development and reproduction as human and environmentally relevant 
endpoints  
C. elegans is a well established DART model in human toxicology (Avila et al. 2011, 
Baker 2016, Harlow et al. 2016, 2018, Leung et al. 2008, Williams et al. 2017). This 
includes a high predictive power (Allard et al. 2013, Hunt 2016, Kim et al. 2020, 
Wittkowski et al. 2019). In this context, Racz et al. (2017) analyzed 31 human 
reproductive toxicants with 27 also showing DART in C. elegans. Harlow et al. 
(2016) reported on a high positive (89%) and lower negative (25%) predictivity 
regarding the estimated mammalian activity of 72 pesticides. The low negative 
predictivity could however be the result of recording only one endpoint (egg viability), 
whereas incorporating other endpoints may have likely identified further matches. 
Due to their relevance to humans as well as wild life DART endpoints are integral 
part of regulatory (and non-regulatory) toxicity assessments (Wernersson et al. 
2015, Wilson and Khakouli-Duarte 2009, Wittkowski et al. 2019).  
In this light, many DART inducing chemicals, including different aquatic 
micropollutants, were examined using C. elegans (compare below selection): 
 The metals aluminium, barium, cadmium, chromium, lead, mercury, nickel, 

palladium and platinum all exhibited DART in C. elegans, as well as excessive 
concentrations of the essential metals cobalt, copper, iron, manganese, 
potassium and zinc or the metalloid arsenic (e.g., Avila et al. 2011, Schertzinger 
et al. 2017, Tejeda-Benitez et al. 2016a, 2016b, Wang et al. 2008a). Thereby C. 
elegans indicated similar sensitivity than D. magna and the redworm Eisenia 
fetida regarding several of the above cited metals (Queirós et al. 2019).  

 Pesticides represent another relevant group investigated for DART involving 
various MoAs (Harlow et al. 2016, Tejeda-Benitez and Olivero-Verbel 2016a, 
table 2). Severe damage often occurred at low ECs such as for chlorpyrifos (at 
3−100 µg/L (Roh and Choi 2008, Ruan et al. 2012), fenoxycarb and 
spirotetramat (at 1.5 and 0.75 µg/L respectively, Xiong et al. 2017), 
epoxiconazole (LOEC of 0.1 µg/L, Li et al. 2016) or lindane (at 1–100 ng/L, Yu 
et al. 2020). DART of other pesticides thereby included transgenerational effects 
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(e.g., Lopes et al. 2008), interference with biochemical signaling pathways (e.g., 
Li et al. 2016) or cumulative effects (Martin et al. 2009).  

 Several PPCPs were reported for DART in C. elegans such as EE2 (Höss and 
Weltje 2007), nicotine (e.g., Smith et al. 2013), piperazine analogs (Racz et al. 
2017), the withdrawn anti-obesity drug sibutramine (Aitlhadj and Stürzenbaum 
2013), tamoxifen (Höss and Weltje 2007), the anticancer drug 5-fluorouracil 
(ECs ≥ 0.6 mg/L, Kumar et al. 2010, table 2), the banned weight loss agents 
clenbuterol and animal feed additive ractopamine (ECs ≥ 0.1–10 µg/L Zhuang et 
al. 2014), carbamazepine (ECs at [mg/L], Olga Kolychalow, personal 
communication), the antibiotic sulfamethoxazole (SMX, at environmentally 
relevant ECs, Yu et al. 2011, Liu et al. 2013, table 2) or the antimicrobial agents 
triclocarban and triclosan (LOECs of 10–100 µg/L respectively, Lenz et al. 2017, 
table 2). The ECs of triclocarban and triclosan were thereby similar than to those 
of D. renio embryos (Sreevidya et al. 2018).  

 Several environmental hormones and EDCs were positively assessed for DART 
in C. elegans. Albeit C. elegans is known not to incorporate an entire endocrine 
system, several hormonal pathways have been assumed (Höss and Weltje 
2007). Related adverse effects were documented for nonylphenol (Cao et al. 
2020a), di(2-ethylhexyl)phthalate (DEHP, Roh et al. 2007, Pradhan et al. 2018), 
its substitute diethyl phthalate (DEP, Pradhan et al. 2018), BPA (Zhou et al. 
2016) and its substitute bisphenol S (BPS, Chen et al. 2016, Mersha et al. 2015). 
García-Espiñeira et al. (2018) showed that 11.4 and 114 µg BPA / L increased 
body length or brood size. The authors suggested a non-linear-concentration-
response-relationship such as established for EDCs in other species. Camacho 
et al. (2018) further examined an epigenetic mechanism that could have 
triggered reproductive dysfunctions inherited over five generations (table 2). 
Mersha et al. (2015) suggested a similar MoA for the structurally related BPS. In 
this context Chen et al. (2016, 2019) proposed DNA damage (BPS, Chen et al. 
2016) and interference with mitochondrial cholesterol transport (BPA, Chen et 
al. 2019) as possible molecular initiating events (compare AOP concept, 2.3.3).  

 Industrial chemicals included 2-(thiocyanomethylthio)-benzothiazol (Allard et al. 
2013), different flame retardants (Behl et al. 2016, Liu et al. 2019), 
octachlorostyrene (Kim and Choung 2009), tributyltin (Cheng et al. 2014) and 
vinyl chloride (Nam and An 2010). DART was also rated more sensitive than 
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lethality in assessing the toxicity of PAHs (Leung et al. 2010, Sese et al. 2009). 
Nonetheless, Ura et al. (2002) computed an 24 h LC50 of 50 µg/L for B[a]P. Sese 
et al. (2009) reported a comparable LC50 of 80 µg/L (and an EC50 for reproduction 
of 59 µg/L). The sensitivity of C. elegans towards B[a]P was similar to D. magna 
(Sese et al. 2009). Haegerbaeumer et al. (2018) detected an even lower LC50 of 
12.8 µg/Lafter 48 h exposure of L1 animals to B[a]P. Toxicokinetic experiments 
with fluoranthene indicated a rapid bioaccumulation and food particles to 
significantly contribute to the DART of this PAH (Matthai 2009).  

In the course of this thesis β-NF was analyzed for DART in C. elegans (e.g., figure 
10–12). A LOEC of 100 µg/L and an EC50 of 140 µg/L was determined for brood size 
reduction (96 h). These ECs were comparable to previous observations 
(ECs ≥ 273 µg/L, Leung et al. 2010). Markedly, adult hermaphrodites exposed to 
high β-NF concentrations exhibited an increased bagging rate (figure 10). Mosser 
et al. (2011) and several of the cited authors described the Bag phenotype as good 
indicator of stress. Its feasibility as (eco)toxicological endpoint however remains to 
be clarified. Regarding the possible MoAs of β-NF not much has been proposed, 
but it was experimented that β-NF does not bind to the ortholog of the human AhR 
in C. elegans (Powell-Coffman et al. 1998). β-NF and PAHs may thus further be 
examined within ecotoxicological concepts discussed under 2.3.2–2.3.3.  
In this thesis DART was further investigated for groundwater, surface water and 
wastewater from different WWTP using conventional biological and AWWT 
processes (Abbas et al. 2018, figure 11 and 17, table 3). The impacts of these 
samples on reproduction/growth indicated the presence of residual causative 
agents in WWTP effluents (discussed in further detail in Abbas et al. 2018). Thereby, 
DART endpoints proved to be beneficial in comparing the effectiveness of different 
WWTP processes (2.4). These estimations are required for reducing WWTP 
emissions (such as through WWTP upgrade or centralisation) and for reaching the 
goals of the WFD (European Parliament and Council 2008, 1.2.2). It also became 
apparent that chemical target analysis, including several compounds affecting the 
reproduction and growth of C. elegans, did not explain the detected effects (see 
‘Online Resource 3’ in Abbas et al. 2018). Chemical analyses should thus be better 
adjusted to ecotoxicological effects and research questions (e.g., Maier et al. 2016, 
Neale et al. 2017, 2018). This adjustment should acknowledge (micro)pollutants 
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known for their presence in wastewater as well as DART in C. elegans. Even if their 
MECs generally occur below their reported EC, cumulative effects may not be 
excluded in advance. In general, ecosystem complexity and matrix effects that can 
interfere with bioassay outcomes (e.g., Haitzer et al. 1999, Höss et al. 2001) should 
be better involved in the assessment and monitoring of (waste)water.  

 
Figure 10. Expression of cyp-35A3::GFP in transgenic C. elegans of the Bag phenotype. 
Arrows/Brackets pointing at internally hatching larvae in adult hermaphrodites. Images (left: 
DIC and right: GFP) recorded after 48 h exposure to β-NF (1 mg/L). Size bar = 100 µm. 
Unpublished results jointly obtained by L. Valek and A. Abbas. 
Hitchcock et al. (1997, 1998) investigated municipal and industrial wastewater using 
C. elegans. The authors concluded that discharges should undergo intensified in 
vivo monitoring as well as source control. Wang et al. (2008, 2010) performed two 
TIE on a paper recycling mill effluent whereby C. elegans was sensitive towards 
several TIE sample manipulations. McLaggan et al. (2012) used transgenic strains 
and DART endpoints to study different pollutants (such as PAHs, PCBs, EDCs and 
metals) extracted from sewage sludge. Wang et al. (2015) adapted the “transgenic 
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approach” by combining molecular, apical, behavioral and community endpoints to 
investigate a natural wetland (focusing on nitrogen and phosphorous). In a study of 
Clavijo et al. (2016) the authors determined that physicochemical and 
bacteriological water parameters correlated to < 62 % of the observed growth 
inhibitions (compare ‘immunotoxicology’ under 2.3.3). Kim et al. (2019c) detected 
DART in model crude oil samples apparently triggering the nucleotide excision 
repair pathway (table 2, 2.3.3). The authors suggested the PAH C3-naphthalene as 
major toxicity contributor and validated their results using D. renio (Kim et al. 2020). 
In addition, DART endpoints have been employed to assess the quality of river 
sediments (e.g., Harris et al. 2020, Höss et al. 2012, Menzel et al. 2009). For several 
sediment samples Duft (2004) observed a higher sensitivity and feasibility of C. 
elegans over Chironomus riparius. However, the author suggested that both assays 
may complement each other as well as comparisons to other sensitive species in 
respective bioassay batteries. Soil quality/toxicity has also been assesses using C. 
elegans DART endpoints (e.g., Graves et al. 2005, Höss et al. 2009, 2015, Höss 
and Römbke 2019, Peredney and Williams 2000, Roh et al. 2007, Wilson and 
Khakouli-Duarte 2009).  

 
Figure 11. Reproductive toxicity of β-NF (1−5 mg/L), surface water (SW) and WWTP effluent 
(EFF) samples to C. elegans. Reproduction (brood size) expressed as mean offspring 
number per test organism ± SEM. Aqueous (1:2) and extracted (4−20x) samples tested as 
0.5, 4 and 20 fold concentrations respectively. Significant differences (*** p < 0.001) tested 
by 1-way ANOVA against negative control (NC, S-media). Solvent control (SC) = 0.4% 
DMSO. n = 25−40 per treatment group. Results jointly obtained by L. Valek and A. Abbas.  
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Based on these results the development and reproduction of C. elegans provides 
sensitive and environmentally relevant endpoints for the assessment and monitoring 
of different environmental compartments. By implementing thorough experimental 
designs (such as involving a ‘good C. elegans culture practice’, Hunt 2016), and test 

strategies, such as combined with chemical analyses (e.g., Abbas et al. 2018, 
McLaggan et al. 2012, Wang et al. 2008b, 2015) as well as mutant and transgenic 
strains (compare 2.3.3), hypotheses such as on probable causative agents (Harris 
et al. 2020) can be tested. DART-related endpoints are furthermore important for 
cross-references to other species and for high throughput screens (HTS) that are 
witnessing a growing relevance in (eco)toxicology (Avila et al. 2011, Boyd et al. 
2010, 2012, Brooks et al. 2020, Hunt 2016).  
2.3.2 CYP-35As as biomarker of (micro)pollutant exposure and contaminated 
environmental samples 
Biomarkers are important tools to indicate the physiological and metabolic state and 
its modification (Peakall 1994, Walker 1998). Protein expression is a frequent 
biomarker for intracellular exposures to xenobiotics (Wilson and Khakouli-Duarte 
2009, 1.4.3). Effect biomarkers detect (sub)cellular effects such as oxidative stress, 
DNA damage/repair, apoptosis and/or activation of detoxification (table 2, figure 15). 
A few biomarkers are intermediates between exposure and effect biomarkers. An 
example hereof are DNA damage associated genes that are expressed upon 
reversible and irreversible DNA manipulations. The biological relevance of changes 
in gene expression, however, mainly depends on the further manifestation of cellular 
effects and their propagation to higher levels of organization (Feder and Walser 
2005, Peakall 1994, Walker 1998). Detoxification pathways in C. elegans (and other 
species) are frequently investigated through CYPs (Gotoh 1998, Harlow et al. 2018, 
Nelson et al. 1996, 1.4.3). Members of the C. elegans cyp-35A subfamily (n = 5) are 
highly inducible by various xenobiotics such as PAH, PCBs and dioxin-like pollutants 
(table 1–2, figure 12). Although biotransformation of organic chemicals by CYPs 
generally initiates their detoxification, they can also contribute to toxicity through 
bioactivation (e.g., Leung et al. 2010, Schäfer et al. 2009). Accordingly, 
knockdown/knockout of CYPs often reduced the toxicity of the respective pollutants 
and/or led to rescued phenotypes (Eom et al. 2014, Harlow et al. 2016, 2018, Jones 
et al. 2015, Min et al. 2015, Roh and Choi 2011, Schäfer et al. 2009).  
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Figure 12. Expression of cyp-35A3::GFP in transgenic C. elegans. No biomarker induction 
was detected in unexposed control animals (A) or freshly laid eggs after 24 h of exposure 
to β-NF (B). A strong GFP signal was captured at the late embryonic (C), larval (D) and 
adult stage (B–D). Magnification adjusted to the respective developmental stage. DIC = 
panel one and three. GFP = panel two and four. Results obtained by L. Valek and A. Abbas. 
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In this thesis cyp-35A2::GFP and cyp-35A3::GFP served as biomarkers of exposure 
to the reference PAH β-NF (Menzel et al. 2001, 2007) as well as environmental 
samples possibly containing cyp-35A inducers. β-NF induced both isoforms in a 
concentration-dependent manner at subacute exposures. For cyp-35A3::GFP, 
maximal expression levels were reached after 8 h, whereas the earliest induction 
was recorded after 1 h of exposure to 5 mg/L. An earlier detection was methodically 
unfeasible due to the time for translating and post-modifying the GFP (estimated to 
1 h by David et al. 2003). PCR methods could be used to spare this time lag (Valek 
2013) and to quantify the expression levels of multiple CYPs in parallel. However, 
these methods do not allow for microscopic (live) imaging such as performed with 
the cyp-35A3::GFP and other transgenic strains. By fluorescence microscopy a 
predominant expression location of cyp-35A3 was confirmed for the intestine (figure 
12 and Abbas et al. 2018) similar to the observation by Menzel et al. (2007). The C. 
elegans intestine is its primary detoxification organ and also the main exposure 
route for various chemicals and ingested particles (Offermann et al. 2009, Wilson 
and Khakouli-Duarte 2009, Stylianou et al. 2018). Based on other studies 
overlapping substrates and substituting roles for cyp-35A subfamily members were 
suggested (Harlow et al. 2018, Inokuchi et al. 2014, Jones et al. 2015, Roh et al. 
2014). This highlights the importance of detecting multiple CYP isoforms in 
ecotoxicogenomic studies. The induction of cyp-35A3::GFP was furthermore 
tracked throughout different developmental stages (figure 12). This result was in line 
with previous observations by Menzel et al. (2007). Interestingly, cyp-35A3::GFP 
induction was also found in internally hatching larvae of the Bag phenotype (figure 
10). In the literature cyp-35A3 inducers were mostly tested at concentrations in the 
milligram per liter range (table 1). A few studies also analyzed concentration 
response relationships for CYP inducing compounds such as β-NF (Menzel et al. 
2002). Therein, Menzel et al. (2002) reported on a LOEC 0.1 µg β-NF / L for cyp-
35A3 induction. In comparison, an EC50 (8−24 h) of 72−79 µg/L β-NF was 
determined in this thesis. CYP induction concentrations in the microgram per liter 
range were also detected for triclocarban (> 170 µg/L, Inokuchi et al. 2014) and 
chlorpyrifos (60−300 µg/L, 2−8 h, Roh et al. 2016) speaking for the sensitivity of this 
biomarker. Similar to β-NF (DART at > 100 µg/L), the low induction concentrations 
of triclocarban conincided with high DART. In case of chlorpyrifos cyp-35A3 
induction concentrations even came close to the LC50(24 h) of 300 µg/L. In addition, 
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prolonged exposure (96 h) at 10−100 µg/L was concomitant with severe 
developmental and reproductive defects (Roh and Choi 2008). Similar ECs of DART 
and cyp-35A3 induction might indicate its involvement in bioactivation (compare 
putative toxicodynamic and AOP concepts discussed in figure 15 and under 2.3.3). 
Table 1. Selected C. elegans cyp-35A3 inducers in the scientific literature (reference given 
in brackets). Two out of four inducers reported by Harlow et al. (2016) are shown. 3D-
models of compounds available at PubChem (Kim et al. 2016) and other databases 

Selected cyp-35A3 inducers 

 
β-NF (PAH)  (Menzel et al. 2001, 2007) 

 
fluoranthene (PAH)  (Menzel et al. 2001) 

 PCB52 (Menzel et al. 2001) 

 (R)-primaquine (Menzel et al. 2001) 
 lansoprazole (Menzel et al. 2001) 

 
benzene  (Eom et al. 2014) 

 chlorpyrifos (Roh et al. 2014, 2016) 
 diazinon (Vinuela et al. 2010) 

 
thiabendazole (Jones et al. 2013, 2015)  

 imidacloprid (Jones et al. 2013) 
 triclosan (Inokuchi et al. 2014) 

 
triclocarban (Inokuchi et al. 2014) 

 
imidazole fungicide (Harlow et al. 2016) 

 pyridazine fungicide (Harlow et al. 2016) 

 
caffeine (Min et al. 2015) 
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Biomarkers of exposure represent relevant tools for toxicokinetic analyses 
(Offermann et al. 2009, Roh et al. 2016, Stylianou et al. 2018, table 2, figure 13). 
Toxicokinetic information such as determining bioavailable concentrations of 
(micro)pollutants are important such as for defining toxicity thresholds in ERA. 
Bioavailable concentrations also depend on the degradation and detoxification rates 
of the respective compounds (e.g., Roh et al. 2016, Spann et al. 2015). In this thesis 
it was hypothesized that decreasing internal concentrations of β-NF may coincide 
with a down-regulation of cyp-35A3::GFP. The down-regulation of cyp-35A3::GFP 
apparently depends on various exogenous factors (e.g., nominal β-NF 
concentrations and exposure duration/intervals) and internal conditions (e.g., 
exposure routes or bioaccumulation behavior). Although in the conducted 
experiments internal concentrations were not directly measured (e.g., compare 
Chen et al. 2016 for BPA/BPS), it was found that cyp-35A3::GFP levels gradually 
decreased over 72 h after β-NF exposure at 1 mg/L for 24 h (figure 13). In 
perspective, such experiments will have to be complemented by examining the 
above mentioned exogenous and endogenous factors. The potential effect of these 
parameters on downstream effects such as DART are thereby of particular interest. 
Moreover, the degradation kinetics of GFP itself may have to be involved such as 
by comparing reports on the half-life of the fluorescence protein (e.g., 26 h, Corish 
and Tyler-Smith 1999) with the present conditions.  

 
Figure 13. Down-regulation (0−72 h) of cyp-35A3::GFP in transgenic C. elegans after 24 h 
exposure to 1 mg β-NF/L. Negative control (C) = unexposed animals. Significant differences 
tested against C (if not noted elsewise) as described by Valek (2013) 
Biomarkers are furthermore used for assessing environmental samples (table 2). 
Ecotoxicogenomic studies involving cyp-35As were for instance performed on 
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contaminated surface water (Kumar et al. 2015), river sediments (Menzel et al. 
2009) and soils (Anbalagan et al. 2012, 2013, Roh et al. 2007). Thereby, different 
(clusters of) up- or downregulated genes correlated to pollution levels and/or DART. 
In this thesis, one biologically treated WWTP effluent and corresponding ozonated 
wastewater (analysed in this thesis) significantly induced cyp-35A3::GFP (table 3–

4 and Abbas et al. 2018). Because the ozonated WWTP effluent induced cyp-
35A3::GFP to higher extend a possible explanation was given in the context of 
oxidative TPs (such as corroborated for other aquatic species, da Costa et al. 2014, 
Stalter et al. 2010, Magdeburg et al. 2012, Giebner et al. 2018). The presumed TPs 
might thereby either resemble newly generated and/or previously contained cyp-
35A3 inducers with higher bioavailability/potency. The causative agents for this 
effect could not be evaluated, because, except for caffeine, none of the cyp-35A3 
inducers cited in table 1 was included in the chemical target monitoring of this thesis. 
In addition, the MEC of caffeine (see ‘Online Resource 3’ in Abbas et al. 2018) 
ranged far below its reported induction concentration (Min et al. 2015). This was 
also found regarding the concentrations of other wastewater-borne cyp-35A3 
inducers in table 1 (e.g., Forsgren 2015). The MECs of chlorpyrifos and triclocarban 
(< 0.52 µg/L, Norberg-King 2001 and 0.17 µg/L, Heidler et al. 2006, respectively) 
were approximately 100 fold lower than their ECs (60−300 µg/L, Roh et al. 2016 and 
> 170 µg/L, Inokuchi et al. 2014, respectively). Therefore, hypotheses on potential 
cumulative effects of unknown and/or low concentrated cyp-35A3 inducers as well 
as particle bound (micro)pollutants (such as based on their log Kow values) were 
discussed (Abbas et al. 2018). These findings further highlighted the need to 
carefully and case-specifically amend chemical (target) and ecotoxicological 
analyses (e.g., Chakrabarti et al. 2015, Neale et al. 2018, Tang et al. 2014). 
For further establishing CYPs as biomarkers the identification of their inducers and 
substrate spectra should go in hand with research on their intra- and interspecies 
relationships. Such information can for instance be obtained from gene ontology 
studies, by quantitative structure activity relationships (QSAR, e.g., Escher and 
Hermens 2002, Ristau et al. 2015) and other (experimental) approaches (e.g., 
Harlow et al. 2018). Due to the evolutionary conservation of CYPs many of their 
biological functions and toxicological responses (highly) correlate between species. 
This conservation is apparent at the genetic level. According to a BLAST research 
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cyp-35A3 (ceCYP-35A3) shares 100% DNA sequence homology with CYPs 
orthologs in three other nematodes (Caenorhabditis brenneri, Caenorhabditis 
briggsae and Caenorhabditis remanei), but also with one CYP in the flower Camellia 
japonica (Ensembl 2018, Wormbase 2018). The human ortholog cyp-2C8 (hCYP-
2C8) displays 93.7% sequence homology with ceCYP-35A3, which is higher than 
for the Drosophila melanogaster ortholog (cyp18a1-PB, 90.7%). Functional 
homologies were further ascribed to human CYP-2J2, -2R1 and -2U1 using the 
‘Protein Analysis Through Evolutionary Relationships Classification System’ (Mi et 
al. 2013). However, the human CYP1 class and CYP1-like metabolism is apparently 
missing in C. elegans. Nonetheless, C. elegans shares a variety of CYP-based 
metabolites with humans (Harlow et al. 2018). Similar to other proteins, structures 
of CYPs have been modelled and reconstructed from crystal structures (Totah and 
Rettie 2005). From this data in silico methods can generate 3D-models (e.g., figure 
14) which are used to compute binding affinities of experimented and probable 
substrates (Marcus Weber, personal communication). No model of ceCYP-35A3 
seemed presently available in the literature. 

A 

 

B

  
Figure 14. In silico models of hCYP-2C8 (human ceCYP-35A3 ortholog). Ribbon diagram 
(A) of its asymmetric unit wherein colors represent different domains (Berman et al. 2000). 
Stereo-image (B) of the active site (Johnson and Stout 2005) including exemplary substrate 
(center) and heme cofactor (bottom). 
Substrate spectra of CYPs can include structurally diverse compounds (e.g., 
Johnson and Stout 2005, table 1). Markedly, for cyp-35A2 Anbalagan et al. (2012) 
even reported on an apparent induction by heavy metals. It however remained to be 
clarified, if this induction was associated with real catalytic, (co-)regulative or 
unspecific toxicity. Metabolic activities of hCYP-2C8 (ceCYP-35A3 ortholog) have 
widely been investigated for various drugs and toxicants (e.g., Backman et al. 2016, 
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Johnson and Stout 2005, Totah and Rettie 2005). hCYP-2C8 is highly expressed in 
the liver also representing a main detoxification organ (Backman et al. 2016). 
Different natural compounds are known hCYP-2C8 substrates/inducers such as 
certain terpenes, the natural flavone eupatilin (structurally related to β-NF) or 
ethanol. They also comprise caffeine and lansoprazole (Backman et al. 2016), which 
have been reported as ceCYP-35A3 inducers (table 1), as well as chlorpyrifos 
(Abass et al. 2009). No literature was found on β-NF, fluoranthene or PCB52 as 
hCYP-2C8 effectors. From the ethoxyresorufin-O-deethylase (EROD) assay it is 
however known that β-NF, several other PAH and dioxin-like toxicants induce 
hCYP-1A1 in fish (e.g., Kais et al. 2018, Maier et al. 2016, Mohammadi-Bardbori 
2014, table 4). β-NF is described to be targeted by hCYP-1A2 (Chakrabarti et al. 
2008) which also metabolizes caffeine (Omiecinski et al. 1999). The fact that 
homologous and non-homologous CYPs (such as hCYP-1A1 and ceCYP-35A3) 
can have overlapping substrate spectra further illustrates their evolutionary 
relationships and resulting complex metabolic interplay. Future research will further 
elaborate the usefulness of CYPs as human and environmental biomarkers and 
their integration into state of the art ecotoxicogenomic investigations (Chakrapani et 
al. 2008, Fajardo et al. 2020, Harlow et al. 2016, Inokuchi et al. 2014, Min et al. 
2015, 2.3.3). 
2.3.3 Functional ecotoxicogenomics, mechanistic ecotoxicology and novel 
endpoints for (micro)pollutant and (waste)water quality assessment 
A growing number of mechanistic studies are carried out with C. elegans 
deciphering (eco)toxicological responses to anthropogenic and natural chemicals 
as well as contaminated environmental samples. The complex interplay of these 
responses are often studied by omic approaches (referring to the genome, proteome 
and metabolome) to detect and describe the involved physiological processes and 
toxicological pathways. Genome wide expression screens have been established in 
ecotoxicogenomics to profile the entirety of up- or down-regulated genes (compare 
2.3.2). In general, these screens base on the assumption that chemicals with shared 
MoA (repeatedly) induce related expression patterns that can be contrasted with 
homeostatic conditions and other types of environmental stressors. A main aim is 
to transfer this information to predictive ecotoxicology (e.g., Brooks et al. 2020, 
Steinberg et al. 2008, Wilson and Khakouli-Duarte 2009). Furthermore, genomic 
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and biomarker assessments may provide higher sensitivity and pace than apical 
and life cycle parameters in reflecting pollutant induced changes. This facilitates 
more detailed comparisons of acute versus chronic exposures and resulting effects 
(e.g., Alda Álvarez et al. 2006, Cui et al. 2007, Fajardo et al. 2020, Ruan et al. 2009).  
Global gene expression patterns upon exposures to wastewater-borne 
(micro)pollutants were studied in the context of environmental hormones (17β-
estradiol and progesterone, Custodia et al. 2001), the PAHs β-NF and fluoranthene, 
the herbicide atrazine, the pharmaceutical clofibrate, the EDCs diethylstilbestrol 
(Reichert and Menzel 2005) and DEHP (Roh et al. 2007), PCB52 (Menzel et al. 
2007), the industrial chemical octachlorostyrene (Kim and Choung 2009), the 
synthetic polycyclic musks 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydro 
naphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-
γ-2-benzopyran (HHCB, Mori et al. 2007), heavy metals (Cd, Hg and Pb with 
detection thresholds as low as at 48−82 ng/L, Tominaga et al. 2008, Cui et al. 2007), 
the organophosphate pesticide dichlorvos (Lewis et al. 2013), benzene (Eom et al. 
2014, table 2) and caffeine (Min et al. 2015, table 2). Many of these genome wide 
screens suggested an involvement of CYPs (including the cyp-35A subfamily) in the 
respective toxicological/metabolic responses/pathways (Custodia et al. 2001, Roh 
et al. 2007, Schäfer et al. 2009). Kim and Choung (2009) detected transgenerational 
alterations of gene expression after exposure of the parental generation. Lewis et 
al. (2009) moreover observed a relatively rapid recovery of overall gene expression 
(< 26 h) after subacute exposures (2 or 8 h) to dichlorvos. When Reichert and 
Menzel (2005) tested several wastewater-borne pollutants (in the milligram per liter 
range) the number of induced (n ≤ 203 at 2−42 fold higher than the control) or 
repressed (n ≤ 153 at 2−7 fold lower than the control) genes followed the order 

fluoranthene > clofibrate > atrazine > β-NF > diethylstilbestrol or atrazine > 
fluoranthene > diethylstilbestrol > β-NF > clofibrate respectively. β-NF induced 40 
genes in total including carboxylesterases, collagen genes, CYPs (with β-NF as 
strongest inducer), cytochrome b5, GST-20, UGTs, 11 genes belonging to different 
metabolic pathways (such as the metallothionein mtl-1) and 15 unknown genes. 
Two β-NF down-regulated genes were detected including C-type lectin (related to 
immune defense). Overall, these and earlier experiments (Menzel et al. 2001) 
supported the described role of these genes in the xenobiotic defense of C. elegans.  
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Natural compounds have also been examined. Humic substances were for instance 
investigated using a surface water reverse osmosis isolate (NOM concentration of 
6.4 mg/L) and the synthetic humic-like substance HS1500 (at 7.6 mg/L) wherein 
CYPs and various other genes were found to be differentially expressed. Albeit 
potential MoAs of humic substances remained unclear, screening natural 
compounds is particularly important for investigating environmental samples. 
Regarding the latter, Menzel et al. (2009) examined surface water sediments that 
exhibited different contamination degrees (Elbe > Rhine > Danube) with heavy 
metals, PAHs, PCBs and other POPs (such as octachlorostyrene) resembling the 
main representatives. All samples induced genes involved in certain metabolic 
processes, while a few samples also showed DART (using 25−50% pore water), in 
vitro genotoxicity and estrogenicity, that in many cases correlated to the respective 
gene expression profiles. PAH contaminated soils (after remediation) were also 
screened in a study by Fajardo et al. (2020), who also found growth, reproduction 
and survival to be significantly impacted.  
In general, several methodical aspects have to be considered when performing and 
evaluating genomic screens (that apply to the entire field of ecotoxicogenomics): 
 Robust design (matched with previous data and experimental standards). 
 Data normalization (respecting baseline expression and methodical LOQs). 
 Inclusion of multivariate statistics (as foundation for gene ontology approaches). 
 Functional validation of results (by follow up experiments on downstream effects 

ruling out unspecific responses / false positives, compare below). 
Furthermore, a number of biological/ecotoxicological challenges lie ahead in further 
establishing genomic screens as robust assessment tools and reliable prediction 
instruments for (defined and complex/dynamic) environmental stressors such as: 
 Detailed comparisons of regular and irregular expression patterns (based on 

standardized maps/databases such as Davis et al. 2017, EBI 2018, Howe et al. 
2017 and Kim et al. 2001). Respective data sets should enable the differentiation 
between responses such as specific versus unspecific or natural versus 
(micro)pollutant induced. Accordingly, they may comprise suitable PCs and/or 
interrogation of relevant ontogenetic/population and environmental factors that 
could cause variation in expression patterns/levels (e.g., Steinberg et al. 2008, 
Escher et al. 2017, Roh et al. 2016). 
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 Comprehensive involvement of multiple regulation mechanisms on the DNA, 
transcriptional, RNA, translational or protein level (such as epigenetics or 
miRNAs, e.g., Camacho et al. 2018, Lundby et al. 2016, Weinhouse et al. 2018, 
Zhao et al. 2016) that could be impeded by xenobiotic exposure (Reinke et al. 
2013, Steinberg et al. 2008, Taki et al. 2014), while escaping detection in regular 
genomic screens. 

 Cross references to aquatic organisms such as Daphnia or fish species (e.g., 
Colbourne et al. 2015, Harris et al. 2020, Kim et al. 2019c, 2020, Steinberg et al. 
2008). 

Various “non-genome wide” screens have been carried out focusing on individual or 

multiple genes in C. elegans, while often applying DNA/RNA sequencing and/or the 
respective mutant/transgenic strains (e.g., Cong et al. 2020, Mendelski et al. 2019). 
Due to their reduced methodical effort compared to whole genome assays, these 
studies generally incorporate an extended set of investigated endpoints (compare 
table 2 below). The systematic selection of potentially affected endpoints is crucial 
for ruling out (false) negative results and for examining “downstream” (adverse) 
effects at higher organizational levels (Harlow et al. 2016). Up to present, 
mechanistic investigations with C. elegans illustrated how biomarker and genomic 
screens (molecular endpoints) combined with other endpoints (such as biochemical, 
metabolic, neurological, behavioral or physiological) can be powerful tools to 
characterize potential MoAs of (micro)pollutants as well as environmental samples.  
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Table 2. Selected (non-genome wide) studies on effects and apparent MoAs of environmental chemicals/samples in C. elegans. Studies using 
multiple endpoints and biomarkers were listed chronologically (latest on top). Certain chemicals were cited by their abbreviation (as given in 
text) or summarized by pollutant classes (e.g., pesticides). Arrows (“↑” and “↓”) indicate significantly up-/down-regulated genes or 
stimulation/inhibition of the respective endpoint, while delta symbol (“∆”) indicates a relevant/significant alteration. Environmental relevance 
was estimated regarding selected compartments such as soil, groundwater (GW), surface water (SW), sediments, wastewater including 
industrial/hospital wastewater (WW), marine waters (MW) or drinking water (DW) as well as specific fields of ecotoxicology (excepting human 
toxicology). 

Compound / sample type Investigated endpoints Toxicity mechanism / MoA Specific remarks Aquatic relevance Reference 
Present study: 

β-NF Apical (brood size ↓) and molecular (cyp-35A2 ↑, cyp-35A3 ↑) Involvement of CYPs in the reproductive toxicity of β-NF  Particulates assumed as main exposure route WW, TSS, sediments Abbas et al. 2018 and 2.3 EFF-1 Apical (brood size ↓) Effects unexplained by chemical target analysis. Putative cumulative effects and potential role of TSS. Chemical target analyses (n = 111) 

WW, SW, TSS 
EFF-4 Molecular (cyp-35A3 ↑) WW, SW, TSS 
EFF+O3 Apical (growth ↑, insignificant) and molecular (cyp-35A3 ↑) Oxidative TPs, AWWT 

(Micro)pollutant studies: 
Chlorpyrifos (compare below) and its TPs 

Apical (DART↑), behavioral 
(locomotion ∆), cellular (neuronal integrity ↓), biochemical (ROS ↑), molecular (tph-1::GFP↑) 

Chlorpyrifos (20–50 µg/L) and generated TPs (0–10h) triggering multiple (neuro-)toxicity pathways 
Higher toxicity of proposed photolytic TPs than non-irradiated standard solution  

SW, WW, TPs Cao et al. (2020b) 

Lindane Apical (DART↑), behavioral 
(locomotion ∆), intestinal membrane permeability↑, biochemical (ROS ↑), molecular (sod-5 ↑, isp-1 ↑, mtm-6 
↓, opt-2 ↓) 

Significant correlation of oxidative stress response and intestinal membrane permeability with apical effects 
LOECs ≥ 1 ng/L Soil, SW, GW Yu et al. (2020) 
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Table 2 (continued) 
Tetrabromo-BPA Apical (DART↑), behavioral 

(locomotion∆), neurotoxicity (neuronal damage), biochemical (ROS), molecular (20 genes incl. cyp-35A2) 

Trans-generational neurotoxicity, whereby gene expression was more altered at low test concentrations 
Locomotion and gene expression affected in G1 and G2 (1–100 µg/L) 

WW, soil Liu et al. (2020) 
Pulsed exposure at environmentally relevant concentrations triggered higher toxicity as well as adaption  

LOECs at 1–10 µg/L Liu et al. (2019) 
BPA (compare below) Apical (DART↑), cellular (germline nuclear loss↑, apoptosis↑), biochemical (intracellular↓ and mitochondrial↓ cholesterol level) 

Apparent interference of BPA (at [µg/L]) with mitochondrial cholesterol transport as mediated by steroidogenic acute regulatory protein 

Rescue phenotypes by mutational analysis and potential endocrine effects of cholesterol 
WW, SW Chen et al. (2019) 

Methampheta-mine, ketamine Apical (DART↑), behavioral ∆, biochemical (neurotransmitter ∆), molecular (oxidative stress related genes ↑) 
Behavioral impairment (≥ 50 ng/L) reflected in altered neurotransmitter content and probable association of oxidative stress response with DART 

ECs at MECs incl. risk estimation WW, SW Wang et al. (2019) 

Hexabromo-cyclododecane (flame retardant) 
Apical (DART↑), behavioral ∆, biochemical (ROS↑), cellular (apoptosis↑), molecular (16 genes ∆ incl. cyp-35A2 ↑) 

Apparent protective role of sod-3 and cep-1 as well as N-acetyl-L-cysteine / ascorbate against supposedly ROS derived downstream effects 
Detection of altered gene expression at a LOEC of 1.28 µg/L 

WW, SW, soil Wang et al. 2018 

Triclosan, triclocarban (compare below and Sreevidya et al. 2018) 

Apical (DART↑), behavioral 
(locomotion ∆), biochemical (ROS↑) and molecular (daf-16::GFP↑) 

Metabolic shifts in carbohydrates, amino acids (energy budget) and tyrosine, serine, polyamines (neurotransmitter / stress response) 
Several phenotypes could be affected by triclosan exposure 

WW, SW Kim et al. (2019b) 

Apical (lethality ↑, DART ↑, lifespan ↓), biochemical (oxidative stress) and molecular (daf-16, xol-1) 
daf-16::GFP nuclear relocalization and xol-1::GFP confirming oxidative stress response and DART (respectively) 

Authors suggest further research on endocrine disrupting potential  
Lenz et al. (2017) 
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Table 2 (continued) 
Chlorpyrifos  Molecular (cyp-35A2−3) and 

biochemical (AChE ↓). Study includes summary on previously investigated endpoints in the literature. 
Metabolisation by CYPs and AChE inhibition by chlorpyrifos bio-TP. Internal concentration and time dependencies 

Involves toxicokinetic parameters and realistic/low exposure concentrations 
Soil, SW, GW Roh et al. (2016, 2014) 

72 pesticides Apical (egg viability/hatching ↓) and 
molecular (CYPs ↑) DART in relation to humans. Functional involvement of CYPs Comparison of positive/negative predictive power (incl. RNAi) 

Soil, SW, GW Harlow et al. (2016), also see table 1 
BPA Apical (growth ↓, reproduction ↓), 

behavioral (locomotion ∆), , cellular (apoptosis ↑), biochemical (lipofuscin accumulation, ROS production), molecular (incl. cyp-35A2 ↑) 

Cell apoptosis leading to DART and neurobehavioral toxicities LOECs in the lower microgram per liter range 
WW, SW Zhou et al. (2016) 

Caffeine  Apical (brood size ↓, embryonic lethality ↑, larval arrests ↑) and molecular (global gene expression 
↑↓) 

Toxicological role of CYPs with focus on cyp-35As (confirmed by RNAi) Readily degradable by biological WWT WW Min et al. (2015), also see table 1 
Thiabendazole Apical (egg number ↓) and molecular (CYP activation by NHR-176) Potential involvement of bio-TPs in reproductive toxicity Classification of transcriptional regulators  

Chemical analysis (involving TPs) 
Jones et al. (2013, 2015), also see table 1 

NDMA, dibromoacetic acid 
Apical (life span ↑, reproduction, body 
size ↑, thermal stress resistance), biochemical (oxidative capacity, lipid peroxidation) and molecular (17 genes incl. cyp-35A2 ↓) 

Protective stress response or energy relocation  Low dose experiment WW, SW Baberschke et al. (2014) 

Triclosan, triclocarban (compare above and Sreevidya et al. 2018) 

Apical (DART ↑) and molecular (79 CYPs) 19 (triclosan, 5 mg/L) and 10 (triclocarban, 0.17 mg/L) up-regulated CYPs potentially involved in the observed DART  
Utilization of a DNA microarray chip customized for CYPs 

WW, SW Inokuchi et al. (2014) 
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Table 2 (continued) 
Benzene Apical (survival, reproduction ↓), 

behavioral (locomotion ∆) and molecular (global gene expression 
↑↓ incl. cyp-35As) 

Distinct roles of cyp-35A2 and cep-1 in benzene-induced behavioral responses and reproductive toxicity 
Computational behavior analysis as integrative evaluation tool 

WW, DW Eom et al. (2014), also see table 1 
Clenbuterol, ractopamine Apical (DART ↑), behavior 

(locomotion ∆), biochemical 
(autofluorescence ↑, ROS ↑), 
molecular (gene expression ↑↓) 

Insulin/IGF influenced life span reduction. Decreased ROS and DART by sod-2 overexpression 
Acute and prolonged exposure. Low dose effects (e.g., 10 µg/L) 

WW (depending on concen-tration) 
Zhuang et al. (2014) 

SMX Apical (reproduction ↓, growth ↑, life 
span ↑), behavioral (thermal 
resistance, pharynxal pumping ↑), biochemical (lipid peroxidation ↑), molecular (16 genes ↑↓) 

Lipid peroxidation and up-regulated hsp-16.1 indicated oxidative stress; possibly associated with mitohormesis affecting life span and pumping frequency affecting growth 

Explanation on bacterivorous C. elegans as r-strategists 
WW, SW, Soil Liu et al. (2013)  

Nicotine Behavior (nicotine preference ↑, locomotion), biochemical (gustatory 
plasticity ↓), molecular (bas-1, cat-2, lev-1, tph-1 unc-29) 

Suggested essential role for serotonin signaling pathway Mutant analysis after acute pre-exposure and new locomotion assay  
WW (depending on concentration) 

Matsuura et al. (2013) 
Fenitrothion Apical (DART ↑), behavioral 

(immobility ↑), biochemical (AChE activity ↓), molecular (cyp-35A2 ↑) 
Role for cyp-35A2 in the observed toxic effects  suggested by RNAi and mutant analysis 

Quantification of fenitrothion degradation in exposure medium  
SW (depending on concentration) 

Roh and Choi (2011) 
5-fluorouracil Apical (DART ↑), cellular (apoptosis ↑, cell cycle arrest ↑), molecular (lin-29, ung-1) 

Cell cycle arrests followed by germline apoptosis. Repression of lin-29 transcription factor related to vulval development and egg laying 
Partially diminished effects on embryo hatching upon knockdown of ung-1 

WW (depending on concentration) 
Kumar et al. (2010)  

Five pesticides Apical (DART ↑) and behavioral 
(locomotion ∆) Neurotoxic pesticides affected locomotion, while pesticides targeting insect growth diminished C. elegans reproduction 

Comparison of acute versus chronic exposure (sensitivity 24 h > 72 h) 
Soil, SW, GW Ruan et al. (2009) 

Levamisole (pesticide) Population (males ∆), apical 
(survival ↓↑, fecundity ↓↑), metabolic (adaption costs) 

Multi-generational (n = 20) population/apical effects as potential result of reduced motility (encounters↓ thus outcrossing rate↓)  
Investigation of rapid adaption and ecological relevance 

Soil, SW, GW Lopes et al. (2008) 
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Table 2 (continued) 
Environmental studies: 

Sediment extracts from superfund site 
Apical (DART↑), biochemical (ATP level↓), EROD activity (bacteria and transgenic strain) ↑ 

Basal zebrafish cyp-1A expression, PAH-biotransformation, downstream effects in transgenic C. elegans  
Cross-species method indicating protective role of cyp-1A 

SW, GW, sediments Harris et al. (2020) 
Acidic and basic culturing environment 

Apical (DART↑) and molecular (transcriptome ∆) Activation of cuticle synthesis, structure-related (pH = 4.33) and xenobiotic defense (pH < 4.33) genes 
Evaluation of potential climate change driven acidification effects 

MW, SW, soils (through acid rain) 
Cong et al. (2020) 

Micro-polystyrene particles 
Apical (lifespan↓), behavioral (defecation ∆), cellular (motor 
neuron GFP reporter ∆), molecular (biomarker including skn-1 ∆) 

Activation of xenobiotic defense and defecation pathways (ultimately impacting AVL and DVB neurons as well as life span) 
Particle size (1–5 µm) and concentration (~107–1010 particles/m2) dependency 

SW, MW, WW Shang et al. (2020) 

High-density polyethylene particles 
Apical (DART↑), molecular (pathway-specific biomarker ∆) Involvement of nucleotide excision repair and TGF-β signaling in toxicity pathway and proposition of two AOPs 

Correlation to zebrafish (experimental) and humans (in silico) 
SW, MW, WW Kim et al. (2020) 

Nano-polystyrene particles 
Apical (DART↑), behavioral (locomotion↓), biochemical (ROS↑), metabolic markers ∆ 

Perturbation of energy budget related metabolites and ROS production suggests relation to DART/locomotion 
Correlation of results with particle properties and uptake kinetics 

SW, MW, WW Kim et al. (2019a) 
Model crude oil from spill event (water soluble fraction) 

Apical (reproduction↓) and molecular (selected NER pathway genes↑) 
Activation of NER pathway and identification of the PAH C3-naphthalene as main toxicity contributor (confirmed by RNAi) 

Passive dosing method, validation of results in D. renio and comparison to human blood biomarker 
MW, soil, GW (e.g., if similarly polluted) 

Kim et al. (2019c) 

Bile acid metabolites of synthetic and natural origin 
Apical (DART↑), behavioral 
(locomotion ∆), molecular (transcriptome ∆, KO-mutants ∆) 

Potential endocrine effects of a bacterial manure-borne bile acid metabolite could be mediated by putative androgen receptor NHR-69 
Model system with Pseudomonas and metabolisation in soil/sand microcosm 

Soil, SW (e.g., if affected by agricultural manure) 

Mendelski et al. (2019) 

Metal contaminated soil leachate 
Apical (lethality, life span↓), molecular (33 genes incl. cyp-35A2 ↑), metabolism (fatty acid content ↑) 

Stress response and impacted fat metabolism with chronic downstream effects on life span 
Metal and PCA to classify water soluble and bioavailable fraction 

Soil, GW Rai et al. (2019) 
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Table 2 (continued) 
Surface water upstream of a large river dam 

Apical (lifespan, growth, intestinal permeability ↑), behavior (locomotion 
↓), biochemical (ROS ↑), molecular (sod-2 ↑, sod-5 ↑, clk-1 ↑, mev-1 ↓) 

Involvement of sod-2/-5 in ROS associated (intestinal/behavioral) toxicity of a backwater sample (suggested by mutational analysis) 
Aqueous and particulate phase of samples induced comparable toxicity 

SW, (GW), DW, TSS Xiao et al. (2018) 

River sediments (aqueous and solvent extracts) 
Apical (survival ↓, growth ↓), behavior (locomotion, body bends ∆), molecular (cyp-34A9 ↑, gst-1 ↑, gpx-1 
↑, hsp-6 ↑, hsp-16.2 ↑, hsp-70 ↑, mlt-1 
↑, mlt-2 ↑, sod-1 ↑, sod-4 ↑) 

Toxic profiles for different samples Effect correlation to heavy metal and/or PAH content (thresholds and PCA analysis) 
Sediments, SW, DW, WW 

Tejeda-Benitez et al. (2016b, 2018) 
Soil samples near wetlands and farmlands  

Community analysis (∆), apical 
(mortality ↑, reproduction ↓), molecular (hsp-70 ↓, hsp-90 ↑) 

Multi-level disturbances at allocated to N- and P-contamination (from non-point sources such as nearby farms) 
Included multivariate statistics and 4 soil parameters 

Soils, GW Wang et al. (2015) 
Mining-affected SW Apical (lethality) and molecular (35 

genes ↑↓ incl. cyp-35A2 ↓) Deviating MoA for heavy metal. Reconstituted and native SW. Role of DOC, metal speciation or undetected pollutants 

No unpolluted reference site (or spiked SW) included. Heavy metal analysis 
SW, GW, (DW) Kumar et al. (2015) 

Dispersed crude oil (including  cleanup dispersant) 
Cellular (apoptosis ↑) and molecular 
(13 specific genes ↑↓) Cep-1 mediated germ cell apoptosis (e.g., suppressed apoptosis in cep-1 loss of function mutant) as crucial driver of the observed DART 

Expression patterns correlated to exposure levels 
MW, soil, GW (e.g., if similarly polluted) 

Polli et al. (2014) 

Mining affected sediment and SW samples  
Apical (growth ↓) and molecular (mlt-1 expression and different hypersensitive mutants)   

SW toxicity was attributed to osmotic stress, whereas sediment toxicity to metals/metalloids  
Includes chemical and limnological analysis SW, sediments Turner et al. (2013)  

Industrial WW  Apical (life span ↓, dauer formation, 
reproduction ↓), behavior (locomotion 
↓), biochemical (autofluorescence ↑), molecular (daf-2) 

Toxic effects of different metal combinations (partially independent of the insulin-like pathway) 
Heavy metals as main drivers of life span reduction suggested by the TIE approach 

WW, SW Wang et al. (2010, 2008 
Landfill impacted soil samples 

Apical (mortality, growth, reproduction) and molecular (stress-related gene expression ∆) 
Toxicity and connected stress protein induction (incl. cyp-35A2) of target compound DEHP not reflected in DEHP-contaminated soil samples  

Including reference site and quantification of DEHP concentrations 
Soil, GW Roh et al. (2007) 
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In perspective, the vast amount of information enclosed in these studies may be 
examined for their integration into recently shaping concepts such as ‘multilevel 

biomarker analysis in environmental toxicology and risk assessment’ (Choi 2008), 
‘adverse outcome pathways’ (Angrish et al. 2018, Leist et al. 2017, Kim et al. 2020), 
‘multi-stressor response profiles’ (Prasse et al. 2015), high-throughput toxicology 
frameworks (e.g., Schroeder et al. 2016), exposomics (Escher et al. 2017) and 
others (Brooks et al. 2020). Several of these concepts show overlapping features 
that aim at establishing or underpinning toxicological cause and effect relationships 
between chemical stressors (including environmental samples) and (adverse) 
physiological effects (such as approached in figure 15). 
In case of the AOP concept these relationships are looked for between ‘molecular 

initiating events’/‘key events’ and the ‘dynamic energy budget’ (DEB). Exhaustion of 
DEB might be followed by associated adverse events (e.g., Connon et al. 2012, 
Escher et al. 2017, Jager and Ashauer 2018). This approach mainly aims at utilizing 
the generated quantitative input on the individual level for predictive ecotoxicology 
on the population level (e.g., OECD 2018). The DEB model was tested as part of 
modelling approaches such as DEBtox and others. Up to present a number of AOPs 
have been elaborated for C. elegans (Alda Álvarez et al. 2006, Fueser et al. 2018, 
Jager et al. 2005, 2014, Jeong et al. 2018, Kim et al. 2020, Margerit et al. 2016, 
Swain et al. 2010, Wren et al. 2011).  

  
Figure 15.  Mechanistic scheme of a hypothetical DART pathway in C. elegans. Therein 
DART (such as occurring upon exposure to β-NF) manifests at the cellular/tissue level and 
propagates to the physiological level through characteristic toxicological events (large 
boxes). These can be methodically detected via different endpoints/approaches (green 
boxes) which beholds a decreasing ‘fastness of response’ and increasing ‘ecological 

relevance’ as indicated. 
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In general, AOPs further illustrate the complexity of toxicological pathways and 
(micro)pollutant interactions, whereby (through continuous research and 
optimisation, compare Lagadic et al. 2020) offering an integrative toolbox for an 
enhanced understanding and utilization such as in ERA (e.g., Ashauer and Jager 
2018, Brooks et al. 2020, Society for Advancement of AOPs 2018). Similar to the 
field of ecotoxicogenomics important challenges lie ahead regarding mechanistic 
studies and ecotoxicological concepts with C. elegans. Tackling these challenges 
will further catalyze the establishment of C. elegans as relevant and sensitive model 
organism in chemical and ERA such as referring to urban water cycles. Based on 
the literature research and experimental results gathered in this thesis (e.g., 1.4, 2.3 
and Abbas et al. 2018) its established and prospective usefulness seems mainly 
reflected in the following arenas: 
1) Molecular biomarker-based indication, classification and evaluation of 
anthropogenic/chemical stressors in complex environmental samples and their 
toxicological/functional characterisation including genome wide expression 
“fingerprints”. Particular focus is placed on major dysregulated physiological 
processes/pathways such as development and reproduction while respecting 
environmental conditions/factors (e.g., Allard et al. 2010, Kumar et al. 2015, table 
2). Conducting chemical analyses of water and wastewater samples should be 
adapted to (known and hypothetical) chemical stressors to C. elegans (Abbas et al. 
2018).  
2) Enhanced detection of DART and other apical/physiological endpoints with high 
environmental and human relevance. These evaluations should be optimised by 
involving mutant and transgenic C. elegans strains in combination with HTS to 
achieve increased statistical power, feasibility and sensitivity (e.g., Allard et al. 2013, 
Avila et al. 2011, Boyd et al. 2010, Hunt 2016, Lundby et al. 2016, Schroeder et al. 
2016, Turner et al. 2013, Xiong et al. 2017, Yu et al. 2020). Mechanistic linkages 
(compare Anderson and Wild 1994, Angrish et al. 2018, figure 15, table 2 and 
genome wide screens under 2.3.3) should also facilitate hazard assessment 
(compare AOP and other cited concepts/studies). Moreover, endpoints/methods 
(adapted from other fields of research) should continuously be adapted such as 
under points 2.1−2.5). 
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2.1) Molecular and cell biology such as DNA damage/repair detection via the xol-
1::GFP strain (Allard et al. 2013, Lenz et al. 2017, Parodi et al. 2015), the xpa-1 
deficient strain (Leung et al. 2010), the hus-1::GFP strain (Hofmann et al. 2002) or 
via PCR (e.g., Leung et al. 2010, Neher and Stürzenbaum 2006, Zuo et al. 2017). 
Furthermore, detection of cell cycle arrests (e.g., Cheng et al. 2014, Kumar et al. 
2010), mitochondrial integrity (e.g., Behl et al. 2016), epigenetic consequences 
(e.g., Camacho et al. 2018, Lundby et al. 2016, Weinhouse et al. 2018) or germ line 
apoptosis via a ced-1::GFP strain (e.g., Allard et al. 2013). In addition, 
immunostaining and other methods (e.g., Parodi et al. 2015, Chen et al. 2016, 2019) 
may complement the listed molecular/cellular endpoints. 
2.2) Neurotoxicology and behavioral biology (e.g., Aitlhadj and Stürzenbaum 2013, 
Avila et al. 2011, Bargmann 2006, Boyd et al. 2010, Cao et al. 2020b, Gerhardt et 
al. 2002, Jones and Candido 1999, Ju et al. 2014, Leung et al. 2008, Liu et al. 2019, 
Matsuura et al. 2013, Roh and Choi 2011, Tejeda-Benitez and Olivero-Verbel 
2016a, Tseng et al. 2013). 
2.3) Immunotoxicology. Whereby ‘microbial pathogens’ (Bruni et al. 2019, Darby 
2005, van der Hoeven et al. 2011), ‘bacteriological parameters’ (Clavijo et al. 2016, 
Stylianou et al. 2018) and ‘immunological markers’ (e.g., Lewis et al. 2013, Kumar 

et al. 2015, Merkx-Jacques et al. 2013, Reichert and Menzel 2005) could play a 
relevant role in (waste)water assessments. A recent example by Bruni et al. (2019) 
showed significant effects in C. elegans exposed to Micrococcus luteus and 
Acinetobacter iwoffii isolated from wastewater samples (both strains carrying 
antibiotic resistances). Further and/or initial activation/weakening of the immune 
defense could occur through (micro)pollutant co-exposure (compare Stylianou et al. 
2018 for C. elegans or Schlüter-Vorberg et al. 2017 for D. magna). In this context 
WWTP, such as using gravitational systems instead of micro-sieves or UV-based 
disinfection, may be investigated for potential residual emission of C. elegans 
pathogens (or parasites). Because of the absence of an adaptive immunity in C. 
elegans more research is also needed to correlate these results to other species 
beholding (more) complex immune systems.  
2.4) Biochemistry and metabolomics. Including endpoints/methods such as 
quantifying ATP levels (e.g., Jones et al. 2011, Lagido et al. 2008, 2009, McLaggan 
et al. 2012), dauer formation (e.g., Fielenbach and Antebi 2008, Lant and Storey 
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2010, Wang et al. 2010), intestinal autofluorescence (e.g., Pincus et al. 2016, Wang 
et al. 2008b), metabolic activity in connection with different metabolites (e.g., Kim et 
al. 2019b, Pradhan et al. 2018), oxygen consumption (e.g., Bodhicharla et al. 2014, 
Han et al. 2018, Schouest et al. 2009, Zuo et al. 2017), oxidative stress (e.g., Liu et 
al. 2013, Roh et al. 2018, Tseng et al. 2013, Wannous 2011, Xiao et al. 2018, 
Zhuang et al. 2014) and other biochemical/metabolic parameters. 
2.5) Evolutionary developmental biology (e.g., Dutilleul et al. 2014). 
3) Comparisons/Correlation of results assembled under point 1–2) to environmental 
conditions (such as given at multiple sampling sites) and other (nematode) species 
(Begasse et al. 2015, Boyd and Williams 2003, Haitzer et al. 1999, Höss et al. 2001, 
2017, Hägerbäumer et al 2015, Haegerbaeumer et al. 2018, Kim et al. 2020, Maltby 
et al. 2000, Queirós et al. 2019, Wilson and Khakouli-Duarte 2009) for obtaining a 
more comprehensive picture about ‘ecological realism and relevance’ (Escher et al. 
2017, Fischer et al. 2013, Jager and Ashauer 2018, Stamm et al. 2016) and for 
supporting weight-of-evidence frameworks (as far as applicable). 
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2.4 Integrated wastewater quality evaluation – case study of a pilot 
WWTP equipped with AWWT technologies 
Wastewater-borne (micro)pollutants largely contribute to the pollution of SWs and 
risks to aquatic ecosystems (1.2). Despite their large number current regulative 
monitoring focuses on a limited number of (micro)pollutants and physicochemical 
sum parameters such as TN, Ptotal, COD, BOD5, DOC and TSS (compare Abbas et 
al. 2018). The reduction of organic (micro)pollutants is assumed to behave 
proportionally to a decreasing COD and BOD5. This holds true for many 
micropollutants particularly biodegradable and/or TSS-adsorbing compounds. 
However, a substantial fraction remains unaffected by conventional-biological 
treatment and becomes emitted into receiving water bodies representing 
(unpredicted) ecological risks (Link et al. 2017, Loos et al. 2013, Malaj et al. 2014, 
Pal et al. 2010, Schwarzenbach et al. 2006, Stalter et al. 2013). AWWT technologies 
have important advantageous in further reducing these emissions (Bui et al. 2016, 
Prasse et al. 2015, Rizzo et al. 2019, Schwarzenbach et al. 2006, Völker et al. 2019). 
They are thus currently installed and evaluated at different scales such as within the 
TransRisk project.  
Ecotoxicological methods are essential for evaluating these technologies as the 
detection of contaminant removal rates by chemical methods alone would be 
unfeasible respecting their high number, generally low concentrations and 
potentially associated toxicities (e.g., Brack et al. 2017, Prasse et al. 2015, 
Reemtsma et al. 2016). In addition, challenges such as the generation of oxidative 
TPs during ozonation or UV radiation (1.2.2) necessitates bioassays to analyze the 
removal/generation of toxicity/hazardous compounds/TPs. This is particularly 
important, because the majority of TPs are presently unknown, difficult to detect 
(due to the lack of chemical standards / reference substances) and/or hard to predict 
(due to the complexity and variability of wastewater matrices). 
The TransRisk evaluation concept mainly focuses on the reduction of chemical, 
ecotoxicological and microbial indicators by different AWWT options (Ternes et al. 
2017, www.transrisk-projekt.de). The presented case study refers to a full-scale 
WWTP connected to a pilot scale ozonation and GAC/BF post-filtration systems 
(figure 16 and Abbas et al. 2018). During the presented case study (April−May 2014) 
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an average ozone dose of 1 g(O3,applied)/g(DOC) and HRT of ~18 min were applied. 
GAC (internal surface 1,200 m2/g, grain size 1−4.8 mm) and BFs (extended clay, 
grain size 1−5 mm) ran in a non-aerated and aerated mode (using ambient air). 
Further process and WWTP parameters are described in Abbas et al. (2018), Knopp 
et al. (2016) and Ternes et al. (2017). Effect-based assessments were conducted 
based on selected in vitro (endocrinicity and mutagenicity) and in vivo (reproductive 
toxicity) endpoints. According to the change of these detections the efficiency of the 
respective AWWT option was rated (relative to the conventionally treated WWTP 
effluent). The C. elegans in vivo bioassay (ISO10872) implemented in the present 
case study was selected from the bioassay battery applied in the TransRisk project.  

 
Figure 16. Wastewater collection basins at the pilot WWTP in Hessen, Germany installed 
during on site testing. Process flow from the WWTP influent (INF-4) to the effluent (EFF-4, 
activated sludge), ozonated effluent (EFF+O3) and GAC/BF post-treatments (O3+GAC, 
O3+GACa, O3+BF, O3+BFa) as indicated. Treatment degree was visually reflected by 
decreasing TSS content and turbidity (from left to right). Sedimented particles in the 
O3+GACa were small GAC particles transported via the supply tubes. Samples taken as 24 
h composites and prepared on site by SPE. Photographs taken by I. Schneider and A. 
Abbas. 
The latter furthermore included D. magna (OECD 2012), Lemna minor (OECD 
2006), the blackworm Lumbriculus variegatus (OECD 2007) and the mud snail 
Potamopyrgus antipodarum (OECD 2016). These test organisms were investigated 
in parallel studies by Schneider et al. (2020) and Schlüter-Vorberg et al. (2017) 
respectively. They proved to be robust sentinel species for characterizing 
wastewaters (Gartiser et al. 2010, Giebner et al. 2018, Magdeburg et al. 2012, 
Maltby et al. 2000, Kontana et al. 2009, Rizzo 2011, Stalter et al. 2010). 
Standardized test systems may however not indicate these properties throughout 
all wastewater investigations leading to variable bioassay results and compromised 
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sensitivities (Berger et al. 2016, Wigh et al. 2018, Völker et al. 2017, 2019). Thus 
the present aim was to examine an integration of the results obtained with 
C. elegans into the wastewater evaluation matrix and to deduct its usefulness to 
wastewater investigations (such as discussed under 2.3). Similar to P. antipodarum 
(endpoint: number of embryos), D. magna (endpoint: number of offspring) and 
L. variegatus (endpoint: total number of worms), brood size was selected as life-
cycle parameter of C. elegans and population-relevant endpoint (compare 2.3.1).  

 
Figure 17. Impacts of WWTP influent (INF-4), effluent (EFF-4), ozonated effluent (EFF+O3) 
and ozone post-filtrations (O3+GAC, O3+GACa, O3+BF, O3+BFa) on the reproduction (brood 
size) of C. elegans. Samples were taken in April 2014 and analyzed at 10x concentrations. 
Results pooled from two experiments (n = 60). Percent values above bars indicate the 
percent increase/decrease in brood size relative to the previous treatment stage (except for 
the EFF-4 which refers to the blank). Significant differences (*** p < 0.001, **** p < 0.0001) 
were tested by one-way ANOVA with Bonferroni’s multiple comparison test. NC = M9 
medium. PC = BAC (5 mg/L). SC = 0.2% DMSO in M9 medium. Blank = SPE blank prepared 
from analytically-pure groundwater. Further abbreviations/details given in text. 
In the C. elegans analysis seen in figure 17 (from April 2014) the WWTP influent 
(INF-4) led to a strong reproductive decline, while the brood size of C. elegans 
exposed to the WWTP effluent (EFF-4) returned to a level that was slightly higher 
than NC and blank. This result indicated an effective removal of reproductive 
toxicants during activated sludge treatment. Compared to the EFF-4, the brood size 
in the EFF+O3 (ozonated effluent) decreased by 12%. Although this decrease was 
statistically insignificant, it might have been caused by oxidative TPs generated 
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during ozonation such as corroborated with other aquatic species (da Costa et al. 
2014, Magdeburg et al. 2012, Stalter et al. 2010, Giebner et al. 2018). In the post-
filtration stages this reduction diminished (O3+GAC, O3+GACa) or higher brood sizes 
compared to the EFF-4 were detected (O3+BF, O3+BFa). The latter result was 
confirmed at a later sampling date (figure 4A in Abbas et al. 2018) as well as for the 
endpoint growth (figure 4B in Abbas et al. 2018). Several reasons were considered 
regarding the enhanced reproduction/growth in the GAC/BF stages. A plausible 
explanation would be that the quality of the treated wastewater was beneficial 
(rather than harmful) to C. elegans. However, due to the remaining DOC (compare 
'Online Resource 2' in Abbas et al. 2018) and residual endocrine activity after 
advanced treatment (compare figure 2 and 5 in Schneider et al. 2020) the presence 
of recalcitrant EDCs and/or bioactive natural compounds affecting the 
growth/reproduction of C. elegans (see Höss et al. 2001, Höss and Weltje 2007 or 
Vingskes and Spann 2018 for examples) may not be excluded a priori.  
The in vitro results incorporated in the present study were obtained from bioassays 
for (anti)estrogenic (YES and YAES), (anti)androgenic (YAS and YAAS) and 
mutagenic (Ames fluctuation test) potentials of the wastewater samples (collected 
during February−April 2014). Similar to the included in vivo test systems these 
assays/endpoints have been beneficially utilized in related wastewater assessments 
(Chen et al. 2017, Escher et al. 2009, 2018, Filby et al. 2010, Giebner et al. 2018, 
Magdeburg et al. 2012, Margot et al. 2013, Schindler-Wildhaber et al. 2015, Stalter 
et al. 2010, Triebskorn et al. 2017, Välitalo et al. 2017, Völker et al. 2017). Using 
these assays, the conventional biological effluent indicated characteristic 
activity/toxicity levels (see Abbas et al. 2019 for further references). Residual 
estrogenic activity has frequently been observed after activated sludge treatment. 
Estrogenic activity detected in the EFF-4 was effectively reduced by ozonation, 
while no further increase occurred in the GAC/BF stages (figure 5A in Schneider et 
al. 2020). Only minor anti-estrogenic activity was detected in the WWTP effluent. 
This activity seemed moderately increased by ozonation, similar to previous 
observations in the course of this thesis (Abbas et al. 2019). It was hypothesized 
that both phenomena might be the results of shifted ratios of agonistic and 
antagonistic activities (e.g., Ihara et al. 2014, Rao et al. 2014) and/or anti-estrogenic 
TPs (e.g., Itzel et al. 2020, Knoop et al. 2018). Albeit GAC filtration reduced the 
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antagonistic activity to the level of the EFF-4, it remained elevated in the BFs (figure 
5B in Schneider et al. 2020). Plausible causative agents remained to be elucidated.  
Table 3. Wastewater quality evaluation matrix based on the TransRisk project. In the 
present case five in vitro (YES, YAES, YAS, YAAS and Ames, compare Schneider et al. 
2020) and one in vivo (ISO10872, figure 17) bioassay were used to estimate the efficacies 
of the five described AWWT processes (sampled during February−April 2014). Efficacies 
were scored based on the [%]-change in biological activity/toxicity relative to the WWTP 
effluent (note that negative percent values equal to an increase). Scores were weighted 
according to the precluded environmental relevance of the respective endpoint (compare 
main text). All samples were analyzed at 10 fold concentration (SPE extracts) 

   Treatment stage 
   EFF+O3 O3+GAC O3+GACa O3+BF O3+BFa 

Bio
ass

ay 

YES       
 change [%]  91.6 90 89.1 90 89.5 

 score +2 +2 +2 +2 +2 
YAES      
 change [%]  -217 -6.53 -39.4 -317 -288 

 score -2 0 -1 -2 -2 YAS       
 change [%]  21.2 63 41.2 41.5 79.3 

 score +1 +1 +1 +1 +1 
YAAS      
 change [%]  81.2 91.3 84 84 73.2 

 score +2 +2 +2 +2 +1 
Ames (YG7108)      
 change [%]  -6350 -1000 -850 -3999 -3650 

 score -3 -3 -3 -3 -3 
C. elegans (brood size)     
 change [%]  12 -0.8 7.2 -12.3 -14.7 

 score 0 0 0 0 0 alternative score -3 0 0 (+3/-3) (+3/-3) 
          Final score 0 2 1 0 -1 Alternative final score -3 2 1 (3/-3) (2/-4)  

Androgenic and anti-androgenic activities were detected at relatively high levels in 
the WWTP effluent. Anti-androgenic activities also remained at moderate levels 
after O3 and in the post-filtration stages (compare Itzel et al. 2020), while androgenic 
activities were more effectively reduced (figure 5C and 5D in Schneider et al. 2020). 
Further experiments should thus be performed to confirm the occurrence of 
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recalcitrant (anti)androgenic activities in these wastewaters. Moreover, low 
mutagenicity levels in the WWTP effluent were significantly increased after 
ozonation. It might be speculated, if and how far this mutagenicity/genotoxicity might 
have been involved in the reproductive decline observed for this treatment group 
with C. elegans (figure 17). Regarding the post-filtrations systems, GAC filtration 
more effectively decreased the detected mutagenicity compared to BF (5.4−5.5 fold 
versus 2.4−2.7 fold respectively), but the residual toxicity was still significant. Due 
to the high human and environmental relevance of the endpoint mutagenicity, 
confirmed and reoccurring mutagenicity in WWTP discharges from conventional-
biological as well as advanced treatments should be further investigated. 
The described in vivo (figure 17) and in vitro (figure 5 in Schneider et al. 2020) 
results were taken as an input for the evaluation matrix computed in table 3. 
Depending on their environmental relevance differently weighted scores (TransRisk 
workshop in 2015) were ascribed according to the respective detection levels and 
their changes upon wastewater treatment. In vitro bioassays probing for agonistic 
(YES/YAS) and antagonistic (YAES/YAAS) endocrine activities were allocated with 
scores from -2 to +2 depending on their removal degree (20−80% = 1 and > 80% = 

2), increase (-20 to -100% = -1 and < -100% = -2) or stagnancy (-20 to 20% = 0) in 
activity during the respective wastewater treatment stage. For the Ames fluctuation 
test these scores ranged from -3 (< -20% change) to 3 (> 20% change), due to the 
generally higher risk associated with mutagenic compounds. Changes in the brood 
size of C. elegans were assigned the lowest/highest scores ranging from -6 (> 20% 
change) to 6 (< -20% change) as adverse effects at the whole organism level were 
ascribed the highest biological/ecological relevance. In addition, an ‘alternative 
score’ was examined for the latter endpoint (table 3). The respective weighting 
involved the scores -3 and 3 for changes in brood sizes from 10 to 20% and -20 
to -10% respectively. This rating was examined in the light of the discussed 
sensitivity of C. elegans (2.3) and for its implications on the evaluation matrix 
(discussed below). 
The overall rating (‘final score’, table 3) of the effectivities of the five AWWT options 
follows the order: O3+GAC > O3+GACa ~ O3+BF ~ EFF+O3 > O3+BFa. This rating 
indicated a slightly better performance of the GAC filtrations compared to the BFs. 
It also showed that aeration did not measurably improve the performance of these 
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two post filtration systems. The score of the aerated BF was lowest and lower than 
of ozonation alone. These results reflect in the analytical chemistry part of the 
TransRisk project (Abbas et al. 2018, Knopp et al. 2016, Ternes et al. 2017). 
Moreover, comparably high effectivities of activated carbon treatments (GAC, PAC 
or BAC) as post-filtration systems (but also as independent AWWT) have been 
documented in the literature (1.2.2). Together with sandfiltration, these technologies 
have been recommended post-treatments for ozonation (Magdeburg et al. 2014, 
Knopp et al. 2016, Prasse et al. 2015, Stalter et al. 2010, Reemtsma et al. 2016, 
1.2.2). 
In the performed case study it may be considered that the presented evaluation 
matrix allows for a best/worst theoretically-achievable ‘final score’ of 17/-17 
respectively (table 3). In this context all five treatment options achieved an 
intermediate positioning (-1 to 2) and in this case were to be rated ineffective. To be 
exact the latter derived from high (e.g., estrogenic and anti-androgenic activities) 
and moderate (e.g., androgenic activity and mutagenicity) removal rates as well as 
activities/toxicities that increased (e.g., anti-estrogenicity) or remained stagnant 
respecting the ascribed thresholds (C. elegans brood size). This result seems 
expectable due to different reasons: 
1) Most estrogenic compounds have been reported to be effectively broken down 

during ozonation (Abbas et al. 2019, Ma et al. 2005, Maletz et al. 2012, Reungoat 
et al. 2012). Ozonation was also the main driver of the high removal rates 
observed for all five AWWT options in the present evaluation. 

2) Although anti-estrogens (2.2) were reported to occur in wastewater, not much is 
known about their concentrations and removal. This means many might not be 
fully degraded/retained and enter surface waters through WWTPs.  This should 
also be regarded when testing (treated) wastewater for agonistic/antagonistic 
effects  (compare Abbas et al. 2019, Leusch et al. 2017, Rao et al. 2014). 

3) Residual androgenic compounds remained speculative as generally higher 
removal rates have been reported for activated sludge treatment as well as 
ozonation (Abbas et al. 2019, Rao et al. 2014, Stalter et al. 2011).  

4) High removal rates of anti-androgenic activities may however induce changes in 
agonistic/antagonistic interactions that could lead to higher detections of 
androgenic activities in the AWWT stages. 
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5) Elevated levels of mutagenicity are occasionally observed in connection with 
ozonation. Different studies suspected this toxicity to derive from generated or 
potentiated mutagenic/genotoxic TPs (e.g., Jia et al. 2015, table 4). Because of 
the increased environmental relevance repeated detections of mutagenicity 
generally call for further research such as on potential causative agents and 
further optimisation of AWWTs (and other measures, compare 3.). 

6) Impacts on the brood size of C. elegans ranged within the ±20% threshold for all 
five AWWT options (allocating scores of “0”). A hypothetical threshold of ±10% 
would lead to an ‘alternative final score’ of -3 (instead of 0) for ozonation, which 
may better reflect potential adverse effects. The rating of the treatment options 
O3+GAC and O3+GACa remains unchanged. The O3+BF and O3+BFa treatments 
would be rated as +3 or -3 depending on the exact nature of these effects: 
positive (wastewater quality higher than in the EFF/NC) or adverse (such as 
resulting from residual EDCs, compare above discussion of figure 17). 

The results of two in vivo on-site studies conducted with D. magna and 
P. antipodarum at the pilot WWTP (Schlüter-Vorberg et al. 2017, Schneider et al. 
2020) well relate to the results gathered with C. elegans. In these studies the 
‘number of embryos’ of P. antipodarum also slightly increased in the WWTP effluent 
compared to the NC. For both species a noticeable and in case of P. antipodarum 
significant reproductive decline was detected after ozonation (EFF+O3). This 
apparent reproductive toxicity was removed in the O3+GAC treatment supporting 
the evaluated effectivity of this AWWT option (table 3) and previous observations in 
related studies (table 4). The O3+BF treatment decreased this toxicity (to 
P. antipodarum) to slightly lesser extent, while the O3+GACa and O3+BFa treatments 
did not (figure 3 in Schneider et al. 2020). A similar picture was obtained based for 
the endpoint ‘number of offspring’ of D. magna. However, BF as well as aeration 
both led to higher offspring numbers than GAC and non-aerated treatments. 
Regarding the test species L. variegatus, also implemented in TransRisk, the 
WWTP effluent (EFF-4) adversely affected the reproduction of worms. In the 
ozonated effluent (EFF+O3) the number of worms was significantly elevated 
indicating a positive/detoxifying effect of ozonation, while both GAC filtrations 
performed similarly well and again better than the BFs.  
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Table 4. Ecotoxicological effects of corresponding WWTP effluents (EFF), ozonated 
effluents (EFF+O3) and three types of post-treatment: A) activated carbon (O3+AC), B) 
biological treatment (O3+B) and C) BAC as “hybrid” of A) and B) (O3+BAC) reported in the 
literature. Arrows “↓” = reduction, “↔” = stagnancy and “↑” = increase in 

bioactivity/toxicity/expression level compared to the previous treatment stage: in case of the 
EFF this is given by the WWTP influent or (as the INF often indicated cytotoxicity or mortality 
respectively) by the NC (indicated with superscript “c”). Red, yellow or green fields indicate 
high, moderate or low/no residual bioactivity, toxicity or modified expression level 
respectively. Results may refer to different test systems, exposure conditions (e.g., flow-
through systems, aqueous or extracted samples), process parameters (e.g., ozone doses 
and implementation scales) and other characteristics as described in the respective 
references. If a table cell is split into multiple cells this reflects results from different 
experiments/studies. “Repro” = reproduction. “Histo” = histopathology. “om” = O. mykiss. 
“dr” = D. rerio. “n.a.” = not applicable. “n.d.” = not determined.  

A Treatment stage 
 Endpoint/Species 

EFF EFF+O3  O3+AC Reference 

In v
itro

 

Estrogenicity ↓ ↑c ↓ ↔ ↔ ↓ Giebner et al. (2016), Dopp et al. (2021) Anti-estrogenicity ↓ ↓ ↑ ↑ ↓ 
Androgenicity ↓ ↔ ↔ 

Anti-androgenicity n.d. ↓ n.a. Stalter et al. (2011) 
Dioxin-like activity ↓ ↓ ↓ Maier et al. (2016) 

Mutagenicity, Genotoxicity ↓ n.d. ↓ ↑ ↔ ↓ Chen et al. (2017), Giebner et al. (2016) Photosynthesis inhibition ↓ ↓ ↔ 
Stapf et al. (2017),  Dopp et al. (2021) Cell growth inhibition ↓ ↓ ↔ 

AchE inhibition ↓ ↓ ↔ 
Cytotoxicity ↓ ↓c ↓ ↔ n.d. ↑ 

Cell morphology ↑c ↑ ↓ Jekel and Ruhl (2016) ROS ↑c ↔ ↓ 

In v
ivo

 

L. minor growth ↔c ↔ ↔ Schlüter-Vorberg et al. (2017) 
P. antipodarum repro ↓ ↔ ↔ Giebner et al. (2018) 
O. mykiss liver-histo ↓ n.d. ↓ ↓ Triebskorn (2017) 

Bio
ma

rker
 drVTG ↑c ↓ n.a. Sun et al. (2017) 

omVTG ↑c ↔c ↓ n.d. n.a. ↑ Magdeburg et al. (2014), Stalter et al. (2010), Triebskorn (2017) omCYP-1A1 ↑c n.d. ↓ Maier et al. (2016) 
ceCYP-35A3  ↑ ↑ n.d. Abbas et al. 2018 
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Table 4. (Continued) 

B Treatment stage 
 Endpoint/Species 

EFF EFF+O3  O3+B Reference 

In v
itro

 

Estrogenicity ↓ n.a. ↑c ↓ ↓↑ ↑ ↓ ↔ ↔ 
Itzel et al. (2020),  Dopp et al. (2021) Anti-estrogenicity ↓ ↔ ↑ 

Androgenicity ↓ ↔ ↔ 
Anti-androgenicity ↓ ↑ ↑ ↔ 

Mutagenicity, Genotoxicity n.d. ↓ ↓ Wu et al. (2014) 
Bioluminescence (V. fisheri) n.d. n.a. ↓ ↑ ↑ ↑ Li et al. (2015),  

Paździor et al. (2017) 
Cytotoxicity ↓c ↓c ↓ ↓ ↔ ↓ Dopp et al. (2021) 

C Treatment stage 
 Endpoint/Species 

EFF EFF+O3  O3+BAC Reference 

In v
itro

 Estrogenicity n.d. ↓ ↓ ↓ ↔ ↓ ↔ Reungoat et al. (2012) Bioluminescence (V. fisheri) ↓ ↓ ↓ ↓ ↓ ↓ 
Genotoxicity n.a. ↓ ↓ Reaume et al. (2014) 

 

In summary, for most of the detected toxicities the activated sludge treatment at the 
inestigateed WWTP constituted an effective treatment barrier. When the activated 
sludge treatment shows a (very) high performance the (full) capacity of tertiary and 
AWWT options may be difficult to estimate, since there might be only little residual 
toxicity to be removed/evaluated (Schlüter-Vorberg et al. 2017, Völker et al. 2017). 
In addition, it could be argued that an extended selection of robust and sensitive in 
vitro and in vivo bioassays may have revealed undetected effects, which should be 
integrated into future wastewater quality evaluations not to overlook significant 
biological risks (compare Berger et al. 2016, Escher et al. 2014 for DW, 
Schwarzenbach et al. 2006, Sonne et al. 2018, Stamm et al. 2016, Wigh et al. 2018). 
However, extensive on-site as well as laboratory-scale bioassay batteries may be 
unfeasible and costly to perform, thus further bioassay optimisation, prioritisation, 
complementation and case-specific application has been advised for providing high 
environmental relevance of the analyses (Berger et al. 2016, Bunzel et al. 2013, 
Brodin et al. 2014, Rizzo 2011, Stamm et al. 2016). 
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In general, residual toxicity in advanced treated wastewater (e.g., Bundschuh et al. 
2011a, 2011b, Reungoat et al. 2012, table 4) stresses the identification of respective 
causative agents, detection of  their MEC and and characterisation of their potential 
ecotoxicity. Chemical target analysis has often been of minor success in elucidating 
these effects and in computing realistic EQS that are to be transferred to regulation 
bodies. This inspires to further improve chemical analyses such as by detecting (a 
higher number of) suspected toxicants that are adapted to environmentally relevant 
endpoints (Escher et al. 2018, Maier et al. 2016, Sonne et al. 2018, Stamm et al. 
2016, Tang et al. 2014, Vasquez and Fatta-Kassinos 2013). In perspective, 
continued research should be addressed on: 
 Best available technologies (BATs, including most effective process 

combinations). 
 Optimal evaluation strategies, ideally involving performance reviews before-and-

after technical upgrades and in situ comparisons up-and-downstream of WWTPs 
(including uncontaminated and contaminated reference sites, Ashauer 2016, 
Brettschneider et al. 2019, Bundschuh et al. 2011a, 2011b, Henneberg et al. 
2014, Hicks et al. 2016, Maier et al. 2016, Triebskorn et al. 2017, Wilhelm et al. 
2017). 

 Farsighted risk management (acknowledging site specificity and LCA).  
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3. Conclusions and outlook 
Optimising sample preparation for in vitro bioassays (2.1 and Abbas et al. 
2019) 
 Sample preparation methods such as acidification, filtration and SPE 

significantly influenced the detected ecotoxicologically relevant in vitro 
endpoints. These findings hinted on according shifts in the chemical composition 
of the prepared (waste)water samples.  

 Acidified samples mostly showed higher or lower in vitro activities compared to 
neutral samples that could not be further explained. Sample filtration often led to 
losses in in vitro activities, but in most cases the investigated in vitro activity 
remained unaffected. However, in case of antagonistic activities (anti-estrogenic 
and anti-androgenic) several samples indicated increased activities after 
filtration, which might have resulted from altered ratios of agonistic/antagonistic 
compounds in the samples.  

 Ecotoxicological optimisation of SPE methods (up to present mainly performed 
for chemical analyses) proved to be a valuable approach for the effective 
recovery of biological activity/toxicity from different water and wastewater 
samples and thus the reduction of false negative results (e.g., undetected in 
aqueous samples). The commercial SPE column Telos C18/ENV thereby 
demonstrated higher effectivity than the Oasis HLB and the Supelco ENVI-
Carb+. Moreover, a sample extraction pH of 7 was favored over a pH of 2.5 
(short-term acidification) as corroborated by multivariate statistics using the 
Pareto algorithm.  

In vitro bioassays as environmental monitoring tools (2.2) 
 MoA-based in vitro bioassays such as integrated and investigated in the long-

term environmental monitoring campaign of the water protection model region in 
Southwest Germany demonstrated to be beneficial tools for the detection and 
prioritisation of cytotoxicity, genotoxicity, mutagenicity and different endocrine 
activities in aqueous and extracted (waste)water samples.  

 Several endocrine activities were recurrently detected in hospital/raw and to 
lesser extend in biologically-treated wastewater. The monitoring indicated their 
effective removal during the activated sludge treatments at the investigated 
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WWTPs. Surface water and groundwater samples (used for the production of 
drinking water) were also found not to exhibit any of the analyzed biological 
activities/toxicity at significant levels, except for the anti-estrogenicity at one 
sampling site (compare below). 

 Significant anti-estrogenic activity was frequently detected in one out of three 
groundwater hotspots. These hotspots were previously characterized as part of 
the long-term chemical monitoring of the model region. Potential anti-estrogenic 
causative agents, however, remained unknown. Importantly, only one 
groundwater intake, but none of the other intakes/wells, nor a drinking water 
supply pipe, showed any significant anti-estrogenicity. This potential hotspot 
should thus undergo extended chemical and toxicological monitoring. 

 Regarding the high anti-estrogenic/-androgenic activity detected in hospital 
wastewater, several known compounds came into question. Main suspects were 
pharmaceutical used in anti-cancer therapies. As the sampled hospital connects 
to one of the investigated WWTPs it would be interesting to clarify, if the reduced 
activity detected in the WWTP influent resulted from the dilution and/or 
degradation/adsorption of these compounds in the sewer system and at which 
concentration they are contained in the WWTP effluent. 

Adapted C. elegans bioassay and usefulness for the ecotoxicological 
characterization of water and wastewater samples (2.3 and Abbas et al. 2018) 
 The sensitivity and ecological relevance of C. elegans was exploited for 

examining the reference PAH β-NF and different (waste)water samples. β-NF 
exhibited high DART with an EC50 of 114 µg/L (brood size, 96 h). One 
biologically-treated WWTP effluent indicated residual high levels of reproductive 
toxicity. These investigations were extended for the AWWTs ozonation and 
GAC/BF-post-filtration, whereby no reproductive toxicity was detected (including 
the respective WWTP effluent). 

 Similar to our filtration results in 2.1 and Abbas et al. 2019 the result obtained 
with C. elegans and unspiked versus β-NF-spiked (waste)water samples 
indicated a role for TSS (> 1 µm) in the toxicity of this PAH (predicted log Kow of 
4.7) as well as its putative cumulative effects with other sample constituents. 

 The additional developmental endpoint ‘larval length’ indicated significantly 

promoted growth after exposure to three extracted WWTP effluents. Although 
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plausible causative agents of this effect remained speculative (e.g., if natural or 
anthropogenic chemicals), it demonstrated the importance of integrating multiple 
endpoints into wastewater related assessments (compare below). 

 A molecular biomarker of exposure was integrated into the C. elegans bioassay 
by the transgenic cyp-35A3::GFP strain. This CYP subfamily is induced by 
various (micro)pollutants such as PAH, PCBs and different pesticides and 
pharmaceuticals. The present experiments detected a developmental-stage-, 
tissue- and concentration-dependent induction of cyp-35A3::GFP by β-NF. High 
expression levels in adult hermaphrodites were reached after subacute 
exposures (e.g., EC50 of 71.5 µg/L after 8 h). Furthermore, cyp-35A3::GFP was 
induced by a conventional-biological and to higher extend by the corresponding 
ozonated WWTP effluent. It was hypothesized that this could have been caused 
by oxidative TPs or potentiation of cyp-35A3 inducing compounds. However, the 
removal of this effect by the GAC/BF-post-filtration-systems remained to be 
clarified. 

 An accompanying chemical analysis quantified several known effectors of the 
reproduction/growth of C. elegans. The conventional-biological and AWWT 
stages at the pilot WWTP effectively removed the majority of these known 
effectors as well as most substances included into the target chemical analysis 
(in most cases below LOQs). Their overall reduction however did not eliminate 
the reproductive toxicity in one WWTP effluent sample, nor the growth enhancing 
effect detected in the GAC/BF-post-filtration systems. This and other effects in 
treated wastewater generally raise the question on the chemical identity of 
remaining causative agents and calls for a tighter linkage of chemical and 
ecotoxicological analysis.  

 Based on a literature survey, ecotoxicogenomic and mechanistic studies 
performed with C. elegans demonstrate a high potential in characterizing 
multiple adverse impacts of anthropogenic (micro)pollutants and contaminated 
environmental samples at different levels of biological organization. Several 
studies thereby disclosed and describe correlations of molecular/cellular 
endpoints (e.g., DNA damage or apoptosis) and effects on the physiological level 
(e.g., DART or survival). The outcome of these studies may thus be beneficially 
used as input into broader conceptual frameworks such as AOPs and ERA 
(including high-throughput approaches). In this context it furthermore seems 
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promising to assess less frequently examined endpoints (e.g., neurotoxicity or 
metabolic toxicity) that might affect population/community relevant endpoints 
(e.g., by exhausting ATP/energy resources or by inducing starvation responses). 

Integrated wastewater quality evaluation and perspectives on multifocal 
reduction of wastewater-borne emissions (2.4) 
 Bioassays have been beneficially implemented for evaluating the effectivity of 

conventional-biological and advanced WWTP processes. The present 
innovative evaluation concept followed an integrative approach involving 
chemical, (eco-)toxicological and microbial assessments for far-sighted and 
environmentally-relevant risk management.  

 In the present effect-based evaluation, pilot scale ozonation combined with (non-
aerated) GAC post-filtration (O3+GAC) proved to be the most effective treatment 
option out of five AWWT processes (namely ozonation, ozonation plus non-
aerated or aerated GAC- or BF-post-filtration). This result was obtained using 
five in vitro and one in vivo test system analysing different MoA-based and 
environmentally relevant endpoints respectively. Despite the high removal 
effectivity of the O3+GAC process towards most effects, mutagenicity and anti-
estrogenic activity could not be completely eliminated calling for further 
investigation. 

 The present bioassay battery demonstrated to be useful in evaluating AWWTs. 
In future studies further endpoints and “non-standard” bioassays should be 
examined for detecting additional (potentially neglected) effects. As “gold 

standard” long-term environmental monitoring of key indicator taxa in receiving 
water bodies before and after WWTP upgrades should be performed (fulfilling 
both principles ‘ecological relevance’ and ‘environmental context’). 

 Other conventional, tertiary and advanced wastewater treatment processes as 
well as non-technical mitigation measures have been researched and evaluated 
as valuable additions and/or alternative solutions for further reducing WWTP 
emissions. By interdisciplinary and participatory approaches involving relevant 
stakeholders (e.g., municipalities, federal agencies, affiliated industries, 
educators and the general public) discussion and planning of sustainable 
(waste)water management becomes more realistic and compliant with 
regulations (e.g., the WFD or Urban Waste Water Directive). 
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Therefore the following outlook highlights a few important management paradigms:  
 Optimising conventional biological treatment by refining process parameters 

(e.g., HRTs or sludge ages), tertiary treatments (e.g., mechanical/biological post-
filtrations, compare Triebskorn 2017, Völker et al. 2016, 2019) or further 
improvement of rain/mixed water retention basins.  

 Closing smaller/inefficient WWTPs and centralization within larger WWTPs that 
offer better treatment of (micro)pollutants, toxicity and relevant parameters. 
Extending the connectivity of remote areas to sewer systems/WWTPs. Sewer 
systems should be increasingly screened for leakages and combined overflow 
systems installed where beneficial (Musolff et al. 2010, Phillips et al. 2012). 

 Considering cost-benefit analyses and life cycle assessment (LCA) of WWTPs 
(e.g., Corominas et al. 2013, Papa et al. 2013, Pedrazzani et al. 2018) for 
creating a broader knowledge and decision base regarding investment and 
maintenance costs, energy and resource demands, infrastructural requirements, 
greenhouse gas emissions, ecological footprints and other important 
sustainability aspects. 

 Source control measures such as at households (e.g., through more “eco-
friendly” products and controlled discharge of wastes including expired 
pharmaceuticals), industries/public institutions (e.g., increased on-site 
pretreatment of hospital/industrial wastewater, Lienert et al. 2011) and 
agricultural land (e.g., buffer zones against nutrient-/pesticide-rich runoffs, 
Reichenberger et al. 2007, or transitions towards more ‘ecological agriculture’)  

 In addition to WWTP-related measures for improving surface water quality, the 
overall drivers and factors of ecosystemic risks (such as hydromorphological and 
habitat degradation, invasive species and diffuse pollution sources) ought to be 
evaluated and tackled for sustainable water and wastewater management. This 
was one of the outcomes of a federal study (BMU 2013) that assessed multiple 
measures towards their impact on reaching the “good ecological status” of 

European surface waters. Thereby WWTP upgrades were predicted to 
contribute to 10%, educational programs (compare above mentioned 
participatory approach) to 19%, pollution prevention strategies (including source 
control) to 25% and river restoration campaigns to 46% to achieving this status 
(once performed in a site-specific and context-dependent manner).  
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    Figure S4: Receptor activation (YES, YAS) and inhibition (YAES, YAAS) as concentration-response relationships of six (YAES, YAAS) and seven (YES, YAS) experiments at the human estrogen and 
androgen receptor (YES: 17β-estradiol; YAS: testosterone; YAAS: flutamide; YAES: 4-hydroxytamoxifen) 

   Figure S5: Concentration response 
relation-ships of 17-ethinylestradiol in four YES experiments 



cxcii 

 
 



cxciii 

 

 
 



cxciv 

 

 



cxcv 

 

 



cxcvi 

 

 



cxcvii 

 
 



cxcviii 

 



cxcix 

 
 



cc 

 



cci 

 
 
 



ccii 

  

  



cciii 

 

 

 



cciv 

  

 

 



ccv 

 

 
 

 

 
 
 
 
 
  



ccvi 

A.4 Zusammenfassung (German summary) 
Sauberes Wasser ist eine grundlegende Voraussetzung unseres Lebens. 
Abwasser-bürtige Emissionen in Form von anthropogenen Mikroschadstoffen 
gefährden die Resource Wasser und die Integrität des Ökosystems auf 
verschiedenen Skalen (z.B. Link et al. 2017, Malaj et al. 2014, Pal et al. 2010, Stalter 
et al. 2013). Bestimmte Kontaminanten und deren Transformationsprodukte 
verteilen sich weitläufig im Wasserkreislauf und werden kontinuierlich emittiert. 
Bestimmte Stoffe gelangen so in geringen Konzentrationen bereits ins Trinkwasser 
(Benotti et al. 2009). Die ökotoxikologische Untersuchung und das 
Umweltmonitoring von (Mikro-)Schadstoffen ist somit eine essentielle Aufgabe, die 
in diversen Wasser- und Abwasserdirektiven verankert wurde (z.B. EC 1991, 1998, 
2008, US EPA 1972, 2002). Unter anderem widmen sich dieser Aufgabe 
interdisziplinäre Forschungsprojekte und soziopolitische Plattformen zur Reduktion 
von Mikroschadstoffen und für ein nachhaltiges Abwassermanagement (z.B. Rizzo 
2019). Kläranlagen sind Haupteinleiter für aquatische (Mikro-)Schadstoffe (EEA 
2012). In den letzten Jahrzehnten wurden Kläranlagen optimiert und an vielen 
Standorten um Prozesse wie die Tertiärbehandlung erweitert (Prasse et al. 2015, 
Reemtsma et al. 2016). Nichtsdestoweniger führt die konventionelle biologische 
Abwasserbehandlung nur bei einem Bruchteil der bekannten und bedenklichen 
Substanzen zu einer vollständigen Mineralisierung. Ein Grund hierfür kann eine 
geringe biologische Abbaubarkeit bestimmter synthetischer Verbindungen sein oder 
auch eine mangelnde Adsorption an Klärschlammpartikel.  
Die wachsende Weltbevölkerung und Verstädterung erhöht die Gesamtmengen des 
zu behandelnden Abwassers. Ferner werden dank verbesserter Analytik 
fortwährend neue Mikroschadstoffe nachgewiesen (z.B. Rockström et al. 2009, 
Stamm et al. 2016, Philip et al. 2011). Gegenwärtig wird daher das Potenzial 
verschiedener Technologien der weiterführenden Abwasserbehandlung untersucht, 
um eine zusätzliche Reduktion von Mikroschadstoffen und anderer Abwasser-
bürtiger Emissionenen zu erreichen (Tchobanoglous and Burton 1991). Die 
vorliegende Arbeit war in das Forschungsprojekt TransRisk eingebettet, welches 
sich mit der "Charakterisierung, Kommunikation und Minimierung von Risiken durch 
neuartige Schadstoffe und Krankheitserreger im Wasserkreislauf" beschäftigt 
(www.transrisk-projekt.de). Die nachfolgenden ökotoxikologischen 
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Herausforderungen, verbunden mit anthropogenen Mikroschadstoffen und den 
weiterführenden Abwasserbehandlungstechnologien Ozonung und Ozonung 
gefolgt von körniger Aktivkohle- und Bio-Filtration (Pilot-Maßstab), werden darin 
detailiert untersucht. 
Die Vorbereitung von (Ab-)Wasserproben ist von zentraler Bedeutung für die 
akkurate und repräsentative ökotoxikologische Bewertung. In der vorliegenden 
Arbeit wurde untersucht, welche Auswirkung routinemäßig angewandte 
Vorbereitungstechniken - Ansäuerung (pH 2), Filtration (1 μm Porengröße) und 

Festphasenextraktion (SPE) - auf den Nachweis umweltrelevanter endokriner 
Aktivitäten, Mutagenität, Genotoxizität und Zytotoxizität haben. In früheren Studien 
zeigte sich, dass diese Methoden in der Lage sind, die Konzentration bioaktiver 
Verbindungen zu verändern und/oder den Nachweis der Toxizität in (Ab-
)Wasserproben signifikant zu beeinflussen (z.B. Baker und Kasprzyk-Hordern 2011, 
Maruya et al. 2016, Neale et al. 2018, Vanderford et al. 2011). Die vorliegende 
Untersuchung konzentrierte sich auf unbehandeltes, biologisch-behandeltes, 
ozoniertes und Krankenhaus-Abwasser sowie Grundwasser.  
Die Probenansäuerung, die im Allgemeinen zur Inaktivierung von Mikroorganismen 
angewendet wird, schien zur Stabilisierung der untersuchten In-vitro-Effekte 
ungeeignet. Letztere waren nach 24 Stunden Lagerung in den meisten 
angesäuerten Proben im Vergleich zu ihren neutralen Äquivalenten signifikant 
verändert. Es wurde kein Zusammenhang mit den Aktivitäts-/Toxizitäts-Leveln oder 
den Sensitivitäten der Bioassays beobachtet. Effekte wie die säurekatalysierte 
Hydrolyse (Prasse et al. 2015) oder ein mikrobieller Abbau in neutralen Proben 
(Giebner et al. 2018) konnten anhand der vorliegenden Daten jedoch nicht 
ausgeschlossen werden. In Folgeexperimenten soll nun geklärt werden, welcher 
Probentyp (angesäuert/neutral) einer Toxizität im Umweltkontext am Nächsten 
kommt.  
Die Probenfiltration ist für etablierte Vorteile, wie die Reduktion von Schwebstoffen, 
Mikroorganismen oder des Verstopfens von SPE-Kartuschen, sowie die 
Stabilisierung bestimmter bioaktiver Verbindungen bekannt (Baker und Kasprzyk-
Hordern 2011, Gehrmann et al. 2016, Janex-Habibi et al. 2009). In der vorliegenden 
Arbeit wurden daher mögliche Auswirkungen der Filtration (Glasfaserfilter mit einer 
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Porengröße von 1 μm) verglichen, wobei die meisten In-vitro-Effekte unverändert 
blieben. Mehrfach zeigten gefilterte Proben jedoch auch signifikante 
Aktivitätsverluste an, welche Schwebstoff-gebundenen Verbindungen 
zugeschrieben wurden. Ferner wurden in bestimmten Fällen höhere endokrine 
Aktivitäten im Filtrat nachgewiesen, was ein verschobenes Verhältnis von Agonisten 
und Antagonisten als Ursache haben könnte (Ihara et al. 2014, Rao et al. 2014).  
Derzeitige SPE-Methoden sind vor allem für die chemische Analytik ausgelegt (z.B. 
Escher et al. 2005, Prasse et al. 2015), während der Anreicherung der Toxizität weit 
weniger Aufmerksamkeit gewidmet wurde (Bistan et al. 2012, Stalter et al. 2016, 
Wagner und Oehlmann 2010, Neale et al. 2018). Dies ist jedoch entscheidend für 
die akkurate und repräsentative Bewertung und das Monitoring von 
Mikroschadstoffen. Da letztere meist in niedrigen Umweltkonzentrationen auftreten, 
ist eine Probenanreicherung unter anderem erforderlich, um Bestimmungsgrenzen 
von Bioassays zu überwinden. Darüber hinaus führen SPE-Methoden zu einem 
Ausschluss von Verunreinigungen aus Umweltmatrizen, was das Risiko 
experimenteller Artefakte weiter reduziert (Macova et al. 2010, Neale et al. 2015, 
Prasse et al. 2015). Die vorliegende Optimierungsstudie untersuchte drei SPE-
Sorbentien (Oasis HLB, Supelco ENVI-Carb+, Telos C18/ENV) und zwei pH-Werte 
zur Probenextraktion (pH 7 und 2,5). Für die meisten Endpunkte lieferte der Telos 
C18/ENV Sorbent, gefolgt vom Oasis HLB Sorbent, die besten Ergebnisse. Einige 
Ausnahmen wurden ebenfalls deutlich, wie der Supelco ENVI-Carb+ Sorbent zum 
Extrahieren von ozoniertem Abwasser (pH 7). Die höchste Zytotoxizität, welche in 
der Regel die Gesamt-Schadstoffbelastung einer Probe widerspiegelt, wurde bei 
einem Proben-pH von 7 extrahiert. Allerdings erleichterte ein pH von 2,5 den 
Nachweis der meisten endokrinen Aktivitäten, wodurch eine Probenverdünnung 
überflüssig wird. Die optimierte SPE-Methode wurde anschließend in einem 
Bewertungskonzept zur Abwasserqualität eingesetzt (Ternes et al. 2017). 
Das Umweltmonitoring von Mikroschadstoffen und möglicher Effekte sind eine 
wesentliche ökotoxikologische Aufgabe. In-vitro-Bioassays sind wichtige 
Werkzeuge in diesem Prozess, da sie In-vivo-Methoden und Untersuchungen im 
Freiland ergänzen können. Im Rahmen dieser Arbeit wurde ein langfristiges In-vitro-
Monitoring (2012−2015) in einer Wasserschutzregion in Südwestdeutschland 
durchgeführt. Über 30 Probenahmestellen, welche verschiedene Zonen des 
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Wasserkreislaufs widerspiegeln, wurden untersucht. Signifikante und wiederholt 
auftretende Effekte erlaubten die Klassifizierung und Priorisierung potenzieller 
Hotspots sowie der Leistung von Kläranlagen. Während in Oberflächengewässern 
und Grundwasser keine bis minimale Kontaminationen festgestellt wurden, wurden 
starke Effekte in Krankenhaus-Abwässern und im Rohabwasser gefunden 
(hauptsächlich östrogene und antiöstrogene, sowie in geringerem Maße androgene 
Aktivitäten). Die meisten Kläranlagen, darunter mehrere in Wasserschutzzonen, 
reduzierten diese Effekte auf ein unbedenkliches Niveau (z.B. Langenau, 
Halzhausen, Steinhäule). Die Reduktion dieser Aktivitäten während des 
Belebtschlammverfahrens wurde in anderen Studien beobachtet (z.B. Allinson et al. 
2011, EC 2012, Sawada et al. 2012). Dies gilt ebenso für die weniger effektiv 
entfernte antiöstrogene Aktivität (Ihara et al. 2014, Rao et al. 2014).  
Einer der Grundwasserhotspots wies wiederholt hohe antiöstrogene Aktivitäten auf. 
Aufgrund der Trinkwasser-Relevanz dieses Umweltkompartiments wurde ein 
zusätzliches Monitoring an verschiedenen Probenahmestellen in unmittelbarer 
Nähe des Hotspots durchgeführt. Diese Standorte umfassten mehrere 
Grundwasser-entnahmestellen, Brunnen und eine Probe eines 
Trinkwasserauslasses aus einem nahegelegenen Wasserwerk. Darüber hinaus 
wurden die Ergebnisse früherer und einer parallelen chemischen Untersuchung in 
der Modellregion zum Hotspot berücksichtigt (Anna Bollmann unveröffentlichte 
Ergebnisse, Seitz und Winzenbacher 2017). Das erweiterte Monitoring zeigte, dass 
sich alle Standorte hinsichtlich der untersuchten In-vitro-Aktivitäten und Toxizitäten 
unauffällig verhielten. Dieses Ergebnis stimmte mit dem der chemischen Analytik 
überein. Das fortgesetzte Monitoring der Antiöstrogenität im Grundwasserhotspot 
und die Untersuchung möglicher Ursachen (z.B. natürliche oder anthropogene 
Chemikalien) sollte aufgrund der erhöhten Relevanz dieses Umweltkompartiments 
in Betracht gezogen werden. 
Es könnte ebenso von Vorteil sein, Folgeuntersuchungen zur Antiöstrogenität und 
Antiandrogenität im Krankenhausabwasser durchzuführen, denn das beprobte 
Krankenhaus (www.uniklinik-ulm.de) könnte unter anderem antiöstrogene (Hu et al. 
1993, Knoop et al. 2018, Li et al. 2008, Sohoni und Sumpter 1998) und 
antiandrogene (Gordon et al. 2017, Grover et al. 2011, Kusk et al. 2011, Sohoni und 
Sumpter 1998) Chemotherapeutika und andere Arzneimittel in eine 
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angeschlossene Kläranlage emittieren. Allerdings wurden in dieser Kläranlage 
keine erhöhte Antiöstrogenität oder Antiandrogenität detektiert. 
Die erhöhte Genotoxizität und Mutagenität des Krankenhausabwassers rät ferner 
zu einer ereignisorientierten Beprobung im Hinblick auf einen überdurchschnittlich 
hohen Eintrag während Starkregenereignissen. Für derartige Umweltmonitorings 
und Folgeuntersuchungen bietet die verwendete Batterie an In-vitro-Bioassays eine 
geeignete Methodik, die unter anderem mit der Effekt-dirigierten-Analyse kombiniert 
werden kann (z. B. Burgess et al. 2013, Brack et al. 2017). 
In-vivo-Bioassays werden im Allgemeinen für ökotoxikologische Fragestellungen 
verwendet, welche den gesamten Organismus betreffen. Im vorliegenden Fall 
wurde der biologische Modellorganismus Caenorhabditis elegans (C. elegans, z.B. 
Chalfie 2009, Hirschmann 1952, Maupas 1899, Weinhouse et al. 2018) als 
vielversprechendes Werkzeug zur Charakterisierung der Qualität von Wasser- und 
Abwasserproben untersucht. Die umwelt- und human-relevanten Endpunkte 
Reproduktion und Wachstum (Allard et al. 2013, Harlow et al. 2016, Williams et al. 
2017) wurden dabei mit einem Biomarkeransatz kombiniert (rekombinanter cyp-
35A3::GFP-Stamm, Menzel et al. 2007), um mögliche Entwicklungs- und 
Reproduktionstoxizität (DART) bzw. Cytochrom P450 (Isoform 35A3) induzierenden 
Verbindungen in diesen Proben zu detektieren. Zu diesem Zweck wurde ein 
etablierter Nematoden-Bioassay, das International Standard Organization (ISO)-
Protokoll 10872 (ISO 1996), adaptiert. Neben der standardisierten und 
regelmäßigen Anwendung dieses Assays in der Umweltforschung (z.B. Höss et al. 
2012), zeigten verschiedene Mikroverunreinigungen DART in C. elegans bei 
Konzentrationen im unteren Mikrogramm pro Liter Bereich (z.B. Haegerbäumer et 
al. 2017, Li et 2016, Zhuang et al. 2014). Diese Studien verdeutlichen die 
Durchführbarkeit und Sensitivität von C. elegans als ökotoxikologisches 
Testsystem. 
Die vorliegende Arbeit befasst sich mit dem polyzyklischen aromatischen 
Kohlenwasserstoff β-Naphthoflavon (β-NF), welches als Referenzsubstanz 
eingesetzt wurde (Leung et al. 2010, Menzel et al. 2001, 2007) sowie mit 
Abwasserproben aus konventionell-biologischer und weiterführender 
Abwasserbehandlung (vergleiche zuvor genannte TransRisk-Technologien). Für 
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das Abwasser-bürtige β-NF (Abdel-Shafy und Mansour 2016, Forsgren 2015) 
wurde mit dem weiterentwickelten Bioassay eine Median-Effektkonzentration (EC50) 
für die Brutgröße (96 h) von 114 μg/L berechnet. Mit Hilfe dieses Bioassays wurden 
anschliessend Experimente mit wässrigen und extrahierten β-NF-dotierten 
Oberflächenwasser- und Abwasserproben durchgeführt. Diese Experimente 
bestätigten die Durchführbarkeit und Sensitivität des angepassten Testsystems. Sie 
wiesen ferner auf mögliche kumulative Effekte mit anderen Probenbestandteilen 
und einen Einfluss von Schwebstoffen (> 1 µm) auf die Reproduktionstoxizität von 
β-NF hin (aufgrund einer möglichen Partikelassoziation). Signifikante DART wurde 
zudem für einen biologisch-behandelten Kläranlagenablauf beobachtet (4−20x 
SPE-Extrakte, 96 h). Für die Ozonung und Ozonung in Kombination mit GAC- oder 
Biofiltration wurde keine Reproduktionstoxizität nachgewiesen (einschließlich des 
entsprechenden Kläranlagenablaufs). Drei extrahierte Kläranlagenabläufe sowie 
drei aus vier GAC- bzw. biologischen Nachfiltrationssysteme zeigten darüber hinaus 
einen signifikanten Wachstumseffekt auf C. elegans-Larven (96 h). Mögliche 
natürliche (vergleiche Höss et al. 2001) bzw. anthropogene (vergleiche Höss und 
Weltje 2007) Verursacher dieses Effekts wurden nicht untersucht. 
Mit dem Biomarker-Ansatz konnten verschiedene ökotoxikologisch-relevante 
Beobachtungen gemacht werden. cyp-35A3::GFP wurde durch β-NF in 
Abhängigkeit der Expositionskonzentration und -Dauer (0,01−5 mg β-NF / L, 1−48 
h) sowie des Gewebes und des Entwicklungsstadiums (intestinale Expression 
unmittelbar nach dem Schlüpfen der Eier) induziert. Die höchsten Expressionsraten 
wurden nach 8 h Exposition gegenüber 1−5 mg β-NF / L (21,3−24 fach über der 
Kontrolle) mit einem EC50-Wert von 71,5 μg/L beobachtet. Der zuvor vermutete 

Einfluss von Schwebstoffen auf die Bioverfügbarkeit von β-NF im dotierten 
Abwasser konnte in diesen Experimenten bestätigt werden. Zusätzlich wurde cyp-
35A3::GFP signifikant durch einen extrahierten Kläranlagenablauf und 
dazugehörigen ozonisierten Kläranlagenablauf induziert, während letzterer den 
Biomarker in höherem Maße induzierte. Es wurde daher angenommen, dass beide 
Proben cyp-35A3-induzierende Verbindungen enthielten, welche nach deren 
Reaktion mit Ozon potenziert und/oder bioverfügbarer wurden. Nachfolgende 
Untersuchungen sollen klären, ob dieser Effekt durch die GAC- und 
Biofiltrationssysteme eliminiert wird.  
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Eine parallele chemische Analyse, die mehrere bekannte Effektoren auf die 
Reproduktion und das Wachstum von C. elegans integrierte (z.B. Allard et al. 2013, 
Boyd et al. 2010, Liu et al. 2013), zeigte keine Korrelation zu den detektierten 
Effekten. Dieser Umstand legt nahe, zukünftige begleitende chemische Analysen 
hinsichtlich bekannter und zu erwartender Effektoren anzupassen. Diese 
Anpassung wird der Frage nach der Identität möglicher Verursacher der Effekte 
dienlich sein. Die erzielten Ergebnisse bestätigten frühere Untersuchungen zur 
Eignung und Sensitivität von C. elegans für die Untersuchung von (Mikro-
)Schadstoffen und Umweltproben (z.B. Hitchcock et al. 1997, 1998, McLaggan et 
al. 2012, Roh et al. 2007, Wang et al. 2010, 2015, Xiao et al. 2018, Xiong et al. 
2017, Yu et al. 2020). Frühere Untersuchungen an C. elegans, welche meist 
mehrere Endpunkte auf verschiedenen Ebenen der biologischen Organisation 
miteinbezogen, waren zudem Teil von Hochdurchsatz-Screenings (z.B. Boyd et al. 
2010, Lundby et al. 2016), Umweltrisikobewertungen höherer Ebenen (z.B. 
Hägerbäumer et al. 2015, Haegerbäumer et al. 2017, Wilson und Khakouli-Duarte 
2009), sowie der Konzeption von Adverse Outcome Pathways (Jager und Ashauer 
2018). Perspektivisch werden diese Unterfangen zu einem besseren Verständnis 
der Toxizitätsmechanismen und Umweltrelevanz anthropogener (Mikro-
)Schadstoffe beitragen. 
Abschliesend wurde in dieser Arbeit eine Bewertung der Abwasserqualität im 
Rahmen eines in TransRisk entwickelten integrierten Bewertungskonzepts 
durchgeführt (Ternes et al. 2017). Dieses Konzept wurde in einer Pilot-Kläranlage 
mit den weiterführenden Abwasserbehandlungs-Verfahren Ozonung und Ozonung 
in Verbindung mit GAC- oder biologischer Nachfiltration (jeweils als belüfteter oder 
unbelüfteter Filter) etabliert. Die Ozonung im Pilotmaßstab wurde mit konventionell-
behandeltem Abwasser (Belebtschlammverfahren) aus einer kommunalen 
Kläranlage gespeist. Der ökotoxikologische Teil der Bewertung umfasste die 
beschriebene und optimierte SPE-Methode (Abbas et al. 2019), ausgewählte In-
vitro-Bioassays (siehe oben), sowie verschiedene In-vivo-Testsysteme (Schneider 
et al. 2020, Schlüter-Vorberg et al. 2017). Die Auswahl an In-vivo-Bioassays, die 
hauptsächlich als Durchfluss-On-site-Systeme installiert wurden, erwiesen sich als 
nützliches und sensitives Werkzeug in früheren Kläranlagenuntersuchungen (z.B. 
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da Costa et al. 2014, Gartiser et al. 2010, Giebner et al. 2018, Magdeburg ua 2012, 
2014, Maltby et al. 2000, Stalter et al. 2010, 2011).  
Ein besonderes Ziel dieser Arbeit war es zu vergleichen, ob der berichtete Nutzen 
des entwickleten C. elegans Bioassays auf die Untersuchung verschieden 
behandelter Abwässer aus einer Pilotkläranlage übertragen werden kann und diese 
Ergebnisse für ein integriertes Bewertungskonzept herangezogen werden können. 
Die Ergebnisse von fünf In-vitro-Bioassays zur Untersuchung von In-vitro-(Anti-
)Östrogenität, -(Anti-)Androgenität und Mutagenität, sowie der populationsrelevante 
Endpunkt Reproduktion von C. elegans, wurden hierbei in eine "Bewertungsmatrix 
der Abwasserqualität" integriert, um die effektivste weiterführende 
Abwasserbehandlung auszumachen. In der berechneten Matrix (Daten von 
April−Mai 2014, durchschnittliche Ozondosis: 1 g O3,applied / g DOC, HRT ~ 18 min, 
10x SPE-Extrakte aus 24 h-Mischproben) wurde die Ozonung in Kombination mir 
der unbelüfteten GAC-Filtration als effektivste der fünf Optionen ermittelt. Es konnte 
ferner gezeigt werden, dass östrogene und (anti-)androgene Aktivitäten zwar durch 
die weiterführenden Abwasserbehandlungstechnologien stark reduziert, mutagene 
und antiöstrogene Effekte jedoch nicht vollständig eliminiert werden konnten oder 
sogar erhöht vorlagen. Diese Beobachtung könnte mit früheren Hypothesen zur 
Erzeugung toxischer Transformationsprodukten übereinstimmen (da Costa et al. 
2014, Jia et al. 2015, Knoop et al. 2018, Magdeburg et al. 2014, Stalter et al. 2010). 
Geringfügig-nachteilige Auswirkungen der Ozonung auf die Reproduktion von 
C. elegans (11,7% verringerte Brutgröße im Vergleich zum Kläranlagenablauf) 
traten in beiden GAC-gefilterten Proben nicht auf. Beide Proben die der Biofiltration 
entnommen wurden, zeigten wie zuvor festgestellt einen wachstumsfördernden 
Effekt (12,5 bzw. 15,1% Zunahme). 
In Übereinstimmung mit diesen (und früheren) mit C. elegans erzielten Ergebnissen, 
erscheint die weitere Etablierung dieses Nematoden als vielseitiger und sensitiver 
Modellorganismus für ökotoxikologische Zwecke vielversprechend (einschliessnlich 
Wasser- und Abwasser-bezogener Untersuchungen). C. elegans könnte hierbei zur 
Erforschung zusätzlicher bzw. alternativer Testsysteme mit erhöhter Sensitivität 
und/oder Umweltrelevanz maßgeblich beitragen, wie sie in der wissenschaftlichen 
Literatur empfohlen wurden (Berger et al. 2016, Schwarzenbach et al. 2006, Völker 
et al. 2017, Wigh et al. 2016, 2017, 2018, Xiong et al. 2017).  
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Im Allgemeinen erwies sich die Kombination von In-vitro- und (vorzugsweise On-
site-)In-vivo-Testsystemen als geeigneter Ansatz für die Bewertung der 
Abwasserqualität. Idealerweise sollten diese Bewertungen mit einem langfristigen 
Umweltmonitoring an Vorflutern und betroffenen Gewässern einhergehen (z.B. 
Auswirkungen auf Indikatortaxa) sowie ferner sozialpolitische Maßnahmen zur 
Verringerung relevanter Mikroschadstoffe berücksichtigen (z.B. Source control, 
European Parlament and Council 2013, Lienert et al. 2011, Reichenberger et al. 
2007). Ergänzt werden sollten diese Bemühungen mit der Untersuchung weiterer 
Optimierungspotenziale im Zusammenhang mit der Abwasser-Kanalisation, 
konventionell-biologischen, tertiären Behandlungen (z.B. Musolff et al. 2010, 
Phillips et al. 2012, Triebskorn 2017, Völker et al. 2016) und anderer 
weiterführenden Abwasserbehandlungen (z.B. Barbosa et al. 2016, Becker et al. 
2017, Tchobanoglous and Burton 1991, van Hege et al. 2002). Diese Strategien 
sollten idealerweise die Gesamtheit relevanter Stressoren aquatischer Ökosysteme 
berücksichtigen (z.B. BMU 2013, EEA 2012, Philip et al. 2011).  
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