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Zusammenfassung

Teil 1: Autotune

Nach einer Zusammenfassung der notwendigen Hintergründe zur Strahldynamik und zur
Beschleunigerphysik in Kapitel 2, werden in dieser Arbeit zunächst verschiedene Opti-
mierungstechniken besprochen und deren Anwendbarkeit auf die Transmissionsoptimie-
rung und das Acceptance-Matching in Strahltransportstrecken analysiert. Dafür wurden
Teilchen-Tracking-Simulationen mit verschiedenen künstlichen Beispielszenarien durchge-
führt. Es zeigte sich, dass vor allem naturanaloge Optimierungsverfahren und unter diesen,
speziell die genetischen Algorithmen, geeignet sind, optimale Lösungen dieser synthetischen
Problemstellungen zu finden.
Anschließend wird ein Genereller Autotune Algorithmus (GAA) zur automatischen Opti-
mierung von Strahltransportlinien entwickelt. Das Problem wird dabei auf die Optimierung
einer Black-Box-Funktion f : Rn ! R reduziert, welche einen n-dimensionalen Parameter-
raum auf die Transmission T abbildet. In diesem Fall wird dafür eine Ziel- bzw. Fitness-
funktion

F (x) = 1� T (x) + ✏(x) (0.1)

verwendet, deren Minimum Fmin der größten Transmission Tmax entspricht. Der Term ✏(x)

ist entweder gleich Null, oder er repräsentiert die Parametrisierung weiterer Optimierungs-
ziele, wie beispielsweise eine gleichzeitige, möglichst geringe Erregung der Quadrupole. Für
die Optimierung wurde ein genetischer Algorithmus verwendet.
Die Leistungsfähigkeit dieser Methode wurde zunächst durch Teilchen-Tracking-Simula-
tionen am Modell untersucht und schließlich online an einer 70m langen Strahltransport-
strecke im GSI-Helmholtzzentrum getestet (Abbildung 0.1). Um das Minimum von F zu

Abbildung 0.1.: Teilstück des Transferkanals vom universellen Linearbeschleuniger UNI-
LAC zum Schwerionensynchrotron SIS18 am GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt.



finden, mussten verschiedene Parametersätze, die sich aus dem Algorithmus ergeben, in
die Maschine geladen und die jeweils resultierende Transmission gemessen werden.
In der getesteten Strecke standen 6 Quadrupolmagnete und 6 Steerer für das automatische
Tuning zur Verfügung. Der Parameterraum hatte in diesem Fall also 12 Dimensionen.
Ein einfacher Parameterscan ist in so einer Situation offensichtlich unpraktikabel, da jeder
Punkt im Parameterraum als Maschineneinstellung mit Strahlpuls hätte getestet werden
müssen. Je nach Rastergröße und Wiederholrate, würde ein solches Vorgehen mehrere
Tage oder sogar Jahre in Anspruch nehmen. Ein genetischer Algorithmus benötigt dafür
wesentlich weniger Zyklen.
In Abbilung 0.2 ist die Entwicklung der Transmission von 4 aufeinanderfolgenden Strahl-
transformatoren (GTK4DT3, GTK5DT1, GTK6DT2, GTK7DT3), bezogen auf eine Re-
ferenzmessung an GTK3DT4, dargestellt. Man erkennt, dass sich die Gesamttransmission
(gemessen an GTK7DT3) nach 19 Generationen von 0% auf ca. 70% deutlich verbes-
sert hat. Die konstant eingeschränkte Transmission zwischen dem Referenztransformator
GTK3DT4 und dem nachfolgenden GTK4DT3 weist darauf hin, dass die Einstellung der
Strahlführung vor dem Referenztransformator nicht optimal war und die daraus resultie-
rende Fehlanpassung mit dem Zwischenquadrupol-Doublet GTK4QD2 nicht kompensiert
werden konnte. Für die Bewertung der Performance soll dieser Abschnitt daher nicht heran-
gezogen werden. Im darauf folgenden, 54m langen Abschnitt von GTK4DT3 bis GTK7DT3
betrug die finale Transmission T = 86% und befindet sich damit im Bereich dessen, was
in vergleichbarer Zeit auch mit manuellem Tuning erreicht werden kann.
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Abbildung 0.2.: Entwicklung der Transmission bezüglich der Referenzmessung am Trans-
formator GTK3DT4 während der Onlineoptimierung mit GAA.

Für dieses Ergebnis mussten 2400 Beschleunigereinstellungen getestet werden und bei der
zur Verfügung stehenden Wiederholrate von fr = 1Hz dauerte die Optimierung insge-
samt 40 Minuten. Diese Zeit ließe sich mit verschiedenen Verbesserungen allerdings weiter
reduzieren. Eine Möglichkeit ist zum Beispiel, solche Settings vom Online-Test auszuschlie-
ßen, die von einer parallel laufenden Trackingroutine als sichere Totalverluste identifiziert
werden. Diese Maßnahme würde auch im Bezug auf den Strahlenschutz eine Verbesserung
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bedeuten, denn aufgrund des statistischen Ansatzes des Verfahrens, werden im Rahmen der
Optimierung regelmäßig auch solche Einstellungen getestet, die größere Transmissionsver-
luste produzieren. Bei den Experimenten mit echtem Ionenstrahl, war es daher erforderlich,
die Aspekte des Strahlen- und Maschinenschutzes in besonderer Weise zu berücksichtigen.
So wurde für den Test ausschließlich ein Pilotstrahl verwendet. Das heißt, der maximale
Pulsstrom wurde auf I < 100 µA begrenzt, um Strahlverluste durch exotische Settings
zu begrenzen, was außerdem den Vorteil hatte, dass sämtliche Strahltransformatoren sta-
bil im kleinsten Messbereich betrieben werden konnten. Mit dem Versuch konnte gezeigt
werden, dass der Algorithmus ein hervorragendes Werkzeug für die assistierte Strahlopti-
mierung ist. Darüber hinaus gibt es Szenarien in denen GAA als vollständig autonomer
Beschleuniger-Controller eingesetzt werden kann.

Teil 2: Lattice-Konstruktion

Im zweiten Teil der Arbeit liegt der Fokus auf dem Design von Strahltransportstrecken mit
dedizierten Abbildungseigenschaften im sechsdimensionalen Phasenraum. Mit einer Erwei-
terung des Ansatzes aus Teil 1, lässt sich die Auslegung einer beliebigen Strahltransport-
strecke ebenfalls als Optimierungsproblem formulieren, das sich theoretisch algorithmisch
lösen lässt. Ziel war es dabei, eine optimale Anpassung einer gegebenen Teilchenverteilung
an eine beliebige Akzeptanz, mit minimalem Energie- und Materialaufwand (dh. mit mög-
lichst geringen Feldstärken und möglichst wenigen Elementen) zu erreichen. Die Formulie-
rung der individuellen Fragestellung wird dabei wieder auf das Problem der Minimierung
einer einwertigen Funktion über einem multidimensionalen Kubus reduziert. Anhand von
Testbeispielen mit bekannter Parameterraumtopologie zeigte sich, dass die Anzahl der Di-
mensionen und die Topologie erwartungsgemäß einen starken Einfluss auf die Performance
der Optimierung haben. Beide Aspekte lassen sich aber in gewissem Rahmen durch eine
spezielle Formulierung der Randbedingungen reduzieren. Um das Problem auf ähnliche
Weise über eine Fitnessfunktion lösen zu können, wurde zunächst eine eindeutige Parame-
trisierung der Transportstreckengeometrie und der verwendeten Felder (Phenotyp) über
eine Liste von Zahlen (Genotyp) benötigt.
Ausgangspunkt war der allgemeinste Fall einer Transportstrecke der Länge L, in der min-
destens ein Abschnitt der Länge Lopt mit neuen Elementen bestückt werden soll. Wenn
L = Lopt, dann gibt es keine Beschränkungen bezüglich der Position von neuen Elementen.
Weiterhin gibt es eine Menge von µ frei positionierbaren, strahlmanipulierenden Kompo-
nenten {C1, · · · , Cµ}. Diese können auch Meta-Elemente sein, die aus einer festen Kombi-
nation von Komponenten bestehen. Anschließend müssen diejenigen ⌫ Komponenten hin-
zugefügt werden, deren Positionen unter Optimierungsgesichtspunkten fest sind, die sich
also außerhalb von Lopt befinden. In der Summe ergibt das N = µ+⌫ Komponenten. Jede
dieser Komponenten Cn 2 {C1, · · · , Cµ+⌫} hat eine bestimmte Anzahl von �n freien Pa-
rametern xn,1 · · ·xn,�n . Diese Parameter können z. B. Quadrupolstärken, Gapspannungen,
aber auch die Längen der jeweiligen Elemente sein. Die Gesamtzahl der freien Parameter
ist damit

⌘p =
NX

n=1

�n . (0.2)

Zusätzlich muss nun für jede bewegliche Komponente aus {C1, · · · , Cµ} eine Position de-
finiert werden. Die Möglichkeit beliebiger Permutationen der Komponenten soll dabei im-
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plizit enthalten sein. Zu diesem Zweck wird für jede Komponente eine relative Position
sn 2 [0, 1] definiert. Die tatsächliche Position ln ergibt sich dann aus

ln = sn ·
 
Lopt �

µX

n=1

Ln

!
, (0.3)

wobei Ln die Länge der Komponente Cn ist. Die Anzahl der freien Parameter erhöht sich
also durch die freie Positionierung um µ, womit ⌘ = ⌘p + µ .
Jede mögliche Realisierung einer Transportstrecke, welche den gegebenen Randbedinungen
entspricht, kann damit einem Punkt in dem ⌘-dimensionalen Vektorraum zugeordnet wer-
den. Genauer gesagt, handelt es sich um einen Unterraum von R⌘, da die Parameter unter
Beachtung der Gerätegrenzen auf den Bereich [�1, 1] normiert werden. Dies entspricht also
einem Punkt

x =

0

BBBBBBBBB@

x̃1
...
x̃⌘p
s̃1
...
s̃µ

1

CCCCCCCCCA

(0.4)

im ⌘-Hyperwürfel. Dabei sind x̃n und s̃n jeweils die auf das Intervall [�1, 1] normierten
Werte von xn und sn. Ziel ist es nun, einen Punkt in dieser Menge zu finden, dem die
Transportstrecke mit der höchsten Transmission zugeordnet werden kann. Auf diese Weise
werden sowohl Geometrie als auch Felder gleichzeitig optimiert.
Um einen Eindruck von der Topologie des Parameterraums bzw. der Funktion F über dem
Parameterraum zu bekommen, wurden zweidimensionale Projektionen der Funktion F

für verschiedene Beispiele gescannt, wobei alle anderen Koordinaten festgehalten wurden.
Abbildung 0.3 zeigt die Resultate zweier solcher Scans für ein künstliches Problem, in
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Abbildung 0.3.: Das Resultat von Scans zweier exemplarischer Unterräume des Parame-
terraums dieses Problems. (links: Fitnessfunktion in Abhängigkeit von der
Fokussierstärke beider Quadrupole, rechts: Fitnessfunktion in Abhängig-
keit von der Position des Bunchers und der des zweiten Quadrupols)

welchem zwei Quadrupole und ein Buncher optimiert werden sollen, um eine gegebene
Akzeptanz zu treffen, während nur einer der Quadrupole eine feste Position hat und die
Positionen des zweiten Quadrupols, sowie die des Bunchers, ebenfalls optimiert werden
sollten. Das Problem hat ⌘ = 5 Freiheitsgrade und es zeigt sich, dass F in diesem Fall
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mehrere lokale Minima besitzt, die sich vor allem aus der Quadrupolsymmetrie ergeben.
Jede Lösung entspricht hier einem Punkt

x =

0

BBBBB@
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x̃U
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CCCCCA
(0.5)

im dazugehörigen Penterakt. Der Algorithmus konnte für dieses Problem eine plausible
Lösung finden (Abbildung 0.4). Da sich die Parameterräume höherer Dimension nicht
mehr in einer sinnvollen Granularität komplett scannen lassen, ist es dann nicht mehr
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Abbildung 0.4.: Illustration einer Lösung mit maximaler Transmission (T = 48.1%). Der
vertikal fokussierende Quadrupol ist blau dargestellt, der horizontale rot.
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möglich, jede Lösung des Algorithmus quantitativ zu beurteilen. Es lassen sich nur noch
qualitative Aussagen machen. Ob diese Lösung das Optimum ist, lässt sich also nicht direkt
verifizieren, aber sie erscheint zumindest sehr plausibel. Wäre die Phasenakzeptanz exakt
identisch mit der Anfangsphasenbreite des Strahls, dann sollte der Spalt genau in der Mitte
liegen. Die Phasenakzeptanz ist jedoch etwas größer, so dass eine Position hinter der Mitte
ideal ist. Der zweite Quadrupol muss dann so weit vorne wie möglich positioniert werden,
damit der Strahl horizontal gut durch die Driftröhren des Bunchers fokussiert werden kann.
Wurden im Rahmen der Untersuchungen Positionierungsfehler bereits während der Opti-
mierung induziert, dann ergaben sich Hinweise darauf, dass bei der genetischen Latticekon-
struktion solche Lösungen bevorzugt werden, die sich als robust gegenüber Positionierungs-
fehlern erweisen. Tabelle 0.1 zeigt den Vergleich von Fehlerstudien nach einer Optimierung
mit induzierten Fehlpositionierungen gegenüber einer ungestörten Konstruktion. Auf diese
Weise ließe sich eine Fehlertoleranz bereits zu Beginn der Designphase implementieren und
die Notwendigkeit von Fehlerstudien und daraus folgenden Iterationen des Designs könnten
entfallen.

Tabelle 0.1.: Vergleich der Optimierung mit und ohne Positionsfehler. Die Tabelle enthält
die jeweiligen Mittelwerte der Transmission, die Standardabweichung vom
ungestörten Optimum und die Standardabweichung vom Mittelwert.

Optimierung T
p
EW ((T � Topt)2)

q
EW ((T � T )2)

ohne Fehler 46.71% 1.7% 1.00%
mit Fehlern 46.71% 1.6% 0.95%

Die Anwendung dieser Methode auf zwei reale Beschleunigerprojekte ist Gegenstand von
Kapitel 5.3. Für den geplanten Betrieb der CERN North-Area mit Protonenstrahlen bei
Strahlimpulsen von p < 10GeV/c, konnte die optimale Position verschiedener Kombina-
tionen von Gaborlinsen ermittelt werden. Außerdem wurde die Konstruktion einer RFQ-
Matching-Sektion (Abbildung 0.5) im Niedrigenergiebereich des zukünftigen Hoch-Brillanz-
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Abbildung 0.5.: Optimiertes Lattice für die RFQ-Matching-Sektion.

Protonenbeschleunigers für HBS am Forschungszentrum Jülich untersucht. Unter Beach-
tung verschiedener Randbedingungen (Größe der verwendeten Komponenten und reali-
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sierbare Abstände), wurde die Matching-Sektion für die gegebene Ausgangsverteilung des
RFQ 1 und die Zielakzeptanz des RFQ 2 automatisch konstruiert.
Dabei konnte eine Transmission von 93% erreicht werden. Aus der Studie ergab sich direkt
die Anforderung, eine der gegebenen Randbedingungen zu ändern. Es wurde deutlich,
dass die Phasenbreite am Buncher zu groß ist, um den Strahl vollständig fokussieren zu
können (Abbildung 0.6) und dieser bei der gegebenen Eingangsverteilung daher weiter
vorne positioniert werden sollte. Die GLC-Methode erwies sich in beiden Beispielen als
hervorragendes Werkzeug und lieferte überzeugende Ergebnisse.

Abbildung 0.6.: Ergebnis der Optimierung (Tracewin-Darstellung) (oben: horizontale Pro-
jektion, Mitte: vertikale Projektion, unten: Längsbewegung (Phase)).

Die Referenzimplementierungen der verschiedenen, in dieser Arbeit entwickelten Metho-
den wurden in eine neue, interaktive Softwareanwendung Accelerator Construction Set
(ACS) integriert, die in Kapitel 6 kurz vorgestellt wird. Dieses Werkzeug ermöglicht die
Zusammenstellung von Strahlführungen aus einem Satz von vordefinierten Elementen und
bietet einen einfachen Zugang zu den vorgestellten Algorithmen. Auf diese Weise kann
die Anwendung sowohl zur Optimierung von Optikparametern als auch als automatischer
Lattice-Designer verwendet werden.
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Abstract

The first part of this work addresses the automatic online tuning of transfer lines in particle
accelerator facilities. In the second part the focus lies on the automatic construction and
optimisation of such transport lines. It can be shown that genetic algorithms can be
used very well for optimisation in both cases. Automatic online tuning can be performed
very efficiently at accelerators under certain boundary conditions and is particularly well
suited for initial beam commissioning with low intensity pilot beams. The construction
of transfer lines can also be formulated and solved as an minimisation problem with an
adopted parameterisation. Thereby, both the imaging properties of the beam transport
and the robustness against error studies can be optimised at the same time.
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1. Introduction

1.1. Motivation

Despite great progress in automation over the past decades, a lot of manual tuning still
occurs at many accelerator facilities. Especially for transfer lines in flexible user facilities,
a lot of time is spent on manual setup. One example is the accelerator complex at the GSI
Helmholtz Centre in Darmstadt, Germany.

For the users of the GSI accelerators, almost all elements of the periodic table, from
Hydrogen to Uranium, and various isotopes can be provided. In addition, rare radioactive
isotopes can be produced for storage ring or fixed-target experiments via the fragment
separator FRS. At the beginning of the accelerator chain is the UNILAC, which is supplied
with beam via two injectors (HSI and HLI) from three ion source terminals. The UNILAC
can be pulsed with 50Hz and for each pulse in principle a different source and thus a
different ion species can be requested and accelerated to an energy up to 11.4MeV/u. The
system is specially designed for complex and highly flexible parallel operation. This allows
the UNILAC to supply up to five different beam targets with beam quasi simultaneously.
The principle of virtual accelerators is used for this purpose. For each running experiment,
a complete set of accelerator settings is kept, which is optimised to the specific requirements
of the experiment (isotope, charge state, beam energy, intensity, target focusing, pulse
length). This data set can then be used on demand. A pulse controller unit organises the
timing of the virtual accelerators in the 50Hz pattern according to the specified sharing
ratio.

Further acceleration to energies corresponding to a beam rigidity of 18Tm, is performed
via the SIS18, which requests up to one beam pulse per second from the UNILAC, depend-
ing on the requested extraction time. In each cycle, a different beam target can be supplied
with the desired beam (e.g. the ESR storage ring or the fragment separator FRS). This
system is highly efficient, but also makes high demands on hardware and stability. That
is why field-regulated magnets and power supplies with high precision and short response
times are used. It is planned to extend this principle further to the beam production
chains of the Facility for Antiproton and Ion Research FAIR, which is presently under
construction at GSI Helmholtz Centre.

Due to the various usage scenarios and the associated frequently changing requirements
for the beam parameters, it is necessary to often readjust or at least optimise the machine
settings of the virtual accelerators. The theory settings available for each beam path are
generally scalable with magnetic rigidity B⇢, but it turns out that the transport properties
are not particularly reproducible. Without further optimisation, this often leads to settings
with poor overall transmission and not seldom to complete beam loss. The reasons are
manifold. For example, different source types or instances are used alternately, so that the
beam properties already vary from source to source to a certain extent. For a good theory
setting, a precise knowledge of the input beam parameters is crucial. However, this is not
always known or is subject to changes. Especially in the range of low beam rigidities,



1.2. Contents

where power supplies are operated close to their lower limits, these variations add up and
have a large influence on the overall transmission. The effect is especially noticeable in
highly parallel operation modes with many users, or when timing settings are changed. As
a consequence, the machine parameters have to be manually re-adjusted, which not only
results in a loss of efficiency, but also requires increased personnel effort. There is therefore
a great interest in automating such processes. When performing automatic settings, it is
particularly important to consider not only the desired beam parameters and optimum
transmission, but also aspects of machine protection and radiation safety.

A related optimisation problem can be formulated for the construction of beam transport
lines. Even though this case is usually not primarily time-critical, an automatic design is
expected to optimise the design process in other ways. For many beam transport problems,
more than one solution can be considered, and it is ultimately up to the experience of the
beam dynamists which one is preferred. Whether this is the best possible solution cannot
ultimately be determined. In addition to the realisation of the required imaging properties,
it is particularly important to develop a solution that also proves to be robust against field
and alignment errors in error studies.

1.2. Contents

After summarising the necessary background on beam dynamics and accelerator physics
in chapter 2, this thesis first reviews various optimisation techniques and analyses their
applicability to transmission optimisation and acceptance matching (chapter 3).

Subsequently, a General Autotune Algorithm for fully automatic optimisation of beam
transport lines is developed. The performance of this algorithm was first investigated
by particle tracking simulations and eventually tested online at the GSI transfer channel
TK. It is shown that the algorithm is a great tool for assisted tuning and that there
are even scenarios where GAA can be used as a fully autonomous controller. The results
are presented in chapter 4. From the investigations, principles can be derived according
to which accelerator sections or transport channels must be designed and equipped with
appropriate diagnostics so that the algorithm can achieve optimal results.

Using an extension of this approach, a complete accelerator section can be automatically
designed in such a way, that an optimal adaptation of a given particle distribution to an
arbitrary acceptance can be achieved with minimal energy and material requirements. For
this purpose, the Genetic Lattice Construction method was developed and presented for
the first time in frame of this work [1]. In this study, both geometry and fields are optimised
simultaneously. The method and its application to new projects, as a specific transport
line at CERN and a matching section of the future high brilliance proton accelerator for
HBS, are subject of chapter 5.

The reference implementations of the various methods developed in this thesis have been
integrated into an interactive software application (Accelerator Construction Set), which
is briefly presented in chapter 6. This tool allows the composition of beam lines from a set
of pre-defined elements and provides an easy access to the presented methods. In this way
it can be used both for automatic tuning and as an automatic lattice designer.
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2. Beam dynamics

A theoretical description of the influence of different accelerator elements on the dynamics
of charged particle beams is required for detailed studies on the optimisation of beam
transport lines. The theoretical background, which is the basis for the present work is
summarised in this chapter.

Besides important beam diagnostic devices (beam transformers, luminous screens, profile
grids, phase probes, rest gas monitors, etc.), beam transfer lines contain several beam
manipulating elements such as deflection or correction magnets and optical elements which
can change the focusing of the ion beam or correct aberrations caused by momentum
deviations of the particles. Figure 2.1 shows examples of standard elements with magnetic
mid-plane symmetry, which are commonly used in transfer lines.

Figure 2.1.: Examples of beam optical elements of the magnetic mid-plane from the high-
energy beam lines at GSI Helmholtzzentrum, designed for ion beams with a
magnetic rigidity of up to 18Tm. (top left: sextupole magnet, top right:
quadrupole magnet, bottom left and bottom right: bending dipole magnet)



The Lorentz force (2.1) provides two ways to influence the trajectory of moving charged
particles (with charge q and velocity v), namely by electric and magnetic fields.

F = q(E + v ⇥B) (2.1)

Although electrostatic elements are also sometimes used for the above purposes (e.g. at
the local Cryring injector at GSI), they play a role only at very low particle momenta
or in injection and extraction systems of synchrotrons, because of the technical limitation
in generating high electrostatic field strengths (Emax ⇡ 10MV/m). Therefore, only the
magnetic elements are considered in the first place. But the following derivations can be
carried out analogously also for electrostatic elements.

The dynamics of charged particle beams in accelerators have been described in various
textbooks and other publications [2–5]. The fundamental derivations for the particle dy-
namics in the mid-plane (Figure 2.2) are based on the description of the matrix theory
from K. L. Brown [2] and its adoptions in the lectures of F. Hinterberger [3].
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Figure 2.2.: Schematic view of the magnetic mid-plane for dipole, quadrupole and sextupole
elements [2, page 26]. The magnetic fields of these elements are antisymmetric
with respect to the y-coordinate.

The standard coordinate system usually used in accelerator physics (Figure 2.3) is a
right-handed cartesian coordinate system (x, y) perpendicular to the central orbit s. The
origin of the coordinate system is shifted along the nominal orbit s, following the central
particles path. The functions x(s) and y(s) therefore describe the path of a particle relative
to the nominal orbit. In practice, the magnetic centre plane is usually identical with
the horizontal plane (x, s). Therefore, it is first assumed that there is only a horizontal
curvature of the nominal path with a bending radius ⇢ around the y-axis. So the curvilinear
coordinate system (x, y, s) locally corresponds to a cylinder coordinate system with the
radial coordinate r = ⇢+x = ⇢(1+hx), the axial coordinate y and the angular coordinate
↵ = s/⇢, where the curvature h = ⇢�1. The equations of transformation are

x̃ = r sin↵ = ⇢(1 + hx) sin

✓
s

⇢

◆
,

ỹ = y ,

z̃ = r cos↵ = ⇢(1 + hx) cos

✓
s

⇢

◆
.

(2.2)
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2. Beam dynamics

x(s)

y(s)

⇢(s) = 1
h(s)

~ex ~es
~ey

origin

s

~r

d~r = ~exdx+ ~eydy + ~es(1 + hx)ds
particle

Figure 2.3.: The curvilinear standard coordinate system of particle physics [2, page 12].
The metrics for the line element is defined such that in case of a disappearing
curvature h, the coordinate system changes to an ordinary cartesian coordinate
system.
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(2.3)

the line element is

dr2 = dx2 + dy2 + (1 + hx)2ds2 . (2.4)

Therefore the metric tensors are

gij =

0

B@
1 0 0

0 1 0

0 0 (1 + hx)2

1

CA and gij =

0

B@
1 0 0

0 1 0

0 0 (1 + hx)�2

1

CA (2.5)

and the gradient and Laplace operator can be derived to

r =
@

@x
+

@

@y
+

1

1 + hx

@

@s
, (2.6)

r2
=

1

1 + hx

@

@x

✓
(1 + hx)

@

@x

◆
+

@2

@y2
+

1

1 + hx

@

@s

✓
1

1 + hx

@

@s

◆
. (2.7)

Since the particle moves mainly in the longitudinal direction, the transversal velocity com-
ponents can be neglected. So the particle velocity is approximately v = (0, 0, vs) and
the curvature of the particles path depends only on the axial magnetic field component
B0 = B0(s) = By(x = 0, y = 0, s). For a particle with charge q to follow the curvature of
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2.1. Taylor-series expansion of the magnetic field

the orbit path, Lorentz force and centrifugal force must cancel each other out

qvsB0 =
�mv2s
⇢

. (2.8)

Using the relativistic momentum p0 = �mvs, one obtains the important relation

B0⇢ =
p0
q
, (2.9)

where B0⇢ is called the magnetic rigidity.

2.1. Taylor-series expansion of the magnetic field

For the further steps a special representation of the Taylor-series expansion of the magnetic
field B = (Bx, By, Bs) is used, as it was originally developed by L. C. Teng in 1962 [4].
Using Maxwell’s equations for the vacuum and the fact that there is no time-varying electric
field, Ampère’s circuital law is reduced to

r⇥B = 0 . (2.10)

The rotation of a scalar gradient disappears, therefore in this case the magnetic field can
be written as a gradient of a scalar potential B = r�m. For the potential �m(x, y, s)

a Taylor expansion can be performed at the position 0. Due to the mid plan symmetry
(Figure 2.2), �m is an odd function regarding y

�m(x, y, s) = ��m(x,�y, s) . (2.11)

This eliminates all terms that do not contain y with odd exponents. The detailed derivation
can be found in appendix A.1. The resulting expression of the magnetic field up to the
second order can be written in the general form

Bx(x, y, s) =
p0
q

⇣
� nh2y + 2�h3xy

⌘
,

By(x, y, s) =
p0
q

⇣
h� nh2x+ �h3x2 � 1

2
(h00 + 2�h3 � nh3)y2

⌘
,

Bs(x, y, s) =
p0
q

⇣
h0y � (n0h2 + 2nhh0 + hh0)xy

⌘
,

(2.12)

where

h =
q

p0
B0 , h0 =

@h

@s
,

n = � 1

hB0

@By

@x

����
(x=0,y=0)

, n0
=
@n

@s
, (2.13)

� =
1

2!h2B0

@2By

@x2

����
(x=0,y=0)

.
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2. Beam dynamics

2.2. The equations of motion

The starting point for the equation of motion in linear approximation is the Lorentz force
which acts on a particle with the charge q and mass m. Converted to acceleration follows

r̈ =
q

�m
v ⇥B . (2.14)

In the area of a deflecting magnet, the orbit describes a circular path with the curvature
radius ⇢ and the angular velocity !. This results in the radial acceleration ar = �!2

(⇢+x).
Thus the total radial acceleration is ẍ� !2

(⇢+ x) and in combination with (2.14) follows

ẍ� !2
(⇢+ x) =

q

�m
(vyBz � vzBy) ,

ÿ =
q

�m
(vzBx � vxBz) . (2.15)

Since the transverse components of speed vx and vy are very small compared to vz and Bx

and Bz are very small compared to By, the terms vyBz and vxBz can be neglected. The
longitudinal component holds the largest part of the velocity, vz ⇡ v and thus p = �mv ⇡
�mvz. With vz = !(⇢+ x) the equation converts to

ẍ� !2
(⇢+ x) = �q

p
!2

(⇢+ x)2By ,

ÿ = +
q

p
!2

(⇢+ x)2Bx . (2.16)

The time derivatives are substituted by derivatives after s

d

dt
=

ds

dt

d

ds
= ⇢!

d

ds
or rather

d2

dt2
= (⇢!)2

d2

ds2
. (2.17)

Dividing by (⇢!)2 and with h = ⇢�1 follows

x00 � h(1 + hx) = �q

p
By(1 + hx)2 , (2.18)

y00 = +
q

p
Bx(1 + hx)2 . (2.19)

Using the Taylor expension of the magnetic field (2.12) up to first order,

x00 � h(1 + hx) = �(h� nh2x)(1 + 2hx+ h2x2) , (2.20)
y00 = +(0� nh2y)(1 + 2hx+ h2x2) (2.21)

and after substitution kx = (1 � n)h2 and ky = nh2 and neglecting second order terms,
one obtains the homogeneous equations of motion for mono-energetic particles:

x00 + kxx = 0

y00 + kyy = 0 (2.22)

These equations are the equations of the harmonic oscillator, whose general solutions are
the linear combination of the two linear independent characteristic solutions

x(s) = x0cx(s) + x00sx(s) and y(s) = y0cy(s) + y00sy(s) . (2.23)
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2.2. The equations of motion

2.2.1. Transverse characteristic solution

For k > 0 the characteristic solutions of the equations (2.22) are:

cx(s) = cos
�p

kxs
�
; sx(s) =

sin
�p

kxs
�

p
kx

,

cy(s) = cos
�p

kys
�
; sy(s) =

sin
�p

kys
�

p
ky

. (2.24)

For k < 0 this is:

cx(s) = cosh
�p

|kx|s
�
; sx(s) =

sinh
�p

|kx|s
�

p
kx

,

cy(s) = cosh
�q

|ky|s
�
; sy(s) =

sinh
�p

|ky|s
�

p
ky

. (2.25)

For kx = ky = 0 the result simplifies to:

cx(s) = 1 ; sx(s) = s ,

cy(s) = 1 ; sy(s) = s . (2.26)

2.2.2. The particular solution of dispersion

In reality particles are not mono-energetic but have a momentum difference �p = p � p0
to the central particle. Inserting the relative momentum deviation � = �p/p0 up to the
linear approximation into equation (2.18), the differential equation for the radial position
deviation becomes inhomogeneous:

x00 + kxx = h(s)� . (2.27)

The solution is the linear combination of a particular solution of the inhomogeneous equa-
tion and the characteristic solution of the homogeneous equation

x(s) = x0cx(s) + x00sx(s) + �dx(s) . (2.28)

The function dx(s) can be determined using Green’s function G:

dx(s) =

Z s

0
h(s̄)Gx(s, s̄)ds̄ (2.29)

=

Z s

0
h(s̄)

�
sx(s)cx(s̄)� cx(s)sx(s̄)

�
ds̄ . (2.30)

The solution is the dispersion function, which is only non-zero when curvature h 6= 0 (e.g.
in bending magnets). Usually curvature in dipoles is constant, so h(s) = h

dx(s) =
h

kx

⇣
1� cos

�p
kxs
�⌘

(2.31)

and for negative k

dx(s) =
h

|kx|

⇣
cosh

�p
|kx|s

�
� 1

⌘
(2.32)
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2. Beam dynamics

or for k = 0

dx(s) = 0 . (2.33)

The dispersion is a measure for the momentum dependency of the transversal focusing and
is only caused by dipole fields.

2.2.3. Longitudinal characteristic solution

Considering now the dynamics of particles with an initial longitudinal position deviation
linitial and a velocity v. The change of this positional deviation after the design particle
has traveled the distance s, results from the difference in flight time of the particle to the
design particle

�l = lfinal � linitial = v0(t0 � t) = v0
⇣ s

v0
� S

v

⌘
= �(S � s) +

�v

v
S (2.34)

where �v = v � v0. The path length difference S � s can be calculated using the line
element

S � s =

Z s

0

⇣p
x2 + y2 + (1 + hx)2 � 1

⌘
ds̄ . (2.35)

In linear approximation only contributions from the field of deflecting magnets are con-
sidered.

S � s =

Z s

0
h(s̄)x(s̄)ds̄ (2.36)

= x0

Z s

0
h(s̄)cx(s̄)ds̄+ x00

Z s

0
h(s̄)sx(s̄)ds̄+ �

Z s

0
h(s̄)dx(s̄)ds̄ (2.37)

and with �v
v S ⇡ �v

v0
s = 1

�2
�p
p0

s = s
�2 � follows

l(s) =� x0

Z s

0
h(s̄)cx(s̄)ds̄� x00

Z s

0
h(s̄)sx(s̄)ds̄

+ l(0)� �
⇣Z s

0
h(s̄)dx(s̄)ds̄�

s

�2

⌘
. (2.38)

The effect on l(0) is only existing in the presence of a curvature h 6= 0 (e.g. in bending
magnets). Assuming a constant curvature h(s) = h, the solution for kx > 0 is

l(s) =� x0
h sin(

p
kxs)p

kx
� x00

h(1� cos(
p
kxs))

kx

+ l(0) + �

 
s

�2
� h2

✓
s

kx
� sin(

p
kxs)

k3/2x

◆! (2.39)

and for negative kx

l(s) =� x0
h sinh(

p
kxs)p

kx
� x00

h(1� cosh(
p
kxs))

kx

+ l(0) + �

 
s

�2
� h2

sinh
�p

|kx|s
�
�
p
|kx|s

|kx|3/2

!
.

(2.40)
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2.2. The equations of motion

2.2.4. Matrix formalism

The solutions (2.24), (2.25), (2.26), (2.31), (2.32), (2.33) and (2.39) of the first order equa-
tions of motion can be formulated in matrix notation for different optical elements. In this
way an initial position of a particle in the 6-dimensional phase space ⇡0 = (x0, x00, y0, y

0
0, l0, �0)

can be assigned the point in the phase space which the particle occupies after passing
through the element.

0

BBBBBBB@

x

x0

y

y0

l

�

1

CCCCCCCA

=

0

BBBBBBB@

R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66

1

CCCCCCCA

·

0

BBBBBBB@

x0
x00
y0
y00
l0
�0

1

CCCCCCCA

(2.41)

The matrix Rij is called transfer matrix and must be developed for each optical element.
Considering a particle with the position in the phase space ⇡0, which first crosses the

element a and then b with the transfer matrices Ra and Rb, it finally takes the position

⇡ = Rb · (Ra · ⇡0) = (Rb ·Ra) · ⇡0 . (2.42)

In this way, also a complex optical system, consisting of n elements can be described by
the product of the transfer matrices of its components

⇡ = (

Y

n

Rn)⇡0 . (2.43)

If the determinant of the transfer matrices det(R) 6= 0, the matrix is invertible and ini-
tial phase space vectors can be calculated from final states backwards. If the matrix also
satisfies the equation (2.44), it is called symplectic, which correspond to canonical trans-
formations.

RTMR = M where MT
= M�1

= �M , e.g. M =

 
0 1

�1 0

!
. (2.44)

The first order matrices for the magnetic mid-plane, presented in section 2.3, are always
symplectic, therefore Liouville’s theorem applies in all cases. Thus, the phase space volume
occupied by a particle ensemble remains constant below these transformation R.

2.2.5. The second order equations of motion

The approximation up to the first order is in many cases sufficient for the description of the
phenomena, e.g. for simple transfer lines. However, in ring accelerators it is necessary also
to correct for chromaticity, which arises from different values of the betatron phase advance
produced by particles with an energy deviation. Also in linear accelerators, sextupole fields
can help to compensate for over or under focusing of particles with deviating energies. A
development up to the first order is not sufficient to be able to describe these phenomena. In
order to determine the second order equations of motion, the development of the magnetic
field up to the second order (2.12) must be substituted into the Lorentz equation (2.15).
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2. Beam dynamics

The result is a system of coupled second order differential equations:

x00 + h2(1� n) = h� + (2n� 1� �)h3x2 + h0xx0 +
1

2
hx02

+ (2� n)h2x� +
1

2
(h00 � nh3 + 2�h3)y2

+ h0yy0 � 1

2
hy02 � h�2 , (2.45)

y00 + nh2y = 2(� � n)h3xy + h0xy0

� h0x0y + hx0y0 + nh2y� . (2.46)

The solution of this system of differential equations can be found in a same way as the first
order solutions, which is by multiplying with Green’s function and subsequent integration.
The result can be expressed using the corresponding first order matrix Rij and a second
order matrix Tijk:

xi(s) =
6X

i=1

Rij(s)xj(0) +
6X

k=1

kX

j=1

Tijk(s)xj(0)xk(0) . (2.47)

The complete list of all components Rij and Tijk for the mid plane can be found in [6].

2.3. Accelerator components and transfer matrices

Subsequently, the first order transfer matrices for those elements required for the present
work are derived. These matrices are also the basis of the common ion optics programs as
(Transport [7], Mirko [8], MADX [9], TraceWin [10] or WinAgile [11])

2.3.1. Drift space

In a field free drift space h = ⇢�1
= 0 and therefore kx = ky = 0. The dispersion is zero

and using initial conditions x0 = x(0) and x00 = x0(0) the transverse solution (equation
(2.26)) becomes

x(s) = x0 + x00s x0(s) = 0 + x00

y(s) = y0 + y00s y0(s) = 0 + y00 (2.48)

and the longitudinal part (2.39) becomes

l(s) = l0 +
s

�2
�0 . (2.49)

Since the momentum is not changed �(s) = �0, the transfer matrix for a drift space of
length L is

R0 =

0

BBBBBBBB@

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1
L
�2

0 0 0 0 0 1

1

CCCCCCCCA

. (2.50)
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2.3. Accelerator components and transfer matrices

2.3.2. Quadrupole magnets

In a quadrupole magnet (Figure 2.4) the nominal path is a straight line and so the radial
acceleration disappears in equation (2.15). The solution for the radial component is thus
equivalent to the axial one with a correspondingly changed definition of kx = �ky = �nh2.
For a quadrupole the general focusing strength k = kx = �ky is introduced, given in [1/m2

].
The quadrupole gradient g is given in [T/m] and describes the gradient of the transverse

Figure 2.4.: Examples of quadrupole magnets. (left: quadrupole doublet from the transfer
channel UNILAC to SIS18, centre: quadrupole doublet from high energy beam
line, right: quadrupole doublet from Cryring local injector line)

magnetic field which corresponds to the focusing strength of a quadrupole [12]:

g =
@By

@x
=
@Bx

@y
= B0 . (2.51)

The focusing strength is the rigidity normalised gradient

k = �nh2 = 1

(B⇢)
g . (2.52)

For a quadrupole of length L the integral field gradient kL corresponds to the inverse focus
length, analogous to an optical lens:

kL =
1

ffoc
. (2.53)

Depending on the sign of the focusing strength there are two possible transfer matrices
for quadrupole magnets. Strictly speaking, there is a third one, namely for k = 0, which
ultimately corresponds to a drift space of length L.

Horizontal focusing quadrupole

For k > 0 (2.24), the quadrupole is horizontal focusing and vertical defocusing. The
longitudinal solutions for l(s) and �(s) are similar to a drift space. So, using � =

p
kL,
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2. Beam dynamics

the transfer matrix for a horizontal focusing quadrupole of length L can be written as

RF =

0

BBBBBBBB@

cos� 1p
k
sin� 0 0 0 0

�
p
k sin� cos� 0 0 0 0

0 0 cosh� 1p
k
sinh� 0 0

0 0
p
k sinh� cosh� 0 0

0 0 0 0 1
L
�2

0 0 0 0 0 1

1

CCCCCCCCA

. (2.54)

Vertical focusing quadrupole

For k < 0 (2.25), the quadrupole is vertical focusing and horizontal defocusing. So for the
transfer matrix, the planes are just exchanged and with � =

p
|k|L

RD =

0

BBBBBBBBB@

cosh� 1p
|k|

sinh� 0 0 0 0

p
k sinh� cosh� 0 0 0 0

0 0 cos� 1p
|k|

sin� 0 0

0 0 �
p
|k| sin� cos� 0 0

0 0 0 0 1
L
�2

0 0 0 0 0 1

1

CCCCCCCCCA

. (2.55)

2.3.3. Dipole magnets

A horizontal sector dipole is a pie-shaped bending magnet (Figure 2.5) of length L with a
fixed curvature h =

1
⇢ and a constant bending angle ↵ =

L
⇢ = hL .

Figure 2.5.: Examples of sector magnets. (left: 7.5� bending dipole of the GSI fragment
separator FRS, right: 3.3� super conducting dipole of the SIS100 synchrotron)

Weak focusing dipole magnets

The constants of the equation of motion (2.22) are kx = (1 � n)h2 and ky = nh2. For
positive kx and ky, that means 0  n  1 and the dipole is called a weak focusing dipole.
The longitudinal solution is given with equation (2.39) and using ⇠ =

p
1� n and  =

p
n
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the transfer matrix can be written as

RB =

0

BBBBBBBBB@

cos(⇠↵) ⇢ sin(⇠↵)
⇠ 0 0 0

⇢(1�cos(⇠↵))
⇠2

� ⇠ sin(⇠↵)
⇢ cos(⇠↵) 0 0 0

sin(⇠↵)
⇠

0 0 cos( ↵) ⇢ sin( ↵)
 0 0

0 0 � sin( ↵)
⇢ cos( ↵) 0 0

� sin(⇠↵)
⇠ �⇢(1�cos(⇠↵))

⇠2 0 0 1
L
�2 � ⇢

⇣
↵
⇠2 �

sin(⇠↵)
⇠3/2

⌘

0 0 0 0 0 1

1

CCCCCCCCCA

.

Homogeneous dipole magnets

A homogeneous sector dipole has no field gradient @By

@x = 0 ) n = 0. In this case
the constants of the equation of motion become kx =

1
⇢2 and ky = 0 and by using

lim !0(sin( ↵)/ ) = ↵ the matrix RB simplifies with ⇠ = 1,  = 0 to

RB0 =

0

BBBBBBBB@

cos(↵) ⇢ sin(↵) 0 0 0 ⇢(1� cos(↵))

� sin(↵)
⇢ cos(↵) 0 0 0 sin(↵)

0 0 1 L 0 0

0 0 0 1 0 0

� sin(↵) �⇢(1� cos(↵)) 0 0 1
L
�2 � ⇢(↵� sin(↵))

0 0 0 0 0 1

1

CCCCCCCCA

. (2.56)

Strong focusing dipole magnets

With a field index |n| > 1 one speaks of a strong focusing system. In synchrotrons also
dipoles with an alternating and high field gradient can be used, to achieve a focusing in
both transverse planes without the need for additional quadrupole magnets [13]. This
concept has been realised in the Alternating Gradient Synchrotron at the Brookhaven
National Laboratory, USA (AGS) [14] (Figure 2.6) and with the Proton Synchrotron at
CERN. In case of (n > 1) () (kx < 0)^ (ky > 0) and with ⇠ =

p
|1� n| and  =

p
|n|

Figure 2.6.: Strong focusing dipole of the Alternating Gradient Synchrotron at the
Brookhaven National Laboratory, USA
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the transfer matrix for strong focusing dipole magnets is

RB+ =

0

BBBBBBBBB@

cosh(⇠↵) ⇢ sinh(⇠↵))
⇠ 0 0 0

⇢(1�cosh(⇠↵))
⇠2

� ⇠ sinh(⇠↵)
⇢ cosh(⇠↵) 0 0 0

sinh(⇠↵)
⇠

0 0 cos( ↵) ⇢ sin( ↵)p
n

0 0

0 0 � sin( ↵)
⇢ cos( ↵) 0 0

� sinh(⇠↵)
⇠ �⇢(1�cosh(⇠↵))

⇠2 0 0 1
L
�2 � ⇢

⇣
sinh(⇠↵)

⇠3 � ↵
⇠2

⌘

0 0 0 0 0 1

1

CCCCCCCCCA

and for (n < 0) () (kx > 0) ^ (ky < 0)

RB� =

0

BBBBBBBBB@

cos(⇠↵) ⇢ sin(⇠↵))
⇠ 0 0 0

⇢(1�cos(⇠↵))
⇠2

� ⇠ sin(⇠↵)
⇢ cos(⇠↵) 0 0 0

sin(⇠↵)
⇠

0 0 cosh( ↵) ⇢ sinh( ↵)
 0 0

0 0 � sinh( ↵)
⇢ cosh( ↵) 0 0

� sin(⇠↵)
⇠ �⇢(1�cos(⇠↵))

⇠2 0 0 1
L
�2 � ⇢

⇣
↵
⇠2 �

sin(⇠↵)
⇠3

⌘

0 0 0 0 0 1

1

CCCCCCCCCA

.

Edge focusing of brick shaped dipole magnets

In case of a brick shaped dipole magnet (Figure 2.7), the entrance and exit of the dipole are
rotated by the angle � =

↵
2 with respect to the transverse plane. For a particle with radial

Figure 2.7.: Two examples of brick shaped dipole magnets. (left: GSI high energy transfer
line, right: transfer channel TK to SIS18)

position deviation x0 the path within the dipole field is therefore shorter by x0(tan�) at
each edge. This corresponds to a positive angular kick

�x0 =
tan(�)

⇢
x0 . (2.57)

Using the approximation of an infinitely extended field edge and integrating over a straight
path from inside the magnet to outside on the rotated z-axis in a coordinate system rotated
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by angle �, a radial displacement leads to a negative angular kick

�y0 =
1

B⇢

Z
Bxdz = �y0

tan(�)

⇢
(2.58)

However, due to the finite nature of the boundary field in reality, the effect of the edge
angle � must be corrected. For this purpose an effective edge angle is defined:

�eff = � � g

⇢

1 + sin
2
(�)

cos(�)
K , (2.59)

where g is the pole shoe distance and K depends on the shape of the iron edge. So this
resulting kick can be represented by the matrix

R� =

0

BBBBBBBB@

1 0 0 0 0 0

tan(�)
⇢ 1 0 0 0 0

0 0 1 0 0 0

0 0 � tan(�eff)
⇢ 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CCCCCCCCA

. (2.60)

The matrix form of a brick shaped dipole magnet can be constructed by combining the
usual dipol matrix with the edge matrix at the entrance and the exit

RB� = R� ·RB ·R� . (2.61)

2.3.4. Solenoids

Figure 2.8.: Examples of solenoids (left: a 0.96T solenoid from TK, right: a solenoid for
the electron gun of a future SIS18 electron lens [15])

Solenoids are optical elements with a longitudinal magnetic field (Figure 2.8). Since this
means that the transverse velocity components vt of the particles are perpendicular to the
magnetic field Bs, particles with such components are forced onto a circular path with the
radius r around the magnetic field lines:

�m
v2t
r

= qvtBs . (2.62)
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2. Beam dynamics

After passing a distance L in the solenoid, the angle ↵ is

↵ = �vtt

r
= �qBs

�m

L

vz
. (2.63)

In linear approximation ps ⇡ pz = �mvz and with equation (2.9) follows

↵ = � BsL

(B⇢)
. (2.64)

This transverse rotation is achieved with the matrix

Rrot =

0

BBBBBBBB@

1
L sin↵
↵ 0 �L(1�cos↵)

↵ 0 0

0 cos↵ 0 � sin↵ 0 0

0
L(1�cos↵)

↵ 1
L sin↵
↵ 0 0

0 sin↵ 0 cos↵ 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CCCCCCCCA

. (2.65)

However, an additional transverse effect is added to the rotation due to the Lorentz force
in the marginal field of the solenoid. This effect results from the longitudinal velocity vz
in the radial field component Br. Because of the rotational symmetry Bx =

x
rBr and

By =
y
rBr. Gaussian law applies to the magnetic field

0 = r ·B =
@Bx

@x
+
@By

@y
+
@Bz

@z
= 2

Br

r
+
@Bz

@z
(2.66)

and so

Br = �
r

2

@Bz

@z
. (2.67)

Using the approximation that the boundary field only affects the change of direction, but
not the positions,

�x0 = � 1

B⇢

Z
Bydz = ±y

Bs

2(B⇢)
= ±yK , (2.68)

�y0 = +
1

B⇢

Z
Bxdz = ⌥x Bs

2(B⇢)
= ⌥xK . (2.69)

For the boundary field at input (+) or output (�)

R± =

0

BBBBBBB@

1 0 0 0 0 0

0 1 ±K 0 0 0

0 0 1 0 0 0

⌥K 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CCCCCCCA

. (2.70)

With K =
Bs

2(B⇢) =
�↵
2L , C = cos(KL) and S = sin(KL) the combined transfer matrix for
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a solenoid can be written

RS = R+ ·Rrot ·R� =

0

BBBBBBBB@

C2 SCK�1 SC S2K�1
0 0

�KSC C2 �KS2 SC 0 0

�SC �S2K�1 C2 SCK�1
0 0

KS2 �SC �KSC C2
0 0

0 0 0 0 1
s
�2

0 0 0 0 0 1

1

CCCCCCCCA

. (2.71)

2.3.5. Gabor lens

Space charge lenses, introduced 1947 by D. Gabor [16], are electron traps that can also be
used for radial focusing of ion beams (Figure 2.9).

Figure 2.9.: Two gabor lenses (left: the 40 cm long GL9000, right: the 2m lens GL2000).

Here a solenoid field is superimposed on an electrostatic potential to confine a homogen-
eously distributed electron cloud (Figure 2.10).

solenoid

electron cloudion beam

ground potential electrodes

high voltage anode

Figure 2.10.: Schematic representation of a Gabor lens [17, page 5]. For high field Gabor
lenses, instead of a solenoid, a pair of Helmholtz coils at the entrance and
exit of the device, is used to generate the longitudinal magnetic field.
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2. Beam dynamics

In the case of positive ion beams, the space charge of the confined electron cloud causes
an overcompensation of the ion beam’s space charge force and the resulting cylinder sym-
metrical potential has a focusing effect on the beam in both transverse planes [17]. So ion
beams can be transported and focused with high quality at relatively low field strengths
of 30� 200mT [18].

For the functionality of such a lens it is very important that the uniform electron density
and hence the linearity in radial force can be achieved in reality. The loss and confinement
conditions for a volume element in the Gabor lens are a function of the magnetic and
electric fields [18]. If the minimum magnetic field is not reached, then no electrons are
confined. The confinement is then ultimately limited by the Brillouin flow [19]. Here it is
important to set the conditions so that the electrons have constant radial drift velocities.

For the derivation of the transfer matrix, the effects of the solenoid field and the external
electric field are not taken into account, since they are approximately negligible due to the
low field strength, which is even more valid for relativistic beams. Thus only the field of
the confined electrons is considered (Figure 2.11). In a first approximation, the electron

r

r0

s

beam particle

�l

f

Figure 2.11.: The effect of an electron cloud on a charged particle. In first approximation
the electrons are in equilibrium and the electron density distribution can be
considered as homogeneous (⌘ = const) and cylindrically symmetric around
the beam axis. A small longitudinal section (�l) of this cylinder has then
the effect of a thin lens.

cloud is now to be approximated as an infinitely long cylinder with a homogeneous charge
distribution. The integral charge enclosed by a small cylinder segment of length dl with
radius r0 is Q = ⌘e⇡r20�l, where ⌘ is the electron density and e is the elementary charge.
The electric field has only a radial component ~E = Er~er. So, following Gauss’s law

I
~Ed ~A =

Q

✏0
, (2.72)

the electric flux through the cylinder surface is

Er · 2⇡r0dl =
⌘e⇡r20�l

✏0
. (2.73)
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The radial electric field is therefore

Er =
⌘er0
2✏0

. (2.74)

Considering a particle with positive charge q, which has a longitudinal velocity component
vs and a radial momentum pr, then a radial electric field causes a Lorentz force

qEr = Fr =
dpr
dt

=
vsdpr
�l

(2.75)

and so the change of radial momentum of the charged particle is

dpr =
qEr�l

vs
=

q⌘r0�l

2✏0�c
. (2.76)

From geometry follows
r0
f

=
dpr
ps

(2.77)

and so the focusing strength is

1

f
=
⌘e�l

2✏0�c

q

ps
=
⌘e�l

2✏0

q

��2m0c2
. (2.78)

With (2.9) the result can be expressed as a function of the magnetic rigidity of the beam:

1

f
=
⌘e�l

2✏0�c

1

(B⇢)
. (2.79)

Since 1/f is always negative for positively charged beams and

� 1

f
=

�x0

x
=

�y0

y
, (2.80)

a thin Gabor lens has the effect of a thin lens with focal length f in both transversal planes

RG⇤(�l) =

0

BBBBBBBB@

1 0 0 0 0 0

� 1
f 1 0 0 0 0

0 0 1 0 0 0

0 0 � 1
f 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CCCCCCCCA

. (2.81)

The effect of a long Gabor lens with length L can be approximated by N thin lens kicks
of length �l = L

N alternating with field free drifts

RG =

NY

n=1

R0

✓
1

2
�l

◆
·RG⇤(�l) ·R0

✓
1

2
�l

◆
. (2.82)

The Gabor lens GL9000 (Figure 2.9) has a length of L = 40 cm and shall achieve an electron
density of at least ⌘ = 1⇥ 10

15/m3. For a proton beam with an energy of 10MeV/u, this
results in a focal length of f = 5.54m according to (2.78) with �l = L. To get a sense
of how the accuracy evolves with number of drift-kick-drift elements, Table 2.1 lists the
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corresponding values of three matrix elements for an increasing number of slices.

Table 2.1.: Value of the resulting matrix elements R11,R21,R22 as a function of the number
of thin lenses. Already at a division of 10, the error of R21 is only in the order
of 10

�5 and the uncertainty of the focal length goes down to the millimetre
range.

number of slices N R11 R22 R21 = � 1
f f

1 0.96387935232 0.39277587046 -0.18060323842 5.54m
2 0.96404243996 0.39459821161 -0.17897236193 5.59m
10 0.96409413094 0.39517719865 -0.17845793465 5.60m
15 0.96409532467 0.39519057747 -0.17844606874 5.60m
100 0.96409625808 0.39520103897 -0.17843679093 5.60m
1000 0.96409627934 0.39520127736 -0.17843657952 5.60m

2.3.6. Accelerating gap

Interaction with an alternating radio frequency (RF) field in an accelerating gap is typically
used to accelerate charged particles in modern particle accelerators. Since the magnetic
component of the Lorentz force (2.1) is perpendicular to the velocity vector of the particles,
only1 electric fields can be used for longitudinal acceleration. The particles are accelerated
when the varying electric field in the gap is in the right phase as they move through the
gap. During the rest of the cycle, they are shielded from the then decelerating field in
field-free regions inside of drift tubes. To allow efficient acceleration of the entire beam,

Figure 2.12.: (left) Accelerating gaps and drift tubes of an IH-type linear accelerator.
(right) IH tank with internal quadrupole lens [22].

the beam must be divided into particle bunches. These bunches must have a longitudinal
separation equal to an integer multiple of �� (or resp. ��/2 for H-Type structures). This
principle is used in RF accelerators and buncher resonators of the crossbar H-mode (CH)
or interdigital H-mode (IH) type (Figure 2.12), in conventional Alvarez-type accelerators,
as well as in non-resonant variable-frequency cavities commonly used in synchrotrons.

1The law of induction provides another possibility for acceleration via varying magnetic fields. Changes
of the magnetic flux density lead to an electric curl field perpendicular to the variable magnetic field,
which can also be used for acceleration. This principle is the basis for induction LINACS [20, 21].
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It can be shown that the particle trajectory in a gap can be approximately described
by a discontinuous parameter change in the gap centre. The fundamental derivations for
the particle dynamics are based on the description of linear accelerators from P. Lapostolle
[23] and its adoptions in the lectures of T. P. Wangler [24].

Energy gain within a gap

Energy can be transferred to a particle from an electromagnetic standing wave in an RF
cavity. The energy gain of a particle on axis (r = 0) with charge q in a gap of length g

and with constant voltage U0 = U(r = 0) is

�W = qU0 . (2.83)

Since the electric field also penetrates into the field free drift tube (Figure 2.13), the path
integral between the field free areas must be calculated.

~E
A Bz

r

g

a

⇢c

0�L
2

�g
2

g
2

L
2

z

E(r = 0, z)

E0

Figure 2.13.: (left) Schematic representation of an accelerating gap of length g with a drift
tube radius a. (right) Longitudinal electric field in the gap [23, page 16].

U0 =

Z L
2

�L
2

Ez(r = 0, z)dz . (2.84)

In RF-accelerators time varying electric fields are used. The time dependent electric field
along the axis is given by

Ez(r = 0, z, t) = Ez(r = 0, z) cos (!t(z) + �) . (2.85)

The time t = 0 is chosen such that a particle experiences the maximum acceleration in the
middle of the gap at this time. If � = 0, the particle arrives in the middle of the gap at
time t = 0, if � is negative, it arrives earlier. If � 6= (

⇡
2 + n⇡) 8n 2 Z, the energy gain

within the gap is

�W = q

Z L
2

�L
2

Ez(r = 0, z) cos (!t(z) + �)dz

= q cos (�)

Z L
2

�L
2

Ez(r = 0, z)(cos (!t(z))� sin (!t(z)) tan (�))dz .

(2.86)

Using 2.84 this can be written as �W = qU0T0 cos (�). T0 is called the transit time factor
and expresses the decrease of the energy gain during the particle transit caused by the
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time variation of the electric field,

T0 =

R L
2

�L
2

Ez(r = 0, z) cos (!t(z))dz

U0
� tan�

R L
2

�L
2

Ez(r = 0, z) sin (!t(z))dz

U0
. (2.87)

Due to the time dependence T0 cos (�) < 1, the energy gain �W is always smaller than
the energy gain in a constant dc field seen by the particle at the gap centre qU0, which is
called the transit time effect. Usually one defines an average axial electric-field amplitude
E0 =

U0
L and the energy gain can be expressed in form of Panofsky’s equation [25]

�W = qE0T0L cos (�) . (2.88)

The quantity E0T is called the accelerating gradient and for a multi cell cavity, the natural
choice for L is the geometric cell length. Using the Lorentz transformation W = �mc2 with
�W = Wf �Wi = �fmc2 � �imc2 one obtains for the Lorentz-factor of the synchronous
particle (� = �s) after acceleration in the gap

�f = �i +
qE0T0L cos(�s)

mc2
. (2.89)

The transit time factor

Approximately E(z) is an even function about the geometric centre of the gap and so

Z L
2

�L
2

Ez(r = 0, z) sin(!t(z))dz = 0 (2.90)

and the transit factor simplifies to

T0 =

R L
2

�L
2

Ez(r = 0, z) cos (!t(z))dz

U0
. (2.91)

With !t(z) ⇡ !z
vz

=
2⇡z
�� , where �� =

vz
c

1
f is the distance, a particle travels within one RF

period at frequency f .

T0 =

R L
2

�L
2

Ez(r = 0, z) cos
�
2⇡z
��

�
dz

U0
(2.92)

Assuming the field has a square profile and Ez(r = 0, z) = E0 within the gap of length g

and zero outside (see Figure 2.13) the transit factor simplifies to

T0 =
sin
� ⇡g
��

�

⇡g
��

. (2.93)

To achieve maximum energy gain, T0 must be equal to 1, which corresponds to minimising
the gap distance because of limx!0

sin(x)
x = 1. In reality, a certain distance must be

maintained to avoid arcing. For the gap factor, an additional empirical correction can be
made to account for the finite drift tube edge radius ⇢c [24], introducing an effective gap

gc = g + 0.85⇢ . (2.94)
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Solution of Maxwell’s equations in the gap

The electric field on the axis can be expressed as a Fourier integral. The parameter L can
be chosen freely as long as the electric field disappears at this location. This is especially
the case for L!1 and so

U0T (kz) =

Z 1

�1
Ez(z, 0) cos (kzz)dz (2.95)

with the Fourier transformation

Ez(z, r = 0) =
U0

2⇡

Z 1

�1
T (kz) cos (kzz)dkz . (2.96)

These equations can be extended with the transit-time factor and the energy gain of off-
axis particles. In circular symmetry, electromagnetic fields can then be expressed in form
of modes and for synchronous waves, only TM or E modes interact with the particle. So
T (kz) can be considered as the amplitude function with wave number kz in the spectrum
of a stationary wave. Assuming azimuthal symmetry and in a paraxial approximation, a
complete solution of Maxwell’s equations for the electromagnetic field in the gap can be
derived [24]. The components of the electric field are

Ez(r, z, t) =
U0

2⇡

Z 1

�1
T (kz)I0(krr) cos (kzz) cos(!t+ �)dkz , (2.97)

Er(r, z, t) =
U0

2⇡

Z 1

�1
T (kz)

kz
kr

I1(krr) sin (kzz) cos(!t+ �)dkz , (2.98)

E�(r, z, t) = 0 (2.99)

and the components of the magnetic field are

Bz(r, z, t) = 0 , (2.100)
Br(r, z, t) = 0 , (2.101)

cB�(r, z, t) =
U0

2⇡

Z 1

�1
T (kz)

!

ckr
I1(krr) cos (kzz) sin(!t+ �)dkz , (2.102)

where Ii(krr) are the Bessel functions resulting from the cylindrical symmetry.

Longitudinal focusing

For the energy and phase change in the gap, one finally obtains

�W =+ qV T (k)I0(krr) cos (�)

+ qV
@

@k

⇣
T (k)krI1(krr)

⌘
r0 sin (�) , (2.103)
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where
k =

!

�c
(2.105)
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and
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Transverse focusing

The equations for the transversal plane are
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An exemplary derivation of the specific effect of a gap on the radial momentum coordinate
can be found in appendix A.2.

The transfer matrixes

Equation (A.17), the solutions for transverse position and those for the longitudinal plane
can also be represented in matrix notation. Here the formulation is shown as it is also used
in the TraceWin [10] documentation:

Rgap =

0

BBBBBBBB@

k1C 0 0 0 0 0

kxy
�f�f

k2C 0 0 0 0

0 0 k1C 0 0 0

0 0
kxy
�f�f

k2C 0 0

0 0 0 0 1 0

0 0 0 0
kz
�f�f

�i�i
�f�f

1

CCCCCCCCA

(2.109)

where

k1 = 1� qE0TL cos(�s)

2mc2�2s�
3
s

(�2s + kT 0/T ) ,

k2 = 1� qE0TL cos(�s)

2mc2�2s�
3
s

(�2s � kT 0/T ) ,

kxy = �q⇡E0TL sin(�s)

mc2�2s�
2
s�

,

kz =
2q⇡E0TL sin(�s)

mc2�2s�

(2.110)

and C =

q
�i�i
�f�f

1
k1k2

. The combined matrix for a complete cell of length L is

Rcell = R0(L/2)RgapR0(L/2) (2.111)

and for a tracking simulation it is necessary that besides the phase space coordinates of
the particles also the momentum of the bunch at the position of the gap centre is recorded.
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2.4. Emittance and phase space ellipsoid

2.4. Emittance and phase space ellipsoid

Since the particles of a bunch in phase space are all located in the neighbourhood of the
central particle, it is always possible to define an ellipsoid in phase space, whose centre is
the position of the central particle and which encloses all particles. The general equation
for a 6 dimensional ellipsoid can be written as

x2

x2max
+

x02

x02max
+

y2

y2max
+

y02

y02max
+

l2

l2max
+

�2

�2max
= 1 . (2.112)

Since the ellipse can also be tilted, the more general form for conic sections must be used.
A conic section arises as the intersection of a plane (↵x+ �y + �z + � = 0) with a double
cone (x2 + y2 = ✏z2) . This results in an equation that has the following form:

ax2 + 2bxy + cyx2 + dx+ ey = 1 . (2.113)

Applied to horizontal phase space coordinates (x, x0), this is

ax2 + 2bxx0 + cx02 + dx+ ex0 = 1 . (2.114)

In case of ac� b2 > 0, the equation describes an ellipse. Since the centre of the ellipse is at
the coordinate origin and because of rotational symmetry, the equation for (�x,�x0) must
also be satisfied, if it is satisfied for (x, x0). This is generally only the case when d = 0 and
e = 0. So eventually remains

ax2 + 2bxx0 + cx02 = 1 . (2.115)

This equation can also be expressed in matrix notation:

⇣
x x0

⌘
·
 

a b

b c

!
·
 

x

x0

!
= 1 . (2.116)

For ellipses, the determinant must be positive, so the matrix is invertible and can be written
as the inverse of a matrix that is usually called the sigma matrix �x

⇣
x x0

⌘
·
 
�11 �12
�21 �22

!�1

·
 

x

x0

!
= 1 . (2.117)

Executing the inversion leads to

⇣
x x0

⌘
· 1

det�x

 
�22 ��12
��21 �11

!
·
 

x

x0

!
= 1 , (2.118)

which can be expanded to

�22x
2 � 2�12xx

0
+ �11x

02
= det�x = ✏2x . (2.119)

The area Ax surrounded by the phase ellipse corresponds to the emittance and is equal to
Ax = ⇡✏x = ⇡

p
det�x. The Emittance is given in units of mm · mrad and is conserved

under canonical transformations.
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2. Beam dynamics

Figure 2.14 shows the corresponding maximum beam width and the maximum angular
divergence. Under the assumption of a Gaussian distribution of the particles around the

p
�11 x

p
�22

x0

�12p
�11

�12p
�22

Ax = ⇡
p
det�x = ⇡✏x

Twiss parameters

↵ = ��12✏�1

� = �11✏�1

� = �22✏�1

Figure 2.14.: The phase space ellipse in horizontal plane. In case of a 2 dimensional gaus-
sian density distribution, the edge of the ellipse can be understood as the level
curve of the 1-� emittance, if 39.3% of the particles are located within the
ellipsoid. The emittance-normalised Twiss parameters are commonly used to
characterise optical systems.

origin in the phase space, an ellipse �x can be defined in such a way that its edge encloses
39.3% of all particles. The resulting emittance then corresponds to the 1-� emittance ✏1�x .
The 2-�-emittance, which includes 86.5% of the particles, and the 3-�-emittance, which
includes 98.9% of the particles, can be derived accordingly.

✏2�x = 4✏1�x (2.120)
✏3�x = 9✏1�x (2.121)

In this case, the values xmax correspond to the standard deviation of the projection on the
x-axis. With a horizontal profile grid this can be measured directly. Analogously, a phase
space ellipsoid can be generated for all 6 dimensions,

� =

0

BBBBBBB@
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�12 �22 �23 �24 �25 �26
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1

CCCCCCCA
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�zx �zy �zz

1

CA . (2.122)

With magnetic mid-plane symmetry, the density distributions in the horizontal subspace
are approximately decoupled from the density distributions in the vertical and longitudinal
subspace. The sigma matrix thus has the form

� ⇡

0

B@
�xx 0 �xz

0 �yy 0

�zx 0 �zz

1

CA . (2.123)

41



2.5. Space charge

2.4.1. Transformation of the phase space ellipsoid

An initial phase space vector ⇡0 = (x0, x00, y0, y
0
0, l0, �0) is transformed from an element,

represented by the matrix R, according to ⇡ = R ⇡0. For a particle distribution, which is
initially described by the phase space ellipse �0, the equation (2.117) can also be written
in the form

⇡T
0 · �̂�1

0 · ⇡0 = 1 . (2.124)

Using conversion rules for matrices, the following transformations can be made

⇡T
0 · [RT

(RT
)
�1

] · ��1
0 · [R�1R] · ⇡0 = 1 , (2.125)

[R · ⇡0]
T · [(RT

)
�1��1

0 R�1
] · [R · ⇡0] = 1 , (2.126)

[R · ⇡0]
T · [R �0R

T
]
�1 · [R · ⇡0] = 1 , (2.127)

⇡T · [R �0R
T
]
�1 · ⇡ = 1 , (2.128)

⇡T · ��1 · ⇡ = 1 . (2.129)

The phase space ellipsoid can be transformed using the same transfer matrices as used for
the phase space vectors

� = R �0R
T . (2.130)

2.5. Space charge

In the previous sections, space charge effects were not considered, but especially at low
particle energies or high intensities, the defocusing effect has a significant impact on particle
dynamics.

To determine the electromagnetic field resulting from the positions and relative velocities
of all n particles of a bunch and the resulting Lorentz force on each particle, an n-body
problem would have to be solved, which is not analytically possible. Also, the summation
approximation by smaller time steps is practically not feasible in reasonable time for a larger
number of particles as usually encountered in modern high-intensity particle accelerators.

2.5.1. Particle-in-cell

One way to address the space charge problem is to use the particle-in-cell method as
usually applied in plasma physics [26]. Here, a grid is placed over the phase space. For
each time step, the charge and momentum of each particle are then distributed to macro
particles, which are placed at the intersection points of the grid lines. The distribution is
made according to the relative position of the particle to the nearest macro particles of the
surrounding cell. From then on, only the fields of the macro particles are considered. The
resulting electromagnetic field at each intersection point is calculated and the corresponding
effect of the Lorentz force on the macro particle momentum is then redistributed again to
the particles, according to their relative position to the macro particles of the surrounding
cell.

To apply this method to beam dynamics, the usual matrix calculation is first performed
for a small step �s. Then a coordinate transformation into a Cartesian or a cylindrical
coordinate system is performed, in which the Particle-In-Cell calculations are then carried
out. Afterwards the back transformation takes place.
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2. Beam dynamics

The number of macro particles can then be balanced with the computation time by
increasing the number of grid points and decreasing the step size �s as needed. Very
accurate results can be obtained in this way, but for the investigations to be made in this
work, a very large number of particle tracking simulations must be performed in a short
time. Therefore, at first a fast method that can be easily integrated into the known matrix
formalism is desirable.

2.5.2. The Kapchinskij-Vladimirskij (KV) envelop equation

For a first estimation, the beam can be described as a cylinder with homogeneous charge
distribution [27]. A cylinder with particle density ⌘ generates a defocusing radial electric
field

Er = q
⌘

2✏0
r . (2.131)

The particle current density generates an azimuthal magnetic field

B� = q
⌘

2✏0

v

c2
r . (2.132)

The resulting radial Lorentz force is

Fr = q(E + v ⇥B) =
q2⌘

2✏0�2
r . (2.133)

Ionisation of the residual gas results in partial or complete compensation of the space
charge component due to the generated electrons accumulating in the beam potential. For
this purpose, the neutralisation factor 0  fe  1 is introduced. In case of complete
compensation, this value is 1.

Fr =
q2⌘

2✏0�2
(1� �2fe)r (2.134)

Using the space charge density as an expression of beam cross section ⇡a and current I,

q⌘ =
I

�c⇡a2
, (2.135)

the space charge force can be written

Fr =
qI

2✏0�c�2⇡a2
(1� �2fe)r . (2.136)

In a field-free drift section
Fr = m�

d2r

dt2
= m�(�c)2r00 . (2.137)

The equation of motion is therefore

r00 � K

a2
r = 0 , (2.138)

where K is called the generalised perveance

K =
I

I0

2

�3�3
(1� �2fe) (2.139)
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2.5. Space charge

and I0 the characteristic current

I0 =
4⇡✏0mc3

q
. (2.140)

In general, the beam is not cylindrical and the beam envelopes are a function of s. By I.
Kapchinskij and V. Vladimirskij the problem was solved for a special phase space distri-
bution [28], where the particles are homogeneously distributed on the surface of a four-
dimensional phase space ellipsoids with semi-major and semi-minor axes rx(s) and ry(s).
In this case, as well, an unbunched beam is assumed and the charge density is

q⌘ =
I

�c⇡rx(s)ry(s)
. (2.141)

Analogous to the previous considerations, the KV equation of motion can be derived.
Combining the corresponding terms with the general solution of the mid-plane (2.22), one
obtains the equations of motion in linear approximation

x00 + kx �
2K

rx(s)[rx(s) + ry(s)]
x = 0 , (2.142)

y00 + ky �
2K

ry(s)[rx(s) + ry(s)]
y = 0 . (2.143)

Sacherer [29] and Lapostolle [30] were able to show that the KV envelope equation can also
be applied to other charge distributions with elliptic symmetry (for example, Gaussian,
parabolic, and hollow) if one expresses the semi-axes by the corresponding 2�-RMS values

rx(s) = 2�x(s) , (2.144)
ry(s) = 2�y(s) . (2.145)

In practice, the general equation of the mid-plane is solved for an element and then the
space charge matrices are applied equivalently to the drift-kick method by dividing the
element into smaller sections of length L. The corresponding 2D-KV matrix depends on
the modified envelopes on the position s and can be written as

RKV2D =

0

BBBBBBBB@

1 0 0 0 0 0

2KL
2�x(2�x+2�y)

1 0 0 0 0

0 0 1 0 0 0

0 0
2KL

2�y(2�x+2�y)
1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CCCCCCCCA

, (2.146)

which is equivalent to the effect of a de-focusing thin lens.

2.5.3. The 3 dimensional envelope equation

For bunched beams, the longitudinal component cannot be neglected and the cylindrical
approximation is not suitable anymore. Therefore the effect of the bunch length must also
be considered. The prerequisite in this case is also a particle distribution with ellipsoidal
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2. Beam dynamics

symmetry. Using the 3D-space charge parameter and the approximation for f(s),

K3 =
3qI�

20
p
5⇡✏0mc3�2�3

and f(s) ⇡
p
�x�y
3��z

, (2.147)

the RMS-envelope equations for 3 dimensions can be derived [3] to

(�x)
00
+ �xkx �

K3(1� f(s))

(�x + �y)�z
� ✏2x
�3x

= 0 , (2.148)
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= 0 , (2.149)

(�z)
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+ �zkz �

K3f(s)

�x�y
� ✏2z
�3z

= 0 . (2.150)

The corresponding space charge matrix for a drift space of length L is

RKV3D =

0

BBBBBBBB@

1 0 0 0 0 0

(1�f(s))K3L
(�x+�y)�x�z

1 0 0 0 0

0 0 1 0 0 0
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(1�f(s))K3L
(�x+�y)�y�z

1 0 0

0 0 0 0 1 0

0 0 0 0
f(s)K3L
�x�x�z

1

1

CCCCCCCCA

, (2.151)

which is equivalent to a de-focusing thin lens in 3 dimensions. Thus, the defocusing effect
of the space charge increases linearly with the current. At high energies, however, the
effect plays less and less of a role, since it decreases with ��2��3. It can also be seen that
the space charge force is particularly strong in regions of small beam cross sections (e.g.
in focal points).
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3. Optimisation methods

The optimisation of a particle accelerator usually has many degrees of freedom, since
several parameters are available for the adjustment, depending on the function of the
corresponding accelerator section. In the case of transfer lines, this includes the field
strengths of the installed optical elements or the phases and amplitudes of buncher cavities.
On the other hand, the quality of the settings can be assessed by means of the respective
beam diagnostics. These are, for example, beam positions, beam widths, beam currents or
the measured data of loss monitors or phase probes.

For further considerations an accelerator section is now abstracted as a black box, rep-
resenting a mapping of n setting parameters x1 . . . xn to m observables y1 . . . ym. The
problem of accelerator optimisation is thus equivalent to the search for extrema in nonlin-
ear functions f : Rn ! Rm, with the difficulty that the function f is noisy and generally
not analytically known. In addition, the extremum generally cannot be reached in all
m dimensions at the same time, so that from a certain degree of optimisation, a further
optimisation of one observable can only be bought with a deterioration in another. A
so-called Pareto front is formed (Figure 3.1).

y1max
y1

y2max

y2

unreachable optimum

Pareto front

Figure 3.1.: Schematic representation of a Pareto front (green) for a 2-dimensional set of
values. For both observables the maximum can only be reached at the expense
of the other. The optimum is not part of the set.

One possibility is the prioritisation of observables by means of weights and thus to select
a position on this front. For the transmission optimisation the problem of the Pareto front
can be left aside, because with the transmission T (x) = I(x)/I0 only one single observable
is needed. Thus f is reduced to a function f : Rn ! R, which in the following will be
referred to as fitness function F and must be minimised

F (x) = 1� T (x) + ✏(x) . (3.1)

The term ✏(x) is either zero or represents the parametrisation of further optimisation goals.



3.2. Gradient descent

3.1. Exhaustive search

For beam lines with few optical elements, a parameter scan over the entire parameter space
is generally possible. However, its dimension increases with each additional element. In
this context the question of a reasonable step size arises. If the step size is chosen too
coarse, the optimum may be missed. If, on the other hand, the smallest possible step
size is chosen, which corresponds to the precision of the power supply, then, for example,
the scan of a 1 kA-power supply in 1A-steps will directly lead to 1000 values and thus,
with n magnets, to 1000

n different settings to be tested. Even a rough 1% scan (step
size of (xmax � xmin)/100) leads to 100

n settings, which must be set in each case at a real
accelerator and whose effect must then be measured with at least one beam pulse. For
example, with only three quadrupoles at UNILAC (magnets can be pulsed with 50Hz), it
takes (100

3/50)s = 5.55 h. With four values this takes 100 times as long, i.e. 23 days. So
for a general optimisation a scan is not practicable, especially for longer and more complex
transfer lines.

3.2. Gradient descent

If the fitness function F (x) is differentiable, an extremum can be approximated by the
gradient descent algorithm (3.2)

xi+1 = xi � �rF (xi) . (3.2)

With each step i! i+1, the vector xi moves in the direction of the strongest descent. The
step size � is reduced each time the function value has not decreased after one iteration
step. In accelerator control, a gradient could be approximated with a scan over small
deviations of all parameters.

If one scans the parameter range of a single steerer or a single quadrupole and measures
the change of the transmission behind an elliptical aperture diaphragm placed at a fixed
distance from the optical element (Figure 3.2), one may well find a definite maximum.
However, a quadrupole doublet already has two local transmission maxima (Figure 3.3).
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Figure 3.2.: Results of single parameter scans with a matrix tracking code (on the left:
dependence of transmission on steerer angle ↵s, on the right: quadrupole scan).
In both cases the element is followed by a drift line and an elliptical aperture
limitation. Both scans show a global transmission maximum.
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Figure 3.3.: The result of a doublet scan (simulation). There are two extrema, symmetrical
with respect to the quadrupole strengths k1 and k2, where the transmission
becomes maximum. If the particle distribution of the beam is slightly asym-
metric, one of the extrema becomes the global maximum.

The number of extrema potentially increases even more when additional optical ele-
ments are used. Also certain inhomogeneous beam distributions can have a corresponding
effect. However, gradient methods are generally not suitable for finding global minima.
Since this property is necessary for the described optimisation, in the following especially
such methods are considered, which are able to escape from local extrema. Furthermore,
gradient-free methods are used for discrete, discontinuous, or noisy functions, where the
gradient is difficult or impossible to determine.

3.3. Evolutionary algorithms

Evolutionary algorithms are a class of optimisation methods that follow a stochastic, meta-
heuristic approach and whose mode of operation is inspired from the natural evolution of
living organisms. Due to the stochastic approach, convergence to the global optimum is
not guaranteed, however, very good results are shown in practice, especially when the
algorithm is specifically adapted to the dedicated problem. For the problem of minimising
a single value function on a subspace of Rn, a genetic algorithm with direct real-valued
problem representation can be used.

The genetic algorithm

Genetic algorithms (Figure 3.4, Algorithm 1) with binary representation were first de-
scribed in 1975 by John H. Holland [31]. It was shown that such an algorithm significantly
outperforms a random search. David E. Goldberg showed in 1989 [32] that this is also true
for real-valued representations if suitable arithmetic operators are used.
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3.3. Evolutionary algorithms

Initially, K genomes Gk with N random real-valued genes gk,n are generated. Addi-
tionally, a genotype-phenotype mapping xk = X(Gk) must be defined, with which the
genes are mapped into the parameter space (in the case of direct, real-valued problem
representation, this is the identity xk,n = gk,n). For all genomes, the phenotype is then
tested for fitness (in the simplest case of accelerator optimisation, this means loading the
corresponding settings into the machine and then measuring the transmission Tk). This
results in the value of the fitness function Fk = 1 � Tk. The smaller this value is for an
individual, the more successful is its phenotype with respect to transmission. The s most
unsuccessful genomes are then removed from the population (selection), while the most
successful ones are used to construct the next generation. Along with K, the selection
criterion s is a parameter of the algorithm.

Figure 3.4.: Schematic view of the standard cycle of a genetic algorithm. The process will
repeat until a termination criterion is reached.

Various mutation (Figure 3.5) and recombination operators (Figure 3.6) are available for
the exploration of the search space. In addition, it is possible to transfer the best genomes
directly into the next generation.
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Figure 3.5.: The two mutation operators M̂ using the example of gene a2 in genome G.
The function rnd(µ,�) returns a random number with the expected value µ and
the variance �2, the function rnd() returns a random value equally distributed
over the whole definition space. The value � could itself also be subject to
mutation.
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The specific performance ultimately depends on the exact choice of parameters and
operators. An appropriate genotype-phenotype mapping also plays an important role in
this context.
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Figure 3.6.: The four basic recombination operators for genetic algorithms with real-valued
representation. Additional operators are possible.

3.4. Particle swarm optimisation

The particle swarm optimisation [33] also belongs to the nature-analogue optimisation
methods and is inspired by the swarm behaviour of animals (Figure 3.7, Algorithm 2).
First, K individuals (resp. swarm particles) are randomly distributed in the n-dimensional
search space and each individual is additionally assigned to an initial velocity and thus to a
point (xk,vk) in the corresponding 2n-dimensional phase space. In each optimisation step
i ! i + 1, the value of the objective (or fitness) function is evaluated for all individuals,
analogous to the genetic algorithm. The velocities are adjusted according to equation (3.3).
Subsequently, the swarm particles are shifted by the vector vk�t. The time step �t is set
to 1 for simplicity.

vk,i+1 = mvk,i + wcr1(xk,min � xk,i) + wsr2(xmin � xk,i) (3.3)

m ... inertia parameters for the motion of the swarm particles
wc ... cognitive weighting factor
ws ... social weighting factor
r1, r2 ... randomly generated weighting factors
xk,min ... position of best value, seen by kth particle
xmin ... global optimum position, seen so far
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3.5. Simulated annealing

Figure 3.7.: Illustration of an optimisation cycle for a swarm with only two particles. The
purple line represents the fitness function F over a one-dimensional search
space and its minimum is to be found. The various weighting factors have
been omitted from this figure for the sake of clarity.

After each step, all positions corresponding to the best fitness value of each particle so
far (Fk,min = F (xk,min)), as well as the position corresponding to the best fitness value of
all particles so far (Fmin = F (xmin)) are stored. In this way, the particles move analogously
to a swarm through the parameter space with two varying attractors each, namely their
own and the global best value. In this way, the algorithm is also able to escape from
local optima and the particles accumulate with a certain probability after some time in the
global optimum. Terminal conditions can be defined analogous to the genetic algorithm.

3.5. Simulated annealing

Based on the Metropolis algorithm [34], M. Pincus developed in 1970 an algorithm for
minimisation using Monte-Carlo methods [35], which could be improved again decisively
by S. Kirkpatrick [36].

The basic principle of simulated annealing (Figure 3.8, Algorithm 3) is based on the
behaviour of physical systems which, when cooled, occupy a micro-state with the lowest
possible energy.

The probability that a state with energy E is occupied in thermal equilibrium at tem-
perature T is, according to Boltzmann statistics, proportional to

p / e
� E

kBT . (3.4)

The ratio of the probabilities for occupation of two different states E1 and E2 is therefore

p2
p1

= e
E2�E1
kBT . (3.5)

Analogously, the value of the fitness function for a certain state is interpreted as its energy,
which has to be minimised. The Boltzmann constant is set to 1. For each optimisation step
a second state x0 in the neighbourhood |x0 � x| < r is randomly selected. Subsequently,
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3. Optimisation methods

Figure 3.8.: Illustration of an optimisation cycle of the simulated annealing algorithm for
a one-dimensional problem. In practice, multiple particles are used to increase
the probability that one of them is already located in a promising region.

the values of the fitness function of both states are evaluated. If F (x0
) < F (x), then the

next optimisation step is performed for the new value x0. Otherwise, the next optimisation
step for the new value x0 is performed only with probability

p = e�
F (x0)�F (x)

T . (3.6)

S. Kirkpatrick [36] then extended the algorithm in such a way that for the temperature
a monotonically falling sequence Tt with t 2 N striving towards 0 is used. So, at the
beginning the probability is still quite high that also unfavourable neighbouring energy
states are taken. With decreasing temperature this becomes increasingly improbable. In
1994, the method was further developed towards the quantum annihilation algorithm [37],
including also tunnelling effects.

3.6. Bayesian optimisation with Gaussian processes

Besides artificial neuronal networks that have gained great reputation in solving a lot
of pattern recognition problems in recent years, the Bayesian optimisation [38] is one of
the standard machine learning techniques, which is frequently used especially for tuning
hyper-parameters or finding structure parameters of artificial neural networks.

The basis for this optimisation is Bayes’ theorem (3.7). It relates the a-posteriori prob-
ability (the probability that a hypothesis H holds, given data D) with the probability that
data D are measured, if the hypothesis H is true (Likelihood)

P (h|D) =
P (D|h) · P (h)

P (D)
. (3.7)

Starting with an a-priori probability for the hypothesis P (h), the accuracy of the predic-
tions can be iteratively improved with integrating new data. Usually, but not necessarily,
a multidimensional Gaussian distribution is used as the prior for Bayesian optimisation,
what can be well justified for physical phenomena.
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3.6. Bayesian optimisation with Gaussian processes

3.6.1. Gaussian processes

The probability density function of a multi-variant Gaussian distribution in N dimensions
(mean µ, covariance matrix ⌃) has a probability density function

p(x) =
1p

(2⇡)k|⌃|
· exp

✓
� 1

2
(x� µ)T⌃�1

(x� µ)

◆
. (3.8)

According to the Central Limit Theorem [39], the distribution of independent vector-valued
random variables converges to a multivariate Gaussian distribution. When one performs
an optimisation of parameters, to minimise empirical measurement of an observable like
transmission T = 1 � F (x), the value of F (xi), evaluated at various points xi, can be
represented as the average of a set of so called component loss functions

0

B@
F (x1)

...
F (xN )

1

CA =
1

N

nX

j=1

0

B@
fj(x1)

...
fj(xN )

1

CA . (3.9)

It can be assumed that such a vector for transmission values is approximately Gaussian
distributed (Figure 3.2), and a multidimensional Gaussian distribution should preferably
be used as a prior for Bayesian optimisation in this case. Since there are usually infinitely
many possible values for the parameters, Gaussian processes are used instead, which are
the infinite-dimensional analog of a multidimensional Gaussian.

Usually, the null-vector is used for the mean µ = 0, and the covariance matrix ⌃ is
replaced with a Kernel function K, so that the following applies to the function to be
modelled,

E(F (xi)) = 0 , (3.10)
E(F (xi) · F (xj)) = K(xi,xj) . (3.11)

Here, E is explicitly not the expected value of some statistical random distribution, but the
expression of a prior assumption that has to be made about the problem. The distribution
of a finite number of variables of a Gaussian process is again a multivariate Gaussian
distribution, and for each point x1, · · · ,xN of the parameter space, the vector

0

B@
F (x1)

...
F (xN )

1

CA (3.12)

is a multivariate Gaussian distribution, where mean µ = 0 and covariance

⌃ =

0

B@
K(x1,x1) K(x1,x2) · · · K(x1,xN )

...
... . . . ...

K(xN ,x1) K(xN ,x2) · · · K(xN ,xN )

1

CA . (3.13)

The Gaussian process can then be used as a prior for the unknown values of the loss
function f . To find now a new distribution F (x0

) at a new test value x0 in parameter
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space, a vector k0 is defined

k0
=

⇣
K(x1,x0

) K(x2,x0
) · · · K(xN ,x0

)

⌘T
. (3.14)

Using all observations made so far y =

⇣
y1 y2 · · · yN

⌘T
, with yi = F (xi), the

marginal distribution of F (x0
) can be written as

F (x0
)|(F (x) = y) ⇠ N(µ0,�02) , (3.15)

where N is a normal distribution and

µ0
= k0T⌃�1y , (3.16)

�02 = K(x0,x0
)� k0T

⌃
�1k0 . (3.17)

3.6.2. Bayesian optimisation

In Bayesian optimisation (Figure 3.9, Algorithm 4), a certain number of positions in the
parameter space are first selected according to a given criterion (usually random selection).
The objective function is then evaluated at these points. Furthermore, an acquisition
function and a kernel are defined. The kernel should be chosen to match the similarity of
two parameters assignments. Usually this is done on the basis of a deeper insight into the
problem gained from previous work or simply intuition.

The acquisition function determines the manner in which new points are selected for
acquisition. For a Gaussian process prior, the acquisition functions are generally a function
of F (x0

), its standard deviation and the best value seen so far during optimisation ybest.

Figure 3.9.: Schematic illustration of the principle of Bayesian optimisation [40, page 11].
With each additional point evaluated, the confidence interval shrinks and the
prediction approaches the objective function. In this way, new information
about the objective function is constantly incorporated and increasingly better
predictions for the minimum are obtained.
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3.7. Bound optimisation by quadratic approximation

In 2009, M.J.F. Powell presented a derivative-free algorithm using a quadratic approxima-
tion model [41]. BOBQA (Bound optimisation BY Quadratic Approximation) is a package
of subroutines based on NEWUOA [42], that can be used to find minima of ‘black-box’
functions on closed N -dimensional hypercubes.

Since a quadratic function of N variables has 1
2(N + 1)(N + 2) degrees of freedom,

the number of interpolation conditions m imposed on a quadratic approximation must be
defined in the interval

⇥
N + 2, 12(N + 1)(N + 2)

⇤
. In each iteration, m points xi in the

parameter space are automatically selected and the corresponding function values F (xi) of
the objective function are evaluated. Using confidence intervals, a quadratic approximation
Q(x) is then computed, which has the property Q(xi) = F (xi). The quadratic models
are updated periodically, allowing new information about the objective function to be
integrated continuously. For this purpose, around the parameter xmin that led to the
smallest function value Fmin = F (xmin) so far, another value F (xmin +�x) is determined
for a �x that lies in a defined confidence region around xmin. If F (xi) > F (xmin +�x),
one of the points xi is then replaced by xmin + �x. At the new location, Q(x) is now
determined again. The trust region is then successively reduced up to a given threshold.

It has been shown, that this method can outperform Bayesian optimisation in accelerator
online optimisation [43].

3.8. Other methods

An inevitably incomplete list of the most promising algorithms considered in this work is
shown in Table 3.1. In general, there are many different further optimisation methods.

Table 3.1.: An incomplete overview of the main classes of optimisation methods for non-
linear objective function in multidimensional space and their general properties
with respect to the need for a gradient evaluation and their ability to explore
areas remote from local optima.

class examples properties

gradient based gradient descend, Gauss-
Newton, BHHH, BFGS,
DFP, SR1

good convergence properties, diffi-
culties with local minima, gradient
evaluation needed

heuristic evolution strategies, ge-
netic algorithm, particle
swarm, simulated anneal-
ing

statistical methods with good ex-
ploration properties, can escape
local minima, are robust in case of
noisy data, can be adapted to the
problem, need frequent evaluation of
the objective function, have many
hyper parameters

model functions Bayesian Opt., BOBQA gradient free, evaluation of the ob-
jective function is only necessary at
a few points, have few hyper para-
meters, have difficulties with frac-
tured parameter spaces
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3. Optimisation methods

Some of them are specialisations for certain problems, such as the ant colony algorithm
for the traveling salesman problem [44], or variations of the algorithms presented in the
previous sections. For example, the hill-climbing algorithm is equivalent to the genetic
algorithm without operators and the evolution strategies [45] are similar to the genetic
algorithm without crossing over. It is to be expected that there will be further developments
in this direction, since there is a great need for fast optimisation methods in science and
technology.

Artificial neural networks have also proven to be very powerful recently and it can
be shown that such networks are generally able to approximate any given function [46].
However, the backtracking algorithm, which is used for the training, is a gradient method
itself [47] and therefore also not able to escape local extrema. It is true that there is also
the possibility to perform the learning process using a genetic algorithm [48]. But even if
an artificial neural network perfectly approximates the objective function over the search
space, it’s extremum still cannot be found without additional testing. This would only shift
the optimisation problem. Therefore, for the problem of general accelerator optimisation,
the use of artificial neural networks is not indicated.

Motivated by the use of the specific advantages of different optimisation methods, hy-
brid optimisation methods often represent a combination of different methods. Usually,
stochastic and deterministic methods are combined. However, purely stochastic or purely
deterministic combinations can also be used. In addition, statistical experimental designs,
meta models and heuristics are applied. Corresponding optimisation algorithms are often
very specialised for the respective application [49]. However, it can generally be shown
that there is no optimal algorithm that can be applied equally successfully to all classes of
problems, which is exactly the key message of the no-free-lunch theorem [50].

Table 3.2.: Terminology of genetics, mapped to the field of accelerator optimisation.

term general meaning meaning in accelerator optimisation

generation one optimisation cycle checking multiple settings for resulting
transmission

gene encoding of a specific property specific value for a particular parameter
e.g. a quadrupole strength

genome the set of all encoded proper-
ties of an individual

the set of all values of a given accelerator
setting

population the set of all genomes of a gen-
eration

the set of all settings of an optimisation
cycle

genotype the representation of an indi-
vidual as the set of its encoded
properties

the representation of a transfer line as a
set of all device parameters

phenotype real representation of an indi-
vidual in the form of its meas-
urable properties

a transfer line, with the settings corres-
ponding to the genotype and the resulting
transmission

individual a particular combination of
genotype and phenotype

a particular setting with one value for
each parameter

Ultimately, it is always necessary to analyse the given problem and to find, adopt or
design the appropriate algorithm. Therefore, in the following chapter, the presented al-
gorithms and their parameterisations are examined with respect to their performance in
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3.8. Other methods

connection with the particular problem of accelerator optimisation. For this purpose, the
terms objective function and fitness function are used synonymously. Other terms from the
evolution theory, that are used frequently in the following sections, are listed in Table 3.2.
For simulated annealing and particle swarm optimisation, the table applies analogously
if one substitutes the terms ‘gene’ with a single ‘particle coordinate’ and ‘genome’ with
‘particle position’ in parameter space.
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4. Automatic beam line tuning

Depending on the specifics of the particular laboratory and the dedicated beam quality
requirements, manual setup of beam transport paths in particle accelerators can be a
time-consuming process. This is especially the case during initial commissioning, when
determination of standard parameters is the major task, while machine and equipment
specifics are not yet very well understood and the software modelling is still at the very
beginning. A good accelerator model and a carefully executed alignment of all optical
elements is particularly important and the understanding must improve as the operation
progresses.

However, sometimes this is not easy to accomplish because the boundary conditions or
the initial beam parameters are not constant. Especially in multipurpose accelerators with
massive parallel operation, there are always situations that make readjustment necessary
or result in known settings not being reproducible. Reasons include: changing ion sources
or isotopes, changes in timing, new charge states, degradation of stripper foils, or adding
new parallel cycles or including new devices. At GSI Helmholtzzentrum, the initial setup
of a beam for a new experiment is usually estimated to take about 8 hours. In normal
operation, this situation occurs several times per week. Automation therefore has the
potential to save a lot of time and personnel resources and eventually increase availability.

4.1. Comparison of optimisation algorithms

For the following investigations, the four most promising algorithms from Table 3.1 (Ge-
netic Algorithm, Particle Swarm, Simulated Annealing and BOBQA) were compared. To
get a first overview, a simple artificial beam line with four quadrupoles and a central ac-
celerating gap (Figure 4.1) was tested, for which it is easily possible to find a solution
by manual tuning. However, due to the four quadrupoles, several equivalent solutions are
possible in this case. If a minimum excitation of the quadrupoles is introduced as a further
optimisation criterion, for example to find a solution which minimises the electrical power
consumption, then the setup is also suitable to test the abilities of the algorithms to leave
local minima.

For the given example, the search space is a hypercube with five dimensions (four quad-
rupole strengths ki and the gap voltage Ug). Using a direct real-valued representation, the
fitness function F to be minimised is then

F (k1, k2, k3, k4, Ug) = 1� T (k1, k2, k3, k4, Ug) + w ·
4X

i=1

1

4

|ki|
kmax

(4.1)

where T is the transmission and all ki as well as Ug are normalised to the range [�1, 1]
with respect to the corresponding individual limits. To minimise the power consumption,
the sum of the quadrupole strengths normalised to the maximum value and weighted with
factor w is added to the fitness function. The factor w must be chosen smaller compared



4.1. Comparison of optimisation algorithms
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Figure 4.1.: The test beam line is 5m long, contains four quadrupoles (blue and red ele-
ments) of length 40 cm each and an central acceleration gap. At the end, there
is an elliptical aperture boundary with semi axes 25 cm horizontally and 20 cm

vertically. The phase acceptance is ±5
�. A particle distribution was chosen

for which it is easy to find a setting with which the acceptance can be met.
One solution with 100% transmission is shown here. The black lines represent
1� of the distribution, the dark grey 2� and the light gray 3�.

to the minimal transmission change, because the maximum transmission is the actual goal
of the optimisation and even the smallest improvement should be weighted higher in any
case. To determine the value of T for a certain point in the search space, a matrix tracking
simulation with 1000 single particles is performed. The smallest possible change in the
transmission is then �Tmin = 0.001, which means that w = 0.001 can be used.
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4. Automatic beam line tuning

All algorithms used, provide different hyper-parameters to adapt them to problems and
to fine-tune their performance. However, the best values for hyper-parameters are not
known a priori. Thus, the problem arises that the optimisation algorithms must also
be optimised in some sense and if their parameters are not robust against changes, the
problem of optimisation is just shifted to the hyper-parameters of the algorithms. In order
to find reasonable initial values for the hyper-parameters and to be able to assess their
robustness, each of these hyper-parameters was first scanned individually in a reasonable
range. Since the nature-analog algorithms are based on statistical processes, in these cases
each simulation was done 100 times, to collect some statistics.

4.1.1. Hyper-parameter-scans

The results of the hyper-parameter scans are listed below. Not scanned were those hyper-
parameters which, with increasing value, definitely lead to an improvement of the outcome
of the respective algorithm, but also have a decisive influence on the runtime. In the case
of the genetic algorithm this is the number of individuals and in the case of simulated
annealing or particle swarm it is the number of particles. For the scan, this values were all
arbitrarily set to 100. Additionally the optimisation was stopped after the 100

th cycle. So
for each run 10

4 accelerator settings had to be simulated with a matrix tracking code.

Genetic algorithm

The mutation rate is a component of the genome and is thus itself subject to the evolu-
tionary process and does not need to be scanned. It turns out that the genetic algorithm,
in this particular example, is very robust to parameter changes. Figure 4.2 shows for all
hyper-parameters a large stable range in which a solution with maximum transmission can
be reliably found. Only �s apparently must not be chosen too high. If individuals with
too poor fitness are included in the reproduction process, this has a negative effect on the
performance of the optimisation. It is also noticeable that pr has very small deviations
from the optimum at values between 0.02 and 0.16. The crossing over probability px seem
to have no effect at all on the performance of the algorithm, at least in this example. The
values that were ultimately used for the comparison can be found in Table 4.1.

Table 4.1.: Hyper-parameters of the genetic algorithm considered as good after scan.

Parameter Description Min. Max. Best

Nkeep number of best individuals, kept for next generation
unchanged

0 20 3

�s standard deviation of the fitness of individuals se-
lected randomly for reproduction to the fitness of
best individual of their generation

0.01 1 0.15

pm mutation probability for a single gene 0 1 0.50
pr probability for a gene to be replaced by a new ran-

dom number
10

�5 1 0.10

px probability for the use of the crossing over operator 0 1 0.50
pa probability for the use of the arithmetic mean op-

erator
0 1 0.10
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Figure 4.2.: Hyper-parameter scans for a transmission optimisation of the test beam line
with a genetic algorithm. For each parameter value the optimisation was
performed multiple times. The corresponding standard deviation is also shown
in the plots.

Simulated annealing

The geometric progression Tt = t�2 was chosen as the base temperature function. The
rate at which the series converges to 0 is then determined by the parameter �t. Figure 4.3
shows that it is disadvantageous if the temperature parameter falls too slowly. However,
from about �t > 1 on, no particular influence on the performance can be observed. The
algorithm is also insensitive to the choice of r. In general, it can be stated that simulated
annealing is extremely robust with respect to hyper-parameter changes, but apparently
also has a poor performance in general.

Table 4.2.: Hyper-parameters of the simulated annealing algorithm considered as good after
scan.

Parameter Description min max best

�t time step 0 4 3.5
r radius of random movement of the particles in para-

meter space
0 1 0.1
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Figure 4.3.: Hyper-parameter scans for simulated annealing optimisation of the test beam
line. For each parameter value the optimisation was performed multiple times.
The corresponding standard deviation is also shown in the plots.

Particle swarm

Besides the number of swarm particles, the algorithm has only three hyper-parameters, the
inertia parameter m and the two weights (wc and ws). For the scans (Figure 4.4), the two
fixed parameters were set to 1 in each case. It can be noticed that the inertia parameter
is of special importance. It must not be set too low, because it has a special meaning

Table 4.3.: Hyper-parameters of the particle swarm algorithm.

Parameter Description min max best

m inertia parameter for the particles 0 2 2
wc cognitive weight factor 0 2 0.1
ws social weight factor 0 2 2
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Figure 4.4.: Hyper-parameter scans for particle swarm optimisation of the test beam line.
For each parameter value the optimisation was performed multiple times. The
corresponding standard deviation is also shown in the plots.
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4.1. Comparison of optimisation algorithms

for the ability of the swarm to leave local minima. The algorithm is quite robust against
changes of the weighting factors, however, the cognitive weighting factor should be chosen
rather smaller and the social weighting factor larger than 1.

Bound optimisation by quadratic approximation

The BOBYQA-Algorithm has only one hyper-parameter, which is the number of interpol-
ation conditions m. Its value must be in the interval [N + 2, (N + 1)(N + 2)/2], where
N is the number of dimensions of the parameter space. So, for the test example with
5 parameters, the range from 7 to 21 was scanned (Figure 4.5). Since the algorithm is
deterministic for identical start values, each simulation was done only once. For a value of
m = 14, the optimisation achieved a transmission of 100%. For the values 11,15,16 and 17
it was still 99.8%.
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Figure 4.5.: Hyper-parameter scan for BOBYQA optimisation of the test beam line.

4.1.2. Comparison

For the given example, both the genetic and the particle swarm algorithm can be used
to find parameters which, despite the statistical character of these optimisations, lead
very reliably to optimal transmission after 100 cycles. Simulated annealing, on the other
hand, achieved a maximum of 95% on average. The BOBYQA algorithm also reliably
finds a 100% solution with the correct parameters. However, the maximum achievable
transmission and the reliability with which it is achieved are not the only decisive factors.
The main factor for online optimisation of an accelerator is the number of parameter
sets that have to be tested on the accelerator in order to achieve a certain transmission.
Depending on the maximum repetition rate of the accelerator, the duration of one cycle is
the bottleneck for any optimisation. All algorithms were therefore set with their optimal
parameters and compared with each other. This time, no fixed number of cycles was
specified, but for the statistical methods a termination criterion for the transmission was
defined. Once the optimisation was stopped at T > 95% and once at T > 99.5%. The
results are shown in Table 4.4. Of the nature-analog optimisation methods, the genetic
algorithm converges the fastest. After already 5.4 ± 3 generations 95% transmission is
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4. Automatic beam line tuning

reached. Thus, a corresponding optimisation would require 540 accelerator cycles and
would be finished after 9min at a repetition rate of 1Hz. An optimisation to 99.5% would
need approx. 15min.

Table 4.4.: Comparison of the investigated optimisation methods. Each nature-analog al-
gorithm was tested twice, each with a different termination criterion. Once the
algorithm was terminated when a transmission T > 95% was reached and once
at T > 99.5%. Each optimisation was again performed 100 times. The mean
number of accelerator cycles N c, the mean integral quadrupole strength K and
the mean gap voltage U found for the tested cases are shown in the table. The
BOBYQA algorithm was run only once with the optimal parameter. Therefore,
there are no standard deviations and no cut-off value.

Algorithm Tcut N c �2Nc
K �2K U �2U

Genetic Algorithm 95% 540 300 17.40/m2
1.45/m2

0.21MV 0.02MV

Genetic Algorithm 99.5% 920 3.3 18.04/m2
0.79/m2

0.22MV 0.01MV

Particle Swarm 95% 580 3.1 17.86/m2
1.56/m2

0.22MV 0.02MV

Particle Swarm 99.5% 1500 13 18.19/m2
0.85/m2

0.22MV 0.01MV

Sim. Annealing 95% 9200 61 13.69/m2
1.61/m2

0.20MV 0.02MV

Sim. Annealing 99.5% 18600 95 14.73/m2
0.88/m2

0.21MV 0.01MV

BOBQA 100% 213 0 15.54/m2
0/m2

0.21MV 0MV

While the genetic algorithm and the particle swarm optimisation are still very close
to each other, at least for the 95% criterion, simulated annealing falls off very sharply
although the corresponding transmissions can be achieved with much less quadrupole ex-
citation. The mean voltage at the gap is also reliably lower. It seems that with Simulated
Annealing the exploration to exploitation ratio is shifted more towards exploitation, while
the minimisation of the excitation has not yet really started with the other two methods.
The genetic algorithm is therefore to be preferred among the statistical methods for an
online optimisation.

In the end, it must be said that the BOBYQA algorithm in this particular example uses
only a quarter of the accelerator cycles. Moreover, since it is a deterministic method, it
reliably leads to an optimal solution in terms of total transmission while maintaining very
low quadrupole strengths. BOBYQA is thus initially particularly suitable for accelerator
optimisation. This is why it was successfully tested off-line for finding a new optic for the
SIS18-HADES transfer line at GSI Helmholtz Centre [43]. To what extent the deterministic
character is a disadvantage in the case of noisy data, as it arises in an online optimisation,
is investigated later in the specific example.

4.2. The autotune algorithm

The genetic algorithm was selected for the first experiments on online optimisation of a real
accelerator section. As part of the Swedish in-kind contribution to the FAIR project, the
CRYRING@ESR was commissioned at GSI Helmholtz Centre in 2015 and has been ready
for initial investigations and machine studies since 2016 [51]. Since the CRYRING@ESR
has its own local injector (Figure 4.6), it can be operated stand-alone independently of the
GSI accelerator chain. During the two years long major shutdown of the GSI accelerator
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4.2. The autotune algorithm

Figure 4.6.: The local injector of CRYRING@ESR at GSI Helmholtz Centre [52].

facilities between August 2016 and April 2018 [53], the local injector provided the only
possibility to perform such a study at GSI, but also presented ideal conditions, since the
FAIR control system was already available at the CRYRING. The investigations were then
carried out in 2017 together with S. Appel et al. [54].

Three electrostatic quadrupoles and one electrostatic steerer were tuned in the low en-
ergy section between ion source and RFQ. The transmission measurement was performed
between the source transformer and the Faraday Cup in front of the RFQ. The results were
promising but not completely convincing. Due to the long settling time of the installed
electrostatic optical elements, 20 s had to be waited before each transmission measurement,
to make sure, the actual voltage has reached the desired value. In a 30min run, it was
only possible to run an optimisation for five generations and the parameter space was
limited to a narrow band around the parameters found manually during commissioning.
The maximum achieved transmission in the last generation was nevertheless only slightly
better than the randomly chosen init values. However, a significant improvement in the
mean transmission of individuals was observed over all five generations. A follow-up study
with improved tools, showed slightly improved results [55].

It was shown that online optimisation of a short transport line (approx. 6m) in a narrow
parameter band is possible to perform, using a genetic algorithms. But it became obvious,
that the CRYRING injector is not particularly suitable for fast tuning due to the slow
response of the electrostatic elements.

The UNILAC, on the other hand, is designed to run pulsed at 50Hz. Thus, it would be
theoretically possible to test fifty individuals per second, which would lead to an enormous
acceleration of the optimisation. However, the transfer lines are longer by an order of
magnitude and contain accordingly many more parameters to be optimised, but also several
diagnostic elements to measure the transmission. Nevertheless, it was very attractive to
make this investigation, because just the manual tuning of the UNILAC needs a large part
of the setup time of beams for experiments at GSI, which is usually around 10% of the
beam time available [56].
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4. Automatic beam line tuning

4.3. Online optimisation of the GSI transfer channel TK

The study was conducted in 2019 during a beam study campaign at GSI Helmholtz Centre.
The object of the investigation was a 116m long section of the transfer line from UNILAC
to SIS18 (Figure. 4.7). Starting point was the beam transformer GTK3DT4, where the
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Figure 4.7.: overview of transfer channel from UNILAC accelerator to SIS18 synchrotron
[GSI overview drawings, status 2010].

reference current I0 for the optimisation was measured. The manual setup of the transfer
line (36 parameters) usually takes 1-2 hours. Since the SIS18 allows cycle times of < 1 s

(in FAIR-booster mode 2.7Hz operation is foreseen [57]) , the transfer channel is designed
for a corresponding repetition rate and all magnets can be pulsed with 10Hz. The high
repetition rate is an ideal condition for automatic optimisation procedures.
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4.3. Online optimisation of the GSI transfer channel TK

4.3.1. Simulation

A simulation was carried out to check the general feasibility and to find the optimal op-
erating parameters for the genetic algorithm. For the particle tracking the TK Lattice
information verified by Y.El Hayek [58] (Figure 4.8) was used. The standard deviation of
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Figure 4.8.: lattice of the SIS18 transfer channel (top = horizontal, bottom = vertical):
blue elements are vertical focusing and red elements are horizontal focusing
quadrupoles, cyan elements are bending dipoles. All beam instrumentation
devices are displayed in green.

the actual current of the power supplies were measured to 0.1% for quadrupoles and 0.04%

for steerer magnets. These values were included in the simulation. The measuring accuracy
of the transformers (0.3%) was also considered in order to represent the real conditions as
correctly as possible. Again a parameter scan was carried out to find the parameter set
for the fastest possible convergence of the genetic algorithm. The optimal parameters for
the given transfer line are listed in Table 4.5.

The fitness function to be minimised slightly differs from equation (3.1)

F =

4X

i=0

ci(1� ⌧i) . (4.2)

It represents the sum of the beam losses, measured via four consecutive beam trans-
formers with the transmission ⌧i =

Ii
I0

weighted with a factor ci. Compared to the fitness
function which directly evaluates the total transmission, the slightly modified version con-
verges more reliably. The ideal value of c could be determined to c = 2.7.
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4. Automatic beam line tuning

Table 4.5.: GA hyper-parameters for TK optimisation.

name parameter description value

I number of individuals 120

Nk number of most performing individuals kept for next generation 1

�s variance of individuals chosen for reproduction (0...best, 1..worst) 0.13
pm probability of each gene to mutate 0.38
pr probability of a gene to be replaced 0.0001
pc probability for crossing over at each gene 0.52

With optimised parameters a convergence in 250 generations could be achieved. A
transmission of 90% was achieved on average after 180 generations, which corresponds to
21600 accelerator cycles using 120 individuals and so, at a repetition rate of 10Hz, the
optimisation would take 36min.

For the BOBYQA algorithm, a parameter scan was also performed with the noisy quad-
rupole strengths and currents measured from noisy beam transformers. Since BOBYQA
results are also no longer deterministic in this case, optimisation was performed mul-
tiple times for each hyper-parameter value (Figure 4.9). The best average transmission
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Figure 4.9.: Parameter scan of m with respect to total transmission.

is T = 88% and could be achieved at m = 115. In contrast to the genetic algorithm, a
transmission of T = 100% could not be achieved with BOBYQA in any case. However, m
can be adjusted such that values of T > 75% can be reliably achieved. Another advantage
over the genetic algorithm is the extremely low number of accelerator cycles required. For
the best value, only 1066 ± 71 cycles were needed, which means that the optimisation
requires only about 5% of the time needed by the genetic algorithm. Although BOBYQA
proved to be quite suitable for the usage in an online optimisation, the corresponding com-
parative study on this particular algorithm had not yet been carried out at the time of the
experiment. Therefore, the BOBYQA algorithm was not considered for the TK study.
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4.3. Online optimisation of the GSI transfer channel TK

4.3.2. Experiment setup

For the experiment a completely stripped argon beam 40Ar18+ with an energy of 8.5MeV/u

was used. In order to prevent unnecessary activation, a pilot beam was used for the optim-
isation. The beam current was reduced to less than 100 µA on the reference transformer
GTK3DT4 to additionally prevent the measuring range limits of the beam transformer
from being crossed and thus to avoid switching the measuring range during the optimisa-
tion process.

End point was the beam transformer GTK7DT3. The original intention was to optimise
the entire beam transport up to the injection point of the SIS18, but the last two trans-
formers GTK8DT7 and GTK9DT8 could not be used due to a technical defect. The total
length of the beam line decreased to 75meter and the number of tuneable parameters
reduced to 20. Another 8 magnets are locked for manual re-tuning (and thus also for
autotune), leaving 6 quadrupoles, 3 horizontal steerers, 3 vertical steerers for optimisa-
tion and 4 beam transformers that could be used for transmission measurements. Such
a strong reduction of the number of free parameters generally led to the expectation of
better performance during optimisation process.

For the beam time, the high current source was in operation, which limited the repetition
rate to fr = 1Hz. Unfortunately a promising run could not be completed due to a technical
defect. Since the remaining experiment time was only t = 40min and because t ·fr = G ·I,
the final run had to be limited to G = 20 generations.

The genetic algorithm was used with the parameters from Table 4.5. During the optim-
isation, 2400 different settings were tested with one beam pulse each.

4.3.3. Results

After the optimisation time of 40 minutes, a total transmission of T = 70% could be
achieved. Figure 4.10 shows the development of the transmission over the optimisation
process at 4 consecutive beam transformers. The constantly limited transmission between
reference transformer GTK3DT4 and GTK4DT3 suggests that the setup of the beam
line before the reference transformer was not optimal and the resulting mismatch could
not be compensated with the intermediate quadrupole doublet GTK4QD2. For the 54m

long section from GTK4DT3 to GTK7DT3 the final transmission was T = 86%. For
comparison: with manual tuning, values of up to 83% have been set up for this section
within a similar optimisation time during the FAIR phase 0 [59] physics run in 2020.

Fitness value developed as in Figure 4.11. It is not yet visible that it is approaching a
lower plateau, so it is to be expected that a longer optimisation time could result in a further
improvement. It can also be seen that the fitness function does not fall monotonically
continuously, as would actually be expected. This is due to minimal field fluctuations of
the magnets and deviations in the transmission measurement, but can also be caused by
slight changes of conditions of the incoming beam. The large rebound from Generation
11 to Generation 12, is specifically due to a short quadrupole failure. The magnet could
be reactivated after a few seconds with a reset, but all genomes evaluated during this
time, were evaluated without beam current. The measured transmissions are therefore
bogus, but were still used to evaluate fitness. Therefore, potentially good individuals have
also been screened out by this failure, while others have been evaluated too optimistically.
During the experiment, the w factor was left zero and so low magnet excitations were not
particularly preferred by the algorithm, thats why steerer magnets were not optimised to
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Figure 4.11.: Development of fitness value during the online optimisation process.

a low angle if this was not explicitly necessary to avoid losses. Therefore all profile grids
show significantly more offset than one would expect from a manual setup (Figure 4.12).

4.3.4. Conclusion & outlook

The transfer channel turns out to be an ideal application for the autotune algorithm and
should be further investigated. Both, setup time and transmission results are at least
equivalent to manual tuning and it can be expected, that any further improvement shifts
the assessment in favour of the algorithm.
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4.3. Online optimisation of the GSI transfer channel TK

Figure 4.12.: Profile grid measurements of the best setting, left - the horizontal pane left
and right - the vertical pane

The entire channel should be optimised again in full length under normal operating
conditions. For this purpose, an interruption protection must be implemented so that
after interruptions it is not necessary to start the optimisation again from the beginning.

If the SIS18 fast transformer can be integrated into the optimisation process, the in-
jection efficiency could be optimised directly. In this case the difficulty is to coordinate
the synchronous access to parameters of the new FAIR settings management system [60],
which is already in use from SIS18 downstream, and the legacy GSI control system, used
at UNILAC. If successful, further top level parameters could be used for optimisation and
thus the complete injection process could be optimised, as already suggested in [61].

A parallel running particle tracking simulation could identify settings which definitely
lead to total beam losses. The corresponding individuals should be evaluated by the simula-
tion instead by testing their settings on the real accelerator. This pre-check can potentially
reduce or even eliminate total losses, which is also desirable in terms of machine protection
and radiation safety. Such an approach would at least reduce the number of accelerator
cycles required. It has been suggested that the BOBYQA algorithm instead of a genetic
algorithm leads faster to convergence. There are also recent investigations to improve the
BOBYQA algorithm with respect to safety [62], with promising results. Preference is given
to test only settings that do not exceed a certain fitness value, which intrinsically minimises
beam losses during the optimisation process. Corresponding investigations on the transfer
channel should therefore be carried out in the future.
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Inspired by the successes in automatic tuning of accelerator settings and the improvement of
transfer line optics, the question arose whether the design of transport lines could possibly
also be partially or completely automated. In frame of this work, a corresponding study was
first presented at the international particle conference 2019 [1] and will now be summarised
in the following section 5.1. In Section 5.2, a more generalised parameterisation is developed
from this approach, which can be applied to a large class of design problems.

5.1. The genetic lattice construction method (GLC)

The goal was to find an algorithm to optimise the geometry and field strengths of the
elements of a transport line for a specific purpose. In the approach described in this
section, there are three optimisation criteria. The transmission should be maximised and,
in parallel, this goal should be achieved with as few elements as possible and with as low
field strengths as possible.

5.1.1. Genotype parameterisation

Initially, the problem was artificially limited to quadrupoles and to first-order ion optics.
The goal was to find the minimum number of quadrupoles, their optimal position within a
transport line of fixed length L and the associated field gradients. A further simplification
was to restrict the element selection first to two quadrupole types Qa and Qb with the
corresponding lengths La and Lb, with La < Lb and each quadrupole type was used for a
different area of values for the normalised integrated field gradient kl = B0l/(B⇢). These
areas are distinct and do not overlap.

area 1: (kl)0 < |kl|  (kl)a

area 2: (kl)a < |kl|  (kl)b

The transfer line was divided into n sections so that there would be room for one quadrupole
type in each section and still some space left for relative positioning. Since Qb is the longer
element, the maximum number of quadrupole magnets is

n =
L

Lb
� 1 . (5.1)

A matching genotype that can encode all solutions to this problem requires 2n genes per
genome. Even genes ⌫i represent the (kl)i value of quadrupole i and odd genes µi represent
the relative distance between the quadrupoles. The genome is therefore

G = {µ1, ⌫1, µ2, ⌫2, ..., µn, ⌫n} . (5.2)



5.1. The genetic lattice construction method (GLC)

5.1.2. Phenotype construction

The phenotype of the genome G was constructed in the following way. For all genes ⌫i,
the element Ei is either one of the standard quadrupoles or a drift D, depending on the
value of ⌫i:

0 < |⌫i|  (kl)0 =) Ei = D

(kl)0 < |⌫i|  (kl)a =) Ei = Qa

(kl)a < |⌫i|  (kl)b =) Ei = Qb

(5.3)

For quadrupoles, ⌫i is an expression of the kl value. In cases where the kl was lower than
the threshold (kl)0, a drift D was used and the length of this D was set to

li =
|⌫i|
(kl)0

La . (5.4)

In this way, continuity could be achieved in the transition from the drift line D to the
small quadrupole Qa (Figure 5.1) and a quadrupole with more focusing power is used only,

(kl)00 (kl)a (kl)b
⌫

(kl)0

0

(kl)a

(kl)b

kl

D Qa Qb

(kl)00 (kl)a (kl)b
⌫

La

0

Lb

l

D Qa Qb

Figure 5.1.: Dependence of kl (left) and l (right) on ⌫ value.

if more focusing power is really needed. The length (li) of the constructed quadrupole is
defined by its type (Ei = Qa =) li = La, Ei = Qb =) li = Lb) and its strength can be
calculated from

ki =
⌫i
li
. (5.5)

Table 5.1 contains the properties of the standard element types as they can be extracted
from the genome. Once the standard quadrupoles are constructed, the distances between

Table 5.1.: Standard elements Ei (quadrupoles and drift).

element Ei condition length li strength ki

D 0 < |⌫i|  (kl)0
⌫i

(kl)0
La 0

Qa (kl)0 < |⌫i|  (kl)a La
⌫i
La

Qb (kl)a < |⌫i|  (kl)b Lb
⌫i
Lb
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the elements (and therefore their positions) are calculated. The remaining space is

Lr = L�
nX

i=1

li (5.6)

and the distances between the elements are proportional to the share of µi,

di =
µiPn
i=1 µi

Lr . (5.7)

5.1.3. Fitness evaluation

A given genotype had to be tested with regard to its fitness. Therefore the phenotype
or rather the lattice of the transfer line was constructed for each genome. If the solution
should match a given acceptance, an additional aperture was appended. Subsequently m

particles with a given distribution were tracked through each solution and the following
indicators were collected:

Lp ... the flight distance for each particle
T ... the overall transmission (Nend/Ninit)
Nq ... the resulting number of quadrupoles
⌃|kl| ... the sum of absolute value of strengths

The evaluation function for each genome F (G) was chosen to be the weighted sum of all
indicators normalised to 1:

F (G) = !1 · (1� (1/m) · ⌃p(Lp/L))

+ !2 · (1� T )

+ !3 ·Nq/n

+ !4 · ⌃|kl|/(n · (kl)b) .

(5.8)

The weights !i can be chosen according to the priorities of the different indicators. A
genetic algorithm was used to minimise F .

5.1.4. Results

The developed algorithm has been tested against theoretical cases (trivial, doublet and
target focusing) and for the transfer line between SIS18 and HADES experiment [63]
at GSI. A detailed discussion of the results can be found in [1] but should be briefly
summarised here again.

Theoretical test cases

In the trivial case, the solution was searched for a transfer line, which for a given particle
distribution is short enough that a complete transmission is possible even without addi-
tional focusing elements. The algorithm was able to achieve this result reliably in each test
run.

In the second test case, the length L was longer, so that additional focusing was needed
in both planes. The algorithm was able to find two solutions with quadrupole doublets.
In 70 % of the runs, solutions resulted where the doublet starts with a vertically focusing
quadrupole and in 30 % with a horizontally focusing quadrupole. The reason for this
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asymmetry was that the required quadrupole strength for the first solution was slightly
lower due to a corresponding asymmetry of the particle distribution.

In the third test case, a 100m transfer line was used with a circular aperture limitation of
5mm (diameter) at the end of it. Three solutions have been found with 100 % transmission,
where the prevalence of solutions could be suppressed by varying the weights !i.

Transfer line SIS18 to HADES experiment

The last case of study concerned the 160m long transfer line that transports the beam
from the SIS18 synchrotron to the HADES experiment [63]. This transfer line have been
under review [64], as well as all the existing GSI transfer lines , due to need for improving
the transmission when running at high intensity [65]. The algorithm assumed a 5 cm long
target with 2.2mm diameter [66] at the end of the transfer line. The result obtained with
100 % transmission and smallest F is shown in Table 5.2 against the present transfer line.

Table 5.2.: Both HADES lattices (length ca. 160m), the existing version (a) and the
solution from the algorithm (b), blue are vertical focusing quadrupoles, red
elements are horizontal focusing quadrupoles and cyan elements are bending
dipoles.

# lattice

a

b

The result for HADES beam line varies significantly from the existing version. The
integral quadrupole field and the element number (14 vs. 20) is much lower and the strong
quadrupole (Qb) is only used twice. Still, one wouldn’t use this lattice in practice. One
reason is, the beam line is also used for other purposes. The dipoles distribute the beam to
other target stations and many optics must be supported, including for example one for the
pion production. The line is also designed for fast extracted beams, where the horizontal
emittance is higher by a factor of 6. One must also consider that for heavy ion operation,
the found kl-values result in much higher field strengths, which may then require the use
of stronger or possibly additional quadrupoles.

So, even if especially the HADES example is not of much practical use, the investigation
showed that it is in principle possible to design transfer lines automatically. However, it is
important to specify the boundary conditions and the purpose of the transfer line exactly
and calculate with realistic particle distributions. In the following, the method is further
developed for more realistic applications.
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5.2. Generalisation of the genetic lattice construction method

The further development of the automatic lattice construction method shall now be more
adopted to questions that are asked in reality. Usually, there are 3 basic types of requests
on beam dynamics with respect to transfer lines.

1 The objective is to identify a new optics or a new general setting for an existing
facility to either improve performance or prepare for an application for which the
existing facility was not originally designed.

2 How an existing transfer line can be upgraded in the most cost effective way to either
improve performance or prepare for a new application.

3 The design of a completely new transfer line with specific imaging properties for
given particle distributions at the entrance.

As has been shown, the first question can usually be solved excellently using an autotune
algorithm. The other two problems are usually solved in iterative processes that require a
certain amount of experience, while the problem itself is often split in logical sections. In
both cases, one or more initial particle distributions are specified, which the transfer line
should match to a given acceptance. In addition, there may be other boundary conditions,
such as the space available for additional elements or specified element types and their
properties. In the second case, a large part of the transfer line may be fixed. In the end, a
beam line has to be designed which satisfies all the boundary conditions and ensures optimal
beam transmission. It would be ideal if the solutions found, proved to be particularly stable
against displacement of elements or field errors in the error studies, which are usually
carried out in the final design phase.

5.2.1. Adaptations to the parametrisation

The procedure is analogous to that of the autotune algorithm or the first version of Genetic
Lattice Construction. First, a suitable parameterisation and a fitness function must be
found whose minimum represents the ideal solution of the given problems of the second
and third type.

Given a transfer line of length L, in which at least one section of length Lopt is free for op-
timisation. If L = Lopt, there are no restrictions on the position of new elements. Further-
more, there is a set of µ freely positionable beam manipulating components {C1, · · · , Cµ}.
These can also be meta-devices consisting of a fixed combination of components. Then
those ⌫ components must be added whose positions are fixed from the optimisation point
of view. In total, these are N = µ+⌫ components. Each component Cn 2 {C1, · · · , Cµ+⌫}
has a certain number of �n free parameters xn,1 · · ·xn,�n . These parameters can be for
example quadrupole strengths, gap voltages but also the length of elements. The total
number of free parameters is

⌘p =
NX

n=1

�n . (5.9)

In addition, a position must now be defined for each movable component from {C1, · · · , Cµ}.
The possibility of arbitrary permutations of the components is to be contained implicitly.
For this purpose, a relative position sn 2 [0, 1] is defined for each component.
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The actual position ln results then from

ln = sn ·
 
Lopt �

µX

n=1

Ln

!
(5.10)

where Ln is the length of the component Cn. Thus, the number of free parameters increases
by µ due to the free positioning,

⌘ = ⌘p + µ . (5.11)

Each solution of the problem corresponds to a point in the ⌘-dimensional vector space.
More precisely, it is a subspace of R⌘, since the parameters are usually normalised to the
domain of [�1, 1], respecting the device limits. It actually corresponds to a point

x =

0

BBBBBBBBB@

x̃1
...

x̃⌘p
s̃1
...
s̃µ

1

CCCCCCCCCA

(5.12)

in the ⌘-hypercube. Here x̃n and s̃n are respectively the values of xn and sn normalised
to the interval [�1, 1]. This parametrisation maps to a large class of lattice construction
problems. For example, if one wishes to position a quadrupole doublet as a fixed meta-
component in a free section, then its two quadrupole strengths would be free parameters,
hence �1 = 2. Moreover, µ = 1, ⌫ = 0 and N = 1. So there would be a total of ⌘ = 3

free parameters describing this problem completely, namely the two quadrupole strengths
xq1 and xq2 and the relative position of the doublet s. Each possibility corresponds to a
position

x =

0

B@
x̃q1
x̃q2
s̃

1

CA (5.13)

in the 3-dimensional parameter space. Another example would be a section where a triplet
is fixed (⌫ = 1 and �1 = 3) and a buncher cavity (�2 = 1) and another triplet (�3 = 3)
should be added (µ = 2). The number of components is then simply N = 3 and the number
of free parameters is ⌘ = 9. Each solution of the problem corresponds to a position
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0
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in the 9-dimensional parameter space. Thus, for each problem of this class there is the
corresponding parameter space and for each point in this space a corresponding fitness
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value F (x) can be determined by constructing the intrinsically described lattice (phenotype
construction) and performing a tracking simulation with the given particle distribution.
At the end, all particles are examined to verify that they survived the transport distance
and matched the desired target acceptance. From this information a corresponding value
for the transmission T is determined. The simplest fitness function is then the important
equation

F (x) = 1� T (x) + ✏(x) (5.15)

for which only a minimisation with the described algorithms has to be performed after-
wards. The quantity ✏ is either 0 or an expression for the excitation, if minimisation of the
energy consumption is to be emphasised. This could be a norm in the sub vector space
R⌘p , for example

✏(x) = ||(x̃1, · · · , x̃⌘p)|| =
q
x̃21 + · · ·+ x̃2⌘p . (5.16)

This method can also be used to minimise the number of components, if necessary. If there
are solutions, where the value of a parameter of a component is negligibly small, then it
is recommended to accomplish a further optimisation without this component. One could
also define a cutoff value and leave the element out of the lattice construction, if its value is
fallen below. In general, the simulation speed is not critical for the offline design, but it is
nevertheless important to find the most efficient hyper parameters, otherwise the number
of simulated macro particles and thus the accuracy may be limited too much.

Another interesting possibility is to include positioning errors or field errors in the phen-
otype construction of the lattice, to test whether an error-tolerant solution could be found
in this way.

In the limit case of a simulation with an infinite number of particles, the fitness function
is continuous everywhere, except for the few positions where a swapping of elements takes
place. This is a great advantage for optimisation, because small changes in the parameter
space result in small changes of the fitness function, which is for example a justification
for the use of Gaussian processes as in the BOBYQA algorithm. If the relative position of
the free components is fixed and a swapping is not necessary, then F is even continuous
everywhere. So if the permutation is not necessary, it should not be enabled. The definition
of sn must then be adapted accordingly in such a way that sn describes the distances
between the components, instead of their relative position.

However, when describing the particular problem, one should always try to minimise
the number of dimensions. For example, if the focal length before and after a quadrupole
triplet should be the same and thus the first and the last quadrupole should have the same
gradient. In this case, it makes no sense to tune three parameters in a triplet where two
should be sufficient. The same is true for re-buncher cavities with multiple gaps whose
voltages have a fixed ratio between them. So here it is sufficient to optimise one parameter,
the total voltage.

5.2.2. Test cases

The principle is to be demonstrated in the following with two simple artificial test cases.
The results of different algorithms are compared once again.
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5.2. Generalisation of the genetic lattice construction method

A single free quadrupole

Given is a drift section of length L = 20m at the end of which an aperture limitation is
attached. This has a diameter of 4 cm horizontally and 10 cm vertically. An asymmetric,
divergent particle distribution is chosen such that most of the beam is lost on the aperture
limitation (Figure 5.2). For a quadrupole of length Lq = 1m, the goal is to find a position
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Figure 5.2.: Representation of the initial situation. The beam line is 20m long and has
a circular cross section with 20 cm diameter. The beam distribution used is
divergent and does not match the final aperture limitation. The transmission
is only 31.8%. Within the yellow area, the ideal position and strength for a
quadrupole should be found

.

l = s·(L�Lq) within this distance and a gradient (kLq) at which the transmission becomes
maximum. According to equation (5.10) and (5.12) the parameters

x1 = (kLq) , (5.17)

s1 =
l

(L� Lq)
(5.18)

are used again for the general optimisation. Thus, it is a 2-dimensional problem F =

F (x̃1, s̃1) = 1�T (x̃1, s̃1). The problem is chosen this way because it can still be illustrated
very well via a parameter scan (Figure 5.3). Both parameters were scanned within their
definition range in steps of � = 0.005. For each pair of parameters, a particle tracking
simulation was done with 1000 particles and the resulting transmission was determined.
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Figure 5.3.: The result of the parameter scan. Shown is the value of the fitness function
depending on the normalised parameters s̃1 and x̃1. The minimum is located
at x̃1 = �0.35, s̃1 = 0.135

For the scan, 400 settings were tested on 400 different lattices. Thus 160000 tracking
simulations had to be performed.

As can be seen in Figure 5.4, there is a large range with respect to position and field
strength in which similarly good transmissions can be achieved. Position and field strength
are strongly correlated in this range. In the end, however, there is only one optimum. The
best possible transmission in this grid is T = 74.5% and is located at the position

x̃1 = �0.35 ,
s̃1 = 0.135 .

The corresponding position of the quadrupole is l = 10.78m and the normalised quadrupole
strength (kLq) = �0.175/m2. Since in this case no secondary minima exist, the minimum
of the fitness function is very reliable and relatively easy to determine. Even a gradient
method can be considered.

The optimisation was performed with different methods. The results are listed in Table
5.3. There is a large variance in the number of necessary optimisation cycles and thus
the number of necessary tracking simulations for all natural analog meta-heuristics, which
is due to the fact that there is a large chance that the randomly selected initial values
are already relatively close to the optimum. In these cases all algorithms are converging
very quickly. Even though the results are only comparable to a limited extent due to the
arbitrarily selected hyper-parameters, the picture is similar to all previous investigations.
It can be said that the genetic algorithm is very reliable and converges fastest among
the statistical methods. The BOBYQA optimisation is nevertheless significantly faster
and requires 2 orders of magnitude less tracking simulations. However, depending on the
choice of starting points, BOBYQA is not very reliable in finding the correct minimum.
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Figure 5.4.: Representation of the solution with the maximum achievable transmission of
T = 74.5% in this test case, as it is also found by all nature analogous al-
gorithms. The black lines represent 1� of the distribution, the dark grey 2�
and the light gray 3�.

Table 5.3.: Comparison of the optimisation methods with respect to their performance.
All heuristic algorithms are reliably able to find the optimum and differ only
in the number of necessary optimisation cycles and therefore in the number of
necessary tracking simulations. For the comparison, no special optimisation of
the algorithms’ hyper-parameters was performed. Experience-based, reasonable
default values were chosen. Nevertheless, it is reasonable to assume that in some
cases better performance would be possible after tuning the hyper-parameters.
The table contains the mean transmission value T and the best transmission
Tmax found by the algorithms within 10 optimisations.

optimisation method T Tmax # tracking simulations

gradient descent 74.13% 74.30% 63± 12

scan � = 0.005 74.50% 74.50% 160000± 0

genetic algorithm 74.43% 74.50% 1790± 1048

particle swarm 74.50% 74.50% 7500± 6100

simulated annealing 74.48% 74.50% 8600± 5800

BOBYQA 72.78% 74.30% 26± 6
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5. Automated lattice construction

The same is true for the gradient algorithm. The cause is the same in both cases and it is
related to the finite number of particles used in the tracking simulations. When determining
the gradient, it inevitably comes to the point that the selected step size is either too small
to cause a difference in transmission, causing the gradient to disappear, or it is too large
and the minimum is repeatedly skipped, causing the gradient to be determined too low.
When using model functions, a basic assumption is that the functions are continuous and
there are no jumps. Of course, this is only true in the limit case of infinitely many particles.

A buncher and two quadrupoles

In the second example, two quadrupoles and a re-buncher are to be tuned. While one of the
quadrupoles gets a fixed position (Figure 5.5), the position of the other one, as well as that
of the re-buncher, can be chosen freely. For simplicity the buncher has only one accelerating
gap. The particle distribution is again chosen such, that it cannot be transported to 100%
without additional elements. A 2MeV/u bunched proton beam is simulated with 1mA

pulse current considering linear space charge forces. The base frequency of the buncher is
set to 100MHz.

The number of free parameters in this example is ⌘ = 5 and therefore the solution set is
a 5-hypercube. Each solution can be described by a point

x =

0

BBBBB@

x̃q1

x̃q2

x̃U

s̃q2

s̃buncher

1

CCCCCA
(5.19)

in the penteract. Due to the high dimension, the problem can no longer be solved by a scan.
A scan, equivalent to the first example, would require 10

13 particle tracking simulations.
Assuming that such a simulation would take 1ms, the scan would take 317 years to com-
plete. Illustrating a 5-dimensional problem is also difficult. However, if three parameters
are kept fixed, at least projections on different 2-dimensional subspaces can be generated
and also visualised (Figure 5.7).

The study was now conducted in such a way that a hyper-parameter scan was first
performed in rough steps for each algorithm. The associated tracking simulations were
performed with only 100 particles and no space charge. With the best hyper-parameters
found, the test case was then optimised. The best solution is shown in Figure 5.6.

Although it is no longer possible to verify that this solution is the optimum, without
performing a reference scan, it seems very plausible. If the phase acceptance were exactly
identical with the initial phase width of the beam, then the gap would have to be located
exactly in the centre. However, the phase acceptance is slightly larger, so a position slightly
in front of, or behind the centre is reasonable. The second quadrupole must be positioned
as far forward as possible, so that the beam can be well focused transversely through the
drift tube of the re-buncher. Table 5.4 once again compares the performance of the different
algorithms for this particular example.

Given 5 dimensions, the combinatorics yields
�5
2

�
= 10 possible 2-dimensional subspaces.

To get a better understanding of the problem and its parameter space, scans were per-
formed for 4 different projections on 2-dimensional subspaces while keeping the remaining
dimensions fixed (Figure 5.7). The projection on the quadrupole strengths F (x̃q2, x̃q1)
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Figure 5.5.: Representation of the initial situation. The beam line is 150 cm long and has
a circular cross section with 12 cm diameter. The beam distribution used is
divergent and does not match the final aperture limitation. The transmission is
only 3.3%. Within the yellow area, the ideal position for a second quadrupole
and a re-buncher should be found, while also tuning the quadrupole strengths
and the gap voltage.

shows directly that F has more than one minimum. Moreover, both local minima in this
projection are far from the limits with respect to the quadrupole strengths. Thus, one could
use much weaker quadrupoles in this example. However, further insight can be gained from
the other projections. For example, the minima of F (s̃q2, s̃b) and F (x̃q2, s̃q2) are both at
the edge, where s̃q2 = �1. So, to improve the transmission, one should try to install the
second quadrupole even further forward, even if it deviates from the requirements spe-
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Figure 5.6.: Representation of the best solution that was found. The second quadrupole
is positioned directly at the first possible position in this solution. The gap
is located approximately in the middle. The transmission of this solution is
T = 48.1%.

cified initially. In the projection F (s̃b, x̃b) one can see that both, position and voltage of
the re-buncher cover a large range with maximum fitness. So the example provides some
flexibility in the design.

So, for a found solution, it can be useful to run some scans of subspaces to study the
effects of boundary conditions and find optimisation opportunities that lie outside the
original problem specification.
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5.2. Generalisation of the genetic lattice construction method

Table 5.4.: Comparison of the optimisation methods with respect to their performance. In
this case, too, the genetic algorithm is best suited to find the optimum, but
the BOBYQA optimisation requires much fewer tracking simulations, while its
solutions never reach the quality of those found by the genetic optimisation.

optimisation method T Tmax # tracking simulations

genetic algorithm 47.0% 48.1% 37440± 0

particle swarm 43.3% 47.0% 16900± 6568

simulated annealing 44.5% 47.0% 51290± 23261

BOBYQA 12.3% 44.3% 123± 13
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Figure 5.7.: The result of 4 parameter scans of 2 dimensional sub-spaces of the parameter
space with respect to the fitness function. (top left: scan of the quadrupole
strengths, top right: position of the second quadrupole vs. buncher position,
bottom left: position vs. strength of the second quadrupole, bottom right:
position vs. voltage of the re-buncher)

Integration of error studies

For error studies, a lot of simulations have to be performed in later design phases to
understand the influence of field or positioning errors and to minimise them. For example,
in the design of the prototype for the replacement of the post-stripper Alvarez accelerator
at GSI-UNILAC, 1000 lattices with different positioning errors were generated and in this
way it was tested how stable the design is against alignment errors in terms of emittance
growth [67]. Therefore, it seems obvious to include the error studies right away in an
automatic design.
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The idea is now to introduce random positioning errors for all optical elements each
time the phenotype construction of the lattice is done during the optimisation process.
The hypothesis is, during the process only those solutions will prevail in the long term
that are less susceptible to positioning errors and therefore still produce good transmission
in the subsequent cycle.

This is now to be investigated with the preceding example. First, an error study was
performed for the best solution found so far (Figure 5.8). A total of 50000 transfer lines
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Figure 5.8.: The histogram of the error study using the result from example 2 of the pre-
vious section. A total of 50000 accelerators with random alignment errors
were generated and the transmission was measured. The mean value of the
transmission is T = 46.71%.

were generated and all optical elements were provided with positioning errors normally
distributed around the ideal position. The mean deviation from the ideal position in all
directions corresponds to � = 0.1mm, concerning the angles � = 0.1mrad. All spatial
directions and all rotational axes were varied. Each tracking simulation was performed
analogous to those in the optimisation with 1000 particles using the same distribution. As
expected, it can be seen that the ideal transmission with positioning errors is less likely to
be achieved. The transmission is between 44% and 48.1% the mean value is T = 0.467.

Subsequently, the complete optimisation of the transport line was performed again, with
equivalent positioning errors being integrated directly during the evaluation. The best
result of this optimisation was then subjected to another error study. The comparative
distribution of the transmission can be seen in Figure 5.9. The mean value is T = 0.467

and therefore identical to that of the unperturbed optimisation. An interesting result can
be found at the upper end of the distribution. The perturbed optimisation apparently
produces a result which, in the case of misalignment, also makes higher transmissions
possible than are at all possible with an unperturbed machine. But this result is a feature
of the chosen example and cannot necessarily be generalised. The optimal solution is in
the parameter space in some dimensions at the edge of the penteract. A de-adjustment
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Figure 5.9.: The histogram of the error study using the result of the perturbed optimisa-
tion. A total of 50000 accelerators with random alignment errors were again
generated and the transmission was measured. The mean value of the trans-
mission is the same as for the unperturbed optimisation T = 46.71%.

in this case can therefore lead to the realisation of solutions outside the penteract, which
in the end allow a higher transmission. As a measure of the robustness of a solution, the
standard deviation from the unperturbed maximum transmission can be used. This can
be found next to the standard deviation from the mean transmission in Table 5.5. An

Table 5.5.: Comparison of the lattice optimisation with and without position errors. The
table contains the respective mean values of the transmission, the standard
deviation from the undisturbed optimum and the standard deviation from the
mean value.

optimisation T
p
EW ((T � Topt)2)

q
EW ((T � T )2)

without errors 46.71% 1.7% 1.00%
with errors 46.71% 1.6% 0.95%

optimisation with position errors leads in this case to a slightly more robust transfer line
with respect to positioning errors. To what extent the result can be generalised to other
configurations remains to be investigated. A positive effect can be assumed if there are
2 or more similarly good solutions, and the optimal solution in comparison can only be
realised on a small area of the parameter space or even a point in the parameter space,
while alternative solutions have a larger area of the parameter space available. So it makes
sense in any case to perform the optimisation once with and once without disturbances
and to compare the results in error studies.
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5. Automated lattice construction

5.3. Applications

In the following, the presented method is applied to two problems, each of which comes
from a real accelerator project.

5.3.1. Optimisation of the CERN H2-beam line using Gabor lenses

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) [68] is a multi-purpose experi-
mental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-
nucleus collisions at the North area of CERN Super Proton Synchrotron (Figure 5.10).
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Figure 5.10.: The CERN accelerator complex by Forthommel.

After extraction, the beam is transported over about 1 km. The last part of transfer
line from SPS towards NA61 area (H2-line) is a precise magnetic spectrometer. The target
is located 8meter below the surface and is followed downstream by a fragment separator
with an acceptance of dp

p = 2%. The transfer line was optimised for several purposes and
optimised optics for different physics configurations have been prepared which also led to
very fast optimisation times. The H2 beam line is prepared to transport charged particles
in a wide range of momenta from ca. 30GeV/c up to the top SPS energy of 400GeV.

Presently the NA61/SHINE collaboration is exploring the potential physics opportunities
for NA61 in the 1-20GeV/c region. But for lower momenta ( 30GeV/c), the line was
considered not to be optimally designed. Those energies are produced with very large
transverse angles. So the spot size and divergence at NA61 is affected. Additionally, old
power supplies with a deviation of 0.2A could lead to dp

p = 0.6% and corresponding 50%

acceptance at 10GeV/c and even worse with lower momenta. The Idea is, to create the
low energy particles closer to the experiment using a secondary target, momentum-select
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Figure 5.11.: Schematic view of the CERN north area [69]. The transfer lines H2-H8 are
located in the Experimental Hall North 1 (EHN1), a 300m long industrial
type building. H2 contains a precise magnetic spectrometer, designed for
high momenta >300GeV/c. H4 is considered to be the test beam line for a
possible upgrade with Gabor lenses.

particles between 0.5-12GeV/c and transport them to the final target. In any case, such a
production target will produce particles with high momentum spread and also widen the
transverse size of the beam.

First particles lost are usually part of the halo. So one option is, to equip the H2-
line with Gabor lenses to open a transport channel also for halo particles and therefore
improve the transmission significantly. The focal length of such a lens can be estimated
using equation (2.78). For four Gabor lenses of 2m length each, with an electron density
of ⌘ = 1⇥ 10

15/m3 the effect on a proton beam of different energies is listed in Table
5.6. In all high energy cases, the focal lengths are relatively large. For momenta between

Table 5.6.: The estimated focal lengths for a proton beam with different beam momenta
in a Gabor lens of 8m and an electron density of ⌘ = 1⇥ 10

15/m3.

Momentum Energy � � focal length

1GeV/c 432.9MeV 0.729256 1.46147 10m

5GeV/c 4.149GeV 0.982845 5.42196 68m

10GeV/c 9.106GeV 0.995627 10.7047 138m

20GeV/c 19.08GeV 0.998901 21.3392 276m

80GeV/c 79.07GeV 0.999931 85.2690 1105m

140GeV/c 139.1GeV 0.999978 149.214 1934m

80GeV/c and 140GeV/c this is 1-2 km. So for high momenta the expected focusing effect
is rather low, but for the aimed low energy beams, the installation of Gabor lenses could
avoid the need for the installation of additional quadrupoles, especially since the charge
density of a Gabor lens is a tuneable parameter. Gabor lenses also have the advantage that
they focus the beam in both planes simultaneously. Additionally the focal lengths depends
linearly on the charge density. A factor of two shortens the focal length at 80GeV/c for
example by half a kilometre.

It can be assumed that the best position of the lenses will be momentum-dependent
and one has to place them one focus length before the final target, if possible. Since the
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distance between collimator 9 (which is the starting point of the H4 lattice) and the final
target is only about 200m, an optimal focusing effect can be expected for all momenta
below 15GeV/c. Which means that for higher momenta, they should be placed close to
collimator 9. First simulations were done under this assumption, using the H4 beam line,
which is considered to be the test bench for a possible upgrade with Gabor lenses. The
lattice data are imported from H4 Beatch-file [70] and the particle distribution was derived
from Twiss-parameters of the official H4 filter mode optics [71] starting with a horizontal
focus at collimator 9.

Positioning of a single Gabor element

To keep the dimension of the parameter space small, a single Gabor lens of 8m length shall
be positioned first. Since a Gabor lens changes the optics of the transfer line, at least the
last two quadrupoles at the beginning of the drift line have to be tuned as well to allow a
reasonable comparison of the results. Thus, it is only a 3-dimensional problem and

x =
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The goal of the optimisation is to achieve a beam as parallel as possible on the target. To
translate this into a transmission, an artificial aperture limitation must be inserted before
and after the target. An aperture limitation with a diameter of 1 cm and a total length of
10m limits the maximum angular divergence at the target to 1mrad. In this way a rather
parallel beam with a focus on the target is automatically achieved, by just optimising
transmission. The degree of parallelism can then be adjusted by varying the diameter of
the aperture limitation. Ultimately, a tradeoff between parallelism and transmission has
to be found or respectively, the maximum angular divergence of the beam at the target
must be specified beforehand.

For an estimated particle distribution, the optimisation was performed for beams with
momenta of 1GeV/c, 5GeV/c, and 10GeV/c, respectively. The result for 5GeV/c is
exemplarily shown in Figure 5.12 and the corresponding values for all three momenta
are listed in Table 5.7. The respective distances of the Gabor lenses from the target

Table 5.7.: The results of the optimisation. Listed are the ideal positions of the Gabor
lens for different beam momenta, the strengths of the two quadrupoles and
the maximum transmissions achievable with this lattice. For comparison, the
maximum achievable transmission without an additional Gabor lens is 15.71%.

Momentum sgabor kq1 kq2 Tmax

1GeV/c 170.95m �0.0059/m2 �0.0106/m2
68.93%

5GeV/c 125.64m �0.0191/m2
0.0031/m2

51.50%
10GeV/c 101.45m �0.0178/m2

0.0015/m2
27.93%

correspond approximately to the estimates from Table 5.6. The effect of the Gabor lens on
the transmission is very clearly visible in all three cases. As expected, the effect is much
stronger at low energies.
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Figure 5.12.: Optimised optics of the last section of the H4 beam line for a 5GeV/c proton
beam. An 8m long Gabor lens (brown) was used, which was positioned 125m

behind the starting point (collimator 9). The transmission could be increased
from 16% to 52%. The target MWPC0910 is located at position 187.27m.

Free positioning of all 4 Gabor elements

The four actually available Gabor lenses have a length of 2m each and can be positioned
individually. The minimum distance for the mount is 0.5m. In this second optimisation,
the positions of all four lenses plus the two quadrupole strengths have now been optimised.
The dimension of the parameter space thus increases to six.

The optimisation was performed for different beam momenta of between 1GeV/c and
15GeV/c. In all cases, solutions in which the lenses were positioned immediately behind
each other prevailed (Figure 5.13). From 8GeV/c the position of the array is about 100m,
which is about half the distance between collimator 9 and the aperture limiting element.
Many equivalent solutions with multiple intermediate foci can be found for 1GeV/c, how-
ever, it would make more sense to adjust the electron density than the position in these
cases. At higher energies, the transmission becomes increasingly insensitive to the exact
position of the lenses, resulting in sections of several meters where the lenses can be freely
positioned. The simulation was made with 2000 protons. As long as no additional particle
survives the aperture limit by shifting a lens, the positions are equivalent. To determine the
ideal position of the lenses more precisely at high energies, correspondingly more particles
must be tracked. The maximum transmission for different beam momenta can be seen in
Figure 5.14.
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Figure 5.13.: Optimised position of the 4 Gabor lenses in the H4 beam line at different
beam momenta. From about 8GeV/c the position of the array is stable at
about 100m. The unusual distribution of lenses at 1GeV/c, results from
overfocusing at very low beam momenta (p < 2GeV/c).
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Figure 5.14.: The maximum transmission, achievable with four Gabor lenses at different
beam momenta. The reference transmission without Gabor lenses is 16%.
Since, according to equation (2.78), the focusing power of a Gabor lens is
1
f /

1
� , the effect of the Gabor lens approaches 0 with 1

� as the momentum
increases. To compensate for the drop in transmission at higher energies,
additional lenses would have to be installed.
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5.3. Applications

The transmission drops very quickly with increasing beam momentum and then slowly
approaches the value of T = 16%, which corresponds to a beam path without additional
lenses. If good transmissions are also to be achieved at higher energies, then additional
lenses would have to be installed. Figure 5.15 shows the results of optimisations with
different numbers of Gabor lenses at a beam momentum of 5GeV/c. Here, between one
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Figure 5.15.: Optimised position of Gabor lenses at 5GeV/c. As the number of lenses
increases, the array must be positioned closer and closer to the target. In
the limit case of sufficient focusing power, positioning directly in front of the
target is recommended.

and eight lenses were positioned. It can be seen that even with a higher number of lenses,
it is favourable to position them directly behind each other. However, the optimal position
of the lens array shifts further back as the number increases. Adding lenses increases the
integral focusing power and thus decreases the focal length.

Conclusion

With the use of Gabor lenses, an improvement in transmission and beam properties can
theoretically be achieved in the H4 beam line. However, it must be said that the same result
can also be achieved with quadrupoles. Although these are much more expensive, including
the power supply unit, their positioning is not dependent on the beam momentum. But
this fact does not matter in practice, because the electron density in the Gabor lens can
also be varied. So a position has to be chosen which is optimal for the highest energy used.
For low energies, then, only the electron density in the lens needs to be reduced.

Quadrupole doublets also have certain disadvantage compared to Gabor lenses, especially
for transversely particularly wide beams. Since the first quadrupole can only focus in one
plane and defocuses in the other plane, additional particles are lost in the defocusing plane
in contrast to Gabor lenses where there is no defocusing plane.

The parameter space of this problem has only three dimensions and there are at most
two local optima due to the quadrupole doublet. In any case, there is one solution that
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stands out. For each configuration (energy and number of lenses), 20 optimisations were
made and each time the same solution could be found. Depending on the specification of
the beam properties at the target and on the input distribution, the ideal position of the
Gabor lenses can be determined with the GLC method.

Based on the present results, it is recommended to position the existing 4 lenses centrally
between the last quadrupole and the target. This is the ideal position for momenta above
8GeV/c. If the transmission is to be optimised for smaller beam momenta, a position
further back can be selected, or alternatively the electron density of the lenses must be
reduced. This also applies to further expansion stages, using more lenses. The optics in
the previous beam line can remain unchanged, only the last doublet has to be adopted.

5.3.2. Construction of a matching section for HBS linac

The accelerator-driven High Brilliance Neutron Source (HBS) [72] is to be built at For-
schungszentrum Jülich by the end of the decade. The facility will produce particularly
small and high-intensity beams with high brilliance and will be used in particular to study
nanostructures and biological materials. The driver is a 70MeV linear accelerator for
protons with an intensity of 100mA with a duty cycle of 6%. For effective operation,
the beam is distributed to 3 individual target stations via a proton multiplexer, operated
at 3 different macro pulse frequencies (384Hz, 96Hz and 24Hz), to serve the specific
experimental requirements. The average beam power is 420 kW and the peak beam power
can reach up to 7MW.

The linear accelerator (Figure 5.16) is fed by an ECR ion source and consists of the
LEBT, the RFQ-section, the MEBT and a room temperature CH-drift tube linac with
high-beta cavities in the final section. The RFQ-section is divided into two parts. The
subject of the investigation is the matching section between the two RFQs. The low
energy area is the region with the highest proton density and therefore with the highest
space charge forces acting on the beam. That is why a transport lines should be as short
as possible to prevent excessive emittance growth.

ECR source
LEBT RFQ 1

matching section

RFQ 2 MEBT
CH DTL

Figure 5.16.: Schematic view of the HBS proton linear accelerator. The matching section
to be constructed is located between the two RFQs and is used to manipulate
the beam so that a perfect matching with 100% transmission can be achieved.

The difficulty here is that all the necessary elements must be placed within the shortest
possible distance to meet the acceptance of the second RFQ. Within less than 2m, quad-
rupoles for transverse focusing, a re-buncher cavity for phase focusing, a steerer pair for
position correction and diagnostic elements have to be accommodated.
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5.3. Applications

Variable triplet position

The input distribution of the particles (Figure 5.17) is a direct result from the design of the
first RFQ and was provided for the simulation. The acceptance of the second RFQ is also

Figure 5.17.: Input particle distribution, Tracewin visualisation.

given by its design and was first estimated using the output parameters of the first RFQ
(Table 5.8). For all particle tracking simulations, a bunched beam at a base frequency of
176.1MHz and 3D linear space charge force was used. The beam current is 105mA.

Table 5.8.: Acceptance of the second RFQ assumed and used for optimisation. Listed are
the limits of a non-rotated six-dimensional phase space ellipsoid.

direction acceptance

|x|max 2mm

|x0|max 40mrad

direction acceptance

|y|max 3mm

|y0|max 30mrad

direction acceptance

|z|max 18mm

|z0|max 50mrad

The total length of the matching section is first set to 1m. In order to perform phase
focusing, the section must contain a re-buncher cavity. Since its drift tubes are generally
aperture limiting, a transverse focusing element must be installed before the re-buncher.
A quadrupole triplet shall be used for this purpose. A second triplet is then required
for transverse focusing into the second RFQ. The aperture of the section is circular and
has a diameter of 48mm. The diameter of the drift tubes is planned to be 22mm. For
optimisation, it was set to 16mm to avoid particle trajectories too close to the tube wall and
to achieve better focusing into the buncher. The initial situation for the first optimisation
can be seen in Figure 5.18.

The re-buncher contains three accelerating gaps whose gap voltages have a fixed ratio
of (0.261 : 0.478 : 0.261) to each other. Therefore, it is not necessary to optimise the
voltage of each gap individually. It is sufficient, to use the total voltage, which has the
advantage that one can reduce the parameter space by two dimensions. Now the optimal
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Figure 5.18.: Initial situation, top view. The first triplet is located at position s = 20 cm

and followed by the re-buncher cavity. A second identical triplet is to be
positioned within the yellow area.

quadrupole strengths, the buncher voltage and the position of the second triplet are to
be found. In total, this problem has eight degrees of freedom and so the parameter space
has eight dimensions. These are the normalised gradients of the quadrupoles of the first
triplet kt11, kt12, kt13, the normalised gradients of the second triplet kt21, kt22, kt23 and its
distance sd to the centre of the last gap within the buncher, as well as the buncher voltage
Ub. Each solution corresponds to one point x in the normalised 8-cube.

In the first optimisation, the bounds on the field gradients were set large enough, so
that the optimisation was not a priori limited. The best result found with GLC was a
transmission of 93%. The corresponding quadrupole strengths and triplet position are
given in Table 5.9.

Table 5.9.: Parameter values of the solution found by GLC with 93% transmission.

parameter value

kt11 �311.2/m2

kt12 200.6/m2

kt13 �222.2/m2

parameter value

kt21 297.1/m2

kt22 �262.7/m2

kt23 407.5/m2

parameter value

Ub 118 kV

�sd 15.9 cm

However, it turns out that the strength values are too high. For a realistic application,
the magnetic field should be smaller than Bmax = 1T at the pole iron. The radius of the
quadrupole chamber is r = 0.024m. So the maximum field gradient is

gmax =
Bmax

r
= 41.67

T

m
. (5.21)

The magnetic rigidity of a proton beam with 1.27MeV/c is (B⇢) = 0.163Tm and so the
upper limit for the value of the normalised integrated field gradient is

kmax =
gmax

(B⇢)
= 255

1

m
2 . (5.22)
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Variable triplet position and limited field gradient

It is possible to achieve the same integral field with a limited field gradient by increasing
the quadrupole length. However, a second optimisation with identical geometry, but cor-
respondingly reduced limits was performed first. The resulting parameter values are given
in Table 5.10. The optics were changed and the second triplet was positioned 5.7 cm closer

Table 5.10.: Parameter values of the solution found by GLC with 88% transmission, using
limited normalised quadrupole gradients (k  255m

�2).

parameter value

kt11 247.8m�2

kt12 �185.1m�2

kt13 172.5m�2

parameter value

kt21 253.6m�2

kt22 �198.9m�2

kt23 252.3m�2

parameter value

Ub 106 kV

�sd 10.2 cm

to the buncher cavity. Even though the lower field strength could be partially compensated
by a different, now symmetrical optics, the maximum achievable transmission of 88% is
still significantly lower. Furthermore, three of the quadrupoles have to be operated close
to their upper limit for this setting, which is not very desirable for stability and long term
operational safety.

Realistic element dimensions and distances

But if one looks at the quadrupole matrix (2.54), it can be seen that the position of the
particle after passing through the quadrupole depends on the cosine of � =

p
kL. Thus,

the influence of the length on the effect of the quadrupole is even stronger than that of the
gradient. The value of

� =

p
400m

�2 · 4 cm = 0.8m�1 , (5.23)

reached in the initial example can therefore also be achieved by a quadrupole of length

L =
�p
kmax

= 5 cm . (5.24)

Ultimately an optimisation has been carried out in which the quadrupole lengths have
been adjusted accordingly. In addition to this, reasonably technically feasible distances are
also to be used. The minimum distance between gap centre and quadrupole was defined
as 20 cm, inspired from the experience of other projects, e.g. the proton accelerator for
MYRRHA [73]. The length of the final drift path is introduced as an additional degree
of freedom with an upper limit of 1.50m integral length. So the optimal length is to be
found as well. In total, the optimisation has now 9 degrees of freedom.

The result is again a solution with 93 % transmission. Figure 5.19 shows the result-
ing lattice. The second triplet has been moved further back and is now 24 cm away from
the gap centre. The resulting total length is 1.39m and the quadrupole strengths (Table
5.11) are all at least 10 % below their limits. It would therefore actually be possible
to make them somewhat shorter again, especially since the field component outside the
quadrupoles increases the effective quadrupole length anyway. Figure 5.20 shows the out-
put particle distribution and Figure 5.21 the particle traces of the corresponding particle
tracking simulation. While transverse focusing is possible without any problems, there are
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Figure 5.19.: Optimised lattice for the realistic scenario.

Table 5.11.: Parameter values of the solution for the realistic case, found by GLC. The
transmission is 93% and the optimal integral length of the matching section
is found to be 1.39m.

parameter value

kt11 �205.7/m2

kt12 136.0/m2

kt13 �140.4/m2

parameter value

kt21 �152.4/m2

kt22 146.7/m2

kt23 �222.3/m2

parameter value

Ub 92 kV

Ltotal 1.39m
sd 24 cm

Figure 5.20.: Output particle distribution for the realistic scenario.

major difficulties in focusing all the particles longitudinally. Here only the core is well
focused. This is because the position of the buncher was fixed and it cannot be moved
further forward due to the given space restrictions. Given the input distribution, some
particles already have a phase deviation of more than 90 degrees at the position of the
buncher. Due to the asymmetry of the input distribution, particles with a positive phase
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Figure 5.21.: Result of the particle tracking simulation for the realistic scenario, converted
to Tracewin [74] (top: horizontal motion, centre: vertical motion, bottom:
longitudinal motion (phase)).

exceed this limit first. This means that these particles can no longer be focused and are
lost.

It would therefore be imperative to save space at the front of the section, to be able to
shift the buncher further to the front. One option is to install the complete diagnostics
behind the buncher and to minimise the space between triplet and buncher. Smaller
distances between the quadrupoles are also desirable. Every spared centimetre can make
a difference, since longitudinal phase space filamentation only starts in the second gap. If
possible, one should try to design the RFQ 1 in such a way that the phase focus is shifted
backwards. Another option is to operate RFQ 1 with half the frequency, in which case the
phase would also be only half the size. The RFQ 2 would then have to run at twice the
frequency and only every second RF pulse would be filled with beam, which is probably
not desired. Another alternative variant would be to install the quadrupoles inside the
drift tubes e.g., to build an Alvarez-type buncher. In this case a drift tube spacing of
�� would have to be used instead of ��

2 . But it would be possible to focus in all three
dimensions simultaneously over a short distance. But this solution has other disadvantages.
Experience shows that small internal quadrupole lenses are difficult to build, to align and
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to maintain in the long term. Frequent tank openings can become necessary, especially at
older accelerators, where drift tubes with water leaks have to be shut down and replaced
regularly [75].

5.3.3. Conclusion

While these are only preliminary studies in an early design phase and the results are there-
fore likely to be subject to changes until the final design, it has been clearly demonstrated
that GLC provides persuading results and can support the design process as it progresses.
If, for example a new beam distribution would follow from the design of the preceding
RFQ1, or if the acceptance of the second RFQ would have to be re-defined, then it is suffi-
cient to perform the latest optimisation again with the changed boundary conditions. The
same is true in case the general geometry would have to be changed due to new findings
or construction restrictions.

It should be mentioned, that the results of the previous section were also successful
in particular because a lot of limiting constraints were known and integrated from the
beginning. For example, the maximum length, spacing, number and basic design of the
elements were predefined and in the last examples there were additional field limitations.
As already mentioned in the chapter about the genetic algorithms, the more known in-
formation is given as boundary conditions for the optimisation, the better results can be
achieved. The background is that each piece of information reduces the size of the para-
meter space and may additionally simplify its structure or even reduce the number of
dimensions. It is therefore not surprising that it is generally easier to find an optimum
under these conditions.
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6. The Accelerator Construction Set

As part of this work, another particle tracking application (the Accelerator Construction
Set) was developed, mainly to provide a flexible and fast interface for testing the optimisa-
tion algorithms with many particles while having access to the element handling on source
code level. The tracking core is an s-Code, based on the matrix formalism, presented
in chapter 1 and contains the reference implementations for both, the General Autotune
and the Lattice Construction algorithm. The application is written in C++ [76] and was
mainly used as a command line tool on a Unix environment. For better visualisation it
is published with a QT5 user interface (Figure 6.1) to provide a low entry barrier. The

Figure 6.1.: Standard beam view of Accelerator Construction Set 2. There are 3 views
of the development of the beam (top: horizontal, centre: vertical, bottom:
longitudinal). The respective momenta can also be switched visible. On the
bottom right, selected 2 dimensional projections of the phase space are located.

user interface makes it easy to compose beam lines from a set of pre-defined elements. All
elements have specific properties, according to their type, one of which can be selected for
optimisation.

All properties can be edited directly in the element table. The program is fully inter-
active. Setting changes are applied directly and the effects on the beam are calculated
and updated instantaneously. Different beam distributions can be generated, loaded and
stored.

To perform an autotune optimisation, the corresponding lattice has to be constructed
or loaded. There must be at least one beam transformer in the path to evaluate the
transmission, which is usually attached at the end. For the lattice construction, all areas



in which the elements can be positioned must additionally be defined. This is solved by
’Free Space’ elements of the desired length. After that, the elements to be placed have to
be defined. For both Autotune and GLC, the underlying algorithm can then be selected
and its respective hyper parameters can be set. However, the default parameters are a
good starting point. At the time of submitting the work, the following algorithms are
available

• gradient descend

• genetic algorithm

• simulated annealing

• particle swarm

• BOBYQA

and the following accelerator elements are implemented

• field free drift sections

• quadrupole magnets

• solenoids

• Gabor-lenses

• thin lenses

• dipoles (sector type and rectangular)

• local angular kicks (steerer)

• accelerating gaps

• buncher cavities

• slit elements

• profile grids

• beam transformer

• 6D acceptance limitation elements

The treatments of all ACS elements used in this work were successfully tested for equival-
ence with Tracewin results.
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7. Conclusion and outlook

7.1. Autotune

Within the scope of this work at GSI and in the meantime also at various accelerator
facilities (for example at CERN and SLAC), it could be shown that accelerator settings
can be automatically optimised online very well under certain boundary conditions. In
particular, this applies to initial commissioning with low intensity pilot beams, for systems
that provide a high repetition rate or for continuous wave linear accelerators. Optimisation
of the injection parameters for fast cycling synchrotrons is also conceivable. For cycle times
of less than a second, one could also optimise an entire synchrotron cycle. However, it is
important in this case that there is already a model in which physical parameters such as
radial beam position, septum- and kicker angles, local bumps or the synchrotron tune can
be manipulated directly.

Since it is only possible to optimise for observables that can also be measured with the
necessary precision, it is essential for automatic online optimisation that the section to be
optimised has suitable beam instrumentation installed. Since most optimisation problems
can be reduced to transmission optimisation, beam transformers and Faraday cups play
a special role in this context. High-precision, stable measurement of beam current over
several orders of magnitude is essential. Regarding beam diagnostics and the settings
management system, a good integration into the control system and well defined software
interfaces are fundamental. Automatic tuning works best under stable beam conditions.
So a stable source current, precise power supplies or RF-transmitters can help, to increase
its performance.

Automatic tuning could be further developed towards a theory assisted optimisation, in
which an offline accelerator simulation evaluates settings in parallel and excludes settings
with total beam losses from the online evaluation. This could avoid the incidence of un-
wanted activation and thus expand the application field and the performance of automatic
optimisation in the future.

Although the successes are compelling, machine learning remains a double-edged sword.
The understanding of the system does not necessarily improve and if not explicitly ex-
cluded, an automatic algorithm also sometimes find solutions that do not make much
sense. In the end, an understanding of the matter is essential. An automatic optimisa-
tion can give hints, lead out of dead ends in special cases or even replace tedious manual
tuning. However, a well understood and stable model of the machine remains to be the
gold standard as this allows direct optimisation using optical online models or beam based
feedback systems.

But the use of the suggested theory assisted optimisation would at least open the pos-
sibility to automatically adapt the model more and more to the real measured data and
thus have to check less and less settings on the real machine. So, as a side effect, a more
accurate understanding of the machine could still be obtained.



7.2. Genetic Lattice Construction

7.1.1. Considerations of utility for state-of-the-art accelerator designs

From the equations (2.109) and (2.110) follows a dependence of the focusing terms on the
particle velocity in accelerating gaps

1

f
/ E0

�3
. (7.1)

Especially for small � at the beginning of the acceleration, this results in a rather high value
and thus in more emittance growth. For � ! 1, the effect is increasingly less important. It
is therefore advantageous if the acceleration gradient is less strong in the first gaps and then
successively increases. This principle can only be achieved with a construction of shorter
tank structures, where the voltage in the first structures can be set differently (lower)
than in the following ones. In long monolithic structures the use of this principle is not
possible. As a result, the RF phases between the different tanks must be very finely tuned
within a narrow parameter range. This is especially important because the acceleration,
for which the RF phase is usually set to values of �s ⇡ �30�, always results in phase
asymmetry in the bunch due to the asymmetry of the sine around this value. However, the
necessary accuracy cannot be calculated practically, since the necessary design tolerances
are impossible to realise. The use of GAA provides the ideal solution for operating such
devices, with tuning these phases automatically online. Autotune therefore theoretically
enables the construction and efficient use of state-of-the-art accelerators with previously
unattainable beam qualities.

7.2. Genetic Lattice Construction

Very good results were also obtained for the automatic design of beam transport lines.
The GLC algorithm is applicable to a large class of design problems and, together with
precise particle tracking tools, GLC provides an excellent tool for the ion-optical design of
future linear accelerators or for the optimisation of beam transport lines of any kind. The
investigations concerning the incorporation of position errors during phenotype construc-
tion suggest that GLC finds more robust solutions with respect to error studies. Further
research should be conducted on this topic, as in the best case the possibility exists to
make additional error studies obsolete.

Both the dimensionality of the parameter space and its structure have an influence on the
performance of GLC. A high number of quadrupoles leads to many local minima and lowers
the reliability of the algorithm significantly. To some extent, this can be compensated with
more optimisation cycles. Therefore, it should always be tried to combine parameters and
to reduce the number of degrees of freedom.

From the set of optimisation algorithms presented, the genetic algorithm proved to
be particularly reliable in both areas of application, but the topic of machine learning is
currently very dynamic and it can be expected that new algorithms and methods will bring
further improvements. Since the GLC method is generally independent of the underlying
optimisation algorithm, the algorithm can easily be replaced to directly benefit from future
developments.
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A. Appendix

A.1. Taylor-series expansion of the magnetic field in the

magnetic mid-plane

The Taylor-series expansion of the magnetic field B = (Bx, By, Bs) is shown, following the
approach of L. C. Teng [4]. Using Maxwell’s equations for the vacuum and the fact that
there is no time-varying electric field, Ampère’s circuital law is reduced to

r⇥B = 0 . (A.1)

The rotation of a scalar gradient disappears, therefore in this case the magnetic field can
be written as a gradient of a scalar potential B = r�. For the potential �(x, y, s) a Taylor
expansion can be performed at the position 0.

�(x, y, s) =�(0) +
@�

@x
(0)x+

@�

@y
(0)y +

@�

@s
(0)s+

1

2!

@2�

@x2
(0)x2 +

1

2!

@2�

@y2
(0)y2 +

1

2!

@2�

@s2
(0)s2+

@2�

@x@y
(0)xy +

@2�

@x@s
(0)xs+

@2�

@y@s
(0)ys+ · · ·

(A.2)

Due to the mid plan symmetry (Figure 2.2), � is an odd function regarding y.

�(x, y, s) = ��(x,�y, s) (A.3)

This eliminates all terms that do not contain y with odd exponents. All terms dependent
on s are shifted to the coefficients A2m+1,n(s) and the potential can be noted as follows

�(x, y, s) =(A10 +A11x+A12
x2

2!
+A13

x3

3!
+ · · · )y+

(A30 +A31x+A32
x2

2!
+A33

x3

3!
+ · · · )y

3

3!
+ · · · .

(A.4)

For the development of the magnetic field B = r� up to the 2nd order, only coefficients
up to the 3rd order must be considered and so the magnetic field has the components

Bx(x, y, s) =
@�

@x
= A11y +A12xy + · · · ,
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A.1. Taylor-series expansion of the magnetic field in the magnetic mid-plane

From the Laplace equation r2� = 0 follows an expression for A30, where only terms have
to be considered which are independent of both x and y.

A30 = �A00
10 �A12 � hA11 + · · · (A.6)

The coefficients of By from equation (A.5) can be directly assigned to multipoles from a
field expansion By(x, y) around (x=0,y=0).

By(x, y) = By(0) +
dBy

dx
(0)x+

1

2!

d2By

dx2
(0)x2 + ... (A.7)

So A10 = By(0) = B0, A11 =
dBy

dx (0) and A12 =
d2By

dx2 (0). Usually the terms h(s), n(s)
and �(s) are defined to characterise the dipole, quadrupole and sextupole strengths.
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hB0
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This results directly in the coefficients

A10 =
ps
q
h ,

A11 =
ps
q
(�nh2) ,

A12 =
ps
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2�h3 , (A.9)
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Using the Taylor expansion at Position 0 for

1

1 + hx
= 1� h+ 2h2 + · · · , (A.10)

the development of the magnetic field up to the 2nd order can be written in the general
form.
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A. Appendix

A.2. Derivation of the change of the radial momentum within

a gap

With values for the synchronous particle in the centre of the gap has gained half of the
energy �s =

�f��i
2 and �s =

�f��i
2 and using equations (2.98) and (2.102), the radial

Lorentz force can be written as

dpr
dt

= q(Er + �cB✓) = �q�s(1� ��s)I1(Kr)E0T sin� . (A.12)

With the radial momentum near axis is pr = mc��r0 and r0 = dr
dz follows

mc��
dr

dt
= �q�s(1� ��s)I1(Kr)E0T sin� ,

mc��
dr

dt

dt

dz
= �q�s(1� ��s)I1(Kr)E0T sin�

1

vz
,

��r0 = � 1

mc
q�s(1� ��s)I1(Kr)E0T sin�

1

�c

(A.13)

and so the change of the radial momentum in the gap is
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Since � ⇡ �s and using the relativistic relation �2 = 1
1��2

�(��r0) = �qE0TLI1(Kr) sin�

mc2�s�s
. (A.15)

The value of modified Bessel function can be approximated to I1(Kr) ⇡ ⇡ri
�s�s�

�(��r0) = �f�fr
0
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The index i marks the initial values before the gap and the index f the final values after
the acceleration. Thus the radial momentum change can be noted down

r0f = �⇡qE0TL sin�

mc2�2s�
2
s�

1

�f�f
ri +

�i�i
�f�f

r0i . (A.17)
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A.3. Algorithms

A.3.1. Genetic algorithm

Algorithm 1 genetic algorithm
1: procedure Genetic(K,Fend, s) . K,Fend, s as defined in text
2: G initialise set of K initial Genomes Gk with n random Genes each
3: xmin  X(Gmin) where F (X(Gmin))  F (X(Gk)), 8Gk 2 G
4: while F (xmin) > Fend do

5: remove s elements from G with highest F (X(Gk))

6: G0  create empty set
7: for k  1,K do

8: Ga  select random G 2 G
9: Gb  select random G 2 G

10: Ô  one or combination of Ĉu, Ĉn, Ĉh, Â, · · · . recombination
11: Gc  Ô(Ga, Gb) . child genome
12: G0

c  one of M̂�(Gc), M̂j(Gc) . mutation
13: add G0

c to set G0

14: G G0

15: xmin  X(Gk) where F (X(Gk))

16: return xmin

A.3.2. Particle swarm algorithm

Algorithm 2 particle swarm algorithm
1: procedure ParticleSwarm(K,m,wc, ws, Fend) . K,m,wc, ws, Fend as defined in

text
2: X  initialise set of K initial positions xk

3: V  initialise set of K initial velocities vk

4: xmin  argminx2X(F (x))
5: xk,min  argminx2X(F (x))
6: while F (xmin) > Fend do

7: for k  1,K do

8: r1  rnd(0, 1)
9: r2  rnd(0, 1)

10: vk  mvk + wcr1(xk,min � xk) + wsr2(xmin � xk)

11: xk  xk + vk

12: if F (xk) < F (xmin) then xmin  xk

13: if F (xk) < F (xk,min) then xk,min  xk

14: return xmin
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A.3.3. Simulated annealing

Algorithm 3 simulated annealing
1: procedure SimulatedAnnealing(r, Tt, Fend) . r, Tt, Fend as defined in text
2: t 0

3: x random initial state
4: xmin  x
5: while F (xmin) > Fend do

6: x0  x+�x with random |�x| < r
7: if F (x0

)  F (x) then x x0

8: else

9: p e
F (x0)�F (x)

Tt

10: if rnd(0, 1) < p then x x0

11: if F (x) < F (xmin) then xmin  x

12: t t+ 1

13: return xmin

A.3.4. Bayesian optimisation

Algorithm 4 bayesian optimisation
1: procedure BayOpt(function f , kernel K, acquisition function a, Nwarmup, Ncycles)
2: ybest  1
3: for i = 1 to Nwarmup do

4: randomly select xi

5: compute loss function yi  F (xi)

6: if yi  ybest then

7: xbest  xi

8: ybest  yi
9: for i = Nwarmup + 1 to Ncycles do

10: update kernel matrix ⌃ 2 Ri⇥i according to equation (3.13)
11: condition the Gaussian process model on all F (xi) = yi, calculate µ(x0

) and
�(x0

) of F (x0
)

12: xi  argminxa(µ(x
0
),�(x0

), ybest)

13: compute loss function yi  F (xi)

14: if yi  ybest then

15: xbest  xi

16: ybest  yi
17: return xbest
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