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ABSTRACT

The main topic of the present thesis is scene flow estimation in a monocular camera
system. Scene flow describes the joint representation of 3D positions and motions of
the scene. A special focus is placed on approaches that combine two kinds of informa-
tion, deep-learning-based single-view depth estimation and model-based multi-view
geometry.

The first part addresses single-view depth estimation focussing on a method that
provides single-view depth information in an advantageous form for monocular scene
flow estimation methods. A convolutional neural network, called ProbDepthNet, is
proposed, which provides pixel-wise well-calibrated depth distributions. The exper-
iments show that different strategies for quantifying the measurement uncertainty
provide overconfident estimates due to overfitting effects. Therefore, a novel recal-
ibration technique is integrated as part of the ProbDepthNet, which is validated
to improve the calibration of the uncertainty measures. The monocular scene flow
methods presented in the subsequent parts confirm that the integration of single-
view depth information results in the best performance if the neural network provides
depth distributions instead of single depth values and contains a recalibration.
Three methods for monocular scene flow estimation are presented, each one de-

signed to combine multi-view geometry-based optimization with deep learning-based
single-view depth estimation such as ProbDepthNet. While the first method, SVD-
MSfM, performs the motion and depth estimation as two subsequent steps, the
second method, Mono-SF, jointly optimizes the motion estimates and the depth
structure. Both methods are tailored to address scenes, where the objects and mo-
tions can be represented by a set of rigid bodies. Dynamic traffic scenes are one
kind of scenes that essentially fulfill this characteristic. The method, Mono-Stixel,
uses an even more specialized scene model for traffic scenes, called stixel world, as
underlying scene representation.
The proposed methods provide new state of the art for monocular scene flow

estimation with Mono-SF being the first and leading monocular method on the
KITTI scene flow benchmark at the time of submission of the present thesis. The
experiments validate that both kind of information, the multi-view geometric op-
timization and the single-view depth estimates, contribute to the monocular scene
flow estimates and are necessary to achieve the new state of the art accuracy.
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ZUSAMMENFASSUNG

Motivation

Die menschliche Fähigkeit zu Sehen wird durch zwei Teile des Gehirns ermöglicht,
dem ventralen und dorsalen Pfad. Der ventrale Pfad umfasst die Kategorisierung
von Objekten sowie die Wahrnehmung von Formen. Diese Fähigkeit ist wesentlich
durch die menschliche Erfahrung geprägt. Der dorsale Pfad hingegen reagiert auf
schnelle zeitliche Veränderungen und Bewegungen zur Wahrnehmung von Entfer-
nungen und zur Interaktion mit Objekten. Eine vergleichbare Unterteilung lässt
sich auch im Bereich der Computer Vision feststellen. Die Detektion von Objek-
ten, die semantische Klassifizierung und die Entfernungsschätzung basierend auf
nur einem Bild ist wesentlich geprägt durch Machine bzw. Deep Learning Verfahren.
Diese Verfahren basieren auf der erlernten Erscheinung von Objekten und Szenen in
einem Bild. Im Gegensatz dazu zeigen im Bereich der Multi-View geometriebasierten
Entfernungs- und Bewegungsschätzung (z.B. Simultaneous Localization and Map-
ping) weiterhin traditionelle Optimierungsverfahren die höchste Genauigkeit. Diese
Verfahren basieren auf den geometrischen Zusammenhängen zwischen Bildern aus
verschiedenen Perspektiven.

Im Bereich der Computer Vision werden die geometriebasierten Verfahren und
Machine Learning Verfahren zum Großteil individuell betrachtet. Diese Arbeit
adressiert die Kombination der traditionellen geometriebasierten Ansätze mit Deep
Learning Verfahren zur Scene Flow Schätzung im Monokamerasetup. Insbesondere
wird die Kombination mit Deep Learning Verfahren zur Entfernungsschätzung
basierend auf einem Bild untersucht. Scene Flow beschreibt die Repräsentation der
3D Position der Bildpunkte sowie deren Bewegung in der Szene. Der Fokus dieser
Arbeit liegt auf multirigiden Szenen, welche sich durch einen Satz von rigiden
Objekten darstellen lassen. Diese Eigenschaft wird von Straßenszenen weitestgehend
erfüllt.

Die Repräsentation des Scene Flows findet insbesondere Anwendung im automo-
tive Bereich und in der Robotik. Basierend auf der Entfernung und Bewegung wer-
den Kollisionen vermieden und Trajektorien können sicher abgefahren werden. Es
sind allerdings auch weitere Anwendungen denkbar, beispielsweise im Bereich der
Augmented Reality.
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Probabilistische Single-View Depth Schätzung

Single-View Depth Schätzung beschreibt Verfahren zur Rekonstruktion der Tiefen-
struktur einer Szene basierend auf nur einem Bild. Der wesentliche Durchbruch
wurde durch Deep Learning Methoden ermöglicht, welche die Tiefenstruktur an-
hand der typischen Erscheinung von Szenen erlernen. So liefert beispielsweise die
Größe und Textur von Objekten, der typische Verlauf von Straßenoberflächen oder
auch die Relationen zwischen Objekten einen Hinweis auf die Tiefenstruktur der
Szene.

Während die meisten Verfahren nur einen einzigen Schätzwert für die Entfernung
pro Pixel ausgeben, liefern nur wenige Verfahren ein zusätzliches Maß für die Un-
sicherheit. Die Unsicherheiten eines neuronalen Netzes lassen sich in 3 Kategorien un-
terteilen, (1) der Unsicherheit basierend auf den Messungen und der Mehrdeutigkeit
des Problems, (2) der Unsicherheit der Modellparameter und (3) die Unsicherheit
aufgrund großer Abweichungen der Testdaten von den Trainingsdaten. Moderne neu-
ronale Netze geben typischerweise eine zu hohe Konfidenz aus und zeigen damit eine
schlechte Kalibrierung. Dadurch lassen sich die Unsicherheitsmaße nicht direkt als
Wahrscheinlichkeiten interpretieren oder Konfidenzintervalle ableiten.

Der erste Teil dieser Arbeit adressiert probabilistische Single-View Depth
Schätzung mit dem Fokus auf der Unsicherheitsschätzung und Kalibrierung. Die
Analyse der empirischen Verteilung einer Single-View Depth Schätzung [Godard
et al., 2017] zeigt folgende Charakteristiken auf. Die Verteilung über die inverse
Tiefe lässt sich durch ein Mixture Model, bestehend aus einer Laplace und einer
Gaußverteilung, approximieren. Während sich der Fehler der inversen Tiefe nahezu
konstant über die Entfernungen verhält, zeigt der Fehler eine hohe Abhängigkeit
zur semantischen Klasse. Insbesondere Fahrzeuge und die Straße zeigen eine höhere
Genauigkeit verglichen mit beispielsweise der Vegetation.

In dieser Arbeit wird das ProbDepthNet präsentiert. ProbDepthNet ist ein
Convolutional Neural Network, welches pixelweise die Parameter einer Tiefen-
verteilung schätzt. Das Netz wird trainiert, den negativen Log-Likelihood der
Tiefenverteilung auf den Trainingsdaten zu minimieren. Die Experimente zeigen,
dass die daraus resultierenden Verteilungen ein Maß für die Unsicherheit darstellen,
allerdings schlecht kalibriert sind. ProbDepthNet integriert zusätzlich eine neuartige
Rekalibrierungstechnik. Wenige zusätzliche Layer, das CalibNet, werden integriert,
welche die Parameter der Verteilung auf rekalibrierte Parameter abbildet. Diese
Layer werden trainiert, den negative Log-Likelihood auf einem separaten Teil
der Trainingsdaten zu minimieren. Die Experimente zeigen, dass dadurch mit
dem CalibNet eine wesentlich bessere Kalibrierung erzielt wird, wobei die Rekali-
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brierungstechnik auch auf andere Verfahren zur Unsicherheitsschätzung anwendbar
ist. ProbDepthNet adressiert die Unsicherheiten basierend auf den Messungen und
der Mehrdeutigkeit des Problems.
Die darauffolgenden Verfahren zur monokamerabasierten Scene Flow Schätzung

zeigen eine höhere Genauigkeit, wenn die Single-View Depth Schätzung als
probabilistische Verteilungen integriert werden, wobei auch die Kalibrierung der
Verteilung entscheidend ist.

Monokamerabasierte Scene Flow Schätzung

Die darauffolgenden Teile der Arbeit befassen sich mit der Scene Flow Schätzung.
Scene Flow Schätzung wird typischerweise in einem Stereokamerasetup adressiert.
Zur Schätzung der Bewegung und Entfernung werden korrespondierende Bildpunkte
sowohl in den statischen Stereobildpaaren als auch in aufeinanderfolgenden Stereo-
bildern einander zugeordnet. Eine Monokamera ist oft bevorzugt aufgrund gerin-
gerer Kosten, kleinerer Verbaugröße und der nicht notwendigen Kalibrierung der
Stereokameras zueinander. Allerdings ist die Scene Flow Schätzung ein mehrdeutiges
Problem aus einer geometrischen Perspektive im Monokamerasystem. Es besteht
eine Skalierungsmehrdeutigkeit zwischen der translatorischen Bewegung einer Ka-
mera und der Skalierung der Umgebungskarte.
Diese Arbeit präsentiert drei Verfahren, welche die geometrischen Ansätze mit

Deep Learning-basierten Verfahren kombinieren, wodurch die beschriebenen Limi-
tierungen adressiert und eine höhere Genauigkeit erreicht wird.

SVD-MSfM Methode: Multi-Body Structure from Motion

Die erste Methode zur Scene Flow Schätzung in dieser Arbeit wird mit SVD-MSfM
(Abkürzung für Single-View Depth meets Multi-body Structure from Motion) be-
zeichnet. SVD-MSfM integriert die probabilistische Single-View Depth Schätzungen
des ProbDepthNets in einem Multi-body Structure from Motion-basierten Ansatz
(wie z.B. [Ranftl et al., 2016]). Das Verfahren lässt sich in zwei wesentliche Schritte
unterteilen.
Der erste Schritt entspricht der Bewegungsschätzung für jedes Objekt, welches

mittels einer Instanzensegmentierung detektiert wurde, sowie der Kamerabewegung
zwischen zwei aufeinanderfolgenden Bildern. Die Schätzung der 6D Bewegung ist
formuliert als ein nichtlineares Minimierungsproblem, welches die Bewegungspara-
meter als auch einen Satz von 3D Szenenpunkten gemeinsam optimiert. Der erste
Anteil des Optimierungsproblems minimiert den Reprojektionsfehler basierend auf
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optischen Flussvektoren. Der zweite Anteil führt zu 3D Szenenpunkten, dessen Ent-
fernungen plausibel zu den Tiefenverteilungen des ProbDepthNets sind. Durch die
Supervision des ProbDepthNets sind die Schätzungen metrisch skaliert und liefern
damit auch implizit die korrekte Skalierung der Bewegungsschätzung. Während
die Skalierung sonst oftmals über die bekannte Kamerahöhe über den Boden be-
stimmt wird, ist diese Methode auch auf bewegte Objekte anwendbar. Die Levenberg-
Marquardt Methode wird zur Optimierung des Minimierungsproblems angewandt.
SVD-MSfM stellt damit ein Verfahren dar, welches eine 6D Bewegung inklusive
Skalierung für bewegte Objekte liefert basierend auf der Kombination von Single-
View Depth Schätzung und Multi-View geometriebasierter Optimierung. Die Ex-
perimente zeigen, dass SVD-MSfM eine Genauigkeit der Bewegungsschätzung im
Bereich von State-of-the-Art Methoden erreicht und robustere Schätzungen liefert,
wenn das Verfahren mit Initialisierungsproblemen konfrontiert wird. Diese Eigen-
schaft ist insbesondere für bewegte Objekte wichtig, welche regelmäßig im Sichtfeld
erscheinen und verschwinden.

Während der erste Schritt einzelne 3D Szenenpunkte optimiert, liefert der zweite
Schritt eine dichte Tiefenschätzung für alle Pixel. Basierend auf der Assoziation
von Pixeln zu Objekten anhand der Instanzensegmentierung sowie der zugehörigen
Bewegungsschätzung, ist für jede Tiefe eines Pixels die zugehörige Bildposition im
darauffolgenden Bild eindeutig bestimmt. Dieses ermöglicht es, die photometrische
Distanz für jeden Eintrag in einem Kostenvolumen über die Tiefe zu bestimmen.
Zusätzlich wird die Wahrscheinlichkeit jedes Tiefenwertes basierend auf den vom
ProbDepthNet geschätzten Tiefenverteilungen bewertet. Die Tiefenschätzungen wer-
den anschließend basierend auf dem Tiefenkostenvolumen durch Anwendung der
Semi Global Matching [Hirschmuller, 2005] und Slanted Plane Smoothing [Yam-
aguchi et al., 2014] Methoden bestimmt.

Die Experimente vergleichen erstmalig verschiedene Methode zur monokamera-
basierten Rekonstruktion basierend auf einer Scene Flow Metrik, wobei vier Kate-
gorien an Methoden analysiert werden: (1) Multi-Task Convolutional Neural Net-
works zur optischen Fluss- und Tiefenschätzung, (2) die Kombination individueller
Methoden zur optischen Fluss- und Single-View Depth Schätzung, (3) Multi-body
Structure from Motion und (4) die Kombination geometrischer Optimierung und
Single-View Depth Schätzung. Die Experimente zeigen, dass SVD-MSfM höhere und
neue State-of-the-Art Genauigkeit für monokamerabasierte Scene Flow Schätzung
liefert. Weitere Experimente analysieren die wesentlichen Komponenten von SVD-
MSfM. Die Deaktivierung der Multi-View geometriebasierten Information oder der
Single-View Depth Schätzung führen jeweils zu einer Verschlechterung, welches die
Aussage stützt, dass beide Informationen einen Beitrag zur Scene Flow Schätzung
liefern. Des Weiteren zeigen Experimente die Wichtigkeit der probabilistischen For-
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mulierung und Rekalibrierungsmethode des ProbDepthNets zur Integration von
Single-View Depth Schätzungen.

Mono-SF Methode: Objekt Scene Flow

SVD-MSfM folgt dem Multi-body Structure from Motion-Konzept und formuliert
die Bewegungs- und Tiefenschätzung als zwei aufeinanderfolgende Schritte. Die
zweite Methode zur Scene Flow Schätzung in dieser Arbeit wird als Mono-SF be-
zeichnet und zeichnet sich durch die gemeinsame Bewegungs- und Tiefenschätzung
aus.

Die Szene wird durch einen Satz von planaren Oberflächenelementen, einem Satz
von rigiden Objekten sowie der Assoziation von Oberflächenelementen zu Objekten
repräsentiert. Jedes Oberflächenelement ist einem Superpixel im Bild zugeordnet
und ein skalierter Normalenvektor definiert die Fläche in der Szene. Die rigiden Ob-
jekte folgenden der Definition von SVD-MSfM, wobei diese durch eine Instanzenseg-
mentierung detektiert und durch eine 6D Bewegung beschrieben werden. Die sta-
tische Umgebung bildet einen weiteren rigiden Körper. Aufgrund der objektorien-
tierten Repräsentation der Bewegung wird Mono-SF der Kategorie der Objekt Scene
Flow -Verfahren [Menze and Geiger, 2015] zugeordnet.

Die Scene Flow Optimierung ist als Energieminimierungsproblem formuliert. Ein
Glattheitsterm modelliert, dass benachbarte Oberflächenelemente typischerweise ko-
planar sind und geringe Unterschiede in der Tiefe aufweisen. Die Datenterme folgen
den wesentlichen Erkenntnissen von SVD-MSfM und integrieren probabilistische
Single-View Depth Schätzungen des ProbDepthNets sowie eine photometrische Dis-
tanz basierend auf der Multi-View Geometrie. Zur Optimierung wird Sequential
Tree-reweighted Message Passing verwendet.

Die Experimente zeigen, dass die gemeinsame Optimierung gegenüber SVD-
MSfM, welches als Initialisierung verwendet wird, in eine weitere Verbesserung
der Genauigkeit resultiert. Wesentliche Erkenntnisse von SVD-MSfM werden
durch weitere Experimente gestützt. Beide Informationen, die Single-View Depth
und photometrische Distanz, tragen zur Erhöhung der Genauigkeit bei und
sind notwendig zur Erreichung der neuen State-of-the-Art Genauigkeit für eine
monokamerabasierte Scene Flow Schätzung. Außerdem wird auch für Mono-
SF die Wichtigkeit der probabilistischen Repräsentation und Kalibrierung des
ProbDepthNets unterstrichen.
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Mono-Stixel Methode: Stixel Scene Flow

Die Ergebnisse von SVD-MSfM und Mono-SF motivieren einen praktischen Einsatz
der Verfahren zur Scene Flow Schätzung in einem Monokamerasystem. Allerdings
ist die reine Genauigkeit nicht der alleinige Aspekt, um für einen praktischen Ein-
satz geeignet zu sein. Typischerweise ist die Scene Flow Repräsentation nicht das
endgültige Ziel, sondern viel mehr eine Zwischenrepräsentation, auf der Anwendung-
en wie Notbremsfunktionalitäten aufbauen. Die Notwendigkeit, die Repräsentation
weiterzuverarbeiten, zeigt die zusätzlichen Anforderungen auf, dass die Repräsenta-
tion möglichst kompakt sein sollte.
Eine kompakte und trotzdem detaillierte Repräsentation speziell für Straßen-

szenen ist die sogenannte Stixel World [Badino et al., 2009, Pfeiffer and Franke,
2011b]. In dieser Arbeit wird die Mono-Stixel Methode präsentiert, welche eine
monokamerabasierte Scene Flow Schätzung umsetzt mit einer Stixel World als zu-
grunde liegendes Szenenmodell.
Die Stixel World entspricht der spaltenweisen Unterteilung des Bildes in planare

Segmente, den Stixeln. Durch die eingeschränkte Form lässt sich die Segmentierung
eines Stixel durch die obere und untere Begrenzung in der Spalte darstellen. Jeder
Stixel wird zusätzlich durch die folgenden Labels beschrieben, welche eine detail-
lierte Szenenrepräsentation ermöglichen: (1) Der Stixel Typ unterscheidet die vier
Typen Boden, statisches Objekt, dynamisches Objekt und Himmel, (2) ein Label
definiert die semantische Klasse wie Straße, Fahrzeug oder Gebäude, (3) weitere
Label definieren die Geometrie und Bewegung, (4) jedes Segment wird einem rigi-
den Objekt oder der statischen Umgebung zugeordnet und (5) ein weiterer Wert
repräsentiert die Independent Moving Object Wahrscheinlichkeit des Stixels in Be-
wegung zu sein.

Die vier Stixel Typen definieren spezifische Modellannahmen. Während ein Boden-
stixel eine liegende Orientierung hat, stehen Objektstixel senkrecht auf dem Boden
und der Himmel ist unendlich weit entfernt. Nur Stixel des dynamischen Objekttyps
besitzen eine Eigenbewegung, welche entweder durch eine 2D Bewegung über den
Boden oder durch die Zuordnung zu einem rigiden Objekt wie bei SVD-MSfM und
Mono-SF definiert ist. Die anderen Typen sind dem rigiden Körper der statischen
Umgebung zugeordnet und die relative Bewegung ist entsprechend durch die Ka-
merabewegung definiert. Außerdem ist eine eindeutige Zuordnung von semantischen
Klassen zu Stixel Typen gegeben. Die Modellannahmen definieren somit Zusam-
menhänge zwischen den Labels und schränken die Menge an konsistenten Lösungen
ein. Dadurch stützt zum Beispiel die Integration einer semantischen Segmentierung
auch die Schätzung der richtigen Stixeltypen und damit die Anwendung des richtigen
Modells bezüglich der Orientierung und Bewegung.
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Aufgrund der Unterteilung in Spalten lässt sich die Mono-Stixel Segmentierung
als ein 1D Segmentierungsproblem ausdrücken. Die Schätzung basiert auf einem op-
tischen Fluss, probabilistischen Single-View Depth Schätzungen des ProbDepthNets,
semantischen Segmentierung und einer Instanzensegmentierung. Die Definition eines
Energieterms integriert die verschiedenen Eingänge basierend auf deren Messmo-
dellen. Zur Bestimmung des erwarteten optischen Flusses eines Stixels definiert jeder
Stixeltyp ein spezifisches Homographiemodell. Die Abweichung zum erwarteten op-
tische Fluss wird als Reprojektionsfehler bewertet. Zusätzlich repräsentieren paar-
weise Terme das Priorwissen über die typische Struktur von Straßenszenen. Objekte
stehen typischerweise auf dem Boden, vordere Objekte verdecken dahinterliegende
und die Bodenoberfläche ist weitestgehend eben ohne größere Sprünge in der Höhe.

Das 1D Energieminimierungsproblem lässt sich global optimal mithilfe des Viterbi
Algorithmus lösen. Um allerdings den Rechenaufwand zu reduzieren, wird nur die
Segmentierung und der Stixel Typ global optimiert und die anderen Label eines
Stixels lokal geschätzt. Die lokale Schätzung basiert unter anderem auf den Homo-
graphiemodellen der Stixel Typen, wobei eine Direct Linear Transform die Frei-
heitsgrade der Homographie unter Berücksichtigung der Stixel Modellannahmen
basierend auf den optischen Flussmessungen liefert.

Die beschriebene Mono-Stixel Segmentierung führt die Schätzung für jede Spalte
individuell durch. Basierend auf der spaltenweisen Lösung wird der Mono-SF Al-
gorithmus zur globalen Optimierung angewandt mit der Stixel World als zugrunde
liegenden Repräsentation.

Zusätzlich wird für jedem Stixel eine Independent Moving Object Wahrschein-
lichkeit basierend auf einem Hypothesentest bestimmt. Der Hypothesentest ver-
gleicht die Wahrscheinlichkeit eines Stixels des dynamischen Objekttyps zu der
Wahrscheinlichkeit der statischen Stixeltypen.

Zusätzlich zur kompakteren Darstellung und weiteren Informationen wie die Inde-
pendent Moving Object Detektion, zeigt die Mono-Stixel Methode eine leicht höhere
Genauigkeit als Mono-SF. Die qualitativen Ergebnisse zeigen außerdem bessere
Charakteristiken bei der Rekonstruktion von dünnen Objekte (z.B. Pfosten) und
bei geringer translatorischer Bewegung.

Zusammenfassung

Die vorliegende Arbeit adressiert erstmalig explizit die Scene Flow Schätzung in
einem Monokamerasetup. Ein spezieller Fokus ist auf die Kombination der Multi-
View Geometrie mit Deep Learning Methoden insbesondere zur Single-View Depth
Schätzung gelegt. Es werden neuartige Methoden zur monokamerabasierten Scene
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Flow Schätzung vorgestellt, wobei Mono-SF die erste und aktuell führende1 Me-
thode auf dem KITTI Scene Flow Benchmark [Menze and Geiger, 2015] darstellt.
Beide Informationen, die Multi-View Geometrie und Single-View Depth, liefern
einen wesentlichen Beitrag zur Genauigkeit der Scene Flow Schätzungen in den
vorgestellten Methoden. Ein neuronales Netz zur Ausgabe einer probabilistischen
und kalibrierten Darstellung von Single-View Depth Schätzungen wird vorgestellt
und es wird gezeigt, dass diese Darstellung vorteilhaft zur Integration in die Scene
Flow Methoden ist.

1 bezogen auf veröffentlichte Methoden des KITTI Scene Flow Benchmark am 02. Januar 2021
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NOTATION

General Notation

M matrix
v vector
s scalar value
S set of elements
Mi,j,vi indexed element at i or i, j
[x]× cross product matrix
In×m identity matrix of size n×m
0n×m zero matrix of size n×m
diag(M) diagonal matrix with the elements on the diagonal of M

Scene Geometry

X = (X, Y, Z, 1)T 3D scene point coordinates (typically in homogenous coordi-
nates)

p = (u, v, 1)T 2D image coordinates (typically in homogenous coordinates)
d distance or disparity
ρ inverse depth
n normal vector of plane
T ∈ SE(3) transformation matrix
R ∈ SO(3) rotation matrix
t translation vector
ξ ∈ se(3) Lie-algebra elements of transformation

Camera Parameter and Projective Geometry

I(h×w) image of height h and width w
Wm×n

p window of size m× n centered at p
G gradient image
B census transform
Rv2c,Rc2v extrinsic rotation between camera and vehicle coordinates

xxi



C camera center
P projection matrix
K intrinsic camera matrix
π(X) projection of 3D point into image coordinates
mx,my pixel size
fx, fy camera constant normalized by pixel size
cx, cy principle point normalized by pixel size
s skew or scaling factor
F fundamental matrix
E essential matrix
e epipole
l epipolar line
H homography

Statistic and Optimization Problems

p(A|B) probability of A conditioned on B
N (µ, σ2) Gaussian distribution with variance σ2 and mean µ
Σ covariance matrix
L(b, µ) Laplace distribution with scale b and mean µ
x̂ estimated value of system variables x
r residual
L loss function
E energy term
Φ unary term (e.g. data likelihood)
Ψ pairwise term (e.g. regularization)
Θ model-/ hyperparameters
τ truncation value
λ weighting factor
J Jacobi matrix
δ increment
γ threshold
H hypothesis
O (·) O-notation for complexity
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Human vision is enabled by two essential parts of the brain, the ventral and the
dorsal stream [Mishkin and Ungerleider, 1982, Goodale and Milner, 1992]. The ven-
tral stream is also known as the ’what pathway’ and refers to the object recognition
and representation of object forms. The dorsal stream represents the ’where and
how pathway’, which allows locating objects especially important to interact with
them. The ventral stream is characterized by the fact to be sensitive to high spatial
frequencies and details. The ability to recognize objects is essentially based on the
learned appearance. In contrast to that, the dorsal stream perceives high temporal
frequencies to recognize the location and motion of objects. An object shows a visu-
ally greater movement if it is closer to the moving observer. This is known as motion
parallax and an important visual cue exploited by the dorsal stream.

The methods developed in the field of computer vision are often motivated by the
human way of visual perception. The tasks of semantic and instance segmentation
are focused on recognizing object classes and which parts of an image correspond to
the same object instance. These approaches refer to the ventral stream and are today
dominated by deep learning-based methods for learning the appearance of object cat-
egories. The ability of the ventral stream to recognize object shapes and forms based
on the learned experience is emulated by convolutional neural networks (CNNs) for
single-view depth estimation. In connection with the dorsal stream, methods such
as structure from motion (SfM) should be mentioned, which exploit the principles

1
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of multi-view geometry to perceive the environment structure in terms of depth and
motion. These methods are based on temporal information and are still dominated
by traditional optimization and model-based approaches.

Distinguishing the human visual perception into two separate parts was challenged
by several research works (e.g. [Milner, 2017]), which show that there are interactions
between both streams. While these tasks are mostly addressed individually in the
computer vision domain, the combination of the principles of multi-view geometry
with deep learning-based perception is investigated in the context of a scene flow
estimation in the present thesis. A special emphasis is placed on the combination
with deep learning-based single-view depth estimation.

Scene flow is defined as the 3D motion field and 3D structure observed by at least
two cameras at two consecutive time steps ([Vogel, 2015, p. 2]). Scene flow methods
typically estimate the motion and structure of the scene jointly and provide dense
results, which means providing a scene flow estimate for each pixel of at least one
reference image. Four degrees of freedom per pixel are needed to define a scene flow
estimate. The 3D translational motion of each pixel between the time points at
which the images are captured defines the 3D motion field. The depth of each pixel
defines the 3D structure for a calibrated camera. In the present thesis, the focus is
placed on the scene flow estimation with a single monocular camera instead of the
typically used stereo cameras.

Due to the explicit estimation of motion, scene flow is designed for dynamic scenes.
Dynamic scenes are scenes that include objects with an individual motion. The
relative motion of the camera to the scene is consequently not only describable by
the camera motion itself. The present thesis is tailored to dynamic scenes, where the
motion inherent in the scene can be described by the motion of a set of rigid moving
bodies. Each rigid body motion is defined by six degrees of freedom, composed of
the three translational and three rotational degrees of freedom. Dynamic scenes
restricted to rigid moving objects are denoted as multi-rigid-object dynamic scenes
or briefly as multi-object dynamic scenes in the present thesis. One kind of scene,
which can be almost completely described by a set of rigid bodies, is a dynamic
traffic scene. The domain of dynamic traffic scenes serves as a basis for evaluation
and domain for future applications.

In summary, the core research question addressed in this thesis can be formulated
as follows:

How to combine the principles of multi-view geometry with deep learning-based
perception for scene flow estimation in a monocular camera setup focusing on
multi-rigid-object dynamic scenes?
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(a) Piecewise rigid scene flow (b) Instance/ object scene flow

Figure 1. Example scene from [19]: (left) Jointly estimated 3D geometry, 3D motion vectors, and superpixel boundaries, rendered from a
slightly different viewpoint. (right) Processing steps and final result of piecewise rigid scene flow estimation. Estimated depth, the lateral
3D motion component, and the re-projected 2D flow are shown. Occlusion areas are highlighted in white.

outperforms recent dedicated stereo and optical flow algo-
rithms in challenging settings on their respective task.

2. Related Work
The term “scene flow” was coined by Vedula et al. [20],

who were among the first, if not the first, to estimate both
dense 3D geometry and a dense 3D motion field from multi-
view image data. Estimation proceeds in two independent
steps: First, 2D optical flow fields are estimated for all
views (without requiring that they must be projections of
the same 3D flow). Then a 3D flow field is fitted to them.
Wedel et al. [24] proceed the other way around. Stereo dis-
parity is precomputed for each time step; then the optical
flow for a reference view and the disparity differences for
the other view are estimated. Rabe et al. [13] integrate a
Kalman filter into this approach to yield smooth flow fields
over multiple frames. One of the limitations of these ap-
proaches is that a 2D regularizer is used, which encourages
smooth projections, and not smooth 3D scene flow.

Huguet and Devernay [10] were possibly the first to es-
timate geometry and flow in an integrated manner with a
variational formulation. Basha et al. [3] parameterize the
scene flow by depth and a 3D motion vector w.r.t. a ref-
erence view, and estimate all parameters jointly with a 3D
extension of the widely used optical flow method of Brox
et al. [5]. This approach was modified by Vogel et al. [22],
who argue that the total variation prior on the 3D motion
field is biased for realistic baselines, and instead encourage
locally rigid motion. The local rigidity assumption, which
for sparse motion estimation dates back to at least Adiv [1],
has also been used in 3D motion capture with explicit sur-
face models [e.g., 6]. Also related is the optical flow ap-
proach of Nir et al. [12], in which the flow field is (over-)
parameterized by explicitly searching for rigid motion pa-
rameters, and then encouraging their smoothness.

Valgaerts et al. [18] generalize the problem by assuming
that only the camera intrinsics, but not the relative pose are
known. In the presence of a dominant rigid motion (“back-
ground motion”) they alternatingly estimate both the rela-
tive camera pose and the scene flow.

Common to these previous approaches to 3D scene flow
is that they penalize deviations from spatial smoothness,
typically in a robust way. In the context of stereo dispar-
ity and optical flow, explicit modeling of discontinuities by
means of segmentation or layer-based formulations has a
long history [23] and has recently gained renewed atten-
tion: Bleyer et al. [4] estimate disparity by assuming the
scene to be segmented into planar superpixels and parame-
terizing their geometry. Segment-based stereo is also advo-
cated by Yamaguchi et al. [26], who additionally penalize
deviations from the (not segment-based) initialization. This
method was further extended to epipolar flow, i.e. optical
flow that enforces epipolar motion as hard constraint [27].
Sun et al. [16] estimate general 2D motion by decomposi-
tion into several layers, which enables occlusion reasoning.
Unger et al. [17] compute optical flow by parameterizing
the motion per segment with 2D affine transformations, and
also perform occlusion handling. A key difference, aside
from estimating 2D and not 3D motion, is that they do not
consider any inter-patch regularization, such that the mo-
tion fields assigned to different segments are independent
of each other. Discrete optimization based on fusion of pro-
posals has been applied before to 2D optical flow estima-
tion by Lempitsky et al. [11]. Here, such an optimization
scheme is employed for 3D scene flow.

3. Piecewise Rigid Model for 3D Scene Flow
In contrast to typical approaches to 3D scene flow, our

novel model parameterizes the scene as a collection of
piecewise planar regions, each of which moves rigidly over
time. As we show below, each region can be described using
nine parameters, which are estimated by means of energy
minimization. To that end we define an energy function that
assigns each pixel to a segment and each segment to the 3D
geometry and motion of a plane. This allows us to estimate
the 3D scene flow and depth for every pixel of a reference
view. The segmentation of the scene is only part of the in-
ternal representation and is not returned as an output.

We formulate our model for the classical case of two
consecutive image pairs acquired with a calibrated stereo
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Figure 3: Geometric Relationship between reference and
target views. Pixels in the reference view are mapped to a
pixels in a target view via their depth and rigid body motion.

target view v ∈ V according to the calibration matrix K,
the rigid body motion Rv|tv of the corresponding object
oki and the plane parameters of the associated superpixel
ni. See Fig. 3 for an illustration.

The data cost ϕD
v (p,q) compares the appearance at pixel

p in reference image 0 with the appearance at pixel q in
the target view v ∈ V . In our experiments, we use Cen-
sus descriptors [46] which are robust to simple photometric
variations [22, 41, 45]. To guide the optimization process
and overcome local minima we additionally add a robust `1
loss to ϕD

v . This loss measures the difference with respect
to sparse DiscreteFlow correspondences [23] for the flow
terms (v = 2, 3) and depth estimates from SPS-stereo [45]
for the stereo term (v = 1).

Smoothness Term: The smoothness term encourages co-
herence of adjacent superpixels in terms of depth, orienta-
tion and motion. It decomposes as

ψ(s) = γS
ij

∑

i∼j
ψG
ij(ni,nj) + ψM

ij(si, sj) (4)

with the following geometry (G) and motion (M) terms:

ψG
ij(ni,nj) =

∑

p∈Bij

ρ (d(ni,p)− d(nj ,p))

+ ρ
(
1− |nT

i nj |/(‖ni‖‖nj‖)
)
,

ψM
ij(si, sj) = γM

ij(ni,nj) [ki 6= kj ].

Here, d(n,p) denotes the disparity of plane n at pixel p in
the reference image, Bij is the set of shared boundary pixels
between superpixel i and superpixel j, and ρ is the robust
`1 penalty. The instance-sensitive weight γS

ij is defined as

γS
ij = 1− βS · [(i, j) ∈M] (5)

whereM denotes the set of adjacent superpixel pairs where
exactly one of the superpixels lies on an object instance.
β ∈ [0, 1] is a hyper-parameter which weighs down the
costs of discontinuities for adjacent superpixels inM. Note

that this weighting is only possible in the presence of in-
stance predictions.

The geometry-sensitive motion weight is defined as

γM
ij(ni,nj) = exp


− λ

|Bij |
∑

p∈Bij

(d(ni,p)− d(nj ,p))
2




× |nT
i nj |/(‖ni‖‖nj‖)

encouraging motion boundaries to align with 3D folds and
discontinuities rather than within smooth surfaces.

Instance Term: The instance term χ(s,o) measures the
compatibility of appearance and part-labeling induced by
the 3D object coordinates when warping the detected in-
stances into the next frame. It takes the following form

χ(s,o) =
∑

i∈S

∑

p∈Ri

∑

v∈V
χI
v(p,q) (6)

with

χI
v(p,q) = [M0(p) = 0 ∨Mv(q) = 0] · λ + (7)

[M0(p) > 0 ∧Mv(q) > 0] ·
(
χA
v (p,q) + χL

v(p,q)
)

Here, q is calculated as in Eq. 3 and the appearance (A)
potential and the part labeling (L) potential are defined as

χA
v (p,q) = ‖I0(p)− Iv(q)‖1 (8)
χL
v(p,q) = ‖C0(p)−Cv(q)‖1 (9)

and measures the difference in appearance I and 3D ob-
ject coordinates C between image location p in the ref-
erence view and q in the target view, respectively. While
the data term in Eq. 2 also evaluates appearance, we found
that the Census descriptors work well mostly for textured
background regions. In contrast, it returns noisy and unreli-
able results in the presence of textureless, specular surfaces
such as on cars. However, as evidenced by our experiments,
including an additional `1 constraint on appearance for in-
stances leads to significantly better estimates in those cases.
This observation is in accordance with recent works on di-
rect visual odometry and SLAM [7, 8, 27] which use simi-
lar measures to reliably estimate the camera pose in weakly
textured environments. In contrast to them, here we exploit
this constraint to estimate the relative pose of each individ-
ual weakly textured object in the scene.

The intuition behind this term is as follows: when warp-
ing the recognized instances from the reference frame into
the target frame according to the estimated geometry and
motion, the appearance as well as the part labeling in-
duced by the object coordinates should agree. The term
[M0(p) > 0 ∧Mv(q) > 0] ensures that these constraints
are only evaluated if both the reference and the target pixel
belong to a detected instance (i.e., when M > 0). However,

Figure 1.1: Stereo-based scene flow estimation methods represent the 3D position and 3D
motion of pixels in the image. (a) Piecewise rigid scene flow [Vogel et al., 2013]
divides the scene into a set of 3D rigid planar surface elements including their
3D position and 6D motion. The relative motion of each surface element is
indicated by the arrows. (b) Instance or object scene flow [Behl et al., 2017]
divides the scene into a set of planar surface elements and assigns each surface
element to a rigid body (e.g. a vehicle) represented by its 6D motion. The
figures are taken from the corresponding papers [Vogel et al., 2013] (©2013
IEEE) and [Behl et al., 2017] (©2017 IEEE).

1.1 Motivation

To motivate the thesis, the present section gives answers to two important questions:
First, why focus on monocular scene flow estimation in general? Second, why study
in particular the combination of multi-view geometry-based principles with deep
learning-based approaches?

1.1.1 Scene Flow Estimation

Methods fo 3D scene flow estimation provide the 3D structure and 3D motion of a
scene. They gained a lot of interest, for example in the context of advanced driver
assistance systems (ADASs) or autonomous driving. For example, such methods can
be used to determine a collision risk with a pedestrian or vehicle or to navigate safely
through the scene.

Stereo-based scene flow estimation: Scene flow estimation is traditionally
based on a temporal series of stereo images. Two popular stereo-based scene flow
methods are illustrated in figure 1.1. Piecewise rigid scene flow [Vogel et al., 2013]
divides the scene into a set of planar surface elements oriented in 3D space. Each
plane is defined by its 3D geometry in the scene and is considered as a rigid moving
element with its corresponding 6D motion (three translational and three rotational
degrees of freedom). Based on two stereo image pairs, the basic principle is to op-
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(a) Left input image of the stereo camera setup. The ego-vehicle drives
through a narrow urban environment with static infrastructure (buildings,
trees, poles), a parking car on the right as well as an approaching vehicle.

(b) Visualization of the SGM stereo matching result. Red pixels are mea-
sured as close to the ego-vehicle (i.e. dist ≤ 10 m) while green pixels
are far away (i.e. dist ≥ 75 m).

(c) Stixel World representation of the disparity input. Objects are effi-
ciently described using vertical rectangles. The arrows on the base-points
of the Stixels show the estimated object velocity. The color encodes the
distance.

(d) Segmentation of the Stixel World into static background/infrastructure
and moving objects. The color represents a group of connected Stixels
with similar motion. Brown Stixels are flagged as potentially inaccurate.

Figure 6: Visual outline of the stereo processing pipeline. Dense disparity images are computed from sequences of stereo
image pairs. From this data, the Stixel World is computed, a very compact and efficient intermediate representation of the
three-dimensional environment. Stixels are tracked over time for estimating the motion of other objects. This information is
used to extract both static infrastructure and moving objects for subsequent processing tasks.

a multi-cue classifier operating on gray-value information
and height profiles obtained from stereo vision. Through
the optimal combination of both modalities, curbs are reli-
ably detected, see Figure 5 for an example.

To further reinforce vision-based self-localization we
adopt the feature-based localization approach of [15], that
operates on the monocular localization camera, see Fig-
ure 3. Outside of the vision system, this additional loca-
tion estimate is then fused with the map-based localization
described above.

4.2. Stereo Vision

A stereo camera is used to perceive and understand the
environment in front of the ego-vehicle, covering a range of
up to 75 m using 1024 × 440 px imagers with 45◦ degree
FOV lenses and a baseline of 35 cm. The stereo processing
pipeline consists of four main steps: the dense stereo recon-
struction itself, the Stixel segmentation, a motion estimation
of other objects, and the final object segmentation. The dif-
ferent processing steps are briefly illustrated in Figure 6.

Stereo Matching Given the stereo image pairs, dense dis-
parity images are reconstructed using semi-global match-
ing (SGM) [12], c.f . Figure 6a and Figure 6b. This scheme
was made available on an efficient, low-power FPGA-
platform by [11]. The input images are processed at 25 Hz

with about 400, 000 individual depth measurements per
frame.

Stixel Computation To cope with this large amount of
data, we utilize the Stixel representation introduced in [19].
The idea is to approximate all objects within the three-
dimensional environment using sets of thin, vertically ori-
ented rectangles, the so-called Stixels. All areas of the
image that are not covered with Stixels are implicitly un-
derstood as free, and thus, in intersection with the map of
the route, as potentially driveable space. To consider non-
planar ground surfaces, the vertical road slope is estimated
as well. Altogether, the content of the scene is represented
by an average of about 300 Stixels. Just like SGM, the
Stixel computation is performed on an FPGA platform.

Motion Estimation Autonomously navigating through
urban environments asks for detecting and tracking other
moving traffic participants, like cars or bicyclists. In our
setup, this is achieved by tracking Stixels over time using
Kalman filtering following the approach of [18]. Assum-
ing a constant velocity, the motion of other objects across
the ground surface is estimated for every Stixel individually.
The result of this procedure is given in Figure 6c showing
both the Stixel representation and the motion prediction of
the Stixels.
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Figure 1.2: Stereo-based stixel world representation [Franke et al., 2013]. The image is di-
vided into column-wise segments, each one corresponding to a stick-like element
(the stixel) in the scene. Using a Kalman-Filter-based tracking, the motion state
of each stixel is estimated (visualized by the arrows). The figure is taken from
the corresponding paper [Franke et al., 2013] (©2013 IEEE).

timize the geometry and motion of the planes such that a photometric distance is
minimized by warping each plane in all stereo images. The result in figure 1.1 (a)
indicates that this approach is able to represent the depth structure as well as the
motion of the scene.

To exploit the special conditions of dynamic traffic scenes, Menze and Geiger
[2015], Behl et al. [2017] proposed the object or instance scene flow approach (see
figure 1.1 (b)). A traffic scene, in particular, typically consists of a few independent
motions by vehicles and other objects. Therefore, the object scene flow model in-
troduces a set of rigid body motions and assigns each plane to one rigid body. The
scene flow estimation is formulated as a joint optimization of the 6D object motion
parameters, 3D plane parameters and the association of planes to objects.

Stixel world: While the presented stereo scene flow methods provide an accu-
rate representation of the depth and motion of a scene, Badino et al. [2009], Pfeiffer
and Franke [2011b,a] additionally addressed the challenge of providing a compact,
but detailed representation and proposed the so-called stixel world (see figure 1.2).
Such compact representation is beneficial to reduce the amount of data that needs
to be stored, transferred to, or processed by a subsequent application. The stixel
world representation encodes the scene as a column-wise segmentation in ground
and object stixels defined by its geometry. The estimation is typically based on a
dense disparity map. Initially, the stixel world approaches were designed to repre-
sent the first row of closest objects in each column [Badino et al., 2009]. However,
the stixel world representation was later extended to provide the depth structure of
the whole image [Pfeiffer and Franke, 2011b]. By integrating optical flow estimates
in addition to the dense disparity map, the stixels are tracked over time and the
motion of each stixel is estimated using a Kalman Filter [Pfeiffer and Franke, 2011a]
(see figure 1.2). Thereby, a complete scene flow is defined by the stixel world rep-
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resentation in a compact way. The stixel world representation is also used as the
medium-level environment abstraction for the autonomous driving research project
presented in [Franke et al., 2013].

Stereo-based scene flow methods are suitable for an accurate representation of
the depth and motion of a dynamic traffic scene and specialized representations
for dynamic traffic scenes are introduced. However, monocular cameras are often
preferred due to be less expensive and to avoid the effort of calibrating the stereo rig.
This strongly motivates to address the scene flow estimation problem in a monocular
camera setup.

1.1.2 Multi-View Geometry Meets Deep Learning

Scene flow estimation and scene reconstruction are traditionally based on the prin-
ciples of multi-view geometry in a monocular camera setup. The displacement of
a scene point between two or more images (optical flow) depends on the relative
motion of the scene point and its distance to the camera.

Multi-view geometry-based approaches for static environments: Meth-
ods have been proposed that address the estimation of the depth and camera motion
assuming a static environment. Structure from motion (SfM) (see figure 1.3 (b)) de-
scribes the principle to triangulate the depth of each scene point based on its optical
flow given the camera motion or the simultaneous estimation of depth and camera
motion. Simultaneous localization and mapping (SLAM) methods (e.g. [Engel et al.,
2017, Mur-Artal and Tardós, 2017]) are applied on image sequences and jointly esti-
mate the camera poses and depth structure of the scene including a mapping stage.
Even given perfect optical flow estimates, there exists a scale-ambiguity between the
depth estimates and translational camera motion. It is not possible to distinguish
a small camera translation in a miniature world from a large camera translation in
the real world based on a monocular image sequence and the multi-view geometric
principles. To overcome this ambiguity, additional constraints are introduced such
as a known camera height above the ground plane.

Multi-view geometry-based approaches for dynamic environments: The
concept of multi-body structure from motion (MSfM) is a generalization of single-
body SfM to dynamic scenes including objects with individual motion. The scene is
segmented into parts that undergo the same individual motion (e.g. each segment
corresponds to a different vehicle) and each part is reconstructed based on the SfM
principle separately. However, the scale ambiguity is present for every reconstruc-
tion and even more, the relative scales between the reconstructions are unknown as
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(a) Monocular image

(b) Structure from motion

(c) Single-view depth estimation

(d) Semantic segmentation

(e) Instance segmentation

Figure 1.3: Overview of multi-view geometric (structure from motion) and deep learning
methods (single-view depth estimation, semantic segmentation, and instance
segmentation). The figure shows results using [Godard et al., 2017] for single-
view depth estimation, [Long et al., 2015] for semantic segmentation, and [He
et al., 2017] for instance segmentation. The SfM-based depth estimation builds
on the MirrorFlow [Hur and Roth, 2017] for optical flow estimation. The results
are overlaid with the input images and colored in the following scheme: (b,c)
the estimated depth is colored from close (red) to far (dark blue), (d) each
color corresponds to a different class (e.g. blue for vehicles), and (e) each color
corresponds to a different object instance.

well. To solve the ambiguity, previous monocular methods assumed that the mov-
ing objects are in contact with the ground, on which they move [Ranftl et al., 2016,
Bullinger et al., 2018], or that the scene follows a smoothness prior regarding surface
and motion [Mitiche et al., 2015, Xiao et al., 2017, Kumar et al., 2017, Di et al.,
2019]. These assumptions might be violated and require a highly accurate detection
of the ground contact point and reconstruction of the ground plane. Additionally,
there exist degenerate situations where moving objects are not detectable based on
multi-view geometry alone. Moving objects with collinear translational motion are
one example, which is common in traffic scenes for approaching or preceding traffic
participants on the same or adjacent lane.

Figure 1.3 (b) shows for an example that SfM is able to provide a reasonable
reconstruction of the depth structure for most parts of the static environment. This
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reconstruction assumes highly accurate optical flow estimates, which is especially
challenging for low textured image regions or repetitive structures. The aperture
problem is known as the ambiguity of the motion direction of an optical flow vector
in the direction of a line [Jähne, 2005, p. 401]. Erroneous optical flow estimates (e.g.
on the lane markers in figure 1.3 (b)) directly result in incorrect depth estimates.
Furthermore, moving objects are systematically reconstructed at the wrong position,
e.g. an oncoming object appears closer to the camera than it actually is and a
preceding object appears at a far distance. The assumption that all objects are static
is violated in this case. However, the same errors occur in a multi-body structure from
motion (MSfM) method if the moving object is not detected due to a degenerated
situation. In summary, multi-view geometry provides powerful information for depth
and motion estimation, but also with some challenges or limitations: (1) there exists
a scale-ambiguity, (2) optical flow estimation is prone to low-textured or repetitive
parts of the scene, (3) there exists degenerated situations in terms of moving object
detection, and (4) a translational camera motion is required.

In contrast to the multi-view geometry-based approaches, many types of informa-
tion are inherent in the appearance of the scene in a single image. Figure 1.3 (c-e)
provides qualitative results for three different tasks. Today, leading solutions for
these tasks are dominated by deep learning methods.

Single-view depth estimation: A human is able to recognize the depth struc-
ture of a scene by looking at a single image. This ability is especially based on the
experience of how a known scene typically looks like, e.g. that objects at a far dis-
tance appear smaller in the image and mostly close to the horizon. The breakthrough
of single-view depth estimation was achieved by applying deep learning methods (e.g.
[Eigen et al., 2014, Godard et al., 2017]), which are able to exploit these depth cues
in a single image to provide plausible depth estimates (see figure 1.3 (c)). Compar-
ing the results to SfM, this depth estimation shows different characteristics. The
depth estimates are less sharp and also less accurate in some parts. However, these
methods are less prone to errors for low-textured or repetitive structures and mov-
ing objects. The depth estimates are also provided in a metric scale if supervision
of a stereo camera or ground truth data is used during training. A translational
motion of the camera relative to the scene is not required anymore. While SfM is
based on the motion of pixels between different views, only a single image is given
to these approaches. Therefore, single-view and multi-view approaches base their es-
timates on different kinds of information, which results in different advantages and
disadvantages. This makes it attractive to combine both for monocular scene flow
estimation.
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Semantic and instance segmentation: Figure 1.3 (d-e) shows results for se-
mantic segmentation and instance segmentation. While semantic segmentation (e.g.
[Long et al., 2015]) assigns a class label to each pixel, instance segmentation (e.g. [He
et al., 2017]) also classifies which pixels belong to the same object. Instance segmen-
tation is applicable to countable objects such as pedestrians or vehicles. However,
there is also an attempt to combine both tasks as panoptic segmentation (e.g. [Kir-
illov et al., 2019, Xiong et al., 2019]). Such information can also be beneficial for
scene flow estimation, e.g. to define a more distinctive scene model distinguishing
the different classes, or to identify which parts of the image undergo the same rigid
body motion.

All these methods provide different powerful information for the task of monoc-
ular scene reconstruction. Even more, deep learning methods provide information
complementary to the challenges and limitations of multi-view geometry-based ap-
proaches. However, they are typically still addressed as individual tasks or combined
in a way that is limited to static scenes (e.g. [Tateno et al., 2017, Fácil et al., 2017,
Yin et al., 2017]). This strongly motivates to focus the present thesis on the topic of
combining multi-view geometry with deep learning approaches to overcome previous
limitations and to provide accurate monocular scene flow estimates.

1.2 Organization and Contributions

The present thesis addresses the task of scene flow estimation for multi-object dy-
namic scenes in a monocular camera setup. The core research question addresses the
combination of multi-view geometry with deep learning-based methods for monocu-
lar scene flow estimation. A special focus is placed on the combination of multi-view
geometry and single-view depth estimation. The present section gives an overview
of the organization of the thesis and highlights the contributions of each chapter in
general and in particular regarding the research question.
Chapters 1 and 2 set the motivation and provide an introduction to the relevant

technical background including an overview of multi-view geometry and optimization
methods. Chapter 3 presents ProbDepthNet, a CNN for single-view depth estimation
including uncertainty quantification of the provided depth estimates. The subsequent
chapters 4 to 6 present different approaches for monocular scene flow estimation –
each one designed to combine multi-view geometry with the probabilistic single-
view depth estimates provided by ProbDepthNet. These methods present also ways
to exploit the results of a semantic or instance segmentation. While SVD-MSfM
(chapter 4) basically follows a MSfM-based formulation, Mono-SF (chapter 5) is
formulated as a scene flow optimization problem. Finally, the Mono-Stixel method
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(chapter 6) is designed to exploit a scene model specialized for dynamic traffic scenes
as an underlying representation.

Chapter 3 - Probabilistic Single-View Depth Estimation: Even though
the idea of single-view depth estimation is by far not new, the real breakthrough
was achieved by using deep learning methods. However, most of the deep learning
methods for single-view depth estimation lack uncertainty quantification of their
estimates – an important characteristic, which is needed to combine multi-view
geometry with single-view depth estimates in a statistical manner.

Chapter 3 provides an analysis regarding the error distribution and presents Prob-
DepthNet, a CNN that estimates pixel-wise depth distributions from a single image
rather than single depth values that just encode the most likely depth estimate.
Different strategies for uncertainty estimation are analyzed and the experiments re-
veal that these strategies suffer from overfitting effects and provide overconfident
uncertainty measures. A novel recalibration technique by adding a few subsequent
layers, called CalibNet, is proposed, which compensate for such overfitting effects
resulting in well-calibrated distributions. This recalibration technique is applicable
to different probabilistic approaches. The subsequent chapters give evidence that
the probabilistic design and recalibration technique of ProbDepthNet are important
to provide high accurate monocular scene flow estimates by combining multi-view
geometry with single-view depth estimates.

Chapter 4 - Single-View Depth Meets Multi-Body Structure from Mo-
tion: In a monocular camera setup, the estimation of the depth and motion of a
dynamic scene is traditionally addressed by MSfM-based approaches. In contrast to
these multi-view geometry-based approaches, previous works and the ProbDepth-
Net method presented here provide depth estimates from a single image. However,
single-view depth estimation and multi-view geometry are mostly tackled as two
individual tasks or fused in a way that is only applicable to static scenes.

Chapter 4 presents a novel method, denoted as SVD-MSfM, which combines prob-
abilistic single-view depth estimation with multi-view geometry in a MSfM-based
approach. More precisely, in the first step, scale-aware motion estimation is per-
formed for the camera and potentially moving objects detected by an instance seg-
mentation. While previous methods merely exploited single-view depth estimates
for camera pose estimation, SVD-MSfM presents a novel scale-aware motion esti-
mation for moving objects. As a second step, a depth probability volume serves as
the basis to estimate the depth structure by combining the probabilistic single-view
depth estimates with the multi-view geometry-based photometric consistency. The
monocular scene flow estimates provided by SVD-MSfM are confirmed by the exper-
iments to be superior to previous methods. Furthermore, the method generalizes to
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standstill scenarios and several components and design choices are validated by addi-
tional ablation studies. The experiments give evidence for the claimed combination
of multi-view geometric optimization with single-view depth estimates. They show
that both parts contribute to the final accuracy. This combination benefits from
single-view depth estimates provided in a probabilistic and well-calibrated form –
the two characteristics for which the ProbDepthNet model is designed.

Chapter 5 - Monocular Instance Scene Flow: SVD-MSfM consists basically
of the two separate steps of motion and depth estimation. However, both tasks highly
depend on each other, which motivates a joint optimization of both.
Chapter 5 presents Mono-SF for joint optimization of the motion and depth struc-

ture of the scene. The scene is decomposed into 3D planar surface elements, each one
assigned to an object or the background. The objects and background are assumed
to be rigid and form a set of rigid bodies. Following this model, Mono-SF jointly esti-
mates the 3D geometry of each plane and 6D motion of each rigid body considering
(1) the multi-view geometry by warping the reference image into the subsequent im-
age, (2) probabilistic single-view depth estimates, and (3) scene model smoothness
priors. SVD-MSfM is used for the initialization of the non-linear optimization prob-
lem. Mono-SF provides a further improvement in terms of monocular scene flow
accuracy compared to SVD-MSfM and previous methods. Furthermore, Mono-SF
has been the first monocular method published in the KITTI scene flow benchmark.
Several components and design choices are analyzed by the experiments. The two
essential claims in terms of combining multi-view geometry with single-view depth
estimates and the ProbDepthNet design are further confirmed by the experiments.

Chapter 6 - Monocular Stixel Scene Flow: Mono-SF has provided new
state of the art (SotA) monocular scene flow estimates by combining multi-view
geometry with probabilistic single-view depth estimates. A special representation
for traffic scenes, the stixel world representation, was introduced in section 1.1.1.
Chapter 6 presents the Mono-Stixel method, which addresses monocular scene flow
estimation with the stixel world representation as underlying scene model. While
SVD-MSfM and Mono-SF distinguish static and potentially moving objects based
on an instance segmentation, the differentiation between static and moving objects
is part of the Mono-Stixel optimization and an independent moving object (IMO)
detection identifies which objects are really in motion.
The experiments confirm that the Mono-Stixel method provides SotA monocular

scene flow estimates and IMO detections using a stixel world representation. Due to
the higher flexibility of the Mono-Stixel method that the deep-learning inputs are
optional, the experiments provide further insights into the different benefits of each
deep-learning component for a monocular scene flow estimation.
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The present chapter provides a summary of the technical background and used
notation and serves to support the understanding of the thesis. The first section 2.1
introduces the projective geometry of a single image and the geometric principles of
two views. The second section 2.2 presents methods for minimizing continuous non-
linear energy terms and for inferring discrete problems in graphical models. Both
sections are tailored to the concepts and methods used in the present thesis and
described in a compact introductory manner.

2.1 Single and Two-View Geometry

The purpose of the present section is to explain the concept of projective geometry
for single cameras and pairs of cameras and covers (1) the projection of a 3D point
into the image, (2) the epipolar geometry that constraints the image position of a
3D point in multiple views, and (3) the plane-induced homography that defines the
mapping of a 3D point lying on a scene plane. For a more comprehensive and in-
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Figure 2.1: Illustration of the pinhole camera model (figure following [Hartley and Zisser-
man, 2003, p. 154]). The pinhole camera model defines the projection π of a 3D
scene point X into the image p = π(X). The origin of the camera coordinate
system is denoted by C. The principle point p0 is defined by the intersection
of the principal axis with the image plane. The distance of the image plane to
the camera center is known as the camera constant f .

depth presentation, the reader is referred to relevant literature such as [Hartley and
Zisserman, 2003, Part 1, 2].

2.1.1 Pinhole Camera Model

To define the projection of a 3D scene point X into the 2D image coordi-
nates p = π(X), the pinhole camera model is assumed. For an ideal pinhole model
distortions due to an optical lens are neglected. For practical use, the camera needs
to be properly calibrated and the distortions should be compensated in advance or
incorporated into the projection model.
Figure 2.1 illustrates the geometric principles of the pinhole model to de-

rive p = π(X). The projection is expressed in homogenous coordinates. This means
that the image coordinates are defined as p = (u v 1)T in projective space. All
points that are equal up to an arbitrary scale k ∈ IR, k 6= 0 form an equivalence
class p = (ku kv k)T and refer to the same non-homogenous point u, v. Most
equations in the present thesis employ p and X in projective space.
The camera parameters that define the projection are illustrated in figure 2.1. The

camera center C is the origin of the camera coordinate system. The z-axis is perpen-
dicular to the image plane, the x-axis points to the right in a horizontal direction,
and the y-axis is used as the vertical direction pointing downwards. The distance of
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the image plane to the origin of the camera coordinate system is denoted as the cam-
era constant f . Furthermore, the intersection of the z-axis of the camera coordinates
with the image plane defines the principal point p0. The image coordinate system is
defined to be at the upper left corner of the image as shown in figure 2.1. For map-
ping the image coordinates to pixels, the parameters are additionally normalized by
the pixel dimension mx,my, which defines fx = f/mx, fy = f/my, cx = p0,x/mx,
and cy = p0,y/my.

Based on these camera parameters, the projection π(X) of a 3D point X into
image coordinates p is defined by the following equation:

p = π(X) =




fx s cx

0 fy cy

0 0 1




︸ ︷︷ ︸
K

X (2.1)

The matrix K is the so-called camera matrix. The skew parameter s is zero for most
cameras [Hartley and Zisserman, 2003, p. 157].

The camera parameters are derived by camera calibration, which is not covered
here. The reader is referred to literature such as [Hartley and Zisserman, 2003,
pp. 178–193].

2.1.2 Epipolar Geometry

While the previous section 2.1.1 explained a model to describe the projective ge-
ometry of a single camera image, multi-view geometry is introduced in the present
subsection. As shown in figure 2.2, two images are given with the camera centers C0

and C1. The images are taken by two different cameras with individual camera
matrices K0 and K1 or by a single moving camera K0 = K1 = K.

Representation of transformations: First, the used representation of transfor-
mations is introduced. The transformation between the camera coordinate systems
is defined by T ∈ SE(3), which transforms a 3D point X0 from the coordinate
system C0 to C1:

X1 =


 R t

03×1 1




︸ ︷︷ ︸
T

X0 (2.2)

The points X0,X1 are given in homogenous coordinates in this equation with the
homogenous coordinate normalized to one. The transformation matrix T comprises
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X

Figure 2.2: Illustration of epipolar geometry (figure following [Hartley and Zisserman, 2003,
p. 240]). The epipolar plane (red plane) intersects the image planes in the
epipolar lines. Two matching image points p0 = π0(X0) and p1 = π1(X1) are
constraint to lie on the respective epipolar line. The camera centers C0 and C1

projected into the other image defines the epipoles e0 and e1. All epipolar lines
intersect the epipole.

the rotation matrix R ∈ SO(3) and translation vector t ∈ IR3 as shown in equa-
tion (2.2).

Transformations are mostly expressed by the introduced matrix multiplication in
the present thesis. Alternative representations of the rotation are quaternions, Euler
angles, or Lie algebra elements. The optimization presented in section 4.2.1 is based
on the Lie algebra elements because this is a minimal representation of the 6 degrees
of freedom. Since a deeper explanation of Lie algebra is not necessary to understand
the present thesis in general, the reader is referred to the literature. For example,
[Engel, 2017, pp. 25–30] provides a compact overview of different parameterizations
for representing and optimizing transformations.

Essential and fundamental matrix: Considering a 3D point X in the scene,
it can be transformed into the corresponding camera coordinates X0 or X1 and
projected into the image coordinates by p0 = π0(X0) or p1 = π1(X1). Even if the
exact 3D position of the point is not given, the corresponding image positions p0

and p1 are constrained by the epipolar geometry. The projections of the camera
centers C0 and C1 in the other image are known as the epipoles e0, e1. The plane
that is spanned by the rays through the image position pi and the epipole ei is the
epipolar plane (see plane in figure 2.2). The intersection of this plane with the images
defines the epipolar lines li and illustrates the fact that both corresponding image
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positions p0 and p1 need to lie on its corresponding epipolar line (see epipolar lines in
figure 2.2). The method presented in section 4.2.1 exploits the epipolar geomerty to
find corresponding image features in the subsequent image. The epipolar constraint
is used to reduce the search space of corresponding features and to prefer matches
close to the epipolar line.

Formally, the epipolar constraint is expressed by the following equation, which
depends on the transformation and camera parameters.

pT1 K
−T
1 [t]×R︸ ︷︷ ︸

E

K−1
0 p0 = 0

pT1 K−T1 EK−1
0︸ ︷︷ ︸

F

p0 = 0

pT1 Fp0 = 0

(2.3)

The matrix E is the so-called essential matrix defined as the cross product ma-
trix [t]× multiplied with R. The fundamental matrix F integrates additionally the
camera matrices K0 and K1.

2.1.3 Plane-Induced Homography

The epipolar geometry defines the relation of two image positions for one 3D scene
point. The present subsection covers the projection of a scene plane between two
images, which is defined by a plane-induced homography (see figure 2.3).

Plane geometry: A scene plane is defined by its normal vector n and its dis-
tance d to the camera such that each 3D point X on the plane fulfills the equa-
tion nTX + d = 0. An equivalent representation n̄TX = 1 is based on the scaled
normal vector n̄, which is defined as the normal vector n divided by −d. The three
degrees of freedom of the scaled normal vector are a minimal representation to define
a scene plane. The 3D scene point X corresponding to an image point p lying on
the scene plane (n, d) is defined by the intersection of the ray of p with the scene
plane, which is expressed by the following equation:

X = −d K−1p

nTK−1p
(2.4)

Homography: In the context of the two-view geometry, a homography defines
the projection of a scene plane (or a point on the plane) from one image to another
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image (see figure 2.3). Formally, the relation of two corresponding image points p0

and p1 lying on the scene plane defined by (n, d) is expressed by the homography H:

p1 = K1

(
R− tnT

d

)
K−1

0

︸ ︷︷ ︸
H

p0 (2.5)

The homography H is a 3× 3 matrix that depends on the transformation between
the camera coordinates systems (R, t), the scene plane (n, d), and the camera ma-
trices (K0,K1).

Due to the arbitrary scale using homogenous coordinates, the homography has
8 degrees of freedom. A short proof for deriving the homography equation in equa-
tion (2.5) is given as follows with the arbitrary scale s made explicit:

sp1 = K1 (RX0 + t)

⇐⇒ sp1 = K1

(
R
−dK−1

0 p0

nTK−1
0 p0

+ t

)

⇐⇒ snTK−1
0 p0

−d︸ ︷︷ ︸
s′

p1 = K1

(
RK−1

0 p0 −
tnTK−1

0 p0

d

)

⇐⇒ s′p1 = K1

(
R− tnT

d

)
K−1

0

︸ ︷︷ ︸
H

p0

(2.6)

The second step substitutes X0 with equation (2.4) and the third step exploits that
a homography is only defined up to an unknown scale.

The described plane-induced homography is a core element to represent the opti-
cal flow of planar surface elements in chapters 5 and 6. Even though the epipolar
geometry and plane-induced homography are illustrated for a moving camera and
static scene point or plane, these principles are not limited to static scenes. For
moving points or planes, the transformation T needs to be replaced by the relative
motion of the camera to the scene element, which makes both applicable also to
dynamic scenes.

2.2 Optimization Methods

The previous section 2.1 described the projective geometry for single and multiple
views. Methods are proposed, also in the present thesis, to estimate e.g. the scene
structure, motion, or scene flow based on the geometric relations. Such methods
typically are formulated as minimization problems of a loss function, also denoted
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Figure 2.3: Illustration of plane-induced homography (figure following [Hartley and Zis-
serman, 2003, p. 243]). The projection of scene points lying on a scene plane
between two images is defined by a plane-induced homography H. The scene
plane is defined by its normal vector n and its distance to the camera d. The
homography additionally depends on the transformation T between the camera
coordinate systems C0, C1 and the camera matrices K0, K1.

as energy minimization. Even though the optimization of these energy terms itself is
not the main focus of the thesis, the optimization is an essential component to derive
accurate estimates. The present section is focused on the optimization methods ap-
plied in the thesis. The first section 2.2.1 is related to the optimization of non-linear
continuous problems minimizing the squared residuals. The second section 2.2.2
covers discrete problems, which are formulated in a graph-based representation. A
broader and more detailed representation can be found in the relevant literature
such as [Bishop, 2006, pp. 140–146, 207–210, 383–418, 610–631].

2.2.1 Non-linear Least-Squares Optimization

The first kind of problem considered here is optimizing the variable x such that
it minimizes a non-linear continuous energy function E(x), for the special case
that E(x) can be expressed by a sum of squared residuals r2

i (x):

E(x) =
n∑

i=1

r2
i (x) (2.7)
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An equivalent representation of the energy term E(x) is defined by introducing the
vector r(x) = [r1(x), r2(x), ..., rn(x)]T :

E(x) = r(x)T · r(x) (2.8)

For example, the negative log-likelihood of statistical independent Gaussian mea-
surements result in the given form neglecting some constant factors. The following
two approaches cover methods to optimize x such that the energy term E is mini-
mized.

Gradient descent: The first approach presented here is the gradient descent
method. This method is an iterative optimization in the direction of the strongest
descent defined by the gradient of the energy term. Each update step is defined as
applying an increment δ to the current solution x0:

x← x0 + δ (2.9)

The gradient of the energy term depends on the partial derivation of the residu-
als r(x) by x evaluated at x0, which is defined as the Jacobi-matrix Jr(x0):

Jr(x0) =
∂r(x)

∂x

∣∣∣∣
x0

(2.10)

The increment δ is defined as the strongest descent at x0, which is defined by the
negative gradient of the energy term. An additional dampening parameter λ controls
the gradient descent stepwidth.

∂E(x)

∂x

∣∣∣∣
x0

= 2JTr (x0) · r(x0)

⇐⇒ δ = −λJTr (x0) · r(x0)

(2.11)

Gauss-Newton optimization: In contrast to the gradient descent method, the
Gauss-Newton iteratively applies increments, which are derived by finding the mini-
mum of the energy term for linearized residuals. The first-order Tailor approximation
of the residuals ri(x0 + δ) at x0 is introduced and defined by

rTi (x0 + δ) ≈ r(x0) + Jrδ. (2.12)

Replacing the residual with its first-order Tailor approximation, results in an ap-
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proximated energy term E(x0 + δ) of the following form:

E(x0 + δ) = rTi (x0 + δ) · ri(x0 + δ)

≈ (r(x0) + Jrδ)
T (r(x0) + Jrδ)

= r(x0)T · r(x0) + 2δTJT · r(x0) + δTJTJδ

(2.13)

The minimum of the approximated energy function is derived by setting the first
derivative of the energy function by δ to zero, which defines the increment δ and
update rule:

∂E(x0 + δ)

∂δ
= 2JTr Jrδ + 2JTr · r(x0) = 0

⇐⇒ δ = −
(
JTr Jr

)−1
JTr · r(x0)

(2.14)

Levenberg-Marquardt optimization: Levenberg-Marquardt is a combination
of the Gauss-Newton algorithm with gradient descent. The addition of Gauss-
Newton (equation (2.14)) and gradient descent increment (equation (2.11)) defines
the combined increment δ of Levenberg-Marquardt as:

δ = −(JTr Jr + λ · I)−1JTr · r(x0) (2.15)

The dimension of the identity matrix I corresponds to the dimension of x0.

An alternative common choice instead of the identity matrix is diag(JTr Jr) to ad-
just each component of the gradient descent to the gurvature and increase stepwidth
for smaller gradients. Introducing the variables H = JTr Jr and b = JTr · r(x0), the
alternative increment δ is defined as follows:

δ = −(H + λ · diag(H))−1b (2.16)

The factor λ can be defined adaptively to change the weighting of the Gauss-Newton
part compared to the gradient descent. Typically, λ is decreased if the energy term
decreases E(x0 + δ) < E(x0) and increased otherwise.

The Levenberg-Marquardt algorithm is also applicable to weighted least-squares
problems of the following form:

E(x) = r(x)T ·W · r(x) (2.17)

The update rule follows equation (2.16) by definingH = JTr WJr and b = JTr W·r(x0).



20 technical background

observation

variable
(discrete label)

pairwise
potential
Ψ(z4, z7)

unary
potential
Φ(z6, x6)

z1 z2 z3

z4 z5 z6

z7 z8 z9

x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 2.4: Example of a graph representation of a conditional random field (CRF). Each
node represents a variable zi (light grey) or an observation xi (dark grey). The
edges model the unary Ψ(zi, xi) and pairwise potentials Φ(zi, zj).

The Levenberg-Marquardt algorithm is applied in section 4.2.1 to estimate the
transformation of rigid bodies between two images using the implementation of
Kümmerle et al. [2011].

2.2.2 Discrete Inference on Graphical Models

While the previous section 2.2.1 deals with the optimization of non-linear continu-
ous functions, the present subsection is placed on discrete energy minimization and
labeling problems. Two kinds of problems are presented here, both are essential for
the methods proposed in the present thesis. First, the optimization of a discrete
labeling problem is described with a conditional random field (CRF) as the underly-
ing representation of the energy minimization problem. Second, inferring a sequence
of hidden states of a hidden Markov model (HMM) via the Viterbi algorithm is
presented.

Conditional random field: The first kind of problem considered here is the
optimization of discrete variables Z based on a set of observations X. The most
likely solution of Z is defined by the maximum of the posterior conditional proba-
bility p(Z | X). A CRF corresponds to the category of discriminative random fields
and serves as a graphical representation to model the posterior probability p(Z | X).
Figure 2.4 illustrates the graphical representation as a CRF. The vertices V corre-
spond to the discrete variables zi ∈ Z and observations xi ∈ X. The shown graph is
a pairwise Markov random field for the case that the probability fulfills the Markov
property, which says that each node is independent of any other node given all its
neighbors.
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Switching to the logarithmic space, the optimization is converted to an energy
minimization E. Each data term is represented by an edge in the graphical rep-
resentation. One part, the unary potentials Φi(zi, xi), captures the likelihood of a
certain label zi based on the corresponding observations xi. A second part, the
pairwise potential Ψi,j(zi, zj), is related to the joint probability of neighboring vari-
ables (i, j) ∈ N , e.g. a regularization or smoothness term:

E(Z,X) =
∑

i∈VrX

Φi(zi, xi) +
∑

(i,j)∈N
Ψi,j(zi, zj) (2.18)

In computer vision tasks, the nodes of the variables often correspond to a pixel or
superpixel, while the label represents a certain attribute such as the semantic class.
The observations might be directly the image intensities or intermediate representa-
tions such as classifier responses or optical flow estimates.

Belief propagation: Based on the graphical representation of the energy term
using a CRF, belief propagation or message passing are optimization methods to
find a solution of Z with a high probability. The main idea is that the nodes itera-
tively exchange the probability or energy terms as messages. For the max-product
algorithm, the belief of a certain label for a given node is defined as the product
of the incoming messages from its neighboring nodes. The messages are defined as
probabilities and the belief needs to be maximized. Alternatively, the message could
be defined as cost or energy terms. Thereby, the belief is analogously defined as the
sum of the incoming messages, which needs to be minimized. This version is known
as the min-sum variant, which is the basis for the following description. Formally,
the belief b for a certain label zi of node i is defined by the incoming messages mj→i

of all neighboring nodes j ∈ Ni and the unary potential Φ(zi, xi):

bi(zi) = Φ(zi, xi) +
∑

j∈Ni
mj→i(zi) (2.19)

The solution is defined as the label, which minimizes the belief function:

ẑi = arg min
zi

bi(zi) (2.20)

The messages are recursively defined and iteratively updated:

mt
j→i(zi) = min

zj


Ψ(zi, zj) + Φ(zj, xj) +

∑

(j,k)∈Nri

mt−1
k→j(zj)




= min
zj

(
Ψ(zi, zj) + bt−1

j (zj)−mt−1
i→j
)

(2.21)
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The equation shows that the messages integrate the pairwise potentials Ψ(zi, zj)

taking into account the belief that the neighboring node is of label zj. The messages
need to be evaluated for all combinations of labels of the neighboring nodes, which
results in a quadratic complexity in the number of labels. It has been shown that
belief propagation provides the optimal solution for tree-structured graphs [Bishop,
2006], but is not guaranteed to converge for graphs including cycles.

Tree-reweighted message passing: An extension based on belief propagation
designed for graphs including cycles has been proposed by Wainwright et al. [2005]
and is called tree-reweighted message passing. The main idea is to divide the graph
including cycles in a set of trees to exploit the characteristic of belief propagation to
find the optimal solution for each of the trees. Each tree is defined as a spanning tree,
which means that it covers all nodes. Furthermore, each edge is part of at least one
tree. The optimal solution of each tree is derived by applying belief propagation. If
the solutions of all nodes are consistent for all trees, the optimization has converged.
Until this is the case, the belief of each node is averaged over the trees and the solu-
tion of each individual tree is recalculated with the updated belief values. While the
original algorithm updates all messages after one iteration in parallel, Kolmogorov
[2006] proposed to update the messages in a stepwise manner, which is denoted as
sequential tree-reweighted message passing.

The scene flow optimization presented in chapter 5 applies sequential tree-
reweighted message passing to optimize the depth of planar surface elements and
the motion of rigid-bodies using the implementation of Kolmogorov [2006]. Even
though the depth and motion are continuous variables, the discrete optimization
could be applied by creating discrete samples as described in section 5.2.3.

Hidden Markov model: A hidden Markov model (HMM) represents the prob-
ability of a sequence of variables. In the definition of an HMM, the variables are
not directly observable and defined as a sequence of hidden states Z = [z1, z2, ..., zT ].
Additionally, observable events are introduced and defined as a sequence of obser-
vations X = [x1, x2, ..., xT ]. To give an illustrative example, HMMs are often used
in the domain of speech recognition. While the sequence of audio data samples rep-
resents the observations, the hidden states are for example the spoken words. The
probability of a sequence of spoken words for the observed audio stream is modeled
by the HMM.

How to model the probabilistic relations is described in more detail in the follow-
ing paragraph. The HMM embodies the Markov assumption that defines that the
transition probability only depends on the previous state:

p(zt | z1, z2, ..., zt−1) = p(zt | zt−1) (2.22)
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The emission probability only depends on the state at the same position:

p(xt | z1, z2, ..., zt−1) = p(xt | zt) (2.23)

The initial probability for the first state is defined by p(z1). Based on these intro-
duced variables and assumptions, the probabilities of the sequence are defined as
follows:

p(Z) =
T∏

t=1

p(zt | zt−1) with p(z1 | z0) = p(z1)

p(X,Z) =
T∏

t=1

p(zt | zt−1) ·
T∏

t=1

p(xt | zt)

p(X | Z) =
T∏

t=1

p(xt | zt)

p(X) =
∑

Z

p(X,Z)

(2.24)

An analogous definition could be defined in the logarithmic space with the
negative log-likelihoods Ψ(zt, zt−1) = − log p(zt | zt−1), Ψ(z1) = − log p(z1),
and Φ(xt, zt) = − log p(xt | zt).

Viterbi algorithm: Decoding of an HMM is known as the task of finding the
optimal sequence of hidden states Ẑ given a sequence of observationsX. The optimal
sequence of hidden states is defined by maximizing the posterior probability:

p(Z | X) =
p(X | Z) · p(Z)

p(X)

=
p(X,Z)

p(X)

(2.25)

The probability of the observations p(X) remains constant during optimization,
which leads to the following optimization objective expressed with negative log-
likelihoods:

Ẑ = arg min
Z

T∑

t=1

(Φ(xt, zt) + Ψ(zt, zt−1)) (2.26)

The Viterbi algorithm is an approach to find the optimal solution w.r.t the de-
fined HMM. The trellis diagram in figure 2.5 represents all possible sequences as
paths from the source to the sink. The sum over the weights, which are defined
as Φ(xt, zt)+Ψ(zt, zt−1), represents the joint likelihood of the respective path. There-
fore, finding the shortest path is an equivalent representation of finding the optimal
sequence of states. The forward-path probabilities v(zt = i) represent the probability
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Figure 2.5: Trellis graph representing a sequence of states of a hidden Markov model
(HMM). Each node represents a certain state at a certain position in the se-
quence. The horizontal position represents the position in the sequence and the
vertical position the discrete label. The directed edges correspond to a tran-
sition between two adjacent states. The assigned weight rates the likelihood
in terms of the transition Ψ(zi−1, zi) and emission likelihood Φ(zi, xi). A path
from the source to the sink models one possible sequence of hidden states. The
minimum path related to the sum over the weights encodes the most likely
sequence of hidden states.

of being in state zt = i at position t based on previous observations. Exploiting the
structure of the trellis diagram, v(zt = i) is defined in a recursive form:

vt(zt = i) = Φ(xt, zt = i) + min
j

(vt−1(zt−1 = j) + Ψ(zt = i, zt−1 = j)) (2.27)

Referring to the trellis diagram in figure 2.5, the Viterbi algorithm determines the
values vt(zt = i) for each node from the left to the right beginning at the source node.
Instead of evaluating all possible paths, only the likelihoods to reach the previous
nodes needs to be taken into account. Consequently, the Viterbi algorithm is a kind
of dynamic programming [Bishop, 2006, pp. 411–415]. The minimal cost of a node
at the end of the sequence vT (zT ) defines the cost of the optimal sequence and the
final state zT . Additionally, for each node, its predecessor is stored, which allows
backtracing the path to get the optimal sequence of states Ẑ. The complexity of this
algorithm is O (N2T ) with N being the number of hidden states and T the length
of the sequence.

An extension of the Viterbi algorithm to hidden semi-Markov models models ex-
plicitly to stay in a state for a certain duration. This introduces additional edges in
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the trellis diagram, which skip nodes while remaining in the same state. Due to the
additional edges, the computational effort increases to O (N2T 2).

The Viterbi algorithm is applied in chapter 6 for a column-wise segmentation of
the image. The column is considered as a sequence, whereby the discrete labels of
the hidden states correspond to the type of the underlying segment. The optimal
segmentation and object types are inferred based on observations such as optical
flow or single-view depth estimates.
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This chapter extends parts of the works that have been published previously in [Brick-
wedde et al., 2018a, 2019].

To derive the depth structure of a scene from a moving monocular camera, methods
are traditionally based on the structure from motion (SfM) estimation. The depth
of a pixel is estimated based on its optical flow by triangulation given a known
camera motion. This concept was also extended to multi-body structure from mo-
tion (MSfM) to handle dynamic scenes.
In contrast to the multi-view geometry-based approaches, deep learning-based

methods have been proposed (e.g. [Eigen et al., 2014, Godard et al., 2017, Fu et al.,
2018]) that provide depth estimates from a single image at a reasonable level of
quality. These methods do not require a relative translational motion of the camera

27
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Figure 3.1: Overview of the present chapter regarding probabilistic single-view depth esti-
mation. While most of the previous methods provide the most likelihood depth
estimates, this chapter addresses to analyze and quantify the uncertainty or
depth distribution of the single-view depth estimates. The first section pro-
vides an empirical analysis, which also reveals some dependencies of the error.
The second section presents the ProbDepthNet model, a convolutional neural
network (CNN) that provides well-calibrated depth distributions.

to the scene and do not suffer from a scale ambiguity using stereo or ground truth
supervision.

However, only a few methods represent the uncertainty in addition to the raw
depth estimates (e.g. [Kendall and Gal, 2017, Xia et al., 2020, Liu et al., 2019]). An
uncertainty measure is important for safety-critical applications and beneficial for
a probabilistic fusion with other modalities such as the SfM-based depth estimates.
Therefore, the main focus of the present chapter is to analyze and quantify the
uncertainty or depth distributions of the single-view depth estimates (see figure 3.1).

In the first section 3.2, the empirical error distribution of single-view depth esti-
mates is analyzed to get a deeper understanding of the uncertainties. The experi-
ments show that the error distribution of the method by Godard et al. [2017] mainly
follows a mixture of a Gaussian and Laplace distribution. Additionally, high de-
pendence of the error on the semantic classes such as road, vehicle or building is
identified.

Even though the empirical error distribution could be used as a measurement
model of the single-view depth estimates as shown in [Brickwedde et al., 2018a], a
more distinctive pixel-wise uncertainty measure is beneficial. Therefore, I propose a
convolutional neural network (CNN) that estimates pixel-wise depth distributions
instead of single depth values that only encode the most likely depth estimate. The
network is called ProbDepthNet and presented in section 3.3. While the problem of
overconfident uncertainty measures is a well-known problem in classification [Guo
et al., 2017], it is widely ignored in probabilistic approaches for regression such as
[Ilg et al., 2018, Gast and Roth, 2018, Kendall and Gal, 2017, Klodt and Vedaldi,
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2018]. Therefore, I propose a novel recalibration technique: The final layers of the net-
work, which are denoted as CalibNet, are trained on a separate split of the training
data to compensate for overfitting effects and to provide well-calibrated distribu-
tions. The experiments show that several previous probabilistic approaches suffer
from overconfident estimates – an effect that can be compensated by adding the
proposed CalibNet for recalibration. The suitability of ProbDepthNet for combin-
ing single-view depth information with multi-view geometry for monocular scene
flow estimation is confirmed in the following chapters 4 to 6 – especially due to
the characteristic of providing single-view depth information in a probabilistic and
well-calibrated form.

3.1 Related Work

The works related to probabilistic single-view depth estimation are divided into
two categories. First, related works in terms of single-view depth estimation are
summarized. It includes an overview of the depth cues inherent in a single image,
a short discussion of conventional approaches and a more detailed presentation of
deep learning-based methods. Second, methods for probabilistic deep learning are
explained, which are related to the probabilistic design of ProbDepthNet.

3.1.1 Single-View Depth Estimation

In general, depth estimation from a single view is an ill-posed problem. However,
humans are still able to perceive the distances using only one eye or by looking at
a photo. This ability is based on the experience of how objects and scenes typically
look like. The first section 3.1.1.1 gives an overview of these single-view depth cues.
The second section 3.1.1.2 and third section 3.1.1.3 cover conventional and deep
learning-based approaches for single-view depth estimation.

3.1.1.1 Single-View Depth Cues

I propose a categorization of the single-view depth cues into three types:

Local and object-wise information: The following local and object-wise depth
cues are considered as the first group: The concept of shape from shading [Horn and
Brooks, 1986, Ruo Zhang et al., 1999] takes into account that the image intensity
level depends on the light source direction and surface normal. Shape from texture
[Malik and Rosenholtz, 1997] exploits the fact that the same texture in the scene
has a different appearance in the image depending on its distance and orientation.
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Ooi et al. [2001] analyzed that humans judge the distance of an object based on
the angular declination to the eye level. This is highly related to the characteristic
in computer vision that objects at far distances are typically closer to the horizon
[Konrad et al., 2013, Dijk and Croon, 2019]. Furthermore, if the object dimensions
in 3D and the perspective view are known, the distance can be directly estimated
based on the size of the object in the 2D image [Cutting and Vishton, 1995, Dijk
and Croon, 2019]. Saxena et al. [2009] stated the assumption that long straight 2D
lines (e.g. wall or street boundaries) in the image typically correspond to straight 3D
lines in the scene. Additionally, the semantic class of an image patch also provides
a single-view depth cue, e.g. the sky is at infinite distance and the ground plane is
typically horizontal.

Contextual information: The second group comprises contextual information
between different objects or parts of the scene. First, objects that are closer occlude
those that are behind them [Cutting and Vishton, 1995]. Second, the ground contact
point of objects defines the distance assuming a known ground surface [Zhongfei
Zhang et al., 1997, Hoiem et al., 2005]. Third, small local surface elements in the
image (e.g. represented by superpixels) are mostly connected and coplanar in the
3D scene [Saxena et al., 2009].

Global scene model assumptions: Assumptions regarding the global scene
model are considered as a third group: The Manhattan world assumption [Coughlan
and Yuille, 1999] defines that all planes in the image are aligned with the x, y, or
z-axis of a global world coordinate system. This means that all planes are coplanar
or orthogonal to each other. Regarding the ground plane, the flat world assumption
[Zhongfei Zhang et al., 1997] defines that there exists one flat ground plane, which
could be either estimated or given if the relative camera height and orientation are
known.

3.1.1.2 Conventional Approaches for Single-View Depth Estimation

Based on the described single-view depth cues, approaches have been presented
to reconstruct the depth structure of a scene from a single image. The present
subsection is devoted to approaches without deep learning techniques. For indoor
scene reconstruction, a Manhatten world is assumed [Gupta et al., 2010, Hedau
et al., 2010, Schwing and Urtasun, 2012]. The walls of a room are detected based
on the lines in the image and objects are typically represented as boxes inside the
room.
Karsch et al. [2012], Karsch et al. [2014], Konrad et al. [2013] directly formu-

lated the single-view depth estimation as a template matching problem exploiting
a database of images with known depth structure. The first machine learning-based
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approaches are formulated as depth classifiers of local image patches [Ladicky et al.,
2014, Saxena et al., 2009, Liu et al., 2014, Zhuo et al., 2015, Liu et al., 2015]. These
classifiers are combined based on a conditional random field (CRF), where the classi-
fier responses serve as the unary data terms. The pairwise terms additionally prefer
that superpixels are connected and coplanar [Liu et al., 2014, Zhuo et al., 2015, Liu
et al., 2015, Saxena et al., 2009], model occlusions [Liu et al., 2014, Zhuo et al.,
2015], or favor collinearity of lines in the image [Saxena et al., 2009].

3.1.1.3 Deep learning-based Approaches for Single-View Depth Estima-
tion

Even though the conventional approaches provide first reasonable results, the real
breakthrough of single-view depth estimation was achieved by the usage of deep
learning-based methods and CNNs.

Supervised learning: In his pioneering work, Eigen et al. [2014] proposed a
CNN that is trained in a supervised manner and estimates the depth as a regression
problem in a coarse-to-fine scheme. Different training losses were proposed for su-
pervised learning such as the scale-invariant training loss [Eigen et al., 2014], berHu
norm [Kuznietsov et al., 2017], or L2-norm [Qi et al., 2018]. Alternatively, Fu et al.
[2018] formulated the estimation as an ordinal classification problem by discretizing
the depth values and training the CNN with an ordinal regression loss. The cur-
rently leading approach1 in the KITTI depth benchmark [Uhrig et al., 2017] has
been proposed by Lee et al. [2019]. The single-view depth estimation is formulated
as a regression problem trained with the scale-invariant loss and integrates a novel
local planar guidance. At each scale of the decoder, features are learned to recover
the depth estimation back to full resolution with local planarity assumptions. This
improves, on the one hand, the upsampling step in contrast to the nearest neighbor
approach. On the other hand, for some parts of the image, it might be easier to
estimate the local structure instead of the absolute depth value. This characteris-
tic could be exploited explicitly in the proposed architecture including local planar
guidance. Ground truth data is typically acquired by RGB-D cameras for indoor
scenes or light detection and ranging (LiDAR) sensors for outdoor scenes.

Self-supervised learning: To reduce the effort of ground truth data collection,
several self-supervised learning approaches using a stereo camera setup have been
proposed [Garg et al., 2016, Godard et al., 2017, Kumar et al., 2018, Guo et al.,
2018, Godard et al., 2019, Luo et al., 2018, Tosi et al., 2019, Kuznietsov et al., 2017].
The main idea is that based on the estimated depth, it should be possible to recon-
struct the right image by warping the left image. Consequently, the training loss is

1 Benchmark on October 02, 2020. Methods with a publication are considered.
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formulated as an image reconstruction loss, which is defined as a photometric dis-
tance between the reconstructed and original right image. The photometric distance
is defined as an L2-norm [Garg et al., 2016] or as a combination of the L1-norm and
structural similarity (SSIM) of the pixel intensities [Godard et al., 2017]. In addition
to this concept, several adaptions have been proposed to improve the accuracy. Go-
dard et al. [2017] proposed to integrate a loss-term that prefers consistency of the
depth estimates of the left and right image. Aleotti et al. [2018], Kumar et al. [2018]
proposed to train a discriminator that rates the similarity of the reconstructed and
real image following the concept of generative adversial networks (GANs) [Good-
fellow et al., 2014a]. The discriminator response is used for fine-tuning or as an
additional part of the loss for training the depth estimation network, which is the
generator in terms of the GAN concept. Alternatively, instead of taking the depth
estimates of the network directly, a subsequent stereo matching network is fed with
the original left and reconstructed right image [Luo et al., 2018, Tosi et al., 2019].
The stereo setup could also be used to generate pseudo ground truth using stereo
algorithms [Guo et al., 2018, Gan et al., 2018].

Unsupervised learning: The concept of the image reconstruction loss is trans-
ferred to an unsupervised learning approach in a monocular image sequence [Zhou
et al., 2017, Yin and Shi, 2018, Yang et al., 2018b, Teng et al., 2018, Zhan et al., 2018,
Wang et al., 2018, Mahjourian et al., 2017, Casser et al., 2019, Almalioglu et al., 2019,
Chen et al., 2019]. Based on the estimated depth, the image is warped to reconstruct
the subsequent image and the network is trained by minimizing the photometric dis-
tance between the original and reconstructed images. However, in such a setup also
the camera motion needs to be known for the warping step and is typically esti-
mated by an additional CNN. Ideas similar to the self-supervised approaches are
proposed to improve accuracy: Almalioglu et al. [2019], Wu et al. [2019] proposed
an additional discriminator for training and Mahjourian et al. [2017] presented a
loss that prefers consistency between the point clouds of subsequent images. The
generation of pseudo ground truth was also adapted by using SfM-based approaches
[Klodt and Vedaldi, 2018]. Furthermore, multi-task networks were proposed that
additionally estimate the optical flow [Yang et al., 2018b, Teng et al., 2018, Zou
et al., 2018, Chen et al., 2019]. A consistency loss between optical flow, pose and
depth results in a further improvement of accuracy. The unsupervised methods are
trained based on the multi-view consistency in a monocular setup assuming a static
environment. Consequently, these methods suffer from a scale ambiguity and are
not able to handle moving objects. For better handling of moving objects, Mou et al.
[2019] proposed to predict moving object masks and Casser et al. [2019] proposed a
relative pose estimation for moving objects. Chen et al. [2019] proposed an adaptive
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photometric loss, which allows some parts of the image to differ from the global rigid
displacement.

These different training strategies can also be combined. e.g. by combining su-
pervised and self-supervised learning [Kuznietsov et al., 2017, Jiang et al., 2018]
or combining self-supervised and unsupervised learning [Godard et al., 2019, Jiang
et al., 2018, Yang et al., 2018b, Teng et al., 2018, Zhan et al., 2018]. The ProbDepth-
Net proposed in section 3.3 is trained in a supervised manner. However, the ground
truth is collected by combining a LiDAR sensor and stereo setup. The stereo setup
is exploited to overcome the limitations of the LiDAR sensor in terms of range and
field of view.

To get a deeper understanding of the used single-view depth cues, Dijk and Croon
[2019] performed several experiments based on the CNN for single-view depth estima-
tion by Godard et al. [2017]. These experiments revealed that the depth estimation
of an object highly depends on the image position of the ground contact point. The
object size in the image is less important. Furthermore, some parts of the object have
nearly no impact on the depth estimates. Even if the center of a vehicle is removed,
the entire vehicle is reconstructed. The CNN is able to recognize situations where
the ground surface differs from the flat world assumption. However, the difference is
typically underestimated, which reveals that the extrinsic camera position and flat
world assumption are taken into account as prior knowledge. The experiments also
show that the accuracy significantly drops by removing the texture, while removing
the color has only a minor impact.

3.1.2 Probabilistic Deep Learning

In contrast to the methods presented in the previous section 3.1.1.3, ProbDepthNet
is designed to estimate pixel-wise depth distributions. Therefore, the present sub-
section presents works related to probabilistic deep learning in general. There exist
slightly different definitions and namings regarding the types of uncertainty in the
literature. Following these definitions, I propose that the types of uncertainties are
mainly distinguishable into three groups.

Types of uncertainty: First, the measurement uncertainty (also called aleatoric
or intrinsic uncertainty) refers to the uncertainty inherent in the measurement data
and the nature of the problem. On the one hand, it comprises the uncertainty due to
some measurement noise. On the other hand, the measurements could be ambiguous
and not enough to determine a unique solution. For example, consider a neural
network that defines a function that maps a 2D input image to a depth map. A toy
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vehicle close and a real vehicle further away from the camera can result in the same
image including the same size and appearance of both vehicle in the image, even
though the vehicles are at different distances. This uncertainty can not be removed
even with infinite training data [Kendall and Gal, 2017] – but it is observable during
the training process.

Second, the model uncertainty (also called epistemic uncertainty) comprises the
uncertainty of the model parameters. There might exist more than one set of model
parameters that can explain the given training data equally well. This ambiguity in
selecting the model parameters is expressed by the model uncertainty. In contrast to
the measurement uncertainty, this uncertainty could decrease given enough training
data [Kendall and Gal, 2017]. The influence of the model uncertainty could also be
propagated to the output uncertainty.

Third, the out of distribution (OOD) uncertainty (also called distributional uncer-
tainty) defines the uncertainty due to a mismatch of training and test data. There
is a high probability that a test sample that is highly different from the training
data results in erroneous estimates. For example, a model trained on outdoor scenes
will typically fail in indoor scenes. In contrast to the previous uncertainties, this
uncertainty is not observable during the training process due to the fact that OOD
data samples are not given during training by definition.

These uncertainties and how to estimate them are explained in more detail in the
following subsections. Methods that applied the corresponding strategy to single-
view depth estimation are highlighted.

3.1.2.1 Measurement Uncertainty

As described above, the measurement uncertainty refers to the uncertainty inherent
in the measurement data and the nature of the problem.

Measurement uncertainty for classification: For a discrete classification
problem, a probability score py of the estimated class y is typically derived by the
softmax function σSM . The softmax function is applied on the logits zi, which is the
network output that represents an unnormalized score for each class:

σSM(zy) = ezy/
∑

j

ezj

p = max
y
σSM(zy)

(3.1)

However, due to the known issues of overfitting effects, these scores should not
directly be interpreted as probabilities. These scores are, in particular for modern
networks, overconfident and not well-calibrated [Guo et al., 2017]. Therefore, dif-
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ferent recalibration methods were proposed to derive well-calibrated probabilities.
In general, recalibration is formulated as a post-processing step, which produces
well-calibrated probabilities p̂ based on the probability scores p or the logits z. The
transformation from uncalibrated to well-calibrated probabilities is determined on a
hold-out split of training samples. The hold-out split is a part of the training data,
which is not used to train the weights of the network.

For histogram binning [Zadrozny and Elkan, 2002], a set of bins B1, ..., BN is
defined. Each bin corresponds to a certain interval of uncalibrated probability
scores Bj = (pj, pj + 1], which are mapped to a calibrated probability p̂j. Al-
ternatively, isotonic regression [Zadrozny and Elkan, 2002, Niculescu-Mizil and
Caruana, 2005] is used as a recalibration technique. Isotonic regression is defined
as a piecewise constant function, which transforms the probabilities by p̂ = f(p).
It generalizes the discretized form of histogram binning to a continuous func-
tion. Bayesian binning into quantiles [Naeini et al., 2015] considers the whole
space S of possible binning schemes. Based on the probability of each binning
scheme s ∈ S determined on a dataset D, the recalibrated probabilities are defined
by p(p̂ | p,D) =

∑
s∈S p(p̂ | p, s) · p(s | D). While these calibration methods are

directly based on the uncalibrated probabilities p, the following methods manipulate
the logits zi to derive calibrated probabilities p̂. Platt scaling or matrix and vector
scaling [Platt, 1999] transforms the logits by Wz + b so that the probabilities
after applying the softmax function p̂y = σSM(Wzy + b) are well-calibrated.
Alternatively, the logits are scaled by a single scalar parameter z/T . Thereby, the
maximum of the softmax remains the same and the recalibration does not affect the
model accuracy. This approach is known as temperature scaling [Guo et al., 2017].

Liu et al. [2019] proposed to formulate single-view depth estimation as a classi-
fication problem to derive depth distributions. The inverse depth is uniformly dis-
cretized and a depth probability volume is estimated using a softmax function. A
recalibration technique is not applied.

Measurement uncertainty for regression: In contrast to classification prob-
lems, a regression network typically provides only a single maximum likelhood es-
timate (e.g. a single depth value d) without any probability score or uncertainty
measure.

The first strategy to quantify the measurement uncertainty is to estimate dis-
tribution parameters instead of a single estimate, e.g. p(yi) ≈ N (µi, σ

2
i ). The pa-

rameters defining the distributions are trained by minimizing the negative log-
likelihood (NLL)-loss [Kendall and Gal, 2017]. For example, assuming a Gaussian
distribution of the network output, the network estimates the mean value µ(xi) and
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variance σ2(xi) for each data sample xi. Based on the training data D with the cor-
responding ground truth values yi, the network weights are trained by minimizing

L =
1

|D|
∑

i∈D

1

2 · σ(xi)2
||yi − µ(xi)||2 + log σ(xi)

2. (3.2)

This strategy is also apllied to probabilistic single-view depth estimation [Kendall
and Gal, 2017, Laidlow et al., 2019, Ma et al., 2018, Klodt and Vedaldi, 2018] .

The second type of approaches proposed by Ilg et al. [2018] is to estimate a set of
hypotheses instead of a single estimate. Thereby, the distribution is defined by the set
of hypotheses H, e.g. by computing the empirical mean and variance. Ilg et al. [2018]
proposed a loss, which rates the distance to the best hypotheses. This encourges the
network to make diverse hypotheses, especially for uncertain estimates, to have at
least one hypothesis close to the ground truth.

Lhypo =
1

|D|
∑

i∈D

(
min
j∈H
Li +

∑

k∈H
Lk,reg

)
(3.3)

The regression Lk,reg prefers that similar solutions are from the same hypothesis. The
first two approaches could be combined by predicting a set of distributions instead
of a set of single estimates [Ilg et al., 2018]. In this case, Li corresponds to the NLL-
loss as defined in equation (3.2). Additionally, Ilg et al. [2018] proposed a subsequent
network that directly provides an uncertainty measure based on the set of hypothesis.
Xia et al. [2020] used the GAN concept to estimate a set of hypotheses. The decoder
is interpreted as a generator that estimates different hypotheses depending on an
additional noise source. Each hypothesis represents a plausible depth estimate for an
image patch. The set of hypotheses can also covers the correlation inside the image
patch. While the method by Ilg et al. [2018] is applied to the task of optical flow
estimation, the approach by Xia et al. [2020] is used for probabilistic single-view
depth estimation.

Gast and Roth [2018] proposed a new type of network, which they called
lightweight probabilistic deep networks. This approach is considered as a third
type of strategy. While the approaches described above represent the output as a
distribution, these networks also replace the output of intermediate activations by
distributions. These distributions are derived by propagating input and activation
uncertainties through the network using assumed density filtering (ADF). The
network is still trained by minimizing the NLL on the training data. The number
of parameters and network architecture remains the same. However, replacing a
network with its ADF-counterpart roughly doubles the inference time.
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The ProbDepthNet proposed in section 3.3 is designed to estimate the measure-
ment uncertainty in a regression problem. While the calibration is well-studied for
classification tasks, it is ignored for the presented approaches that quantify the
measurement uncertainty in a regression problem. The experiments in section 3.4.2
evaluate the calibration of these strategies and show that these strategies suffer
from overconfident estimates. Moreover, a novel recalibration method is proposed to
achieve well-calibrated distributions.

3.1.2.2 Model Uncertainty

Model uncertainty refers to the fact that more than one set of model parameter
values might explain the given training data equally well. Therefore, in contrast
to traditional deep learning, Bayesian deep learning additionally models the uncer-
tainty of model parameters p(W | X,Y) based on the training data X,Y. The
probability of the output p(y | x,X,Y) is defined as

p(y | x,X,Y) =

∫
p(y | x,W) · p(W | X,Y)dW. (3.4)

In many cases, the closed-form solution of the integral does not exist or is com-
putationally infeasible. Therefore, the integral is often approximated based on N
sampled model parameters Wi using Monte Carlo integration:

p(y | x,X,Y) ≈ 1

N

N∑

i=1

p(y | x,Wi) · p(Wi | X,Y) (3.5)

As evaluating the true probability might be computationally infeasible or in-
tractable, variational distributions represented by the parameters Θ are introduced
to approximate p(W | X,Y) ≈ q(W | Θ). The variational distributions are
typically restricted to the tractable family of distributions. For example, it is
assumed that the distribution factorizes with respect to the model parameters
q(W | Θ) =

∏
i q(Wi | Θi) and that the distribution of each weight could be

represented by a Gaussian distribution [Blundell et al., 2015] with the mean and
variance as parameters. A popular and efficient approximation was proposed by
[Gal and Ghahramani, 2016] and is known as Monte Carlo Dropout. A unit j of the
input Mi for layer i is dropped out with some probability pi. Formally, the weights
of the Monte Carlo Dropout approach are defined based on a Bernoulli distribution:

Wi = Mi · diag(zi,j|Kj=1)

with zi,j ≈ Bernoulli(pi)
(3.6)
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Consequently, the output with dropout during inference can be seen as the result
of one sampled network drawn from the distribution of weight parameters. The
probability p(y|x,X,Y) is derived by Monte Carlo integration. In order to avoid
the disadvantage of performing the inference multiple times for the same image,
Huang et al. [2018] proposed a Monte Carlo sampling over time by warping previous
estimates based on an optical flow field. Monte Carlo BatchNorm [Azizpour et al.,
2018] is comparable to Monte Carlo Dropout but uses BatchNorm as stochastic
regularization instead. Using a stochastic regularization method can be interpreted
as injecting noise at certain layers during training and inference. Postels et al. [2019]
proposed to explicitly formulate the injected noise at certain layers as an addition or
an element-wise multiplication of the activation values with a random vector. Based
on this formulation, the output uncertainty is derived by error propagation based on
an assumed noise covariance matrix. This approach avoids sampling of the network
multiple times and reduces the computational effort.

Krueger et al. [2018], Pawlowski et al. [2017] proposed a hypernetwork that esti-
mates the weight distributions. The model weights of the hypernetwork serve as the
variational parameters that approximate the distribution of model parameters.

Furthermore, an ensemble of networks could be used to perform Monte Carlo
integration over the network outputs [Lakshminarayanan et al., 2017]. Even though
it does not directly define the distributions of model parameters, the ensemble could
be interpreted as N networks drawn from the distribution of model parameters.

Kuleshov et al. [2018] analyzed the calibration of Monte Carlo Dropout [Gal and
Ghahramani, 2016] and the ensemble strategy [Lakshminarayanan et al., 2017] for
regression problems such as single-view depth estimation. The experiments show
that both methods benefit from a recalibration method that manipulates the cumu-
lative distribution function using isotonic regression. Even though the recalibration
is applied to methods that quantify the model uncertainty, this recalibration is most
related to our proposed recalibration because both are focused on regression prob-
lems. In contrast to this recalibration method, the proposed recalibration in the
present thesis maintains the type of distribution and provides continuously differ-
entiable distributions. These characteristics are beneficial for many approaches to
work with the probabilistic estimates. The estimation of the model uncertainty is
not addressed as part of ProbDepthNet.

The approaches for quantification of measurement and model uncertainties can be
combined. For example, Kendall and Gal [2017] combined Monte Carlo Dropout with
an output distribution that is trained by minimizing the NLL and Segù et al. [2020]
proposed to use ADF in combination with Monte Carlo Dropout. The approach by
Kendall and Gal [2017] is also applied to probabilistic single-view depth estimation.
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3.1.2.3 Out-of-Distribution Uncertainty

The measurement and model uncertainty show a dependency on the training data.
The measurement uncertainty is quantified by observing the output distribution
on the training data and the model uncertainty represents the uncertainty of the
parameters based on the training data. However, there exists a third uncertainty that
is related to a mismatch of a test sample to the training data. Those test samples
are called OOD data. Malinin and Gales [2018] defined the uncertainty based on
the mismatch as distributional uncertainty, while other approaches are designed to
explicitly detect OOD samples.

Some works reveal that standard approaches are not directly applicable for OOD
detection. Hendrycks and Gimpel [2017] analyzed the softmax output of a standard
classifier for OOD detection. The probability score can be a slight indicator, but
in many cases, the classifier also provides high confidences for OOD data [Nguyen
et al., 2015, Hendrycks and Gimpel, 2017]. Some works consider the model or epis-
timic uncertainty as all the uncertainties that can be reduced by further training
data including the OOD uncertainty. This is also supported by the fact that ap-
proaches addressing the model uncertainty such as Monte Carlo Dropout [Gal and
Ghahramani, 2016] or an ensemble strategy [Lakshminarayanan et al., 2017] show
better characteristics for detecting OOD samples. However, Lis et al. [2019], Mundt
et al. [2019] showed that also the model uncertainty does not provide the intended
detection accuracy. Furthermore, variational auto-encoders (VAEs) [Kingma and
Welling, 2014] are able to assign a probability to an image to be generated. Intu-
itively, one might expect that a VAE outputs a low probability for OOD samples.
However, this is not the case in general as shown by Nalisnick et al. [2019].

In summary, several works show that standard approaches are not directly suit-
able for OOD detection. Consequently, special strategies and approaches have been
designed that explicitly address OOD detection. I propose a categorization of these
methods into four groups.

OOD data generation: Approaches that generate a representation of OOD
data for training are considered as the first category of methods. Given such repre-
sentation, the network is, for example, trained to predict a uniform distribution for
OOD samples [Lee et al., 2018a, Malinin et al., 2017, Vyas et al., 2018, Malinin and
Gales, 2018]. However, OOD data is not given during training by definition and the
challenge is how to find a suitable representation for such data. Different datasets
are used to represent OOD data [Malinin and Gales, 2018, Masana et al., 2018]. For
training an ensemble of networks, even different splits of the in-distribution data are
used to represent the OOD data for training [Vyas et al., 2018]. Alternatively, syn-
thetic generations of OOD data samples are proposed using factor analysis in spoken
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language assessment [Malinin et al., 2017] or using an additional GAN [Lee et al.,
2018a]. The GAN is trained to generate samples at the boundary of the distribution
of the original training data. These approaches are sensitive to the generated data
samples that represents OOD samples. High accuracy is achieved if the OOD sam-
ples are from the dataset that is used to test the OOD detection [Yu and Aizawa,
2019]. However, this is typically not the case and OOD samples are actually not
given during training by definition.

Controlled input perturbations: The second category represents methods
that perform controlled perturbations of the input for OOD detection. A small but
worst-case perturbation of an input that results in an incorrect classification is called
an adversarial example [Goodfellow et al., 2014b]. This example can be generated
based on the gradient of the loss function. Liang et al. [2018], DeVries and Taylor
[2018], Lee et al. [2018b] proposed a similar strategy to detect OOD. In contrast
to adversarial examples, small perturbations are applied to the input such that the
confidence of the detected class increases. This confidence increases more rapidly for
in-distribution data than for OOD data. Thus, applying such input processing could
be used to separate in-distribution from OOD data based on its confidence. After
applying the controlled input pertubation, Liang et al. [2018] proposed a threshold
based on the softmax output to detect OOD data samples.

Neural activation pattern: While the first both categories are designed to
separate the confidences of OOD data from in-distribution data, the third category
analyzes intermediate activations and feature vectors. Even though the final confi-
dence of OOD data often indicates high confidence, usually a different set of neurons
shows high activations compared to in-distribution data. The proposed approaches
basically differ in terms of how to characterize the typical activation pattern for each
class. The detection could be based on (1) the distance to the mean activations of
the penultimate layer (the layer before the final softmax output) [Bendale and Boult,
2016], (2) the Mahalanobis distance to the activations of the penultimate layer [Lee
et al., 2018b], or (3) the distance to a signature representing the K-highest activa-
tions [Schultheiss et al., 2017]. Mundt et al. [2019] applied this strategy also to the
latent space of a generative model.

Image resynthesis: The fourth category is related to OOD detection based on
image resynthesis as proposed by Lis et al. [2019]. A GAN is trained to resynthesize
the image based on its semantics. Furthermore, a discrepancy network is trained
to identify unexpected objects of unknown classes by comparing the features of the
original and the resynthesized image. To train the discrepancy network, the semantic
label is swapped for some objects, which are then considered as unexpected objects
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Figure 3.2: Empirical distribution of the inverse depth error ρerror of the single-view depth
estimates by Godard et al. [2017]. The blue histograms show the empirical
distribution of the error on the KITTI scene flow training set [Menze and Geiger,
2015]. The orange curves show the approximated distribution as a mixture
model of a Laplacian and a Gaussian distribution. The distribution is shown
with a logarithmic scale of the frequency in the right diagram.

during training. This approach is able to predict a pixel-wise score to belong to an
unexpected object.

An OOD sample is related to a mismatch of a test sample to the training data.
However, it remains unclear to what extent a network generalizes and which scenes
should be regarded as OOD samples. Therefore, a generalization experiment is per-
formed in section 3.4.3 to show examples of scenes that can be considered as OOD
for the ProbDepthNet model. The detection of those samples is out of the scope.

3.2 Empirical Analysis of Error Distribution

The present section provides some analysis regarding the empirical error distribution
of single-view depth estimates. The main motivation of the analysis is to give an
impression of how the error behaves and for which parts of the scenes the estimates
can be expected to be more accurate. A previous work [Brickwedde et al., 2018a]
additionally has shown that a measurement model for single-view depth estimations
can be derived from the results of the analysis.

Type of error distribution: The error distribution of single-view depth es-
timates is shown in figure 3.2. I chose the approach by Godard et al. [2017] for
single-view depth estimation to analyze its accuracy on the KITTI scene flow dataset
[Menze and Geiger, 2015]. The error is defined in terms of the inverse depth ρ = Z−1,
where Z corresponds to the distance of the point to the camera in the z-direction.
The error distribution mainly consists of two parts. First, there is one part with
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Distance [m] 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
RMSE [m]
(depth) 1.852 3.284 6.389 9.735 12.81 18.45 22.3 28.43

RMSE [m−1]
(inverse depth) 0.01404 0.01225 0.01266 0.0123 0.01074 0.0128 0.01183 0.0126

Table 3.1: Root mean squared error (RMSE) in terms of depth and inverse depth of the
single-view depth estimation by Godard et al. [2017] dependent on the distance
of the scene point to the camera.

slowly decreasing tails, which mainly models the distribution of large errors and fol-
lows a linear decreasing shape on a logarithmic scale. Second, there is another part
that corresponds to a peak and high probabilities for small errors. This characteris-
tic is approximated by a mixture model consisting of a Laplacian and a Gaussian
distribution:

p(ρerror) =
1− λ√

2πσ
e−ρ

2
error/(2σ

2) +
λ

2b
e−|ρerror|/b (3.7)

Figure 3.2 shows the approximated density function for σ = 0.0042, b = 0.02

and λ = 0.2.

The figure shows the error distribution over all estimates. However, the error
distribution is likely not the same for all parts of the scene. Some parts of the scene
probably have stronger single-view depth cues than others.

Dependence on distance: To analyze the dependence on the distance to the
camera, the root mean squared error (RMSE) in terms of depth and inverse depth
is evaluated for certain depth intervals [dmin, dmax] separately:

RMSE(depth) =

√
1

|ΩGT (ρmin, ρmax)|
∑

p∈ΩGT (ρmin,ρmax)

(ρ̂(p)−1 − ρGT (p)−1)2

RMSE(inverse depth) =

√
1

|ΩGT (ρmin, ρmax)|
∑

p∈ΩGT (ρmin,ρmax)

(ρ̂(p)− ρGT (p))2

(3.8)
All pixels p ∈ ΩGT (ρmin, ρmax) with valid ground truth ρGT (p) ∈ [ρmin, ρmax] are
considered to calculate the metric.

The results in table 3.1 show that the error is nearly uniformly distributed over
the distance in terms of the inverse depth. This motivates to approximate the dis-
tribution of the inverse depth instead of the depth directly.

Dependence on semantic class: The error distribution is evaluated separately
for different semantic classes ci as shown in figure 3.3. This experiment is designed
to reveal the dependence on the semantic class. The figures show that the error
distribution depends on the semantic class. The estimated parameters σci , bci and λci
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Figure 3.3: The empirical distribution of the inverse depth error ρerror of the single-view
depth estimation by Godard et al. [2017] dependent on the semantic class. The
blue histograms show the empirical distribution of the error on the KITTI
scene flow training set [Menze and Geiger, 2015]. The orange curves show the
approximated distributions as a mixture model of a Laplacian and a Gaussian
distribution.
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Class ci Road Sidewalk Terrain Building Pole Vegetation Vehicle

σci 0.0032 0.006 0.007 0.0075 0.008 0.008 0.005

bci 0.01 0.02 0.02 0.025 0.03 0.03 0.015

λci 0.15 0.1 0.1 0.2 0.3 0.3 0.2

Table 3.2: Semantic class-dependent approximation of the error distribution for the single-
view depth estimation by Godard et al. [2017].

of the distribution specified in equation (3.7) are shown in table 3.2 for each class.
The corresponding density functions are shown in figure 3.3.

The classes road and vehicle show the highest accuracy with a variance σci ap-
proximately half of the variance of classes such as building, pole, or vegetation. The
classes pole and vegetation additionally show the highest weighting factor λci for
the Laplace distribution, which models outliers and high errors. The other ground
classes, sidewalk and terrain, show a medium accuracy with higher variances σci
than the road and vehicle classes, but also with a low weighting factor λci for the
Laplace distribution. The results indicate a higher accuracy for classes that follow
strict model assumptions, for example, regarding surface, shape, or size and which
are frequently represented in the training dataset.
This observation shows a dependence on the semantic class and motivates to

approximate the distribution separately for each semantic class. The previously
published work [Brickwedde et al., 2018a] gives evidence that such semantic class-
dependent measurement models are suitable to describe the error distribution – es-
pecially for integrating single-view depth estimates in a multi-view geometry-based
scene flow estimation method.

Note that this analysis is only valid for the method by Godard et al. [2017]. For
example, while the distribution in figure 3.2 shows some asymmetry with a longer
tail for positive errors, the method by Fu et al. [2018] shows such asymmetry in the
inverse form with a long tail for negative errors. However, the dependence on the
semantic classes is nearly the same.

3.3 ProbDepthNet Model

Even though previous work [Brickwedde et al., 2018a] gives evidence that the ana-
lyzed distributions shown in the previous section 3.2 could serve as a measurement
model, it assumes the same distribution for all pixels belonging to the same seman-
tic class. To provide a more distinctive uncertainty quantification, I propose a CNN,
called ProbDepthNet, that is designed to provide the pixel-wise uncertainty of each
estimate. Thus, the main objective of ProbDepthNet is not to provide a single esti-
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Figure 3.4: Overview of ProbDepthNet architecture and training process. The architecture
consists of two parts: DepthNet and CalibNet for recalibration (blue). Both
parts provide a parameterized form (µi, si / s̃i and λi / λ̃i) of a MoG. Each
part is trained on a different split of the training data using a NLL-loss (orange).
The ground truth data is provided by a stereo SGM [Hirschmuller, 2005]-based
completion of a LiDAR point cloud (green).

mate for the most likely depth value, but to provide a probability density function
of the depth for each pixel p given an input image I. Motivated by the analysis in
section 3.2 (table 3.1), depth is encoded by its inverse form ρ = Z−1, where Z is the
z-coordinate of the 3D position of the regarded point in camera coordinates. Prob-
DepthNet predicts a pixel-wise probability density function pp(ρ | I) parameterized
as a mixture of Gaussians (MoG):

pp(ρ | I) =
K∑

i=1

λi(p) · N
(
ρ− µi(p), σ2

i (p)
)

with
K∑

i=1

λi(p) = 1

(3.9)

The distribution is parameterized by the number of components K, the weights λi,
the mean values µi, and the standard deviations σ2

i of each i-th component. Com-
pared to a single Gaussian distribution, a mixture model is able to capture more
general distributions, e.g. a multimodal distribution, but other parameterizations of
a probability distribution can be used as well. Figure 3.4 gives an overview of the
architecture, training process, and ground truth generation.

Architecture: ProbDepthNet consists of two parts: DepthNet and CalibNet.
The outputs of DepthNet are the parameters of the MoG, whereby the variance
is provided in the log-space si = log σ2

i . While DepthNet already outputs a depth
distribution, the CalibNet serves as a recalibration technique and reshapes the dis-
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Figure 3.5: Architecture of ProbDepthNet model. The DepthNet encoder corresponds to
a ResNet-50 [He et al., 2016] architecture plus a concatenated residual block
denoted as CalibNet.

tribution of DepthNet such that it is better calibrated. A detailed illustration of
the architecture is shown in figure 3.5. DepthNet is a fully convolutional ResNet-50
[He et al., 2016] with skip connections between corresponding encoder and decoder
layers. The same residual blocks are connected several times in a row. The number
of repetitions is given above each block in figure 3.5. Each block consists of con-
volutional layers, whereby the first two numbers in figure 3.5 represent the kernel
size and the third number represents the feature dimension. Following the residual
network concept, there is an additional shortcut connection. If the dimensions of the
shortcut and output of the convolutional blocks do not match, an additional 1 × 1

convolutional layer is placed into the shortcut with a stride and feature dimension
aligned to the other path. The output size after each block in relation to the input
image size H is specified at the skip connections in figure 3.5. The reduction of the
size is achieved by using a stride of 2 at the last layer of each block. The correspond-
ing DepthNet decoder consists of convolutional layers, whereby the output size is
aligned by upsampling the feature in advance to the last layer of each clock.
The logarithmic variances si and weights λi of DepthNet are recalibrated by Cal-

ibNet, which outputs the corresponding recalibrated values s̃i and λ̃i. The CalibNet
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architecture follows a concatenated residual block and is shown in the bottom part
of figure 3.5. The inputs are the features of the DepthNet decoder that represent the
weights λ and logarithmic variances s of the MoG withK components. The CalibNet
model is similar to a single residual block, whereby the shortcut path additionally
includes a convolutional layer to represent a scaled version of the input features.

An activation function is used after each convolutional layer or summation. The
elu function is used as activation function expect for the final outputs, which are the
result of a sigmoid activation function. The sigmoid activation function are explicitly
shown in figure 3.5. For the CalibNet, there is no activation after the summation to
ensure that the shortcut path can directly represent a scaled version of the input.

CalibNet directly transforms the parameters of the depth distribution. Thus, in
contrast to [Kuleshov et al., 2018], the type of recalibrated distribution remains the
same and is continuously differentiable.

Training: The network parameters of DepthNet and CalibNet are trained on
different, non-overlapping splits of the training data. The split, on which the Cal-
ibNet layers are trained on, is denoted as calibration split and deliberately taken
out of the training data of the DepthNet to avoid overfitting of DepthNet on the
calibration split. The NLL-loss L is minimized during training similar to [Kendall
and Gal, 2017, Klodt and Vedaldi, 2018]:

L =
∑

p∈ΩGT

[
− log

(
K∑

i=1

λi(p) · N
(
ρGT (p)− µi(p), σ2

i (p)
)
)]

(3.10)

All pixels p ∈ ΩGT with valid ground truth inverse depth values ρGT are used for
training. The outputs of the respective trained network, either DepthNet or CalibNet,
are µi, λi, and si = log σ2

i .

The architecture and the separate training process are the essential elements of
the recalibration technique. The DepthNet potentially overfits on its training split,
which results in higher accurate estimates on the training data than on general data
samples. The loss forces the network to output depth distributions that represent
the error statistic on the training data – which is not representative and typically
overconfident for data samples that are not part of the training data. In contrast to
that, the CalibNet is trained to provide a distribution that represents the statistic
of the single-view depth estimates on the hold-out calibration split, which is not
affected by overfitting effects because it is not used for training the DepthNet. In
principle, the CalibNet part could overfit on the hold-out calibration split. However,
the mean depth values are not adjusted by the CalibNet and keep the same accuracy.
The overfitting effects of the CalibNet part are also substantially lower due to the
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small amount of input features 2K and the number of model parameters 6·(4K2+2K)

(e.g. 1632 for K = 8).

Ground truth generation: To overcome the limitations of LiDAR data in terms
of density, range, and field of view, an intermediate fusion based on stereo images is
used for ground truth depth generation. First, the LiDAR point cloud is projected to
the image. If there are depth measurements in a local window whose depth difference
exceeds a certain threshold, these measurements are marked as inconsistent and
removed. This step is included to handle occlusion problems due to the different
mounting position and perspective of the LiDAR sensor. Second, these sparse depth
maps are completed considering a photometric distance between the two stereo
images. Therefore, a depth cost volume E(p, d) is created spanned over all pixels p
and depth values represented as discretized disparities d ∈ [0, 255]. Each depth value
is rated by its photometric distance based on the stereo image pair Estereo(Il, Ir,p, d)

for each pixel p. For pixels p with a valid LiDAR measurement, an additional penalty
cost Elidar,err is added for depth values different to the LiDAR measurement dlidar(p).

E(p, d) =




Estereo(Il, Ir,p, d) + Elidar,err , if dlidar(p) 6= d

Estereo(Il, Ir,p, d) , else
(3.11)

Elidar,err could represent the probability that the LiDAR measurement is incor-
rect and overruled by the stereo part. However, because the LiDAR sensor has high
robustness and accuracy, the value Elidar,err is chosen very high. Consequently, in
practice pixels with valid LiDAR measurements take over the LiDAR depth value
and the stereo part serves as a depth completion for pixels without valid LiDAR mea-
surements. The photometric distance is defined in the same way as in [Hirschmuller,
2005] and the same SGM-based approach is applied to compute the depth estimates
based on the depth cost volume. For further details, the reader is referred to the
corresponding paper [Hirschmuller, 2005]. The presented stereo-based completion
of the LiDAR point cloud serves as the ground truth for training. The conversion
from ground truth disparities dGT to ground truth inverse depth ρGT is defined for a
calibrated stereo setup with camera constant f and baseline b as ρGT = dGT/(f · b).
The example in figure 3.4 shows that this densifies the sparse point cloud. Even
more important, this approach provides depth estimates also for the upper part of
the image and at far distances.

ProbDepthNet learns to estimate a pixel-wise depth distribution by observing
the depth distribution during the training process. This way, the depth distribution
captures the measurement uncertainty. The main contribution of ProbDepthNet
is the novel recalibration technique to provide well-calibrated distributions. The
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experiments in section 3.4.2 validate the recalibration technique and show that it is
also applicable to different probabilistic approaches similar to [Ilg et al., 2018, Gast
and Roth, 2018].

3.4 Experimental Evaluation of ProbDepthNet

Model

In the present section ProbDepthNet is analyzed: (1) Qualitative results of Prob-
DepthNet are shown, (2) the uncertainty quantification and calibration of different
ProbDepthNet variants are analyzed, (3) the generalization capabilities to different
outdoor scenes are shown, and (4) the accuracy of the underlying depth estimates
is evaluated.

The experiments are conducted on a ProbDepthNet model trained for the KITTI
scene flow training set [Menze et al., 2018]. The model is trained on 33 sequences
of the KITTI raw dataset [Geiger et al., 2013], which are not part of the scene flow
set. Around 75% of the sequences are used for training DepthNet and 25% of the
sequences serve as the calibration split for training the CalibNet layers. It is trained
for 15 epochs using Adam optimizer [Kingma and Ba, 2014] with a learning rate
of 10−4 halved every 5 epochs and a small batch size of 4. The input images are
scaled to a size of 512× 256 and a MoG with 8 components is used.

3.4.1 Qualitative Results

Figure 3.6 shows the output of ProbDepthNet for some images of the KITTI scene
flow dataset [Menze and Geiger, 2015] in terms of the mean depth value, variance,
and recalibrated variance of the first component. The visualizations show that the
component is visually representative also for the other components and the distri-
bution in general. The estimated recalibrated variances s̃0 provided by CalibNet are
significantly higher than the variances s0. This shows that the CalibNet layers re-
shape the distribution toward less confident distributions. A quantitative evaluation
of the resulting recalibration is presented in section 3.4.2. The variances correlate
with the depth errors and high variances are typically estimated in the following
situations. First, ProbDepthNet estimates high variances correctly for challenging
parts such as thin objects (e.g. the poles in figure 3.6 (a,c)) or object boundaries (e.g.
the object boundaries of the vehicles in figure 3.6 (a,b,d,e)). The variances are lower
for the object boundaries at the bottom than those at the top of the vehicles. This
is due to the fact that the difference in depth is larger between the vehicle and the
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Figure 3.6: Qualitative results of ProbDepthNet on the KITTI scene flow dataset [Menze
and Geiger, 2015] in the form of the mean depth values µ0, log-variances s0

and recalibrated log-variances s̃0 of the first component of the MoG. The color
encodes the inverse depth from close (red) to far (blue) or the variance from
high (red) to low (blue).

background than between the vehicle and the ground plane. Second, ProbDepthNet
is able to estimate high variances for parts that lack valuable ground truth data
for training. For example, the stereo-based completion of the LiDAR data does not
provide valuable ground truth data for the low-textured sky (see figure 3.6 (d)).
Third, ProbDepthNet is able to identify scenarios that result in an erroneously es-
timated depth structure such as the dark tunnel in figure 3.6 (f). In this scenario,
ProbDepthNet estimates high variances correctly for almost the whole image.
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3.4.2 Evaluation of Uncertainty Quantification and Calibra-

tion

The following experiments analyze the uncertainty quantified by the distributions
and the proposed recalibration by adding the CalibNet trained on a hold-out split.
Three ProbDepthNet variants are analyzed, each one representing one category of
the presented strategies in terms of quantifying the measurement uncertainty (sec-
tion 3.1.2.1). The proposed training by minimizing the NLL is related to the first
category such as in [Kendall and Gal, 2017]. To represent the second category of
multi-hypothesis approaches, the DepthNet part is adapted to estimate a set of
8 hypotheses, each one represented by a single Gaussian. Following the proposed
loss by Ilg et al. [2018], only the best hypothesis is penalized during training. This
variant is denoted as ’Hypo’. [Ilg et al., 2018] also proposed to use a subsequent
network to estimate a distribution based on the set of hypotheses. In contrast to the
subsequent network proposed by Ilg et al. [2018], CalibNet only consists of a few
layers and is additionally designed to provide well-calibrated distributions. The third
ProbDepthNet variant corresponds to its ’ADF’-counterpart [Gast and Roth, 2018]
representing the third category. Therefore, each layer is replaced by its probabilistic
version to propagate an input uncertainty through the whole network as proposed
by [Gast and Roth, 2018].

Three metrics are analyzed to assess the quality of the distributions in terms of
quantifying the uncertainty and calibration – the sparsification error, the expected
calibration error (ECE) and mean NLL.

Sparsification error: The sparsification error reveals how much the estimated
uncertainty or variance is related to the error of the estimates. If the estimated
variance represents the uncertainty well, the error should monotonically decrease by
removing gradually the pixels with the highest uncertainty. In the best case, the
pixels with the highest errors are removed, which is denoted as oracle sparsification.
Formally, the distributions are approximated by its total mean ρ̂ and total vari-
ance σ̂2 to define a single value for the depth estimate and uncertainty. The error
is defined as the root mean squared error (RMSE) in terms of inverse depth for a
subset p ∈ Ωk of pixels with the corresponding ground truth values ρGT (p):

RMSEk =

√
1

|Ωk|
∑

p∈Ωk

(ρ̂(p)− ρGT (p))2 (3.12)

The subset excludes the estimates with the k-percentage of highest variances σ̂2. To
measure the difference of the sparsification defined by the estimated variances and
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Figure 3.7: Sparsification plots of ProbDepthNet variants. The plot shows the root mean
squared error (RMSE) in terms of inverse depth for gradually removing the
fraction of pixels with the highest uncertainties. All curves are monotonically
decreasing, which shows that the uncertainty of all methods coincides with
the errors. The dotted curves correspond to an ’oracle’, which removes the best
fraction of pixels with the highest errors. The distance to the oracle is expressed
as the area under sparsification error (AUSE) error stated in the legend. The
different variants show comparable accuracy, which is basically not affected by
adding the CalibNet for recalibration.

the oracle sparsification, the area under sparsification error (AUSE) is introduced
as AUSE =

∫ 1

k=0
(RMSEk −RMSEk−oracle) [Ilg et al., 2018].

The sparsification plots and the AUSE errors are shown in figure 3.7. All methods
show a monotonically decreasing curve by removing the fraction of pixels with the
highest uncertainty. This validates that the variances coincide with the error and
uncertainty of the estimates. The different ProbDepthNet variants show similar per-
formance. Adding the CalibNet for recalibration has no significant impact, which
shows that CalibNet does not change the order of uncertainties.

Expected calibration error (ECE): The sparsification plot is able to show
if higher uncertainties also correspond to higher errors, but it says nothing about
the calibration of the uncertainty. For a well-calibrated distribution, the variance
or uncertainty also needs to define a reasonable confidence interval. The calibration
of the final models is shown in figure 3.8. The frequency of ground truth depth
values inside a given interval should be the same as the cumulative probability
of the estimated distribution. Analogously to the sparsification metric, the ECE
[Guo et al., 2017] is defined as the area between the calibration curve and the ideal
calibration. The extend of being overconfident varies among the different approaches
– but all approaches suffer from such an effect and provide overconfident estimates.
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Figure 3.8: Calibration plots of ProbDepthNet variants. The calibration plot analyzes the
frequency of ground truth depth values lying in a given confidence interval.
This frequency is equal to the confidence interval for a perfect calibrated model
(dotted line). The distance to a perfect calibrated model is defined by the ECE
metric (stated in the legend). By including CalibNet for recalibration, a much
better calibrated model is achieved for all ProbDepthNet variants.

The proposed recalibration by adding CalibNet is able to improve the calibration
of the distributions significantly resulting in a decreased ECE of a factor of 5 to 10

depending on the variant as shown in the legend of figure 3.8.

Mean NLL over training process: Evaluating the mean NLL of the models
is a metric that directly assesses the accuracy of the distribution. This covers the
accuracy of the underlying depth estimates as well as the calibration of the dis-
tribution. Figure 3.9 shows the mean NLL on the KITTI scene flow set (which is
not part of the training data) every 1000 training steps. This experiment reveals
the reason for the overconfident distributions without the CalibNet. As soon as a
network starts overfitting, the accuracy of the network gets better on the training
data than on the test set. All strategies to cover the measurement uncertainty derive
their estimated distributions from the observed accuracy during training. Intuitively,
these strategies can not prevent the network to provide overconfident distributions.
In contrast to that, the distributions provided by CalibNet are based on the accu-
racy on a hold-out split. The results show that the accuracy on the hold-out split is
much more representative and consequently CalibNet is able to compensate for the
overfitting effects to provide well-calibrated distributions. This supports the claim
that CalibNet is a useful recalibration technique applicable to different probabilistic
approaches.
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Figure 3.9: Mean NLL of ProbDepthNet variants over the training process. The mean NLL
(lower is better) is evaluated on the KITTI scene flow set [Menze et al., 2018],
which is not part of the training data. The accuracy decreases at some point
for all variants without CalibNet due to an overfitting effect, which results
in overconfident estimates. CalibNet is validated as a reasonable recalibration
technique to compensate for the overfitting effect.

Comparing the different strategies (minimizing NLL, hypothesis strategy ’Hypo’,
and assumed density filtering ’ADF’), the experiments show that the main difference
is in terms of calibration and being sensitive to overfitting effects. However, CalibNet
addresses exactly these points and by including CalibNet for recalibration a similar
performance is achieved for the different strategies.

3.4.3 Generalization Capabilities

To analyze the generalization capabilities, ProbDepthNet results are provided for
images of different scenes. Figure 3.10 shows the results of a ProbDepthNet model,
which is trained on KITTI (with pretraining on Cityscapes [Cordts et al., 2016]) on
images of the Make3D dataset [Saxena et al., 2009]. The Make3D dataset comprises
images of a wide range of outdoor scenes captured by a hand-held camera. The
results are based on a central crop of the Make3D image to provide images with a
similar aspect ratio as the training data. The estimates of ProbDepthNet are not only
reasonable for street scenes (see figure 3.10 (a,b)), but also for some different scenes
(see figure 3.10 (c-f)) such as parks. However, there are also limitations in terms
of generalization capabilities. Images that are too different from the training data
such as the close-up views of buildings (see figure 3.10 (g,h)) can result in erroneous
estimates of both, mean depth values and variances. Note that ProbDepthNet is



3.4 experimental evaluation of probdepthnet model 55

(a) (b) (c) (d)

Input
images

Mean
depth µ0

Recalib.
variance s̃0

(e) (f) (g) (h)

Input
images

Mean
depth µ0

Recalib.
variance s̃0

Figure 3.10: Generalization of ProbDepthNet (trained on Cityscapes [Cordts et al., 2016]
and KITTI [Menze and Geiger, 2015]) on the central crop of Make3D [Sax-
ena et al., 2009]. The figure shows the estimates based on the input image
(top) in the form of the mean depth values µ0 (middle) and recalibrated log-
variances s̃0 (bottom) of the first component of the MoG. The color encodes
the inverse depth from close (red) to far (blue) or the variance from high (red)
to low (blue).

designed to capture the measurement uncertainty. Such images as in figure 3.10 (g,h)
need to be considered as OOD data and an additional OOD data detection would
be needed to estimate correctly the uncertainty in such situations.

3.4.4 Evaluation of Maximum Likelihood Depth Estimation

Previous methods for single-view depth estimation such as [Eigen et al., 2014, Liu
et al., 2016, Garg et al., 2016, Godard et al., 2017, Kuznietsov et al., 2017, Fu et al.,
2018, Lee et al., 2019] are typically designed to provide a single depth value per pixel
that represents the maximum likelihood estimate. In contrast to these methods, the
advantage of ProbDepthNet is to provide well-calibrated pixel-wise depth distribu-
tions instead of maximum likelihood depth estimates. This probabilistic design is
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beneficial for combining single-view depth information with multi-view geometry as
shown in the following chapters 4 to 6.

However, to get an impression of the underlying accuracy of the depth estimates
provided by ProbDepthNet with respect to previous methods, the total means or first
moments of the pixel-wise depth distributions are interpreted as estimates of single
depth values ρ̂ =

∑K
i=1 λiµi. Table 3.3 shows the quantitative evaluation of these

values with respect to several methods for single-view depth estimation following
the evaluation metric and KITTI test split proposed by Eigen et al. [2014]:

Abs Rel =
1

|ΩGT |
∑

p∈ΩGT

|ρ̂(p)−1 − ρGT (p)−1|
ρGT (p)−1

Sq Rel =
1

|ΩGT |
∑

p∈ΩGT

(ρ̂(p)−1 − ρGT (p)−1)
2

ρGT (p)−1

RMSE =

√
1

|ΩGT |
∑

p∈ΩGT

(ρ̂(p)−1 − ρGT (p)−1)2

RMSElog =

√
1

|ΩGT |
∑

p∈ΩGT

(log ρ̂(p)−1 − log ρGT (p)−1)2

γ < 1.25k : % of p with max

(
ρ̂(p)

ρGT (p)
,
ρGT (p)

ρ̂(p)

)
= γ < 1.25k

(3.13)

p ∈ ΩGT are all pixels with valid ground truth ρGT (p). While the estimated depth
by ProbDepthNet is represented as inverse depths, the proposed metric by Eigen
et al. [2014] evaluates the depth in the linear or logarithmic space. Furthermore, the
depth values are capped at 50 or 80 meters.

The results are based on a ProbDepthNet model pretrained on Cityscapes [Cordts
et al., 2016] and fine-tuned on the KITTI training split specified by Eigen et al. [2014].
Additionally, the results of the following baseline methods are provided: [Eigen et al.,
2014, Liu et al., 2016, Garg et al., 2016, Godard et al., 2017, Kuznietsov et al., 2017,
Fu et al., 2018, Lee et al., 2019]. A more detailed description of these methods is given
in section 3.1.1.3. The results stated in Table 3.3 are taken from the corresponding
papers except for the DORN [Fu et al., 2018] method. While the other methods eval-
uate their depth estimates against the raw LiDAR point cloud, the DORN method
was evaluated against the ground truth data provided by the KITTI depth predic-
tion benchmark [Uhrig et al., 2017]. To provide a fair comparison, the published
estimates of the DORN method are evaluated against the raw LiDAR point cloud
as ground truth for this evaluation.

The accuracy of the estimates of the DORN [Fu et al., 2018] and BTS [Lee et al.,
2019] methods are superior to ProbDepthNet. However, even though ProbDepth-
Net is focused on providing depth distributions, it is also comparative to methods
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Method Cap lower is better higher is better
Abs Rel Sq Rel RMSE RMSElog γ < 1.25 γ < 1.252 γ < 1.253

Eigen
[Eigen et al., 2014]

80m 0.190 1.515 7.156 0.270 69.2 89.9 96.7

Liu et al.
[Liu et al., 2016]

80m 0.217 1.841 6.986 0.289 64.7 88.2 96.1

LRC
[Godard et al., 2017]

80m 0.114 0.898 4.935 0.206 86.1 94.9 97.6

Kuznietsov
[Kuznietsov et al., 2017]

80m 0.113 0.741 4.621 0.189 86.2 96.0 98.6

DORN
[Fu et al., 2018]

80m 0.111 0.618 3.659 0.168 89.4 96.4 98.4

BTS
[Lee et al., 2019]

80m 0.091 0.555 4.033 0.174 90.4 96.7 98.4

ProbDepthNet 80m 0.103 0.762 4.680 0.195 87.1 95.3 97.9
Garg

[Garg et al., 2016]
50m 0.169 1.080 5.104 0.273 74.0 90.4 96.2

LRC
[Godard et al., 2017]

50m 0.108 0.657 3.729 0.194 87.3 95.4 97.9

Kuznietsov
[Kuznietsov et al., 2017]

50m 0.108 0.595 3.518 0.179 87.5 96.4 98.8

DORN
[Fu et al., 2018]

50m 0.108 0.535 2.884 0.162 90.2 96.6 98.5

BTS
[Lee et al., 2019]

50m 0.088 0.437 3.127 0.165 91.4 97.0 98.6

ProbDepthNet 50m 0.098 0.567 3.530 0.183 88.3 95.9 98.1

Abs Rel [mm ], Sq Rel[m
2

m ]: absolute and squared relative depth error; RMSE [m]: RMSE of depth

RMSElog: RMSE of logarithmic depth; γ < 1.25k[%]: percentage fulfilling a quality threshold

Table 3.3: Quantitative evaluation of methods for single-view depth estimation on the
KITTI dataset [Geiger et al., 2013] using the test split by Eigen et al. [2014].

such as LRC [Godard et al., 2017], which uses a similar network architecture. The
experiments in sections 4.3.2 and 5.3.2 show a significantly better accuracy for in-
tegrating single-view depth estimates in a monocular scene flow method using the
probabilistic ProbDepthNet instead of the LRC method. In terms of estimating a
maximum likelihood depth value, the quality of ProbDepthNet is just similar or
slightly superior to the LRC method. This additionally supports the claim that
the main benefits of ProbDepthNet are due to the probabilistic design and due to
providing well-calibrated distributions.

3.5 Conclusion

The present chapter addressed the topic to analyze and estimate the uncertainties
or distributions in the context of single-view depth estimation. The first section
analyzed the type of distribution as well as the dependence on semantic classes.
The second section presented ProbDepthNet, a CNN for probabilistic single-view
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depth estimation. ProbDepthNet provides depth distributions instead of merely
maximum likelihood depth estimates. The experiments reveal that previous meth-
ods for estimating the measurement uncertainty in a regression problem suffer from
overconfident estimates – an effect that is compensated by a novel recalibration
technique. The experiments also confirm a reasonable accuracy of the underlying
depth estimates. Even though the ProbDepthNet provides well-calibrated distribu-
tions covering the measurement uncertainty, the experiments also illustrated that a
quantification of the measurement uncertainty reaches its limits for images that are
too different from the training data (e.g. close-up views of buildings). In such cases,
neither the depth nor the uncertainty is guaranteed to be reasonable. Such images
need to be considered as OOD data, which need special treatment to be detected.
This detection was out of the scope for ProbDepthNet, but is clearly important to
increase the robustness of probabilistic single-view depth estimates against unknown
scenarios.
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In applications such as mobile robots or autonomous vehicles, a dynamic represen-
tation of the surrounding environment is needed. In addition to depth estimates, the
motion of the camera and other traffic participants is important. For example, dy-
namic parts of the scene need to be detected and tracked to navigate safely through
a scene and to avoid collisions.
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From a computer vision point of view, the 3D position and motion of a pixel in
the image is denoted as 3D scene flow [Vedula et al., 1999, 2005]. As distances are
a crucial element of scene flow, it is estimated based on a temporal series of stereo
images [Vogel et al., 2013, Menze and Geiger, 2015, Behl et al., 2017]. However,
from an economic point of view, monocular camera systems are often preferred over
stereo cameras due to being more cost-efficient and to avoid the effort of calibrating
the stereo rig.

3D scene flow estimation is an ill-posed problem in terms of multi-view geome-
try in a monocular camera setup. To solve the scale-ambiguity, previous monocular
methods assumed that the moving objects are in contact with the surrounding envi-
ronment [Ranftl et al., 2016, Song and Chandraker, 2015, 2014, Yuan and Medioni,
2006] or that the scene follows a smoothness prior regarding surface and motion
[Mitiche et al., 2015, Xiao et al., 2017, Kumar et al., 2017, Di et al., 2019]. These
assumptions might be violated, e.g. if the ground contact point of a moving vehicle
is occluded. Furthermore, these methods still require a relative translational motion
of the camera to the scene and they need an accurate estimate of the road ground
plane.

The previous chapter 3 showed that convolutional neural networks (CNNs) are
able to provide depth estimates from a single image at a reasonable level of quality.
However, single-view depth estimation and multi-view geometry are mostly tackled
as two individual tasks or fused in a way that is only applicable to static scenes
[Tateno et al., 2017, Fácil et al., 2017, Yin et al., 2017].

Therefore, I propose in the present chapter an approach that combines multi-view
geometry with single-view depth information to exploit both kinds of information
for a monocular scene flow estimation problem, which results in new state of the
art (SotA) accuracy. Even more, the single-view depth serves to solve the multi-
view geometry-based ambiguity and the method generalizes to standstill scenarios.
The proposed approach is denoted as SVD-MSfM because it is an approach that
integrates probabilistic single-view depth estimates (SVD) in a multi-body structure
from motion (MSfM)-based approach.

An overview of SVD-MSfM and the corresponding sections is shown in figure 4.1.
In the first step (section 4.2.1), the camera motion and the motion of objects detected
by an instance segmentation are estimated. The motion estimation is based on a
sparse optical flow field and integrates single-view depth distributions provided by
ProbDepthNet. The single-view depth distributions can be considered as prior depth
information that supports the matching process of sparse optical flow estimation
and optimization of motion estimation. The motions are expressed by all 6 degrees
of freedom. Due to the integration of single-view depth information, the motion
estimates are also provided in the correct metric scale. Traditionally, the known
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Figure 4.1: Overview of SVD-MSfM. The proposed approach is divided into two steps. The
motion of objects detected by an instance segmentation as well as the camera
motion are estimated based on a sparse optical flow field [section 4.2.1]. The
integration of the single-view depth distribution can be considered as a depth
prior for matching and motion optimization. A dense depth map is estimated
based on a depth cost volume, which comprises the single-view depth informa-
tion and a multi-view photometric distance [section 4.2.2].

camera height or an additional inertial measurement unit is used for scale-aware
monocular visual odometry in the automotive domain. However, this only provides
scale information for the camera motion. In contrast to [Barnes et al., 2018, Yin
et al., 2017, Yang et al., 2018a] that integrate single-view depth estimates for scale-
aware camera motion estimation, this idea is applied here additionally for scale-aware
motion estimation of moving objects. Most methods exploit the possibility to track
the camera motion over a long time and evaluate the results on long sequences.
To be closer to the characteristic of moving objects that frequently appear and
disappear, the evaluation in the present thesis is based on short sequences. While
the evaluation shows that the accuracy of most methods significantly drops on short
sequences, SVD-MSfM has high robustness even on short sequence snippets.

In the second step (section 4.2.2), the depth is estimated based on a depth cost
volume spanned over each pixel and discretized depth values. The depth cost volume
combines two kinds of information. Cost values derived from the depth distributions
provided by ProbDepthNet serve as the first part and integrate the single-view
depth information. Based on the scale-aware motion estimates and pair of monocular
images, the photometric distances rate each discretized depth value for each pixel
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and contribute the multi-view geometric information. Standard techniques, SGM
[Hirschmuller, 2005] and SPS [Yamaguchi et al., 2014], are applied to derive final
depth estimates based on the joint depth cost volume.

The experiments evaluate different categories of monocular baseline methods for
scene flow estimation and show that SVD-MSfM outperforms previous methods sig-
nificantly on a scene flow metric. Furthermore, ablation studies confirm the suitabil-
ity of subcomponents and design choices such as (1) the proposed motion estimation,
(2) the combination of multi-view and single-view information, and (3) ProbDepth-
Net for integrating single-view depth information. The advantage of ProbDepthNet
can be attributed to the importance of providing single-view depth information in
a probabilistic and well-calibrated form.

4.1 Related Work

Previous work related to SVD-MSfM is categorized into three groups. The first
category comprises simultaneous localization and mapping (SLAM) methods that
estimate the camera poses and a map of the static environment. These works are
mostly related to the formulation of SVD-MSfM motion estimation. The second
category comprises the methods based on the multi-body structure from motion
(MSfM) principle. While the methods of the first category provide a reconstruction
of the static environment, the second category consists of methods that provide
motion and depth estimates for dynamic scenes. These methods are related to the
general concept of SVD-MSfM and serve as one category of baseline methods. Multi-
task networks that provide a monocular scene flow representation, e.g. in terms of
depth and optical flow or depth and motion estimates, are considered as the third
category and an additional group of baselines.

4.1.1 Simultaneous Localization and Mapping

SLAM methods jointly estimate the camera poses and a set of 3D map points of the
static environment. The approaches differ regarding certain aspects: (1) the type of
the estimation (’filtering vs. optimization’), (2) the definition of the optimized data
terms (’direct vs. indirect’), (3) the density of the map points (’dense vs. sparse’), and
(4) the applied constraints to derive metric scale-aware estimates (’scale estimation’).
A similar categorization is proposed in [Engel, 2017]. Table 4.1 provides an overview
of monocular SLAM methods and their classifications. D3VO [Yang et al., 2020]
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Method
Filtering

vs. Optimization
Direct

vs. Indirect
Sparse

vs. Dense
Scale

estimation
PTAM

[Klein and Murray, 2007]
BA indirect sparse No

DTAM
[Newcombe et al., 2011]

Filtering direct dense No

SVO
[Forster et al., 2014]

Filtering hybrid sparse No

VISO2-M
[Geiger et al., 2011]

Filtering indirect sparse Ground Plane

LSD-SLAM
[Engel et al., 2014]

BA+LC direct semi-dense No

ORB-SLAM
[Mur-Artal et al., 2015]

BA+LC indirect sparse No

DSO
[Engel et al., 2017]

BA direct sparse No

LDSO
[Gao et al., 2018]

BA+LC direct sparse No

PMO
[Fanani et al., 2017]

Filtering direct sparse Ground Plane

CNN-SLAM
[Tateno et al., 2017]

BA direct dense Single-View Depth

Yin et al.
[Yin et al., 2017]

BA indirect sparse Single-View Depth

Barnes et al.
[Barnes et al., 2018]

Filtering indirect dense Single-View Depth

DVSO
[Yang et al., 2018a]

BA direct sparse Single-View Depth

D3VO
[Yang et al., 2020]

BA direct sparse Single-View Depth

BA: bundle adjustment ; LC: loop closing

Table 4.1: Overview and classification of SLAM methods. The methods are categorized
according to four aspects: (1) filtering vs. optimization, (2) direct vs. indirect,
(3) sparse vs. dense, and (4) scale estimation.

is the currently leading approach1 as reported by the KITTI odometry benchmark
[Geiger et al., 2012]. The general concepts that are the basis for the classification
are explained in the following paragraphs.

Filtering vs. optimization: Formally, SLAM methods estimate a set of camera
poses T = {T0, ...TN} with Tj ∈ SE(3) and 3D scene points X = {X0, ...,XM}
with Xi ∈ IR3. The estimation problem is typically considered as a maximum likeli-
hood estimation based on observations Y:

T̂ , X̂ = arg max
T ,X

p (Y | T ,X ) (4.1)

The observations Y are, for example, tracked image positions of the 3D scene points.

1 Referring to monocular methods with a publication submitted to the benchmark until Januar 02,
2021.
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Filtering-based methods, on the one hand, continuously predict and update the
probability density of the current camera pose and observed scene points over time,
e.g. [Geiger et al., 2011, Fanani et al., 2017]. Optimization-based methods, on the
other hand, formulate the joint estimation of camera poses and the 3D scene points
as an energy minimization problem based on a factor graph, e.g. [Dellaert et al.,
2017, Mur-Artal et al., 2015, Engel et al., 2017]. Each vertex corresponds to either
a camera pose Tj or a 3D scene point Xi. Each edge describes the observation of
a 3D scene point at a certain camera pose. The optimization is formulated as an
energy minimization problem, where each observation Yi,j contributes to the energy
term E by Φ(Yi,j,Xi,Tj):

E =
∑

j

∑

i

Φ(Yi,j,Xi,Tj) (4.2)

Based on this formulation, a set of camera poses is jointly optimized, which is
denoted as bundle adjustment (BA). To reduce the computational effort, typically
only a subset of camera poses is optimized instead of the whole camera trajectory.
The subset is either defined by a sliding window approach [Engel et al., 2017] or by
systematically chosen keyframes [Mur-Artal et al., 2015]. Furthermore, the camera
might return to a previously visited location, which corresponds to a loop in the pose
graph. Approaches have been proposed [Mur-Artal et al., 2015, Gao et al., 2018] to
detect these loop closings (LCs) and optimize the camera trajectory to be consistent
with the detected loop.

Direct vs. indirect: This classification is based on the definition of the obser-
vations Y and the optimized energy term Φ(Yi,j,Xi,Tj). Two types of methods
are distinguished: direct and indirect methods. While the optimization of indirect
methods is based on detected and tracked scene point image coordinates, direct
methods perform the optimization on image intensities. For indirect methods, the
detected scene point image coordinates Y serve as the measurements for the error
term Φ(Yi,j,Xi,Tj). The set of 3D scene points corresponds to extracted feature
keypoints, which are matched and tracked over the image sequence. For each 3D
scene point Xi, a set of measured image positions Yi,j = pi,j corresponding to a
certain pose Tj is derived. These measured image positions are considered as the
observations. The error term Φproj(pi,j,Xi,Tj) quantifies the distance between the
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measured pi,j and reprojected 2D keypoint image position π(Xi,Tj) [Klein and
Murray, 2007, Mur-Artal et al., 2015]:

E =
∑

j

∑

i

Φproj(pi,j,Xi,Tj)

=
∑

j

∑

i

||pi,j − π(Xi,Tj)||
(4.3)

For the norm || · || usually the Euclidian- or more rarely the Mahalanobis-distance
is used.

While indirect methods minimize a geometric reprojection error, direct methods
skip the intermediate feature matching and minimize a photometric distance directly
on the image intensities. Each 3D scene point Xi refers to a reference pixel pi in a
reference image Iref . The camera poses Tj and 3D scene points Xi are optimized to
align the reference image intensities Iref (pi) with the image intensities Ij(π(Xi,Tj)):

E =
∑

j

∑

i

Φphoto(Iref , Ij,pi,Xi,Tj)

=
∑

j

∑

i

||Iref (pi)− Ij(π(Xi,Tj))||
(4.4)

Consequently, the images are directly considered as the observations Y. The cor-
responding image patches could be rated as a weighted sum of squared distances
[Fanani et al., 2017, Engel et al., 2017]. Furthermore, the energy term can be ex-
tended to consider different exposure times [Engel et al., 2017, Bergmann et al.,
2018] and rolling shutter effects [Schubert et al., 2018].

Dense vs. sparse: The third criterion distinguishes the methods based on the
density of the reconstructed map. It basically refers to the definition of the set of 3D
scene points X . The reprojection (equation (4.3)) and photometric distance (equa-
tion (4.4)) are based on local feature matching or local image intensities. Thus, only
a sparse subset of local image patches with sufficient structure is suitable for opti-
mization. Engel et al. [2014] proposed to use all parts of the image with a minimum
length of the image gradient vector, which is denoted as semi-dense. However, for
a dense reconstruction, the energy term needs to be extended by a regularization
term [Newcombe et al., 2011] or by exploiting single-view depth estimates [Barnes
et al., 2018, Tateno et al., 2017].

Scale estimation: In a monocular setup, the translational motion of the cam-
era and the scene points are only known up to an unknown scale. An additional
constraint needs to be applied to solve this scale ambiguity. For a vehicle-mounted
camera, the known camera height above the ground is exploited as metric scale
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information [Fanani et al., 2017, Geiger et al., 2011]. More recently, single-view
depth estimates are used to provide the scale information [Yin et al., 2017, Tateno
et al., 2017, Yang et al., 2018a, Barnes et al., 2018, Yang et al., 2020], which is
learned based on a stereo or ground truth supervision. Yin et al. [2017] proposed
a scale estimation and correction based on single-view depth estimates as a subse-
quent postprocessing step to a not scale-aware monocular SLAM method based on
ORB-SLAM [Mur-Artal et al., 2015]. Alternatively, Barnes et al. [2018] proposed to
directly integrate the single-view depth estimates di as additional measurements in
the energy minimization problem:

E =
∑

j

∑

i

Φproj(Xi,Tj) + ||di − d(Xi,Tj)|| (4.5)

These methods are mostly related to the proposed motion estimation of SVD-
MSfM, which would be categorized as follows: (1) SVD-MSfM is formulated as an
energy minimization problem based on a factor graph (’optimization’), (2) a gen-
eral sparse optical flow field is considered as the measurements (’indirect’), (3) the
estimation is based on a sparse set of scene points (’sparse’), and (4) single-view
depth estimates are exploited for scale estimation. The main contribution of SVD-
MSfM’s motion estimation is its applicability to moving objects. The experiments
show that SVD-MSfM provides robust estimates on short image sequences up to
only two consecutive images. This is an important characteristic as moving objects
frequently appear and disappear in the scene and require a fast recognition and
motion estimation without having a long history of the trajectory.

4.1.2 Multi-Body Structure from Motion

The methods from the literature presented in section 4.1.1 are focused on static
environments and merely estimate the camera motion. Some methods address the
robustness against moving objects so that they do not have a negative effect on the
camera motion estimation. However, estimating the motion of the moving objects
itself is out of the scope of these works.

The present subsection describes works that extended the general concepts of
SLAM or structure from motion (SfM) to dynamic scenes. Therefore, parts of the
scene that undergo a different motion need to be reconstructed individually. Such
methods are denoted as multi-body structure from motion (MSfM) and can typically
be divided into three steps: (1) independent moving object (IMO) detection and
segmentation, (2) multi-body motion estimation and reconstruction, and (3) scale
estimation.
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Independent moving object detection (IMO) and segmentation: The
objective of the independent moving object (IMO) detection and segmentation is to
identify parts of the image that belong to the same rigid-body motion.

Assuming that the camera motion is given (e.g. by a traditional SLAM method),
several geometric cues based on optical flow estimates have been proposed to identify
IMOs. Each optical flow vector belonging to the static environment needs to fulfill
the epipolar geometry (section 2.1). If the distance of the optical flow vector to
the epipolar line exceeds a certain threshold, it is considered as belonging to an
IMO [Klappstein, 2008, Kundu et al., 2010, 2011]. The trifocal constraint [Hartley,
1997, Klappstein, 2008] is defined based on the geometric relation in three views.
It states that the triangulated 3D point based on two views needs to be consistent
with the feature position in the third view. Fanani et al. [2018] proposed a circular
check to detect violations of the trifocal constraint. These constraints detect IMOs
with non-colinear translational motion. Additionally, the positive depth constraint
[Klappstein, 2008] defines that a triangulated 3D scene point needs to be in front of
the camera. This is equivalent to the constraint that the optical flow vector needs to
point away from the focus of expansion. These constraints are based on the principles
of multi-view geometry without loss of generality. Additionally, constraints have been
proposed that are based on scene model assumptions. The positive height constraint
[Klappstein, 2008] requires that a 3D scene point lies on or above the ground plane.
Kundu et al. [2010, 2011] proposed to define a range of plausible values for the depth
or the length of optical flow vectors.

The previous constraints for IMO detection are based on a given camera motion.
Alternatively, IMO segmentation is formulated as a model selection problem. The
scene is divided into a set of motions and each optical flow vector is assigned to one
motion model. The fundamental matrix [Ranftl et al., 2016], the trifocal tensor [Vidal
and Hartley, 2008] or a 2-DoF planar motion model [Sabzevari and Scaramuzza,
2016] is used to represent the motion. For the segmentation, which means finding
the number of motion segments, the motion parameters per segment, and associate
each optical flow vectors to one motion segment, Ranftl et al. [2016], Sabzevari
and Scaramuzza [2016] proposed iterative methods. The motion parameters for one
motion segement are estimated using a robust estimator such as RANSAC [Sabzevari
and Scaramuzza, 2016] or median-least-squares [Ranftl et al., 2016]. The optical
flow vectors are classified as inlier and outlier for the estimated motion parameters.
Iteratively, new motion segments are created and estimated for the remaining optical
flow outliers.

Limitations of the geometric constraints exist for epipolar-conformant motion. A
common example for traffic scenes is an oncoming object with translational motion
collinear to the camera motion. The optical flow of these objects is the same as
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for a static object closer to the camera and is therefore not distinguishable from a
geometric point of view.

In addition to the geometric considerations, deep learning-based inputs are ex-
ploited for IMO detection and segmentation. First, an instance segmentation is used
to identify the set of potentially moving objects, e.g. vehicles or pedestrians [Bai
et al., 2016, Fanani et al., 2018, Fanani et al., 2018, Bullinger et al., 2017]. Second,
Fanani et al. [2018] proposed the additional constraint that a triangulated 3D scene
point needs to be consistent with a corresponding single-view depth estimate.

Multi-body motion estimation and reconstruction: Given the IMO de-
tection and segmentation, the traditional concepts of SLAM or SfM are applied to
reconstruct each rigid body individually. The relative motion of the camera to the
IMO is interpreted as a virtual camera motion. For example, BA-based optimiza-
tion [Yuan and Medioni, 2006, Kundu et al., 2010, Bullinger et al., 2018, Chhaya
et al., 2016] or a particle filter-based approach [Kundu et al., 2011] is used for recon-
structing the IMO trajectory and position. Additionally, Yuan and Medioni [2006],
Sabzevari and Scaramuzza [2016] proposed to exploit specific object motion mod-
els, in particular, that vehicle motion is perpendicular to the normal vector of the
ground plane.

Scale estimation: Analogously to SLAM methods for the static environment,
the absolute and even more the relative scales of the reconstructions are ambiguous
in a MSfM-based approach. While the scale of the camera ego-motion might be
derived by the known camera height or an additional inertial measurement unit,
these approaches are not applicable for IMOs. To derive the absolute scale of an
IMO, previous methods integrate assumptions regarding the objects’ depth, velocity,
and size [Kundu et al., 2011] or fit object shapes in the 3D point cloud [Chhaya et al.,
2016].

However, most approaches tackle the scale ambiguity by estimating the relative
scale to the static environment. IMOs typically stand on the ground plane, which
provides the IMO position relative to the static environment. Song and Chandraker
[2015, 2014] proposed to triangulate the bottom of a 2D bounding box with the
ground plane. Yuan and Medioni [2006] proposed to scale the 3D points of the
IMO such that one point lies on and the rest above the ground plane. Ranftl et al.
[2016] proposed to scale the different reconstructions considering an ordering and
smoothness prior. The ordering prior refers to the assumption that an IMO typically
occludes the static environment, while the smoothness prior prefers that the dynamic
objects are in contact with the surrounding environment. These approaches require
to observe and accurately detect the ground contact point and assume a highly
accurate reconstruction of the ground surface.



4.1 related work 69

Other approaches consider the whole object trajectory for scale estimation. The
trajectory of the relative object motion t̃oc can be estimated up to the unknown
scale s. A one-parameter family of possible object trajectories to(s) is defined by
applying different scales s [Ozden et al., 2004]:

to(s) = s · t̃oc + tc (4.6)

The camera trajectory tc is assumed to be known. Assuming that the true scale
is s = 1, the relation of the reconstructed trajectory to the true object and camera
trajectories is defined as follows:

to(s) = s · to + (1− s) · tc (4.7)

This equation reveals an increased coupling of the camera and object motion at false
scales. Therefore, Ozden et al. [2004] proposed to optimize the scale s such that it
minimizes the linear dependence of camera and object trajectory. Furthermore, the
non-accidental criterion [Ozden et al., 2004] has been proposed. If for a certain scale
the object undergoes a special motion, there is a high probability that this is not by
sheer accident. For example, the scale s is optimized such that the IMO trajectory
corresponds to a planar motion [Ozden et al., 2004], a piecewise circular motion
[Namdev et al., 2013] or such that the IMO moves on a ground plane [Bullinger
et al., 2018]. However, a dependency between camera and object motion could result
in degenerated situations. For example, (1) if both motions are coplanar, all IMO
trajectories of the one-parameter family will be planar or (2) if the true camera and
IMO trajectories are collinear, all possible IMO trajectories will be collinear to these
trajectories as well.

3D jigsaw puzzle: Kumar et al. [2017] proposed a slightly different approach,
which they denoted as a 3D jigsaw puzzle problem. In contrast to the other methods
that utilize object-level motion segmentation, a superpixel segmentation is performed
and it is assumed that each superpixel corresponds to a rigid planar element of the
scene. The joint optimization of the 3D geometry and motion of each superpixel
plane is formulated as an energy minimization problem. The energy terms are defined
(1) to favor a smooth motion and structure of neighboring superpixels and (2) to
minimize a reprojection error based on a dense optical flow field. Since only small
superpixels are assumed to be rigid, this method is also considered as a non-rigid
SfM method. This concept is extended in [Kumar et al., 2019] in such a way that
an explicit representation of the motion parameters is not necessary and single-view
depth estimates are exploited for depth initialization. Di et al. [2019] proposed a
scene model for the optimization, which also handles the correlation between the
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spatial relation and the motion relation of the superpixel planes. The approach by
Di et al. [2019] is the currently leading method2 of MSfM-based approaches evaluated
on the KITTI dataset [Geiger et al., 2013].

SVD-MSfM follows the approaches that utilize an instance segmentation for IMO
detection and segmentation. The main motivation behind this is that this strategy
does not suffer from degenerated situations such as a collinear translation of the
camera and IMO. Furthermore, SVD-MSfM provides a novel strategy for scale-aware
motion estimation of IMOs by integrating single-view depth information.

4.1.3 Multi-Task Networks for Monocular Scene Flow Esti-

mation

While the first and second category comprises multi-view geometry-based scene re-
constructions for static and dynamic environments, the third category covers deep
learning-based approaches that provide a scene flow representation. For example, a
CNN that outputs transformation matrices in addition to the depth estimates de-
fine a scene flow. But also, providing the optical flow and depth of two subsequent
images can be considered as a scene flow representation.
In section 3.1.1.3, multi-task networks have been presented and their ability to

learn single-view depth estimation in an unsupervised manner based on the geomet-
ric constraints in a monocular image sequence has been highlighted. The training
loss in such methods is closely related to the optimization objectives in a SLAM or
MSfM-based approach. However, these networks provide actually more than single-
view depth estimates. These CNNs also provide the camera motion [Mou et al.,
2019, Mahjourian et al., 2017, Zhou et al., 2017, Godard et al., 2019, Shen et al.,
2019], the camera motion and optical flow estimates [Zhang et al., 2019, Chen et al.,
2019, Yin and Shi, 2018, Ranjan et al., 2019, Yang et al., 2018b, Zou et al., 2018,
Teng et al., 2018, Luo et al., 2019], or the motion of the camera and all objects
[Casser et al., 2019]. The object motion is separately inferred for each object by an
additional network in [Casser et al., 2019]. The inputs of the object motion network
are the images, in which everything is masked out except the corresponding object.
The object masks are assumed to be given by an instance segmentation including
consistent object identifiers over time.
Even though the mentioned CNNs use short sequences of at least two images as

inputs to exploit multiple views for optical flow and motion estimation, the depth
estimation is still based on a single image during inference for most approaches.
Casser et al. [2019], Chen et al. [2019] proposed an online refinement, which fine-

2 Referring to published works until October 02, 2020 to the best of my knowledge
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tunes the network for a few iterations on the current image sequence during test
time. This deliberately forces the network to overfit on this sequence and implicitly
exploits multi-view information for inference. Wang et al. [2019] proposed to insert
LSTMs in the encoder to exploit multi-view information. Alternatively, Wu et al.
[2019] integrated features that describe the spatial correspondence of pixels between
two images. Thus, the features cover also some information regarding the optical
flow. Even though these methods do not directly correspond to a multi-view depth
estimation such as triangulation, the networks could at least exploit some multi-
view information. A more explicit way of integrating the SfM principle is proposed
by Ummenhofer et al. [2017]. The proposed method iteratively alternates optical
flow estimation with the estimation of depth and camera motion in a CNN-based
architecture. For each iteration, the initial depth is computed based on the previous
optical flow and camera motion using triangulation. However, this method is only
applied and focused on static scenes due to the fact that the network only estimates
the camera motion.

The method proposed in [Yang and Ramanan, 2020] is not directly formulated as a
multi-task network, but still related to this category. While a first CNN estimates the
optical flow between two consecutive images, a second CNN performs a single-view
depth estimation for the first image. Based on the optical flow and image appearance
features, a third CNN is trained to estimate the motion-in-depth. The motion-in-
depth parameterization relates to the ratio between the depth of corresponding
points over two images. Using the optical flow estimates as input is motivated by
the fact that the optical expansion of an object relates to the motion-in-depth for an
orthographic projection onto a fronto-parrallel object plane. The accuracy of depth
estimates in the reference image is still limited by the single-view depth estimation.

The most representative method of this category is called Self-Mono-SF [Hur and
Roth, 2020], which is explicitly formulated and trained as a scene flow network. Self-
Mono-SF outputs a scene flow representation in form of pixel-wise depths and 3D
motion vectors using a joint decoder. The decoder is based on a classical optical flow
cost volume following [Sun et al., 2018], which captures features of a single reference
image and multi-view information by correlating image features of two subsequent
images. The network is trained on sequences of stereo image pairs to minimize a
photometric distance between a reference image and reconstructed images based on
the scene flow outputs. The training loss is additionally designed to consider occlu-
sions and prefer consistency between forward and backward scene flow estimates.
The CNN provides scale-aware scene flow estimates due to the stereo supervision.

Referring to the categorization of monocular scene reconstruction methods, SVD-
MSfM corresponds to a traditional optimization problem, which explicitly reasons
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about the multi-view geometry principles – but also integrates single-view depth
information using a joint depth cost volume.

4.2 SVD-MSfM Method

The approach presented here, SVD-MSfM, combines probabilistic single-view depth
estimates with multi-view geometry following a MSfM-based concept. The present
section describes the proposed approach and is divided into two parts. First, the
scale-aware rigid-body motion estimation is described including the detection of po-
tentially moving objects. Second, the depth estimation based on a depth probability
volume is explained.

4.2.1 Rigid-Body Motion Estimation

The present subsection describes the scale-aware estimation of the camera and object
motions. Two consecutive monocular images I0 and I1 and their pixel-wise proba-
bilistic single-view depth distributions p(ρ | I0) and p(ρ | I1) are given as inputs.
Formally, the relative transformation Tk from t = 0 to t = 1 is estimated for all
rigid-bodies ok ∈ O. Each rigid body represents either the static environment or
an independent moving object (IMO). The motion estimation can be divided into
three main tasks: (1) the detection of parts, which undergoes the same rigid body
transformation, (2) a sparse flow estimation to derive optical flow estimates, which
are considered as the measurements for the motion optimization, (3) the motion
optimization based on the sparse flow estimates and single-view depth distributions
provided by ProbDepthNet.

4.2.1.1 Object Detection and Segmentation

In the first step, the set of rigid bodies is initialized. As discussed in section 4.1,
several geometric cues based on an optical flow have been proposed. However, these
constraints are not able to detect all moving objects. Common cases in traffic scenes
are oncoming vehicles driving on the adjacent lane. The translational motion of these
objects is typically collinear to the camera motion. These objects do not violate the
epipolar constraint and appear as static objects closer to the camera. Assuming these
objects to be static, they are potentially reconstructed in front of the ego-vehicle,
even though they are driving on the adjacent lane. Therefore, SVD-MSfM identifies
potentially moving objects based on an instance segmentation. For example, all
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Mask R-CNN

Figure 4.2: The set of rigid bodies O is defined as the set of objects detected by an instance
segmentation (colored in the right image) and the background.

vehicles and pedestrians are taken as moving objects including those standing or
parking.

The Mask R-CNN approach [He et al., 2017] (implementation of [Abdulla, 2017])
is used to provide instance labels lp for each pixel p and both images I0 and I1.
The set of detected instances in the first image I0 as shown in figure 4.2 plus the
background directly define the set of rigid bodiesO = {o1,o2, ...,oN}. Each object ok
is defined by its corresponding region of pixels Rk = {p | lp = k}. The estimation of
its motion represented by a transformation matrix Tk is described in the following
paragraphs.

4.2.1.2 Sparse Flow Estimation

The linearization of the image using a direct method is only valid in a small radius,
e.g. Engel et al. [2017] mentioned a radius of 1-2 pixels. This requires a highly
accurate initial motion to perform well. While this might be a valid assumption for
the camera motion after a short period of initialization, moving objects frequently
appear and disappear. Thus, motion estimation is often confronted with the situation
that no accurate initial motion is given. Therefore, the motion estimation of SVD-
MSfM corresponds to an indirect method based on a sparse optical flow that does
not require an accurate initial motion. An analysis in [Engel et al., 2016] and the
experiment in section 4.3.2.2 confirm that these indirect methods are more robust for
initialization. The sparse flow estimation mainly follows a real-time capable approach
proposed by Geiger et al. [2011] with some extensions.

Feature candidates: The feature candidates are a subset of pixels, whose lo-
cal image structure has good characteristics to match them uniquely between both
images. Therefore, blobs and corners are detected by convolving the image with
the 5 × 5 blob and corner detector masks shown in figure 4.3. Applying non-
maximum- and non-minimum-suppression [Neubeck and Van Gool, 2006] on the
blob and corner filter responses defines the set of feature candidates for both im-
ages F0 = {f1,0, ..., fN0,0} and F1 = {f1,1..., fN1,1}. In addition to the image posi-
tion pi,t, a feature class mi,t is assigned to each feature candidate. The feature class
is one of four classes, which are defined by the detector response: A feature that was
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Figure 4.3: Feature candidates and feature vectors of libviso2 [Geiger et al., 2011]. Features
candidates are the minima and maxima responses of the blob and corner de-
tector. The feature descriptor is defined as the concatenated Sobel responses
using the pattern in the right image. The figure is taken from [Geiger et al.,
2011](©2011 IEEE)).

detected as a maximum of the blob detector responses is classified as ’blob max’, a
feature that was detected as a minimum of the blob detector responses is classified
as ’blob min’, and analogously features are classified as ’corner max’ or ’corner min’
if they were detected as the maximum or minimum of the corner detector responses.

Feature descriptor: The feature descriptor di,t of each feature candidates rep-
resents the local image structure and serves as a basis to define the distance and
similarity between different feature candidates. It is defined as the concatenated vec-
tor of horizontal and vertical Sobel responses using the pattern in figure 4.3. The
distance between two features dist(fi,0, fj,1) is defined as the sum of absolute differ-
ences of the feature descriptors, but only features inside the same class mi,0 = mj,1

are considered as potential matches:

dist(fi,0, fj,1) =





∑
k

∣∣dki,0 − dkj,1
∣∣ , if mi,0 = mj,1

∞ , else
(4.8)

The objective of the sparse flow estimation is to find a set of flow correspon-
dences F , which consist of paired image feature candidates (fi,0, fj,1) with fi,0 ∈ F0

and fj,1 ∈ F1. To find these corresponding feature candidates, an approach divided
into three stages is proposed. The general idea of the three stages is that (1) the first
stage estimates few but very robust feature matches, (2) the second stage increases
the density of feature matches based on the flow statistics in the first stage, and
(3) the third stage further increases the density of feature matches based on the
predicted feature position exploiting initial motion and single-view depth estimates.
Figure 4.4 shows an illustration for each stage, which are described in more detail
in the following paragraphs.
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Stage 1: large window size, few but robust feature candidates

Stage 2: smaller window size using initial flow statistic,
more including less-robust feature candidates

Stage 3: prediction-based matching using initial motion estimates
and single-view depth estimates, more including less-robust feature candidates

Figure 4.4: Illustration (left) and results (right) of different stages of optical flow estimation
for one image pair of the KITTI dataset [Geiger et al., 2013]. The images are
cropped for visualization purposes. The illustration is shown for a feature can-
didate of a moving object (red) and of the static environment (green). Stage 1:
Feature matching within a fixed, large window centered at the feature can-
didate position. Stage 2: Feature matching within a window defined by the
flow statistic of the first stage inside a cell (green) or object (red). Stage 3:
Prediction of feature candidate based on initial motion estimates and single-
view depth. Predicted feature position and epipolar geometry are exploited for
feature matching.

Stage 1: In the first stage, the considered feature candidates, which can likely be
matched robustly, are defined by the blob and corner detector described above using
a non-maximum- and non-minimum-suppression with a window size of 9 × 9. The
best match of a feature fi,0 is estimated by the lowest distance to a feature fj,1 within
a local window of size 200×200 centered at the feature candidate positionW(200×200)

pi,0 .

(fi,0, fj,1) =

(
fi,0, arg min

fj,1

({
dist(fi,0, fj,1) | fj,1 ∈ W(200×200)

pi,0

}))
(4.9)

Stage 2: The first stage results in relatively few matches (see figure 4.4). To
increase the density of flow vectors, the second stage increase the number of feature
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candidates by using the blob and corner detector with a non-maximum- and non-
minimum-suppression with a smaller window size of 3×3. Additionally, the statistic
of the flow matches of the first stage is exploited to decrease the window size of the
matching process to reduce the number of ambiguous matches. For this purpose, the
image is divided into bins of 50×50 pixels. The flow statistics for each bin are defined
by the minimum (∆umin,∆vmin) and maximum displacements (∆umax,∆vmax) of
the flow vectors inside the bin. Based on these statistics, the matching is performed
in a window defined by the corresponding flow statisticW(∆umax−∆umin×∆vmax−∆vmin)

(umean,vmean) .

(fi,0, fj,1) =

(
fi,0, arg min

fj,1

({
dist(fi,0, fj,1) | fj,1 ∈ W(∆umax−∆umin×∆vmax−∆vmin)

(umean,vmean)

}))

(4.10)
The window is centered at (umean, vmean) = pi,0+(∆umax+∆umin,∆vmax+∆vmin))/2.
These windows are typically much smaller than the window in stage 1. The smaller
windows reduce the computational effort and number of ambiguous matches inside
a window, which enables to match more feature candidates including the less dis-
criminative ones. In contrast to [Geiger et al., 2011], the instance segmentation is
exploited in this stage. Due to the motion of IMOs, the optical flow often differs
highly from the surrounding environment. Therefore, each instance segment is con-
sidered as an individual bin to determine an object-wise flow statistic.

Stage 3: While Geiger et al. [2011] originally used two stages of flow estimation,
a third stage is proposed here. The third stage is applied after the first scale-aware
motion estimations Tk described in the next section 4.2.1.3 and designed to exploit
the initial motion estimate in combination with single-view depth estimates. For-
mally, for each feature candidate, the corresponding rigid body ok is defined by the
image position pi,0 and a single-view depth distribution ppi,0(ρ | I0) is provided
by ProbDepthNet. The total mean of the depth distribution is considered as the
maximum likelihood depth estimate ρi = Z−1. Based on the transformation of the
corresponding rigid body Tk and the depth value ρi, the expected image position p̂i,1

in image I1 is defined as follows:

p̂i,1 = K
(
Rkρ

−1
i K−1pi,0 + tk

)
(4.11)

The matrices Rk and tk refer to the decomposition of Tk into a rotation matrix and
translation vector. The best match is searched in a local window W(50×50)

p̂i,1
centered

at the expected position p̂i,1 in the next image:

(fi,0, fj,1) =

(
fi,0, arg min

fj,1

({
dist′(fi,0, fj,1) | fj,1 ∈ W(50×50)

p̂i,1

}))
(4.12)
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The distance is additionally rated by the distance to the epipolar line (2.1) and
the distance to the expected position:

dist′(fi,0, fj,1) = dist(fi,0, fj,1) + λ1 ||pj,1 − p̂i,1||2 + λ2e
Tpj,1 (4.13)

The vector e defines the epipolar line of the feature candidate fi,0. The additional
terms are weighted by λ1 or λ2.
As shown in figure 4.4 this results in a denser flow field and the experiment in

section 4.3 confirms the claimed extension of the flow estimation. The higher density
is especially important to have a sufficient number of flow vectors on each rigid body,
in the near field, and on areas with high confident single-view depth estimates.

In all stages, matches are only accepted if they pass the forward-backward consis-
tency check defined as follows:

(
fi,0, arg min

fj,1

(dist(fi,0, fj,1))

)
!

=

(
arg min

fi,0

(dist(fi,0, fj,1)) , fj,1

)
(4.14)

Furthermore, matches are considered as outliers and removed if the match is
not supported by at least two neighboring matches. The neighboring matches are
defined by a 2D Delaunay triangulation [Delaunay et al., 1934]. A neighboring match
is considered as a supporter if its flow difference is within some threshold τ1.

4.2.1.3 Motion Estimation

Based on the set of matched features F , the transformation of each rigid body (IMOs
and camera motion) is estimated individually. This estimation is performed subse-
quently to stage 2 of the sparse flow estimation to derive initial transformations
and subsequently to stage 3 to estimate the final transformations. The individual
motion estimation of each rigid body is formulated as an energy minimization prob-
lem based on a factor graph of map points and poses. The energy term comprises
a multi-view geometry term in the form of a reprojection error and prefers 3D map
points consistent with the probabilistic single-view depth distribution provided by
ProbDepthNet.
Even though it would be straightforward to utilize the energy term for bundle

adjustment (BA), the optimization is only performed on two consecutive frames.
Because objects frequently appear and disappear, it is important to provide high
accuracy even for short image sequences.
One important aspect of integrating single-view depth information is to provide

metric scale information. In contrast to [Barnes et al., 2018, Yin et al., 2017, Yang
et al., 2018a], the approach presented here applies this idea additionally for scale-
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Figure 4.5: Joint optimization of transformation Tk and set of 3D points Xk (shown for
one example of a 3D point Xi). The optimization minimizes the distance be-
tween the flow-based image position pi,t (red cross) and projected image po-
sition π (Xi,t) (white dot). Furthermore, the distance of the 3D point should
be consistent to the single-view depth distributions ppi,t(ρ | It) (green/blue
distributions).

aware motion estimation of moving objects. Compared to the approaches described
in section 4.1.2 that optimize the scale based on the non-accidental criterion or by
projecting the IMO on the ground plane, integrating single-view depth provides the
following advantages: (1) a long history of the object trajectory is not required,
(2) there is no limitation to certain motions and it is not prone to degenerate cases,
and (3) the ground contact point of the IMO does not necessarily have to be ob-
served.

The proposed motion optimization is described in more detail in the following
paragraphs. The set of rigid bodies O is defined by the instance segmentation in the
first image. In the first step, each rigid body ok is assigned to an instance segment of
the second image using a simple voting scheme. Each flow correspondence (fi,0, fj,1)

that lies inside the object region pi,0 ∈ Rk votes for the corresponding instance
segment lpj,1 . The instance segment in the second image with the most votes is
considered to be the same object. The subset of flow vectors Fk ⊂ F that are inside
the respective instance masks in both images are the basis for the motion estimation.

Energy minimization problem: The following steps are performed separately
for each rigid body ok. For each flow correspondence in Fk, the variables Xi ∈ IR3

are introduced to represent the 3D position of the scene point. The relative mo-
tion of the camera to the object is considered as a virtual camera motion without
loss of generality. The basic geometric principles to jointly optimize the set of 3D
points Xk and the transformation of the rigid body Tk are shown in figure 4.5.
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Formally, the 6D motion Tk ∈ SE(3) of the rigid body is optimized jointly with
the set of 3D points Xi ∈ Xk by minimizing an energy term E. Without loss of
generality, the poses are defined as Tk,0 = I4×4 and Tk,1 = Tk. The energy term
consist of two parts, a reprojection error Φproj

t (pi,t,Xi,Tk,t) weighted by λ3 and a
term that rates the likelihood of a 3D scene points based on the single-view depth
distributions Φsvd

t (pi,t,Xi,Tk,t).

E =
∑

Xi∈Xk

∑

t∈{0,1}
λ3 · Φproj

t (pi,t,Xi,Tk,t) + Φsvd
t (pi,t,Xi,Tk,t). (4.15)

Both terms of the energy term are explained in more detail in the following para-
graphs.

First, the projected positions of each 3D point (π(Xi,0) and π(Xi,1)) should be
close to the image positions of the corresponding features (pi,0 and pi,1). While the
position of a 3D point in the first camera Xi,0 = Xi is identical to the introduced
variable Xi, the transformation Tk needs to be considered to derive the position
in the second image Xi,1 = RkXi + tk. The reprojection error Φproj

t (pi,t,Xi,Tk) is
defined as follows:

Φproj
t (pi,t,Xi,Tk) = `H

(
||pi,t − π (Xi,t)||2Σ

)
(4.16)

The function `H is the robust Huber norm [Huber, 1992] and ||.||Σ the Mahalanobis
distance. A constant diagonal matrix is assumed to represent the covariance of all
flow vectors Σ = diag(σ2

flow). However, it could be also replaced with an estimated
covariance matrix.

Second, the single-view depth distributions define the probabilities ppi,0(ρi,0 | I0)

and ppi,1(ρi,1 | I1) of the 3D point Xi along the rays (see figure 4.5), which should
be maximized as well. The depths of the 3D point are defined as ρi,0 = Z−1

i,0

and ρi,1 = Z−1
i,1 . Formally, the data term Φsvd

t (pi,Xi,Tk) rates the consistency of
the 3D points Xi in terms of single-view depth probabilities by

Φsvd
t (pi,t,Xi,Tj) = − log

(
ppi,t(Z

−1
i,t | It)

)
. (4.17)

This is essentially the part that provides the metric scale information and results in
scale-aware estimates of the transformation Tk and 3D points Xk.

Iterative optimization: The energy term of equation (4.15) is optimized iter-
atively using the Levenberg-Marquardt method (section 2.2.1). The optimization is
performed for the 3D scene points X and for the transformation T of each rigid
body individually. Referring to section 2.2.1, the Levenberg-Marquardt method
for weighted least squares minimization requires to express the energy term as a
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weighted sum of residuals E =
∑

rTWr. Both parts of the energy term Φproj
t

and Φsvd can be brought into the desired form by rearranging equations (4.16)
and (4.17). First, the residual rproj and weight matrix Wproj for the reprojection
error Φproj

t are defined as follows:

λ3Φproj
t =λ3 · `H

(
||pi,t − π (Xi,t)||2Σ

)

=`H


(pi,t − π (Xi,t))︸ ︷︷ ︸

rproj

T
√
λ3Σ−1

︸ ︷︷ ︸
Wproj

(pi,t − π (Xi,t))


 (4.18)

Second, assuming single-view depth distributions given as Gaussian distribu-
tions N (µi, σi), the required form and definition of residual rsvd and weight
matrix Wsvd are given by the following equation:

Φsvd
t (pi,t,Xi,Tj) =− log

(
ppi,t(Z

−1
i,t | It)

)

=
1

2σ2
i︸︷︷︸

Wsvd

(Z−1
i,t − µi︸ ︷︷ ︸
rsvd

)2 +����log σ2
i

(4.19)

The linearization of the Levenberg-Marquardt needs to derive the Jacobi matrices
of the variables w.r.t. the residuals to define the update rule (equation (2.16)). To de-
fine an update step for the transformations Tt, a minimal representation by its corre-
sponding Lie-algebra elements ξ ∈ se(3) represented as a 6D vector ξ = [vw]T ∈ IR6

is used. Before each iteration, the 3D position of all points is transformed to the cur-
rent solution of the pose Tt. Thereby, the Jacobi matrix could be evaluated at ξ = 0

and X = Xt to express a differential motion at the current pose, which defines
the update step as Tt ← expξTt. The exponential map of Lie algebra elements to
a transformation matrix is defined by expξ (e.g. described in [Murray et al., 1994,
p. 42]).

The derivations of the Jacobi matrices are provided in table 4.2. The implemen-
tation of the robust Huber-Kernel and Levenberg-Marquardt solver in [Kümmerle
et al., 2011] is applied for each iteration. After each iteration, the variables of the
transformation matrices and 3D positions are updated and the results after 50 iter-
ations are considered as the final estimates.

4.2.2 Dense Depth Estimation

While the first step assigns depth values to a small subset of pixels, the second step
is designed to provide a dense depth map for all pixels. Furthermore, it directly
combines a photometric distance with the single-view depth distributions. The rigid
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Table 4.2: Derivation of the Jacobi matrices to apply the Levenberg-Marquardt method
to optimize the energy term w.r.t the 3D scene points X and the motion vari-
ables expressed as Lie-algebra elements ξ. Xt refers to the 3D position of X
transformed into camera coordinates at time t.

body transformations are given by the method described above (section 4.2.1) and
fixed for the dense depth estimation.

A depth cost volume is created, which rates the probability of a set of discretized
depth values D = {d0, d1, ..., dN} for each pixel pi,0 in image I0. The depth values
are represented in the inverse space as virtual disparities assuming a virtual baseline
even though a monocular setup is used. The representation as virtual disparities
is not mandatory but scales the depth to a more intuitively interpretable range of
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values and allows a discretization as integer values, which could be beneficial for
implementation reasons.

The cost entry E(pi,0, dj,Tk) for a given disparity value dj and pixel pi,0 is defined
to prefer a multi-view photometric consistency Φphoto(p′, dj,Tk) and high probabil-
ities in terms of the single-view depth distributions Φsvd(p′, dj) provided by Prob-
DepthNet:

E(pi,0, dj,Tk) =
∑

p′∈W3×3
pi,0

λ4 · Φphoto(p′, dj,Tk) + λ5 · Φsvd(p′, dj) (4.20)

The transformation Tk of the corresponding rigid body (pi,0 ∈ Rk) is given by the
motion estimation. The cost values are aggregated in a small windowW3×3

pi,0
and each

part is weighted by λ4 or λ5.

The multi-view geometry part rates the disparity values based on the photometric
consistency along the epipolar line in the second image. For each cost entry, the
expected image position p̂1 in the next image is defined by the corresponding image
position p, disparity dj, and transformation Tk (equation (4.11)). Consequently, the
photometric similarity Φphoto(p, dj,Tk) is defined based on the corresponding image
positions p and p̂1:

Φphoto(p, dj,Tk) = λ6 · |G0(p, e(p))− G1(p̂1, e(p))|
+λ7 ·H(B0(p),B1(p̂1))

(4.21)

Following previous approaches [Yamaguchi et al., 2013, Bai et al., 2016], the first
part rates the difference of the image gradients (G0,G1) in epipolar direction e(p).
The second part rates the similarity of the image patches as the Hamming distance
of the census transforms H(B0,B1). Both parts are weighted by λ6 or λ7.

While the first data term Φphoto(p, dj,Tk) is defined to prefer a multi-view pho-
tometric consistency, the second data term Φsvd(p, dj) integrates the probabilistic
single-view depth distributions provided by ProbDepthNet. Therefore, the single-
view depth distributions rate the likelihood of each disparity value dj and pixel p
analogously to equation (4.17).

Figure 4.6 shows the depth cost values at three image positions to illustrate how
both kinds of information interact. The first image position (see figure 4.6 (a)) lies on
the road, resulting in combined cost values that are dominated by single-view depth
information. While the photometric distance is less distinctive in this case, Prob-
DepthNet provides a depth distribution with low variance. A similar characteristic
would also be given in low-textured areas or low-parallax situations (e.g. standstill
scenarios or image positions close to the focus of expansion). For the second image
position (see figure 4.6 (b)), ProbDepthNet provides a medium uncertainty and a
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Figure 4.6: Illustration of depth cost volume at 3 image positions. The corresponding image
positions of p1,p2,p3 are shown in the top image (red dots). The diagrams
shows both parts (multi-view photometric distance Φphoto (orange) and single-
view depth information Φsvd (green) provided by ProbDepthNet) as well as the
combined cost value (blue).

depth estimate that is consistent with the minimum of the photometric distance.
Combining both kinds of information results in a sharp global minimum at the cor-
rect disparity value. The cost values at the third image position (see figure 4.6 (c)),
which corresponds to a traffic sign, are more dominated by the photometric distance
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due to the high uncertainty of the single-view depth information. The combined
global minimum differs from the most likely single-view depth estimate. However,
single-view depth information is still beneficial to prefer the correct local minimum
of the photometric term. Note that this highly benefits from integrating single-view
depth distributions instead of single depth estimate that merely represent the most
likely depth value. The photometric term is typically much sharper, but also more
ambiguous than the single-view depth information. Consequently, the global mini-
mum often corresponds to a local minimum of the photometric term in a plausible
range of disparity values defined by the single-view depth part. It should be briefly
mentioned that the truncation of the single-view depth term is just due to the im-
plementation to avoid overflows.

To extract a dense depth image, semi-global-matching (SGM) [Hirschmuller, 2005]
and slanted-plane smoothing (SPS) [Yamaguchi et al., 2014] are applied to the depth
cost volume. SGM performs smoothing on the depth cost volume and the dense
disparities are extracted as the pixel-wise minimum of the smoothed depth cost
volume. Based on these dense disparities, SPS performs a superpixel segmentation,
where each superpixel corresponds to a planar surface element. These approaches
are applied in their standard proposed form – thus, the reader is referred to the cor-
responding papers [Hirschmuller, 2005, Yamaguchi et al., 2014] for further details.

4.3 Experimental Evaluation of SVD-MSfM Method

SVD-MSfM estimates the scene flow from monocular images focusing on dynamic
traffic scenes, which means providing the 3D position and 3D motion of each pixel.
The pixel-wise representation of 3D position and 3D motion is defined by the pixel-
wise depth estimates and the 6D motion of the corresponding rigid bodies. After the
experimental setup is described in section 4.3.1.1, sections 4.3.1.2 and 4.3.1.3 pro-
vide qualitative results and quantitative evaluation with respect to several monocular
baseline methods. The baselines are represented by SotA methods of the different
approaches explained in section 4.1. To the best of my knowledge, it is also the first
time that the different kinds of approaches are compared in terms of a monocular
scene flow metric. Components and design choices of SVD-MSfM are analyzed in
section 4.3.2. The first two ablation studies address the claimed combination of multi-
view geometry with single-view depth information. The experiments show that both
kinds of information provide a significant improvement and confirm the importance
of integrating single-view depth estimates in a probabilistic and well-calibrated form.
Additionally, also the proposed extension of the libviso2-based [Geiger et al., 2011]
sparse flow estimation presented in section 4.2.1.2 is confirmed to provide an im-
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provement in terms of the scene flow estimation. Finally, the motion estimation is
evaluated by itself.

4.3.1 Evaluation of Scene Flow Estimation

The present subsection provides a qualitative and quantitative evaluation of the
proposed monocular scene flow estimation starting with a description of the experi-
mental setup and the monocular baseline methods.

4.3.1.1 Experimental Method and Baselines

Dense scene flow can be encoded by the 3D position of each pixel at t = 0 plus its
3D translational motions from t = 0 to t = 1. The evaluation follows the equivalent
representation of two dense depth images for t = 0 and t = 1 and an optical flow field
[Menze and Geiger, 2015]. The depth and optical flow images are aligned with the
image coordinates of the reference image at t = 0. For calibrated cameras, the 3D
position of one pixel is defined by a depth value in addition to its image coordinates.
Consequently, the depth image at t = 0 represents the 3D positions at t = 0. The
optical flow, which defines the corresponding image coordinates at t = 1, plus the
depth values for t = 1 represent the 3D position at t = 1.
The quantitative evaluation is based on the KITTI scene flow dataset [Menze and

Geiger, 2015], which reports the frequencies of errors for the depth at time t = 0

(D1), depth at t = 1 (D2), and the optical flow (Fl). All estimates are given in the
image coordinates of the reference image at t = 0. An estimate is considered as an
incorrect estimate if the error in terms of stereo disparity or optical flow endpoint
error exceeds a threshold of 3 pixels and 5% relative to the disparity and optical flow
vector length. Furthermore, an estimate is only defined as a valid scene flow estimate
(SF) if it fulfills all the requirements on the D1, D2, and Fl metrics (disparities and
optical flow endpoint error lower than 3 pixel and 5%). All metrics are evaluated
separately for moving objects (fg), the static scene (bg), and both combined (all).
Four categories of monocular methods are evaluated.
In the first category are the multi-task networks that were presented in sec-

tion 4.1.3. The evaluation is based on the published code, models, or results of
GeoNet [Yin and Shi, 2018], DF-Net [Zou et al., 2018], Struct2Depth [Casser et al.,
2019], and Self-Mono-SF [Hur and Roth, 2020] that are found in the internet or
stated in their papers. For GeoNet and DF-Net, the estimated optical flow is com-
bined with the depth estimates for both images to define a scene flow following
[Schuster et al., 2018]. The optical flow is also used to transform the depth esti-
mates at t = 1 to the image coordinates at t = 0. However, this transformation can
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not handle occlusions and pixels that leave the field of view. In contrast to GeoNet
and DF-Net, Struct2Depth provides directly 6D transformation matrices for both
the static environment and moving objects. Therefore, the depth at t = 1 can be
derived by applying the respective transformations to the depth estimates at t = 0.
Struct2Depth assumes an instance segmentation with aligned object identifiers to be
given. As this is not provided by the published code, the same instance segmentation
as for SVD-MSfM is used and the proposed sparse flow voting scheme is applied to
align the object identifiers. These methods are trained in an unsupervised manner
and suffer from a global scale ambiguity. Therefore, the estimates are scaled by a
factor s = median (di/di,GT ) to align with the ground truth. Additionally, the results
of EPC++ are stated in the corresponding paper [Yang et al., 2018b] for the D1,
D2, and Fl metric. This method also integrates stereo supervision during training
and provides metric scale-aware estimates. However, the D2 metric is excluded as
it seems to be inconsistent. To give a short explanation, the ’D2-all’ metric is a
weighted mean of the ’D2-fg’ and ’D2-bg’ metrics weighted by their respective fre-
quency. However, the relation is not consistent for the stated D2 results of EPC++.
The scene flow outputs of the Self-Mono-SF method are publicly available and taken
for evaluation. Self-Mono-SF is also considered as the most representative method of
this group for qualitative evaluation as it explicitly addresses a scene flow estimation
problem.

Instead of a multi-task network that provides both optical flow and depth es-
timates (e.g. GeoNet or DF-Net), individual methods could be used that address
the respective tasks separately. Therefore, as a second category, single-view depth
(’LRC [Godard et al., 2017]’ or ’DORN [Fu et al., 2018]’) and optical flow estimation
(’MirrorFlow [Hur and Roth, 2017]’ or ’HD3-F [Yin et al., 2019]’) are combined as
individual tasks. The individual depth and optical flow estimates are again combined
to a scene flow following [Schuster et al., 2018].

The third group comprises the MSfM-based methods described in section 4.1.2.
First, DMDE [Ranftl et al., 2016] corresponds to a method that follows an optical
flow-based motion segmentation with subsequent reconstruction of each rigid body.
The scale ambiguity is solved by scene model assumptions, which is basically the
assumption that moving objects are in contact with the ground plane. Second, the
results of S.Soup [Kumar et al., 2017] and S.Rel. [Di et al., 2019] are provided,
which corresponds to a MSfM-approach formulated as a ’3D jigsaw puzzle’. These
methods were evaluated on their mean absolute relative error (MRE) in terms of
depth estimates capped at 50 meters. The results are taken from their respective
papers.

The fourth category consists of the methods that combine single-view depth esti-
mates with multi-view geometry. MFA [Kumar et al., 2019] is added to this group



4.3 experimental evaluation of svd-msfm method 87

as it uses single-view depth estimates for initializing an approach similar to S.Soup.
The results of MFA are also provided in terms of the MRE metric. However, this
group is mainly represented by the proposed SVD-MSfM method, which explicitly
combines both kinds of information.

4.3.1.2 Qualitative Results of Scene Flow Estimation

In the present subsection, qualitative results of monocular scene flow estimation
methods are provided for the KITTI scene flow training set [Menze and Geiger,
2015]. Figure 4.11 shows qualitative results and errors in terms of the disparity
at t = 0 (D1), the disparity at t = 1 (D2), and the optical flow (Fl). The scene
flow error (SF error) is defined as the maximum of the disparity and optical flow
errors. The visualizations are generated by using the KITTI scene flow evaluation
tools provided by Menze and Geiger [2015]. All results are provided at their image
coordinates in the first frame at t = 0. The error color-coding follows a logarithmic
scale, where errors above 3 pixels are colored in red shades and errors below 3 pixels
are colored in blue shades.

In addition to SVD-MSfM, the results are shown for ’Self-Mono-SF [Hur and Roth,
2020]’, which represents the first group, and ’MirrorFlow [Hur and Roth, 2017] +
LRC [Godard et al., 2017]’, which represents the second group of baseline methods.

The examples show many vehicles covering several motions: (1) oncoming vehicles
(see figure 4.11 (b,c)), (2) preceding vehicles (see figure 4.11 (a,d)), (3) crossing
vehicles (see figure 4.11 (c,e,f)), and (4) standing vehicles (see figure 4.11 (b,f)).
SVD-MSfM is able to cover all these motions and to provide suitable reconstructions.

Compared to the baseline methods, SVD-MSfM shows especially an improvement
in terms of depth estimation. The examples also show that SVD-MSfM is able to
reconstruct thin objects in many cases (e.g. pole and sign in figure 4.11 (c,d)). Even
low-textured objects, which are challenging for photometric matching and optical
flow estimation, are reconstructed comparatively well (see the white wall in fig-
ure 4.11 (e)). SVD-MSfM generalizes to standstill scenarios, whereas the depth esti-
mation degenerates to a single-view depth estimation (see figure 4.11 (f)).

Even though the estimation of Self-Mono-SF is based on an optical flow cost
volume, the depth results mainly follow the characteristics of a single-view depth
estimation such as higher errors for poles and vegetation (sections 3.2 and 3.4). In
contrast to that, SVD-MSfM is also able to handle many of these parts. This implies
that the explicit combination of photometric distance and probabilistic single-view
depth in a depth cost volume is better suited to integrate and exploit multi-view
geometric information.
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Figure 4.11: Qualitative results of SVD-MSfM in comparison to monocular scene flow base-
line methods (’Self-Mono-SF’ and ’MirrorFlow + LRC’) on the KITTI scene
flow training set [Menze and Geiger, 2015]. The color coding represent the es-
timated depth (from close (warm) to far (cool)), the optical flow (Middlebury
color coding [Baker et al., 2011]) or the disparity/ optical flow endpoint error
(color coding shown in the legend).
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The results also visualize some challenges and limitations. The accuracy mainly
decreases and is more prone to errors, where the multi-view photometric consistency
does not provide powerful information. First, errors are visible in figure 4.11 (b)
for parts that leave the field of view in the subsequent image. Second, the SGM-
based smoothing gets more dominant in low-parallax situations (e.g. objects at far
distances and situations with low translational motion) and tends to smooth out
small or thin objects (see figure 4.11 (c,f)).

4.3.1.3 Quantitative Evaluation of Scene Flow Estimation

The quantitative evaluation is based on the KITTI scene flow dataset [Menze and
Geiger, 2015], which reports the frequencies of errors for the depth at time t = 0

(D1) and t = 1 (D2) and the optical flow (Fl) as described in section 4.3.1.1.
Additionally, the mean relative error of the depth estimation capped at 50 meters

is reported to be comparable to some baselines. The results are shown in table 4.3.
Note that the models of ’HD3-F [Yin et al., 2019]’ and ’DORN [Fu et al., 2018]’
used parts of the dataset for training. Therefore, these methods are disregarded for
ranking.
Even though the unsupervised multi-task networks (GeoNet [Yin and Shi, 2018],

DF-Net [Zou et al., 2018], and Struct2Depth [Casser et al., 2019]) provide reasonable
results, integrating stereo or ground truth supervision still improves the accuracy in
terms of depth estimation (EPC++ [Luo et al., 2019], Self-Mono-SF [Hur and Roth,
2020], LRC [Godard et al., 2017], and DORN [Fu et al., 2018]). Furthermore, the
multi-task networks are not able to outperform depth and optical flow estimation
addressed as individual tasks, neither on their respective tasks nor on the combined
scene flow metric. The individual single-view depth estimation, LRC, also shows
higher accuracy on the depth estimation compared to the MSfM-based methods
(DMDE [Ranftl et al., 2016], S.Soup [Kumar et al., 2017], and S.Rel. [Di et al., 2019])
in terms of the MRE metric. As a short side note, the relatively poor accuracy of
the DORN method for moving objects is due to the used ground truth of the KITTI
depth prediction benchmark [Uhrig et al., 2017].
The proposed approach, SVD-MSfM, shows the best rating on most of the metrics.

The evaluation reveals the following characteristics: While the depth estimation of
the static environment (’D1-bg’) significantly outperforms previous methods, the
depth estimation for moving objects (’D1-fg’) does not. Moving objects are compa-
rable small to the whole static environment and the depth estimates highly depend
on the single-view depth estimates. To illustrate this fact, note that for a single
point the depth estimates at both times and the optical flow is a minimal scene flow
representation, which disentangles both subtasks. The coupling is based on the fact
that many pixels undergo the same projected rigid body motion. Even though a
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
GeoNet∗

[Yin and Shi, 2018]
19.41 34.59 62.72 38.90 47.30 65.40 50.07 32.43 67.69 37.83 58.77 90.92 63.69

DF-Net∗
[Zou et al., 2018]

18.90 33.38 59.20 37.34 48.41 57.59 49.81 25.66 37.45 27.47 56.40 77.67 59.66

Struct2Depth∗
[Casser et al., 2019]

14.92 27.29 56.58 31.77 33.25 66.12 38.29 37.86 71.96 43.08 49.98 91.39 56.32

EPC++
[Luo et al., 2019]

- 22.76 26.63 23.84 - - - 17.58 26.89 19.64 - - -

Self-Mono-SF
[Hur and Roth, 2020]

9.98 28.75 45.07 31.25 33.00 45.15 34.86 23.06 25.92 23.49 44.27 62.40 47.05

MirrorFlow
[Hur and Roth, 2017]

+ LRC
[Godard et al., 2017]

9.68 25.33 19.82 24.48 35.82 26.15 34.34 9.39 14.22 10.13 40.55 35.17 39.72

HD3-F†
[Yin et al., 2019]

+ DORN†
[Fu et al., 2018]

11.18 17.02 37.54 20.16 30.08 40.47 31.67 4.01 6.76 4.43 32.57 46.89 34.76

DMDE
[Ranftl et al., 2016]

14.6 - - - - - - - - - - - -

S.Soup
[Kumar et al., 2017]

12.68 - - - - - - - - - - - -

S.Rel.
[Di et al., 2019]

10.23 - - - - - - - - - - - -

MFA
[Kumar et al., 2019]

11.82 - - - - - - - - - - - -

SVD-MSfM 8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

MRE: mean relative depth error in %; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow
D1, D2, Fl, SF: percentage[%] of estimates that exceed an error threshold (> 3px and > 5% of length)
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg
†: parts of dataset used for training (disregarded for ranking); ∗: scaled to align the ground truth

Table 4.3: Quantitative evaluation of SVD-MSfM with respect to several monocular meth-
ods on the KITTI scene flow training set [Menze and Geiger, 2015]. The methods
are divided into four groups: First, multi-task CNNs; second, combining optical
flow and single-view depth estimation as individual tasks; third, MSfM-based
approaches; fourth, combining single-view depth information with multi-view ge-
ometry. The separation of the methods belonging to different groups is indicated
by two horizontal lines.

moving object is not a single point, it shows the effect that for smaller objects the
subtasks are more strongly decoupled with the consequence that the reconstructed
depth highly follows the single-view depth estimates. However, SVD-MSfM shows
higher accuracy for moving objects on the scene flow metric, which motivates to use
the proposed approach also for moving objects.

While the accuracy of the depth estimates predicted to the image at t = 1 (’D2’)
significantly decreases for the baseline methods, it only decreases slightly for SVD-
MSfM. This is most likely due to the explicit estimation of motions, which for exam-
ple could also handle occlusion problems. The optical flow estimation cannot com-
pete with individual SotA optical flow methods. Overall, on the targeted combined
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
SVD-MSfM

(w/o single-view) 73.90 38.98 39.88 39.12 41.65 42.05 41.71 19.09 16.99 18.77 42.98 47.93 43.74

SVD-MSfM
(w/o multi-view) 10.19 27.73 23.04 27.01 31.17 26.64 30.48 26.03 23.24 25.60 37.11 38.68 37.35

SVD-MSfM 8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 4.4: Ablation study on combining multi-view geometry and single-view depth infor-
mation for SVD-MSfM. The approach is also performed without integrating
single-view depth information (’SVD-MSfM (w/o single-view)’) or multi-view
photometric consistency (’SVD-MSfM (w/o multi-view)’) for scene flow estima-
tion. The results show that both parts contribute to the final performance.

scene flow metric, SVD-MSfM outperforms previous methods by a large margin and
reduces the number of errors by around 8 percentage points.

4.3.2 Evaluation of SVD-MSfM Components

The previous section 4.3.1 provides an evaluation of monocular scene flow estimation
methods and shows that SVD-MSfM outperforms previous methods in terms of
scene flow estimation. The present subsection presents an analysis of SVD-MSfM
components and design choices. The first ablation experiment gives evidence for
the claimed combination of multi-view geometry and single-view depth information,
supports the proposed integration of single-view depth estimation in a probabilistic
and well-calibrated form, and shows that the proposed extension of the sparse flow
improves scene flow accuracy. The second ablation study additionally evaluates the
motion estimation by itself in terms of camera motion estimation and confirms that
the proposed approach provides high robustness on short image sequences.

4.3.2.1 Ablation Studies on Scene Flow Estimation

Combining multi-view geometry and single-view depth information: The
first ablation study is performed to analyze the proposed combination of multi-view
photometric distance and probabilistic single-view depth estimation to derive the
depth cost volume. Table 4.4 provides the results of the proposed method with a
depth cost volume merely based on the multi-view photometric term (’SVD-MSfM
(w/o single-view)’) or based on the single-view depth distributions (’SVD-MSfM
(w/o multi-view)’). The motion estimation is still based on both. The results show
that both parts contribute to the final performance. The only exceptions are the
’D1-fg’ and ’D2-fg’ metrics, where the accuracy with and without the multi-view
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
SVD-MSfM

(LRC) 9.44 26.93 24.35 26.53 31.88 28.37 31.34 18.20 19.07 18.33 37.65 37.44 37.62

SVD-MSfM
(w/o prob.depth) 9.68 29.99 24.92 29.22 33.89 28.92 33.13 18.34 18.59 18.38 39.99 38.05 39.67

SVD-MSfM
(w/o recalib.) 9.04 23.07 22.91 23.05 26.21 27.22 26.37 21.80 18.56 21.30 32.16 36.77 32.86

SVD-MSfM 8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 4.5: Ablation study on ProbDepthNet for SVD-MSfM. For integrating single-view
depth information, ProbDepthNet is more suitable than LRC for single-view
depth estimation (improvement over ’(LRC [Godard et al., 2017])’); especially
due to the importance of providing single-view depth prediction in a probabilistic
(improvement over ’(w/o prob. depth)’ ) and well-calibrated form (improvement
over ’(w/o recalib.)’).

photometric distance is nearly the same. This confirms that the depth estimation
of moving objects essentially follows the single-view depth estimates as claimed in
section 4.3.1.2. However, the multi-view part is still useful to improve the accuracy
of the optical flow (’Fl-fg’) and scene flow (’SF-fg’) estimates of moving objects. The
high MRE error without single-view depth information is due to high errors for the
standstill scenarios. In general, the multi-view geometric part provides a substantial
improvement in terms of the optical flow metric and the single-view depth part
improves significantly the depth estimates. However, both kinds of information are
able to improve all, the depth, optical flow, and scene flow metrics. This highly
motivates the combination for a monocular scene flow estimation.

Integrating probabilistic single-view depth distributions: ProbDepthNet,
presented in chapter 3, is designed to provide single-view depth information in a
probabilistic and well-calibrated form. The second ablation study is designed to give
evidence for the ProbDepthNet design to integrate single-view depth information.
Therefore, the results of four SVD-MSfM variants based on different single-view
depth estimations are provided in table 4.5. The two SVD-MSfM variants ’SVD-
MSfM (LRC)’ and ’SVD-MSfM (w/o prob. depth)’ use CNNs that provide only the
expected depth values instead of depth distributions. While ’SVD-MSfM (LRC)’ is
based on the LRC method [Godard et al., 2017] for single-view depth estimation,
’SVD-MSfM (w/o prob. depth)’ is based on the maximum likelihood estimates of
ProbDepthNet derived by the first moment of the distributions. The depth values
are integrated by assuming the same Gaussian distribution (determined on a test set)
for all pixels. SVD-MSfM based on the probabilistic ProbDepthNet (’SVD-MSfM’)
integrating depth distributions outperforms both. This supports the claimed Prob-
DepthNet design to provide single-view depth estimations in a probabilistic form.
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
SVD-MSfM

(libviso2-Flow) 8.75 19.00 23.82 19.74 21.76 27.70 22.67 18.31 17.35 18.16 28.95 36.02 30.03

SVD-MSfM 8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 4.6: Ablation study on claimed extensions of libviso2-Flow [Geiger et al., 2011]. The
approach based on the extended flow outperforms the approach based on the
original libviso2-flow (’SVD-MSfM (libviso2-Flow)’).

Furthermore, the improvements compared to a variant based on ProbDepthNet ex-
cluding CalibNet ’SVD-MSfM (w/o recalib.)’ supports that the recalibration tech-
nique is an essential component.

Extension of sparse flow estimation: To confirm the claimed extension of
the libviso2-based [Geiger et al., 2011] sparse flow, a third ablation study is per-
formed. Therefore, SVD-MSfM is performed without the extensions using the orig-
inal libviso2-based flow estimation (’SVD-MSfM (libviso2-Flow)’). The results in
table 4.6 support that the proposed extensions improve the accuracy of scene flow
estimation. While the first extension of exploiting object-wise flow statistics should
basically affect the accuracy of foreground objects, the introduced third stage could
improve the accuracy of both, static environment and moving objects. This reveals
that the large improvement for the static environment is mainly due to the intro-
duced third stage, which additionally exploits single-view depth as prior information
for matching the feature candidates.

4.3.2.2 Evaluation of Motion Estimation

The previous section 4.3.2 provides several experiments regarding the components
and design choices of SVD-MSfM in terms of scene flow estimation. In the present
subsection, the motion estimation is evaluated by itself in terms of camera motion
estimation. The experiments are based on the KITTI odometry benchmark [Geiger
et al., 2012]. This dataset provides 22 sequences with ground truth camera poses
acquired by a GPS and inertial measurement unit, which is publicly available for the
first 11 sequences. Therefore, a ProbDepthNet model is trained on the sequences 0
to 8 and the evaluation is based on the sequences 9 and 10.

Due to the fact that moving objects frequently appear and disappear, the proposed
motion optimization was designed to provide accurate and robust motion estimates
given only two images. To derive the full camera pose trajectory for evaluation, these
independent two-frame pose estimates are concatenated.
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Figure 4.12: Qualitative results of SVD-MSfM’s motion estimation in terms of camera pose
estimation for the sequences 9 and 10 of the KITTI odometry training set
[Geiger et al., 2012].

Even though the pose estimations are performed independently for every two
consecutive frames, the results in figure 4.12 still show reasonably high accuracy of
the whole camera trajectory.
The quantitative evaluation with respect to SotA monocular methods is shown

in table 4.7. The evaluation follows the metric of the KITTI odometry benchmark
[Geiger et al., 2012]. For the baseline methods, the results are taken from the corre-
sponding papers, whereby D3VO [Yang et al., 2020] only evaluated the translational
error. The pose estimation error is evaluated after driven distances of 100,200,...,800
meters and the results are averaged. The translational error corresponds to the

Method Seq. 09 Seq. 10
Trans.[%] Rot.[deg/100m] Trans.[%] Rot.[deg/100m]

VISO2-M [Geiger et al., 2011] 4.04 1.43 25.20 3.88
MLM-SFM [Frost et al., 2016] 1.76 0.47 2.12 0.85

PMO [Fanani et al., 2017] 1.31 0.31 2.06 0.46
ORB-SR [Yin et al., 2017] 4.14 0.19 1.70 0.29
DVSO [Yang et al., 2018a] 0.83 0.21 0.74 0.21
D3VO [Yang et al., 2020] 0.78 - 0.62 -

SVD-MSfM 1.65 0.30 2.45 0.45

Trans.: relative translational error; Rot.: rotational error per 100m
Pose estimation error evaluated and averaged after driven distances of 100,200,...,800m.

Table 4.7: Quantitative evaluation of SVD-MSfM and baseline methods for monocular vi-
sual odometry on KITTI odometry benchmark [Geiger et al., 2012].
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endpoint error, while the rotation error corresponds to the pose orientations. All
baseline methods exploit the long history of camera poses by pose filtering, bundle
adjustment (BA), or feature tracking based on prediction (section 4.1). However, the
pose estimation of SVD-MSfM is still comparative and only provides slightly lower
accuracy than the best approaches.

The following experiments are designed to reveal the performance in situations,
where the methods are frequently confronted with initializations and can not ex-
ploit a long temporal context. These two characteristics are important to use the
motion estimation also for moving objects. Therefore, the pose evaluation follows
the proposed metric by Zhou et al. [2017]. The whole sequence is divided into 5-
frame snippets. Analogously to the metric described above, the translational and
rotational pose error is evaluated and averaged for the 5 poses of the snippet.

SVD-MSfM is evaluated with respect to two categories of monocular baseline
methods for camera pose estimation. First, the accuracy of traditional SLAM meth-
ods is provided (section 4.1.1): ORB-SLAM [Mur-Artal et al., 2015], LDSO [Gao
et al., 2018], and VISO2-M [Geiger et al., 2011]. The accuracy of these meth-
ods is stated for the whole trajectory given as input as well as the accuracy if
only the 5-frames are given as input. Second, the results of deep learning-based
approaches are stated (section 4.1.3): Godard [Godard et al., 2019], SFMLearner
[Prasad and Bhowmick, 2019], DF-Net [Zou et al., 2018], Mahjourian [Mahjourian
et al., 2017], GeoNet [Yin and Shi, 2018], CC [Ranjan et al., 2019], BeyondPhoto
[Shen et al., 2019], and Struct2Depth [Casser et al., 2019]. The results of Godard,
DF-Net, Mahjourian, CC, and Struct2Depth are taken from the published papers.
For the other methods, the published code or pose estimates are used for evalua-
tion. The baseline methods, apart from VISO2-M [Geiger et al., 2011], only provide
pose estimates up to an unknown scale. To provide a fair comparison, the 5-frame
trajectories of all methods are scaled to align with the ground truth.

The accuracy of the methods is shown as a histogram in figure 4.13 with the
corresponding detailed results in table 4.8. The evaluation reveals that the direct
method LDSO and ORB-SLAM, which tracks features based on their prediction, do
not provide reasonable results for the 5-frame snippet as input. Similar to the method
proposed here, VISO2-M is an indirect method, which builds upon a general sparse
flow for pose estimation. The VISO2-M method shows nearly the same accuracy
for the whole sequence as for the 5-frame snippet as input, which supports the
design choice of using an indirect method and general sparse flow. The deep learning-
based methods provide accurate estimates of the translational motion. However,
the rotational motion estimation is worse than for SVD-MSfM. The comparison to
VISO2-M without aligning the scale to the ground truth is also provided in table 4.8.
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Figure 4.13: Overview of quantitative evaluation of SVD-MSfM in terms of 5-frame pose
estimation based on the sequences 09 and 10 of the KITTI odometry dataset
[Geiger et al., 2012]. First, the results are shown for the SLAM methods,
ORB-SLAM [Mur-Artal and Tardós, 2017], LDSO [Gao et al., 2018], and
VISO2-M [Geiger et al., 2011]. These methods are evaluated given the full
image sequence as input (orange) and given only the 5-frame snippet (blue).
Second, the accuracy of deep learning methods is shown using the following
methods: Godard [Godard et al., 2019], SfMLearner [Zhou et al., 2017], DF-
Net [Zou et al., 2018], Mahjourian [Mahjourian et al., 2017], GeoNet [Yin and
Shi, 2018], CC [Ranjan et al., 2019], BeyondPhoto [Shen et al., 2019], and
Struct2Depth [Casser et al., 2019]. The papers originally only evaluated the
translational error. Thus, the rotational error is only shown for methods that
provided their estimates or code.

These results support a high accuracy of the proposed scale estimation – significantly
better than the ground plane-based scale estimation of VISO2-M.
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Method Input Seq. 09 Seq. 10

Trans.[m] Rot.[deg] Trans.[m] Rot.[deg]

VISO2-M
[Geiger et al., 2011]

full 0.016 ± 0.008 0.118 ± 0.077 0.033 ± 0.056 0.148 ± 0.193
5 frames 0.016 ± 0.008 0.120 ± 0.075 0.031 ± 0.049 0.143 ± 0.183

ORB-SLAM
[Mur-Artal et al., 2015]

full 0.014 ± 0.007 0.055 ± 0.241 0.011 ± 0.008 0.090 ± 0.027
5 frames 0.064 ± 0.141 0.251 ± 0.733 0.064 ± 0.130 0.213 ± 0.539

LDSO
[Gao et al., 2018]

full 0.010 ± 0.006 0.033 ± 0.022 0.009 ± 0.008 0.038 ± 0.022
5 frames 0.080 ± 0.180 0.395 ± 1.042 0.061 ± 0.137 0.610 ± 1.562

Godard
[Godard et al., 2019]

2 frames 0.023 ± 0.013 n.a. 0.018 ± 0.014 n.a.

SfMLearner
[Zhou et al., 2017]

5 frames 0.021 ± 0.017 0.289 ± 0.422 0.020 ± 0.015 0.479 ± 0.603

DF-Net
[Zou et al., 2018]

5 frames 0.017 ± 0.007 n.a. 0.015 ± 0.009 n.a.

Mahjourian
[Mahjourian et al., 2017]

3 frames 0.013 ± 0.010 n.a. 0.012 ± 0.011 n.a.

GeoNet
[Yin and Shi, 2018]

5 frames 0.012 ± 0.007 0.317 ± 0.166 0.012 ± 0.009 0.311 ± 0.165

CC
[Ranjan et al., 2019]

5 frames 0.012 ± 0.007 n.a. 0.012 ± 0.008 n.a.

BeyondPhoto
[Shen et al., 2019]

3 frames 0.020 ± 0.010 0.259 ± 0.217 0.018 ± 0.014 0.257 ± 0.257

Struct2Depth
[Casser et al., 2019]

3 frames 0.011 ± 0.006 n.a. 0.011 ± 0.010 n.a.

SVD-MSfM 2 frames 0.010 ± 0.006 0.034 ± 0.015 0.010 ± 0.008 0.040 ± 0.020

VISO2-M∗
[Geiger et al., 2011]

full 0.062 ± 0.060 0.118 ± 0.077 0.306 ± 0.948 0.148 ± 0.193
5 frames 0.062 ± 0.061 0.119 ± 0.075 0.288 ± 0.895 0.143 ± 0.183

SVD-MSfM∗ 2 frames 0.036 ± 0.024 0.034 ± 0.015 0.039 ± 0.029 0.040 ± 0.020

Trans.: average translational error; Rot.: average rotational error
∗: Method provide scale-aware estimates and is therefore not scaled to align the ground truth
Pose estimation error evaluated and averaged for all poses of 5-frame snippet
Results that take the full trajectory as input are disregarded for ranking

Table 4.8: Quantitative evaluation of SVD-MSfM and baseline methods for camera pose
estimation based on the sequences 09 and 10 of the KITTI odometry dataset
[Geiger et al., 2012]. The evaluation is performed for short camera trajectories
of 5-frames. The results show the mean and variance of the absolute trajectory
error (ATE) in terms of rotation (in degree) and translation (in meters). While
SLAM-methods formulated as an optimization or filtering problem are consid-
ered as the first group of baseline methods, the second group of baseline methods
corresponds to deep learning-based approaches. The separation of the methods
belonging to different groups is indicated by two horizontal lines. The trajecto-
ries of all methods in the upper part are scaled to align the ground truth, while
the methods in the lower part provide scale-aware estimates by itself (indicated
by an ∗).
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4.4 Conclusion

The present chapter presented a novel method, SVD-MSfM, which combines multi-
view geometry with single-view depth estimation in a MSfM-based concept using a
joint depth cost volume, which leads to new SotA accuracy for monocular scene flow
estimation. The motion estimation of SVD-MSfM is confirmed to perform robustly
on short image sequences. Even more, it provides a novel concept of providing scale-
aware motion estimates also for moving objects by integrating single-view depth
information. A depth cost volume, which comprises multi-view photometric consis-
tency with probabilistic single-view depth distributions, is used as a basis to derive
dense depth estimates. The experiments clearly motivate the claimed combination
of multi-view geometry with single-view depth distributions because both provide
powerful information for a scene flow estimation task. Additionally, the experiments
show how to integrate single-view depth information in a suitable way and confirm
the claimed importance of integrating single-view depth as well-calibrated distribu-
tions – the main aspects ProbDepthNet is designed for.
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This chapter extends parts of the work that has been published previously in [Brick-
wedde et al., 2019].

The proposed approach, SVD-MSfM, presented in chapter 4 is divided into the con-
secutive steps of motion and depth estimation. However, the tasks of motion and
depth estimation highly depend on each other. For example, stereo-based scene flow
methods [Menze and Geiger, 2015, Menze et al., 2018, Behl et al., 2017] show the
advantage of a joint optimization.

Therefore, I propose in the present chapter a monocular scene flow estimation,
called Mono-SF, formulated as a joint optimization of the motion and depth struc-
ture combining multi-view geometry with probabilistic single-view depth estimates
provided by ProbDepthNet. Following previous stereo-based scene flow methods, the
scene is represented by a set of 3D planar surface elements and 6D motions of rigid
bodies. A rigid body is either the background or a potentially moving object.
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Figure 5.1: Overview of Mono-SF for monocular scene flow estimation. Mono-SF jointly
optimizes the 3D geometry of a set of planes and the 6D motion of rigid bodies
considering (1) a photometric distance by warping the reference image into the
subsequent image, (2) single-view depth distributions provided by ProbDepth-
Net, and (3) scene model smoothness priors.

Mono-SF jointly optimizes the 3D geometry of each plane and the 6D motion of
each rigid body considering (1) the multi-view geometry by warping the reference
image into the subsequent image, (2) probabilistic single-view depth estimates, and
(3) scene model smoothness priors (see figure 5.1). The scene flow estimation is
formulated as a non-linear energy minimization problem, which is optimized in an
iterative scheme and initialized with the outputs of SVD-MSfM.

The Mono-SF approach is evaluated with respect to several state of the art (SotA)
monocular baselines and an ablation study confirms the importance of the individ-
ual components of the proposed optimization framework. The joint optimization
formulated as a scene flow estimation problem provides a significant improvement
compared to SVD-MSfM, which is used for initialization. The suitability of Prob-
DepthNet for integrating single-view depth information in Mono-SF is confirmed,
especially due to the importance of providing single-view depth information as
well-calibrated depth distributions. Furthermore, Mono-SF was the first monocular
method published on the KITTI scene flow dataset [Menze and Geiger, 2015].

5.1 Related Work

The Mono-SF method is a monocular scene flow estimation combining multi-view
geometry with probabilistic single-view depth. The reader is referred to section 4.1
for an overview of monocular scene reconstruction and to section 3.1 for the related
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works in terms of probabilistic single-view depth estimation. This chapter addition-
ally covers stereo-based scene flow methods, which inspired the Mono-SF scene model
and formulation as a joint optimization of motion and depth structure.
Scene flow estimation was introduced by Vedula et al. [1999, 2005] as a joint

optimization of 3D geometry and motion of the scene based on a sequence of stereo
images. Mostly variational approaches were used subsequently to extend the scene
flow concept [Huguet and Devernay, 2007, Pons et al., 2007, Wedel et al., 2008, 2011,
Valgaerts et al., 2010, Basha et al., 2013, Herbst et al., 2013].

However, Vogel et al. [2013] were the first that significantly outperformed indi-
vidual stereo and optical flow methods on their respective tasks for dynamic traffic
scenes. They represented the dynamic scene as a collection of rigid moving planar
surface elements, each one comprising its 3D scaled normal to represent the geome-
try and its 6D motion parameters. Considering two consecutive stereo image pairs,
four images are given. Initially, the reference image is divided into surface elements
using a superpixel segmentation. The geometry and the motion of each plane are
optimized using energy minimization. The plane parameters are optimized to mini-
mize a photometric distance by warping each plane of the reference image into the
other images. Additionally, scene model priors prefer a smooth structure in terms of
depth, orientation, and motion.
A traffic scene, in particular, consists of a few independent motions by vehicles

and other objects. Instead of individual motion estimation of each plane, Menze
and Geiger [2015] formulated the problem by a set of rigid moving objects. Each
plane is associated with one rigid moving object, which is represented by its 6D
motion parameters. Consequently, the scene flow estimation is formulated as a joint
optimization of the 6D rigid body motion parameters, 3D plane parameters and
association of planes to objects. This representation is particularly beneficial if the
association of planes to objects is supported by an instance segmentation as proposed
in [Behl et al., 2017].
The currently leading1 approach [Ma et al., 2019] on the KITTI scene flow bench-

mark [Menze and Geiger, 2015] follows the decomposition of the scene into rigid
moving objects. In contrast to previous methods, the estimation is based on an end-
to-end trainable convolutional neural network (CNN) architecture, which directly
optimizes the depth of each pixel instead of the geometry of planar surface elements.
Based on initial deep learning-based disparity, optical flow, and instance mask es-
timates, a Gauss-Newton solver jointly optimizes the depth of each pixel and the
rigid body motions as a scene flow optimization problem. The Gauss-Newton solver
is implemented as a recurrent neural network, which enables to train the network in
an end-to-end fashion.

1 Benchmark on January 06, 2020. Methods with a publication are considered.
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Figure 5.2: Variables of Mono-SF model and energy minimization problem are the 6D
rigid body motions Tj of moving objects (colored in the left image) and the
background as well as the 3D scaled normals ni of superpixel planes (boundaries
in the right image).

Mono-SF corresponds to the object or instance scene flow [Menze and Geiger,
2015, Behl et al., 2017] model formulated as an energy minimization problem. In
contrast to these methods, Mono-SF uses only monocular images by integrating
probabilistic single-view depth estimates instead of the right stereo images.

5.2 Mono-SF Method

The present section presents the Mono-SF optimization framework structured as
follows: First, the decomposition of the scene into piecewise planar surface elements
and rigid bodies is described. Second, the optimization is formulated as an energy
minimization problem combining (1) multi-view geometry-based photometric dis-
tance, (2) the probabilistic single-view depth estimates of ProbDepthNet, and (3)
scene model smoothness priors. Finally, the inference process and initialization of
the optimization problem are explained.

5.2.1 Scene Model

Following previous object scene flow approaches [Menze and Geiger, 2015, Behl
et al., 2017, Menze et al., 2018], the main assumption is that a traffic scene can be
approximated by a set of piecewise planar surface elements to represent the structure
of the scene and a set of rigid bodies to represent the motion (see figure 5.2). The
reference image is divided into a set of superpixels each one representing a 3D plane.
Each 3D plane is defined by its normal ni ∈ R3, scaled by the inverse distance of
the plane to the camera to encode the 3D position X of each point on the plane
by nTi X = 1. The set of rigid bodies consists of the background as well as other traffic
participants such as pedestrians or vehicles detected by an instance segmentation.
Even though a pedestrian does not undergo a rigid body motion, at a certain scale,
it can be approximated by its dominant rigid body transformation as motivated by
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Figure 5.3: Illustration of unary data terms of Mono-SF energy minimization problem. The
unary terms comprises for each pixel p0 an appearance-based photometric dis-
tance Φpho and the consistency to the probabilistic single-view depth estimates
for both images Φsvd

0 and Φsvd
1 . The normal vector ni is defined by the corre-

sponding plane (white boundaries). The transformation Tj is defined by the
corresponding rigid body (red boundary).

Menze et al. [2018]. Each rigid body is represented by its 6D motion Tj ∈ SE(3).
Additionally, each superpixel is associated with one rigid body and with the pixelsRi

of the corresponding superpixel.

5.2.2 Energy Minimization Problem

The main idea of Mono-SF is that the scene geometry and motion should be consis-
tent in terms of warping the reference image I0 in the target image I1 and consistent
to the inverse depth distributions p(ρ | I0) and p(ρ | I1) provided by ProbDepthNet.
Formally, Mono-SF jointly optimizes the 6D motion of each rigid body Tj and 3D
normal of each plane ni as an energy minimization problem, which corresponds to a
maximum a posteriori probability estimation. The energy term E consists of unary
data terms Φ(p0,ni,Tj) for each pixel p0 and pairwise smoothness terms Ψ(nk,nl)

for each two planes nk and nl adjacent in the image k, l ∈ N :

E =
∑

ni

∑

p0∈Ri
Φ(p0,ni,Tj) +

∑

k,l∈N
Ψ(nk,nl) (5.1)

The transformation Tj corresponds to the rigid body assigned to the plane ni.

The unary terms Φ(p0,ni,Tj) consist of two parts as shown in figure 5.3.
First, Φpho(p0,ni,Tj) minimizes an appearance-based photometric distance between
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pixel p0 and its projected position in the subsequent image. Second, Φsvd
t (p0,ni,Tj)

prefers a 3D position consistent to the depth probabilities of ProbDepthNet at
time t = 0 and t = 1:

Φ(p0,ni,Tj) = λ1 · Φpho(p0,ni,Tj) + λ2 ·
∑

t∈{0,1}
Φsvd
t (p0,ni,Tj) (5.2)

The terms are weighted by λ1 or λ2, respectively. The photometric dis-
tance Φpho(p0,ni,Tj) rates the similarity of the two corresponding image
positions p0 and p1 as the Hamming distance of their respective 5 × 5 Census
descriptors [Zabih and Woodfill, 1994] truncated at τ1. The corresponding image
coordinates p1 in the second image I1 are defined by a homography (section 2.1.3)
considering the 3D normal ni and the motion of the corresponding rigid body Tj:

p1 = K(Rj − tjn
T
i )K−1p0 (5.3)

The rotation matrix Rj and translation vector tj refer to the decomposition of Tj.
The matrix K is the intrinsic camera matrix.

The term Φsvd
t (p0,ni,Tj) rates the consistency of the depth of pixel p0 based

on the ProbDepthNet estimates. While the inverse depth ρ0(p0,ni) at time t = 0

is directly defined by the corresponding scaled normal vector ni, the motion of
the corresponding rigid body Tj needs to be considered to derive the inverse
depth ρ1(p0,ni,Tj) at time t = 1. Both depth values are rated by the negative
log-likelihood (NLL) of the probability provided by ProbDepthNet for their
respective image It and image coordinates pt:

Φsvd
t (p0,ni,Tj) = − log ppt (ρt(p0,ni,Tj) | It) (5.4)

The image coordinates p1 are again defined as in equation (5.3).

The previous data terms include the single-view depth information and multi-view
geometry-based photometric distance. Additionally, scene model priors visualized in
figure 5.4 are integrated similar to [Menze and Geiger, 2015] as pairwise smoothness
terms Ψ(nk,nl) preferring a smooth structure in terms of depth Ψd(nk,nl) and
orientation Ψori(nk,nl), each part weighted by λ3 or λ4:

Ψ(nk,nl) = λ3 ·Ψd(nk,nl) + λ4 ·Ψori(nk,nl) (5.5)
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Figure 5.4: Illustration of Mono-SF smoothness priors. The images show two adjacent sur-
face elements projected into the 3D space based on the normal vectors nk
and nl. The first prior Ψori(nk,nl) is based on the direction of the normal vec-
tors (red arrows in left picture) and rates the similarity of the orientations of
two adjacent planes as a cosine similarity of the normal vectors. The second
prior Ψd(nk,nl) is based on the parts of the boundaries, which correspond to
shared boundary pixels of both planes in the 2D image, e.g. the green boundary
part in the right picture. This prior is defined as the sum of differences of the
inverse depths values of corresponding boundary pixels. Both priors are defined
to achieve a smooth structure in terms of orientation and depth.

For each shared boundary pixel p0 ∈ Bk,l of plane nk and nl, a difference in depth
is penalized:

Ψd(nk,nl) =
∑

p0∈Bk,l
min (|ρ0(p0,nk)− ρ0(p0,nl)|, τ2) (5.6)

Analogously, a smooth orientation of planes adjacent in the image is preferred by
measuring the cosine similarity of the normal vectors nk and nl:

Ψori(nk,nl) = min

(
1− |nknl|
||nk||||nl||

, τ3

)
(5.7)

Both smoothness terms are truncated by τ2 or τ3 to regard discontinuities in the
depth or orientation, for example between different objects. The hyper-parameters λ
and τ are defined differently according to the rigid body type, background or ob-
ject, and differently for adjacent planes belonging to different rigid bodies. These
dependencies are neglected in the previous equations for ease of reading.

5.2.3 Initialization and Inference

The Mono-SF model is related to the formulation and scene model assumptions of
SVD-MSfM. The main difference lies in the joint optimization. SVD-MSfM proposed
the motion and depth estimation as two consecutive steps. A representation as planar
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surface elements is achieved by subsequently applying the slanted-plane smoothing
(SPS) method [Yamaguchi et al., 2014] as part of SVD-MSfM. In contrast to that,
Mono-SF jointly optimizes the motions and depth using directly a representation of
surface elements. This also allows to directly integrate respective scene model priors.
The resulting non-linear optimization problem defined in equation (5.1) requires a

suitable initialization to apply an iterative optimization approach. Therefore, SVD-
MSfM is still essential to provide this initialization. Following the proposed opti-
mization of the object scene flow methods [Menze and Geiger, 2015, Behl et al.,
2017], sequential tree-reweighted message passing (section 2.2.2) is applied for opti-
mizing the energy minimization problem. The continuous optimization problem is
converted into a discrete labeling problem by creating samples for each optimized
variable. The set of planes and rigid bodies as well as the association of planes to
rigid bodies remain fixed during optimization. 5 particles for each 6D rigid body
motion are generated by Gaussian sampling around the current solution. For the
3D normal vectors, 5 particles are also derived by Gaussian sampling and another 5
particles are defined by a neighboring surface element such that they represent the
same scene plane, which would minimize the smoothness priors. This optimization
based on the sequential tree-reweighted message passing is iteratively repeated for
10 times with newly generated sampled based on the current solution.

5.3 Experimental Evaluation of Mono-SF Method

Mono-SF optimizes the 3D position and motion of a dynamic traffic scene formulated
as a joint scene flow estimation problem. The first section 5.3.1 provide qualitative
results and a quantitative evaluation with respect to several monocular methods
including SVD-MSfM described in chapter 4. Additionally, the second section 5.3.2
presents analyzes regarding Mono-SF components and design choices. First, the
experiments give evidence for the importance of providing single-view depth infor-
mation as well-calibrated distributions as provided by ProbDepthNet. Second, each
part of the energy minimization problem is confirmed to provide a contribution to
the final accuracy.

5.3.1 Evaluation of Scene Flow Estimation

The present subsection evaluates Mono-SF in terms of monocular scene flow estima-
tion. The experimental setup is similar to the experiments regarding SVD-MSfM. It
is briefly summarized here as a reminder. For a more detailed description the reader
is referred to section 4.3.1.
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Image at t = 0 Depth at t = 0 / t = 1 Optical flow

Figure 5.5: Qualitative results of Mono-SF on a crop of Cityscapes (removing car hood);
left: first input image, middle: estimated depth values at time t = 0 (left half)
and t = 1 (right half), right: estimated optical flow

The scene flow results and evaluations are based on the equivalent representa-
tion as the depth of each pixel at both times (t = 0, t = 1) and the optical flow.
Thereby, the 3D position and the ability of the approaches to predict a 3D point
from t = 0 to t = 1 based on its 3D motion is evaluated. The quantitative evaluation
is based on the KITTI scene flow dataset [Menze and Geiger, 2015], which reports
the frequencies of errors for the depth at time t = 0 (D1) and t = 1 (D2) and the
optical flow (Fl). An estimate is considered as a valid scene flow estimate (SF) if
it fulfills all the D1, D2, and Fl metrics. All metrics are evaluated separately for
moving objects (fg), the static scene (bg), and both combined (all).

The results are compared to four categories of methods. First, the results of multi-
task networks (section 4.1.3) are described. Second, the combination of single-view
depth and optical flow estimation as individual tasks is considered as an additional
group. Third, the evaluation covers multi-body structure from motion (MSfM)-based
methods (section 4.1.2). Fourth, methods that combine single-view depth informa-
tion with multi-view geometry represents the fourth group of methods including the
proposed methods SVD-MSfM and Mono-SF.

5.3.1.1 Qualitative Results of Scene Flow Estimation

In the present subsection, results of Mono-SF are provided for data samples of the
Cityscapes dataset [Cordts et al., 2016] and KITTI scene flow training set [Menze
and Geiger, 2015]. The figure 5.5 shows the results on the Cityscapes dataset. In
addition to the static environment and vehicles, also pedestrians and cyclists, which
do not undergo an ideal rigid body motion, are reconstructed reasonably.
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The qualitative results on the KITTI dataset are shown in figure 5.7 in comparison
to the baseline method by combining MirrorFlow [Hur and Roth, 2017] for optical
flow estimation with LRC [Godard et al., 2017] for single-view depth estimation and
SVD-MSfM (chapter 4). The estimates and errors are visualized in terms of disparity
at t = 0 (D1), disparity at t = 1 (D2), and optical flow (Fl) using the KITTI
scene flow evaluation tools provided by Menze and Geiger [2015]. All estimates are
represented at their image coordinates in the first frame at t = 0. The error color
coding follows a logarithmic scale, where errors above 3px are colored in red shades
and errors below 3px are colored in blue shades.

In comparison to SVD-MSfM, Mono-SF shows a significant improvement for some
parts (e.g. right building in the background of figure 5.7 (a)) and a fine-tuning in
general. The general characteristic is similar to SVD-MSfM.

For example, Mono-SF is also able to handle a wide range of object motions such as
(1) oncoming vehicles (see figure 5.7 (a)), (2) preceding vehicles (see figure 5.7 (a,b)),
and (3) crossing vehicles (see figure 5.7 (c)).

Mono-SF shows similar limitations as SVD-MSfM (described in section 4.3.1.2)
and is not capable of compensating significant failures of SVD-MSfM, which is used
as an initialization. For example, the missing part of the pole in figure 5.7 (a) is not
recovered by Mono-SF and the smoothing prior gets also dominant in low-parallax
situations (e.g. standstill scenario in figure 5.7 (c)). One reason is that Mono-SF
requires a good initialization, which is not given for those parts. Furthermore, the
segmentation in 3D planar surface elements stays fixed during optimization. Conse-
quently, failures in the initial segmentation cannot be corrected.

The example in figure 5.7 (c) covers an additional situation that was not presented
in the previous evaluation of SVD-MSfM. The bottom part of the white van is
completely occluded. Therefore, a method that relies on detecting the ground contact
point would fail. Even though also the accuracy of SVD-MSfM and Mono-SF is lower
compared to other vehicles, the methods still provide reasonable results.
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(c) Image at t = 0 Image at t = 1

Depth t = 0 (D1) Depth error t = 0 (D1 error)
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Figure 5.7: Qualitative results of Mono-SF in comparison to monocular scene flow baseline
methods (’MirrorFlow + LRC’ and ’SVD-MSfM’) on the KITTI scene flow
training set [Menze and Geiger, 2015]. The color coding represent the estimated
depth (from close (warm) to far (cool)), the optical flow (Middlebury color
coding [Baker et al., 2011]) or the disparity/ optical flow endpoint error (color
coding shown in the legend).
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
GeoNet∗

[Yin and Shi, 2018]
20.07 47.03 63.41 49.54 56.24 68.88 58.17 32.42 67.69 37.82 67.69 91.40 71.32

DF-Net∗
[Zou et al., 2018]

18.95 44.42 57.94 46.49 61.55 61.47 61.53 25.66 37.44 27.46 71.62 82.51 73.29

Struct2Depth∗
[Casser et al., 2019]

14.92 27.29 56.58 31.77 33.25 66.12 38.29 37.86 71.96 43.08 49.98 91.39 56.32

EPC++
[Luo et al., 2019]

- 22.76 26.63 23.84 - - - 17.58 26.89 19.64 - - -

Self-Mono-SF
[Hur and Roth, 2020]

9.98 28.75 45.07 31.25 33.00 45.15 34.86 23.06 25.92 23.49 44.27 62.40 47.05

MirrorFlow
[Hur and Roth, 2017]

+ LRC
[Godard et al., 2017]

9.68 25.33 19.82 24.48 35.82 26.15 34.34 9.39 14.22 10.13 40.55 35.17 39.72

HD3-F†
[Yin et al., 2019]

+ DORN†
[Fu et al., 2018]

11.18 17.02 37.54 20.16 30.08 40.47 31.67 4.01 6.76 4.43 32.57 46.89 34.76

DMDE
[Ranftl et al., 2016]

14.6 - - - - - - - - - - - -

S. Soup
[Kumar et al., 2017]

12.68 - - - - - - - - - - - -

S.Rel.
[Di et al., 2019]

10.23 - - - - - - - - - - - -

MFA
[Kumar et al., 2019]

11.82 - - - - - - - - - - - -

SVD-MSfM
[chapter 4]

8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

Mono-SF 8.14 15.64 22.72 16.72 17.93 24.71 18.97 12.20 9.90 11.85 20.19 29.40 21.60

MRE: mean relative depth error in %; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow
D1, D2, Fl, SF: percentage[%] of estimates that exceed an error threshold (> 3px and > 5% of length)
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg
†: parts of dataset used for training (disregarded for ranking); ∗: scaled to align the ground truth

Table 5.1: Quantitative evaluation of Mono-SF with respect to several monocular methods
on the KITTI scene flow training set [Menze and Geiger, 2015]. The methods
are divided into four groups: First, multi-task CNNs; second, combining optical
flow and single-view depth estimation as individual tasks; third, MSfM-based
approaches; fourth, combining single-view depth information with multi-view
geometry.

5.3.1.2 Quantitative Evaluation of Scene Flow Estimation

The quantitative evaluation of Mono-SF on the KITTI scene flow training set [Menze
and Geiger, 2015] is provided in table 5.1. Following the evaluation of SVD-MSfM,
the baseline methods are categorized in four groups represented by respective SotA
methods. GeoNet [Yin and Shi, 2018], DF-Net [Zou et al., 2018], Struct2Depth
[Casser et al., 2019], EPC++ [Yang et al., 2018b], and Self-Mono-SF [Hur and Roth,
2020] represent the first group of multi-task networks. The second category of com-
bining single-view depth and optical flow estimation as individual tasks is covered
by combining LRC [Godard et al., 2017] or DORN [Fu et al., 2018] with Mirror-
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Method
D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
UberATG-DRISF

[Ma et al., 2019]
2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

ISF
[Behl et al., 2017]

4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

OSF 2018
[Menze et al., 2018]

4.11 11.12 5.28 5.01 17.28 7.06 5.38 17.61 7.41 6.68 24.59 9.66

PR-Sceneflow
[Vogel et al., 2013]

4.74 13.74 6.24 11.14 20.47 12.69 11.73 24.33 13.83 13.49 31.22 16.44

SGM + SF
[Hirschmuller, 2005]

+[Hornacek et al., 2014]

5.15 15.29 6.84 14.10 23.13 15.60 20.91 25.50 21.67 23.09 34.46 24.98

Self-Mono-SF-ft
[Hur and Roth, 2020]

20.72 29.41 22.16 23.83 32.29 25.24 15.51 17.96 15.91 31.51 45.77 33.88

Mono-Expansion
[Yang and Ramanan, 2020]

24.85 27.90 25.36 27.69 31.59 28.34 5.83 8.66 6.30 29.82 36.67 30.96

Mono-SF 14.21 26.94 16.32 16.89 33.07 19.59 11.40 19.64 12.77 19.79 39.57 23.08

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors

fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 5.2: Evaluation of Mono-SF on KITTI scene flow benchmark server [Menze and
Geiger, 2015]. The top group represents stereo-based methods with UberATG-
DRISF [Ma et al., 2019] as the currently leading approach. The bottom group
corresponds to monocular scene flow methods including the proposed Mono-SF
approach. Only monocular methods are considered for ranking.

Flow [Hur and Roth, 2017] or HD3-F [Yin et al., 2019]. Note that the used models
for DORN and HD3-F include parts of the scene flow set for training, which is why
these methods are disregarded for ranking. The MSfM-based methods, DMDE [Ran-
ftl et al., 2016], S.Soup [Kumar et al., 2017], and S.Rel [Di et al., 2019] form the
third group. The fourth category comprises methods that fuse single-view depth
information with multi-view geometry for monocular scene flow estimation. In ad-
dition to the baseline method, MFA [Kumar et al., 2019], this category consists of
the proposed SVD-MSfM (chapter 4) and Mono-SF methods.

Mono-SF shows the best accuracy on most of the metrics – especially outperform-
ing previous methods on the scene flow metrics. Furthermore, Mono-SF provides
a further improvement compared to SVD-MSfM, which is utilized for initialization.
Mono-SF reduces the number of errors in terms of scene flow estimation by 4.31% for
the static environment and by 5.61% for moving objects – which clearly motivates
the joint optimization of depth and motion directly on a superpixel level formulated
as a scene flow estimation problem.

Furthermore, Mono-SF is the first monocular method published on the KITTI
scene flow benchmark [Menze and Geiger, 2015] as shown in table 5.2. In compari-
son to the stereo-based methods, Mono-SF would have been ranked on the 13th place
with respect to the 21 published stereo methods at the time of submission. Even
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though Mono-SF is not comparative with the SotA stereo methods, it still shows that
also a monocular method could provide reasonable scene flow results. Subsequently
to Mono-SF, two further monocular methods are published on the KITTI bench-
mark2, namely Self-Mono-SF [Hur and Roth, 2020] and Mono-Expansion [Yang and
Ramanan, 2020]. Both methods correspond to an end-to-end neural network ap-
proach (section 4.1.3). The proposed Mono-SF method still provides the highest ac-
curacy on the overall scene flow metric and remains the currently leading approach.
Mono-Expansion directly uses a SotA optical flow method, which outperforms Mono-
SF on an optical flow metric and shows a slightly better accuracy for moving objects
on a scene flow metric. Mono-SF outperforms Mono-Expansion and Self-Mono-SF
especially on the depth estimation for the background. Analogously to the evalua-
tion on section 5.3.1.2, this supports that the combination of multi-view geometry
and single-view depth in a joint optimization benefits more from the scene rigidity
knowledge for large rigid bodies such as the background.

Self-Mono-SF and Mono-Expansion are close to real-time capability, at least on a
powerful GPU exploiting highly optimized deep learning frameworks. In contrast to
that, the Mono-SF approach is currently not focused on runtime and needs around
41 seconds per image on a single CPU-core. Most of the runtime (above 30 seconds)
is spent on the non-linear optimization of Mono-SF. Even more important, previous
approaches [Gehrig et al., 2009, Mur-Artal and Tardós, 2017] show the real-time
capability of methods related to optimizations used in SVD-MSfM. While this at
least suggests that SVD-MSfM could be implemented in a real-time capable version,
a real-time capability of related stereo-based scene flow optimizations (e.g. [Menze
et al., 2018, Behl et al., 2017]) was not shown so far. In summary, there is definitely
a trade-off between runtime and accuracy and the improved accuracy of Mono-SF
comes at the cost of significant higher computational effort.

5.3.2 Evaluation of Mono-SF Components

Mono-SF energy term: In table 5.3, the individual components of the Mono-SF
optimization framework are analyzed by removing some parts of the proposed en-
ergy minimization problem (setting their weights to zero). SVD-MSfM, which is used
for initialization of Mono-SF is denoted by the row without checkmarks. A scene
flow estimation merely based on the photometric distance, improves the accuracy
in terms of optical flow estimation compared to the initialization. However, it is
not able to cope with all situations such as standstill scenarios and the accuracy of
the depth estimates decreases. Adding the probabilistic single-view depth estimates

2 Referring to methods with a publication submitted to the benchmark until October 02, 2020.
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Energy terms MRE D1 D2 Fl SF
Φpho Φsvd Ψ bg fg all bg fg all bg fg all bg fg all

- - - 9.38 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11
X - - 21.73 18.62 35.43 21.19 20.83 37.64 23.41 13.27 16.98 13.84 22.89 43.87 26.11
X X - 9.40 17.91 22.72 18.65 20.35 25.18 21.09 13.62 11.56 13.30 22.44 30.46 23.65

X X X 8.99 15.63 22.71 16.72 17.93 24.70 18.97 12.19 9.90 11.84 20.19 29.40 21.60

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors

fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; errors in %

Table 5.3: Ablation study on Mono-SF approach. Using the Mono-SF optimization im-
proves the scene flow estimation compared to its initialization (denoted by the
row without checkmark). Each term of the energy minimization problem (pho-
tometric distance(Φpho), single-view depth (Φsvd), and smoothness prior (Ψ))
contributes to the final performance.

significantly improves the depth accuracy, which leads also to an improvement com-
pared to the initialization. A further improvement is achieved by adding the scene
model smoothness priors. Therefore, the ablation study shows that each part of the
energy term contributes to the final performance – the multi-view geometry, the
single-view depth information, and the scene model smoothness priors.

Integrating probabilistic single-view depth distributions: To analyze the
importance of the proposed ProbDepthNet design, the results of four Mono-SF vari-
ants based on different single-view depth estimations as proposed in section 4.3.2 are
provided in table 5.4. The proposed Mono-SF variant that integrates well-calibrated
single-view depth distributions outperforms all other variants. A significant improve-
ment compared to Mono-SF integrating non-probabilistic single-view depth esti-
mates (’w/o prob. depth’ and ’LRC [Godard et al., 2017]’) is shown, especially for
the background. Additionally, the experiments support the claimed importance of

Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all

Mono-SF (LRC) 10.05 22.59 21.02 22.37 26.73 23.29 26.29 15.20 14.53 15.10 31.30 29.03 30.96
Mono-SF

(w/o prob. depth) 10.60 25.95 22.93 25.48 29.28 26.14 28.80 15.34 13.33 15.03 34.04 31.06 33.58

Mono-SF
(w/o recalib.) 9.54 19.80 23.12 20.31 22.60 27.60 23.36 14.80 19.36 15.50 25.16 36.52 26.90

Mono-SF 8.99 15.63 22.71 16.72 17.93 24.70 18.97 12.19 9.90 11.84 20.19 29.40 21.60

MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors

fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 5.4: Ablation study on ProbDepthNet for Mono-SF. For integrating single-view
depth information, ProbDepthNet is more suitable than LRC for single-view
depth estimation (improvement over ’LRC Godard et al. [2017]’); especially due
to the importance of providing single-view depth estimates in a probabilistic
(improvement over ’w/o prob. depth’ ) and well-calibrated form (improvement
over ’w/o recalib.’) for Mono-SF.
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providing single-view depth distributions in a well-calibrated form (improvement
over ’w/o recalib.’).

In summary, the ablations studies confirm two main observations also made for
SVD-MSfM. First, multi-view geometric information and single-view depth estima-
tion provide powerful and complementary information to the task of monocular
scene flow estimation, which highly motivates a method that combines both. Sec-
ond, single-view depth information provided in a probabilistic and well-calibrated
form is beneficial for a suitable integration.

5.4 Conclusion

The present chapter presented Mono-SF for joint optimization of motion and depth
formulated as a monocular scene flow problem directly using a superpixel repre-
sentation. The evaluation confirms the suitability of this joint optimization, which
provides a further improvement compared to SVD-MSfM. Additional experiments
strengthen the claimed combination of multi-view geometry with single-view depth
information and the ProbDepthNet design to provide single-view depth information
as well-calibrated depth distributions. Mono-SF was the first monocular method
published on the KITTI scene flow benchmark for monocular scene flow estimation,
even though better accuracy comes at the cost of a higher computational effort.



6
MONOCULAR ST IXEL SCENE
FLOW

CONTENTS

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Mono-Stixel Method . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Scene Model . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.2 Column-wise Stixel Segmentation . . . . . . . . . . . 132
6.2.3 Solving the Stixel Segmentation Problem . . . . . . . 138
6.2.4 Independent Moving Object Detection . . . . . . . . 144
6.2.5 Global Stixel Scene Flow Optimization . . . . . . . . 145

6.3 Experimental Evaluation of Mono-Stixel Method . . . . . . . 146
6.3.1 Qualitative Results of Stixel Segmentation . . . . . . 147
6.3.2 Evaluation of Scene Flow Estimation . . . . . . . . . 150
6.3.3 Ablation Study on Mono-Stixel Inputs . . . . . . . . 155
6.3.4 Evaluation of Independent Moving Object Detection 158

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

This chapter extends parts of the works that have been published previously in
[Brickwedde et al., 2018b,a].

The new state of the art (SotA) accuracy of the proposed methods SVD-MSfM
(chapter 4) and Mono-SF (chapter 5) for monocular scene flow estimation strongly
motivates to integrate such methods in robotics and automotive applications. How-
ever, the mere accuracy of the estimates is not the only criterion to be considered
for practical application. A scene reconstruction in terms of depth and motion is
typically not the ultimately addressed goal, but it is used as a basis for subsequent
tasks such as path planning or autonomous braking. The scene representation needs
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Figure 6.1: Overview of the Mono-Stixel approach and representation. Stixels are defined as
thin stick-like elements providing a compact, but-detailed scene representation.
Each stixel (see black boundaries) encodes its scene flow (depth and motion),
its semantic class, corresponding rigid body, and a score of being an indepen-
dent moving object (IMO). The segmentation is formulated as a column-wise
segmentation problem and follows the essential findings of the previous chap-
ters, how to combine multi-view geometry with deep learning methods such as
probabilistic single-view depth estimation, semantic, or instance segmentation.

to be stored, potentially transferred for distributed systems, and processed by the
subsequent application. This highlights an additional requirement for a scene repre-
sentation – it should be compact. SVD-MSfM and Mono-SF provide a non-compact
scene representation consisting of superpixels of arbitrary form. Street scenes follow
special characteristics, which allows using more specialized representations. Such
representation will be introduced and used in the present chapter.

One useful compact medium-level representation for street scenes is the so-called
stixel world, which was introduced by Badino et al. [2009] and extended to a multi-
layer stixel world by Pfeiffer and Franke [2011b]. The stixel world representation is
defined as a column-wise segmentation of the image into thin stick-like and planar
elements, the stixels. The stixels are typically estimated based on a dense disparity
map in a stereo setup.

In the present chapter, I propose the Mono-Stixel method (see figure 6.1), which
is a monocular scene flow estimation with stixels as underlying representation. It
combines the essential contributions of the previous chapters regarding monocular
scene flow estimation with the benefits of using a specialized representation for
traffic scenes. In addition to the more specialized and compact scene representation
compared to SVD-MSfM (chapter 4) and Mono-SF (chapter 5), further extensions
are proposed as part of the Mono-Stixel method.

First, the stixels provided by the Mono-Stixel method encode additional types of
information. SVD-MSfM and Mono-SF consider all objects detected by an instance
segmentation as potentially moving objects, for example, including parked vehicles.
In contrast to that, the Mono-Stixel method additionally detects which parts of
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the scene are really in motion encoded by an additional independent moving object
score. Furthermore, each stixel consists of its semantic class such as road, sidewalk,
or building (see figure 6.1).
Second, the moving objects are directly defined by the instance segmentation us-

ing SVD-MSfM or Mono-SF. Thus, missing object detections would directly result
in erroneous scene flow estimates because the individual object motion is not con-
sidered. In contrast to that, the differentiation between static and dynamic objects
is part of the stixel segmentation of the Mono-Stixel approach and could potentially
overrule a missing detection of the instance segmentation.
Third, the only indispensable input for the Mono-Stixel method is the optical

flow. The other inputs, probabilistic single-view depth, instance segmentation, and
semantic segmentation (see figure 6.1) are optional. This makes the Mono-Stixel
method more flexible, for example, to be adaptable to a certain hardware setup.
The experiments in section 6.3 show that the Mono-Stixel method provides SotA

monocular scene flow estimates comparable to the Mono-SF method. Even more, the
Mono-Stixel method shows better characteristics than Mono-SF in terms of scene
flow estimation for small and thin objects such as poles. While Mono-SF sometimes
tends to smooth out thin objects especially at larger distances, the Mono-Stixel
method maintains much more details. Additionally, the fact that all inputs expect
the optical flow are optional allows analyzing the impact of each input by performing
several ablation studies, which are presented in section 6.3.3.

6.1 Related Work

The Mono-Stixel approach is a monocular scene flow estimation approach, which
is designed to provide a compact scene representation using the stixel world model.
A general overview of monocular scene reconstruction and monocular scene flow
estimation have already been provided in section 4.2. The present section places the
focus on works related to the stixel world representation.

Stereo-based stixel world methods: The estimation of a stixel world repre-
sentation is traditionally addressed in a stereo setup based on a dense disparity map.
Pioneering, Badino et al. [2009] introduced the term stixel. The naming is related
to stick-like superpixels and corresponds to the assumption that the objects, which
limit the free-space, have vertical surfaces and can be approximated by adjacent
rectangular sticks with a certain height and width. The stixels are defined by a
column-wise detection of the objects base-point, which limits the free-space, and a
column-wise height segmentation [Badino et al., 2009]. However, this concept is not
limited to a free-space estimation and was extended to a multi-layer stixel world
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model [Pfeiffer and Franke, 2011b], which covers the whole image. A visualization
of the stixel world representation is show in figure 1.2 in section 1.1.1. The image
of size w × h is divided into columns of a fixed width ws to split the stixel world
segmentation S into individual stixel columns Su:

S = {Su | 1 ≤ u ≤ w

ws
} (6.1)

Each stixel column is segmented individually into Nu stixels si:

Su = {si | 1 ≤ i ≤ Nu ≤ h}
si =

(
vbi , v

t
i ,mi, di(v)

) (6.2)

Each stixel si (index stands for i-th stixel in the column) is defined by its base vbi and
top image position vti , its class or type mi, and its disparity model di(v). Additional
constraints ensure that each pixel is exactly assigned to one stixel (vb1 = 1, vtN = h

and vtn−1 + 1 = vbn).

Originally, the type mi distinguishes the three types, ground, object, and sky.
Each type defines a geometric model in terms of orientation and distance. Ground
stixel have a normal vector parallel to the vehicle’s z-axis (pointing upwards), object
stixel have a normal vector perpendicular to the vehicle’s z-axis, and sky stixels are
at infinite distance. Formally, this defines a disparity model di(v) depending on the
stixel’s type mi:

di(v) =





µi , if mi = object

α · (vhor − v) , if mi = ground

0 , if mi = sky

(6.3)

The parameters α and vhor are defined by the intrinsic and extrinsic camera param-
eters. The variable µi represents the distance of the object to the camera and is
estimated based on the mean disparity values in the corresponding image segment.

For each column, the stixel segmentation Su is formulated as a 1D energy mini-
mization problem derived from a maximum a posteriori probability estimation based
on a dense disparity map d:

p(Su | d) =
p(d | Su) · p(Su)

p(d)
(6.4)

The normalization factor p(d), which expresses the prior probability of the disparity
measures, is constant during the optimization of Su and thereby neglectable. Switch-
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ing to the log-domain defines the 1D energy minimization problem E(Su,d), which
consist of the data term Φ(Su,d) and prior terms Ψstr(Su), Ψmc(Nu):

E(Su,d) = Φ(Su,d) + Ψstr(Su) + Ψmc(Nu) (6.5)

One part of the prior term regularizes the model complexity in terms of the
number of stixels Nu by adding Ψmc(Nu) = βmcNu to the energy term. Additionally,
a structural prior is integrated to prefer a typical layout of a traffic scene. The
structural prior Ψstr(Su) rates the likelihood of two neighboring stixels in the column
and consist of three terms:

Ψstr(Su) =
Nu∑

i=0

(Φdo(si, si−1) + Φgrav(si, si−1) + Φtype(si, si−1)) (6.6)

The weighting and definition of each prior term depend on hyperparameters α(·), β(·).

First, an ordering prior Φdo(si, si−1) prefers that an object stixel on top of another
object is typically behind the bottom stixel in the 3D scene. This term is only non-
zero if both adjacent stixels are of the object type and if the upper stixel si is closer
than the lower stixel si−1:

Φdo(si, si−1) =




αdo + βdo · (di − di−1) , if mi,mi−1 = object & di > di−1

0 , otherwise
(6.7)

Second, a gravity prior Φgrav(si, si−1) favors that objects typically stand on the
ground plane. This term is only non-zero if an object stixel si follows a ground stixel
si−1 and rates the difference ∆d of the object stixel to the disparity of the ground
stixel at the segmentation boundary vti−1, where both stixels are connected in the
image. The gravity prior distinguish if the stixel is above or below the ground plane:

Φgrav(si, si−1) =





α−grav + β−grav∆d , if mi = object & mi−1 = ground & ∆d < 0

α+
grav + β+

grav∆d , if mi = object & mi−1 = ground & ∆d > 0

0 , otherwise
(6.8)

Third, the likelihood of a transition between different stixel types is rated by a
third part Φtype(si, si−1). For example, an object stixel above a ground stixel is more
likely than vice versa. Discrete transition cost values γ(mi,mi−1) are predefined for
each possible combination of stixel types:

Φtype(si, si−1) = γ(mi,mi−1) (6.9)
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The data term integrates the input measurements to favor a stixel depth structure
consistent with the disparity estimates d:

Φ(Su,d) =
Nu∑

i=0

vti∑

v=vbi

Φ(si, v,dv) (6.10)

A measurement model is used to rate the distance of the measured disparity dv at
row v to the disparity di(v) defined by the corresponding stixel si for each pixel
in the stixel’s segment. Pfeiffer and Franke [2011b] proposed a mixture model of a
uniform and a Gaussian distribution to define the measurement model for disparity
estimation. The pixel-wise summation in equation (6.10) refers to the assumption
of statistical independence of all pixels.

Based on the defined 1D energy minimization problem and exploiting the de-
scribed constraints regarding the segmentation, the inference can be expressed as
the shortest path problem, which is solved via dynamic programming [Pfeiffer and
Franke, 2011b, Cordts et al., 2017]. The approach by Pfeiffer and Franke [2011b] min-
imizes the energy term globally in terms of segmentation vbi , vti and stixel types mi.
The disparity of each stixel di(v) is locally approximated for each segment to reduce
the computational effort.

Several works described methods to integrate further information or to estimate
further attributes of the stixels. Cordts et al. [2014] proposed to incorporate addi-
tional object classifier responses. The object bounding boxes of the classifier are
used to define priors for the stixel segmentation boundaries. Instead of integrating
bounding box-based object detections, also a pixel-wise semantic segmentation is
proposed to be integrated as an additional data term [Scharwächter and Franke,
2015, Schneider et al., 2016]. On the one hand, the semantic segmentation supports
distinguishing the different stixel types (e.g. the road class is assigned to the ground
stixel type). On the other hand, it allows to additionally infer a stixel class label ci
such as road, building, or vegetation. The resulting representation is denoted as se-
mantic stixels [Schneider et al., 2016]. A classification of stixels into semantic classes
has been proposed before [Scharwächter et al., 2013, 2014]. However, the classifi-
cation of stixels was formulated as a subsequent step in those papers. Thus, the
accuracy of the stixel estimation itself cannot benefit from it.

While originally the orientations of stixels are directly defined by the stixel type,
subsequent works extended the stixel world model to represent non-flat roads or
slanted objects. The first kind of approaches addresses these tasks by integrating
a separate ground surface estimation, which provides a column-wise polynomial
[Saleem et al., 2017] or B-spline approximation [Xu et al., 2018] of the ground sur-
face. Hernandez-Juarez et al. [2017] proposed the so-called slanted stixels approach,
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which additionally estimates a slope for each stixel by adapting the disparity model
to di(v) = biv + ai. The parameters ai and bi are part of the estimation for ground
and object stixels. The fact that, for example, a ground stixel is typically horizontal
is integrated as a Gaussian prior over the parameters ai, bi.

The presented approaches represent the depth structure of a scene given a static
stereo image pair. The present thesis is focused on scene flow estimation, which
means providing depth and motion. However, the stixel world representation has
been also extended to represent the motion. Pfeiffer and Franke [2011a] proposed to
integrate the temporal component using the 6D vision principle [Franke et al., 2005],
which provides the 3D position and 3D motion for every feature individually. The
longitudinal and lateral stixel motion is inferred using a Kalman Filter. Additionally,
a classification of the stixel’s motion state (static, oncoming, forward-moving, left-
moving, right-moving) was proposed by Erbs et al. [2012].

In contrast to these methods, which use a stereo setup, the Mono-Stixel method
proposed in the present thesis addresses a stixel estimation in a monocular setup by
combining optical flow measurements, single-view depth estimates, semantic segmen-
tation, and instance segmentation. While the motion of an object does not matter
for a stixel estimation using a static stereo image pair, the individual motion of
moving objects needs to be considered for integrating optical flow. Therefore the
stixel model of the Mono-Stixel method explicitly distinguishes static and dynamic
objects and defines respective motion constraints, which makes the Mono-Stixel ap-
proach applicable to dynamic scenes in a monocular camera setup. Furthermore,
global optimization following Mono-SF is proposed to improve the accuracy of the
initial segmentation, which infers each column separately.

Monocamera-based stixel world methods: The estimation of a stixel world
representation is typically addressed in a stereo setup. However, there are a few
works using a monocular camera. Wolcott and Eustice [2016] proposed a column-
wise partitioning of the image in ground, obstacle, and background based on a prior
appearance ground map and optical flow. Levi et al. [2015] and Garnett et al. [2017]
proposed a convolutional neural network (CNN), called StixelNet, which predicts the
segment and depth of the closest stixel in each column. Since the input of StixelNet is
a single image, this method is highly related to a stixel estimation in terms of single-
view depth estimation. A multi-view geometry-based approach has been proposed by
Suhr and Jung [2019]. This method follows the stereo-based concept of Badino et al.
[2009] but replaces the disparity map with a 3D point cloud derived by structure
from motion (SfM). However, using SfM point clouds limits this approach to the
static parts of the scene. Furthermore, all these methods represent only the first row
of the closest stixels. Thus, these methods are more related to free-space estimation.
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In contrast to the existing monocular stixel methods, the Mono-Stixel method
presented here provides several contributions: (1) the Mono-Stixel method is the
first monocular multi-layer stixel world estimation, (2) both kinds of information,
multi-view geometry and single-view depth, are combined, and (3) the Mono-Stixel
method provides a full scene flow representation applicable to dynamic scenes.

Two works use a monocular camera instead of a stereo camera setup – but in-
tegrate light detection and ranging (LiDAR) measurements instead. Thereby, the
estimated depth structure relies on the LiDAR point cloud. The monocular image
is exploited for depth completion using color and texture information [Saleem et al.,
2018] or to integrate semantic information [Piewak et al., 2018].

Applications based on the stixel world representation: Several higher-
level vision tasks or applications have been proposed that build upon the stixel
world representation. This supports the usability of the stixel world representation.
A brief overview of these works is given in the following.

The first kind of tasks is to derive an object-centric representation from the stixel
world representation. Especially the clustering of stixels to vehicles represented as
bounding boxes including the motion parameters has been addressed [Erbs et al.,
2011, 2013, 2014]. The clustering could be formulated as hypothesis testing [Erbs
et al., 2011], a labeling problem in a conditional random field (CRF) [Erbs et al.,
2013], or solved via dynamic programming based on a tree-structured graph, which
connects adjacent stixels [Erbs et al., 2014]. These approaches base their clustering
on the geometric information provided by stixels. Alternatively, Hehn et al. [2019]
proposed to integrate a CNN for instance segmentation. The integrated instance seg-
mentation follows the Box2Pix concept [Uhrig et al., 2018], which provides pixel-wise
2D offsets pointing to the center of its respective instance. Analogously, the stixel
labels are extended by their corresponding 2D instance coordinates and clustered
afterward.

The stixel world representation has been exploited for classification tasks such as
pedestrian detection [Benenson et al., 2012, 2011] or vehicle detection [Enzweiler
et al., 2012]. The main benefit of using a stixel world representation is to derive a
reduced set of candidate windows based on the stixels’ geometry. This can speed-up
the classification task and increase the robustness.

Furthermore, applications have been based on the stixel world representation. For
example, the autonomous driving research project presented in [Franke et al., 2013]
uses the stixel world for environment representation.

Applications based on the stixel world representation are out of the scope of
the present thesis. However, due to the similarity of the stereo-based stixel world
representation and the representation provided by the Mono-Stixel method, the
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mentioned applications can possibly also based on the output of the Mono-Stixel
method.

6.2 Mono-Stixel Method

The present section describes the Mono-Stixel approach starting with the definition
of the scene model. The subsequent sections present the column-wise stixel segmen-
tation, independent moving object (IMO) detection, and the global optimization
following the Mono-SF concept (chapter 5) with stixels as underlying representa-
tion.

6.2.1 Scene Model

The image of size w × h is divided into w/ws columns of a fixed width ws. Each
column is considered as an individual 1D segmentation Su into stixel segments as
defined in [Pfeiffer and Franke, 2011b] and equations (6.1) and (6.2). The index u
represents the u-th column. Each stixel segment si is defined as a thin stick-like
planar and rigid moving element in the scene. The following stixel labels are defined
to encode the segmentation, type, geometry, and motion of a stixel segment:

• The segmentation labels vbi , vti define the top and bottom row of the stixel in
the corresponding column to define the segmentation boundaries.

• The semantic class label ci represents the class of the stixel segment such as
road, building, or vegetation.

• The type label mi assigns the stixel segment to one stixel type: ground, static
object, dynamic object, or sky. Each type defines specific model constraints
and groups several semantic classes into one type.

• The distance label ρi stands for the distance of the stixel segment to the camera
defined as an inverse depth.

• The rigid body label oi stands for the association of a stixel segment to one
rigid body. A set of rigid bodies O including their scale-aware 6D motions Tj

is assumed to be given as an input. The motion estimation described in sec-
tion 4.2.1 is used to provide such a set of rigid bodies, which provides a set
of motion estimates for the static environment oBG and potentially moving
objects O = {oBG, o2, ..., oM}. This association serves as a representation of
the relative motion of the stixel.
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• The individual 2D translational stixel motion label ti allows representing an
individual stixel motion in the case that an association to a rigid body is not
possible because the corresponding rigid body is not part of the set O.

• The score γi represents the likelihood to be an independent moving object
(IMO) and expresses which objects are really in motion (e.g distinguishing
parking and driving vehicles).

Consequently, a stixel segment can be considered as an element described by the
labels

si = (vbi , v
t
i ,mi, ci, oi, γi, ρi, ti). (6.11)

Four stixel types mi are introduced, each one defining special stixel model con-
straints. The stixel model constraints are defined to regard the specific prior knowl-
edge applicable to dynamic traffic scenes. The definition of the stixel types is shown
in table 6.1. A more detailed description of the stixel types and their model con-
straints is given in the following.

Ground stixel mi = G: The first stixel type is defined to represent the ground.
Typical classes in traffic scenes are road, sidewalks or terrain (e.g. lawn), which are
considered as the three possible semantic classes ci ∈ CG = {road, sidewalk, terrain}
of the stixel.
The surface orientation of a ground plane is nearly horizontal. This characteristic

is regarded by fixing the normal vector ni of the stixel to be parallel to the vehicle’s
z-axis. Formally, the normal vector is defined as nvi = (0 0 1)T in vehicle coordinates
(x-forward, y-left, z-upward). Based on the extrinsic camera calibration, the normal
vector could also be expressed in camera coordinates by nci = Rv2cnvi . The height is
encoded by the inverse distance ρi ∈ IR of the stixel’s plane to the camera, which
also allows an approximation of slanted surfaces in a stepwise manner. The 3D
position X of each point on the plane fulfills ρinTi X = 1. The ground belongs to
the static environment without any individual motion. Therefore, the association to
a rigid body is constrained to be oi = oBG and the relative translational motion is
defined by the camera motion estimate of the rigid body ti = t(oBG).

Static object stixel mi = SO: The second stixel type comprises the static
objects in the scene excluding those that are potentially moving. There are several
classes of static objects in a traffic scene, which are clustered in the three main
classes ci ∈ CSO = {building, poles-signage, vegetation}. The semantic class defi-
nition can also be done in more detail and include more classes, especially if an
application needs a more finely detailed distinction of classes.
The geometric and motion constraints are similar to the ground stixels with the

main difference that the orientation of static object stixels is defined to be upright.
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Stixel type Semantic Geometry Motion

ground ground class lying static

mi = G ci ∈ CG = {road,
sidewalk, terrain}

nvi =




0
0
1




ρi ∈ IR

oi = oBG

ti = t(oi)

static object static object class upright static

mi = SO
ci ∈ CSO = {building,

poles-signage,
vegetation}

nvi =




1
0
0




ρi ∈ IR ≥ 0

oi = oBG

ti = t(oi)

dynamic object dynamic object class upright potentially moving

mi = DO ci ∈ CDO = {vehicle,
two-wheeler, person}

nvi =




1
0
0




ρi ∈ IR ≥ 0

case 1: "known rigid body"
↪→ oi ∈ {O \ oBG}, ti = ti(oi)

case 2: "unknown rigid body"
↪→ oi /∈ O, ti = Rv2ctvi

with tvi = (tvx tvy 0)T

sky sky class infinite distance static

mi = S ci = CS = sky ρi = 0
oi = oBG

ti = t(oi)

mi: type; ci class; oi: rigid body; ρi: inverse depth; ti: 2D translational motion; γi: IMO score
nv
i : normal vector defined in vehicle coordinates (x-forward, y-left, z-upward)

Table 6.1: Definition of stixel types and their model constraints of the Mono-Stixel method.
The four stixel types, ground, static object, dynamic object, and sky define
model constraints in terms of the semantic, geometry, and motion. The top
row of each type represents the model assumption and the bottom row the
mathematical consideration (see text for details).

This defines the normal vector as nvi = (1 0 0)T in vehicle coordinates or nci = Rv2cnvi

in camera coordinates. The distance of the object to the camera is encoded by its
inverse depth ρi ∈ IR with the constraint that the object needs to be in front of the
camera ρi ≥ 0. Due to the constraint of the stixel type to be a static object, the
associated rigid body is oi = oBG and the relative translation is directly defined by
the camera motion ti = t(oBG).

Dynamic object stixel mi = DO: The static object stixel explicitly excludes
all objects that are potentially moving. These kinds of objects are comprised in
the dynamic object stixel type. Focusing on dynamic traffic scenes, typical moving
traffic participants are vehicles, two-wheelers, or persons, which are expressed by
the potential semantic classes ci ∈ CDO = {vehicle, two-wheeler, person}.
The geometry of a dynamic object stixel in terms of its orientation and depth

is identical to the static object stixel type. However, a dynamic object stixel can
have an individual motion. There are 2 cases of how the motion is represented. In
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the first case, the stixel is associated with one rigid body oi ∈ {O \ oBG} with
known 6D motion T(oi). Thereby, the relative motion is directly given by the asso-
ciation ti = t(oi). In the second case, if this association does not exist oi /∈ O, the
motion is represented as an individual 2D translational motion tvi = (tvi,x tvi,y 0)T

parallel to the ground plane. Considering the typical characteristics of traffic partici-
pants, an upward translational motion, as well as a rotational roll or pitch movement,
are unusual or negligibly small. Furthermore, the yaw-rotation is negligible due to
the small horizontal extent of a stixel. Based on the extrinsic camera calibration, the
translation could be transformed into camera coordinates ti = Rv2ctvi . Introducing
individual stixel motion makes this representation more generic because a motion
representation is still possible even if the rigid body is not detected. Thereby, the
motion estimated for an object (section 4.2.1) becomes an optional input and mis-
detections can be compensated. It is important to note that the dynamic object
stixel type covers all potentially moving objects including e.g. parking vehicles. The
differentiation between moving and standing objects is given by the additional IMO
score γi. How to derive such a score is explained in section 6.2.4.

Sky stixel mi = S: The fourth stixel type represents the sky, which is also the
corresponding semantic class ci = CS = sky. A sky stixel is constrained to be at an
infinite distance ρi = 0 and static.

6.2.2 Column-wise Stixel Segmentation

The stixel world representation is defined as a column-wise segmentation Su into
stixel segments si. The present subsection describes how to estimate such a stixel
representation. This means finding a good segmentation, differentiation of the stixel
types, and estimating the stixel labels. Following the original stereo-based segmen-
tation approach [Pfeiffer and Franke, 2011b], the segmentation is formulated as a
1D energy minimization problem (equation (6.5)), which is solved for each column
independently:

E(Su) = Φ(Su, f , c,d,o,O) + Ψ(Su) (6.12)

The energy term contains a data likelihood Φ(Su, f , c,d,o,O) integrating

1. an optical flow field f (e.g. provided by MirrorFlow [Hur and Roth, 2017]),

2. pixel-wise semantic class scores c (e.g. provided by FCN [Long et al., 2015]),

3. probabilistic single-view depth d (provided by ProbDepthNet),

4. instance labels l (e.g. provided by a Mask R-CNN [He et al., 2017]), and
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5. a set of rigid body motion estimates O (provided as described in chapter 4).

The optical flow field and camera motion estimate, which is equal to the relative
rigid body motion of the static environment, are mandotory, all other inputs are
optional.

Additionally, a pairwise prior term Ψ(Su) incorporates prior knowledge about the
typical structure of street scenes. The components of the energy term are explained in
the following sections 6.2.2.1 and 6.2.2.2 in more detail. Subsequently, the inference
of the energy minimization problem is explained.

6.2.2.1 Scene Model Priors

The prior term prefers a stixel segmentation with a geometric layout that is plausible
for the typical structure of street scenes Ψstr(si, si−1) and further regularizes the
model complexity by adding a constant value Θ1 for each new stixel.

Ψ(Su) =
N∑

i=1

(
Ψstr(si, si−1) + Θ1

)
(6.13)

The structural prior term follows the general idea of Pfeiffer and Franke [2011b] in
a slightly different definition and adds a prior which prefers a flat ground surface. The
applied structural prior Ψstr(si, si−1) depends on the transition of two consecutive
stixels and their stixel types. The segmentation is performed from bottom to top,
which means that the stixel si is above the stixel si−1 in the image.

Ψstr(si, si−1) =





Ψgrav(∆hi) , if mi ∈ {SO,DO},mi−1 ∈ {G,S}

min(Ψord(ρi−1, ρi),Ψ
grav(∆hi)) , if mi,mi−1 ∈ {SO,DO}

Ψflat(∆hi) , if mi = G

0 , if mi = S
(6.14)

The three different structural terms, the gravity prior Ψgrav, the ordering prior Ψord,
and flat ground prior Ψflat, are visualized in figure 6.2 and formally defined as follows.
The prior terms are paramterizable by hyperparameters Θ(·).

Gravity prior Ψgrav: As a first prior, the gravity constraint prefers objects
standing on the ground plane. Thus, if an object stixel si ∈ {SO,DO} succeeds
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Figure 6.2: Scene model priors of Mono-Stixel method: gravity, ordering and flat ground.
The gravity prior expresses that objects typically stand on the ground plane
by rating the height of an object stixel over the ground plane. The ordering
prior is defined to regard the characteristic that an object on top of another
object is typically behind the bottom stixel. The flat ground prior prefers small
deviations in the relative height of two consecutive ground stixels. Small devi-
ations are plausible for example between the road and sidewalk or to represent
a slanted road in a step-wise manner.

(from bottom to top) a ground or sky stixel si−1 ∈ {G,S}, the structural energy
term is defined as Ψstr(si, si−1) = Ψgrav(∆hi) with

Ψgrav(∆hi) =





Θ2 + Θ3∆hi , if ∆hi < 0

Θ4 + Θ5∆hi , if ∆hi > 0

. (6.15)

The height ∆hi of the stixel si over the reference ground is defined as the height
above the last previous ground stixel sG,ref in the column. Formally, ∆hi is defined
as follows:

∆hi = ρ−1
G,ref −

nTGK
−1pvbi

ρinTi K
−1pvbi

(6.16)

The pixel coordinates pvbi correspond to the bottom of the stixel si centered in the
middle of column u:

pvbi =
[
(u+ 0.5)w/ws vbi 1

]T
(6.17)

If there is no previous ground stixel, the height of the reference ground ρ−1
G,ref is

defined as the height of the camera mounting position.

Ordering prior Ψord: If the previous object is also an object stixel
si, si−1 ∈ {SO,DO}, the bottom of the stixel might not be the bottom of
the object due to occlusion or a depth discontinuity inside the object. Therefore,
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the structural prior term is defined as the minimum of the gravity and an ordering
term Ψstr(si, si−1) = min(Ψgrav,Ψord) in this case:

Ψord(ρi−1, ρi) =





Θ6 + Θ7 ·
(
ρ−1
i − ρ−1

i−1

)
, if ρi > ρi−1

0 , otherwise
(6.18)

The ordering prior prefers that an object stixel on top of another object is behind
or close to the bottom stixel in the 3D scene.

Flat ground prior Ψflat: Furthermore, small discontinuities in the height of
the ground plane are preferred, e.g. caused by a slanted street or a sidewalk. The
structural prior for ground stixels si = G is defined as Ψstr(si, si−1) = Ψflat with

Ψflat(∆hi) = Θ8 + Θ9 ·∆h2
i . (6.19)

The height difference ∆hi between the ground stixel si and reference ground is
defined by the last previous ground stixel or camera height as in equation (6.16).

6.2.2.2 Data Likelihood

The unary term or data likelihood Φ(Su, f , c,d, l,O) rates the consistency of an in-
dividual stixel hypotheses si based on the semantic segmentation Φss(si, cv), optical
flow field Φf (si, fv, v), probabilistic single-view depth estimation Φsvd(si,dv, v), and
instance segmentation Φis(si, lv). The data likelihoods are modeled to be indepen-
dent across the pixels and therefore independent across the rows v in the column.

Φ(Su, f , c,d,o,O) =
N∑

i=1

vti∑

v=vbi

(λ1 · Φss(si, cv) + λ2 · Φf (si, fv, v)+

λ3 · Φsvd(si,dv, v) + λ4 · Φis(si, lv))

(6.20)

Each part of the data term is weighted by λ(·). The following paragraphs describe
each data term in more detail.

Semantic segmentation Φss: The semantic segmentation provides for each
row v a class score cv to belong to one of the semantic classes defined in table 6.1. For
example, a FCN [Long et al., 2015] could be trained to provide such class scores for
the specified classes. The data term is defined to prefer stixels si having a semantic
class ci with high class scores cv(ci) at the corresponding rows v ∈ (vbi , v

t
i). Due

to the known issues of overconfident scores c (section 3.1.2.1), the provided scores
should not be directly interpreted as probabilities. A recalibration technique could
be applied to get well-calibrated probabilities, which was shown to be beneficial
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for the single-view depth estimates (sections 4.3.2.1 and 5.3.2). However, here it is
assumed that calibrated probabilities are not given and the data term is defined as
follows:

Φss(si, cv) =





min (τ1,− log(cv(ci))) , if ci ∈ Cmi
∞ , otherwise

(6.21)

The parameter τ1 serves as a truncation of the energy term and allows to overrate
the class scores, even if the scores are overconfident. For highly overconfident scores,
this data term corresponds to a voting scheme considering that the provided class
is erroneous with a certain probability.

The condition ci ∈ Cmi reflects the constraint that the semantic classes need to
be consistent with the stixel types. Note that there is a unique association from
semantic class to stixel type as defined in table 6.1. Thus, semantic segmentation
is also exploited to distinguish the different types and which model constraints are
applicable.

Optical flow Φf : The optical flow input provides for each pixel the
displacement fv that defines the corresponding image position in the next im-
age fv = pv,1 − pv,0. A dense optical flow field could, for example, be estimated
using the MirrorFlow method [Hur and Roth, 2017].

The term Φf (si, fv, v) rates the consistency of the optical flow at row v for a stixel
hypothesis si. Due to the definition of a stixel to be a planar part of the scene, the
expected optical flow f̂v at row v can be derived by the homographyHi (section 2.1.3)
of stixel si:

f̂v = Hipv,0 − pv,0

with Hi = K
(
Ri − ρitinTi

)
K−1

(6.22)

The pixel coordinates pv,0 at row v are defined as in equation (6.17) and K is the
intrinsic camera matrix. The other parts are directly defined by the stixel si and its
model constraints: ni is the normal vector defined by the stixel type (see table 6.1)
and ρi is the inverse depth label. The motion is either defined by the associated
rigid body with Ri = R(oi) and ti = t(oi) or by the camera rotation Ri = R(oBG)

and the individual stixel motion ti. The individual stixel motion is defined by the
2D translation over the ground plane in vehicle coordinates.

For sky stixels, there is the special case that the inverse depth is zero ρi = 0,
which simplifies the homography to Hi = KRiK

−1. The stixel’s homography serves
as the common description of the optical flow for all static and dynamic stixel types.
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The consistency between the measured fv and expected optical flow f̂v is rated as
a reprojection error assuming a mixture of a Gaussian and uniform distribution as
the underlying measurement model of the optical flow.

Φf (si, fv, v) = min

(
τ2, log (|Σv|) +

1

2
(fv − f̂v)

TΣ−1
v (fv − f̂v)

)
(6.23)

The parameter τ2 truncates the energy and is related to the Uniform distribution of
the measurement model. Σv corresponds to the covariance matrix of the Gaussian dis-
tribution of the measurement model. This covariance is defined as Σv = diag(σ2

flow),
but could be exchanged with a more distinctive covariance matrix. Defining the data
term as the minimum of the uniform and Gaussian distribution can be seen as an
approximation as shown in [Pfeiffer, 2012, p. 40].

Probabilistic single-view depth Φsvd: The data term Φsvd(si,dv, v) integrates
the probabilistic single-view depth estimates provided by ProbDepthNet. The esti-
mate dv stands for the parameter µi, λi, σi that define the distribution pv(ρ | I) of the
inverse depth (equation (3.9) in section 3.3). The provided probability distribution
allows to rate the inverse depth of the stixel ρi as the negative log-likelihood:

Φsvd(si,dv, v) = − log (pv(ρ̂i,v|I)) (6.24)

While the depth provided by ProbDepthNet is encoded as ρ = Z−1 with Z being
the Z-coordinate of the 3D point in camera coordinates, the stixel depth ρi is defined
as the inverse distance of the camera to the plane. However, the stixel depth ρi could
be transformed to ρ̂i,v = Ẑ−1

i,v by

ρ̂i,v = ρi
nTi K

−1pv
(0 0 1)TK−1pv

. (6.25)

The pixel coordinates pv at row v are defined as in equation (6.17).

Instance segmentation Φis: The instance segmentation provides labels lv,
which associate each pixel to one rigid body in O. Analogously to the semantic
segmentation, it is not assumed that calibrated probabilities are given for the associ-
ation to a rigid body. Instead of this, it is considered that the instance segmentation
provides a single label without any additional probability or score measure. Further-
more, it is assumed that the class of each rigid body is known (e.g. c(oi) = vehicle).
These definitions regarding the output of instance segmentation could be provided
e.g. by a Mask R-CNN [He et al., 2017].
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The data term Φis(si, lv) is defined to prefer a stixel si with an object label oi
consistent to the provided instance label lv:

Φis(si, lv) =





0 , if oi = lv and ci = c(oi)

∞ , if oi = lv and ci 6= c(oi)

τ3 , otherwise

(6.26)

Setting the energy to infinity for a mismatch of the stixel class ci and the class of
the associated rigid body c(oi) ensures consistent class and object labels. For the
static environment rigid body oBG, all static classes are accepted.
In contrast to SVD-MSfM (chapter 4) and Mono-SF (chapter 5), the truncation τ3

allows to overrule erroneous instance labels. The truncation τ3 corresponds to a
measurement model, which considers an erroneous instance label with a certain
probability.

6.2.3 Solving the Stixel Segmentation Problem

The previous section 6.2.2 described the stixel scene model of the Mono-Stixel
method and the segmentation problem for one column formulated as a 1D energy
minimization problem (equation (6.12)). A 1D energy minimization problem is solv-
able via dynamic programming, e.g. by using the Viterbi algorithm. However, even
with dynamic programming, the run time grows quadratic with all possible labels
for a stixel hypothesis, which results in a high computational effort. Therefore, only
the stixel types mi and segmentations vbi , vti are solved globally using dynamic pro-
gramming. The other stixel labels (ci, oi, ρi, and ti) are derived using a local ap-
proximation.

6.2.3.1 Inference as Shortest Path Problem

The 1D segmentation problem is represented as a hidden semi-Markov model (sec-
tion 2.2.2). The column represents the sequence of states, where the stixel type cor-
responds to the hidden variable. The observations at each pixel in the column are
defined by the optical flow, single-view depth, semantic segmentation, and instance
segmentation. Each stixel covers a certain part of the column, which is modeled in
the semi-Markov model by remaining in the same state for a certain duration. Ad-
ditional constraints for the segmentation (vb1 = 1, vtN = h and vtn−1 + 1 = vbn) ensure
that the whole column is covered with non-overlapping stixels. The segmentation
problem can be expressed by the directed graph illustrated in figure 6.3, which rep-
resents a trellis diagram for hidden semi-Markov models. The explicit modeling to
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Wi = Φ(si) + Ψ(si, si−1)

Figure 6.3: Illustration of Mono-Stixel inference as shortest path problem (illustration fol-
lowing [Cordts et al., 2017]). Each edge of the directed graph corresponds to a
new stixel si. The target node defines the stixel typemi (vertical position). The
segmentation is defined by the horizontal position of the source (vbi ) and target
node (vbi ). The source node additionally corresponds to the type of the previ-
ous stixel si−1. A weight Wi is associated with each edge and defined by the
data Φ(si) and prior Ψ(si, si−1) terms. A path (e.g. red edges) from the source
(left) to the sink (right) corresponds to one stixel segmentation Su. The short-
est path in terms of the sum of the weights corresponds to the optimal stixel
segmentation. Only a subset of edges are shown in the figure for visualization
purposes.

remain in the same state introduces edges that skip certain parts of the sequence,
but allows representing the segmentation boundaries. Each edge corresponds to one
stixel segment si. While the horziontal position of the target node defines the upper
segmentation boundary vti , the vertical position of the target node corresponds to
the stixel type mi. The source node defines the bottom vbi and the type of the previ-
ous stixel mi−1. A path from the source (left) to the sink (right) defines one possible
stixel segmentation Su. For example, the red path in figure 6.3 would correspond to
the following segmentation:

Su = {s1 = (vbi = 1, vti = k,mi = SO, ...),

s2 = (vbi = k + 1, vti = h,mi = DO, ...)}
(6.27)

While the graph structure defines the possible segmentations Su represented as
paths, weights are introduced to define the costs along the path in terms of the
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energy term in equation (6.12). Each weight Wi is associated with one edge and
defined as:

Wi =

vti∑

v=vbi

(λ1 · Φss(si, cv) + λ2 · Φf (si, fv, v) + λ3 · Φsvd(si,dv, v) + λ4 · Φis(si, lv))

︸ ︷︷ ︸
data term: Φ(si)

+ Ψstr(si, si−1) + Θ1︸ ︷︷ ︸
prior term: Ψ(si−1,si)

(6.28)
Therefore, finding the shortest path in terms of the sum of the weights along

the path provide the global optimal stixels Su regarding the stixel types mi and
segmentation vbi , vti . The inference of the shortest path problem is performed via the
Viterbi algorithm (section 2.2.2). The asymptotic runtime complexity of the shortest
path problem is O (h2).

6.2.3.2 Local Stixel Estimation

The formulation as a shortest path problem solves globally the stixel types and
segmentation. To estimate all other stixel labels (ci, oi, ρi, and ti), which are also
needed to define the weights of the edges, a local approximation is proposed. This
means finding the semantic class ci, object instance label oi, inverse depth ρi and
motion ti for one stixel si given its segmentation vbi , vti and type mi.
The general approach proposed here is divided into three steps, which are related

to the MLESAC [Torr and Zisserman, 2000] method. First, a set of stixel hypothe-
sis si ∈ H = {sh1, sh2, ..., shN} is generated. Second, each stixel hypothesis is rated
by its data term Φ(shj) (equation (6.28)). Third, the best stixel hypothesis with the
lowest cost value is selected by

si = arg min
shj∈H

Φ(shj). (6.29)

The following part presents how to define the set of stixel hypothesis H depending
on the given stixels type mi and segmentation vbi , vti .

Sky stixel mi = S: The simplest case is a sky stixel mi = S because all labels
are still defined based on the model constraints in table 6.1: ci = S, ρi = 0, oi = oBG,
and ti = t(oi). Thus, for a sky stixel, there exists only one stixel hypothesis, which
defines the weight of the corresponding edge.

Static object and ground stixel mi ∈ {G,SO}: The approach to define a
set of stixel hypotheses H is the same for both static types, ground G and static
object SO. Based on the model constraints defined in table 6.1, the object label
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is defined as oi = oBG with the corresponding motion ti = t(oi). Thus, only the
semantic class chj and the inverse depth ρhj needs to be estimated.

The set of possible semantic class hypotheses is defined in table 6.1 as Cmi . Merely
the data term of the semantic segmentation Φss(chj, cv) depends on the semantic
class, which allows minimizing the semantic class ci individually:

ci = arg min
chj∈Cmi

vti∑

v=vbi

Φss(chj, cv) (6.30)

For the inverse depth ρi, each optical flow estimate fv and each expected value
of the single-view depth distribution parameterized by dv provide one hypoth-
esis HD = {ρh1, ρh2, ..., ρhM}. Referring to the proposed approach, the inverse
depth hypothesis ρhj minimizing the optical flow Φf (si, fv, v) and single-view
depth Φsvd(si,dv, v) data term is selected by

ρi = arg min
ρhj∈HD

vti∑

v=vbi

(
λ2 · Φf (si, fv, v) + λ3 · Φsvd(si,dv, v)

)
. (6.31)

Note that the costs for the semantic chj and inverse depth ρhj hypotheses can be
stored in an integral table and does not need to be computed for each stixel segment
individually.

An inverse depth hypothesis ρhj based on the expected value µρ,v of the single-view
depth distribution parameterized by dv is defined by rearranging equation (6.25):

ρhj = µρ,v
(0 0 1)TK−1pv

nTi K
−1pv

(6.32)

An inverse depth hypothesis ρhj based on an optical flow measure fv is derived
as a direct linear transform for the stixel’s homography estimation. The optical
flow-based data term Ψf is minimal if the expected optical flow is identical to the
measured optical flow, which defines the following equations:

sK−1pv,1︸ ︷︷ ︸
x1

!
= (Ri − ρitinTi )K−1pv,0︸ ︷︷ ︸

x0

sx1 = Rix0︸ ︷︷ ︸
xr0

−ρitinTi x0

(6.33)

The pixel position pv,1 in the next frame at t = 1 is defined by pv,1 = fv + pv,0. A
homography is only defined up to an unknown scale, which is made explicity by the
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arbitrary scale s. Dividing by the third equation cancels out the unknown scale s
and results in the following two equations:


x1,x · (xr0,z − ρitznTx0)

x1,y · (xr0,z − ρitznTx0)


 =


x1,z · (xr0,x − ρitxnTx0)

x1,z · (xr0,y − ρitynTx0)


 (6.34)

Rearranging these equations provides a linear system of equations for the inverse
depth hypothesis ρi:


n

Tx0 · (tzx1,x − txx1,z)

nTx0 · (tzx1,y − tyx1,z)




︸ ︷︷ ︸
Aρ

ρi =


x1,xx

r
0,z − x1,zx

r
0,x

x1,yx
r
0,z − x1,zx

r
0,y




︸ ︷︷ ︸
bρ

(6.35)

One way to solve this system is the formulation as a normal equation solved using
the pseudo inverse. The solution serves as one inverse depth hypothesis ρhj.

ρhj = (AT
ρAρ)

−1AT
ρ bρ (6.36)

A solution based on a normal equation minimizes the quadratic error of the defined
algebraic error ||bρ −Aρρhj||2. The presented approach to derive an inverse depth
hypothesis ρhj follows a direct linear transform for homography estimation – but with
directly estimating the one degree of freedom of the stixel’s homography considering
the model constraints defined in table 6.1.

Dynamic object stixel mi = DO: In contrast to the static stixel types, the
motion and associated rigid body are not directly defined by the model assumptions
for a dynamic object stixel and needs to be estimated as well. The dynamic stixel
model distinguishes two motion cases (see table 6.1). First, the corresponding rigid
body is part of the given set of rigid bodies O. Second, the motion is expressed as
an individual stixel motion ti.

In the first case, each rigid body is considered as one hypothesis ohj ∈ O \ oBG.
This defines also the motion and class chj = c(ohj) of the stixel. The inverse depth for
each rigid body is derived in the same way as for the static stixels (equations (6.32),
(6.32), and (6.36)) by replacing the camera motion with the relative motion of the
corresponding rigid body.

In the second case, the corresponding rigid body of the stixel is not part of the
set O. Consequently, the semantic class ci is not constrained by the rigid body and
is estimated analogously to the static stixels (equation (6.41)). The inverse depth ρi
is derived by equation (6.31) – but the set of inverse depth hypothesis H is only
defined by the single-view depth estimates (equation (6.32)) due to the missing rigid
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body motion. However, the optical flow estimates are exploited to derive a motion
hypothesis using a direct linear transform for the stixel’s homography estimation.
Based on the model constraints of a dynamic object stixel, the corresponding stixel
homography has two degrees of freedom, which are denoted as t̃i. These two degrees
of freedom are the 2D translational motion of the stixel over the ground plane scaled
by the inverse depth ρi:

ρiti = Rv2ct̃i = Rv2c




t̃x

t̃y

0


 =




Rv2c
0,0 t̃x + Rv2c

0,1 t̃y

Rv2c
1,0 t̃x + Rv2c

1,1 t̃y

Rv2c
2,0 t̃x + Rv2c

2,1 t̃y


 (6.37)

Analagously to equation (6.34) (substitution of ρiti with the equations defined
above), the following two equations are defined:


x1,x · (xr0,z − (Rv2c

2,0 t̃x + Rv2c
2,1 t̃y)n

Tx0)

x1,y · (xr0,z − (Rv2c
2,0 t̃x + Rv2c

2,1 t̃y)n
Tx0)


 =


x1,z · (xr0,x − (Rv2c

0,0 t̃x + Rv2c
0,1 t̃y)n

Tx0)

x1,z · (xr0,y − (Rv2c
2,0 t̃x + Rv2c

2,1 t̃y)n
Tx0)




(6.38)
Rearranging these equations results in a linear system of equations with t̃i as the
free variables:

n

Tx0 · (x1,xR
v2c
2,0 − x1,zR

v2c
0,0 ) nTx0 · (x1,xR

v2c
2,1 − x1,zR

v2c
0,1 )

nTx0 · (x1,yR
v2c
2,0 − x1,zR

v2c
1,0 ) nTx0 · (x1,yR

v2c
2,1 − x1,zR

v2c
1,1 )




︸ ︷︷ ︸
At̃


t̃x
t̃y


 =


x1,xx

r
0,z − x1,zx

r
0,x

x1,yx
r
0,z − x1,zx

r
0,y




︸ ︷︷ ︸
bt̃

(6.39)
Based on the normal equations and pseudo inverse matrix, a hypothesis for t̃hj can
be derived by

t̃hj = (AT
t̃ At̃)

−1AT
t̃ bt̃. (6.40)

The best hypothesis t̃hj defined by one optical flow estimate fv in the stixel segment
is selected by

t̃i = arg min
t̃hj∈HT

vti∑

v=vbi

Φf (t̃i, fv, v). (6.41)

Analagously, this represents a direct linear transform for homography estimation
constrained by the stixel model for dynamic stixel. The estimation of t̃i is indepen-
dent of the estimation of the inverse depth ρi. After estimating both, the scale-aware
translation ti is computed based on ρi and t̃i using equation (6.37).

The stixel hypotheses for the different rigid bodies and the stixel hypothesis with
an individual motion are compared by equation (6.29). This provides finally the
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stixel si for the dynamic object stixel type and allows computing the weight of the
corresponding edge.

Based on these local approximations, the stixel hypotheses and weights of each
edge are defined, which allows performing the stixel inference as the shortest path
problem for each column. The local approximation results in a computational ef-
fort of O (h3) per column. To segment the whole image, w/ws columns need to be
processed and the overall asymptotic runtime complexity is O (wh3).

6.2.4 Independent Moving Object Detection

The dynamic stixels are defined as potentially moving, which also includes e.g. park-
ing vehicles. To represent which objects are really in motion, an additional indepen-
dent moving object (IMO) score γi is estimated for each stixel si. The IMO score is
determined based on a statistical hypothesis test comparing the hypothesis of being
static Hstat with the hypothesis of being in motion Hmov.

The general definition of a generalized likelihood ratio test is

γ =
maxΘ0 p(X | Θ0,H0)

maxΘ1 p(X | Θ1,H1)
. (6.42)

The hypothesis H0 is tested against the hypothesis H1 based on the observations X.
The best model parameters that explain each hypothesis are Θ(·).

The generalized likelihood ratio test is applied to the IMO detection of a given
stixel si. The hypotheses are H0 = Hmov and H1 = Hstat with the corresponding
stixel hypotheses Θ0 = smovi and Θ1 = sstati . The observations X are the measure-
ments of the data terms such as the optical flow and single-view depth estimates.
Intuitively, the hypothesis test should rate the likelihood that an individual rigid
body motion oi ∈ {O \ oBG} or individual stixel motion ti is needed to explain the
measurements in the respective stixel segment.

Switching to the logarithmic space defines the following equation for the IMO
score γi:

γi = log
maxsmovi

p(X | smovi ,Hmov)

maxsstati
p(X | sstati ,Hstat)

= max
smovi

log (p(X | smovi ,Hmov))−max
sstati

log
(
p(X | sstati ,Hstat)

)

= −
(

min
smovi

Φ(smovi )−min
sstati

Φ(sstati )

)
(6.43)

The data term Φ(si) of one stixel is defined in equation (6.28).
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While either sstati or smovi is identical to the estimated stixel si of the segmentation,
the other stixel hypothesis corresponds to the most likely stixel with a different
motion state. The alternative stixel hypothesis is estimated based on the same stixel
model as in table 6.1 and local estimation described in section 6.2.3.2. The only
difference is that a static stixel can be also of a semantic class of dynamic stixels
(vehicle, two-wheeler, person).

6.2.5 Global Stixel Scene Flow Optimization

Chapter 5 presents the Mono-SF approach for a joint scene flow optimization. The
proposed optimization is also applicable to a stixel world scene model. The Mono-SF
approach is briefly summarized here and the adaption to the stixel world represen-
tation is described.

Originally, the underlying scene model of Mono-SF is defined by a set of rigid
bodies with their 6D motions Tj and a set of superpixels represented by their scaled
normals ni. First, the definition of rigid bodies is identical to the set of rigid bod-
ies O of the stixel world (provided for both approaches by SVD-MSfM as described
in chapter 4). Additionally, each stixel that undergoes an individual motion is consid-
ered as an additional rigid body – but only the 2D translations tvi over the ground
plane are considered as variables for the optimization. Second, each stixel si is a
more specialized and constrained kind of superpixel that represents a planar sur-
face element. The scaled normal vector ni of each stixel is derivable by its type (ni
in table 6.1) and inverse depth ρi. Mono-SF optimizes all three parameters of the
scaled normal, which allows estimating stixels that represent slanted objects and
road surfaces. The other labels of the stixels (e.g. segmentation and semantic class)
remain fixed during optimization.

The energy minimization problem (equation (5.1)) of Mono-SF is directly applica-
ble to optimize the stixel world representation in terms of the represented scene flow.
However, two adaptions are proposed. First, the stixel world representation includes
the semantic class ci of each stixel. Therefore, instead of one general smoothing
weight, the smoothing weights in equation (5.5) are defined differently depending
on whether the adjacent stixels belong to the same or different classes. Thereby, a
smoothing effect between different objects is reduced and, for example, a pole is not
smoothed into the background. Second, the Mono-Stixel approach is designed to
perform its optimization based on the optical flow measurements instead of a photo-
metric distance that needs direct access to the images. The data term of Mono-SF
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(equation (5.2)) is adapted by replacing the photometric error with a reprojection
error Φf (p0,ni,Tj):

Φ(p0,ni,Tj) = λ4 · Φf (p0,ni,Tj)

+ λ5 ·
∑

t∈{0,1}
Φsvd
t (p0,ni,Tj)

(6.44)

The reprojection error is defined as in equation (6.23), which approximates the
optical flow measurement model as a mixture of Gaussian and uniform distribution.

In contrast to Mono-SF, the final accuracy additionally depends on the accuracy
of the provided optical flow. However, the experiments in section 5.3.1 reveal that
current SotA methods (e.g. HD3-F [Yin et al., 2019]) are superior to Mono-SF in
terms of optical flow estimation.

The optimization is iteratively performed for 10 times using sequential tree-
reweighted message passing (section 2.2.2). Converting the continuous variables into
a discrete labeling problem follows the same strategy as for Mono-SF (section 5.2.3)
by generating 5 particles for each motion variable and 10 particles for each 3D
normal vector.

While the stixel segmentation of the Mono-Stixel method initially treats each
column separately, applying Mono-SF couples different columns to optimize the
stixel segments globally in terms of the scene flow.

6.3 Experimental Evaluation of Mono-Stixel

Method

One motivation of the proposed Mono-Stixel algorithm is providing a scene repre-
sentation, in particular providing the scene flow, in a compact form using the stixel
world representation. The first section 6.3.1 provides qualitative results of the stixel
segmentation in comparison to its inputs. The results show a significant improvement
of the provided stixel representation compared to the respective inputs. In addition
to the compact representation, the second section 6.3.2 validates quantitatively that
the provided scene flow accuracy is competitive to Mono-SF. Even more, the qual-
itative results show better characteristics of the stixels for thin objects, especially
in low-parallax situations. One additional advantage of the Mono-Stixel approach is
that merely the optical flow and camera motion are mandatory. This enables ana-
lyzing the impact of the deep learning inputs in terms of scene flow estimation and
IMO detection. The results are presented in sections 6.3.3 and 6.3.4.
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The experimental results are based on the Mono-Stixel approach using the follow-
ing inputs: (1) MirrorFlow [Hur and Roth, 2017] is implemented to provide a dense
optical flow field, (2) the probabilistic single-view depth estimates are provided by
ProbDepthNet (section 3.3), (3) instance labels are provided by a Mask R-CNN
[He et al., 2017] (implementation of [Wang, 2018]), (4) a FCN [Long et al., 2015] is
trained to provide the class scores for the semantic classes defined in table 6.1, and
(5) the set of rigid bodies and their scale-aware 6D motions are provided by SVD-
MSfM (chapter 4). ProbDepthNet is trained on KITTI [Geiger et al., 2013] with
pretraining on Cityscapes [Cordts et al., 2016] and Mask R-CNN is only trained
on Cityscapes [Cordts et al., 2016]. FCN is pretrained on Cityscapes [Cordts et al.,
2016] and fine-tuned on a dataset of 470 KITTI images [Geiger et al., 2013], which
are collected from the labeled subsets in [Kundu et al., 2014, Ros et al., 2015, Sen-
gupta et al., 2013, Xu et al., 2016, Ošep et al., 2016, Upcroft et al., 2014]. For all
networks, it is ensured that the training images are from different sequences than the
KITTI scene flow training dataset [Menze and Geiger, 2015], which is the dataset
used for evaluation.

6.3.1 Qualitative Results of Stixel Segmentation

Qualitative results of the stixel segmentation are shown in figure 6.4 using a stixel
width of ws = 5 pixel. The figures show additionally the inputs of the Mono-Stixel
method to illustrate the impact of the Mono-Stixel segmentation compared to its
given inputs. The comparison to the inputs supports the following characteristics.
The Mono-Stixel method can provide an improvement for noisy optical flow esti-
mates, e.g. visible in figure 6.4 (a). Additionally, significant failures of the optical
flow such as on the crossing vehicles in figure 6.4 (b,d) can be corrected by the
Mono-Stixel method. Compared to the single-view depth estimates, the provided
depth by the Mono-Stixel method is sharper, for example, for the signage in fig-
ure 6.4 (a,b). Another characteristic is that the optical flow of the Mono-Stixel
method corresponds to the projection of the scene flow instead of an appearance-
based optical flow. This difference is, for example, visible for the moving shadow
of the vehicle in figure 6.4 (c). While the instance segmentation is visually similar
for Mask R-CNN and stixel segmentation, the semantic segmentation benefits from
applying the Mono-Stixel method, so that the incorrect classification as a sidewalk
in the front-left of the vehicle in figure 6.4 (d) is corrected.
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Figure 6.4: Qualitative results of the Mono-Stixel method in comparison to its inputs on the
KITTI scene flow training dataset [Menze and Geiger, 2015]. The color coding
represent the estimated depth (from close (warm) to far (cool)), the optical flow
(Middlebury color coding [Baker et al., 2011]) or semantic class (color coding
of [Cordts et al., 2016]). The stixel’s top and bottom are visualized in black,
the vertical boundaries (columns) every 5 pixels are not shown.
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6.3.2 Evaluation of Scene Flow Estimation

The evaluation of the Mono-Stixel method in terms of monocular scene flow esti-
mation follows the same setup as for Mono-SF (section 5.3.1) and SVD-MSfM (sec-
tion 4.3.1). As a summary, the scene flow results are evaluated based on the equiva-
lent representation as the depth of each pixel at both times (t = 0, t = 1) and the
optical flow using the KITTI scene flow dataset [Menze and Geiger, 2015]. The met-
ric reports the frequencies of errors for the depth at time t = 0 (D1) and t = 1 (D2)
and the optical flow (Fl). A valid scene flow estimate (SF) is defined as fulfilling all
the D1, D2, and Fl metrics. The results are stated for the moving objects (fg), the
static scene (bg), and both combined (all). The baseline methods represent four cat-
egories of monocular scene flow approaches. Multi-task networks (section 4.1.3) that
provide depth and optical flow or depth and motion estimates are considered as the
first group. The second group comprises the combination of single-view depth and
optical flow estimation as individual tasks. While the third category exploits multi-
view geometry such as multi-body structure from motion (MSfM)-based methods
(section 4.1.2), the fourth category covers methods that combine single-view depth
information with multi-view geometry. The fourth category is especially represented
by the proposed methods, SVD-MSfM, Mono-SF, and the Mono-Stixel method.

6.3.2.1 Qualitative Results of Scene Flow Estimation

Figure 6.6 shows qualitative results of monocular scene flow estimation for Mono-
SF, column-wise Mono-Stixel segmentation (section 6.2.2), and global Mono-Stixel
scene flow optimization (section 6.2.5). The Mono-Stixel method provides reason-
able results for the static environment and for moving objects, which cover various
motions such as oncoming (see figure 6.6 (a-c)), preceding (see figure 6.6 (a,b)), or
crossing (see figure 6.6 (c)). The global Mono-Stixel optimization serves as a fine-
tuning, which reduces the discretization effects for representing a slanted road in a
stepwise manner (see figure 6.6 (c)), but also corrects some erroneous estimates (see
right advertising sign in figure 6.6 (c)). Comparing the Mono-SF and Mono-Stixel
methods shows a similar accuracy in general – but the stixels provides sharper esti-
mates and better reconstructions for thin objects. While the pole in figure 6.6 (a) is
smoothed out using Mono-SF, it is reconstructed reasonably using the Mono-Stixel
method. Even in standstill scenarios (see figure 6.6 (c)), the stixels preserve more
details.
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Figure 6.6: Qualitative results of the Mono-Stixel method in comparison to Mono-SF on the
KITTI scene flow training set [Menze and Geiger, 2015]. The third rows show
the Mono-Stixel results including the global optimization. The color coding
represent the estimated depth (from close (warm) to far (cool)), the optical
flow (Middlebury color coding [Baker et al., 2011]) or the disparity/ optical
flow endpoint error (color coding shown in the legend).
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Method MRE D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all
GeoNet∗

[Yin and Shi, 2018]
20.07 47.03 63.41 49.54 56.24 68.88 58.17 32.42 67.69 37.82 67.69 91.40 71.32

DF-Net∗
[Zou et al., 2018]

18.95 44.42 57.94 46.49 61.55 61.47 61.53 25.66 37.44 27.46 71.62 82.51 73.29

Struct2Depth∗
[Casser et al., 2019]

14.92 27.29 56.58 31.77 33.25 66.12 38.29 37.86 71.96 43.08 49.98 91.39 56.32

EPC++
[Luo et al., 2019]

- 22.76 26.63 23.84 - - - 17.58 26.89 19.64 - - -

Self-Mono-SF
[Hur and Roth, 2020]

9.98 28.75 45.07 31.25 33.00 45.15 34.86 23.06 25.92 23.49 44.27 62.40 47.05

MirrorFlow
[Hur and Roth, 2017]

+ LRC
[Godard et al., 2017]

9.68 25.33 19.82 24.48 35.82 26.15 34.34 9.39 14.22 10.13 40.55 35.17 39.72

HD3-F†
[Yin et al., 2019]

+ DORN†
[Fu et al., 2018]

11.18 17.02 37.54 20.16 30.08 40.47 31.67 4.01 6.76 4.43 32.57 46.89 34.76

DMDE
[Ranftl et al., 2016]

14.6 - - - - - - - - - - - -

S. Soup
[Kumar et al., 2017]

12.68 - - - - - - - - - - - -

S.Rel.
[Di et al., 2019]

10.23 - - - - - - - - - - - -

MFA
[Kumar et al., 2019]

11.82 - - - - - - - - - - - -

SVD-MSfM
[chapter 4]

8.55 17.84 23.94 18.77 20.37 26.72 21.35 15.31 15.55 15.34 24.50 35.01 26.11

Mono-SF
[chapter 5]

8.14 15.64 22.72 16.72 17.93 24.71 18.97 12.20 9.90 11.85 20.19 29.40 21.60

Mono-Stixel
(column-wise DP)

8.34 17.13 28.22 18.83 20.45 32.50 22.30 9.44 10.50 9.60 22.60 36.64 24.75

Mono-Stixel
(global optimization)

8.59 14.22 24.18 15.74 17.45 27.10 18.93 9.23 10.94 9.49 19.25 30.84 21.03

MRE: mean relative depth error in %; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow
D1, D2, Fl, SF: percentage[%] of estimates that exceed an error threshold (> 3px and > 5% of length)
fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg
†: parts of dataset used for training (disregarded for ranking); ∗: scaled to align the ground truth

Table 6.2: Quantitative evaluation of the Mono-Stixel method with respect to several
monocular methods on the KITTI scene flow training set [Menze and Geiger,
2015]. The methods are divided into four groups: First, multi-task CNNs; sec-
ond, combining optical flow and single-view depth estimation as individual tasks;
third, MSfM-based approaches; fourth, fusing single-view depth information
with multi-view geometry. The groups are seperated by two horizontal lines.

6.3.2.2 Quantitative Evaluation of Scene Flow Estimation

The quantitative evaluation of the Mono-Stixel method in comparison to monocu-
lar baseline methods including SVD-MSfM and Mono-SF is shown in table 6.2. In
addition to the targeted compact representation form, the results show that the
Mono-Stixel method provides SotA monocular scene flow estimates. Also in terms
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of optical flow estimation, the Mono-Stixels method provides an improvement over
the MirrorFlow [Hur and Roth, 2017] method, which is used as input. While the
accuracy of the Mono-Stixel method with global optimization is comparative to
Mono-SF, the accuracy of the column-wise stixel segmentation slightly outperforms
SVD-MSfM. This validates, on the one hand, that the global Mono-SF improves the
accuracy of both, SVD-MSfM and column-wise stixel segmentation. On the other
hand, it highlights the trade-off between accuracy and runtime. While similar ap-
proaches to SVD-MSfM and the column-wise stixel segmentation have been shown
to be real-time capable, the global optimization of Mono-SF increases the computa-
tional effort.

6.3.3 Ablation Study on Mono-Stixel Inputs

The Mono-Stixel segmentation is designed to be flexible in terms of the used inputs.
All inputs, except the optical flow and camera motion estimation, are optional. Deac-
tivating one input could be considered as setting its weight to zero in equation (6.20).
However, the local stixel estimation (section 6.2.3.2) differs slightly. The necessary
adaptions for deactivating a certain input and the corresponding impacts are de-
scribed in the following parts. The scene flow results of the Mono-Stixel variants
with different input configurations (denoted by checkmarks) are stated in table 6.3.
The experiments are based on the column-wise segmentation without global opti-
mization.

Semantic segmentation: The different semantic classes ci of each type are
derived based on the semantic segmentation input. However, the types are still
distinguishable by their geometric constraints and the general stixel segmentation
is applicable.
The results in table 6.3 show an improvement in all metrics compared to its

counterpart without semantic segmentation (respective counterpart one row above).
Even though the semantic segmentation does not directly provide depth or motion
information, it supports the segmentation and distinguishing the stixel types, which
is important to apply the correct model constraints.

Instance segmentation: The instance segmentation is exploited to define the
set of rigid bodies O to derive their motion estimates (section 4.2.1) and to support
the association of stixels to rigid bodies. Without instance segmentation merely
the rigid body of the background oBG is given and the stixel motion of dynamic
objects is always expressed by the individual 2D translation, which corresponds to
the second case of dynamic object motion in table 6.1. However, the stixel motion
is still representable and the Mono-Stixel algorithm applicable.
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MRE: relative depth; D1, D2: disparity (t = 0, 1); Fl: optical flow; SF: scene flow errors

fg: foreground (moving objects) ; bg: background (static environment); all: bg + fg; all errors in %

Table 6.3: Evaluation of column-wise stixel segmentation of the Mono-Stixel method using
different input configurations. The metric rates the scene flow accuracy. The
used inputs in terms of single-view depth estimation, semantic segmentation,
and instance segmentation are denoted by the checkmarks. Additionally, a dense
optical flow and at least a camera motion estimate is given as input. The highest
accuracy is achieved by integrating all inputs, which supports that each input
provides an improvement and contributes to the final accuracy.

Referring to the results stated in table 6.3, integrating the instance segmentation
shows the following effects. The counterpart without instance segmentation is shown
in the respective two rows above. For the static environment, the instance segmen-
tation provides a very small improvement, which is likely related to the supported
distinction of static and dynamic objects. For moving objects, the depth at t = 0

benefits not or only slightly from the instance segmentation. However, integrating
the instance segmentation improves the depth at t = 1, the optical flow, and scene
flow for moving objects significantly. These metrics need to consider the motion
and show the ability to predict moving objects – thus benefiting the most from the
scale-aware object motion estimates and rigid body prior.

Single-view depth estimation: The motion estimation exploits the single-view
depth estimates to derive scale-aware motions. Therefore, it is considered that the
scale-ware motion estimates are not given except for the static environment oBG.
Actually, the camera motion estimation of oBG also derives its metric scale from
the single-view depth. However, for the camera motion, different approaches can
provide scale-aware estimates also without single-view depth estimates as described
in section 4.1.1.
The depth of the static stixel types is estimated analogously to the proposed

approach, whereby the depth hypotheses are defined by the optical flow. Due to
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the missing scale-aware motion estimates, the motion of dynamic stixels is always
represented by the individual 2D translation (second case in table 6.1). Originally,
the optical flow defines the hypotheses for the 2 degrees of freedom of the homogra-
phy t̃i and the single-view depth estimates provide the inverse depth ρhj hypotheses
for dynamic objects. Due to the missing single-view depth estimation, the depth
is alternatively derived by minimizing the structural prior Ψstr. For a single stixel,
this is achieved by that inverse depth ρi that leads the stixel to stand on the ref-
erence ground ρG,ref . For stixels that belong to the same instance, the median of
the scales defined by minimizing the structural prior is taken to exploit that these
stixels undergo the same rigid body motion.

Integrating single-view depth information significantly improves the depth and
scene flow estimates for the static environment and moving objects, which is shown in
table 6.3 (respective counterparts four rows above). The optical flow does not benefit
significantly and is in some cases even slightly worse. Single-view depth estimates
improve the depth estimates in general, but are also needed to handle standstill
and low-parallax situations. This is also supported by the high mean relative error
(MRE) without single-view depth estimation, which is highly affected by the outliers
during standstill. Additionally, the improvement for moving objects supports that
integrating the single-view depth estimates is superior to the depth estimation based
on minimizing the structural prior.

Optical flow: The optical flow is not considered as an optional input. The
present paragraph presents the special case of using only the optical flow as input and
deactivating all others. Thus, the rigid body and motion estimation are merely given
for the static environment oBG and the semantic classes ci are not distinguishable.
The inverse depth hypotheses ρhj are defined by the optical flow for the static stixel
types. The motion and depth estimation for dynamic stixel follows the described
variant above without single-view depth estimation. Due to the less restrictive model
constraints of a dynamic stixel in terms of the motion parameters, the Mono-Stixel
approach would tend to represent all objects as dynamic objects based on the optical
flow. Therefore, the stixel segmentation is initially performed over the three stixel
types, ground, dynamic object, and sky. The proposed IMO detection is exploited
to distinguish static and moving objects. Stixels detected as potentially static are
subsequently replaced with the stixel sstati as defined in section 6.2.4.

The results of the Mono-Stixel approach only based on the optical flow are stated
by the row without checkmarks in table 6.3. In general, the accuracy is lower than for
variants integrating additional inputs. A significant drop in the accuracy is visible
for moving objects. This is also because some object motions such as oncoming
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or preceding objects are not detectable based on the optical flow as described in
section 4.1.2, which results in wrong depth estimates.

Overall, the highest accuracy is achieved by integrating all input, which supports
that each input provides an improvement and contributes to the final accuracy.

6.3.4 Evaluation of Independent Moving Object Detection

The Mono-Stixel approach provides an addition independent moving object (IMO)
score γi, which defines the probability to be in motion. The KITTI scene flow dataset
[Menze et al., 2018] provides labels for moving parts of the image, which are the
basis for distinguishing the foreground and background classes for the scene flow
evaluation. By introducing a threshold, a set of pixels with γi > γmov is defined as
moving and pixels with γi ≤ γmov are defined as static. The number of pixels (1)
correctly detected as moving are the true positives (TPs), (2) erroneously detected
as moving are the false positives (FPs), (3) correctly detected as static are the true
negatives (TNs), and (4) erroneously detected as static are the false negatives (FNs).
Based on these values the following metrics are defined:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

Average Precision (AP) =

∫ 1

R=0

P (R)dR

Intersection over Union (IoU) = max
γmov

(
TP

TP + FP + FN

) (6.45)

By variating the threshold γmov a receiver operating characteristic (ROC) curve
is derived, which shows the relation of the precision (P) to the recall (R). Integrat-
ing over this curve defines the average precision (AP) to rate the accuracy of the
independent moving object (IMO). Alternatively, the intersection over union (IoU)
selects the best threshold in terms of the defined metric.
Figure 6.7 shows the ROC curves for the different Mono-Stixel variants based

on the different input configurations described in section 6.3.3. Additionally, the
results of MODNet [Siam et al., 2018] are stated as a baseline method. MODNet
is a CNN that provides moving object masks using a raw image and an optical
flow field as inputs. The Mono-Stixel variant integrating all inputs provides the
highest accuracy in terms of the AP and IoU metric and significantly outperforms
MODNet. The lowest accuracy is achieved for the Mono-Stixel approach merely
based on the optical flow. On the one hand, some object motions such as oncoming
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Figure 6.7: Evaluation of Mono-Stixel variants for independent moving object (IMO) de-
tection on KITTI scene flow dataset [Menze et al., 2018]. The ROC curves, AP,
and IoU are shown for Mono-Stixel variants with different input configurations
and for the baseline method, MODNet [Siam et al., 2018]. The integrated in-
puts are indicated by the corresponding data term (Φf for optical flow, Φss for
semantic segmentation, Φis for instance segmentation, and Φsvd for single-view
depth). The highest accuracy is achieved for the Mono-Stixel variant integrat-
ing all inputs. Especially integrating a classificaton in the form of a semantic or
instance segmentation provides a significant improvement. Both figures show
the same ROC curves, whereby the bottom diagram is a zoomed-in view of the
upper right corner of the top diagram.
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or preceding objects are not detectable in this case. On the other hand, the moving
object detection is sensitive to erroneous optical flow estimates. Integrating single-
view depth estimates shows improvement and allows detecting all kinds of motions.
However, the highest improvement is obtained by adding a classification in the form
of a semantic or instance segmentation, which helps to restrict the parts that are
potentially moving such as vehicles. Either integrating semantic segmentation or an
instance segmentation shows a similar improvement in terms of IMO detection.

6.4 Conclusion

The present chapter presented the Mono-Stixel method, an approach for monocular
scene flow estimation providing a scene representation in the form of a compact
stixel world representation. The evaluation confirms that the Mono-Stixel method
provides SotA monocular scene flow estimation and IMO detection. Even more, the
results illustrate better characteristics especially for thin objects such as poles. The
improvement and usefulness of integrating the individual inputs are validated by the
experiments.
The formulation as a 1D energy minimization problem for column-wise segmenta-

tion allows an efficient computation. A variant of the Mono-Stixel algorithm based
on a sparse optical flow including simplifications and approximations is implemented
in real-time on embedded hardware. Even though this Mono-Stixel variant is out
of the scope of the present thesis, it highlights the applicability of the Mono-Stixel
model and approach for driver assistance systems or autonomous driving.



7
CONCLUS ION AND OUTLOOK

The present thesis is focused on monocular scene flow estimation and driven by
the core question: ’How to combine the principles of multi-view geometry with deep
learning-based perception for scene flow estimation in a monocular camera setup
focusing on multi-rigid-object dynamic scenes?’ In the concluding chapter, the es-
sential contributions are summarized and an outlook is given for the presented ap-
proaches and monocular scene flow estimation in general.

7.1 Summary of Essential Contributions

Several contributions and details are provided in terms of the addressed core ques-
tions, which are summarized into five essential statements.

(1) Monocular scene flow estimation formulated as an optimization combining
multi-view geometric information with probabilistic single-view depth estimates
achieve new state of the art (SotA) accuracy. Ablation studies confirm that both
kinds of information, multi-view geometry and deep learning-based single-view
depth, significantly contribute to the final accuracy.

The approaches in chapters 4 to 6 address the task of monocular scene flow estima-
tion. The methods combine a multi-view geometry-based part such as a photometric
or reprojection error with probabilistic single-view depth estimates. The experiments
validate that the multi-view part and the single-view depth information are essen-
tial to achieve the new SotA accuracy. The highest accuracy is achieved for a global
energy minimization jointly optimizing the motion of rigid bodies and the structure
of planar surface elements.
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(2) The integration of single-view depth information into a monocular scene flow
estimation highly benefits from a probabilistic and well-calibrated representation
as depth distributions.

The monocular scene flow approaches are formulated as energy minimization prob-
lems. The experiments in chapters 4 and 5 show the importance that the single-view
depth estimates are provided in a probabilistic and well-calibrated form. This is
made possible by the proposed ProbDepthNet presented in chapter 3 including a
novel recalibration method.

(3) Calibrated distributions are achievable for neural regression networks by addi-
tional subsequent layers trained on a hold-out split of the training data.

Most of the regression networks for single-view depth estimation merely provide
a single maximum likelihood estimate without an uncertainty quantification. The
ProbDepthNet presented in chapter 3 provides pixel-wise depth distributions by
estimating the parameters of a distribution. While the estimation of overconfident
scores due to overfitting effects is a well-known problem for classification problems,
ProbDepthNet presents a recalibration technique for regression problems. A few
additional layers, the CalibNet, are trained on a hold-out data split and reshape the
parameter of the distribution such that they are well-calibrated.

(4) Integrating probabilistic single-view depth estimates into a rigid-object motion
estimation results in metric scale-aware motion estimates also for moving objects.

The scale ambiguity is a well-known problem for pose and motion estimation in a
monocular camera setup. While previous methods exploit special scene constraints
such as a known camera height, these methods typically lack generalizability to mov-
ing objects. The motion estimation proposed in chapter 4 is formulated as an energy
minimization problem minimizing the poses and a set of 3D scene points. The en-
ergy term captures a multi-view photometric distance and rates the 3D scene points
by the single-view depth estimates. The results show that the proposed methods
provide accurate scale-aware motion estimates – also being applicable to moving
objects.

(5) A specialized representation for dynamic traffic scenes such as the stixel world
can be used as underlying scene model for monocular scene flow estimation.

Applications that are designed to work in a specific domain of scenes such as
dynamic traffic scenes can exploit additional prior scene knowledge. The presented
Mono-Stixel method (chapter 6) formulates the scene flow estimation using a stixel
world representation. This results in better characteristics such as that thin objects
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are smoothed out less and that the representation can be decoded in a compacter
way.

7.2 Outlook

The present thesis provides essential contributions in terms of probabilistic single-
view depth estimation and monocular scene flow estimation. The present section
describes potential directions of further research for the presented methods and in
general.

Probabilistic single-view depth estimation: ProbDepthNet presented in
chapter 3 provides depth distribution designed to capture the measurement uncer-
tainty. The quantification of the model uncertainty or out of distribution (OOD)
detection is out of the scope of the ProbDepthNet model.

For the model uncertainty, methods such as Monte Carlo Dropout are also applied
to regression problems and could be integrated into the ProbDepthNet.

For the OOD detection, the experiments in section 3.4.3 analyzed the generaliza-
tion capabilities of ProbDepthNet and illustrate the limitations for images that are
too different to the training data, e.g. close-up views of buildings. In such a case,
neither the depth estimates nor the uncertainties are guaranteed to be reasonable.
Such samples are considered as OOD data, which require special treatment to be
detected. The current SotA methods for OOD are focused on classification problems.
Methods such as analyzing the neural activation pattern are not directly applicable
for regression problems. Thus, one direction of research would be OOD detection as
part of the ProbDepthNet and OOD detection for regression problems in general.

Furthermore, the recalibration technique requires ground truth data and the hold-
out split reduces the number of training samples for the main network. Both can
be disadvantageous especially if the ground truth data needs a high effort to be col-
lected and only a few training data samples exist. The uncertainty quantification for
unsupervised training and recalibration without needing a hold-out split of training
data are open challenges and a further direction of research.

Monocular scene flow estimation: The chapters 4 to 6 addresses the task of
monocular scene flow estimation problems. The experiments show the importance
of integrating the single-view depth estimates in a probabilistic and well-calibrated
form. This probably holds for all inputs and it could be therefore advantageous
to integrate also the motion estimates with an uncertainty measure and to apply
recalibration techniques to the semantic and instance segmentation.
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This thesis is tailored to monocular scene flow estimation in a two-view setup. The
qualitative results of all methods show that the accuracy decreases for parts that are
occluded in one image or leave the field of view and for low-parallax situations such
as standstill scenarios. Typically, most parts of the scene have already been observed
for a longer time before they are occluded or leave the field of view. Furthermore,
even if there is a standstill situation, the camera previously was in motion. This
strongly motivates to extend the estimation to a longer temporal context to increase
the accuracy and overcome the described limitations. For example, the estimation
could be directly formulated on more than two views such as a bundle adjustment.
This would probably increase the computational effort significantly and a prediction
and tracking scheme might be practically more useful.

Furthermore, this thesis is focused on multi-rigid body scenes, especially on dy-
namic traffic scenes. Many of the findings and general concepts probably also apply
to other scenes, which could be analyzed in subsequent works. The single-view depth
estimation benefits from strong model constraints such as a road surface or that ve-
hicle stand on the ground plane. Thus, it is not ensured that the single-view depth
information is such powerful information for all kinds of scenes. The assumption that
the scene is decomposable into a set of rigid bodies is also a traffic scene-specific
constraint. For other scenes, such as close-up views of persons, the approaches need
to be extended to handle non-rigid motions.

The presented methods for monocular scene flow estimation are not real-time
capable. For the Mono-Stixel algorithm, a real-time capable version for embedded
hardware is implemented, which corresponds to the column-wise segmentation based
on an optical flow field with some further simplifications and approximations of the
segmentation algorithm. This Mono-Stixel variant is out of the scope of the present
thesis but still highlights that the approaches can reach real-time at least with some
simplifications. However, reaching real-time also including the deep learning parts
remains a challenge, especially on embedded systems.

Finally, I would like to discuss a more general direction, in which the methods
for monocular scene flow could lead. While the proposed methods are based on a
traditional energy minimization problem, end-to-end neural networks showed to out-
perform traditional methods for many tasks. The multi-task networks that provide
depth and motion estimates could be considered as end-to-end networks. However, so
far these networks are not able to fully exploit the multi-view information for depth
estimation during inference. These methods are still significantly outperformed by
the proposed methods in the present thesis. While the convolutional kernel of a
convolutional neural network (CNN) is invariant to the image position, multi-view
geometry principles depends on the image position. This gives a plausible explana-
tion, why CNNs in its standard form cannot represent tasks such as triangulation.
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However, if suitable special layers and architectures can be found that integrate all
relevant information such as the proposed energy minimization problems, end-to-
end neural networks could be the next promising improvement also for monocular
scene flow estimation.
Overall, the present thesis is the first work explicitly focussed on monocular scene

flow estimation, especially in terms of combining geometric principles with deep
learning approaches. Essential contributions are presented and new SotA methods
are provided. There are still interesting directions of research and I am very curious
to see future works in the field of monocular scene flow estimation.
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