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Zusammenfassung

“Dass ich nicht mehr mit sauerm Schweiß

Zu sagen brauche, was ich nicht weiss;

Dass ich erkenne, was die Welt

Im Innersten zusammenhaelt,

Schau alle Wirkenskraft und Samen,

Und tu nicht mehr in Worten kramen. ”

Faust, Johann Wolfgang von Goethe

Das Verständnis der Phasenübergänge in stark wechselwirkender Kernmaterie und der

Eigenschaften des Quark-Gluon-Plasmas (QGP), das bei relativistischen Schwerionenkolli-

sionen erzeugt wird, ist gegenwärtig eine der größten Herausforderungen der theoretischen

Physik.

Bei ultra-relativistischen Energien am Large Hadron Collider (LHC) oder am Relativi-

stic Heavy-Ion Collider (RHIC) hat das QGP, das im zentralen Wechselwirkungsvolumen

entsteht, eine Nettobaryonendichte oder ein chemisches Baryonenpotenzial von nahezu

Null (µB ≈ 0), und der Übergang von einem freien Zustand der Quarks und Gluonen zum

eingeschlossenen (confined) Zustand der Hadronen ist ein schneller, aber kontinuierlicher

Übergang. Das derzeitige Interesse gilt jedoch Kollisionen bei niedrigeren Laborenergien,

bei denen die Nettobaryonendichte höher ist und das chemische Potenzial der Baryonen

entsprechend auch höher ist. Einige theoretische Modelle sagen dort einen möglichen Pha-

senübergang erster Ordnung sowie einen kritischen Endpunkt (CEP) voraus. Der genaue

Ort des CEP im Phasendiagramm ist jedoch noch unbekannt.

Um den Bereich des QCD-Phasendiagramms bei endlichen baryonchemischen Potenzia-

len zu erreichen, wird in laufenden Experimenten die Labornergie gesenkt und Observablen

bei zentraler Rapidität gemessen. Bisher haben die Programme Beam Energy Scan (BES)

und Fixed-Target (FXT) am RHIC eine Reihe von Au+Au-Kollisionen im Bereich von
√
sNN von 200 GeV bis hinunter zu 3 GeV durchgeführt. Nach den statistischen Modellen

variiert das entsprechende baryonische chemische Potential - beim chemischen Einfrieren

- von µB ≈ 20 MeV bei
√
sNN = 200 GeV bis ≈ 420 MeV bei

√
sNN = 7.7 GeV und

µB ≈ 750 MeV bei
√
sNN = 3 GeV für FXT. Um das Vorhandensein eines CEP und

mögliche Auswirkungen eines Phasenübergangs erster Ordnung zu untersuchen, kann ein

Anstieg des chemischen Baryonenpotentials durch weitere Absenkung der Kollisionsenergie

in den zukünftigen Experimenten an FAIR (Facility for Antiproton and Ion Research) und

NICA (Nuclotron-based Ion Collider fAcility) erreicht werden, die insbesondere das QGP-

Phasendiagramm bei moderaten und höheren µB-Werten untersuchen. Dies ist der am

wenigsten erforschte Bereich des QCD-Phasendiagramms, aber von besonderem Interesse

für zukünftige experimentelle Programme und theoretische Studien.
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Um diese Untersuchungen in einem viskosen hydrodynamischen Modell durchführen

zu können, muss man die Zustandsgleichung (EoS) der stark wechselwirkenden Materie

und auch die Transportkoeffizienten kennen. Die zeitliche Entwicklung des QGP-Mediums,

das in Schwerionen-Kollisionen (HICs) erzeugt wird, kann auch in mikroskopischen Trans-

portansätzen untersucht werden, die die zeitliche Entwicklung der Freiheitsgrade des Sys-

tems liefern. Sie erfordern zusätzlich die Kenntnis der mikroskopischen Eigenschaften der

partonischen Freiheitsgrade, wie effektive Massen, Breiten und Wirkungsquerschnitte, die

alle von µB und T abhängen können. Der große Wert der laufenden Kopplung erfor-

dert nichtperturbative Methoden wie lQCD-Rechnungen oder effektive Modelle mit einem

phn̈omenologischen Input. Daher ist es bekanntermaßen schwierig, die thermodynamischen

Eigenschaften der QCD-Materie im nicht eingeschlossenen Zustand abzuschätzen, insbe-

sondere in der Nähe eines Phasenübergangs. Während lQCD-Berechnungen bei verschwin-

dendem baryonischem Potential gut etabliert sind, ist die Ausweitung dieser Rechnungen

auf ein großes baryonisches Potential aufgrund des Fermionen-Vorzeichen-Problems nicht

etabliert. Eine Möglichkeit, thermodynamische Funktionen bei µB > 0 zu untersuchen, ist

die Verwendung einer Taylor-Entwicklung der Verteilungsfunktion in der Nähe von µB =

0. Sie teilt mit anderen Ansätzen, die für µB = 0 entwickelt wurden, dass die Unsicherheit

der Vorhersagen mit der Zunahme von µB zunimmt. Um die Untersuchung der Transport-

koeffizienten auf den Teil des Phasendiagramms auszudehnen, in dem der Phasenübergang

möglicherweise von einem Crossover zu einem erster Ordnung wechselt, ist es notwendig,

auf effektive Modelle zurückzugreifen.

Ziel dieser Dissertation ist es, die Gleichgewichts- und Nichtgleichgewichts-Eigenschaften

des stark wechselwirkenden QGP-Mediums nahe dem Phasenübergang unter extremen Be-

dingungen von hohen T und hohen Baryonendichten mit Hilfe der kinetischen Theorie im

Rahmen von effektiven Modellen zu untersuchen. Wir werden zunächst die thermodyna-

mischen und Transporteigenschaften des QGPs in der Nähe des Gleichgewichts auf der

Basis des DQPM im Bereich moderater chemischer Baryonenpotentiale µB ≥ 0.5 GeV

untersuchen. Insbesondere werden die EoS und die Schallgeschwindigkeit sowie die Trans-

portkoeffizienten des QGP auf der Grundlage des DQPM bei endlichen T und µB be-

rechnet. Transportkoeffizienten sind besonders interessant, da sie Informationen über die

Wechselwirkungen im Medium erlauben, das im Gleichgewicht durch eine Temperatur T

und ein chemisches Potential µB charakterisiert werden kann. Unter Berücksichtigung der

Transportkoeffizienten und der EoS der QGP-Phase vergleichen wir unsere Ergebnisse mit

verschiedenen Resultaten aus der Literatur, in denen Transportkoeffizienten des QGPs auf

Basis von effektiven Modellen vorwiegend bei Null oder kleinem chemischen Potentialen

untersucht wurden.

Darüber hinaus werden in Kapitel 3 die Gleichgewichtseigenschaften des QGPs und insbe-

sondere die Auswirkungen der µB-Abhängigkeit der thermodynamischen und Transport-

eigenschaften des QGPs im Rahmen des erweiterten PHSD-Transportansatzes untersucht,

der die vollständige Entwicklung des Systems einschließlich der partonischen Phase um-

fasst. Die Entwicklung des PHSD-Transportansatzes wird in der partonischen Phase erwei-

tert, indem explizit die gesamt- und differentiellen partonischen Streuquerschnitte auf der
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Grundlage des DQPM berechnet und bei der tatsächlichen Temperatur T und dem baryo-

nischen chemischen Potential µB in jeder einzelnen Raum-Zeit-Zelle, in der die partonische

Streuung stattfindet, ausgewertet werden.

Um die Spuren der µB-Abhn̈gigkeit des QGPs in den Observablen zu untersuchen, werden

die Ergebnisse von PHSD5.0 (mit µB-Abhängigkeiten) mit den Ergebnissen von PHSD5.0

für µB = 0 sowie mit PHSD4.0, in dem die Massen/Breiten der Quarks und Gluonen sowie

deren Wechselwirkungsquerschnitte nur von T abhängen, verglichen. Wir diskutieren die

PHSD-Ergebnisse für verschiedene Observablen: (i) Rapiditäts- und pT -Verteilungen von

identifizierten Hadronen für symmetrische Au+Au- und Pb+Pb- Kollisionen bei Ener-

gien von 30 AGeV (zukünftige NICA-Energie) sowie für die RHIC-Spitzenenergie von
√
sNN = 200 GeV; (ii) gerichteter Fluss v1 von identifizierten Hadronen für Au + Au

bei invarianter Energie
√
sNN = 27 GeV und 200 GeV; (iii) elliptischer Fluss v2 der iden-

tifizierten Hadronen für Au+Au bei invarianten Energien
√
sNN = 27 und 200 GeV.

Der Vergleich der "BulkObservablen für Au+Au-Kollisionen innerhalb der drei PHSD-

Einstellungen hat gezeigt, dass sie eine recht geringe Empfindlichkeit gegenüber den µB-

Abhängigkeiten der Partoneigenschaften (Massen und Breiten) und ihrer Wechselwirkungs-

querschnitte aufweisen, sodass die Ergebnisse von PHSD5.0 mit und ohne µB sehr nahe

beieinander liegen. Nur im Fall von Kaonen, Antiprotonen p̄ und Antihyperonen Λ̄ + Σ̄0

konnte ein kleiner Unterschied zwischen PHSD4.0 und PHSD5.0 bei den höchsten SPS-

und RHIC-Energien festgestellt werden.

Wir finden nur geringe Unterschiede zwischen den Ergebnissen von PHSD4.0 und PHSD5.0

für die hier betrachteten hadronischen Observablen sowohl bei hohen als auch bei mitt-

leren Energien. Dies hängt damit zusammen, dass bei hohen Energien, wo die Materie

vom QGP dominiert wird, ein sehr kleines chemisches Baryonenpotential µB in zentra-

len Kollisionen bei mittlerer Rapidität gemessen wird, während mit abnehmender Energie

und größerem µB der Anteil des QGPs rapide abnimmt, sodass die endgültigen Beob-

achtungswerte insgesamt von den Hadronen dominiert werden, die an der hadronischen

Rückstreuung teilgenommen haben, und somit die Information über ihren QGP-Ursprung

verwaschen oder verloren geht.

In Kapitel 4 betrachten wir die Transportkoeffizienten von QGP-Materie im erweiterten

Polyakov-NJL-Modell entlang der Übergangslinie für moderate Werte des chemischen Ba-

ryonenpotenzials 0 ≤ µB ≤ 0.9 GeV sowie in der Nähe des kritischen Endpunkts (CEP) und

bei großem chemischen Baryonenpotenzial µB = 1.2 GeV, wo ein Phasenübergang erster

Ordnung stattfindet. Wir untersuchen, wie die Natur der Freiheitsgrade die Transportei-

genschaften des QGPs beeinflusst. Darüber hinaus demonstrieren wir die Auswirkungen

des Phasenübergangs erster Ordnung und des CEP auf die Transportkoeffizienten im de-

konfinierten QCD-Medium.

Darüber hinaus wird in Kapitel 5 eine phänomenologische Erweiterung des DQPM auf

große baryonchemische Potentiale µB einschließlich der Region mit einem möglichen CEP

und späterem Phasenübergang erster Ordnung betrachtet. Eines der wichtigsten Merkma-

le des Modells ist das Auftreten einer ’kritischen‘ Skalierung in der Nähe des CEP. Das

Hauptziel des vorgestellten Modells besteht darin, die mikroskopischen und makroskopi-
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schen Eigenschaften der partonischen Freiheitsgrade für den Bereich des Phasendiagramms

bereitzustellen, der durch moderates T und moderates oder hohes µB gekennzeichnet ist.

Ihre Kenntnis ermöglicht es anschließend, die Transportkoeffizienten sowie die EoS, die Be-

standteile viskoser hydrodynamischer Simulationen sind, zu berechnen. Die EoS, die Schall-

geschwindigkeit und die spezifische Wärme sowie die Transportkoeffizienten für T > Tc

werden für einen weiten Bereich von µB vorgestellt, wobei zwei Einstellungen der che-

mischen Potentiale der seltsamen (strange) Quarks (I) µq = µu = µs = µB/3 und (II)

µs = 0, µu = µd = µB/3 verwendet werden, die für hydrodynamische Simulationen von In-

teresse sind. Darüber hinaus diskutieren wir den Vergleich mit den Transportkoeffizienten

des PNJL-Ansatzes, der ein sehr ähnliches Phasendiagramm, aber andere Freiheitsgrade

hat, d.h. wechselwirkende masselose Quarks und keine Gluonen. Der Vergleich der Trans-

portkoeffizienten zeigt, dass sie in der Tat von den Eigenschaften der Freiheitsgrade ab-

hängen und in zwei Theorien mit fast dem gleichen Phasendiagramm recht unterschiedlich

sein können.
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Introduction

The exploration of fundamental properties of nuclear matter under the extreme conditions

of high densities and high temperatures is a challenging topic, which can provide useful

insights on many-bodies dynamics with strong-interactions. This is reflected both in the

large number of theoretical studies on the subject and in the rich experimental program at

Relativistic Heavy-Ion Collider (RHIC) (RHIC) and Large Hadron Collider (LHC) (LHC)

energies as well as in the future experimental facilities such as the Facility for Antipro-

ton and Ion Research (FAIR) in Darmstadt and the Nuclotron-based Ion Collider fAcility

(NICA) in Dubna.

The majority of the experimental programs aim to explore the phase structure of strongly

interacting nuclear matter, especially to determine the properties of a system in the vicin-

ity of a phase transition from the confined hadronic phase to the deconfined phase known

as quark-gluon plasma (QGP).

In such a hot and dense environment it is notoriously difficult to calculate equilibrium

properties of the QGP from first principles, since the interaction is so strong, that a per-

turbative expansion in terms of the coupling constant is not applicable in the vicinity of

the phase transition. Moreover, the study of QCD matter in heavy-ion collisions (HICs)

can shed light on the mechanism of confinement, which is not fully understood from a

theoretical point of view.

While the phase transition of the QGP matter, produced in collisions at the highest ener-

gies at LHC and RHIC and small baryon chemical potential, is conjectured to be a smooth

crossover, lower energy collisions can explore higher baryon chemical potentials, where a

possible first-order phase transition as well as critical endpoint (CEP) are predicted by

some theoretical models.

The determination of basic transport coefficients, such as shear and bulk viscosities as well

as electric, strange and baryon conductivities of the hot and dense QGP, is essential for

the simulations of HICs based on hydrodynamical models, which use them as input param-

eters. The analysis of experimental data for elliptic flow conjectured that results can be

reproduced by hydrodynamical simulations only with a small value for the shear viscosity

over entropy density. The viscosity of a system quantifies its ability to restore local thermal

equilibrium after being driven away from equilibrium by gradients in its macroscopic flow

pattern. Viscous effects disappear as soon as the corresponding relaxation times approach

zero. Small viscosities are governed by the short relaxation times or to strong interactions

among the microscopic degrees of freedom.

The goal of this dissertation is to study the equilibrium as well as out-of-equilibrium prop-

erties of the strongly interacting QGP medium close to the phase transition under extreme

conditions of high T and high baryon densities by means of kinetic theory in the framework

of effective models. We will explore first the thermodynamic and transport properties of

the QGP near-equilibrium on the basis of the dynamical quasiparticle model (DQPM) in

the region of moderate baryon chemical potential µB ≥ 0.5 GeV. Furthermore, the DQPM
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CONTENTS

allows to interpret the equation of state (EoS) in terms of dynamical degrees of freedom

and estimate the cross sections of the corresponding elastic and inelastic reactions, which

are essential for the transport evolution.

Moreover, out-of equilibrium properties of the QGP and in particular, the effect of a µB-

dependence of thermodynamic and transport properties of the QGP have been studied

within the Parton-Hadron-String-Dynamics (PHSD) transport approach, which covers the

full evolution of the system including the partonic phase. The evolution of the partonic

sector in the PHSD is extended by explicitly calculating the total and differential partonic

scattering cross-sections based on the DQPM and evaluated at the actual temperature T

and baryon chemical potential µB in each individual space-time cell where partonic scat-

tering take place. To explore the domain of high baryon chemical potential, where in the

vicinity of the critical endpoint CEP located at (TCEP , µCEP
B ) = (0.100, 0.960) GeV we

extend the DQPM adapting the critical behavior of the effective coupling constant by using

the entropy density from the Polyakov extended Nambu-Jona Lasinio model (PNJL) close

to the CEP.

The structure of the thesis is as follows. In Chapter 1 we begin with a discussion of the

theoretical background of strong interactions and its applications to HICs. Chapter 2 is

devoted to an exploration of thermodynamic and transport properties of QGP close to

equilibrium at moderate baryon chemical potentials. In particular, we focus on the EoS

and the speed of sound, as well as transport coefficients of the QGP, calculated on the

basis of DQPM at finite T and µB.

In Chapter 3, we employ PHSD transport approach to study the QCD matter evolution

during HICs at BES energies. We consider the evolution of the partonic systems at higher

µB within an extended PHSD approach, which also incorporates partonic quasiparticles

and their differential cross sections that depend not only on temperature T (as in the pre-

vious PHSD versions) but also on the chemical potential µB explicitly. In particular, we

discuss the ‘bulk’ observables in HICs at various energies – from AGS to RHIC – for sym-

metric Au+Au and Pb+Pb collisions. Furthermore, we enlarge our exploration to more

sensitive to the partonic phase evolution observables, such as collective flow coefficients,

where we focus on an impact of the µB-dependencies of partonic cross sections on the flow

coefficients.

In Chapter 4, we address the transport properties of QGP in the region of higher baryon

chemical potentials, where the PNJL is employed. In that region, the influence of possible

CEP and first-order phase transition is considered. Moreover, the basic transport coeffi-

cients are evaluated on the basis of kinetic theory in the relaxation-time approximation

(RTA).

Finally, in Chapter 5 a phenomenological extension of the DQPM to large baryon chemical

potentials µB, including a region where a possible CEP and 1st-order phase transition,

is considered. The EoS, the speed of sound as well as transport coefficients for T > Tc

are presented for a wide range of µB and T , employing two settings of the strange quark

chemical potentials (I) µq = µu = µs = µB/3 and (II) µs = 0, µu = µd = µB/3, which are

of interest for hydrodynamical simulations.
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1. Theory of Strong Interactions

1

Theory of Strong Interactions

“ No progress without paradox ”

John Wheeler, 1985

Unlike quantum electrodynamics (QED), the theory of the strong interaction, i.e. quan-

tum chromodynamics (QCD), cannot be easily cracked up by conventional - mainly per-

turbative methods - or tested via direct experimental measurements. In this Chapter we

review the basic ingredients of a theoretical description of strong interactions and several

experimental observables which shed light on the peculiar properties of QCD. In particu-

lar, the phenomena of the deconfined and chiral phase transitions in QCD and transport

properties of the relevant degrees of freedoms are of great interest to the heavy-ion collision

community. The full theoretical description of the evolution of the QCD medium in the

heavy-ion collisions (HICs) involves phenomenological and effective models, which will be

considered in the next Chapters. Moreover, during the HICs, the deconfined state of QCD

matter - quark-gluon plasma (QGP) - which is supposed to consist of quarks and gluons,

is created. It is predicted that the QGP has existed at ∼ 10 microseconds after the Big

Bang, however so far there is no solid experimental confirmation of it. Moreover it is im-

portant to note that the QGP created in HICs, in neutron stars or during the initial stages

of the Universe, is under the influence of extreme conditions. Such conditions include

high temperatures, strong magnetic fields, and high densities. These conditions result in

a considerable change of thermodynamic and transport observables. The phase diagram

of QCD can be considered in the (T, µB)-plane. It has a rich structure, shortly discussed

in following. The properties of the QCD medium under extreme conditions created during

HICs, such as high temperature and high densities are addressed first in equilibrium in

this Chapter and then out-of-equilibrium in the next Chapters.

1.1 Fundamental properties of QCD

QCD describes the strong interactions between quarks and gluons by means of an ex-

change of color charges. The complication as compared to QED is that the gluons are

color-charged and therefore can interact between each-others. Moreover, this non-abelian

nature of QCD encompasses important phenomena: asymptotic freedom and confinement.

While in QED the virtual cloud screens the bare charge and results in a smaller charge at

larger distances compared to the bare charge, in QCD the gluon self-interaction causes an

opposite phenomenon – antiscreening. The phenomenon of charge screening in QED and

antiscreening in QCD results in a running coupling. The running coupling constant can
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ΛQCD as follows

αs(Q
2) =

1
11Nc − 2Nf

12π
ln(Q2/Λ2

QCD)

. (3)

One can see that the perturbative expression of αs(Q
2) diverges in the limit of small mo-

mentum transferQ and the parameter ΛQCD corresponds the energy scale where αs(|µ2|) →
∞. The parameter ΛQCD depends on Nf and can be estimated by a comparison with ex-

periments. For Nf = 3 it is found to be ∼ 346 MeV [13]. In the limit of small momentum

transfer or large distances, the interaction becomes so strong that it is impossible to isolate

a parton from a hadron, whereas it is cheaper to create a quark-antiquark pair. This phe-

nomena is known as quark confinement. Confinement has been corroborated within the

modern nonperturbative methods of lattice QCD (lQCD) calculations [14, 15]. However,

due to the non-perturbative nature the confinement cannot be mathematically proven from

first principles.

At small Q2 ∼ ΛQCD the perturbative expansion breaks down but alternative non-

perturbative approaches can be applied in this domain. In particular, numerical simulations

by means of the lQCD approach [16] and more analytical methods such as the Functional

Renormalisation Group (FRG) [17] and the functional approach via Dyson-Schwinger and

Bethe-Salpeter equations [18] have been successfully used for the exploration of QCD in

the non-perturbative low-energy regime.

To capture the basic features of QCD we consider classical Lagrangian density

LQCD =
∑

q=u,d,s,...

ψ̄q,i (iDij −mqδij)ψq,j −
1

4
F a
µνF

µν
a , (4)

where ψq,i(ψ̄q,i ≡ ψ†γ0) is a quark field with fundamental color index i, which runs from

i = 1 to Nc = 3, and mq = diag(mu,md,ms, ...) is the quark-mass matrix, which is

diagonal in the flavor space. The sum over q runs over the quark flavors, a is the adjoint

color index, which represents combination of color charges carried by the gluon, running

from a = 1 to N2
c − 1 = 8. F a

µν denotes the gluon field strength tensor for a gluon with

color index a. The gauge covariant derivative Dij in QCD reads

Dij ≡ γµ(Dµ)ij = γµ∂µδij − igsγ
µT a

ijA
a
µ. (5)

Here, γµ are the Dirac gamma matrices, and gs =
√
4παs is the QCD coupling constant.

The second part of the QCD Lagrangian density consists of the kinetic term, where the

gluonic field strength tensor reads

Fµν
a = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (6)

Here fabc are the structure constants of the SU(3) group. As one can see applying Eq. (6)
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1. Theory of Strong Interactions

to the second term of Lagrangian density, there are 3-gluon and 4-gluon vertices with fabc,

which are absent in case of an Abelian theory such as QED.

1.2 Equilibrium properties of QCD matter: Lattice QCD

The exploration of the QCD matter under extreme conditions requires non-perturbative

methods since the conventional methods of perturbation theory are inapplicable at low

energies, where the value of the coupling constant g ≫ 1. In such a case, the main way of

calculations in QCD are calculatiions of path integrals without involving an expansion in

the coupling constant. The first formulation of the gauge theory on a space-time lattice

was proposed by K. Wilson in 1974 [19]. The approach is based on a representation of

the gauge field as a phase multiplier. The application of the lattice approach to quantum

field theory is considered as a mathematical technique that enables a truncating of the

ultraviolet divergences. At the same time, the lattice gauge theory method is the most

natural way to calculate path integrals. In the lattice approach continuous four-dimensional

space-time, on which the field functions are given, is replaced by a discrete space of finite

size with a finite lattice step a. Therefore, the Lagrangian density has to be discretized

and physical observables can be obtained from the correlation functions calculated on the

lattice. The main components of the lattice discretization are

• node is a point on the lattice defined by the coordinates xµ = anµ , where nµ is a

four-vector with components (nx, ny, nz, nt). The number of nodes in different spatial

directions is assumed to be the same and multiplied by the number of nodes in the

temporal direction. In an isotropic lattice the step is the same in all directions. In

the case of anisotropic lattices the step in spatial and temporal directions is different.

• link represents a rectilinear segment on the lattice connecting two neighboring nodes.

A link is given by the coordinate xµ of its origin and the direction of the corresponding

axis in space. Each link is assigned a link variable Uµ(x), which is an SUc(3) matrix.

The link associates lattice nodes with coordinates x and x+aµ̂, where is a unit vector

in the direction µ̂. When the direction of the link is reversed, the matrix Uµ(x) must

be replaced by an hermitian-conjugate one. Moreover, the link variable Uµ(x) can

be related to the continuous gluon field as Uµ(x) = Pexp
(
ig0
∫ x+aµ̂
x dzµAµ(z)

)
. It

is important to note that the trace over products of links along any closed loop is

gauge invariant.

• plaquette, or elementary square bounded by four links, is given by the coordinate

of the node lying in its lower left corner and the positive directions of the attached

links that form the square together with the nodes. The plaquette variable is written

in the form:

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n) (7)

An illustration of the main components of the lattice discretization is given in Fig. 1.2.

Lattice calculations are based on a discretization of the path integrals of quantum field

theory. The transition from Minkowski space to Euclidean space is performed by the
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Figure 1.2: Sketch of the lattice discritization and its main ingredients: ψ(n) is the
fermion field defined on the sites, Uµ(n) is the link variable, and the plaquette Pµν(n).

Wick rotation, i.e. transforming the temporal component of the fields to the imaginary

component:

x0 → −ixE4 (8)

After the transition to imaginary time and imposing antiperiodic quantization condi-

tions, the field theory in the space of N dimensions turns into statistical mechanics in the

space of N − 1 dimensions. Thus the time in quantum-field theory is compared to the

inverse temperature in statistical mechanics.

A key feature of the lQCD approach is the maintenance of gauge invariance without

an introduction of additional nonphysical degrees of freedom. Preserving of the gauge

invariance leads to significant adjustments, in particluar, by ensuring the vanishing masses

of the gluons in the regularized theory.

Thermodynamic observables

One of the key components for the simulations of the evolution of QCD matter is the

equation of state (EoS), which generally means the relation between the pressure and

energy density and quark/baryon density, here however we refer to the EoS as the T -

and µB- dependence of thermodynamic quantities such as pressure p and energy density

ǫ. The thermodynamic quantities can be evaluated within the lQCD approach, as well as

within other non-perturbative methods, and within a variety of QCD-like models such as

the (P)NJL model, the Linear sigma model, the on-shell and off-shell quasiparticle models

etc.

Now we focus on results for the thermodynamic observables from the lQCD calculations

in equilibrium.

According to the statistical mechanics all thermodynamic quantities of the system with

hamiltonian H at finite T in equilibrium can be derived from the partition function

Z(β) = Tr exp(−βH), (9)

7
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Figure 1.3: The dimensionless thermodynamic observables as a function of temperature
for Nf = 2+1. The gray points are from the HotQCD collaboration [21], while the colored
ones are from the WB collaboration [22]. The figure is taken from [16].

with β = 1/T being inverse temperature. The partition function can be expressed as a

path integral in the Euclidean space containing the corresponding Lagrangian density [20]:

Z(β, V ) =

∫
D[A]D[ψ]D[ψ̄]exp

(
−
∫ β

0
dx4

∫

V
d3xLE(A,ψ, ψ̄)

)
. (10)

Here first integration runs over a finite size with a thickness determined by the inverse

temperature. The integration in lattice formulation is replaced by the sum over a finite

lattice size L. The integration over the quark fields can be performed analytically, while the

partition function for the gauge fields can only be calculated within Monte-Carlo methods.

The continuum extrapolated results are obtained after performing thermodynamic L→ ∞
and continuum a→ 0 limits.

From the partition function the main thermodynamic observables can be deduced. For

instance, the pressure and energy density reads

P = T

(
∂lnZ

∂V

)

T

, (11)

ǫ = − 1

V

(
∂lnZ

∂T−1

)

V

. (12)

Other thermodynamic observables can be obtained through Euler relation for the grand-

canonical ensemble. In lattice simulations a lattice with a finite number of time steps

N4 is considered. A time grid with a finite number of steps in time N4 is used. Thus

the temperature of the system is defined as T =
1

N4a
. The size of the grid in the space

directions N = N1 = N2 = N3 should be infinitely large. In practice it is finite but satisfies

the ratio N ≫ N4. In the limit N4 → ∞ the system corresponds to the field theory at

8
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zero temperature.

The continuum extrapolated results for the scaled interaction measure, entropy density

and pressure are displayed in Fig. 1.3. As one can see there is a good comparison between

the results obtained from the HotQCD collaboration [21] (gray points), and from the WB

collaboration [22] (colored points). The non-interacting Stefan-Boltzmann limit of massless

quarks and gluons for high T is depicted for the pressure and the scaled entropy. The lines

at low temperature correspond to the HRG model predictions. In the vicinity of phase

transition the thermodynamic observables undergo a rapid increase with the increasing

temperature due to the increasing number of dynamical degrees of freedom.

While at vanishing baryon chemical potential lQCD calculations provide smooth results

for the thermodynamic observables for a large range of temperature, a direct calculation

of the EoS at non-zero baryon and other chemical potentials is not yet established due to

the well-known sign problem, which refers to the fact that the fermion determinant be-

comes a complex function for finite quark chemical potentials. However, at small chemical

potentials this can be bypassed by employing a Taylor expansion of the thermodynamic

potential in terms of baryon, electric charge and strangeness chemical potentials [23, 24].

The resulting EoS has been obtained for chemical potentials up to µB/T . 3.0 [21, 22].

Recently, a new expansion scheme has been proposed, which covers regions of moderate

chemical potentials up to µB/T ≤ 3.5 [25].

1.3 Symmetries and phases of QCD

Global symmetries and associated conserved currents and charges play an important role in

thermodynamics and affect the phase structure of QCD. QCD possesses many symmetries,

exact and approximate, which leads to a rich phase structure that will be discussed below.

First the QCD Lagrangian is invariant under local color transformations ω(x) ∈ SU(3)c

ω(x) = exp(igθa(x)λa/2), (13)

ψq(x) → ψ′
q(x) = ω(x)ψq(x), (14)

Aµ(x) → A′
µ(x) = ω(x)

(
Aµ(x) +

1

g
∂µ

)
ω†(x), (15)

where θa denotes arbitrary real numbers and λa are Gell-Mann matrices. The local color

SU(3) symmetry results in a similar strength for the quark-quark and gluon-gluon in-

teraction, which is governed by the coupling constant αs. Nevertheless, in the region of

high chemical potential and low temperature, the color SU(3) symmetry is spontaneously

broken; this domain corresponds to the color superconductive phase. Moreover, the QCD

Lagrangian obeys discrete C, P , T - and combined CPT symmetries.

Later on we consider global symmetries of QCD with associated transformations V , where

V ∈ SU(Nf ) or U(Nf ).

The two light quarks as well as the strange quark have relatively small masses, compared

to hadron scales (≈ mN = 0.938 GeV). Therefore, the approximation of vanishing light

and/or strange quark masses can be considered. In this case the QCD Lagrangian has a

9
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global flavor symmetry

SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A, (16)

where Nf denotes the number of quark flavors and indices V and A denote ’vector’ and

’axial(-vector)’ w.r.t. to the Lorentz transformation properties of the associated conserved

currents. By increasing Nf the global symmetry (16) becomes more broken by the heavy

quark masses.

In the case of Nf = 2, the quark masses are quite small, in the limit mu ≈ md, there

is a corresponding SU(2)V isospin symmetry, with corresponding transformations

ψq → e−
i
2
θkτkψq. (17)

If we consider the limit of quark masses mu ≈ md ≈ 0 (mu ≈ 5 MeV and md ≈ 9 MeV)

there is a associated SU(2)A chiral symmetry.

ψq → e−
i
2
γ5θkτkψq. (18)

The UV (1) symmetry is independent of the quark mass. It corresponds to a phase change

for all quark species

ψq → e−iαψq. (19)

The baryon number is an exactly conserved number of the strong interaction, which is also

used to specify types of hadrons.

Furthermore, for Nf = 3 QCD in the limit of mu = md = ms involves a chiral symmetry

SU(3)V ⊗ SU(3)A, which is equivalent to SU(3)L ⊗ SU(3)R. Nevertheless, SU(3)A as

well as SU(2)A are spontaneously broken, which implies an existence of massless Nambu-

Goldstone bosons: three bosons for the Nf = 2 - π±, π0 and eight bosons for Nf = 3 -

K±,K0, K̄0, η. Due to the finite quark masses, these so-called pseudo-Goldstone bosons

have finite masses, however, much lower than other hadrons. The order parameter of the

chiral transition is the chiral condensate < ψψ̄ >, which drops to 0 in a phase with the

exact chiral symmetry, while < ψψ̄ > 6= 0 in the phase with the broken chiral symmetry.

The deconfinement transition - in a limit of infinite quark masses - is related to spon-

taneous symmetry breaking of the Z3 center symmetry of SU(3)c [27]. In QCD for infinite

quark mass the order parameter of the deconfinement phase transition is the Polyakov

loop, expressed in terms of the Euclidean temporal component of the gauge field AE
4 as

< Φ >=
1

Nc
Trc Lx, (20)

Lx = P exp[i

∫ 1/T

0
dτAE

4 (x, τ)], (21)

where P is the path-integral ordering operator, and the trace Trc is taken in the color

space. Global center ZNc symmetry, related to the transformations

Lx −→ zkLx, z
k = ei2πk/Nc, (22)

10
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Figure 1.5: Schematic phase diagram of QCD in the temperature T and baryon chemical
potential µB plane. Horizontal lines on the top panel represent the intervals of µB covered
in correspondent experimental facilities. The figure is based on [30].

1.4 Phase diagram of QCD matter

Usual cold nuclear matter T = 0 is considered at µB = mN = 938 MeV. In QCD at low

temperatures and baryon chemical potentials, quarks and gluons are bound into hadrons,

therefore the lower left part of the diagram corresponds to a hadron resonance gas. At

low temperatures but high baryon chemical potentials, the nuclear matter enters a color

superconductive phase. It is believed that this phase can be possibly realized in the center of

neutron stars [28]. On the other hand, at high temperatures or/and finite baryon chemical

potentials, quarks and gluons become deconfined, and a QGP phase is formed [29].

While an examination of the QGP, created in the central interaction volume at ultra-

relativistic energies at the Large Hadron Collider (LHC) or the Relativistic Heavy-Ion

Collider (RHIC), has been performed at almost zero baryon chemical potential (µB ≈
0) the most intriguing region of moderate and high baryon chemical potential and finite

temperature remains unexplored experimentally. On the theory part, there are big dis-

crepancies between various model predictions, especially concerning the phase structure,

while first principle approaches for finite T and µB become notoriously difficult. However,

some of the quantitative results from the effective models are in agreement. It is known

from lQCD calculations that the phase transition at vanishing baryon chemical is a rapid

crossover [31]. However, it is predicted from the various QCD-like models that the order

of the phase transition can change at finite µB. It has been argued that at T ≈ 0 and

large baryon chemical potential µB > mN the phase transition should be of first-order.

Therefore, with a decrease of µB the possible first-order transition line should terminate
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Figure 1.6: Qualitative spacetime evolution of a relativistic heavy-ion collision. The
nuclei (blue discs) propagate along the z-axis at the speed of light and collide at z = t = 0.
The QGP(orange region) medium forms at proper time τ ∼ 1 fm/c and converts to a
hadron resonance gas (blue region) around τ ∼ 10 fm/c. The figure is based on [35].

at a critical endpoint (CEP), where the transition is of second-order, and with a further

decrease of µB the phase transition becomes a crossover. Such a scenario is depicted in the

theoretical sketch of the QCD phase diagram, presented in Fig. 1.5. It is worth pointing

out that the conjectured QCD phase diagram has a few similarities with the phase diagram

of water, which usually is presented as a function of pressure P and temperature T .

1.5 Dynamical properties of QCD matter:

Modelling the heavy-ion collisions

Many properties of QGP matter have been established by experimental observations in

ultrarelativistic HICs at RHIC and LHC. Therefore, the QGP-matter has to be explored

within off-equilibrium methods, while well defined QGP properties in equilibrium are used

as well. Such a consistent description of all stages of HICs within a single approach has to

provide a unifying explanation of many physical phenomena. The most prominent are jet

quenching [32], multi-particle long-range flow correlations, strangeness ’enhancement’ [33],

quarkonium suppression and regeneration [34], open heavy-flavor diffusion and electromag-

netic radiation.

We begin with lead-lead collision, where the Lorentz contracted nuclei are moving along

the z axis, while a QGP system is created in the central overlap area. Figure 1.6 illus-

trates the qualitative space-time evolution of a relativistic HICs, where the three main
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stages can be considered: an early non-equilibrium stage, a further expansion stage, and

a final freeze-out stage. Such a separation allows to apply different advanced theoretical

approaches at every stage. Therefore, the simulation of HICs can be performed via con-

ventional transport and hydrodynamical models and used to further explore the properties

of the strongly interacting medium.

When the hot and dense matter is created, there main degrees of freedom are quarks and

gluons, which participate in elastic and inelastic scatterings until the system reaches ther-

mal equilibrium or hadronization. The first stage, which provides the initial conditions,

such as distribution of the deposited energy density and pressure, for further hydrody-

namic expansion is the least known, however, it can be described by simple geometric

models such as Glauber’s Monte-Carlo, in which the underlying interactions are enclosed

in an inelastic nucleon-nucleon cross section. More ab-initio descriptions such as the color

glass condensate (CGC), in which a collision is viewed in terms of parton degrees of free-

dom (mainly gluons in the appropriate kinematic mode for RHIC and LHC) and QCD

interactions are actively being developed at present. Further studies of the high density

regime of nuclear gluons will be possible in future at the electron-ion collider (EIC), which

is currently planned to be built in the United States.

In the CGC picture the initial scattering results in a dense system of strong classical

color fields, the so-called Glasma, which quickly thermalizes. Less than 1 fm/s is required

or assumed for the system to turn into a nearly perfect fluid; the expansion of which can

be described by relativistic viscous hydrodynamics.

During the second stage the fireball undergoes an expansion due to the partial gradients

in space. Since the system is thermalized the space-time evolution might be described by

relativistic viscous hydrodynamics. Due to the near-ideal liquid nature of the QGP, the

initial geometric anisotropy is effectively converted into a momentum anisotropy of the

final particles. Event fluctuations lead in final states to significant higher-order harmonics

(triangular flow) of the azimuthal distribution of particles, in addition to the second order

harmonic (elliptic flow). Their systematic measurement made it possible to restrict the

calculations of the model for the initial state and conjecture transport properties of the

QGP both at RHIC and LHC. Moreover, this evolution provides an input for medium

modifications of hard probes, although a better description of the interplay of hard probes

and the dense medium evolution is required.

The expansion of the system causes cooling and a hadronization occurs when the system

reaches a critical energy density ǫc ≈ 0.5 GeV/fm3 which corresponds to a (pseudo)critical

temperature Tc ∼ 155 MeV for µB ≈ 0. After hadronization, the scattering rate and

density of the system decrease rapidly and the kinetic description becomes more relevant.

This third stage can be described by hadronic transport models such as UrQMD [36, 37],

HSD [38], AMPT [39], SMASH [40]. Nevertheless, conventional transport models can be

employed to describe both pre-equilibrium and equilibrium stages, where the space-time

evolution is coupled to a mechanism of particle production. Moreover, hybrid models, such

as URQMD+vHLLE [41] and MUSIC+UrQMD [42], as well as some advanced transport

approaches, such as AMPT [39] and Parton-Hadron-String-Dynamics (PHSD) [1, 43] can
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provide the whole evolution of HICs, including the QGP phase. We will discuss the PHSD

transport approach and it is application to the HICs in the BES energy range in Chapter

3.

The measured relative numbers of hadrons show that a chemical freezing occurs at a

temperature Tch, which is very close to the hadronization temperature at almost zero µB.

Subsequently, hadrons continue to scatter elastically until they reach the kinetic freezing

temperature Tfo, where they split and freely fly to the detectors.
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2

Dynamical quasiparticle model of

QGP at finite µB

“Just because things get a little dingy at the subatomic level

doesn’t mean all bets are off ”

Murray Gell-Mann

In this Chapter, we proceed with the thermodynamic quantities and transport proper-

ties of the QGP at finite temperature T and moderate baryon chemical potentials µB ≤ 0.5

GeV. In a hot and dense environment it is notoriously difficult to assess the microscopic

properties of the QGP using first principles [44]. The expansion and dilution of the quark-

gluon medium produced in nuclear collisions can be described by relativistic viscous hy-

drodynamics, which includes the transport coefficients in the dissipative part. Although

the hydrodynamic equations provide a macroscopic description of the relativistic fluid be-

haviour, transport coefficients have to be determined by an underlying microscopic theory.

They provide information about the interactions inside the medium. An alternative to

ab initio lattice QCD calculations approach, there are effective models on the basis of

‘resummed’ propagators and couplings, which can describe microscopic properties of the

QGP in a wide range of baryon chemical potentials.

In this Chapter we discuss the main properties of the dynamical quasiparticle model

(DQPM), initially developed in Refs. [45–47]. We also show basic thermodynamic ob-

servables as well as the transport properties of the QCD medium at moderate baryon

chemical potentials µB ≤ 0.5 GeV, where we assume that in this region the phase tran-

sition between the hadronic matter and the quark-gluon plasma is a smooth crossover.

We evaluate transport coefficients within the relaxation-time approximation (RTA) on the

basis of interaction rates employing differential cross sections as functions of temperature

and baryon chemical potential. An extension of the DQPM to the region of high baryon

densities, where the phase transition is expected to be of first-order, will be considered

in Chapter 5. Considering the transport coefficients and the EoS of the QGP phase, we

compare our results with various results from the literature, where transport coefficients

of the QGP have been examined on the basis of effective models dominantly at zero or

small chemical potentials [48–55]. In this case lQCD calculations can serve as a guideline

at vanishing chemical potential.
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Part of the results demonstrated below have been presented in publications [1, 2, 6] or

are based on those. 1

2.1 Basics of the off-shell quasiparticle model

For a complete description of the QGP dynamics one needs first to evaluate the microscopic

properties of the relevant degrees of freedom such as the effective masses and widths of the

partonic propagators as well as elastic cross-sections. In the range of temperatures T ≥ Tc

and moderate baryon chemical potentials, one can rely on estimates from effective models.

Here we consider essential features of the QGP medium in terms of strongly interacting

quarks and gluons as given by the dynamical quasiparticle model DQPM [45–47,56].

The DQPM reproduces the EoS of the partonic system above the deconfinement tem-

perature Tc from lattice QCD and provides reasonable estimates for the QGP transport

coefficients, which – as will be shown later – agree well with the lQCD calculations at

µB = 0. In the DQPM, the quasiparticles are characterized by dressed propagators,

∆i(ω,p) =
1

ω2 − p2 −Πi
, (24)

with complex self-energies Πi = m2
i − 2iγiω. Here the real part of the self-energies is

related to dynamically generated thermal masses mi, while the imaginary part provides

the information about the lifetime and interaction rates of the partons (interaction widths),

using ω for energy (where mi and γi are the thermal mass and the width of a parton). In

the DQPM the spectral functions of the quasiparticles ρi = −2Im∆i (where i = q, q̄, g) are

no longer δ-functions in the invariant mass squared. The spectral functions of interacting

quasiparticles can be written in the lorentzian form, [46]

ρi(ω,p) =
γi

Ẽi,p

(
1

(ω − Ẽi,p)2 + γ2i
− 1

(ω + Ẽi,p)2 + γ2i

)

=
4ωγi(

ω2 − p2 −m2
i

)2
+ 4γ2i ω

2
. (25)

In Eq. (25) the off-shell energy Ẽi,p =
√
p2 +m2

i − γ2i is introduced, with mi,γi being

the pole mass and width, separately for quarks, antiquarks and gluons (i = q, q̄, g). The

spectral function is a real function, odd in ω and for all p it fulfills the sum rule

∫ ∞

−∞

dω

2π
ωρi(ω,p) = 1. (26)

1 This work has been done in collaboration with Pierre Moreau (Goethe U.), who conducted the eval-
uation of the differential and total cross sections. Programs for the calculations of the relaxation
times, transport coefficients and plotting routines have been developed by the author of the present
thesis. The comparison to the diffusion coefficients from the RTA and the Chapman-Enskog methods
has been performed in collaboration with Jan Fotakis (Goethe U.), who provided the results for the
Chapman-Enskog method.
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Figure 2.1: DQPM effective running coupling αs = g2/(4π) as a function of the scaled
temperature T/Tc(µB) at vanishing chemical potential µq = µB = 0 (left) and for moderate
baryon chemical potentials µB ≤ 0.5 GeV obtained within the ’scaling hypothesis’ (2.1)
(right) [1,57]. The lattice results for quenched QCD, Nf = 0, (blue circles) are taken from
Ref. [58] and for Nf = 2 (black triangles) are taken from Ref. [59]. This figure is adopted
from [6].

In principle, one can first determine the spectral functions and then the quasiparticle

(retarded) propagators can be expressed in the Lehmann representation via the spectral

functions as:

∆i(ω,p) =

∫ ∞

−∞

dω′

2π

ρi(ω
′,p)

ω − ω′ =
1

ω2 − p2 −m2
i + 2iγiω

. (27)

One can see that from Eq. (27) the real part of the retarded self-energy is m2
i . The main

properties and dynamics of the quasiparticle model are governed by the coupling of the

QCD matter. A distinctive feature of the DQPM is the determination of the coupling

constant by using the lQCD entropy density at µB = 0. One can start from zero baryon

chemical potential g2(T, µB = 0), while generally the coupling constant depends on both

temperature and baryon chemical potential. In the DQPM the coupling constant at µB =

0 is parameterized employing the entropy density s(T, µB = 0) from the lattice QCD

calculations provided by the BMW collaboration in Refs. [22, 60] in the following way:

g2(T, µB = 0) = d ·
[ (
s(T, 0)/sQCD

SB

)e
− 1
]f
, (28)

with the Stefan-Boltzmann entropy density sQCD
SB /T 3 = 19π2/9 and the dimensionless

parameters d = 169.934, e = −0.178434 and f = 1.14631. We note that the DQPM has

been used to explore the crossover region in the phase diagram by introducing an effective

coupling constant, which depends on the baryon chemical potential [1, 47]. In this region

of moderate baryon chemical potentials the basic thermodynamic observables, estimated

by the lQCD have a smooth µB-dependence. Therefore, we expect a similar behaviour for

the effective coupling.

At finite baryon chemical potential µB the effective coupling is obtained by employing

the ‘scaling hypothesis’ introduced in Ref. [45]. It assumes that g2 is a function of the ratio
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2. Dynamical quasiparticle model of QGP at finite µB

of the effective temperature

T ∗ =
√
T 2 + µ2q/π

2 (29)

(where the quark chemical potential is defined as µq = µu = µs = µB/3 ) and the µB-

dependent critical temperature Tc(µB) defined as in Ref. [47]:

Tc(µB) = Tc(0)
√

1− αµ2B, (30)

where Tc(0) is the critical temperature at vanishing chemical potential (Tc(0) ≈ 0.158 GeV)

and α = 0.974 GeV−2. Thus, the DQPM effective coupling constant g2DQPM (T, µB) reads

g2DQPM (T, µB) ≡





µB = 0 : g2(T, µB = 0)

µB > 0 : g2(Tscale(T, µB)),

with Tscale =
T∗

Tc(µB)/Tc(0)
.

(31)

The (T, µB)-dependence of the DQPM running coupling αs = g2DQPM/(4π) is shown in

Figure 2.2: Ratios of the DQPM pole masses for light quarks (solid lines) and glu-
ons (dashed lines) to temperature, mi/T (left), and ratios of the widths γi/T (right), to
temperature as a function of the scaled temperature T/Tc(µB) for fixed µB = 0, 0.3, 0.5
GeV.

Fig. 2.1. At vanishing quark (baryon) chemical potential one can see a good agreement

between the lQCD evaluation of the QCD running coupling for Nf = 2 (black triangles) [59]

and the DQPM running coupling (red line). The DQPM running coupling αs decreases

with µB in the vicinity of the phase transition Tc ≤ T ≤ 1.5Tc.

The pole masses of quasiparticles are chosen in the form of asymptotic quark or gluon

masses respectively m∞ ∼ mD/2 or
√
2mf , where mD is the HTL Debye mass, and mf is

the HTL thermal fermion mass [61,62]:

m2
g(T, µB) = Cg

g2(T, µB)

6
T 2

(
1 +

Nf

2Nc
+

1

2

∑
q µ

2
q

T 2π2

)
, (32)
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.3: Gluon (left panel) and quark (right panel) pole-masses mi (upper row) and
their widths γi (lower row) from the DQPM as a function of the scaled temperature
T/Tc(µB) and baryon chemical potential µB [4].

m2
q(q̄)(T, µB) = Cq

g2(T, µB)

4
T 2

(
1 +

µ2q
T 2π2

)
. (33)

In Eqs. (32),(33) Nc = 3 and Nf = 3 denote the number of colors and the number of flavors

respectively, Cq =
N2

c − 1

2Nc
= 4/3 and Cg = Nc = 3 are the QCD color factors for quarks

and for gluons, respectively. The strange quark has a larger bare mass which enhances its

dynamical mass. This essentially suppresses the channel g → s+ s̄ relative to the channel

g → u+ ū or d+ d̄ and controls the strangeness ratio in the QGP. Empirically ms(T, µB) =

mu(T, µB) + ∆m = md(T, µB) + ∆m where ∆m =30 MeV has been used. This model

parameter has been fixed in an empirical way by comparing to experimental data for strange

hadron abundances and the K+/π+ ratio from heavy-ion collisions at relativistic energies

obtained within – the PHSD approach – a microscopic covariant transport approach. The

detailed description of the transport approach will be given in the next Chapter. In the

PHSD the deconfined phase evolution is based on the DQPM model - for the description

of the QGP phase and involves a dynamical description of the hadronization process from

partonic to hadronic matter (cf. the reviews [43,62]).

For the kinetic treatment it is important to consider finite widths of quasiparticles, which

affect the transport properties of the QGP matter. The thermal widths have been estimated

within the ressumation of hard thermal loops, which are results in the form γ ∼ g2T ln(1/g)
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2. Dynamical quasiparticle model of QGP at finite µB

[63–65]. Therefore, thermal widths in the DQPM are adopted in a following form [47,62]:

γj(T, µB) =
1

3
Cj
g2(T, µB)T

8π
ln

(
2cm

g2(T, µB)
+ 1

)
. (34)

Here, the parameter cm = 14.4 was fixed in [1, 45], which is related to a magnetic cut-off.

Furthermore, we assume that all (anti-)quarks have the same thermal width: γu = γd = γs

Additionally, we consider scalar degrees of freedom and therefore gluons have only

transverse polarisations. It was argued in Ref. [66] that the contribution of the longi-

tudinal gluons to the general thermodynamic potential is subdominant compared to the

contribution from the transverse gluons. We recall that for large momenta, |p| >> gT ,

the longitudinal modes have an exponentially vanishing residue [67].

2.2 Thermodynamic quantities in the DQPM for the crossover

region

In order to evaluate basic thermodynamic properties of QCD one can apply the Φ-functional

approach, where the thermodynamic potential Ω can be expressed in terms of dressed

propagators ∆i. The derivatives of Ω: entropy density sdqp = −∂Ω/V
∂T

and baryon den-

sity ndqp = −∂Ω/V
∂µ

, then can be easily found by the stationarity of Ω under functional

variation with respect to the dressed propagators. Once the quasiparticle properties (or

propagators) are fixed as described above, one can evaluate the entropy density s(T, µB),

the pressure p(T, µB) and the energy density ǫ(T, µB) in a straight-forward manner by

starting with the entropy density sdqp and the number density ndqp in the propagator

representation from Baym [68,69] and then identifying s = sdqp and nB = ndqp/3 [2]:

sdqp(T, µq) =− dg

∫
d4P

(2π)4
∂fg
∂T

(
Im(ln∆−1)− ImΠ Re∆

)
(35)

− dq
∑

q=u,d,s

∫
d4P

(2π)4
∂fq(ω − µq)

∂T

(
Im(lnS−1

q )− ImΣqReSq
)

− dq̄
∑

q̄=ū,d̄,s̄

d4P

(2π)4
∂fq̄(ω + µq)

∂T

(
Im(lnS−1

q̄ )− ImΣq̄ReSq̄
)
,

ndqp(T, µq) =−
∑

q=u,d,s

dq

∫
d4P

(2π)4
∂fq(ω − µq)

∂µq

(
Im(lnS−1

q )− ImΣqReSq
)

(36)

−
∑

q̄=ū,d̄,s̄

dq̄

∫
d4P

(2π)4
∂fq̄(ω + µq)

∂µq

(
Im(lnS−1

q̄ )− ImΣq̄ReSq̄
)
,

where
d4P

(2π)4
=
dω

2π

d3p

(2π)3
, fg(ω) and fq(ω − µq) denote the Bose-Einstein and Fermi-Dirac

distribution functions (see Eq. (58)), respectively, while ∆i = (p2−Πi)
−1, Sq = (p2−Σq)

−1

and Sq̄ = (p2 − Σq̄)
−1 stand for the full (scalar) quasiparticle propagator of gluons g,
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2. Dynamical quasiparticle model of QGP at finite µB

quarks q and antiquarks q̄. Here we consider for simplicity scalar (retarded) quasiparticle

Figure 2.4: DQPM thermodynamic observables (solid lines): scaled entropy density s/T 3

(top left), pressure p/T 4 (top right), energy density ǫ/T 4 (bottom left) and interaction
measure I/T 4 (bottom right) as a function of temperature T and at fixed baryon chemical
potential µB ranging between 0 and 0.5 GeV. The lQCD results obtained by the BMW
collaboration are taken from Refs. [22, 60] (circles) for µB = 0, 0.2, 0.3, 0.4 GeV.

self-energies Πi = Σi = Σq ≈ Σq̄, which are expressed via dynamical masses and widths as

Πi = m2
i − 2iγiω, where, for the off-shell case, ω is an independent variable. Furthermore,

the number of transverse gluonic degrees of freedom is dg = 2 × (N2
c − 1) while for the

fermion degrees of freedom we use dq = 2×Nc and dq̄ = 2×Nc.

The main contribution to the entropy density comes from light quarks and antiquarks,

while strange quarks have smaller contributions due to their larger mass. The contribution

of gluons is of the same order, although these have an even larger mass and width, due to

the degeneracy factor dg = 16, which is larger than the strange quark degeneracy factor

ds = 6.

The pressure of the system, p(T, µB), which is considered isotropic, can be obtained by

using the Maxwell relation of a grand-canonical ensemble:

p(T, µB) = p0(T, 0) +

µB∫

0

nB(T, µ
′
B) dµ

′
B. (37)
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2. Dynamical quasiparticle model of QGP at finite µB

In Eq. (37), the pressure at vanishing baryon chemical potential µB = 0 is defined

employing the entropy density as

p0(T, 0) = plqcd(T0, 0) +

T∫

T0

s(T ′, 0) dT ′, (38)

where the lower bound can be chosen between 0.12 < T0 < 0.15 GeV. We use here T0 =

0.145 GeV. plqcd(T0, 0) is the lQCD pressure taken from Refs. [22, 60].

The energy density ǫ then follows from the Euler relation

ǫ = Ts− p+
∑

i

µini, (39)

where in general i = B,Q, S, while in this Chapter we consider only a symmetric setup for

the quark chemical potentials µq = µu = µs = µB/3 with vanishing strange and the electric

charge potentials µS = µQ = 0 (i = B). Another interesting thermodynamic observable,

the trace of the energy-momentum tensor, is also known as interaction measure or the

trace anomaly,

I = ǫ− 3p = Ts− 4p+
∑

i

µini, (40)

which has been found in the lQCD calculations [21, 60, 70, 71] to be far from zero in the

vicinity of the phase transition and indicates that the QGP matter in equilibrium can not

be considered as a conformal fluid. Therefore, one can expect that the bulk viscosity of

the QCD matter is finite near the phase transition.

To wind up, the model parameters are fixed at µB = 0, with the lQCD entropy density

and pressure as input parameters for the calculations, and at finite µB the ‘scaling hypoth-

esis’ enables the DQPM to make predictions for thermodynamic and transport properties.

Figure 2.4 demonstrates the dimensionless thermodynamic observables from the DQPM

(solid lines) in comparison to the lQCD data from the BMW collaboration [22,60] (circles)

for fixed baryon chemical potentials. We find good agreement between the DQPM results

and the lattice points within the error bars.

We now proceed with the second derivatives of the thermodynamic potential Ω = −p: the

speed of sound squared c2s = dp
dǫ and specific heat at constant volume CV = dǫ

dT . At fixed

µB the speed of sound can be expressed via the specific heat as:

c2s =
dp

dǫ
=
dp/dT

dǫ/dT
=

s

CV
. (41)

The resulting speed of sound squared c2s and the dimensionless specific heat at constant

volume CV /T
3 are depicted in Fig. 2.5 as a function of the scaled temperature T/Tc(µB)

and baryon chemical potential µB. The lQCD data are shown at vanishing chemical po-

tential: results from the Wuppertal-Budapest collaboration [22] (black spheres) and the

HotQCD collaboration [72] (blue spheres). The DQPM estimates of c2s agree well with the

Wuppertal-Budapest results for the speed of sound squared, while the HotQCD results are

smaller in the region of T ≥ 1.5Tc. Therefore, taking into account relations between c2s
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.5: speed of sound squared c2s (left) and scaled specific heat CV /T
3 (right)

from the DQPM as a function of the scaled temperature T/Tc(µB) and baryon chemical
potential µB. At vanishing chemical potential we compare to lQCD results obtained by the
Wuppertal-Budapest collaboration [22] (black spheres) and the HotQCD collaboration [72]
(blue spheres).

and CV /T
3, it is expected that the HotQCD results for the dimensionless ratio CV /T

3 are

slightly higher than the DQPM estimates for T ≥ 1.5Tc.

2.3 Partonic interactions: cross sections and interaction rates

The key ingredients of the transport equations are the elastic cross sections of the relevant

degrees of freedom. A distinctive feature of the DQPM is that quarks and gluons have non-

vanishing thermal masses that depend on (T, µB) as well as the effective coupling g2(T, µB)

that enters the scattering amplitudes. The differential cross section for a binary scattering

of on-shell particles (i+ j → c+ d) in the center of mass frame (CM), where the momenta

of the colliding particles obey ki + k′
j = pc + p′

d = 0 and k0i + k′0j =
√
s = p0c + p′0d, is

given by

dσonij→cd(
√
s,Ω) =

pf dΩ

16π2
√
s

|M̄|2
FCM

=
1

64π2s

pout
pin

|M̄|2dΩ, (42)

with FCM = 4pi
√
s being the flux factor in the CM frame, dΩ – the differential solid angle

corresponding to one of the final particles, while |M̄|2 ≡ |M̄(ki1 . . . kin → pj1 . . . pjm)|2
denotes the invariant matrix element squared, averaged over the color and spin of the

incoming particles and summed over those of the final particles. The total cross section is

obtained by

σij→cd
tot (

√
s) =

1

32πs

pout
pin

γij

∫ 1

−1
d cos(θ) |M̄|2, (43)

where θ is the final polar angle of one of the final particles in the CM frame, and γij =

1 − 1
2δij is the symmetry factor. In this frame, the collision is independent from the az-

imuthal angle φ and the corresponding integration boils down to a constant multiplier of 2π.
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.6: DQPM total elastic cross sections between different partons for the on-shell
case from Eq. ( 43) evaluated in the center of mass of the collision system as a function of
the collision energy

√
s for µB = 0, T = 0.19 GeV (top left), µB = 0, T = 0.19, 0.316, 0.458

GeV (top right), µB = 0, 0.2, 0.5 GeV (bottom left) and for various values of baryon
chemical potential µB = 0, 0.2, 0.5 GeV for T = 2 Tc(µB) (bottom right). The initial
masses of the colliding partons are taken as the pole masses. The figure is taken from [6].
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2. Dynamical quasiparticle model of QGP at finite µB

Momenta of the initial (i) and final particles (f) in the CM frame are found to be

pi,f =

√(
s− (mi,f +m′

i,f )
2
)(

s− (mi,f −m′
i,f )

2
)

2
√
s

(44)

with mi,f and m′
i,f being the masses of the colliding partons.

The DQPM total cross sections for different channels are shown in Fig. 2.6 as a function of

collision energy
√
s for (a) µB = 0, T = 0.19 GeV, (b) µB = 0, T = 0.19, 0.316, 0.458 GeV,

(c) µB = 0, 0.2, 0.5 GeV and (d) for various values of baryon chemical potential µB = 0, 0.2,

0.5 GeV for T = 2 Tc(µB) (T = 0.316, 0.310, 0.275 GeV). The initial masses of the colliding

partons are taken as pole masses from Eqs. (33) – (32) to give the same initial flux F . For

all temperatures T the cross section does not change much with the collision energy
√
s.

Total cross sections at fixed
√
s depend on temperature as σij→cd

tot ∼ 1/T 3 or ∼ 1/T 4, which

is governed by the T -dependence of the DQPM running coupling demonstrated in Fig. 28.

The difference in the T -dependence for different channels arise from the combinations of

s−, t−, u− channels: for q − q, q − q̄ and q − g scatterings σij→cd
tot ∼ 1/T 3, while for

the g − g channel the terms 1/T 3, 1/T 4 have equivalent contributions to the total cross

section σij→cd
tot ∼ c3/T

3 + c4/T
4, where c3, c4 depend on

√
s, µB [1]. The cross sections

decrease with increasing baryon chemical potential as expected from the µB-dependence

of the DQPM coupling. This trend is in agreement with the pQCD predictions for high

temperatures and chemical potential, where the QGP can be described approximately by

a free gas of quarks and gluons.

Further, we consider the “off-shell” scattering, where the energy of partons and their

moments are independent degrees of freedom, and a general definition of the “off-shell cross

section” is not applicable due to the absence of asymptotically stable states. Nevertheless,

the transition matrix elements for various incoming and outgoing 4-momenta can be well

defined off-shell. To include the off-shell effects to the scattering of time-like particles

one can the Lorentz invariant phase space in Eq. (42), in the case of a incoming flux

F = vrel 2ωi 2ωj - integrating over the energy of the final time-like particles as

dσoff =
1

F

d4pc
(2π)4

d4pd
(2π)4

ρ̃c(ωc,pc) θ(ωc) ρ̃d(ωd,pd) θ(ωd)

× (2π)4δ(4) (pi + pj − pc − pd) |M̄|2. (45)

In Eq. (45) we employed the renormalized time-like spectral functions

ρ̃j(ωj ,pj) =
ρj(ωj ,pj) θ(p

2
j )∫ ∞

0

dωj

(2π)
2ωj ρj(ωj ,pj) θ(p2j )

. (46)

Here the spectral function ρi corresponding to the parton specie i is taken from Eq. (25).

The final parton masses are defined as m2
i = p2i = ω2

i − p2
i . In the limit of vanishing
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thermal widths lim
γi→0

ρi(ω,p) = 2π δ(ω2 − p2 −M2
i ) the off-shell cross section coinsides

with the on-shell one as defined previously in Eq. (42).

Here we evaluate the differential ‘off-shell cross section’ for time-like quanta in the

center of mass system of the collision for convenience. Using a δ- function in Eq. (45), one

can integrate over the four-momenta of particle d to obtain the total cross section in the

CM frame:

σCM
off =

1

(2π)3FCM

∫ √
s/2

0
p2f dpf d cos(θ)

∫ √
s−pf

pf

dωCM
c ρ̃c(ωc,pc) ρ̃d(ωd,pd) |M̄|2, (47)

with FCM = 4pCM
i

√
s. It is important to notice that in off-shell case, the calculation of

the cross section is performed in the center of mass system, nevertheless, the energies and

momenta entering the spectral functions (25) should be expressed in the heat bath frame

by applying the appropriate Lorentz transformations.

To continue with the calculations of the transport properties, let us briefly recall that

an on-shell interaction rate, also known as a collisional rate, in the medium rest system,

where the incoming quark has a four-momentum Pi = (Ei,pi) (energies of the particles

are taken to be E2
i = p2 +m2

i where mi is the pole mass) is given by:

Γon
i (pi, T, µq) =

1

2Ei

∑

j=q,q̄

1

1 + δcd

∫
d3pj

(2π)32Ej
dqf

(0)
j (48)

×
∫

d3pc
(2π)32Ec

∫
d3pd

(2π)32Ed
|M̄|2(pi, pj , pc, pd)

× (2π)4δ(4) (pi + pj − pc − pd) (1− f (0)c )(1− f
(0)
d )

=
1

2Ei

∑

j=q,q̄

1

1 + δcd

∫
d3pj

(2π)32Ej
dqf

(0)
j

× 1

16π
√
s

1

pcm

∫
dt|M̄|2(s, t)(1− f (0)c )(1− f

(0)
d )

=
∑

j=q,q̄

∫
d3pj
(2π)3

dqf
(0)
j vrelσij→cd(s, T, µq),

where dj is the degeneracy factor for spin and color (for quarks dq = 2 × Nc and for

gluons dg = 2 × (N2
c − 1)), and with the shorthand notation fj = fj(Ej , T, µq) for the

distribution functions. In Eq. (151) and in all this Section, the notation
∑

j=q,q̄,g includes

the contribution from all possible partons which in our case are gluons and (anti-) quarks

of three different flavors (u, d, s).

Furthermore, the relative velocity vrel of the colliding partons in the c.m. frame, is given

by

vrel =

√
(pi · pj)2 −m2

im
2
j

EiEj
=
pcm

√
s

EiEj
. (49)
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pcm denotes the momenta of the initial (i, j) as well as of the final quarks (c, d) in the CM

frame given by Eq. (44).

Furthermore, one can generalize interaction rate for the off-shell case. In order to obtain

the interaction rate of the off-shell DQPM time-like partons, we have to calculate the

interaction rate for the corresponding parton i with momentum pi due to collisions with

time-like particles j leading to final time-like particles c and d by integrating additionally

over all energies ωj in the time-like sector [1]:

Γoff
i (pi, T, µq) =

∫ ∞

0

dωi

(2π)
ρ̃i
∑

j=q,q̄,g

1

1 + δcd

∫
d4pj
(2π)4

θ(ωj) dj ρ̃j f
(0)
j

×
∫

d4pc
(2π)4

θ(ωc) ρ̃c

∫
d4pd
(2π)4

θ(ωd) ρ̃d(1± f (0)c )(1± f
(0)
d )

× |M̄|2(pi, pj , pc, pd) (2π)4δ(4) (pi + pj − pc − pd) . (50)

Here the shorthand notation ρ̃ (46) for the renormalized time-like spectral functions ρ̃j(ωj ,pj)

has been used and fj = fj(ωj , T, µq) for the distribution functions. We mention that inter-

action rate of time-like off-shell partons by Eq. (50) discards damping processes between

the time-like and space-like sectors, which are assumed to be subleading. To evaluate the

average time-like interaction rate of partons i, we finally have to average its interaction

rate as

Γoff
i (T, µq) =

di

noff
i (T, µq)

∫
d4pi
(2π)4

θ(ωi) ρ̃i f
(0)
i (51)

×
∑

j=q,q̄,g

1

1 + δcd

∫
d4pj
(2π)4

θ(ωj) dj ρ̃j f
(0)
j

∫
d4pc
(2π)4

θ(ωc) ρ̃c

∫
d4pd
(2π)4

θ(ωd) ρ̃d

× |M̄|2(pi, pj , pc, pd) (2π)4δ(4) (pi + pj − pc − pd) (1± f (0)c )(1± f
(0)
d ),

with the off-shell density of time-like partons i given by

noff
i (T, µq) = di

∫
d4pi
(2π)4

θ(ωi) 2ωi ρ̃i f
(0)
i (ωi, T, µq). (52)

In fact, one can estimate the asymptotic temperature behaviour of the parton interaction

rate taking into account that the interaction rate of parton i is directly proportional to

the density of the colliding partner j and its degeneracy factor dj , and to their interaction

cross section σij as:

Γi ∝
∑

j

dj f
(0)
j σij . (53)

Let’s first consider the interaction rate of the most abundant type of quark - light quark.
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Figure 2.7: Quark off-shell interaction rate (left) as a function of scaled temperature T/Tc
for µB = 0 and (right) for moderate chemical potentials µB ≤ 0.5 GeV as a function of the
scaled temperature T/Tc(µB) and the baryon chemical potential µB. The contributions
from the scattering with light quarks (green), antiquarks (blue), and gluons (pink) are
given by the lower hatched bands, which arise from the finite statistics in the evaluation
of the integrals by Monte Carlo.

Adding up all possible contributions we get:

Γu =
∑

q

Γuq +
∑

q̄

Γuq̄ + Γug (54)

= Γuu→uu + Γud→ud + Γus→us + Γuū→uū + Γuū→dd̄

+ Γuū→ss̄ + Γud̄→ud̄ + Γus̄→us̄ + Γug→ug.

While the dependences on temperature are similar for fixed µB, we see a general slight

decrease in the total widths with µB for fixed temperatures. At vanishing quark chemi-

cal potential, the total interaction rate Γu comes largely from quark-gluon scattering and

increases with temperature while the contributions from scatterings with quarks and an-

tiquarks are about equal and subdominant. At finite µq, quarks are more abundant than

antiquarks and contributions from scatterings with quarks increase, while contributions

from collisions with antiquarks decrease relative to µq = µB = 0. The contributions from

collisions with gluons also decrease slightly with µB, which is due to a decrease in the

effective cross sections with µB, as mentioned above.

Similarly for a gluon g, the total interaction rate is given by:

Γg =
∑

q

Γgq +
∑

q̄

Γgq̄ + Γgg (55)

= 2× Γgu→gu + Γgs→gs + 2× Γgū→gū + Γgs̄→gs̄ + Γgg→gg.

Figure 2.7 shows the off-shell interaction rate for light quark as a function of the scaled
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temperature T/Tc(µB) and chemical potential µB. While the dependencies on temperature

are similar for fixed µB, we see a general slight decrease of the total widths with µB for

fixed T/Tc(µB) as discussed above.

2.4 Transport coefficients of the QGP at finite T and µB

Herein we employ the relativistic kinetic theory in order to determine the transport coef-

ficients with help of the relaxation time approximation of the Boltzmann equation for the

quasiparticles with dynamical masses Mi(T, µq) [73–76]:

kµi ∂µfi +
1

2
∂µM2

i ∂(ki, µ)fi =

Nspecies∑

j=1

Cij(x, k), (56)

where Cij(x, k) is the 2-body collision term which contains only quasi-elastic 2 ↔ 2 scatter-

ings, while the second term contains Fµ
i = ∂µMi and is an external force attributed to the

residual mean field interaction due to the medium-dependent effective masses Mi(T, µq).

In order to evaluate transport coefficients we consider a small departure from equilib-

rium, where the distribution function can be expressed as

fi(x, k, t) = f
(0)
i (x, k, t) + f

(1)
i (x, k, t) = f

(0)
i (x, k, t)(1 + δfi(x, k, t)). (57)

f
(0)
i (x, k, t) is the local equilibrium distribution function, f (1)i (x, k, t) contains δfi(x, k, t),

which is the non-equilibrium part to first order in gradients. The equilibrium state of the

system is described by the Bose-Einstein and Fermi-Dirac distribution functions

f
(0)
i (Ei, T, µi) =

1

exp ((Ei − µi)/T )− ai
, (58)

where µi is the quark chemical potential, Ei =
√

p2
i +m2

i is the on-shell quark/gluon

energy, ai ≡ +1(gluons),−1((anti-)quarks). The on-shell parton density of the specie ′i′ is

defined as

ni(T, µq) = di

∫
d3p

(2π)3
f
(0)
i (Ei, T, µq), (59)

where i = u, d, s, ū, d̄, s̄, g and di is the degeneracy factor for the corresponding parton.

2.4.1 Parton relaxation times

The first step in the calculation of transport coefficients within the RTA framework is the

evaluation of relaxation times, which are supposed to depend on momenta, temperature,

and baryon chemical potential. In the energy-dependent relaxation-time approximation,

we assume particle species i is out-of-equilibrium, while all other particle species are in
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Parton Degeneracy Baryon Number Electric Charge Strangeness
di bi qi · e si

g 16 0 0 0
u 6 +1/3 +2/3e 0
ū 6 −1/3 −2/3e 0
d 6 +1/3 −1/3e 0
d̄ 6 −1/3 +1/3e 0
s 6 +1/3 −1/3e −1
s̄ 6 −1/3 +1/3e +1

Table 1: Fundamental properties of the parton species considered in the quark-gluon
plasma. Here, e =

√
4παem denotes the elementary electric charge in natural units, while

qi is dimensionless electric charge of the parton specie ′i′.

Figure 2.8: Relaxation time of a quark (left) and gluon (right) as a function of the scaled
temperature T/Tc(µB) and the baryon chemical potential µB evaluated by the average
parton interaction rate from Eq. (62).

equilibrium. In the general case the momentum-dependent relaxation time τi(p, T, µB)

can be expressed through the on-shell interaction rate in the medium rest system where

the incoming quark has a four momentum Pi = (Ei,pi) [74, 76–78]:

τi(p, T, µB) =
1

Γi(p, T, µB)
(60)

For comparison we can estimate the parton relaxation time by the spectral widths:

τ̃i(T, µB) =
1

2γi(T, µB)
. (61)

To quantify the temperature dependence of transport coefficients we have evaluated

the average parton relaxation times as a function of temperature T and chemical potential

µB. To this aim we calculate the average width of the partons i, and average its interaction
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rate (151) over its momentum distribution,

Γon
i (T, µq) =

di
non
i (T, µq)

∫
d3pi
(2π)3

fi(Ei, T, µq)Γ
on
i (pi, T, µq) (62)

with the on-shell density of parton i at finite T and µB given by Eq. (59).

Figure 2.8 gives an overview of the relaxation time of a quark (left) and gluon (right)

as a function of the scaled temperature T/Tc(µB) and the chemical potential µB. The

averaged relaxation times τi for quarks and antiquarks have a similar T -dependence: τi de-

creases with increasing temperature and stays almost constant at high T as expected since

σtot ∼ 1/T 3 and n ∼ T 3 for large T. The gluon relaxation time is about 0.3− 0.4 fm/c in

the region 1.5Tc ≤ T ≤ 3Tc, which is significantly smaller than the quark relaxation time,

which is about 1.0− 1.5 fm/c. Since the transport coefficients are directly proportional to

the relaxation times, it is clear that the main contribution to the transport coefficients in

the RTA comes from quarks and antiquarks. The relaxation times evaluated by Eq. (60)

increase slightly with µB due to a decrease of the interaction rates Γi. A similar statement

can be made if the spectral width γi is used instead of the interaction rate in Eq. (61).

2.4.2 Shear and bulk viscosities

Figure 2.9: Ratio of shear η/T 3 and bulk ζ/T 3 viscosities to the temperature cubed as
a function of temperature T for µB = 0. The solid red line and the dashed blue line show
the DQPM results for the shear and bulk ratios accordingly, using the parton interaction
rate Γi(p, T, µ) for the relaxation time.

We begin with the most common transport coefficients for hydrodynamic simulations

- the shear and bulk viscosities. The viscosities of QCD matter have been studied in a

variety of models in the confined and deconfined phases. The shear viscosity provides

information about the strength of the interaction within the QCD matter. In particular,

in the framework of kinetic theory, it can be related to the interaction rates of hadrons

or partons, which poses a challenge in first-principles evaluation. A wealth of theoretical

model predictions shows that the temperature dependence of the QCD shear viscosity
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over the entropy density η/s is qualitatively different for the two phases. Starting from

the hadronic phase below the phase transition T < Tc, η/s increases with temperature

because the interaction weakens in the high temperature region. Approaching the phase

transition from the hadronic to the QGP phase at vanishing chemical potential, η/s has a

broad dip followed by an increase with temperature. A similar property of the temperature

dependence of the specific shear viscosity η/s is seen for other fluids such as H2O, He and

N2 [79, 80].

The specific bulk viscosity of QGP matter is predicted to be low, however, it is expected

to be finite near the phase transition [42]. The presence of bulk viscosity reduces the rate

of radial expansion of the fluid and thus affects the mean momentum of the generated

particles. For conformal fluids the bulk viscosity is known to be identically zero, and the

unbounded QCD medium is expected to adopt conformal behaviour in the high energy or

temperature regime. Nevertheless, as it has been shown in Section 2.2 the lQCD results

on the enhanced trace anomaly close to Tc indicate that it is probably not the case for the

QGP medium in the vicinity of the phase transition.

The shear viscosity to entropy density ratio η/s for the QGP medium was predicted to

be very low [29,73]. While the ratios η/s and ζ/s are expected to be small the shear viscos-

ity η as well as the entropy s of partonic system are high and scale with the temperature

as ∼ T 3 as shown in Fig. 2.9. In the RTA the shear viscosity reads [76]:

ηRTA(T, µB) =
1

15T

∑

i=q,q̄,g

∫
d3p

(2π)3
p4

E2
i

τi(p, T, µB)di(1± fi)fi, (63)

where dq = 2Nc = 6 and dg = 2(N2
c − 1) = 16 denote degeneracy factors for spin and

color in case of quarks and gluons, τi are the relaxation times. In extension to our previous

studies in Refs. [47,81] we here include the Pauli-blocking and Bose enhancement factors,

respectively.

One way to evaluate the viscosity coefficients of partonic matter is the Kubo formalism

[82, 83], which was used to calculate the viscosities for a previous version of the DQPM

within the PHSD transport approach in a box with periodic boundary conditions (cf.

Ref. [84]). The current values for the total η/s ratio can be qualitatively compared with

the gluodynamic lattice calculations of QCD at µB = 0 from Ref. [85]. The gluodynamic

calculation in the DQPM was performed in Ref. [46], where the ratio ηg/sg ∼ 0.2 is in

good agreement with the presented lattice QCD results. We note that the η/s ratio does

not vary strongly with µB and exhibits a similar behavior as a function of temperature for

all µB considered. The RTA estimate of the shear viscosity is found to be very close to the

one from the Kubo formalism [1] indicating that the quasiparticle limit (γ ≪M) holds in

the DQPM.

The ratio of the shear viscosity to entropy density at µB = 0 is shown in Fig. 2.10

(a) in comparison to the lattice QCD calculation for Nf = 0 from Ref. [85]. The ratio

η/s at µB = 0 also is in a good agreement with the predictions from a Bayesian analysis

of experimental heavy-ion data from Ref. [86]. In extension to Ref. [1] we also show the

separate contributions of various quasiparticle species to the shear viscosity η = ηq,q +
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Figure 2.10: Specific shear viscosity η/s (left) as a function of the scaled temperature
T/Tc for µB = 0 and (right) for moderate chemical potentials µB ≤ 0.5 GeV as a function
of the scaled temperature T/Tc(µB) and the baryon chemical potential µB. The lines
shows the DQPM result for ηi/stot from Eq. (63) using the interaction rate Γi(p, T, µ)
for different quasiparticle species: light quarks and anti-quarks (short dashed orange line),
strange quarks and anti-quarks (dot-dashed magenta line), gluons (dotted blue line). The
solid red line and the dashed green line show the DQPM results for total ratios of viscosity
to entropy density using the parton interaction rate Γi(p, T, µ) and the spectral width
2γi(T, µ) for the relaxation time. The pentagons show the lQCD prediction for pure SU(3)
gauge theory taken from Ref. [85].

ηg, q = u, d, s divided by the total entropy density sDQPM
tot = sq,q + sg ηi/stot: light quarks

and anti-quarks (short dashed orange line), strange quarks and anti-quarks (dot-dashed

magenta line), gluons (dotted blue line). The solid red line corresponds to the ratio of

the total shear viscosity to the entropy density. As expected, smaller values of the shear

viscosity are observed for the gluons than for the quarks, since the relaxation time of the

gluons is about twice that of the quarks and the masses of the gluons are about half that

of the quarks, which enters into the shear viscosity via the factor 1/E2
i . The light quarks

and anti-quarks make the main contribution to the total viscosity ∼ 60 %. The strange

quarks and anti-quarks contribute ∼ 30 %, while the contribution of the gluons is about

∼ 10 %. The differences in the shear viscosity of the different quark flavours are mainly

due to the mass difference. We mention that the hierarchy obtained here is shown for the

ratio of shear viscosity for each quasiparticle species to the total entropy density ηi/stot,

while in the recent calculations in the quasiparticle model of Ref. [53] for µB = 0 the ratios

of shear viscosity for each quasiparticle species to the entropy density of the considered

quasiparticle species ηi/si were shown. It is worth noting that in Ref. [53] only the on-shell

case is considered, where quasiparticles have no widths and the couplings are higher than

in the DQPM, leading to an increase in the relaxation times and the shear viscosity to

entropy density ratio η/s.

The bulk viscosity of the partonic phase can be similarly expressed via relaxation times
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Figure 2.11: Specific bulk viscosity to entropy density ζ/s (left) as a function of the
scaled temperature T/Tc for µB = 0 and (right) for non-zero µB as a function of the scaled
temperature T/Tc(µB) and the baryon chemical potential µB. The solid red line and the
dashed green line show the DQPM results within the RTA from Eq. (64) using the parton
interaction rate Γi(p, T, µ) and the spectral width 2γi(T, µ) for the relaxation time. The
symbols display the lQCD data for Nf = 0 pure SU(3) gauge theory taken from Refs. [87]
(pentagons) and [88] (circles). The solid blue line shows the estimate from a Bayesian
analysis of experimental heavy-ion data taken from Ref. [86].

within the RTA following Ref. [76]:

ζRTA(T, µB) =
1

9T

∑

i=q,q̄,g

∫
d3p

(2π)3
τi(p, T, µB) (64)

× 1

E2
i

(
p2 − 3c2s

(
E2

i − T 2dm
2
i

dT 2

))2

di(1± fi)fi,

where c2s is the speed of sound squared, dm2
i

dT 2 is the DQPM parton mass derivative which be-

comes large close to the critical temperature Tc. The DQPM results for the viscosities over

temperature cubed are showed in Fig. 2.9, where the parton interaction rate Γi(p, T, µB)

was used for the relaxation time. The solid red line corresponds to the ratio of the shear

viscosity to the temperature cubed η/T 3, while the dashed blue line shows the ratio of the

bulk viscosity to the temperature cubed ζ/T 3. The specific bulk viscosity ζ/s as a func-

tion of the scaled temperature T/Tc at vanishing chemical potential is shown in Fig. 2.11

(left). The solid red line (ζRTAΓon /s) displays the results from Eq. (64) using the interaction

rate Γi(p, T, µ) while the dashed green line shows the same result in the relaxation-time

approximation (64) by replacing Γi by the spectral width 2γi. The symbols correspond to

the lQCD data for pure SU(3) gauge theory taken from Refs. [87](pentagons) and [88](cir-

cles). The solid blue line displays the results from a Bayesian analysis of experimental

heavy-ion data from Ref. [89]. The bulk viscosities of our quasiparticle models are always

smaller than the shear viscosities even close to the phase transition. The DQPM results

for Nf = 2 + 1 surprisingly coincide with the gluodynamic lattice data from Ref. [87],

except in the vicinity of Tc, as expected, since in gluodynamics 1st order phase transition

takes place while in the DQPM Nf = 2 + 1 a crossover is encoded. The lattice points

close to Tc have large error bars since lattice simulations at low temperatures require much
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larger statistics than simulations at higher T . We compare the bulk viscosity also to pre-

dictions from a Bayesian analysis of experimental data from Refs. [86, 89]. The DQPM

exhibits the expected peak close to the critical temperature which is close to the Bayesian

line maximum of the peak at Tc with ζ/s ≃ 0.075. The ratio from the Bayesian analysis

shows a sudden drop to zero, which is incompatible with the small, but non-zero lattice

values. Furthermore, the DQPM results for viscosities are in a good agreement with the

gluodynamic lattice QCD calculation at µB = 0 from Ref. [87]. In the case of the bulk

viscosity ζ we have found that the original DQPM calculations are very close to the results

obtained using the interaction rates, such that they merge as one can see in Fig. 2.11 (left).

Results of ζ/s for moderate baryon chemical potentials are presented in Fig. 2.11 (right) as

a function of the scaled temperature and µB. Comparing µB-dependence of specific shear

and bulk viscosities from the DQPM we see that the ratio η/s increases with µB at all

temperatures, while ζ/s only for T > 1.2Tc. The specific bulk viscosity decreases in the

vicinity of Tc, where it is dominated by the mean-field effects that enter as dM2/dT 2 and

pronounced temperature dependence of the speed of sound squared. As we discussed above,

the DQPM the masses depend primarily on the effective coupling g2, which decreases as

a function of µB, also the mean-field effects become weaker. This causes a small decrease

of ζ/s in contrast to the η/s. At higher temperatures the mean-field effects become also

less pronounced, resulting in a decreasing ζ/s as a function of temperature. That clarifies

why the µB behavior of the bulk viscosity changes with temperature. When the mean-field

effects become subleading, their further decrease has no influence on the bulk viscosity and

the ratio ζ/s starts to increase with µB.

2.4.3 Electric conductivity

Another important transport coefficient is the electric conductivity for stationary electric

fields σQ(T, µB), which describes the response of the system to an external electric field.

The study of the temperature and baryon chemical potential dependencies of σQ(T, µB)

is of fundamental importance for the possible generation of the chiral-magnetic effect in

predominantly peripheral heavy-ion reactions. Moreover, electric conductivity affects the

emission rate of soft photons [90] as well as their spectra [91–93]. The electric conductivity

σQ is evaluated by using the relaxation time approximation [76,78]:

σRTA
Q (T, µB) =

e2

3T

∑

i=q,q̄

q2i

∫
d3p

(2π)3
p2

E2
i

· τi(p, T, µB)di(1− f
(0)
i )f

(0)
i . (65)

Here qi = +2/3,−1/3,−1/3 are the dimensionless electric charges of u, d, s quarks (see

Table 1), dq = 2Nc = 6 are degeneracy factors for spin and color in case of quarks and anti-

quarks, τi their relaxation times, and f
(0)
i denote the Fermi-Dirac distribution functions

for quark and anti-quarks defined by Eq. (58). In these formulae we deal only with quarks

and anti-quarks of Nf = 3 flavours. Each parton has a contribution proportional to its

charge squared. Unlike viscosities, the electric conductivity doesn’t contain a contribution

from gluons.

Figure 2.12 depicts the results for σQ/T a) as a function of the scaled temperature
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Figure 2.12: Scaled electric conductivity σQ/T (left) as a function of the scaled temper-
ature T/Tc for µB = 0 and (right) for non-zero µB as a function of the scaled temperature
T/Tc(µB) and the baryon chemical potential µB. The solid red line and the dashed green
line show the DQPM results within the RTA from Eq. (65) using the parton interaction rate
Γi(p, T, µ) and the spectral width 2γi(T, µ) for the relaxation time. The symbols display
lQCD data for Nf = 2 taken from Refs. [94, 95] (red circles with brown borders), (yellow
circles with green borders) and for Nf = 2 + 1 taken from Refs. [83, 96] (spheres). The
dot-dashed magenta line corresponds to the results from the first order Chapman-Enskog
approximation taken from Ref. [52].

T/Tc and b) the µB and T/Tc-dependencies from the DQPM. The solid red line shows

the DQPM result σRTA
Q /T according to Eq. (65) using the interaction rate Γi(p, T, µ)

while the dashed green line shows the result in the relaxation-time approximation (65) by

replacing Γi by the spectral width 2γi(T, µ). We note that two results for σQ/T are in

good agreement. The differences between the two lines can vary by less than 14% except

near Tc, where the momentum dependence of the relaxation times may play a role. This

similarity shows again that the effective widths in the parton propagators – which provide

the spectral widths of the partons – are in good agreement with the microscopic collision

rates.

The ratio of electric conductivity to the temperature squared increases quadratically with

temperature near Tc and linearly at high temperatures, which can be explained by the

increasing number of quarks and by the temperature dependence of the quark relaxation

times. An increase in the number of charge carriers leads to a growth of the electric cur-

rent and, thus, to a rising conductivity. Averaged over momenta the quark relaxation time

decreases with increasing temperature and stays almost constant at high T and increases

with increasing µB (see Fig. 2.8). For temperatures T > 2.5TC this leads to a roughly

linear dependence in temperature, σRTA
Q /T ∼ T .

An alternative way to evaluate the electric conductivity is to solve the relativistic trans-

port equations for partons in a box with periodic boundary conditions in the presence of

an external electric field as in Refs. [97, 98]. It is interesting to compare to the results

of the Chapman-Enskog method, where quarks and gluons are considered massless as in

Ref. [52], while scattering cross sections are fixed in order to descibe the Kovtun-Son-

Starinets bound for the shear viscosity to entropy density ratio (η/s)KSS = 1/(4π) [99],
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leading to σtot ≈ 0.72/T 2. Besides the completely different treatment of microscopic de-

grees of freedom – masses of the partons and scattering cross-sections differ significantly

between the two methods – a good agreement between the results is found in the vicinity of

Tc. Furthermore, we compare to the results from the non-conformal holographic model [49],

which are close to the DQPM results in the vicinity of the transition Tc − 1.5Tc, however,

the temperature dependence of the σQ/T differs and the values at high temperatures are

above the DQPM predictions.

2.4.4 Baryon diffusion

In the region of finite baryon chemical potentials it is important to consider other transport

coefficients that are thought to be more sensitive to the net baryon density of the system,

such as the baryon diffusion coefficient. This transport coefficient provides information

about the response to inhomogeneities in the baryon density. The baryon diffusion coeffi-

cient regulates the dissipative part of the baryon flux, which can be expressed as follows:

δJµ
B = κBD

µ
(µB
T

)
, (66)

where κB is the baryon diffusion coefficient, Dµ = dµ − uµuνdν is the transverse gradient,

while uµ is the local fluid velocity. The dissipative baryon current can be related to the

heat flow as qµ = − ǫ+p
nB
δJµ

B [100,101]. On the other hand, the heat flow reads

qµ = λ
nB
ǫ+ p

Dµ
(µB
T

)
, (67)

where λ is the heat conductivity. Thus we can obtain a relation between the heat conduc-

tivity and the diffusion coefficient:

κB = λ

(
nBT

ǫ+ p

)2

. (68)

One can easily estimate that the two coefficients κB and λ differ by two orders of magnitude.

The baryon diffusion coefficient in the RTA can be expressed as:

κRTA
B (T, µB) =

1

3

∑

i=q,q̄

∫
d3p

(2π)3
p2τi(p, T, µB) (69)

× 1

E2
i

(
ba −

nBEi

ǫ+ p

)2

di(1± fi)fi.

Here bi = ±1/3 is the baryon number of quark and antiquark, nB is the baryon density,

w = ǫ + p is the enthalpy. Taking into account relation (68) one can see that Eq. (69) is

in agreement with the RTA expression for the heat conductivity as derived in Ref. [76].

Figure 2.13 shows the actual results for the baryon diffusion coefficent in the range

of temperature and non-zero baryon chemical potential µB. We compare the DQPM

results to the estimates based on the thermal conductivity results from the AdS/CFT
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Figure 2.13: Ratio of the baryon diffusion coefficent to the temperature squared κB/T 2 ≡
σB/T (left) as a function of scaled temperature for a fixed baryon chemical potential µB = 0
and 0.3 GeV and (right) as a function of scaled temperature for moderate baryon chemical
potentials µB ≤ 0.5 GeV. The dashed lines represent the AdS/CFT results for κSSB , which
are obtained using the results from Ref. [101] and the DQPM EoS. The dot-dashed lines
correspond to the results from the first order Chapman-Enskog approximation taken from
Ref. [52]. The light green dotted line and dashed black line correspond to the results from
the Einstein-Maxwell-Dilaton (EMD) holographic model [49].

correspondence [102]. Using the relation between the baryon diffusion coefficient and the

heat conductivity (68), we can translate these results to the following expression:

κ
AdS/CFT
B = 2π

Ts

µ2B

(
nBT

ǫ+ p

)2

. (70)

Here s is the entropy density, nB is the baryon density, w = ǫ+ p is the enthalpy. We have

calculated κAdS/CFT
B using s, nB, ǫ and p from the DQPM.

In the vicinity of Tc the DQPM values for the diffusion coefficient are in agreement with

the calculations within the Chapman-Enskog first-order approximation using cross-sections

for massless quarks and gluons in Ref. [52]. However, for higher temperatures the ratio

κRTAB /T 2 increases with temperature in the DQPM while the Chapman-Enskog method can

not reproduce this groth and predicts approximately constant behaviour κCE
B /T 2 ∼ 0.048

for all T . It is expected that κB has a more pronounced µB-dependence than another

transport coefficients since it depends explicitly on the baryon density, and we see a slight

decrease of the ratio κRTAB /T 2 for the DQPM with increasing chemical potential µB, while

results from other approaches κCE/T 2∼0.048
B and κAdS/CFT

B are approximately µB indepen-

dent for the considered region of µB. The similar slight decrease has been predicted in the

holographic calculations in Ref. [49].

It is worth noting that the µB-dependence of κB can be an interesting property of

the partonic phase, which may have effects on observables: it has been found within the

hybrid (hydrodynamics+transport) theoretical framework in Ref. [103] that the baryon dif-

fusion enhances the difference between proton and antiproton mean transverse momenta

and elliptic flow v2(pT ). The baryon decreases the proton elliptic flow while increasing

39



2. Dynamical quasiparticle model of QGP at finite µB

anti-proton elliptic flow.

2.4.5 Diffusion coefficient matrix: calculations within

the RTA and the Chapman-Enskog approximation

In the previous Subsections we have addressed the diffusion coefficients of the conserved

baryon number and electric charge. Generally one should consider the full diffusion coeffi-

cient matrix (κqq′ , where q, q′ = B, S,Q), which was introduced and evaluated for a hadron

gas and a simple model for the QGP [52, 104]. Since quarks carry more than one of the

conserved charges, the diffusion current of each charge is no longer exclusively proportional

to the gradient of the thermal potential ∇µµq/T of that specific charge. Instead, mixing

of the currents occurs, with the gradients of each individual charge density capable of

producing a diffusion current of any other charge. Full diffusion coefficient matrix can be

written as follows:




jµB
jµQ
jµS


 =




κBB κBQ κBS

κQB κQQ κQS

κSB κSQ κSS


 ·




∇µαB

∇µαQ

∇µαS


 . (71)

These investigations were followed by a more extended study in the hadronic phase

from kinetic theory in the case of the electric cross-conductivities [105]. Furthermore, a

first study on the impact of the coupling of baryon number and strangeness was provided in

Ref. [104]. To this aim, the matrix of diffusion coefficients of hot and dense nuclear matter

must be thoroughly investigated, as it is important for accurate hydrodynamic simulations.

It has been further motivated that the off-diagonal coefficients may have implications for

the chemical composition of the hadronic phase [105]. We here combine the developments

of Refs. [2,52,104] and evaluate the diffusion coefficient matrix of the strongly interacting

non-perturbative QGP at finite (T, µB), with properties described by the DQPM model,

based on a recently explored the Chapman-Enskog study [52, 104, 106]. This allows us

to explore the influence of traces of non-equilibrium effects by accounting for the higher

modes of the distribution function on the transport properties and compare the results

with the often used kinetic RTA approximation. We consider the (T, µB)-dependence of

the diffusion coefficients κqq′ for q, q′ = B, S,Q charges for baryon chemical potentials

µB ≤ 0.5 GeV.

We review first results for the diffusion coefficient matrix for the hot quark-gluon plasma

at zero and finite baryon chemical potential µB by applying the Chapman-Enskog method,

described in detail in Refs. [52,104,106], to a strongly interacting QGP system described by

the DQPM. This represents a significant and important improvement over the "simplified"

model of a partonic system used in Refs. [52, 104, 106]. The Chapman-Enskog results

are compared with the results for the diffusion coefficient matrix computed within the

RTA approach based on the DQPM, and with several other models. The fact that the

linearized Boltzmann equation is solved in the framework of CE implies an improvement

over approaches using the RTA [104] in terms of accounting for higher moments of the
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2. Dynamical quasiparticle model of QGP at finite µB

distribution function. However, the proposed Chapman-Enskog method requires a few

approximations for the QGP description, which are not considered for the RTA estimates

within the DQPM, in particular:

1. The system is assumed to obey classical (Maxwell-Boltzmann) statistics, i.e. ai = 0

for all particle species in Eq. (58).

2. All particles are on-shell, therefore only the pole-masses from the DQPM, which

depend on temperature and baryon-chemical potential, are assumed but their widths

are neglected.

3. Inelastic scattering channels are neglected. That implies that flavor-changing pro-

cesses are not taken into consideration, i.e. qq̄ → q′q̄′ are not allowed.

4. All scattering processes are considered to be isotropic. We therefore feed integrated

total cross sections σij→ab
tot into the CE evaluation which are evaluated from the

anisotropic differential cross section from the DQPM via Eq. (43). The dependence

on
√
s, temperature and baryon-chemical potential is taken into account, σij→ij

tot ≡
σij→ij
tot (

√
s, T, µB).

We note that the CE method can in principle be improved such that approximations

(1) and (3) become unnecessary. A comparison of the two methods for the simplistic

case of constant cross sections is presented in Appendix A, where we find indication that

approximation (3) may have a non-negligible impact. Such improvements can be done in

future work. However, the nature of the method makes a further improvement of points

(2) and (4) difficult and requires further detailed study.

Following the steps taken in Refs. [52,104,106], we can express the diffusion coefficient

matrix for a classical system under the assumption of elastic isotropic scattering processes

as,

κqq′ =
1

3

Nspecies∑

i=1

qi

M∑

m=0

λ
(i)
m,q′

∫

R3

dKiE
m
i,k

(
m2

i − E2
i,k

)
f
(0)
i,k , (72)

where we use the notation dKi ≡ d3ki

(2π)3Ei,k
, qi denotes the conserved charge, which is

baryon, electric or strange charge. In Eq. (72) the coefficients λ(i)m,q′ are solutions of the

linearized Boltzmann equation in the form [52,104,106]:

M∑

m=0

Nspecies∑

j=1

(
Ai

nmδ
ij + Cij

nm

)
λ(j)m,q = biq,n, (73)
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with quantities

Ai
nm ≡

Nspecies∑

ℓ=1

γiℓ

∫
dKidK

′
ℓdPidP

′
ℓ (2π)

6s

(
d

dΩ
σiℓ→iℓ

)

δ(4)
(
ki + k′ℓ − pi − p′ℓ

)
f
(0)
i,k f

(0)

ℓ,k′E
n−1
i,k ki, 〈α〉

(
Em

i,pp
〈α〉
i − Em

i,kk
〈α〉
i

)
,

Cij
nm ≡ γij

∫
dKidK

′
jdPidP

′
j (2π)

6s

(
d

dΩ
σij→ij

)

δ(4)
(
ki + k′j − pi − p′j

)
f
(0)
i,k f

(0)

j,k′E
n−1
i,k ki, 〈α〉

(
Em

j,p′p′
〈α〉
j − Em

j,k′k′
〈α〉
j

)
,

biq,n ≡
∫

R3

dKiE
n−1
i,k

(
m2

i − E2
i,k

)(Ei,knq
ǫ+ P0

− qi

)
f
(0)
i,k . (74)

Additionally, imposing Landau’s definition of the frame [107], leads to an another

constraint:

Wµ =

Nspecies∑

i=1

∫

R3

dKiEi,kk
〈µ〉
i f

(1)
i,k

!
= 0 ⇒

Nspecies∑

i=1

M∑

m=0

λ(i)m,q

∫

R3

dKiE
m+1
i,k

(
m2

i − E2
i,k

)
f
(0)
i,k

!
= 0. (75)

Above we introduced the truncation order M , where for simplicity the order is fixed to

M = 1 which corresponds to the 14-moment approximation [108].

Following Ref. [52], the diffusion coefficient matrix in the RTA can be expressed as

follows:

κqq′ =
1

3

Nspecies∑

i=1

τi qi

∫
dKi

1

Ei,k

(
m2

i − Ei,k

)(Ei,knq′

ǫ+ P0
− q′i

)
f
(0)
i,k f̃

(0)
i,k , (76)

where we use shorthand notation f̃ (0)i,k = (1 + ai
di
f
(0)
i,k ).

In Fig. 2.14 we show a comparison of the results from DQPM RTA and CE (DQPM) to

a variety of model estimates for both, the partonic [94, 96, 112, 113, 116, 117] and hadronic

phase [52, 104–106, 114, 115], at µq = 0 in a temperature range between 0 and 3Tc, where

here the deconfinement temperature is Tc = 158 MeV. The Chapman-Enskog and RTA

results for the dimensionless ratio of electric conductivity to temperature σQQ/T (later

referred to as scaled electric conductivity) for µq = 0 are presented in Fig.2.14 (left) as

solid red and dashed black lines. Results for both methods have a similar increase with

temperature, which is mainly a consequence of the temperature dependence of the cross

section (as discussed before) and also of the increasing total electric charge density [104].
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.14: Left: Scaled electric conductivity, σQQ/T = κQQ/T
2, as a function of the

scaled temperature T/Tc at vanishing chemical potentials, µq = 0, from various approaches.
The results from the CE (DQPM) are shown by the red solid line, and from DQPM
RTA by the black dashed line. These are compared to results from the lattice QCD
calculations: quenched: orange circle-shaped points [109], light green rhombus-shaped
points [110], Nf = 2 : light cyan circle-shaped points [94], magenta rhombus-shaped points
[95], and Nf = 2+1 : dark cyan circle-shaped points [96] and blue stars [111]), the kinetic
partonic cascade model BAMPS (dark-green solid line with triangular-shaped points) [112],
and from non-conformal EMT holographic models A [113] (violet dashed-dotted line) and
B [49] (blue dotted line). For T < Tc = 0.158 GeV we show results from a variety
of hadronic models: SMASH [40, 105, 114] (grey short-dashed line with squared points),
effective field theory (EFT) [115] (blue dashed-dotted line), and CE tuned to a hadron
gas [CE (HRG)] from Refs. [52, 104, 106] (dark-red dashed line). Right: Scaled electric
conductivity of the QGP at fixed scaled temperature, T = 2Tc(µB), and µQ = µS = 0 are
shown for varying baryon chemical potential µB from the DQPM RTA (black dashed line
with cross-shaped points) and the CE (DQPM) (red solid line with circle-shaped points)
evaluation. The figure is adopted from [6].

We note that the DQPM RTA and CE (DQPM) results agree with the lattice QCD re-

sults near the transition region, 1 ≤ T/Tc ≤ 1.5. We again point out the obvious quadratic

dependence on temperature, which was briefly justified above. Given the limitations of the

Chapman-Enskog and RTA methods discussed above, we expect that a realistic result for

the conductivities might lie between the DQPM RTA and CE (DQPM) evaluations.

Moreover in Fig. 2.14 we show estimates from hadronic models: the hadronic transport

model SMASH [40, 105, 114] (grey short-dashed line with squared points), effective field

theory (EFT) [115] (blue dashed-dotted line), and CE for a hadron gas CE (HRG) from

Refs. [52, 104, 106] (dark-red dashed line). However, results from the hadronic models

substantially overestimate the lQCD data in the vicinity of Tc as well as the results from

the non-conformal holographic models A [117] (blue dotted line) and B [113] (violet dashed-

dotted line. The DQPM RTA results are in a good agreement in the vicinity of the phase

transition with the previous estimations for DQPM* from Ref. [47], where a non-relativistic

formula for the electric conductivity was used, which results in the linear dependence of the
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.15: Scaled diffusion coefficients κqq′/T 2 from the DQPM as a function of T and
µB obtained within the RTA method from Eq. (180) for moderate chemical potentials
µB ≤ 0.5 GeV.

σQQ/T on temperature, while the presented DQPM results show the quadratic dependence

near the phase transition.

Furthermore, in Fig. 2.14 we show the cross-electric conductivities, σBQ and σQS, from

the CE (DQPM) and the DQPM RTA calculation together with results achieved within
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.16: Scaled cross-electric conductivities, σQB/T
2 (left) and σQS/T

2 (right) as
a function of scaled temperature T/Tc at vanishing chemical potentials, µq = 0. We
compare results from SMASH [40,105] (grey short-dashed line with square-shaped points),
the DQPM RTA (black dashed line with cross-shaped points), and the CE (DQPM) (red
solid line with circle-shaped points) and CE (HRG) [52, 104] (dark-red dashed line). The
figure is taken from [6].

SMASH [105] and the CE (HRG) evaluation from Refs. [52, 104] for the same thermal

considerations for the hadronic phase. Comparing the results in both phases, we find

a significant disagreement for σQB around the crossover temperature. Furthermore, we

find such discrepancies to a smaller extend in the other electric conductivities and in the

coefficients to follow. It was pointed out in Ref. [105] that such disagreement may hint to

a difference in the chemical composition of the adjacent phases.

We continue with the results for the strange sector: κSS and κSB. The coefficient κSQ,

or equivalently σSQ = σQS, was already discussed above. Fig. 2.18 shows κSS and κSB

as a function of temperature at vanishing chemical potentials. Further, we show their

µB-dependence in Fig. 2.19 in the range µB = 0 to 0.5 GeV at fixed scaled temperature,

T = 2Tc(µB) and for vanishing electric and strange chemical potential. We compare results

from the DQPM RTA and CE (DQPM) computation to results from CE (HRG) [52,104],

and to the estimates from the non-conformal holographic model [117].

We find that the baryon-strange diffusion coefficient is negative due to the definition

of strangeness carried by the s-quark as has been already advocated in Ref. [52, 104].

We obtain an almost quadratic dependence in temperature again, and a rather strong

dependency on µB. However, the results from DQPM RTA for κSB in Fig. 2.19 show

a slightly different µB-behavior than the results from CE (DQPM) for µB ≥ 0.3 GeV.

Furthermore, extrancting from Fig. 2.18, in the vicinity of the crossover region the results

from CE (HRG) for the hadronic phase, and the calculation from the DQPM RTA and

CE (DQPM) agree well. As for the other diffusion coefficients, the scaled strange diffusion

coefficient from holography has a different temperature dependence and smaller values

in the vicinity of the crossover phase transition. Fig. 2.20 (left) shows the temperature
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.17: Scaled cross-electric conductivities, σQB/T
2 (left) and σQS/T

2 (right), from
the DQPM RTA (black dashed line with cross-shaped points) and the CE (DQPM) evalua-
tion at fixed scaled temperature, T = 2Tc(µB), shown versus the baryon chemical potential
µB in the range 0 to 0.5 GeV. The other chemical potentials are fixed to zero, µQ = 0 and
µS = 0. The figure is taken from [6].

Figure 2.18: Scaled strange and strange-baryon diffusion coefficients, κSS/T 2 (left) and
κSB/T

2 (right), as a function of scaled temperature T/Tc at vanishing chemical potentials,
µq = 0. We compare results from CE (DQPM) (red solid line with circles), DQPM RTA
(black dashed-line with crossed-shaped points), the CE (HRG) [52, 104] (dark-red dashed
line) and from conformal holography [117] (blue dotted line). The figure is taken from [6].
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2. Dynamical quasiparticle model of QGP at finite µB

Figure 2.19: Scaled strange and strange-baryon diffusion coefficients, κSS/T 2 (left) and
κSB/T

2 (right), from the DQPM RTA (black dashed line with cross-shaped points) and
the CE (DQPM) evaluation at fixed scaled temperature, T = 2Tc(µB), shown over baryon
chemical potential µB in range 0 to 0.5 GeV. Further, the other chemical potentials are
fixed to zero, µQ = 0 and µS = 0. The figure is taken from [6].

Figure 2.20: Scaled baryon diffusion coefficient, κBB/T
2, (left) at vanishing chemical

potentials, µq = µB = 0, as a function of the scaled temperature T/Tc from various
approaches and (right) at fixed scaled temperature, T = 2Tc(µB), as a function of baryon
chemical potential µB. The strange and electric potential are fixed to zero: µS = 0 and
µQ = 0. We show results from the CE evaluation tuned to DQPM (red solid line), as
described above, and tuned to a hadron gas from Refs. [52,104] (dark-red dashed line). We
again compare to the calculation from DQPM RTA [2] (black dashed line with crosses) and
to the non-conformal holographic model results [117] (blue dotted line) as for the electric
conductivity. The figure is taken from [6].
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dependence of the baryon diffusion coefficient for the QGP from the CE (DQPM) (red solid

line) and DQPM RTA approaches (black dashed line with crosses). We also show the results

from the non-conformal holographic model [117] (blue dotted lines). For temperatures

below Tc we present the CE (HRG) calculation from Refs. [52,104] (dark-red dashed line).

The comparison is presented at zero chemical potentials µq = 0. Near Tc, the results of

DQPM RTA, CE (DQPM), and CE (HRG) agree quite well with each other. Moreover, we

show the dependence of µB at fixed scaled temperature T = 2Tc(µB) in Fig. 2.20 (right).

The DQPM RTA shows a rather weak µB-dependence, while κBB from the CE (DQPM)

decreases with µB.
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2.5 Summary and Conclusions to Section 2

• In this Chapter we recalled basic ingredients of the DQPM: model parameters, ba-

sic thermodynamic observables in comparison to the lQCD data and quasi-elastic

scatterings between the partons.

• Transport coefficients of the QGP have been evaluated on the basis of the RTA,

where we have evaluated the relaxation times using the parton interaction rates

τi(p, T, µ) =
1

Γi(p, T, µ)
, where all the quasi-elastic two-body scatterings are em-

ployed. Furthermore, we considered the spectral widths for the relaxation time

τ̃i(T, µB) =
1

2γi(T, µB)
in order to check the consistency of the model parametriza-

tion. The scaled temperature T/Tc and baryon chemical potential µB dependencies

of transport coefficients such as shear and bulk viscosity, electric conductivity and

baryon diffusion coefficient have been demonstrated. We find a good agreement be-

tween the two cases for all considered transport coefficients.

• We find only a rather weak dependence of the transport coefficients on µB compared

to their values at µB = 0. The shear and bulk viscosities, and electric conductivities

of the QGP increase slightly with increasing µB while the baryon-diffusion coeffi-

cient decreases. The latter has important consequences for the transport results for

HICs observables, e.g., the baryon diffusion might enhance the difference between

the proton and antiproton elliptic flows v2(pT ) and between the mean transverse

momenta.

• Furthermore, a comparison between the RTA evaluations and the Chapman-Enskog

method has been presented. We find a good agreement with the available predictions

from the literature for the partonic phase for both methods, in particular the results

for the scaled electrical conductivity are remarkably close to the lQCD estimates at

µB = 0, as well as to the results for the hadronic phase. Interestingly, the non-

diagonal diffusion coefficient κQB within the both methods does not agree well with

the estimates for the hadronic phase near the phase transition. This variance can

be interpreted as an indication of a difference in the chemical composition of the

adjacent phases. In the literature there are several model calculations for diagonal

conductivities (mostly κQQ) that are similar to the results from the RTA approach

but use numerous restrictive assumptions for the evaluation of relaxation times or

cross sections.
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3

Dynamical evolution of QCD matter

from transport simulations

In this Chapter we continue the exploration of the transport properties of QCD matter pro-

duced in HICs within a microscopic transport approach, which provides the full time evolu-

tion of the system. The evolution of the deconfined QCD phase has been also successfully

described within hydrodynamic simulations and hybrid methods [41, 118–120]. Neverthe-

less, to achieve a proper non-equilibrium description of the entire dynamics through possi-

bly different phases up to the final asymptotic hadronic states, a microscopic treatment is

needed. The Parton-Hadron-String Dynamics (PHSD) transport approach [43,62,121–123]

is an off-shell transport approach based on the Kadanoff-Baym equations in first-order gra-

dient expansion which allows for simulations of both the hadronic and the partonic phases.

This approach sequentially describes the full evolution of relativistic heavy-ion collisions

from the initial hard collisions and formation of strings, the deconfinement with a dynamic

phase transition to a strongly interacting QGP, to hadronization and subsequent interac-

tions in the expanding hadronic phase.

The hadronic part is essentially equivalent to the conventional Hadron-String-Dynamics

(HSD) approach [38], while the partonic dynamics is based on the dynamical quasi-particle

model (DQPM) described in the previous Chapter. It was found that the PHSD approach

well describes observables from p+A and A+A collisions from SPS to LHC energies in-

cluding electromagnetic probes such as photons and dileptons [62].

In order to tackle the new challenge – evolution of the partonic systems at higher µB – the

PHSD approach has been recently extended to incorporate partonic quasiparticles and their

differential cross sections that depend not only on temperature T as in the previous PHSD

studies, but also on chemical potential µB explicitly. Within this extended approach, the

‘bulk’ observables in HICs for different energies – from AGS to RHIC, – for symmetric

Au+Au/Pb+Pb collisions have been studied. Only a small influence of µB dependencies

of the parton properties (masses and widths) and their interaction cross sections has been

found in bulk observables.

Furthermore, we extend our study to more sensitive observables, such as collective flow

coefficients and a manifestation of the µB dependencies of partonic cross sections in the

flow coefficients. In addition, we explore the relations between the in and out-of equilibrium

QGP by means of transport coefficients and collective flows.

Part of the results presented below have been included in publications [1, 4, 7, 124]. 2

2 This work was done in collaboration with Pierre Moreau (Goethe U.), who implemented new partonic
cross sections in the PHSD5.0. The development of programs for the evaluation of the flow coefficients,
modifications of the partonic mean-field potentials, calculations of the flow coefficients, the rapidity
and pT distributions in symmetric heavy-ion collisions, as well as plotting routines have been realized
by the author of the present thesis.
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iGc (x, y) = iG++(x, y) = T c
[
φ̂(x)φ̂†(y)

]
(81)

iG<(x, y) = iG+−(x, y) = φ̂†(y)φ̂(x) (82)

iG>(x, y) = iG−+(x, y) = φ̂(x)φ̂†(y) (83)

iGa (x, y) = iG−−(x, y) = T a
[
φ̂(x)φ̂†(y)

]
. (84)

Here T c and T a are, respectively, the causal and anticausal time-ordering operators. G≶

are also known as the Wightmann functions. In Eqs. (81-84) the index ± corresponds

to the branch C± where the time argument of x and y are situated on the closed time

contour, shown in Fig. 3.1. It is convenient to use the matrix representation of Green’s

function in Eq. (77):

G(x, y) =
+

−

+ −(
Gc (x, y) G<(x, y)

G>(x, y) Ga (x, y)

)
. (85)

However, the four functions are not independent. The causal and anticausal functions can

be expressed through G≶ as

Gc/a(x, y) = θ[±(x0 − y0)] G>(x, y) + θ[±(y0 − x0)] G<(x, y). (86)

Here the θ–function is the usual Heaviside step function. The retarded and advanced

Green’s functions, which can be useful to calculate a physical response like transport

coefficients, can be defined as

GR/A(x, y) = ±θ[±(x0 − y0)]
(
G>(x, y)−G<(x, y)

)
= ±θ[±(x0 − y0)] A(x, y). (87)

Here A denotes the spectral function, however, it is more conveniently used in momentum

space since it contains information about spectral properties of states.

Finally, the time evolution of the Wightman functions can be described via a set of

Kadanoff-Baym equations [131]:

(−∂µx∂xµ −m2 − Σδ(x))G≶(x, y) =

∫ x0

t0

dz0
∫
d3z

(
Σ>(x, z)− Σ<(x, z)

)
G≶(z, y)

−
∫ y0

t0

dz0
∫
d3z Σ≶(x, z)

(
G>(z, y)−G<(z, y)

)
, (88)
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(−∂µy ∂yµ −m2 − Σδ(y))G≶(x, y) =

∫ x0

t0

dz0
∫
d3z

(
G>(x, z)−G<(x, z)

)
Σ≶(z, y)

−
∫ y0

t0

dz0
∫
d3z G≶(x, z)

(
Σ>(z, y)− Σ<(z, y)

)
. (89)

Here the contour-ordered self-energy has been separated into a local Σδ and non-local parts,

which can be written, as a sum of contour θ functions. These equations can be simplified

by employing of retarded (advanced) Green’s functions GR/A defined in Eq. (87) and

retarded(advanced) self-energies ΣR/A as

(−∂µx∂xµ −m2 − Σδ(x))G≶(x, y) =

∫ ∞

t0

dz0
∫
d3z

(
ΣR(x, z) G≶(z, y) + Σ≶(x, z) GA(z, y)

)

(−∂µy ∂yµ −m2 − Σδ(y))G≶(x, y) =

∫ ∞

t0

dz0
∫
d3z

(
GR(x, z) Σ≶(z, y) +G≶(x, z) ΣA(z, y)

)
.

(90)

Alternatively, equations of motion for the retarded (advanced) Green’s functions can be

obtained from the Schwinger-Dyson equation (80):

(−∂µx∂xµ −m2 − Σδ(x))GR/A(x, y) = δ(4)(x, y) +

∫
d4z ΣR/A(x, z) GR/A(z, y),

(−∂µy ∂yµ −m2 − Σδ(y))GR/A(x, y) = δ(4)(x, y) +

∫
d4z GR/A(x, z) ΣR/A(z, y).

(91)

Equations (91) depend on retarded (advanced) quantities and where the integration extends

to the full space and time.

From the Kadanoff-Baym equations the off-shell transport equations can be derived. To

aim this goal, a Wigner transformation is performed with respect to the relative coordinate

∆x = x− y :

Ḡ(p,X) =

∫
d4∆xei∆xµpµG(X +∆x/2, X −∆x/2). (92)

Here X =
x+ y

2
denotes the central coordinate, while p = (ω,p) is the four-momentum.

The Wigner transformed Green’s functions Ḡ(r,p, ω, t) depend on the coordinate r, mo-

mentum p, energy ω and time t. It is important to note that the right hand-side of the

Kadanoff-Baym equations involve a convolution, which is hard to transform in all orders.

In transport theory it is assumed that all functions are only smoothly varying with their

mean space-time coordinates and thus one may consider only first-order derivatives, while

all terms proportional to the second and higher derivatives of the mean space-time coor-

dinates will be neglected. Therefore, to perform the Wigner transformation of the right

hand-side one can employ the first-order gradient approximation, i.e. approximating the

exponential function in the Fourier transformation to first order.

Furthermore, applying the Botermans-Malfliet scheme [132], the generalized transport

equation can be written as [38, 122]
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1

2
ĀΓ̄

[{
M̄, iG<

}
− 1

Γ̄

{
Γ̄, M̄ · iG<

}]
= iΣ̄<iḠ> − Σ̄>iḠ<. (93)

Here the relativistic Poisson bracket is used

{
F̄ (P,X), Ḡ(P,X)

}
= ∂Pµ F̄ (P,X) ∂µXḠ(P,X)− ∂µX F̄ (P,X) ∂Pµ Ḡ(P,X). (94)

In Eq. (93) M̄ is the mass function defined as

M̄ = P 2
0 −P2 −m2 − Σ̄δ −ReΣ̄R. (95)

On the left hand-side of Eq. (93) one can recognize the drift term and the contribution of

the real part of the self-energy, also known as the Vlasov term. Moreover, the real part

of the self-energy ReΣ̄R acts as an effective potential, whose space-time derivative gives a

force term. The term {Γ̄, M̄ · iG<} vanishes in the on-shell limit and is responsible for the

proper off-shell propagation. Equation (93) can be viewed as a quantum generalization of

the Boltzmann equation and can describe off-shell effects, which play an important role

for the strongly interacting systems. As shown in Refs. [133–135], the off-shell dynamics

is important for hadronic resonances with moderate lifetime in the vacuum, but strongly

reduced lifetime in the nuclear medium (such as ω and ρ mesons). It also provides a correct

description of dilepton decays of ρ mesons with masses close to the two-pion decay thresh-

old. A detailed discussion about the differences for the propagation of strongly interacting

systems via the Boltzmann equation and generalized transport equation can be found in

Ref. [135].

3.2 Generalized test-particle representation

In order to solve the generalized transport equation in consistent first-order gradient ex-

pansion, an extended test-particle Ansatz [136] can be employed. It approximates the (real

and positive semi-definite) Green’s function iḠ< as a sum of point-like particles:

iḠ<(P0,P, t,X) ∼
N∑

i=1

1

2P0
δ(3) (X−Xi(t)) δ

(3) (P−Pi(t)) δ (P0 − ǫi(t)) . (96)

Here the position of the test-particle i at time t is denoted by Xi(t), and its 4-momentum

by (ǫi(t),Pi(t)). We first study the free propagation of particles in between collisions, i.e.

by neglecting the collision terms Icoll in the generalized transport equation (93), which we

can rewrite in the form [130,133]:
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2Pµ∂Xµ iḠ
< − ∂Xµ

[(
∂µPReΣ̄

R +
P 2 −m2 −ReΣ̄R

Γ̄
∂µP Γ̄

)
iḠ<

]
(97)

+ ∂µP

[(
∂Xµ ReΣ̄

R +
P 2 −m2 −ReΣ̄R

Γ̄
∂Xµ Γ̄

)
iḠ<

]
= 0 ,

where the contribution of the self-energy Σ̄δ has been incorporated into ReΣ̄R. By replacing

iḠ< in the previous equation by the test-particle approximation (96), one can separate the

contributions from similar coefficients of delta functions in order to obtain equations of

motion for the test-particles as [122,133,137]:

dXi

dt
=

1

1− C(i)

1

2ǫi

[
2Pi +∇Pi

ReΣ̄R
(i) +

ǫ2i −P2
i −m2 −ReΣ̄R

(i)

Γ̄(i)

∇Pi
Γ̄(i)

]
, (98)

dPi

dt
=

−1

1− C(i)

1

2ǫi

[
∇Xi

ReΣ̄R
(i) +

ǫ2i −P2
i −m2 −ReΣ̄R

(i)

Γ̄(i)

∇Xi
Γ̄(i)

]
, (99)

dǫi
dt

=
1

1− C(i)

1

2ǫi

[
∂tReΣ̄

R
(i) +

ǫ2i −P2
i −m2 −ReΣ̄R

(i)

Γ̄(i)

∂tΓ̄(i)

]
. (100)

The multiplication factor C(i) contains energy derivatives of the self-energy as

C(i) =
1

2ǫi

[
∂ǫiReΣ̄

R
(i) +

ǫ2i −P2
i −m2 −ReΣ̄R

(i)

Γ̄(i)

∂ǫiΓ̄(i)

]
. (101)

The multiplication factor gives a shift of the system time t to the ’eigentime’ of the particle

i defined by t̃i = t/(1−C(i)). This correction factor is a generalization of the quasiparticle

renormalization factor arising for particles with finite width [132]. Moreover, one can see

that the evolution equations for dXi/dt̃i, dPi/dt̃i and dǫi/dt̃i, are the same as Eqs. (98)-

(99)-(100) without this normalization factor 1−C(i). For a momentum independent width

Γ̄(i)(X), one can consider the independent variable M2 = P 2−ReΣ̄R instead of the energy

P0, which is then fixed as:

P 2
0 = P2 +M2 + Σ̄δ +ReΣ̄R. (102)

IN this case Eq. (100) can be written as an evolution equation for the functions ∆M2
i ,

d∆M2
i

dt
=

∆M2
i

Γ̄(i)

dΓ̄(i)

dt
↔ d

dt
ln

(
∆M2

i

Γ̄(i)

)
= 0. (103)

Here ∆M2
i = M2

i −m2 is a measure of the off-shellness of the particle i, whose evolution

is found to be directly proportional to the ratio M̄/Γ̄. This ratio also appears in Eq. (97)

as a weighting factor for the changes induced by the variation of the imaginary part of the
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self-energy Γ̄ = −2ImΣ̄R.

3.3 Parton–Hadron–String Dynamics transport approach in

a nutshell

We start with recalling of the basic ideas of the PHSD transport approach. The PHSD

transport approach [43, 62, 121–123] is a microscopic off-shell transport approach for the

description of strongly interacting hadronic and partonic matter in and out-of equilibrium.

It is based on the solution of the generalized transport equations presented in the previ-

ous section, employing ‘resummed’ Green’s functions from the DQPM [45, 46, 56] for the

partonic phase.

The DQPM, as described in the previous Chapter, has been introduced for the effective

description of the QGP in terms of strongly interacting quarks and gluons with properties

and interactions that are adjusted to reproduce lQCD results on the thermodynamics of

the equilibrated QGP at finite temperature T and baryon (or quark) chemical potential

µB. Masses and widths for the partons depend on temperature T and baryon chemical

potential µB are employed as input in the present PHSD calculations. These values for the

masses and widths have been fixed by fitting the lattice QCD results from Ref. [22, 60] in

thermodynamic equilibrium. One can see that the masses of quarks and gluons decrease

with increasing µB, and a similar trend holds for the widths of partons. Moreover, the

DQPM also allows to define a scalar mean-field Us(ρs) for quarks and antiquarks which

can be expressed by the derivative of the potential energy density with respect to the scalar

density ρs,

Us(ρs) =
dVp(ρs)

dρs
, (104)

which is evaluated numerically. Here, the potential energy density is defined by

Vp(T, µq) = T 00
g−(T, µq) + T 00

q−(T, µq) + T 00
q̄−(T, µq), (105)

where the different contributions T 00
j− correspond to the space-like part of the energy-

momentum tensor component T 00
j of parton j = g, q, q̄ (cf. Section 3 in Ref. [45]).

The scalar mean-field Us(ρs) for quarks and antiquarks is repulsive as a function of the par-

ton scalar density ρs and shows that the scalar mean-field potential is in the order of a few

GeV for ρs > 10 fm−3. The mean-field potential (104) is employed in the PHSD transport

calculations and determines the force on a partonic quasiparticle j which is proportional

to

Mj/Ej∇Us(x) =Mj/Ej dUs/dρs ∇ρs(x), (106)

where the scalar density ρs(x) is determined numerically on a space-time grid.

Furthermore, a two-body interaction strength can be extracted from the DQPM as

well from the quasiparticle width in line with Ref. [46]. For the QGP phase we consider

the following elastic and inelastic interactions, which are included in the latest version of
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PHSD (v. 5.0):

qq ↔ qq, q̄q̄ ↔ q̄q̄, gg ↔ gg, gg ↔ g, qq̄ ↔ g, qg ↔ qg, gq̄ ↔ gq̄

exploiting ’detailed-balance’ with cross sections calculated from the leading order Feynman

diagrams employing the effective propagators and couplings g2(T/Tc) from the DQPM [1].

In Ref. [1], the differential and total off-shell cross sections have been evaluated as a function

of the invariant energy of colliding off-shell partons
√
s for each T , µB. In the preceding

studies within the PHSD framework (using v. 4.0 and below) the parton cross sections

depend only on T as evaluated in Ref. [138].

To employ the differential cross sections and parton masses into the PHSD5.0 approach,

one has to determine T and µB in each computational cell in space-time. This has been

realised by implementing the Taylor expansion of the lQCD equation-of-state and a diag-

onalization of the energy-momentum tensor from PHSD [1], which will be discussed in the

next Section.

The transition from the partonic to the hadronic phase (and vice versa) is described by

covariant transition rates for the fusion of quark–antiquark pairs or three quarks (an-

tiquarks), respectively, obeying flavor current–conservation, color neutrality as well as

energy–momentum conservation [43]. In particular, transition rates for q + q̄ fusion to

a mesonic state m of four-momentum p = (ω,p) at space-time point x = (t,x) reads

dNm(x, p)

d4xd4p
= TrqTrq̄ δ

4(p− pq − pq̄) δ
4

(
xq + xq̄

2
− x

)
ωq ρq(pq) ωq̄ ρq̄(pq̄)

×|vqq̄|2 Wm(xq − xq̄, (pq − pq̄)/2) Nq(xq, pq) Nq̄(xq̄, pq̄) δ(flavor, color). (107)

Here we have introduced the shorthand notation,

Tri =
∑

i

∫
d4xi

∫
d4pi
(2π)4

, (108)

where
∑

i denotes a summation over discrete quantum numbers (spin, flavor, color).

Ni(x, p) is the phase-space density of parton i at space-time position x and four-momentum

p. In Eq. (107) δ(flavor, color) stands symbolically for the conservation of flavor quantum

numbers as well as color neutrality of the formed hadronic state m which can be viewed as

a color-dipole or ‘pre-hadron’. Since close to the phase transition the dynamical quarks and

anti-quarks become very massive, the formed resonant ‘prehadronic’ color-dipole states (qq̄

or qqq) have high invariant mass, too, and sequentially decay to the ground state meson

and baryon octets, thus increasing the total entropy. Furthermore, vqq̄(ρp) is the effective

quark-antiquark interaction from the DQPM (displayed in Fig. 10 of Ref. [45]) as a func-

tion of the local parton (q + q̄ + g) density ρp (or energy density). Wm(x, p) denotes the

dimensionless phase-space distribution of the formed ‘pre-hadron’

Wm(ξ, pξ) = exp

(
ξ2

2b2

)
exp

[
2b2(p2ξ − (Mq −Mq̄)

2/4)
]
. (109)
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Here we use shorthand notations ξ = x1−x2 = xq−xq̄ and pξ = (p1−p2)/2 = (pq−pq̄)/2.
The width parameter b is defined as

√
〈r2〉 = b = 0.66 fm (in the rest frame) which

corresponds to an average radius of mesons. Wm(x, p) is Lorentz invariant by construction.

In the limit of instantaneous hadron formation ( i.e. ξ0 = 0) it provides a Gaussian decrease

in the relative distance squared (r1−r2)
2. The four-momentum dependence reads explicitly

(E1 − E2)
2 − (p1 − p2)

2 − (M1 −M2)
2 ≤ 0. (110)

It results in a negative argument of the second exponential in Eq. (109) favoring the fusion

of partons with low relative momenta pq − pq̄ = p1 − p2.

The probability for a quark to hadronize is essentially proportional to the timestep dt in

the calculation, the number of possible hadronization partners in the volume dV ∼ 5 fm3

and the transition matrix element squared (apart from the gaussian overlap function). For

temperatures above Tc the probability is rather small (≪ 1) while for temperatures close

to Tc and below Tc the matrix element becomes very large since it essentially scales with

the effective coupling squared g2(T/Tc). Moreover, for a finite time-step dt the probability

becomes larger than 1 which implies that the quark has to hadronize with some of the

potential antiquarks in the actual time-step if the temperature or energy density becomes

too low. Furthermore, the gluons practically freeze out close to Tc since the mass differ-

ence between quarks and gluons increases drastically with decreasing temperature and the

reaction channel g ↔ q+ q̄ is close to equilibrium. This implies that all partons hadronize.

On the hadronic side, PHSD includes explicitly the baryon octet and decouplet, the 0−-

and 1−-meson nonets as well as selected higher resonances as in the HSD approach [38]. In

case of hadrons of higher masses (> 1.5 GeV in case of baryons and > 1.3 GeV in case of

mesons) they are treated as ’strings’ (color-dipoles), that decay to the known (low-mass)

hadrons within the JETSET algorithm [139]. Note that PHSD and HSD merge at low

energy density, in particular below the local critical energy density εc ≈ 0.5 GeV/fm3.

The initial conditions for the parton/hadron dynamical system have to be specified ad-

ditionally. In order to describe relativistic heavy-ion reactions we start with two nuclei

in their semi-classical groundstate, boosted towards each other with a velocity β (in z-

direction), fixed by the bombarding energy. The initial phase-space distributions of the

projectile and target nuclei are determined in the local Thomas-Fermi limit as in the HSD

transport approach [38] or the UrQMD model [36]. We recall that at relativistic energies the

initial interactions of two nucleons are well described by the excitation of two color-neutral

strings which decay in time to the known hadrons (mesons, baryons, antibaryons) [139].

Initial hard processes - i.e. the short-range high-momentum transfer reactions that can be

well described by perturbative QCD - are treated in PHSD (as in HSD) via PYTHIA.

The novel element in PHSD (relative to HSD) is the dissolution of ‘pre-hadrons’. How-

ever, in PHSD the ‘pre-hadrons’ (or possibly formed hadrons) are only allowed to dissolve

if the local energy density ǫ(x) (in the local rest frame) is above the transition energy

density ǫc which in the DQPM is ǫc ≈ 0.5 GeV/fm3. The mesonic strings then decay to
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quark-antiquark pairs according to an intrinsic quark momentum distribution,

F (q) ∼ exp(−2b2q2) , (111)

in the meson rest-frame (cf. Eq. (109) for the inverse process). The parton final four-

momenta are selected randomly according to the momentum distribution (111), and the

parton-energy distribution is fixed by the DQPM at given energy density ǫ(ρs) in the local

cell with scalar parton density ρs. The flavor content of the qq̄ pair is fully determined

by the flavor content of the initial string. By construction the "string melting" to mas-

sive partons conserves energy and momentum as well as the flavor content. In contrast to

Ref. [140] the partons are of finite mass – in line with their local spectral function – and

obtain a random color c = (1, 2, 3) or (r, b, g) in addition. Of course, the color appoint-

ment is color neutral, i.e. when selecting a color c for the quark randomly the color for the

antiquark is fixed by −c. Similarly, the baryonic strings melt into a quark and a diquark

while the diquark decays to two quarks. Dressed gluons are generated by the fusion of

nearest neighbor q+ q̄ pairs (q+ q̄ → g) that are flavor neutral until the ratio of gluons to

quarks reaches the value Ng/(Nq +Nq̄) given by the DQPM for the energy density of the

local cell. This recombination is performed for all cells in space during the passage time

of the target and projectile (before the calculation continues with the next time step) and

conserves the four-momentum as well as the flavor currents. We note, however, that the ini-

tial phase in PHSD is dominated by quark and anti-quark degrees of freedom [141]. Apart

from proton-proton, proton-nucleus or nucleus-nucleus collisions the PHSD approach can

also be employed to study the properties of the interacting hadron/parton system, such

as transport coefficients, in a finite box with periodic boundary conditions [84]. To this

aim the system is initialized by a homogeneous distribution of test-particles in a finite box

with a momentum distribution close to a thermal one.
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3.4 Modelling Heavy-Ion Collisions

In order to solve transport equations in the PHSD framework test-particle Anzatz is em-

ployed for the drift term, while for the evaluation of a collisional integral the stochastic

method is used in order to find colliding partners within the same time step. The par-

allel ensembles method is applied in the PHSD, where the simulations are performed for

N parallel ensembles, which have a similar number of particles. The collisions between

the particles are allowed only inside the same ensemble, whereas the macroscopic quanti-

ties are averaged over the ensembles. In this Section we will investigate the sensitivity of

‘bulk’ observables such as rapidity and transverse momentum distributions as well as flow

coefficients of different hadrons produced in heavy-ion collisions from AGS to top RHIC

energies on the details of the QGP interactions and the properties of the partonic degrees

of freedom. To this aim, we have considered the following three settings for the transport

simulations:

• PHSD4.0: the masses and widths of quarks and gluons also depend only on T .

The cross sections for partonic interactions depend only on T as evaluated in the

‘box’ calculations in Ref. [138] in order to merge the QGP interaction rates from all

possible partonic channels to the total temperature dependent widths of the DQPM

propagator. This method has been used in the PHSD codes (v. 4.0 or below)

for extended studies of many hadronic observables in p+A and A+A collisions at

different energies [43,62,121–123,142].

• PHSD5.0 - µB = 0: the masses and widths of quarks and gluons depend only on

T ; however, the differential and total partonic cross sections are obtained by calcu-

lations of the leading order Feynman diagrams employing the effective propagators

and couplings g2(T/Tc) from the DQPM at µB = 0 [1]. Thus, the cross sections

depend explicitly on the invariant energy of the colliding partons
√
s and on T . This

is realized in the PHSD5.0 by keeping µB = 0.

• PHSD5.0 - µB: the masses and widths of quarks and gluons depend on T and µB
explicitly; the differential and total partonic cross sections are obtained by calcula-

tions of the leading order Feynman diagrams from the DQPM and explicitly depend

on the invariant energy
√
s, temperature T and baryon chemical potential µB. This

is realized in the full version of PHSD5.0 [1].

Extraction of (T, µB) in PHSD5.0

In the transport approach, T and µB are not natural observables, however, one can de-

termine the energy density and baryon density in each cell. In order to extract T and µB
from the corresponding EoS of the partonic system one has to solve the following system

of equations [1]: {
ǫEoS(T, µB) = ǫPHSD/r(x)

nEoS
B (T, µB) = nPHSD

B .
(112)
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Figure 3.3: The T -profile (left) and µB-profile (right) in (x, y) at midrapidity (|ycell| <
1) at 1 and 4 fm/c (from 0.5 to 6 fm/c for the µB-profile) after the initial collision for 5%
central Pb+Pb collision at 158 A GeV from PHSD5.0. The figure is taken from [1].

large3 compared to the averaged values and they decrease with time. Still even at 8 fm/c

there are "hot spots" of QGP located at front surfaces of high rapidity.

Now let’s look at the time evolution of the T and µB distribution for cells having a tem-

perature T > Tc(µB) at midrapidity (|ycell| < 1) for 5% central Pb+Pb collisions at 158

A GeV. Fig. 3.4 displays this distribution for times t < 2 fm/c, 2 fm/c < t < 4 fm/c and

t > 4 fm/c. For early times (t < 2 fm/c) the distribution peaks at a temperature of about

0.25 GeV and a sizable chemical potential of about 0.6 GeV, while for times in the interval

2 fm/c < t < 4 fm/c the maximum has dropped already to an average temperature ∼
0.18 GeV and a chemical potential of about 0.3 GeV. For later times (t > 4 fm/c) the

distribution (above Tc) essentially stays around µB ≈ 0.25 GeV. As follows from Fig. 3.4

the µB probed around the transition temperature Tc in the PHSD are in accordance with

the expectation from statistical models, which for central Pb+Pb collisions at 158 A GeV

predict µB = 0.2489 GeV [145].

By decreasing the collisional energy of the initial nuclei, one decreases the volume of the

QGP produced in the heavy-ion collisions. The QGP energy fraction versus the total en-

ergy for Au+Au at different collisional energies
√
sNN (accounting only the midrapidity

region |y| < 0.5) is shown in Fig. 3.5. One can see that for high energies the QGP fraction

is large compared to lower collisional energies where the volume of the QGP is small. While

at high energy heavy-ion collisions the QGP phase appears suddenly after the initial pri-

3 We note that an extraction of the thermodynamic quantities for the strongly non-equilibrium initial
stage is not a consistent procedure.
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Figure 3.5: The QGP energy fraction from PHSD as a function of time t in central
(impact parameter b = 2 fm) Au+Au collisions for different collisional energies

√
sNN for

|y| < 0.5. The figure is taken from [7].

Figure 3.6: The rapidity distributions for 5% central Au+Au collisions at 10.7 A GeV
for PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections and parton
masses calculated for µB = 0 (blue dashed lines) and with cross sections and parton
masses evaluated at the actual chemical potential µB in each individual space-time cell (red
lines) in comparison to the experimental data from the E866 [146], E877 [147], E891 [148],
E877 [149] and E896 [150] collaborations. All PHSD results are the same within the
linewidth. The figure is taken from [1].

traces of the explicit µB-dependence of the partonic cross sections in observables. Here we

compare results for the rapidity distributions from the PHSD calculations based on the de-

fault DQPM parameters (PHSD4.0) [138] with the new PHSD5.0 including the differential

partonic cross sections for the individual partonic channels at finite T and µB (cf. Ref. [1]).

Actual results for hadronic rapidity distributions in case of 5% central Au+Au collisions

at 10.7 A GeV are shown in Fig. 3.6 for PHSD4.0 (green dot-dashed lines), PHSD5.0 with

partonic cross sections and parton masses calculated for µB = 0 (blue dashed lines), and
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with cross sections and parton masses evaluated at the actual chemical potential µB in

each individual space-time cell (red lines) in comparison to the experimental data from

the E866 [146], E877 [147], E891 [148], E877 [149] and E896 [150] collaborations. Here we

consider the most abundant hadrons, i.e. pions, kaons, protons and neutral hyperons. The

results for all the hadron species from the different versions of PHSD essentially coincide

within linewidths as seen from Fig. 3.6. This approximate agreement implies that there is

no sensitivity to the new partonic differential cross sections and parton masses employed.

However, this effect can be explained by the low amount of QGP produced at this energy

but the different PHSD calculations for 5% central Pb+Pb collisions at 30 A GeV in Fig.

3.7 for the hadronic rapidity distributions do not provide a different picture, too. Only

Figure 3.7: The rapidity distributions for 5% central Pb+Pb collisions at 30 A GeV
for PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections and parton
masses calculated for µB = 0 (blue dashed lines) and with cross sections and parton masses
evaluated at the actual chemical potential µB in each individual space-time cell (solid red
lines) in comparison to the experimental data from the NA49 Collaboration [151–153]. All
PHSD results are practically the same within the linewidth. The figure is taken from [1].

when stepping up to the top SPS energy of 158 A GeV one can identify a small difference

in the antibaryon sector (p̄, Λ̄ + Σ̄0) in case of 5% central Pb+Pb collisions (cf. Fig. 3.8).

So far at lower and intermediate energies we have not found any prominent sensitivity

in hadronic rapidity distributions to differential parton cross sections, but the transverse

dynamics needs to be investigated in addition. Hence, transverse momentum distributions

for 5 % central Au + Au and Pb + Pb collisions at 10.7 A GeV, 30 A GeV and 158
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Figure 3.8: The rapidity distributions for 5% central Pb+Pb collisions at 158 A GeV
for PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections and parton
masses calculated for µB = 0 (blue dashed lines) and with cross sections and parton masses
evaluated at the actual chemical potential µB in each individual space-time cell (red lines)
in comparison to the experimental data from the NA49 Collaboration [154–157]. All PHSD
results are the same within the linewidth except for the antibaryons. The figure is taken
from [1].

A GeV, at an average rapidity (|y| < 0.5 ) are shown in Fig. 3.9 for PHSD4.0 (green

lines), PHSD5.0 with parton cross sections and masses of partons calculated for µB = 0

(blue lines) and with cross sections and masses of partons estimated at the actual chemical

potential µB in each separate cell of space-time (red lines) in comparison with experimental

data from the collaborations E917 and E866 [158,159], and from the NA49 Collaboration

[151–153, 155, 156, 160]. Here, the solid lines represent positively charged particles and

dashed lines show results for negatively charged particles. We found that at 30 A GeV

there are practically no changes in the pT spectra for all versions of PHSD; it is only at

158 A GeV that tiny changes in the pT spectra become noticeable for transverse momenta

above about 2.5 GeV/ c. Moreover, for 10.7 A GeV Au + Au collisions, we also find

no visible changes in the pT -spectra within the linewidth (cf. Fig. 3.9). These findings

can be explained by the fact that at AGS and SPS energies the space-time volume of the

partonic phase is too small even in central Pb+Pb collisions such that one has practically no

sensitivity to the microscopic collisional details in the partonic phase. However, this might

change for ultra-relativistic collision systems where the QGP phase becomes dominant.

We expect a dominantly partonic phase in central Au+Au collisions at
√
sNN = 200 GeV

especially when gating on midrapidity. However, the differences between PHSD4.0 and
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Figure 3.9: The transverse momentum distributions for 5% central Au+Au collisions
at 11 A GeV (left panel) and Pb+Pb collisions at 30 A GeV (middle panel) and 158 A
GeV (right panel), in midrapidity (|y| < 0.5) for PHSD4.0 (green lines), PHSD5.0 with
partonic cross sections and parton masses calculated for µB = 0 (blue lines) and with
cross sections and parton masses evaluated at the actual chemical potential µB in each
individual space-time cell (red lines) in comparison to the experimental data from the
E917 and E866 collaborations [158, 159] (left), from the NA49 Collaboration [151–153]
(middle) and [155,156,160] (right). The figure is taken from [1].

PHSD5.0 (with and without µB-dependence) in the hadronic rapidity distributions for 5%

central Au+Au collisions turn out to be rather small for mesons (π±,K±) and also for

baryons and antibaryons (p, p̄,Λ + Σ0, Λ̄ + Σ̄0) (cf. Fig. 3.11 (left)) such that no robust

conclusion on the partonic collisional dynamics can be drawn even in this case.

This also holds true for the transverse momentum distributions at midrapidity (|y| < 0.5)

for these collisions when comparing the results from the different PHSD versions with

each other and the data from the PHENIX [162] and STAR [163] collaborations in Fig.

3.11 (right). Only for high transverse momenta small differences can be seen with the

tendency to improve the description of the data in the novel versions of PHSD5.0 with the

microscopic differential partonic cross sections.
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Figure 3.10: Transverse momentum distributions for 10-20% central Au+Au collisions
at
√
sNN =19 GeV and midrapidity (|y|< 0.5) for PHSD4.0 (green lines), PHSD5.0 with

partonic cross sections and parton masses calculated for µB = 0 (blue dashed lines) and
with cross sections and parton masses evaluated at the actual chemical potential µB in
each individual space-time cell (red lines) in comparison to the experimental data from the
STAR collaboration [161].

3.4.2 Asimuthal anisotropy in the HICs

The azimuthal anisotropy of the particle distribution is one of the important observables

characterizing the collective effects at the initial stage of quark-gluon matter formation

and expansion during the collision of relativistic nuclei. In non-central nuclear collisions

the direction of the beam axis and the impact parameter determine the reaction plane.

The observed particle multiplicity as a function of the azimuthal angle with respect to the

reaction plane in each event provides information on the collision dynamics at an early

stage [166,167]. The initial overlap region of the nuclei at non-zero impact parameter has

an elliptical shape. In the process of thermalization of the created matter, due to the

spatial anisotropy of the system, pressure gradients are created with a maximum along

the smaller axis of the ellipse and a minimum along the larger axis. As a result, the

azimuthal momentum distribution of the particles becomes anisotropic (See Fig. 3.12).

Quantitatively, the elliptic flow is characterized by the second coefficient v2 in the Fourier

series expansion of particle distribution along the azimuthal angle relative to the reaction

plane.

Due to the reflection symmetry in the Fourier decomposition of the azimuthal angular

distribution in a Fourier series with a sufficiently large number of number of particles in

the event, with only cosine terms:

E
d3N

d3p
=

d3N

dypTdpTdφ
=

1

2π

d2N

pTdpTdy
(1 + 2

∞∑

n=1

vn(y, pT )cos[n(φ−ΨRP )]), (114)
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Figure 3.11: The rapidity distributions (left) and transverse momentum distributions
(right) for 5% central Au+Au collisions at

√
sNN = 200 GeV for PHSD4.0 (green dot-

dashed lines), PHSD5.0 with partonic cross sections and parton masses calculated for
µB = 0 (blue dashed lines) and with cross sections and parton masses evaluated at the
actual chemical potential µB in each individual space-time cell (red lines) in comparison
to the experimental data from the BRAHMS [164, 165], PHENIX [162] and STAR [163]
collaborations. The figure is taken from [1].

where E is the energy of particle, p the total momentum, pT the transverse momentum, y

the rapidity, φ the azimuthal angle and ΨRP the reaction plane angle. We are interested

in the Fourier coefficients of this expansion:

vn =< cos[n(φ−ΨRP )] >, (115)

where averaging over the particles, summation over all events for every (pT ,y) bin is per-

formed. Further on we consider the first two coefficients v1 and v2, which are known as

directed and elliptic flow, respectively. These first two flow coefficients carry information

on the early stages of the collision. The directed flow manifests itself in the flattening of

spectra, predominantly in A+A versus p+p collisions, at small transverse kinetic energies.

There are different methods for measuring the azimuthal anisotropy coefficient, which have
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their own advantages and disadvantages. The first method uses the determination of the

angle of the reaction plane in each event [168]. In this case, the sign of the coefficient v2 is

known, if the angle of the reaction plane is determined by the first harmonic. The second

and third methods are the cumulant method and the Lee-Young zero method [168]. In

this case, the sign of v2 cannot be determined. Here we consider first method also known

as the standard event plane method [168] described in Appendix C.

Figure 3.12: (Left) A non-central collision of two nuclei with impact factor b leads to
an almond-shaped interaction volume. (Right) The initial spatial anisotropy with respect
to the reaction plane evolves under pressure gradients into a momentum anisotropy of the
produced particles.

3.4.3 Directed Flow v1

Figure 3.13: Directed flow of identified hadrons as a function of rapidity at
√
sNN = 200

GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and parton masses
calculated for µB = 0 (blue dashed lines) and with cross sections and parton masses
evaluated at the actual chemical potential µB in each individual space-time cell (solid red
lines) in comparison to the experimental data of the STAR Collaboration [169].

Now, we test the traces of µB-dependencies of the QGP interaction cross sections in

collective observables such as the directed flow v1 considering again three cases of the

PHSD as discussed above.

Figure 3.14 depicts the directed flow v1 of identified hadrons (K±, p, p̄,Λ+Σ0, Λ̄+ Σ̄0)

versus rapidity for
√
sNN = 27 GeV. One can see a good agreement between PHSD results

and experimental data from the STAR collaboration [169]. However, the different versions

of PHSD for the v1 coefficient show a quite similar behavior; only antihyperons show a
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Figure 3.14: Directed flow of identified hadrons as a function of rapidity at
√
sNN = 27

GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and parton masses
calculated for µB = 0 (blue dashed lines) and with cross sections and parton masses
evaluated at the actual chemical potential µB in each individual space-time cell (red lines)
in comparison to the experimental data of the STAR Collaboration [169].

slightly different flow. This supports again the finding that strangeness, and in particular

anti-strange hyperons, are the most sensitive probes for the QGP properties. To check

further effects in the partonic phase on the directed flow we consider higher collision energy.

The directed flow v1 of identified hadrons (K±, p, p̄,Λ+Σ0, Λ̄+Σ̄0) versus rapidity at
√
sNN

= 200 GeV is demonstrated in Figure 3.13. The difference between the PHSD lines is less

pronounced than for
√
sNN = 27 GeV. Note that the difference between positive and

negative charged hadrons (h+ and h−) is small for
√
sNN = 200 GeV, thus we considered

the averaged v2 of charged particles: v2(h) =
v2(h+)+v2(h−)

2 .

3.4.4 Elliptic Flow v2

The influence of transport coefficients (mainly shear η and bulk ζ viscosities) to the QGP

evolution in HICs has been widely studied in the hydrodynamic simulations [118,170,171]

and in the Bayesian analysis [89], where an explicit dependence of the elliptic flow v2 on

the transport properties of the QGP has been manifested. In this section, we consider

the results for the elliptic flow of charged hadrons produced in symmetric A+A collisions

within the PHSD5.0 with and without µB-dependence and compare to the results from

PHSD4.0. To track the effect of the QGP phase on the final observables we consider a
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channel decomposition: we group the final hadrons according to their origin by considering

three channels: i) hadrons coming from the QGP without rescattering in the hadronic

phase, ii) hadrons coming from strings, and iii) hadrons coming from mesonic and baryonic

resonance decays. This allows to compare the flow coefficients between the considered

channels of final particles and see an effect of the QGP dynamics for final particles in a

specific channel.

The left plots ‘(a)’ in Figures 3.15 and 3.16 display the actual results for the charged

hadron elliptic flow as a function of pseudo-rapidity η (Figure 3.15) and of transverse

momentum pT (Figure 3.16) for minimum bias Au+Au collisions at
√
sNN = 200 GeV for

PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and parton masses calculated

for µB = 0 (blue dashed lines), and with cross sections and parton masses evaluated at the

actual chemical potential µB in each individual space-time cell (red lines) in comparison to

the experimental data from the STAR collaboration [172] (solid stars) and PHOBOS [173]

(solid dots). The difference between results for PHSD4.0 and PHSD5.0 is more pronounced

for v2 versus pT in case of charged hadrons for high pT > 0.5 GeV, than for v2(pT ) versus

η.

Figure 3.15: Left (a): elliptic flow of charged hadrons as a function of pseudo-rapidity
η for minimum bias Au+Au collisions at

√
sNN=200 GeV for PHSD4.0 (solid green line),

PHSD5.0 with partonic cross sections and parton masses calculated for µB = 0 (blue
dashed line), and with the actual µB (solid red line) in comparison to the experimental
data from STAR [172] (red stars) and PHOBOS [173] (spheres) Collaborations. Middle
(b): individual contributions to v2 without their relative weights to the total v2, which are
indicated by a green solid line for PHSD5.0 with µB: the magenta dotted line corresponds
to the final hadrons coming from the QGP without rescattering in the hadronic phase,
the orange dashed line indicates the v2 of hadrons coming from strings while the brown dot-
dashed line shows the v2 of hadrons coming from mesonic and baryonic resonance decays.
Right (c): individual contributions to v2 including their relative weights to the total v2.

The channel composition of v2 for PHSD5.0 – with cross sections and parton masses

evaluated at the actual chemical potential µB in each individual space-time cell – is shown

in the middle plots ‘(b)’ of Figures 3.15 and 3.16. We sorted the particles according

to their production channels into three parts as discussed above: the magenta dotted line

corresponds to the final hadrons coming from the QGP without rescattering in the hadronic

phase, the orange dashed line indicates the v2 of hadrons coming from strings (without

further rescattering) while the brown dot-dashed line shows the v2 of hadrons coming
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Figure 3.16: Elliptic flow of charged hadrons as a function of pT for 0–50% central
Au+Au collisions at

√
sNN = 200 GeV in comparison to the experimental data from the

STAR Collaboration [172] (spheres). The line description is similar to Fig. 3.15.

from mesonic and baryonic resonance decays. One can see a large difference between the

averaged elliptic flow for the different channels: the v2 of hadrons from string decay is

the lowest since string production occurs dominantly at the initial phase of the heavy-ion

collision; the v2 of hadrons from the QGP is the largest versus η as follows from the middle

Part ‘(b)’ of Figure 3.15. However, this is mainly due to the low pT hadrons which give a

larger contribution to v2(η) – cf. the middle part ‘(b)’ of Figure 3.16. Here, the high pT

hadrons from the QGP show a lower v2 than those coming from strings or resonance decays.

The right parts ‘(c)’ of Figures 3.15 and 3.16 present the individual contributions to

v2 including their relative weights to the total v2. It shows that the properly weighted

channel decomposition of v2 looks rather different – the contribution of the hadrons from

the QGP is now small since most of them rescatter in the hadronic phase, i.e., the relative

fraction of hadrons directly coming from QGP hadronization is very small. The total v2 is

dominated by the hadrons coming from the decay of resonances. The fraction of hadrons

from string decays is very small due to the fact that strings are formed mainly in the

beginning of collisions, and a very small fraction of hadrons can survive directly. Thus,

the information in v2 about the QGP properties is washed out to a large extent by final

hadronic interactions.

Figure 3.17 demonstrates the elliptic flow of identified hadrons (K±, p, p̄,Λ+Σ0, Λ̄+Σ̄0)

as a function of pT at
√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic

cross sections and parton masses calculated for µB = 0 (blue dashed lines) and with

cross sections and parton masses evaluated at the actual chemical potential µB in each

individual space-time cell (red lines) in comparison to the experimental data of the STAR

Collaboration [174]. Similar to the directed flow shown in Figure 3.14, the elliptic flow from

all three cases for PHSD shows a rather similar behavior, the differences are very small

(within the statistics achieved here). Only antiprotons and antihyperons show a small

decrease of v2 at larger pT for PHSD5.0 compared to PHSD4.0, which can be attributed

to the explicit
√
s-dependence and different angular distribution of partonic cross sections

in the PHSD5.0. We note that the underestimation of v2 for protons and Λ’s we attribute

to the details of the hadronic vector potential involved in this calculations which seems to

underestimate repulsion.
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Figure 3.17: Elliptic flow of identified hadrons (K±, p, p̄,Λ+Σ0, Λ̄+ Σ̄0) as a function of
pT at

√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross sections and
parton masses evaluated at the actual chemical potential µB in each individual space-time
cell (red lines) in comparison to the experimental data of the STAR Collaboration [174].
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3.5 Conclusions to Section 3

In this chapter we have studied the influence of the baryon chemical potential µB on the

properties of the QGP in equilibrium as well as the QGP created in heavy-ion collisions

also far from equilibrium. For the description of the QGP we employed the extended

effective DQPM that is matched to reproduce the lQCD crossover equation-of-state versus

temperature T and at finite baryon chemical potential µB.

We based our study of the non-equilibrium QGP – as created in heavy-ion collisions –

on the extended PHSD transport approach in which i) the masses and widths of quarks

and gluons depend on T and µB explicitly; ii) the partonic interaction cross sections

are obtained by calculations of the leading order Feynman diagrams from the DQPM and

explicitly depend on the invariant energy
√
s, temperature T and baryon chemical potential

µB. This extension is realized in the full version of PHSD5.0 [1].

In order to investigate the traces of the µB-dependence of the QGP in observables, the

results of PHSD5.0 with µB-dependence have been compared to the results of PHSD5.0

for µB = 0 as well as with PHSD4.0 where the masses/width of quarks and gluons as well

as their interaction cross sections depend only on T following Ref. [84].

We have presented the PHSD results for different observables: (i) rapidity and pT

distributions of identified hadrons for symmetric Au+Au and Pb+Pb collisions at energies

of 30 AGeV (future NICA energy) as well as for the top RHIC energy of
√
sNN = 200 GeV;

(ii) directed flow v1 of identified hadrons for Au+Au at invariant energy
√
sNN = 27 GeV

and 200 GeV; (iii) elliptic flow v2 of identified hadrons for Au + Au at invariant energies
√
sNN = 27 and 200 GeV.

The comparison of the ‘bulk’ observables for A+A collisions within the three setting of

PHSD has illuminated that they manifest a quite low sensitivity to the µB- dependences

of parton properties (masses and widths) and their interaction cross sections such that the

results from PHSD5.0 with and without µB were very close to each other. Only in the case

of kaons, antiprotons p̄ and antihyperons Λ̄+ Σ̄0, a small difference between PHSD4.0 and

PHSD5.0 could be seen at top SPS and top RHIC energies.

A similar trend has been found for very asymmetric collisions of C+Au: a small sensitivity

to the partonic scatterings was found in the kaon and antibaryon rapidity distributions,

too [1]. We find only small differences between PHSD4.0 and PHSD5.0 results on the

hadronic observables considered here at high as well as at intermediate energies. This is

related to the fact that at high energies, where the matter is dominated by the QGP, one

probes a very small baryon chemical potential µB in central collisions at midrapidity, while,

with decreasing energy, where µB becomes larger, the fraction of the QGP drops rapidly,

such that in total the final observables are dominated by the hadrons which participated

in hadronic rescattering and thus the information about their QGP origin is washed out

or lost.

We have demonstrated that the µB-dependence of QGP interactions is more pronounced

in observables for strange hadrons, kaons and especially anti-strange hyperons, as well

as for antiprotons. This gives an experimental hint for the search of µB traces of the

QGP for experiments at the future NICA accelerator, even if it will be a very challenging
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experimental task.
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4

Critical end point and 1st order

phase transition of QCD matter

within the PNJL model

This Chapter is devoted to the evaluation of transport coefficients of the QGP – the shear

viscosity over entropy ratio η/s and the ratio of the electric conductivity to the temperature

σQ/T – at finite temperature and chemical potential. Our consideration is based on the

framework of an effective relativistic Boltzmann equation in the relaxation-time approxi-

mation, where properties of the QGP matter such as the EoS, the interaction cross sections

and constituent quark masses are described by the extended Polyakov Nambu-Jona-Lasinio

(PNJL) model with a critical endpoint (CEP) located at (TCEP , µCEP
q ) = (0.11, 0.32)

GeV [175]. The framework of the PNJL model allows to evaluate the transport properties

of the QGP near the chiral phase transition at moderate and high µB. Here we denote the

quark chemical potential as (for the light quarks) µq = µl = µB/3 while for the strange

quarks we take µs = 0.

We compare the PNJL transport coefficients with the results presented in Chapter 2 (

cf. Refs. [1, 2]), where they have been calculated within the DQPM [45, 46] at moder-

ate values of the baryon chemical potential, µB ≤ 0.5 GeV. It is important to note that

both models are based on rather different ideas: The DQPM is an effective model for the

description of non-perturbative (strongly interacting) QCD based on the lQCD EoS. The

degrees of freedom of the DQPM are strongly interacting dynamical quasiparticles – quarks

and gluons – with broad spectral functions, whose ‘thermal’ masses and widths increase

with temperature, while the degrees of freedom of the PNJL are quarks whose masses

approach the bare mass with increasing temperature and the chiral condensate disappears.

Moreover, in the PNJL the mesons still exist above the Mott transition temperature as

resonances. Thus, in the EoS the energy density is shared between the quarks, mesons and

the Polyakov loop potential. We explore how the nature of the degrees of freedom affects

the transport properties of the QGP. Moreover, we study the influence of a CEP and of

a 1st order phase transition at high baryon chemical potential. For the evaluation of the

relaxation time we use two different methods: a) the ‘averaged transition rate’ defined via

the thermal averaged quark-quark and quark-antiquark PNJL cross sections and b) the

‘weighted’ thermal averaged quark-quark and quark-antiquark PNJL cross sections 4. We

discuss the uncertainties related to the theoretical methods based on the RTA.

4 Here under ‘thermal-averaged’ cross sections we mean the the interaction cross section averaged over
the thermal (anti-)quark distribution function
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Part of the results presented below have been included in publications [4, 175].5

4.1 Basic ideas of the Nambu-Jona Lasinio model

The Nambu-Jona Lasinio model [176] was proposed even before the theory of strong in-

teractions, QCD, was formulated. The authors considered the possibility that nucleons

generate mass due to the dynamical breaking of chiral symmetry and the formation of pi-

ons as bound states of two nucleons. Although, at the time of the formulation of this model

the existence of quarks and gluons was not yet known, the authors noted that pions are

not the most fundamental particles involved in the processes of the strong interaction, but

are similar to collective excitations of atoms in the crystal lattice – phonons. The scheme

of reasoning for the model goes back to the works on the nature of superconductivity by

Bardeen, Cooper, and Schrieffer (BCS) [177], and Bogolyubov [178], where a mass gap is

formed between the excited states and the ground state of the superconductor due to an

attraction between electrons and the formation of compound particles obeying the Bose-

Einstein statistics – the so-called Cooper pairs – which are correlated pairs of electrons

with oppositely directed spins.

We start with the main idea of the model, which is to consider that the gluons exchanged

between quarks/antiquarks have an effective mass. This mass is supposed to be much

larger than momenta of the gluons such that it can be neglected in the gluon propagators.

Consequently, the propagator of a gluon is a constant and reduced to a simple effective

factor. This implies that gluons do not presented in the Nambu and Jona-Lasinio model

as dynamic degrees of freedom. The approximation also leads to the absence of confine-

ment in a pure NJL description. Nevertheless, the approximation allows to simplify the

calculations. The associated Lagrangian of the NJL model for Nf = 3 at finite T and µf

reads

LNJL =
∑

f=u,d,s

ψ̄f (iD −m0f + µfγ0)ψf (116)

+Gs

∑

a

∑

ijkl

[
(ψ̄iτ

a
ijψj) (ψ̄kτ

a
klψl) + (ψ̄i iγ5τ

a
ijψj) (ψ̄k iγ5τ

a
klψl)

]

−K det
ij

[
ψ̄i (I− γ5)ψj

]
−K det

ij

[
ψ̄i (I+ γ5)ψj

]
.

Here i, j, k, l = 1, 2, 3 are the flavor indices and τa (a = 1, ..., 8) are the Nf = 3 flavor

generators with the normalization

Trf (τaτ b) = 2δab , (117)

with Trf denoting the trace in the flavor space, m0i stands for the bare quark masses, we

consider m0u = m0d, and µi for their chemical potential. The first term corresponds to the

5 This work was done in collaboration with David Fuseau (SUBATECH, Nantes), who provided the
PNJL results for quark masses, Polyakov loops, entropy density, and elastic cross-sections. Programs
for the evaluation of the relaxation times and transport coefficients and plotting routines have been
developed by the author of the present thesis.
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Lagrangian of free spin 1/2 particle, the second term describes the interactions and includes

scalar and pseudo-scalar 4-point interactions with the corresponding coupling constant Gs.

The last term is the so-called ’t Hooft Lagrangian that breaks explicitly the pseudo-scalar

symmetry UA(1). K is a coupling constant, which is fixed by the value of mη′ − mη,

and I is the identity matrix in Dirac space. This Lagrangian obeys the symmetries of

thestrong interaction and conserves the currents. The NJL model is nonrenormalizable, and

consequently, the integrals – essential for the evaluation of the physical quantities– diverge.

Therefore a regularization has to be performed. There are various regularization schemes

[179, 180], which are a three dimensional (3D) momentum cutoff, four-dimensional (4D)

momentum cutoff, Pauli–Villars (PV) regularization, proper-time (PT) regularization, and

a dimensional regularization (DR). Here we consider the most popular 3D cutoff scheme.

4.2 Polyakov extended Nambu-Jona Lasinio model

In order to add gluons to the Nambu-Jona Lasinio model it was proposed to include thermal

gluons on the level of a mean field by means of the Polaykov loops [181–184], which are

the order parameter in case of pure glue SU(3) theory. We recall that, the Polyakov line

and the Polyakov loop are, respectively, defined as

L(x) = P exp

(
i

∫ 1/T

0
dτA4(τ,x)

)
(118)

and

Φ(x) =
1

Nc
TrcL(x) , (119)

where P is the path-integral ordering operator and the trace Trc is taken in the color space.

To account for deconfinement effects via the Polyakov loop, an effective potential U(T,Φ, Φ̄)
is added to the effective NJL Lagrangian. U(T,Φ, Φ̄) is a function of the Polyakov loop and

its complex conjugate. The Lagrangian of the PNJL model [181–185] for (color neutral)

pseudoscalar and scalar interactions (neglecting the vector and axial-vector vertices for

simplicity) is

LPNJL =
∑

i

ψ̄i(iD −m0i + µiγ0)ψi (120)

+G
∑

a

∑

ijkl

[
(ψ̄i iγ5τ

a
ijψj) (ψ̄k iγ5τ

a
klψl)

+ (ψ̄iτ
a
ijψj) (ψ̄kτ

a
klψl)

]

−K

[
det
ij

[
ψ̄i (I− γ5)ψj

]
+ det

ij

[
ψ̄i (I+ γ5)ψj

]]
− U(T ; Φ, Φ̄) . (121)

Here the covariant derivative in the Polyakov gauge reads Dµ = ∂µ − iδµ0A0, with A0 =

−iA4 being the temporal component of the gluon field in Euclidean space (we denote

Aµ = gsA
µ
aTa). The coupling constant for the scalar and pseudoscalar interaction G is
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fixed e.g. by the pion mass in vacuum. The model parameters of the PNJL are displayed

in Table 2.

m0
u[GeV ] m0

s[GeV ] G K Λ[GeV ]

0.005 0.134
2.3

Λ2

11.

Λ5
0.569

Table 2: Parameters of the PNJL model considered in Refs. [5, 175].

The value of the potential U for the expectation values 〈Φ〉(T ), 〈Φ̄〉(T ), gives the pres-

sure of the gluons in the Yang-Mills (YM) theory, corresponding to QCD for infinitely heavy

quarks. The comparison with lattice gauge calculations for pure YM serves therefore as a

guideline for the parametrisation of the effective potential U(T ),

−P (T ) = U(T, 〈Φ〉(T ), 〈Φ̄〉(T )). (122)

The effective potential U(T, φ = 〈Φ〉(T ), φ̄ = 〈Φ̄〉(T )) is parametrised following Ref. [175]:

U(φ, φ̄, T )

T 4
= −b2(T )

2
φ̄φ− b3

6
(φ̄3 + φ3) +

b4
4
(φ̄φ)2 (123)

with the parameters

b2(T ) = a0 +
a1

1 + τ
+

a2
(1 + τ)2

+
a3

(1 + τ)3
, (124)

where

tphen = 0.57
T − Tphen(T )

Tphen(T )
(125)

and

Tphen(T ) = a+ bT + cT 2 + dT 3 + e
1

T
. (126)

All the coefficients of the parametrisation are listed in Table 3.

a0 a1 a2 a3 b3 b4 a b c d e
6.75 -1.95 2.625 -7.44 0.75 7.5 0.082 0.36 0.72 -1.6 -0.0002

Table 3: Parameters of the effective potential U(φ, φ̄,T) used in this work.

4.3 Quarks and mesons in the PNJL model

In order to calculate cross sections, the masses of the quarks and the propagators of the

exchanged mesons have to be known. The mass of the quarks is determined by solving

the gap equations [184] together with a minimisation of the grand potential ΩPNJL with
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Figure 4.1: The effective masses of light (left) and strange (right) quarks as a function
of temperature T and quark chemical potential µq from the PNJL model. The figure is
adopted from [5].

respect to the Polyakov loop expectation value φ and φ̄:

∂ΩPNJL

∂φ
= 0,

∂ΩPNJL

∂φ̄
= 0,

mq = mq0 − 4G〈ψ̄qψq〉+ 2K〈ψ̄qψq〉〈ψ̄sψs〉 ,
ms = ms0 − 4G〈ψ̄sψs〉+ 2K〈ψ̄qψq〉〈ψ̄qψq〉 . (127)

The thermodynamic potential for the PNJL model reads,

ΩPNJL(T, µi,Φ, Φ̄) =

2G
∑

i

〈ψ̄iψi〉2 − 4K
∏

i

〈ψ̄iψi〉 − 2Nc

∑

i

∫ Λ

0

d3p

(2π)3
Ei

− 2TNc

∑

i

∫ ∞

0

d3p

(2π)3

(
1

NC
log
[
1 + 3

(
Φ+ Φ̄e−(Ei−µi)/T

)
e−(Ei−µi)/T

]

+
1

Nc
log
[
1 + 3

(
Φ̄ + Φe−(Ei+µi)/T

)
e−(Ei+µi)/T

])

+ UPNJL , (128)

with Ei =
√
p2 +m2

i denoting the on-shell energies.

Figure 4.1 displays the PNJL effective masses of the u and s quarks as a function of the

chemical potential µq and T . One can see that a smooth crossover occurs for small chemical

potentials. The T -dependence of the effective masses in the PNJL model is governed by

the chiral condensate < ψ̄ψ >, which drops from its maximal value in the hadronic phase

down to zero in the QGP phase.

The propagators of the mesons are build by resummation of the quark-antiquark loops
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within the random-phase approximation (RPA), leading to the amplitude [179]:

Da =
2igm

1− 2gmΠ±
ff ′(k0,~k)

, (129)

where a = S, PS refers to the scalar and pseudoscalar exchanging mesons and the indexes

f, f ′ denote the (anti-)quark flavors. The mass of the exchanged meson is given by the

pole of the propagator. Here gm denotes the coupling constant [186] and Π±
ff ′(k0, ~k) is the

quark-antiquark polarisation function given by

Π±
ff ′(k0, ~k) = − Nc

4π2

[
A0(mf , µf , T,Λ) +A0(mf ′ , µf ′ , T,Λ) (130)

+ [(mf ±mf ′)2 − (k0 + µf − µf ′)2 + ~k2]×B0(~k,m, µ,m
′, µ′, k0, T,Λ)

]
,

where "+" stands for the scalar and "-" for the pseudoscalar mesons. The one-fermion

loop A0 is separated into a vacuum part and a thermal part, the latter being integrated

up to infinity:

A0(mf , µf , T,Λ) = −4

[∫ ∞

0
dp
p2

Ef

(
−ff (Ef , T, µf )− ff (Ef , T, µf )

)
+

∫ Λ

0

p2dp

Ef

]
.

(131)

Here Ef =
√
p2 +m2

f and the Fermi-Dirac distribution functions ff(f̄)(Ef , T, µf )

= f
(0)
i (Ei, T, µi) are defined by Eq. (58).

The two-Fermion loop B0 is defined as [187]

B0(~p,mf , µf ,mf ′ , µf ′ , iνm, T,Λ) = 16π2T
∑

n

exp(iωnη)

×
∫

|q|<Λ

d3q

(2π)3
1[

(iωn + µf )2 − E2
f

] 1[
(iωn − iνm + µ′f )

2 − E2
f ′

] , (132)

with Ef =
√
~q2 +m2

f , Ef ′ =
√
(~q − ~p)2 +mf ′ . The details of the calculations of B0 can

be found in Ref. [187]. We have g±m = G ± 1
2KS

s for the pion (+) and its scalar partner

(-) and g±m = G± 1
2KS

u for the kaon (+) and its scalar partner (-).

For the η mesons, the propagators are more complicated because of the mixing terms [188],

[179]:

D = 2
detK

M00M88 −M2
08

(
M00 M08

M80 M88

)
. (133)

D =
4

3

detK

M00M88 −M2
08

(M00ψ̄λ0ψ · ψ̄′λ0ψ
′ +M08ψ̄λ0ψ · ψ̄′λ8ψ

′

+M80ψ̄λ8ψ · ψ̄′λ0ψ
′M88ψ̄λ8ψ · ψ̄′λ8ψ

′) (134)
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Figure 4.2: Meson masses (pion, eta, kaon) as well as double quark masses 2mq and
ms + mq from the Nf = 3 PNJL model at µq = 0 as a function of temperature. The
dotted lines indicate the mpole ± Γ, where Γ is the imaginary part of the complex pole of
the meson propagators and mpole is its real part (indicated by solid lines). The figure is
taken from [5].

with

M00 = K+
0 − 4

3
detK(Πuū + 2Πss̄) (135)

M08 = K+
08 −

4

3

√
2detK(Πuū −Πss̄) (136)

M88 = K+
8 − 4

3
detK(2Πuū +Πss̄) (137)

detK = K+
0 K

+
8 −K2

08 (138)

and

K±
0 = G∓ 1

3
K(2Gu +Gs) (139)

K±
08 = ±1

6

√
2K(Gu −Gs) (140)

K±
8 = G± 1

6
K(4Gu −Gs), (141)

where Gi is the spinor trace of the propagator Si(x, x):

Gi = NciT r[S
i(x, x)] = −NC

4π2
miA0(mi, µi, T,Λ). (142)

The masses of the pseudoscalar mesons (pion, eta, kaon) in comparison to the doubled

quark masses 2mq and mq + ms at µq = 0 are presented in Fig. 4.2. While in the

PNJL the quark masses drop with increasing temperature to their bare values due to the
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disappearance of the chiral condensate in the vicinity of the phase transition, the meson

masses increase with temperature. In the PNJL mesons become unstable above the Mott

temperature, T > TMπ, where the total mass of the constituent quarks equals the meson

mass. Above TMπ the mesons can decay into a qq̄ pair and the pole of the meson propagator

becomes complex above TMπ. The dotted lines in Fig. 4.2 correspond to mpole ± Γ, where

Γ is the imaginary part of the complex pole of the meson propagator (which could be

associated with the decay width) and mpole is its real part, indicated by solid lines. It is

important to note here, that contrary to mesons, the quarks in the PNJL stay on-shell.

4.4 Thermodynamic properties of the PNJL model

Figure 4.3: Meson, gluon, and quarks contributions to the total pressure as well as the
total pressure (solid black line) at µq = 0 as a function of the temperature. The figure is
taken from [5].

The starting point for the calculations of thermodynamic quantities is the thermody-

namic potential of the system, which (in case of the grand canonical ensemble) is related

to the pressure by Ω = −P/V = −p. All other thermodynamic observables then are ob-

tained from the total pressure. Here we discuss basic thermodynamic observables of the

improved PNJL model advanced in Ref. [175] which matches the lQCD results obtained

by the HotQCD collaboration [72]. It is important to note that the improved PNJL model

differs from the standard PNJL model in two aspects:

• The grand potential includes next-to-leading order contributions in Nc and contains

therefore contributions from mesons.

• A temperature-dependent rescaling of the T0 parameters of the standard Polyakov

effective potential, see Eq. (128) and Table 3, in order to phenomenologically repro-

duce the quark gluon interactions in the medium.
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Figure 4.4: Basic thermodynamic observables from the improved PNJL model (solid
lines): scaled pressure, entropy density, energy density and interaction measure as a func-
tion of temperature T at µq = 0 in comparison to the lattice QCD results [72] (colored
bands). The figure is taken from [5].

In next-to-leading order the grand potential contains an additional term, ΩM , caused by

the diagrams of the order O(Nc = 1) in the Nc expansion. This term is given by [175,189]:

ΩM = − gM
8π3

∫
dpp2

∫
ds√
s+ ~k2

[
1

exp((
√
s+ ~k2 − µ)/T − 1)

+
1

exp((
√
s+ ~k2 + µ)/T − 1)

]
δ(
√
s, T, µM ). (143)

Here gM is the degeneracy of the meson and δ(
√
s, T, µM ) is a phase shift defined by

δ(
√
s, T, µM ) = −Arg[1− 2KΠ(ω − µM + iǫ,~k)], (144)

where Π is the polarization function of the meson. ΩM represents a mesonic pressure that

dominates at low temperature and is non negligible around TC as seen from Fig. 4.3.

One can see from Fig. 4.4 that basic thermodynamic observables from the PNJL model

are in a good agreement with lattice results of the HotQCD collaboration taken from

Ref. [72] at vanishing chemical potential.

Furthermore, the important limit of large chemical potentials and low temperatures, is ac-

cessible for the perturbative calculations in the PNJL model. The resulting PNJL pressure

at approximately zero temperature is shown in comparison to the perturbative results from

Ref. [190] (accurate to O(g5) in the gauge coupling) in Fig. 4.5.
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Figure 4.5: Ratio of quark pressure to the pressure in the Stefan-Boltzmann limit as a
function of µB = 3µq for a temperature of T = 0.001 GeV. We compare the resulting ratio
for the PNJL approach (blue line) to the perturbative results from Ref. [190] (orange area).
The figure is taken from [5].

4.5 Phase diagram of the Nf = 3 PNJL model

It is expected that the order of the phase transition of QCD matter between the hadronic

phase and the QGP phase can change with increasing baryon chemical potential. While

at small baryon chemical potentials the lQCD predicts that the transition is a crossover

[60,72], at higher baryon chemical potentials the existence of the CEP and a 1st-order phase

transition and it’s influence on the properties of the QGP matter should be addressed. In

the PNJL model a possible first-order phase transitions at high quark or baryon chemical

potential is considered. It terminates at the CEP, located at smaller quark chemical po-

tential, where the transition is of second-order. In the considered PNJL model the CEP

is located at (TCEP , µCEP
q ) = (0.11, 0.32) GeV. It is known that the critical line of the

PNJL model generally depends on the parameters of the model [191], being usually located

higher than the critical line predicted by the lQCD results [192]. The actual phase diagram

of the Nf = 3 PNJL model, which employed here, is depicted in Fig. 4.6.

86



4. Critical end point and 1st order phase transition of QCD matter within the
PNJL model

Figure 4.6: Phase diagram of QCD matter described by the Nf = 3 PNJL model [175].
Scaled pion pressure Pπ/T

4 in the Nf = 3 PNJL model in the (T , µq) coordinates.

4.6 Elastic quark cross-sections in the PNJL model

The differential cross sections for the quark-quark and quark-antiquark scattering for t−,

u− channels and s− channels, respectively, are given by the following expressions:

dσ

dt
=

1

16πs+ijs
−
ij

1

4N2
c

∑

s,c

|Ms/u −Mt|2, (145)

where we use the notation s±ij = s − (mi ± mj)
2. A detailed evaluation of the matrix

elements is given in Appendix B. The total cross section in a thermal medium is obtained

by integration over t:

σij→cd =

∫ tmax

tmin

dt
dσ

dt
(1− f (0)c )(1− f

(0)
d ), (146)

where we take into account the Pauli blocking factors for the fermions due to the fact that

some of the final states are already occupied by other quarks (antiquarks). The limits of

the integrations are defined as,

tmax/min = m2
i +m2

c −
1

2s
(s+m2

i −m2
j )(s+m2

c −m2
d)

± 2

√
(s+m2

i −m2
j )

2

4s
−m2

i

√
(s+m2

c −m2
d)

2

4s
−m2

c , (147)

where mi and mj are the masses of the particles in the entrance channel and mc and md

of those in the exit channel.

In Fig. 4.7 we present the quark-quark cross sections for ud → ud elastic scattering

versus
√
s at T = 190 MeV for different µq = 0, 0.1, 0.2 GeV (top) and at µq = 0 for
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Figure 4.7: Cross section σud as a function of
√
s at T = 190 MeV for µq = 0, 0.1, 0.2

GeV (top) and at µq = 0 for T = 190, 220 and 300 MeV (bottom). The figure is taken
from [5].

different T =190, 220 and 300 MeV (bottom). As follows from Fig. 4.7 these cross sections

are rather small and show a smooth behavior versus the center of mass energy. They are

decreasing with increasing temperature and chemical potential as expected because the

mass of the exchanged meson and its decay width increase with T . At low temperature

and chemical potential the masses of the quarks are large and tend to vanish at large T

and µq. Consequently, the threshold – given by
√
sthr =Max(ma

in +mb
in, mc

out +md
out) –

is high at low µq and low T , as one can see from Fig. 4.7 as well.

The more interesting processes are quark-antiquark collisions. In this case the s−
channel allows for a resonance of the exchanged meson with the incoming quarks which

leads to a large peak in the cross sections.

Fig. 4.8 (top) displays the cross section for different channels showing a resonance
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Figure 4.8: Cross sections for the qq̄ → qq̄ channels: uū → uū, ud̄ → ud̄, uū → dd̄ and
us̄→ us̄ as a function of

√
s at T = 220 GeV and µq = 0 (top) and for ud̄→ ud̄ at µq = 0

for T =190, 220, 250 and 300 MeV (bottom). The figure is taken from [5].

behaviour. The us̄ → us̄ resonance is lower than the others because the strange quark is

heavier than the u and d quarks at µq = 0 and T = 200 MeV. The other resonances differ

only by their flavour factors [193]. The ud̄ → ud̄ channel has the largest factor, uū → uū

has a lower factor than uū→ dd̄ but allows for η-meson exchange which is not the case for

the uū→ dd̄ channel.

The behavior of the ud̄ → ud̄ cross section for different temperatures is displayed in

Fig. 4.8 (bottom). One can see that the resonance is shifted to the right with increasing

temperature. Since the mass of the mesons increases with T , the cross section with the

pion in the s−channel becomes resonant at the corresponding
√
s. The peak becomes lower

with increasing temperature and disappears finally at large temperatures since the decay

width of the pion becomes larger with increasing temperature, see Fig. 4.2. The kinematic
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threshold forbids any resonance state below the Mott temperature. This explains the

flatness of the ud̄→ ud̄ cross section at T = 190 MeV.

Figure 4.9: Resonant ud̄ cross section as a function of
√
s at T =220 MeV for µq =0,

200, 300 and 400 MeV (top) and for different combinations of T, µq (bottom). The figure
is taken from [5].

The
√
s-dependence of the ud̄ cross section with the resonance peak for fixed values

of quark chemical potential is demonstrated in Fig. 4.9. At fixed temperature, the pion

mass becomes larger with increasing quark chemical potential and the peak is shifted to a

smaller temperature. For quark chemical potentials beyond the critical µq > µCEP = 0.32

GeV the cross section is flat and no resonance behaviour is observed.

Moreover, the evaluation of the two cross sections ss̄→ uū and uū→ ss̄ can be checked
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Figure 4.10: Cross section for the ss̄ → uū channel calculated by the detailed balance
(solid lines, DB) for T = 150, 200, 250 MeV at µq = 0 as compared to the direct numerical
calculation (dashed lines). The figure is taken from [5].

since they obey detailed balance:

σcd→ij(s) =
p2 cm
ij (s)

p2 cm
cd (s)

σij→cd(s). (148)

Figure 4.10 displays the cross section for the ss̄ → uū channel at µq = 0 and T = 150,

200, 250 MeV obtained directly (dashed lines) and by detailed balance (148) (solid lines).

One can see that both calculations show a good agreement with each other within the

numerical accuracy.

4.7 Transport coefficients in the PNJL model

The evaluation of transport coefficients is performed on the base of the relaxation time

approximation of the Boltzmann equation for the quasiparticles with dynamical masses

Mi(T, µq) described in Chapter 2 in case of the DQPM. However, one should consider

some modifications due to the difference between the two models:

• In PNJL the degrees of freedom are quarks whose masses approach the bare mass

when the temperature increases and the chiral condensate disappears. Moreover, in

the PNJL the mesons exist above the Mott transition temperature as resonances.

• Due to the presence of the Polyakov loop potential in the thermodynamic potential

modified distribution functions for quarks have to be considered.
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Figure 4.11: Modified (by the Polyakov loop) Fermi – Dirac distribution functions (used
for the PNJL) in comparison to the Fermi – Dirac distribution functions (used for the NJL
model) as a function of momentum for µq = 0 (left) and µq = 0.2 GeV (right).

The (anti-)quark density is defined as

ni(T, µq) = dq

∫
d3p

(2π)3
fφi , (149)

where i = u, d, s, ū, d̄, s̄ and dq = 2 × Nc is the degeneracy factor for (anti-)quarks. The

modified (by the Polyakov loop) Fermi – Dirac distribution function (used for the PNJL)

reads,

fφi =
φe−(Ei∓µ)/T + 2φe−2(Ei∓µ)/T + e−3(Ei∓µ)/T

1 + 3φe−(Ei∓µ)/T + 3φe−2(Ei∓µ)/T + e−3(Ei∓µ)/T
, (150)

where i = q, q. The minus sign refers to quarks (i = q), while the plus sign refers to

antiquarks (i = q). For antiquarks we have to exchange φ and φ̄.

In the QGP phase the modified distributions approach the standard Fermi-Dirac dis-

tributions for φ → 1, while in the hadronic phase (for φ → 0) we get distributions with

three times the quark energy in the exponent, which can be interpreted as Fermi-Dirac

distribution functions for particles with three times the quark mass. A comparison between

the two distribution functions is displayed in Fig. 4.11 for different temperatures and fixed

quark chemical potential.

4.8 Quark relaxation time in the PNJL model

The RTA is often used in the framework of effective models for an estimate of transport

coefficients in the QGP phase. It is worth to note that the results of transport calculations

depend not only on the EoS, which can be fitted to the lQCD results, but also (if no local

equilibrium is assumed) on transport coefficients and therefore on the method of how to

evaluate quark and gluon relaxation times.

In this Section we apply two different approaches for the calculation of the quark
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relaxation time, which are commonly used in the literature: 1) the so called ‘averaged

transition rate’ defined via the thermal averaged quark-quark and quark-antiquark PNJL

cross sections and 2) the ‘weighted’ thermal averaged quark-quark and quark-antiquark

PNJL cross sections. As will be demonstrated later, the differences between both methods

are quite essential and influence substantially the final results for the transport coefficients.

4.8.1 Method 1 for the quark relaxation time

We start with the estimate for the quark relaxation time by means of the averaged in-

teraction rate, related to the thermal averaged quark-quark and quark-antiquark PNJL

cross sections, as advanced in Refs. [74, 76–78]. We recall that the momentum-dependent

relaxation time can be expressed through the on-shell interaction rate in the medium rest

system, where the incoming quark has a four-momentum Pi = (Ei,pi) :

τ−1
i (pi, T, µq) = Γi(pi, T, µq) (151)

=
1

2Ei

∑

j=q,q̄

1

1 + δcd

∫
d3pj

(2π)32Ej
dqf

(0)
j (Ej , T, µq)

× 1

16π
√
s

1

pcm

∫
dt|M̄|2(s, t)(1− f (0)c )(1− f

(0)
d )

=
∑

j=q,q̄

∫
d3pj
(2π)3

dqf
(0)
j (Ej , T, µq)vrelσij→cd(s, T, µq).

The indices i and j refer to particles in the entrance channel, c and d to those in the

exit channel. f0i is the modified Fermi-Dirac distribution function taking into account the

Polyakov loop (Eq. 150). |M̄|2 denotes the matrix element squared averaged over the

color and spin of the incoming partons, and summed over those of the final partons. The

invariant energy
√
s can be conveniently calculated from the four-vectors of the incoming

partons. The cross section without the Pauli blocking factors is

σ(
√
s) =

∫
dt

1

64πsp2cm
|M̄|2. (152)

The relative velocity in the c.m. frame is given by

vrel =

√
(pi · pj)2 −m2

im
2
j

EiEj
=
pcm

√
s

EiEj
, (153)

where pcm is the momentum of the initial (i, j) as well as of the final quarks (c, d) in the

c.m. frame given by

pcm =

√
(s− (mi,c −mj,d)2)(s− (mi,c +mj,d)2)

2
√
s

. (154)

The averaged relaxation time can be obtained from the relaxation time of Eq. (151)
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Figure 4.12: Energy averaged transition rates w̄ij(T, µq) for different quark-(anti-)quark
scattering processes (ud→ ud (red and orange lines), us→ us(green lines), uu→ uu (blue,
cyan, and violet lines)) as a function of the scaled temperature T/TMπ for µq = 0. The
solid lines corresponds to the actual results from Eq. (156). Green and cyan dashed lines
correspond to the results from Ref. [186], orange and violet dash-dotted lines correspond
to the estimates from Ref. [194]. The figure is taken from [5].

by averaging over pi

τ−1
i (T, µq) =

1

ni(T, µq)

∫
d3pi
(2π)3

dqf
(0)
i τ−1

i (pi, T, µq). (155)

The relaxation time can be expressed via the averaged transition rate w̄ij defined as:

w̄ij =
1

ninj

∫
d3pi
(2π)3

∫
d3pj
(2π)3

× dqf
(0)
i dqf

(0)
j · vrelσij→cd(s, T, µq). (156)

We note, that in spite of calling w̄ij in the literature ‘averaged transition rate’, it has the

dimension of a cross section. Using w̄ij defined by Eq. (156), the average quark relaxation

time is given by [186]:

τ−1
i (T, µq) =

∑

j=q,q̄

nj(T, µq)w̄ij . (157)

Fig. 4.12 demonstrates the actual results of the energy averaged transition rates w̄ij(T, µq)

for three scattering processes: ud → ud (red and orange lines), us → us (green lines),

uu → uu (blue, cyan, and violet lines) as a function of the scaled temperature T/TMπ

( where TMπ is the Mott temperature) for µq = 0 from Eq. (156) in comparison to the

previous results for the NJL model from Ref. [186] (green and cyan dashed lines, Nf = 3)

and Ref. [194] (orange and violet dash-dotted lines, Nf = 2). Our results are in a good

agreement with these NJL results. A small difference arises due to different parameters

of the models and different quark masses. Momentum averaged transition rates w̄ij(T, µq)
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Figure 4.13: Energy averaged transition rates w̄ij(T, µq) for different quark-
quark(antiquark) scattering processes as a function of scaled temperature T/TMπ for µq = 0
(top) and µq = 0.2 GeV (bottom). The solid and dashed lines correspond to the actual
results from Eq. (156) for the quark-quark and the quark-antiquark scatterings. The figure
is taken from [5].

for qq (solid lines) and qq (dashed lines) scattering channels are presented in Fig. 4.13 as

a function of the scaled temperature T/TMπ for (left) µq = 0 and (right) µq = 0.2 GeV. In

the vicinity of TMπ the rates w̄ij(T, µq) have a peak, which is followed by a decrease with

increasing temperature. While the values of the qq rates w̄qq(T, µq) are higher than those

of the qq channels, the antiquark densities are smaller than the quark densities at non-zero

µq (see Fig. 4.14).

4.8.2 Method 2 for the quark relaxation time

We continue the evaluation of quark relaxation times with an approach introduced by

Zhuang [195] for the calculation of the mean-free-path and then modified by Sasaki [196]

for the evaluation of the relaxation time. It is based on the ‘weighted’ thermal averaged

quark-quark and quark-antiquark PNJL cross sections. In the dilute gas approximation
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Figure 4.14: Light and strange quarks(antiquarks) densities ni(T, µq) with fφi - modified
Fermi distributions from Eq. (150) as a function of temperature for µq = 0 (left) and
µq = 0.2 GeV (right). The solid orange and red lines correspond to the light quark and
antiquark densities, while the dashed blue and violet lines correspond to the strange quark
and antiquark densities.

the relaxation time for the specie ′i′ is defined in Ref. [196] as :

τ−1
i (T, µq) =

∑

j=q,q̄

nj(T, µq)σij(T, µq). (158)

In Eq. (158) σij(T, µq) are the ‘weighted’ thermal averaged total PNJL scattering cross

sections

σij(T, µq) =

∫ smax

s0

ds σij→cd(T, µq, s) P (T, µq, s),

P (T, µq, s) = C
′

∫
d3pid

3pjdqf
(0)
i (Ei, T, µq)dqf

(0)
j (Ej , T, µq)

×δ(
√
s− (Ei + Ej)) δ

3(~pi + ~pj) vrel. (159)

Here P (T, µq, s) denotes the probability of finding a quark-antiquark or quark-quark pair

with a center-of-mass energy
√
s and a zero total momentum. The probability P (T, µq, s)

is normalised as
∫ smax

s0

ds P (T, µq, s) = 1, (160)

and the relative velocity in the c.m. frame is given by Eq. (153).

For the PNJL results we use also the modified Fermi-Dirac distribution function defined

by Eq. (150). Quark densities with the modified Fermi-Dirac distribution functions are

shown in Fig. 4.14 as a function of the temperature for a) µq = 0 and b) µq = 0.2 GeV.
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The relaxation time for the light quarks is defined as

τ−1
u (T, µq) = nu(σuu−uu + σud−ud) (161)

+ nū(σuū−uū + σuū−dd̄ + σuū−ss̄ + σud̄−ud̄)

+ nsσus−us + ns̄σus̄−us̄,

and the relaxation time for strange quarks is defined as

τ−1
s (T, µq) = 2nuσus−us + 2nūσus̄−us̄ (162)

+nsσss−ss + ns̄(σss̄−ss̄ + 2σss̄−uū).

Figure 4.15: ’Weighted’ thermal averaged total PNJL cross-sections σij(T, µq) from
Eq. (159) as a function of the scaled temperature T/TMπ for µq = 0 (top) and µq = 0.2
GeV (bottom). The figure is taken from [5].

The ‘weighted’ thermal averaged PNJL cross sections σij(T, µq) for different scattering

processes are shown in Fig. 4.15 as a function of the scaled temperature T/TMπ for (top)
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µq = 0 and (bottom) µq = 0.2 GeV. Here σij(T, µq) shows a peak in the vicinity of the pion

Mott temperature TMπ, which is more pronounced for the quark-antiquark qq̄ scattering

due to the peak in the cross-sections caused by the s- channel contribution. Due to this

increase of the qq̄ cross sections the ‘weighted’ thermal averaged cross sections σij(T, µq) for

the qq̄ channels dominates over the qq channels. Approaching high temperatures (above

the TMπ) the averaged cross sections σij(T, µq) decrease with temperature as expected

from the behaviour of the total PNJL cross sections presented in the previous Section.

The shape of the ‘weighted’ thermal averaged cross sections for µq = 0 is similar to the

NJL results presented in [81], while the absolute values of the PNJL ‘weighted’ thermal

averaged cross section σij(T, 0) are larger due to different model parameters and due to

the larger effective quark masses.

Using Eqs. (156),(157) and (158),(159) one can compare the underlying differences of

the two methods to calculate the quark relaxation time. The first approach is simply an

averaging of vrel · σ(
√
s) over the momentum of the partons in the entrance channel. The

second method requires in addition that the sum of the quark momenta in the entrance

channel is zero and introduces an additional
√
s-dependence by integrating over s instead

of over
√
s. The first approach does not need any normalization whereas for the second

method the normalization covers some of the parameter dependence of P (s, T, µq).

Figure 4.16: Quark relaxation times as a function of the scaled temperature T/TMπ(µq)
from the PNJL model for µq = 0 (left) and µq ≥ 0 (right). The solid and the dashed
lines show the results for the PNJL model using the averaged transition rates w̄ij from
Eq. (157) and the ‘weighted’ thermal averaged cross sections σ̄ij from Eq. (158). The
figure is adopted from [5].

The actual relaxation times of light and strange quarks at vanishing quark chemical

potential µq = 0 in the PNJL model are shown in Fig. 4.16 (left) as a function of the

scaled temperature T/TMπ. The solid gray and the dashed orange lines correspond to the

actual results from Eq. (158), where the ‘weighted’ thermal averaged cross sections σ̄ij are

used. The solid blue and the dashed red lines correspond to the results from Eq. (157),

where the averaged transition rates w̄ij are used.

The difference between the two methods is most prominently seen at high tempera-

tures. Calculations of the quark relaxation time using the averaged transition rates are
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more straight-forward since they rely on the relation between the momentum depended

relaxation time and the interaction rate.

In addition we compare the quark relaxation time τi(σ̄ij) for the PNJL model with the

results for the Nf = 3 NJL model [81] (dashed magenta line). Our results are in a good

agreement with the NJL results except for the vicinity of TMπ. The light quark relaxation

time τi(σ̄ij) in this case is about 0.7− 0.5 fm/c in the region TMπ ≤ T ≤ 1.8 TMπ.

The µq-dependence of the quark relaxation time τi(w̄ij) is shown in Fig. 4.16 (right)

for three values of µq : 0, 0.2 and 0.3 GeV. The solid lines correspond to the results for

light quarks while the dashed lines correspond to the results for strange quarks. The quark

relaxation time is increasing with the chemical potential µq in the region of T ≤ 2TMπ.

One can see that in the vicinity of TMπ the relaxation time for the strange quark is larger

than that for the light quark. This difference becomes more significant for finite µq due to

the difference between the effective masses of light and strange quarks.

4.8.3 Specific shear viscosity

Now we consider the specific shear viscosity η/s, the dimensionless ratio of the viscosity to

the entropy density. The specific shear viscosity allows to compare the viscosity of liquids

at various temperature scales. For this purpose we show the transport coefficients as a

function of the scaled temperature T/Tc. For the PNJL calculations we use Tc = TMπ

whereas for the other approaches Tc is the temperature of the inflection point. Here we

focus on the evaluations of the transport coefficients based on the RTA.

The shear viscosity for quarks with medium dependent masses M(T, µq) can be derived

using the Boltzmann equation in the RTA [76] through the relaxation time :

η(T, µq) =
1

15T

∑

i=q,q̄

∫
d3p

(2π)3
p4

E2
i

τi(T, µq) · dqfφi , (163)

where q(q̄) = u, d, s(ū, d̄, s̄), τi are the relaxation times and fφi are the modified distribution

functions given by Eq. (150), which contain the Polyakov loop contributions.

The specific shear viscosity η/s for µq = 0 is displayed in Fig. 4.17 as a function

of the scaled temperature T/Tc in comparison to the various results from the literature.

The solid and dashed red lines show the PNJL results from Eq. (177) using the two

different results for the quark relaxation time: with the averaged transition rates w̄ij from

Eq. (157) and with the ‘weighted’ thermal averaged cross sections σ̄ij from Eq. (158). The

dashed gray line displays the Kovtun-Son-Starinets bound [99] (η/s)KSS = 1/(4π), and

the symbols show lQCD data for pure SU(3) gauge theory, taken from Refs. [200] (squares

and diamonds), [201] (circle), [85] (pentagons). The solid blue line presents the estimate

for η/s from the Bayesian analysis of the experimental heavy-ion data from Ref. [86], which

has a similar temperature dependence. The result for η/s (σ̄ij) is twice smaller than η/s

( w̄ij) due to the different values of the quark relaxation times.

We compare the results as well with those for the Nf = 3 NJL model from [81], where

the relaxation time is estimated using Eq. (158) and with the DQPM prediction. , where

the relaxation time is calculated using the on-shell interaction rate described by Eq. (151).
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Figure 4.17: Specific shear viscosity η/s as a function of the scaled temperature T/Tc
for µq = 0. The solid and the dashed red lines show the results of η/s for the PNJL model
using the averaged transition rates w̄ij from Eq. (157) and the averaged cross sections
σ̄ij from Eq. (158) for the evaluation of the relaxation time. We compare to the results
from various models: URQMD [197] (solid green line with circles), PHSD [84] (solid blue
line with triangles), SMASH [198] (solid grey line with squares), the Nf = 2 linear sigma
model [199] (dashed-dotted purple line), the Nf = 3 NJL model [81] (dashed magenta
line), DQPM [2] (dotted green line). The dashed gray line demonstrates the Kovtun-Son-
Starinets bound [99] (η/s)KSS = 1/(4π). The symbols show lQCD data for pure SU(3)
gauge theory taken from Refs. [200] (squares and rhombus), [201] (circle), [85] (pentagons).
The solid blue line shows the results from a Bayesian analysis of experimental heavy-ion
data [86]. The figure is taken from [5].

As expected, η/s obtained within the latter method is close to the NJL estimate, and dif-

fers only at high temperature due to small differences in the cross sections, while the first

method predicts a higher value for η/s, which is remarkably close to the DQPM results and

to the pure SU(3) gauge calculations. For the hadronic phase we show the estimates from

various transport models: the URQMD [197] (dotted green line), the PHSD [84] (dotted

green line), and the SMASH [198] (dotted green line). The PNJL results for both meth-

ods show a similar temperature dependence in the vicinity of the chiral phase transition.

Approaching the phase transition η/s shows a dip, which is followed by an increase in the

high temperature region. We consider results for non-zero chemical potential, where in

the crossover region the DQPM calculations show a moderate dependence on the chemical

potential (for µu = µs = µB/3), while the PNJL predictions have a more pronounced µq

- dependence. As we will see later, for the whole range of the quark chemical potential

both methods result in a similar temperature behavior when approaching the chiral phase

transition.

The specific shear viscosity for moderate quark chemical potentials 0 ≤ µq ≤ 0.3 GeV,

where the phase transition is a rapid crossover, is displayed in Fig. 5.12 (left). At moderate

values of µq the specific shear viscosity shows a dip after the phase transition, which is

vanishing at high µq as can be seen in Fig. 5.12 (right). We compare the PNJL results with
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Figure 4.18: Specific shear viscosity η/s as a function of scaled temperature T/Tc for
(left) a moderate value of the quark chemical potential 0 ≤ µq ≤ 0.3 which corresponds
to a crossover phase transition and (right) whole range of the quark chemical potential
0 ≤ µq ≤ 0.4 GeV. The solid (dashed) red lines show the PNJL results of η/s for the
PNJL model using the averaged transition rates w̄ij (157) (the averaged cross sections σ̄ij
(158)) for the evaluation of the relaxation time. The dotted green line and dashed purple
line correspond to the results from the DQPM [2] for µq = 0 and µq = 0.17 GeV. The
dashed gray line demonstrates the Kovtun-Son-Starinets bound [99] (η/s)KSS = 1/(4π).
The figure is adopted from [5].

the estimates from the DQPM for µq = 0 (dotted green line) and µq = 0.17 GeV (dashed

violet line).

For large µq, where the crossover transition turns into the 1st order phase transition

(1PT), the specific shear viscosity has a discontinuity near the critical temperature. In the

vicinity of the CEP, for µq = 0.32 GeV, there is a rather smooth change of η/s, which can

be seen for the crossover phase transition at µq = 0.3 GeV. Thus, if one considers only µq
values below the CEP, the temperature dependence of the specific shear viscosity can not

indicate the position of the CEP. The evolution of the specific shear viscosity with µq is

in qualitative agreement with previous findings from the Nf = 2 NJL model in Ref. [196].

The numerical values differ due to differences in the model parameters, distribution func-

tions and in the NJL entropy density.

4.8.4 Electric conductivity and the dimensionless ratio of specific shear

viscosity to the scaled conductivity

Since the QGP matter consists of charged constituents it is interesting to estimate the

response of the system to an external stationary electric field , which is described by the

electric conductivity σQ. We employ the RTA approach considered in Chapter 2 for the

evaluation of the electric conductivity σQ of quarks with small modifications for the PNJL

model, where gluon degrees of freedom are encorporated on the level of a mean field. The
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Figure 4.19: Ratio of electric conductivity to temperature σQ/T from Eq. (164) as a
function of the scaled temperature T/Tc for µq = 0. The solid (dashed) red lines show
the PNJL results of σQ/T from the PNJL model using the averaged transition rates w̄ij

from Eq. (157) (the ‘weighted’ thermal averaged cross sections σ̄ij from Eq. (158)) for the
evaluation of the relaxation time. The symbols display lQCD data for Nf = 2 taken from
Refs. [94, 94] (red circles with brown borders), (yellow circles with green borders) and for
Nf = 2 + 1 taken from Refs. [96] (spheres) and from Ref. [111] (blue stars). We compare
to predictions from the various models: the kinetic partonic cascade model BAMPS [112]
(the dark-green solid line with triangles), the non-conformal holographic EMD model [49]
(dashed black line), the DQPM [2] (dotted green line), and below Tc = 0.158 GeV we show
evaluations from hadronic models: the HRG model within the Chapman-Enskog expansion
of the BE [52,104] (dashed cyan line), the Nf = 2 linear sigma model [199] (dashed doted
purple line), SMASH [105,114] (solid grey line with squares). The figure is taken from [5].

electric conductivity σQ with the effective masses M(T, µq) in the RTA reads,

σQ(T, µq) =
e2

3T

∑

i=q,q̄

q2i

∫
d3p

(2π)3
p2

E2
i

· τi(T, µq) dq fφi , (164)

where dq = 2Nc = 6 is the degeneracy factor for spin and color in case of quarks and anti-

quarks, τi are their relaxation times, while fφi denote the modified distribution functions

for quark and anti-quarks defined by Eq (150). In these formula we deal with quarks and

anti-quarks of Nf = 3 flavours. Each quark has a contribution proportional to its charge

squared. While viscosities have in general a gluonic contribution, the electric conductivity

contains only a quark and anti-quark contribution.

The PNJL results for the dimensionless ratio of the electric conductivity to temperature

σQ/T for µq = 0 are presented in Fig. 4.19 for both methods of the calculation of the

quark relaxation time by solid and dashed red lines. We compare the PNJL results to the

various estimates from the literature: lQCD data for Nf = 2 taken from Refs. [94,95] (red

circles with brown borders), (yellow circles with green borders) and for Nf = 2 + 1 taken

from Refs. [96, 116] (spheres) and from Ref. [111] (blue stars); kinetic partonic cascade

model BAMPS [112] (the dark-green solid line with triangles), non-conformal holographic
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Figure 4.20: Ratio of the electric conductivity to the temperature σ0/T as a function of
the scaled temperature T/Tc for µq = 0 (left) and µq ≥ 0 (right). The solid (dashed) red
lines show results of σQ/T from the PNJL model using the averaged transition rates w̄ij

from Eq. (157) (the ‘weighted’ thermal averaged cross sections σ̄ij from Eq. (158)) for the
evaluation of the relaxation time. The dotted green line and dashed purple line correspond
to the results from the DQPM [2] for µq = 0 and µq = 0.17 GeV. The figure is adopted
from [5].

EMD model [49] (dashed black line), DQPM [2] (dotted green line), and below Tc =

0.158 GeV we show evaluations from hadronic models: HRG model within the Chapman-

Enskog expansion of the BE [52,104] (dashed cyan line), Nf = 2 linear sigma model [199]

(dashed doted purple line), and SMASH [105, 114] (solid grey line with squares). The

PNJL results for both methods of quark relaxation time predict a similar increase with

temperature, which is again due to the increase of the quark densities with temperature.

The temperature dependence is in agreement with the predictions from the DQPM [2]

despite the differences in the effective masses.

The chemical potential dependence is shown in Fig. 4.20 (left) for moderate values of

µq and (right) for the whole range of µq. As in case of the specific shear viscosity also

the electric conductivity has a discontinuity at the 1st order phase transition (and hence

for µq > 0.32). At lower chemical potentials, where the transition is a crossover, σQ/T

is a continuous function of the temperature. Starting from µq = 0, with increasing µq

σQ/T has first a dip approaching the phase transition temperature, which, for a moderate

value of µq = 0.2 − 0.3 GeV, turns into a hump before at µq = 0.4 GeV, where the phase

transition is of 1st order, it shows a discontinuity. For low values of µq and above the chiral

phase transition, T ≤ 2TC , σQ/T is raising with µq, which is in agreement with the DQPM

estimates [2], and predictions from the non-conformal holographic model in Ref. [117].

Furthermore, it is interesting to compare the momentum diffusion, described by the

specific shear viscosity η/s, and the charge diffusion, described by the scaled electric con-

ductivity σQ/T = κQ/T
2(κQ is the charge diffusion coefficient) by calculating the ratio

η/s

σQ/T
. This ratio is less dependent on the approximations made for the evaluation of the

quark cross sections or quark relaxation times. Figure 4.21 shows the ratio
η/s

σQ/T
as a
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Figure 4.21: Ratio of specific shear viscosity η/s to the scaled electric conductivity σQ/T
as a function of scaled temperature T/Tc for µq ≥ 0. For µq = 0 we show the estimations
from various models: the QP model [98] (dashed grey line), the DQPM [2] (dotted red
line), the AdS/CFT [99, 202] (dotted grey line), the Nf = 2 linear sigma model [199]
(dashed doted purple line). The figure is taken from [5].

function of the scaled temperature T/Tc for a range of quark chemical potentials µq ≥ 0.

At vanishing quark chemical potential µq = 0 we compare our results to the predictions

from the AdS/CFT (grey dotted line) [99, 202], evaluations from the Nf = 2 linear sigma

model [199] (dashed-dotted purple line), the DQPM predictions [2] (green dash-dotted line)

and estimates from the on-shell quasiparticle (QP) model (blue dashed line) [98], where

the effective coupling constant is given by a one-loop pQCD ansatz and is higher than

the effective coupling constant in the DQPM, which results in higher effective masses of

partons compared to the DQPM masses. Note that the QPM predicts a higher value of the

electric conductivity compared to the DQPM and lQCD results. For the PNJL calculations

we see for µq values, where the phase transition is assumed to be a crossover, below TC

a strong decrease of this ratio with temperature, whereas above TC the ratio flattens out.

For µq values, where a first order phase transition is observed, we see also for this ratio a

discontinuity which we already observed for the viscosity and the electric conductivity.

It has to be mentioned that the 3-dimensional mean field models are conceptually not

accurate near the critical point and the first order phase transition [203]. They are built on

the anzatz that the fluctuations are small compared to the average value, while approaching

the critical point the correlation length becomes large and diverges at the critical point.

The feature of the PNJL and NJL models regarding the static critical exponents, the size

of the critical region and the influence of the Polyakov loop have already been studied in

Refs. [204–206].

In the vicinity of the critical region one has to consider additional critical contri-

butions governed by the dynamics of the fluctuations associated with the CEP. The

dynamical universality class of the QCD critical point is argued to be that of the H-

model [102, 207] according to the classification of dynamical critical phenomena by Ho-
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henberg and Halperin [208]. Whereas in the vicinity of the CEP the shear viscosity has

a mild divergence in the critical region, the bulk viscosity has a more pronounced diver-

gence [102, 208, 209]: η ∼ ξ
Zη

T (Zη ≈ 1/19), ζ ∼ ξ
Zζ

T (Zζ ≈ 3), and the electric conductivity

diverges as σQ ∼ 1
ξT

, where ξT ∼ (T −TC)ν is the thermal correlation length, with ν being

the static critical exponent. The specific bulk and shear viscosities have been considered

near the CEP and the 1st-order phase transition for the Nf = 2 NJL model in the previous

study [196]. Therefore the presented results can qualitatively describe η/s and σ/T above

TC , and a further development of the critical contribution to the transport coefficients in

the critical region is needed. Recently a generic extension of hydrodynamics by a paramet-

rically slow mode or modes (“Hydro+”) and a description of fluctuations out-of equilibrium

have been considered in Ref. [210].
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4.9 Conclusions to Section 4

We have calculated the specific shear viscosity η/s and the ratio of electric conductivity

to temperature σQ/T of the QGP matter in the extended PNJL model for a wide range of

quark chemical potentials using the framework of the Boltzmann equation in the relaxation

time approximation.

We showed that both, the specific shear viscosity η/s and the ratio of the electric

conductivity to the temperature, σQ/T , depend strongly on the chemical potential.

Furthermore, we demonstrated the dependence of the transport coefficients on the

quark relaxation times, which were estimated within two methods: either by using the

averaged transition rates w̄ij or by the ‘weighted’ thermal averaged cross sections σ̄ij . The

evaluation made within the first method is considered to be more realistic as it stems from

the derivation of the relaxation time through the interaction rate. In the vicinity of the

chiral phase transition both methods result in a similar temperature dependence of the

considered transport coefficients, which for a vanishing quark chemical potential are in

agreement with various results from the literature. They include the results for the specific

shear viscosity η/s and the ratio of the electric conductivity and the temperature, σQ/T ,

obtained with the Nf = 3 NJL model [81], lattice QCD predictions, the Nf = 2 linear

sigma model, predictions from the transport models such as URQMD, BAMPS, SMASH,

PHSD and estimates from the DQPM. In the vicinity of the pseudo-critical temperature

our results are remarkably close to that of lQCD calculations and to the results from the

DQPM.

• The key result of this Chapter is the quark chemical potential µq-dependence of the

considered transport coefficients. It has been demonstrated that for moderate values

of µq (µq ≤ 0.3 GeV), where the phase transition is a rapid crossover, transport coeffi-

cients show a smooth temperature dependence while approaching the (pseudo)critical

temperature from the high temperature region.

• At large values of µq the presence of a first order phase transition changes the tem-

perature dependence of the transport coefficients drastically and a discontinuity can

be seen when approaching the critical temperature.

• We found that outside the critical region the influence of the CEP on the evaluated

transport coefficients is rather small in comparison to the modification due to a 1st

order phase transition. For the specific shear viscosity a similar behaviour near the

chiral phase transition has been obtained in the Nf = 2 NJL model in Ref. [196].

• We have considered, furthermore, the dimensionless ratio of specific shear viscosity

to the scaled electric conductivity. It shows as well a discontinuity at Tc if the chiral

transition is of 1st order but is otherwise almost constant for T > 2Tc.
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5

Transport properties of the QGP in

the dynamical quasiparticle model

with a CEP

This Chapter is devoted to the exploration of the transport properties of the QGP matter

in the high µB region, where a CEP is incorporated. To this aim a phenomenological ex-

tension of the DQPM, described in detail in Chapter 2, to large baryon chemical potentials

µB including a critical end-point and a 1st-order phase transition is considered. In the

DQPM the determination of complex self-energies for the partonic degrees of freedom at

zero and finite µB has been performed by adjusting the entropy density to the lQCD data.

The temperature-dependent effective coupling (squared) g2(T/Tc), as well as the effective

masses and widths of the partons are based on this adjustment.

The novel extended dynamical quasiparticle model, named “DQPM-CP", enables to de-

scribe simultaneously the macroscopic properties such as thermodynamic observables as

well as microscopic properties of the partonic phase, such as scattering cross-sections,

effective masses and widths and transport coefficients of quarks and gluons in a wide

range of temperatures T > Tc, and baryon chemical potentials µB. The model param-

eters are fixed to reproduce the EoS of lattice QCD calculations in the crossover region

of finite T, µB, whereas at high µB it approaches the region of the CEP and first-order

phase transition, while it reproduces the asymptotic behaviour from pQCD calculations

for µB >> T, µB ∼ 1− 2 GeV.

To include the scaling behaviour of the thermodynamic observables and microscopic proper-

ties we consider a scaling ansatz for the strong coupling constant near the critical endpoint

CEP, chosen at (TCEP , µCEP
B ) = (0.100, 0.960) GeV. We show the equation-of-state as

well as the speed of sound for T > Tc for a wide range of µB, which should be of interest

for hydrodynamical simulations.

Moreover, one of the advantages of the quasiparticle models is a simple implementation in

transport models. For instance the on-shell quasiparticle model [211] has been successfully

used in the Catania transport approach [212] for the evolution of the partonic medium by

means of the relativistic Boltzmann equation, and - as mentioned above - the DQPM has

been implemented in the PHSD transport approach, which describes the whole evolution

of the QCD medium as well as the phase transition between the hadronic and partonic

phase and vice versa. Furthermore, the DQPM allows to employ covariant transition rates

for the phase transition, which obeys strict 4-momenta conservation during the transition

in the PHSD.

For the application of the partonic EoS in simulations of the medium produced in the
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HICs, it is essential to consider strangeness neutrality. To this aim we consider two

settings for the strange quark chemical potentials (I) µq = µu = µs = µB/3 and (II)

µs = 0, µu = µd = µB/3. Furthermore, we present the isentropic trajectories of the QGP

matter for these two cases.

Transport coefficients of the partonic phase are calculated within the RTA method, as de-

scribed in Chapter 2, for a wide range of baryon chemical potentials. The influence of the

CEP on the transport coefficients is considered as well. We compare the thermodynamic

observables and transport coefficients to the results from the PNJL model considered in the

previous Chapter. Despite that the phase diagram of the DQPM-CP is close to the PNJL

calculations the transport coefficients of both approaches differ. This elucidates that the

knowledge of the phase diagram alone is not sufficient to describe the dynamical evolution

of strongly interacting matter.
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5.1 Universal scaling approaching a critical end-point

The main concept of the theory of phase transitions and critical phenomena is the univer-

sality principle, i.e. independence of thermodynamic characteristics of different systems

at phase transitions from differences in the values of small-scale parameters which allows

to divide all systems into a small number of universality classes, depending on a number

of the spatial dimensions of the system and the symmetry of its order parameter. Ac-

cording to the conventional classification of phase transitions proposed by Ehrenfest [213],

a first-order phase transition characterised by the discontinuity of the first-order deriva-

tives of the thermodynamic potential, while in the case the second-order phase transition

only second-order derivatives have a discontinuity. Long range space-correlations manifest

the singularity in the thermodynamic observables, while long-range time-correlations to

non-equilibrium phenomena, which can be described by a singular behavior of transport

coefficients.

Close to the second-order phase transition the characteristic sizes disappear from the

physical description and power-law distributions come forth and characterize the physical

quantities. The exponents of these power-laws, i.e. the critical exponents [209] become

the relevant observables. To generalize description for the various systems with different

critical temperatures a scaled temperature is considered:

t =
T

Tc
, (165)

where for the systems considered below at non-zero baryon density or equivalently, finite

baryon chemical potential Tc varies with µB. The quite remarkable amount of experimental

data have shown that second-order phase transitions of apparently quite different systems

can be characterized by the same set of critical exponents [209]. This phenomenon is

called universality. For instance, critical exponents at the critical point of the liquid-

gas phase transition have been found to be independent of the fluid chemical composition.

Furthermore, they are exactly the same as the critical exponents of the ferromagnetic phase

transition in uniaxial magnets, which is the same as that of the 3-dimensional Ising model.

Such systems are then referred to as being in the same universality class. Furthermore,

the renormalization group theory of second-order phase transitions postulates that the

thermodynamic properties of a system near a critical point depend only on a small number

of features such as the dimensionality of the system and the symmetry of the interactions,

but are insensitive to the underlying microscopic properties.

5.2 Extension of the quasiparticle DQPM-CP effective cou-

pling constant for the inclusion of a CEP

Now we proceed with the extension of the DQPM to the region of large µB, where a possible

critical end-point is located. In order to extent the quasiparticle model to the large µB
region and to describe the critical behavior near the CEP we depart from the ‘scaling

hypothesis’ used for the moderate baryon chemical potentials in the crossover region, and
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Figure 5.1: Critical line of the DQPM-CP (black dashed-dotted and red solid lines) and
of the DQPM (green dashed line) in the T − µB-plane of the QCD phase diagram. Lines
with colored areas represent lQCD estimates of Tc(µB) for QCD with Nf = 2 + 1: grey
area – from Ref. [214], red area – from Ref. [192], blue area – from Ref. [21].

introduce a simple parametrization of the coupling constant as a function of the scaled

temperature and the baryon chemical potential. To simplify an extension of the effective

coupling for finite µB we parametrize αDQPM−CP
s as a function of the dimensionless scaled

temperature t = T/Tc. We determine first the parameters at vanishing quark or baryon

chemical potential by fitting the extracted values of g2DQPM (T, µB = 0) from Eq. (28)

as a function f(T/Tc, µB = 0) (Tc = 0.158 GeV) with help of the nonlinear least-squares

(NLLS) Marquardt-Levenberg algorithm.

Later we use critical lines of Tc for each value of the baryon chemical potential. In the

DQPM, the critical line is an input parameter, which can be chosen from recent LQCD

calculations or from the estimates of other theoretical approaches. Here we define the

critical line as follows,

Tc = Tc(0)

[
1− κPNJL(

µB
Tc(0)

)2
]
, (166)

where TC(0) = 0.158 GeV is chosen in accordance with the results from lQCD [21, 192],

while κPNJL = 0.00989 corresponds to the estimate from the PNJL model [175].

Figure 5.1 shows a comparison of the critical lines of the original DQPM (green dashed

line), of the extended DQPM-CP and the predictions from lQCD calculations. The DQPM-

CP phase boundary, given by Eq. (166), is shown as a black dashed-dotted line in the

crossover region, i.e. for moderate baryon chemical potentials. Furthermore, we consider a

critical endpoint, which is located at (TCEP , µCEP
B ) = (0.100, 0.960) GeV according to the

critical µCEP
B = 0.960 GeV from the PNJL model [175]. The first-order phase transition

is shown by a solid red line. The DQPM phase boundary for moderate baryon chemical

potentials, µB ≤ 0.6 GeV, given by Eq. (30), is displayed by a dashed green line. The

colored areas illustrate the predictions from lQCD calculations for QCD with Nf = 2+ 1:

grey area – from Ref. [214], red area – from Ref. [192], blue area – from Ref. [21]. Note

that the critical line from Ref. [214], has a higher curvature and therefore lies above the
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predictions from the HotQCD and BMW collaborations. Moreover, the curvature param-

eter obtained within the lQCD approach, can differ for the different observables that are

used to define the parameter [215].

As one can see the chosen critical line agrees well with the lQCD predictions in the region

of moderate baryon chemical potentials.

We extend the effective coupling, assuming that the coupling constant has a similar depen-

dence as a function of the scaled temperature for all µB ≥ 0. Furthermore we introduce

the additional factor σ(µB) (σ(µB = 0) = 1) for a decrease of the coupling constant with

µB. Therefore, the DQPM-CP coupling constant can be parametrized as a function of the

scaled temperature (t = T/Tc(µB) (Tc varies with µB according to the DQPM critical line)

and µB:

αcross
S = a0 +

a2
t2

− a3
t3

+
a4
t4

+
a6 · σ(µB)

t6
. (167)

Here the coefficients ai are fixed at µB = 0 (where σ(µB = 0) = 1) by fitting the DQPM

coupling constant g2(T, µB = 0) obtained from Eq. (28) (see comparison of the basic

thermodynamic observables from DQPM-CP and lQCD predictions in Fig. 5.2): a0 = 0.25,

a2 = 1.77, a3 = 2.17, a4 = 2.13, a6 = 0.85. Moreover, the QGP matter is expected to

Figure 5.2: The scaled pressure P (T )/T 4(blue line), entropy density s(T )/T 3(red line),
scaled energy density ǫ(T )/T 4(orange line), and interaction measure I(T )/T 4 (green line),
from the DQPM-CP in comparison to the lQCD results from Refs. [22,60] (circles) for zero
baryon chemical potential.

approach the non-interacting Stefan-Boltzmann limit at large µB on the order of a few

GeV and small temperatures µB ≫ T (see recent HTL results on the pressure in [190]).

Therefore, it is reasonable to assume that the coupling constant also decreases at Tc with

increasing µB, whereas at higher T ≫ Tc and finite µB, the effective coupling is not

sensitive to µB.

The simplest way to introduce a decrease in the coupling constant is to consider the
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Figure 5.3: The scaled pressure p/pSB (black line) from the DQPM-CP in comparison
to the pQCD results from Ref. [190] (blue area) as a function of baryon chemical potential
for fixed temperatures T = 0.05, 0.10, 0.150 GeV. Scenario: µq = µu = µs = µB/3.

additional factor, affecting the region near the phase transition:

σ(µB) = 1− σ2µ
2
B − σ4µ

4
B, (168)

where σ2 = 0.45GeV −2 and σ4 = 0.15GeV −4. Here the parameters σ2 and σ4 are fixed by

fitting the quasiparticle entropy from Eq. (36) to the lQCD data of the entropy density

from the BMW collaboration [22,60] for moderate chemical potentials µB = 0.1, 0.2, 0.3, 0.4

GeV within the given temperature range Tc(µB) < T < Tmax, where Tc(µB) denotes the

chosen line for the model critical temperature and Tmax = 0.4 GeV.

We note that the adjustment the effective coupling constant is made in order to interpolate

results for thermodynamic observables and microscopic quantities from the region of van-

ishing baryon chemical potential to the high baryon chemical potential region, where high

and moderate temperatures above the phase transition line T > Tc(µB) are considered.

The aim of the model is to describe the qualitative behavior of the thermodynamic observ-

ables in the regions of high/moderate baryon density for T > Tc(µB), while in the region

of moderate baryon chemical potential - to reproduce the lQCD EoS. To verify the consid-

ered µB-dependence of the effective coupling we consider the region of the high chemical

potentials µB >> T , where the results from pQCD calculations are available. We compare

the ratio of the resulting pressure to the non-interacting Stefan-Boltzmann limit for high

chemical potential p/pSB(T = 0) (pSB(T = 0) =
µ4B

108π2
) from DQPM-CP for high µB

with the pQCD calculations from Ref. [190] in Fig. 5.3. One can see that the depicted

ranges of the pQCD results are quite broad and the resulting pressure from the DQPM-CP

is within the pQCD predictions.

To accumulate ‘critical’ behaviour near the CEP, where the phase transition is of second-

order, we use an additional ‘critical’ term for the coupling constant. The goal of this term

is to describe the critical behaviour at the second-order phase transition for the microscopic
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Figure 5.4: The running coupling αDQPM−CP
S from Eq. (170) as a function of the scaled

temperature T/Tc at fixed µB: for µB = 0, Tc = 0.158 GeV (red solid line) corresponds to
the crossover phase transition and µB = 0.96, Tc = 0.10 GeV (green points) corresponds
to the CEP. The lattice results for quenched QCD, Nf = 0, (black circles) are taken from
Ref. [58] and for Nf = 2 (blue triangles) are taken from Ref. [59].

and thermodynamic quantities.

As shown in Section 2 in the quasiparticle picture the effective coupling constant enters

the entropy density, moreover the specific heat, which - as mentioned above - diverges at

the CEP, is related to the derivative of the coupling constant CV ∼ ∂g
∂T . Therefore it is

expected that in the vicinity of the CEP, where the specific heat diverges, the effective

coupling constant should attain the increase approaching the CEP form high T. One can

interpret the increase of the effective coupling constant, when approaching the CEP, as an

increase of the interaction range governed by the correlation length ξT ∼ (T − Tc)
ν .

To adopt the increase of the coupling constant when approaching the CEP, we consider

a parametrization of the ‘critical’ coupling constant, which is fixed by fitting the entropy

density to the results from the PNJL model [175]. The resulting parametrization for the

‘critical’ coupling constant is given by

αcrit
S = a · (T/Tc)−12, (169)

where a = αcross
S (T = TCEP ).

The total coupling constant αDQPM−CP
S then reads

αDQPM−CP
S ≡




µB = µCEP : αCEP

S =
1− F (T )

2
αcrit
S +

1 + F (T )

2
αcross
S .

µB 6= µCEP : αcross
S

(170)

Here αcross
S denotes the coupling constant for the crossover region defined by Eq. (167),

while at µB = µCEP = 0.096 GeV the effective coupling αDQPM−CP
S = αCEP

S includes the
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Figure 5.5: Effective masses of (light) quarks and gluons in the DQPM-CP along the
critical line (given by Eq. (166)) as a function of the baryon chemical potential µB = 3µq.
The dashed line represents the critical value of the baryon chemical potential µCEP = 0.96
GeV.

additional ‘critical’ contribution αcrit
S , defined by Eq. (169). To match the two coupling

constants we employ the smoothing function:

F (T ) = tanh

[
T − 0.1004

δT

]
, (171)

where δT = 0.002 GeV is the region in the vicinity of the CEP, where the two coupling

constants have to match.

The effective coupling of the DQPM-CP is depicted in Fig. 5.4 for fixed baryon chemical

potentials: µB = 0 (black solid line), µB = 0.6 GeV (green solid line) and µB = 0.96 GeV

(red points with dashed line) as a function of the scaled temperature T/Tc(µB). At vanish-

ing chemical potential the coupling constant coincides with the DQPM effective coupling

g2(T, µB = 0) presented in Chapter 2. The scaling behavior of the quasiparticle masses

has been widely used in condensed matter physics [216]. There the divergent behaviour of

the effective masses of the quasiparticles originates from the interaction with bosonic fluc-

tuations near the critical point. Alternatively, one can include the scaling behavior of the

thermodynamic quantities in a more rigorous way as done in Ref. [217], where the EoS from

the lQCD calculations of the BMW collaboration has been parametrized and adopted to

include a singular part near the CEP from the 3D-Ising model. Figure 5.4 shows the effec-

tive coupling of the DQPM-CP at fixed µB = 0 (red solid line) and µB = 0.96 GeV (green

points) as a function of the scaled temperature T/Tc. At µB = 0 the coupling constant is

identical to the DQPM effective coupling g2(T, µB = 0) obtained from Eq. (28).

The effective masses of quarks and gluons along the critical line are depicted in Fig.

5.5. The masses decrease with increasing of µB, while at the CEP they show a peak, which
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corresponds to the finite value of the ‘critical’ coupling constant.

In a simplified picture, the critical behaviour of the effective masses of partonic quasipar-

ticles near the CEP (T > TCEP ) can be interpreted as the energy density contained in

a volume V ∼ ξ3T defined by the correlation length (as well as the static exponents and

scaled temperature). The energy density, when approaching the CEP, manifests the critical

scaling, which can be expressed through the static exponent ǫ ∼ (t−1)1−α, and the masses

will, correspondingly, depend on the correlation length as well as ξT ∼ (t − 1)−ν . Hence

the ’critical’ contribution to the masses of quasiparticles should increase, approaching the

CEP from the partonic side, as m ∼ (t− 1)1−α−3ν ∼ (t− 1)−1.

It is important to note that in DQPM-CP the quark masses along the phase transition line

are larger than a third of the free proton mass. This implies that the production of baryons

across the critical line, the dominant process for large µB and small T , is an exothermic

process in DQPM-CP.

5.3 Thermodynamic observables for finite temperature and

chemical potential

In this Section we consider the basic thermodynamic observables from the DQPM-CP for

finite chemical potential. The starting point for the calculation of the thermodynamic

functions in the dynamical quasiparticle models is the evaluation of the entropy density

and the quark densities via the propagators as described in Section 3 Eqs. (36) and (14).

Then we can deduce the pressure p (and later the energy density), by the integration of

the baryon density over the baryon chemical potential:

p(T, µB) = p0(T, 0) +

µB∫

0

nB(T, µ
′
B) dµ

′
B. (172)

For the pressure at µB = 0 we use the lQCD parametrization of the pressure p0(T, 0)

provided by the BMW collaboration in Ref. [22, 60]. The energy density ǫ then follows

from the Euler relation

ǫ = Ts− p+
∑

i

µini. (173)

Furthermore, the interaction measure is defined as:

I ≡ ǫ− 3P = Ts− 4p+
∑

i

µini, (174)

which vanishes in the non-interacting limit of massless degrees of freedom at µB = 0.

The scaled pressure, entropy density and energy density of the QGP phase are supposed

to increase with the temperature. However, lQCD calculations of the thermodynamic

observables show [218], that the massless non-interacting limit can not be reached even at

temperatures of T ∼ 1 GeV.

We consider two setups for the quark chemical potentials: (I) µq = µu = µs = µB/3
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Figure 5.6: Scenario: µq = µu = µs = µB/3. From top to bottom: Scaled entropy
density s/T 3, pressure p/T 4 and scaled energy density ǫ/T 4 from the DQPM (lines) as a
function of temperature T for various values of µB [GeV]. The lQCD results obtained by
the BMW group are taken from Refs. [22, 60] (circles) and from Ref. [25] (squares).

and (II) µs = 0, µu = µB/3. The quark chemical potential can be related to the strange,

baryon and electric charge chemical potentials as µi = BiµB +QiµQ + SiµS , where Bi,Qi
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Figure 5.7: Scenario: µs = 0, µu = µB/3. From top to bottom: scaled entropy density
s/T 3 , pressure p/T 4 and scaled energy density ǫ/T 4 from the DQPM-CP (lines) as a
function of temperature T for various values of µB [GeV]. The lQCD results obtained by
the BMW group are taken from Refs. [22, 60] (circles). The PNJL results for the entropy
density (colored areas) are taken from Ref. [175].
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and Si are baryon number, electric charge and strangeness of the considered quark. Herein

we fix µQ = 0, therefore for the symmetric QGP matter (I) µq = µu = µs = µB/3

the strange and the electric charge potentials are vanishing µS = µQ = 0, while for (II)

µs = 0, µu = µB/3 the strange chemical potential is finite µS = µB/3.

Main thermodynamic observables, such as the scaled entropy density, the pressure and

the energy density from the DQPM-CP are displayed Fig. 5.6 (µq = µu = µs = µB/3)

and Fig. 5.7 (µs = 0, µu = µB/3) as a function of temperature for various baryon chemical

potentials 0 ≤ µB ≤ 0.99 GeV. For setup (I) we find a good agreement between the DQPM-

CP results (lines) and results from lQCD, obtained by the BMW group [22,60] at µB = 0

and µB = 400 MeV. The thermodynamical quantities increase with µB. When approaching

the CEP at µB = 0.96 GeV the values of the entropy density, of the energy density as well

as of the quark or baryon density rise suddenly.

For setup (II) we compare the results for the entropy density to that of the Nantes

PNJL approach [175]. The DQPM-CP results are in agreement with the PNJL results in

the high temperature region T ≥ 0.3 GeV, while in the vicinity of the phase transition there

is a clear deviation from the PNJL results, which can be expected since the two models

encompass different microscopic properties of the degrees of freedom. The resulting values

of the thermodynamic observables for setup (II) is smaller than for setup (I) since the

contribution from the strange quarks to the quasiparticle entropy density (see Eq. (36)) is

smaller for µs = 0 essentually due to the derivatives
∂fq(ω − µq)

∂T
.

Figure 5.8: Scenario: µq = µu = µs = µB/3. The speed of sound squared c2s from the
DQPM-CP for a crossover phase transition (0 ≤ µB < 0.96) as a function of T and µB.
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Figure 5.9: Scenario: µq = µu = µs = µB/3. The speed of sound squared c2s from the
DQPM-CP for (a) µB = 0 and (b) µB ≥ 0 as a function of T compared to lQCD results
for µB = 0 obtained by the Wuppertal-Budapest collaboration [22](light red circles) and
the HotQCD collaboration [72] (blue triangles).

Figure 5.10: Scenario: µq = µu = µs = µB/3. The specific heat CV /T
3 from the DQPM-

CP at fixed µB as a function of T compared to lQCD results for µB = 0 of the HotQCD
collaboration [72].

5.4 Approaching the CEP from the deconfined phase

To realize a critical behaviour of the thermodynamic observables in the vicinity of the CEP

we introduce, as described above, the ‘critical’ contribution to the coupling constant that

affects the microscopic and macroscopic quantities. At the CEP, where the transition is of

second order, the entropy density and baryon density increase rapidly but remain finite,

while the quark susceptibility and the specific heat CV /T
3 =

dǫ

dT
diverge. Therefore, the

speed of sound (squared) vanishes as one approaches the CEP. We consider the speed of

sound and the specific heat at fixed µB. For fixed µB the speed of sound can be expressed
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as:

c2s =
dp

dǫ
=
dp/dT

dǫ/dT
=

s

CV
. (175)

To illustrate the T - and µB-dependence of the speed of sound (squared) for the QGP

we show resulting c2s from the DQPM-CP model in Fig. 5.8 as a function of temperature

T ≥ Tc(µB) and baryon chemical potential µB in the crossover region, where µB ≤ 0.95

GeV. As one can see from the figure c2s increases with temperature and decreases near the

phase transition with increasing µB. This trend is in agreement with the expectations from

the lQCD calculations for moderate baryon chemical potentials µB ≤ 0.4 GeV, where the

speed of sound has slight decrease with µB near the phase transition region [60].

A closer comparison of the DQPM-CP results for c2s at µB = 0 with the available

lQCD estimations from the Wuppertal-Budapest collaboration [22] (light red circles) and

the HotQCD collaboration [72] (blue triangles) is provided in Fig. 5.9 (a). The DQPM-

CP results are in agreement with the lattice QCD predictions within the estimated errors.

Figure 5.9 (b) displays the speed of sound squared c2s from the DQPM-CP as a function of

the temperature for a wide range of baryon chemical potentials, including the vicinity of the

CEP. At high temperatures the values of c2s are approaching the limit of a non-interacting

gas of massless quarks and gluons (SB limit, grey dash-dotted line) c2s(SB) = 1/3. When

increasing the baryon chemical potential the speed of sound near the transition temperature

decreases, while at the CEP the speed of sound shows a sharp decrease.

Another important quantity the scaled specific heat CV /T
3 is shown in Fig. 5.10 as a

function of T for fixed chemical potentials. As opposed to the T -dependence of the speed

of sound, the specific heat increases when approaching the phase transition. For moderate

values of the baryon chemical potential µB the scaled specific heat increases moderately

with decreasing temperature. As it approaches the CEP, CV /T
3 diverges as a function of

T , which is consistent with the expectations for a second-order phase transition.

The resulting T -dependence of the specific heat for the critical baryon chemical poten-

tial µB = 0.96 GeV near the CEP allows to estimate the critical exponent for T > TCEP :

ln(CV ) = −α · ln(T − TCEP ) + const. (176)

For the presented parametrization of the coupling constant we obtain the following values:

α = 0.63 ± 0.02 and const = −5.48 ± 0.01. The value of the critical exponent α is in

agreement with the predictions from the PNJL model for T > TCEP : αPNJL = 0.68±0.01

[191] and the expectations from the universality argument α = 2/3 in Ref. [219].

In the case of QCD with finite quark masses both the chiral and center symmetries are

explicitly broken. What remains is the Z(2) sign symmetry of the order parameter of the

chiral phase transition. Therefore it has been assumed that the CEP of QCD with finite

quark masses belongs to the three-dimensional Z(2) Ising universality class [220–222]. The

corresponding critical exponent in the Z(2) universality class is α ≈ 0.11 [223]. However, it

is known that the critical exponents in the PNJL(NJL) model and Z(2) universality class

differ [191, 204, 224–226]. To explore the high density region, it is essential for effective
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Figure 5.11: Trajectories of constant s/nB in the DQPM-CP phase diagram for T > Tc
and (a) µq = µu = µs = µB/3, (b) µs = 0, µu = µB/3 and (c) two cases in the vicinity
of the critical endpoint CEP. The finite temperature crossover (black dash-dotted line) at
small chemical potential switches to the large chemical potential first-order transition (red
solid line) at the CEP (star), which is located at (0.10, 0.96) GeV.

121



5. Transport properties of the QGP in the dynamical quasiparticle model
with a CEP

models to consider isentropic trajectories for which the ratio of entropy to baryon number is

held constant. The isentropic trajectories correspond to an ideal hydrodynamical expansion

of QGP matter as created in the HICs. Futhermore, the dissipative effects, which can be

described by the viscosities and diffusion coefficients, alter the trajectories [227,228]. The

presence of the CEP can affect the isentropic trajectories, since the entropy density and

baryon density undergo a rapid change as the phase transition is approached. It is supposed

that the CEP acts as an attractor of isentropic trajectories [229]. Moreover, a different

choice for the strange quark chemical potential affects the trajectories as well. Therefore

we compare the resulting isentropic trajectories for two setups of the strange chemical

potential.

Figure 5.11 displays the isentropic trajectories from the DQPM-CP for (a) µq = µs =

µu = µB/3 and (b) µs = 0, µu = µd = µB/3 in the phase diagram. Comparing (a) to (b)

one can clearly see that the trajectories for the zero strange quark chemical potential are

shifted towards higher µB values. In the case of vanishing chemical potential of the strange

quark µs = 0, µu = µd = µB/3, the entropy density, which has also contributions from

the light (anti-)quarks and gluons, is less affected than the baryon density. Therefore, for

finite µB > 0 and µs = 0 the ratio s/nB is larger than in the case of a symmetric setup

µs = µu = µB/3 and the value of the baryon density decreases faster than the entropy

density. This observation is in agreement with previous studies of the PNJL model [230]

and the results from Ref. [217, 231], where the lQCD EoS from the WB collaboration

[22, 60, 232] with a critical point in the 3D Ising model universality class is considered

for moderate baryon chemical potentials µB ≤ 0.45 GeV. Thus, a ‘critical’ trajectory,

which goes through the CEP, for (a) corresponds to s/nB ≈ 13.35, for (b) corresponds

to s/nB ≈ 15. Furthermore, a direct comparison of isentropic trajectories in a vicinity of

the CEP is displayed in Fig. 5.11 (c). In the vicinity of the CEP, the trajectories with

s/nB = 15, 13.35, 12 shown in Fig. 5.11(c) are focused to the critical endpoint.

5.5 Transport coefficients of the QGP near the CEP

We continue to investigate the transport properties of QGP matter using the DQPM-CP.

We consider the specific shear η/s and bulk ζ/s viscosities, the ratio of electric σQQ/T ,

baryon σBB/T and strange σSS/T conductivities to temperature. At vanishing baryon

chemical potential the DQPM-CP model equals the DQPM, therefore one can find the

comparison of DQPM transport coefficients at µB = 0 with the recent results from various

approaches in previous papers [1, 2, 5].

5.5.1 Specific viscosities

The shear and bulk viscosity for quasiparticles with medium-dependent masses mi(T, µq)

can be derived using the Boltzmann equation in the RTA [74] through the relaxation time:

η(T, µq) =
1

15T

∑

i=q,q̄,g

∫
d3p

(2π)3
p4

E2
i

τi(p, T, µq)× di(1± fi)fi, (177)
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ζ(T, µq) =
1

9T

∑

i=q,q̄,g

∫
d3p

(2π)3
τi(p, T, µq)

di(1± fi)fi
E2

i

[
p2 − 3c2s(E

2
i − T 2dm

2
i

dT 2
)

]2
, (178)

where q(q̄) = u, d, s(ū, d̄, s̄), dq = 2Nc = 6 and dg = 2(N2
c − 1) = 16 are the degeneracy

factors for spin and color for quarks and gluons, respectively, whereas τi are the relaxation

times. cs is the speed of sound for a fixed µB given by Eq. (175), dm2
i

dT 2 are the derivative

of the effective masses.

Figure 5.12: Specific shear η/s viscosity from the DQPM-CP (solid lines) for two setups
of the strange chemical potential: (a) (µs = 0, µu = µB/3) and (b) (µs = µu = µB/3) as
a function of the scaled temperature T/Tc for various µB ≥ 0. We compare to the RTA
estimates from the Nf = 3 PNJL model (dashed lines) [5]. The grey dashed-dotted line
demonstrates the Kovtun-Son-Starinets bound [99] (η/s)KSS = 1/(4π).

Figure 5.13: Specific bulk ζ/s viscosity from the DQPM-CP (solid lines) for two setups
of the strange chemical potential: (a) (µs = 0, µu = µB/3) and (b) (µs = µu = µB/3) as a
function of the scaled temperature T/Tc for various µB ≥ 0.

As it was shown in the previous studies [1, 2, 81, 196, 233] in case of the medium de-

pendent masses, the viscosities display a pronounced temperature behaviour. At vanishing
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baryon chemical potential we found previously that the DQPM results for specific shear

and bulk viscosity [1, 5] are very close to the predictions from the gluodynamic lQCD

calculations [85,87].

For moderate baryon chemical potentials, the specific shear viscosity η/s of the QGP

matter increases with temperature, while the specific bulk viscosity ζ/s decreases with

temperature, independent of the baryon chemical potential. However, the T -dependence

of η/s near the phase transition changes with increasing µB. Fig. 5.12 shows the DQPM-

CP results for η/s as a function of the scaled temperature T/Tc(µB), for different µB.

The specific shear viscosity for µB = 0 (red line) shows a dip followed by an increase

with temperature while for µB ≥ 0.9 GeV η/s decreases with increasing temperature near

the phase transition (T ≤ 2Tc). The parton relaxation time τi decreases with increasing

temperature at lower T, and remains approximately constant at high T for moderate values

of chemical potential µB ≥ 0.6 GeV. Therefore the shear viscosity η ∼ T 4, while the entropy

density grows as s ∼ T 3. Thus, in the high temperature region the ratio η/s increases as

∼ T . It is important to note that transport coefficients rely on the microscopic properties

of the degrees of freedom. While a variety of the models can reproduce the lQCD results

of basic thermodynamic observables, the transport coefficients differ between the models.

Here we compare results for the specific shear viscosity and later for the electric con-

ductivity for non-zero baryon or quark chemical potential with the RTA results from the

PNJL model for µs = 0, µu = µB/3 in Fig. 5.12 (a). The specific shear viscosity results

from the DQPM-CP (solid lines) for µB = 0, 0.6 GeV agree well with the predictions of

the PNJL model (dashed lines) in the vicinity of the phase transition for temperatures

T ≤ 1.5Tc. The DQPM-CP results for η/s at µB = 0.96 GeV for T ≤ 2Tc is higher

than from the PNJL model, while the temperature dependence is similar. The difference

between the results is caused by the different treatment of the gluonic degrees of freedom,

which has a pronounced critical behaviour of the thermal masses in the DQPM-CP model.

Increasing the baryon chemical potential, one can see not only an increase in magnitude

but also a change in the T -dependence of η/s and ζ/s as shown in Fig. 5.12.

In particular in the vicinity of the phase transition T < 1.5 Tc for moderate values of

µq the specific shear viscosity shows a dip after the phase transition, which is vanishing at

high values of µB as can be seen in Fig. 5.12.

As pointed out in Refs. [102, 196, 234, 235] in the vicinity of the CEP, the divergences of

bulk and shear viscosities of the QCD matter are determined by the dynamic and the static

critical exponents. The dynamical universality class of the QCD critical endpoint is argued

to be that of the H-model [102, 207] according to the classification of dynamical critical

phenomena by Hohenberg and Halperin [208]. Whereas in the vicinity of the CEP the

shear viscosity has a mild divergence in the critical region, the bulk viscosity has a more

pronounced divergence [102,208,209]: η ∼ ξ
Zη

T (Zη ≈ 1/19), ζ ∼ ξ
Zζ

T (Zζ ≈ 3). The thermal

correlation length is controlled by the static critical exponent ξT ∼ (r)−ν , r = t−1 = T−Tc

Tc

denotes the reduced tempearture, with ν being the static critical exponent. Using the

hyperscaling relation [203] for the static critical exponents we can estimate ν:

2− α = dν, (179)
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where d = 3 denotes the number of the spatial dimensions, α ≈ 0.63. We obtain ν ≈ 0.46.

Taking into account the dynamical and static exponents the divergence of the bulk viscosity

is assumed to be ζ ≈ r−Zζν+α [209,235,236].

Here we consider small deviations from equilibrium where the quark relaxation times

are not large: τq is about 4.5 − 2.5 fm/c for the temperature range Tc < T ≤ 2Tc,

so that the slight divergence of the transport coefficients near the CEP is determined

by the static exponents. The specific shear and bulk viscosities from the DQPM-CP

increases rapidly approaching the the critical endpoint from the partonic phase. The

increase near the CEP is more pronounced for the bulk viscosity, which is related to the

rapid decrease in the speed of sound and corresponds to the static critical exponents, that

affects the bulk viscosity. In terms of heavy-ion collisions observables, this increase in the

bulk viscosity is expected to show up as the decrease of average transverse momentum of

produced particles as well as in an increase of the charged particle multiplicity per unit

momentum rapidity [42, 234]. However, this has to be checked by transport simulations

or by a hydrodynamical simulation of the expanding QGP. Such a substantial increase

of the charged particle and net-baryon multiplicities per unit momentum rapidity due to

the enhancement of the bulk viscosity near the CEP has been observed in a longitudinally

expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at non-zero

baryon density [237].

We note that the specific bulk and shear viscosities have been considered near the CEP

and the 1st order phase transition for the Nf = 2 NJL model in a previous study [196]. We

found good qualitative agreement for the T -dependence of the shear and bulk viscosity of

the NJL model from Ref. [196], while the numerical values differ due to the different quark

relaxation times and the absence of gluonic degrees of freedom in case of the NJL model.

5.5.2 Electric, baryon and strange conductivities

Figure 5.14: Scaled electric conductivity σQQ/T as a function of the scaled temperature
T/Tc from the DQPM-CP (solid lines) for two setups of the strange chemical potential:
(a) (µs = 0, µu = µB/3) and (b) (µs = µu = µB/3) as a function of the scaled temperature
T/Tc for various µB ≥ 0. For (µs = 0, µu = µB/3) we compare σQQ/T from DQPM-CP
to the RTA estimates from the Nf = 3 PNJL model (dashed lines) [5].
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In the region of the high net baryon density it is important to take into account the dif-

fusion of conserved charges, i.e. electric, baryon and strange charges, from higher density

regions to lower density regions. The transport coefficient, which characterizes the diffu-

sion, is the diffusion coefficient κq or the conductivity σq = κq/T of the conserved charge q.

Furthermore, since the quarks carry multiple conserved charges, one needs to consider ad-

ditionally non-diagonal conductivities for two conserved charges qq′ – σqq′ . Conductivities

σqq′ for quasiparticles can be expressed in the RTA [104] as:

σqq′(T, µq) =
1

3T

∑

i=q,q̄

qi

∫
d3p

(2π)3
p2

E2
i

τi(p, T, µq)

×
(
Einq′

ǫ+ p
− q′i

)
di(1± fi)fi. (180)

Let us consider first the diagonal conductivities for electric, baryon and strange charge.

Figure 5.15: Scaled baryon conductivity σBB/T as a function of the scaled temperature
T/Tc from the DQPM-CP (solid lines) for two setups of the strange chemical potential:
(a) (µs = 0, µu = µB/3) and (b) (µs = µu = µB/3) as a function of the scaled temperature
T/Tc for various µB ≥ 0.

The DQPM-CP results for σQQ/T , σBB/T and σSS/T are shown in Figs. 5.14, 5.15, 5.16

as a function of the scaled temperature T/Tc for two setups of the strange quark chemical

potential. The scaled electric, strange and baryon conductivity have a similar temperature

dependence: at high T the ratios increase with temperature increase as ∼ T which is mainly

due to the quark density increasing with temperature. The most prominent difference be-

tween the conductivities is the µB-dependence, which is shown in Figs. 5.14, 5.15, 5.16:

the electric and strange conductivities increase with µB, while the baryon conductivity

decreases with µB for the symmetric setup µs = µu = µB/3. With the increase of baryon

chemical potential the net baryon density increases, which influences the baryon conductiv-

ity. A similar trend for σQQ/T , σBB/T and σSS/T at moderate baryon chemical potentials

µB ≤ 0.4 GeV has been observed in the non-conformal Einstein-Maxwell-Dilaton (EMD)

holographic model [49]. Futhermore, we compare the µB dependencies of the scaled con-

ductivities for the two setups of the strange quark chemical potential. We have found that

in case of vanishing strange quark chemical potential (setup (II)) the scaled conductivities

126



5. Transport properties of the QGP in the dynamical quasiparticle model
with a CEP

Figure 5.16: Scaled strange conductivity σSS/T as a function of the scaled temperature
T/Tc from the DQPM-CP (solid lines) for two setups of the strange chemical potential:
(a) (µs = 0, µu = µB/3) and (b) (µs = µu = µB/3) as a function of the scaled temperature
T/Tc for various µB ≥ 0.

show a much less pronounced of µB-dependence for the baryon and strange conductivities,

which is expected due to the vanishing net strangeness density nS = 0. The electric con-

ductivity has a similar µB-dependence for the two settings of the strange quark chemical

potential. Near the CEP, the electric conductivity decreases, but as for the PNJL results

there is no pronounced divergence. The same behavior is found for the baryon and strange

conductivities.
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5.6 Conclusions to Section 5

We have explored thermodynamic and transport properties of the QGP by the phenomeno-

logical extention of the dynamical quasiparticle model to a wide range of baryon chemical

potentials. We have adopted the scaling behaviour in the effective coupling, using the

the entropy density from the PNJL model near the CEP. The resulting thermodynamic

observables agree well with the lQCD data. For moderate values of the chemical potential

µB ≤ 0.4 GeV the dependence of the thermodynamic quantities on µB are in agreement

with the previous results from the DQPM [1,47].

• We have presented the results for the thermodynamic observables p/T 4, ǫ/T 4, s/T 3,

as well as for the speed of sound and the specific heat for a wide range of chemical

potentials. We have shown that the ‘critical’ behaviour of the effective coupling

affects the thermodynamic observables. Moreover, we have found that the resulting

value of the critical exponent α ≈ 0.63 is in good agreement with the predictions of

the PNJL model and the expectations α = 2/3 from the universality argument.

• To quantify the µB-dependence of the bulk observables we have studied the isentropic

trajectories of the deconfined QCD medium described by the DQPM-CP for a wide

range of baryon chemical potentials, including the vicinity of the CEP.

• We have evaluated transport properties of the deconfined QCD medium for a wide

range of baryon chemical potentials within the DQPM-CP: the specific shear η/s

and bulk ζ/s viscosity and the ratio of electric σQQ/T , baryon σBB/T and strange

σSS/T conductivities to temperature on the basis of the Boltzmann equation in the

relaxation time approximation. We have found that the resulting µB-dependencies

of η/s and σQQ/T for the Nf = 3 PNJL model and the DQPM-CP model essentially

coincide in the vicinity of the phase transition, while there is a clear difference in the

electric conductivity.

• We have found that the DQPM-CP result for the specific bulk viscosity has a rapid

increase approaching the CEP from the high temperature region originating from the

rapid decrease of the speed of sound c2s → 0, whereas for the specific shear viscosity

and the B,Q, S conductivities there are only small increases, caused mainly by the

‘critical’ contribution of the effective coupling constant.

Although the extracted results for the transport coefficients are model-dependent, the

qualitative picture of the T and µB-dependence is consistent with expectations from more

rigorous approaches. The presented results can be implemented in the hydrodynamic simu-

lations as well as be employed for the partonic part of transport approaches for simulations

of HICs.
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6

Conclusions and Outlook

In this thesis the transport properties of the deconfined phase of strongly interacting mat-

ter at finite T and baryon chemical potential µB have been investigated. The influence of

a type of a phase transition on thermodynamic and transport properties has been studied

within effective models.

To achieve the dynamical description of the strongly interacting QCD matter by means of

transport and hydrodynamical approaches, one has first to specify the microscopic prop-

erties of the relevant degrees of freedom. Here we have focused on the partonic phase,

where the degrees of freedom are strongly interacting quarks and gluons, described by the

dynamical quasiparticle model (DQPM), which interprets the EoS in terms of dynamical

degrees of freedom, and allows to estimate the cross sections of the corresponding elastic

and inelastic reactions, which are essential for the transport evolution. Moreover, on the

basis of the microscopic properties such as - effective masses, widths and cross sections -

the evaluation of the transport coefficients within the kinetic theory has been performed.

We have first considered high temperatures T > Tc and moderate baryon chemical poten-

tials µB ≤ 0.5 GeV, where, according to the state-of-the-art lQCD calculations, the phase

transition of the QCD medium is found to be a crossover. We presented the EoS and the

transport coefficients of the QGP, such as shear and bulk viscosity, electric and baryon con-

ductivities within the DQPM. Further on, in the region of moderate and high net baryon

density it is important to take into account the diffusion of conserved charges. To this

aim, we have evaluated the full diffusion coefficient matrix for the baryon (B), strange

(S) and electric (Q) charges and compare presented relaxation-time (RTA) method to the

Chapman-Enskog (CE) method for the diffusion coefficients. In the considered region of

moderate baryon chemical potentials µB ≤ 0.5 GeV we find only a weak dependence of the

transport coefficients on µB.

Secondly, the out-of equilibrium study of the QGP evolution during the HICs at BES ener-

gies within the off-shell Parton-Hadron-String-Dynamics (PHSD) transport approach has

been considered. The PHSD covers the full evolution of the system during HICs, includ-

ing the partonic phase as well as the phase transition between the hadronic and partonic

phases, where the microscopic properties of quarks and gluons are described by the DQPM.

The microscopic properties of partonic quasiparticles and their differential cross sections

depend not only on temperature T but also on the chemical potential µB explicitly. We

started with the ‘bulk’ observables in HICs at various energies – from AGS to top RHIC

– for symmetric Au+Au and Pb+Pb collisions. Further on, we studied the sensitivity of

the µB-dependencies of partonic cross sections and microscopic properties of quasiparticles

on the flow coefficients. Overall, we have found only a small sensitivity of the considered

observables to the µB-dependence of parton properties and their interaction cross sections.

These practically invisible traces of the influence of baryon density on the partonic phase
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can be explained by the fact that at high energies, where the matter is dominated by the

QGP phase, one probes the QGP at a very small baryon chemical potential µB in central

collisions at midrapidity, whereas at lower energies, where µB becomes larger, the fraction

of the QGP drops rapidly. Therefore, the final observables are in total prevailed by the

hadrons which participated in hadronic rescattering; thus the information about their QGP

origin is washed out or lost.

We have demonstrated that the µB-dependence of QGP interactions is more pronounced

in observables for strange hadrons (kaons and especially anti-strange hyperons) as well as

for antiprotons. It provides an experimental hint for the search of traces of the hot and

dense QGP matter for future experiments at the FAIR and NICA facilities. The results

presented here demonstrate that the QCD evolution during HICs can be studied by means

of the off-shell transport approach.

Next, in order to examine the domain of high µB we have applied methods of kinetic

theory to evaluate transport coefficients in the Nf = 3 Polyakov extended Nambu-Jona

Lasinio (PNJL) model. We demonstrated that for moderate baryon chemical potentials

µB ≤ 0.8− 0.9 GeV, where the phase transition is a rapid crossover, transport coefficients

show a smooth T -dependence when approaching the phase transition from the region of

high T . While for large baryon chemical potentials µB > 0.96 GeV the presence of a first

order phase transition modifies significantly the T -dependence of the transport coefficients

and a discontinuity can be seen when approaching the phase transition. Moreover, we

found that outside the critical region the influence of the critical end-point (CEP) on the

evaluated transport coefficients is rather small in comparison to the modification due to a

first-order phase transition.

Finally, we have considered a phenomenological extension of the DQPM (DQPM-CP)

to a wider range of µB by including a region with a possible CEP and first-order phase

transition. The EoS, the speed of sound as well as transport coefficients for T > Tc are

demonstrated for a wide range of µB and T employing two settings of the strange quark

chemical potentials: (I) µq = µu = µs = µB/3 and (II) µs = 0, µu = µd = µB/3. We have

demonstrated the critical behaviour of the speed of sound and the specific heat approaching

the CEP from the partonic phase. We have evaluated transport coefficients of the QGP

medium for a wide range of baryon chemical potential within the DQPM-CP model: the

specific shear η/s and bulk ζ/s viscosities and the ratio of electric σQQ/T , baryon σBB/T

and strange σSS/T conductivities to temperature. It has been shown that the resulting

µB-dependencies of η/s and σQQ/T for the Nf = 3 PNJL model and the DQPM-CP

essentially coincide in the vicinity of the phase transition, while there is a clear difference

in the electric conductivity essentually due to the different partonic degrees of freedom.

The calculations presented in the thesis have shown that transport coefficients can

differ among the models, which have similar phase structures and EoS. This discrepancy

stems from the difference in the dynamic degrees of freedom. It demonstrates that the

description of the QGP in terms of thermodynamic observables and the knowledge of the
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phase diagram is not sufficient to describe the dynamical evolution of strongly interacting

matter in a unique way.

The qualitative study on transport coefficients and the phenomenological model, which

describes the QGP phase for a wide range of baryon densities, developed in this thesis

might be useful for hydrodynamical simulations as well as for the development of transport

approaches, which include the evolution of the partonic phase (such as the PHSD). The

proposed model can be especially useful for the further examination of the region of the

strongly interacting matter phase diagram by the simulations of HICs for the moderate

and high T and µB.

131



LIST OF FIGURES

List of Figures

1.1 The running coupling of QCD as a function of the momentum scale Q. The

figure is taken from [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Sketch of the lattice discritization and its main ingredients: ψ(n) is the

fermion field defined on the sites, Uµ(n) is the link variable, and the plaque-

tte Pµν(n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The dimensionless thermodynamic observables as a function of temperature

for Nf = 2 + 1. The gray points are from the HotQCD collaboration [21],

while the colored ones are from the WB collaboration [22]. The figure is

taken from [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Theoretical sketch of the order of the thermal QCD transition as functions

of a light quark mass mu,d, and a heavier strange quark mass, ms, at van-

ishing baryon chemical potential. Every point of the plot corresponds to a

phase boundary, with an implicitly associated (pseudo-)critical temperature

Tc(mu,d,ms). Two scenarios are considered for Nf = 2,mu,d = 0: first-order

(left) and second-order (right). The figure is adapted from [26]. . . . . . . . 11

1.5 Schematic phase diagram of QCD in the temperature T and baryon chemical

potential µB plane. Horizontal lines on the top panel represent the intervals

of µB covered in correspondent experimental facilities. The figure is based

on [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Qualitative spacetime evolution of a relativistic heavy-ion collision. The

nuclei (blue discs) propagate along the z-axis at the speed of light and collide

at z = t = 0. The QGP(orange region) medium forms at proper time τ ∼ 1

fm/c and converts to a hadron resonance gas (blue region) around τ ∼ 10

fm/c. The figure is based on [35]. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 DQPM effective running coupling αs = g2/(4π) as a function of the scaled

temperature T/Tc(µB) at vanishing chemical potential µq = µB = 0 (left)

and for moderate baryon chemical potentials µB ≤ 0.5 GeV obtained within

the ’scaling hypothesis’ (2.1) (right) [1,57]. The lattice results for quenched

QCD, Nf = 0, (blue circles) are taken from Ref. [58] and for Nf = 2 (black

triangles) are taken from Ref. [59]. This figure is adopted from [6]. . . . . . 18

2.2 Ratios of the DQPM pole masses for light quarks (solid lines) and gluons

(dashed lines) to temperature, mi/T (left), and ratios of the widths γi/T

(right), to temperature as a function of the scaled temperature T/Tc(µB)

for fixed µB = 0, 0.3, 0.5 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Gluon (left panel) and quark (right panel) pole-masses mi (upper row) and

their widths γi (lower row) from the DQPM as a function of the scaled

temperature T/Tc(µB) and baryon chemical potential µB [4]. . . . . . . . . . 20

132



LIST OF FIGURES

2.4 DQPM thermodynamic observables (solid lines): scaled entropy density

s/T 3 (top left), pressure p/T 4 (top right), energy density ǫ/T 4 (bottom

left) and interaction measure I/T 4 (bottom right) as a function of temper-

ature T and at fixed baryon chemical potential µB ranging between 0 and

0.5 GeV. The lQCD results obtained by the BMW collaboration are taken

from Refs. [22, 60] (circles) for µB = 0, 0.2, 0.3, 0.4 GeV. . . . . . . . . . . 22

2.5 speed of sound squared c2s (left) and scaled specific heat CV /T
3 (right)

from the DQPM as a function of the scaled temperature T/Tc(µB) and

baryon chemical potential µB. At vanishing chemical potential we compare

to lQCD results obtained by the Wuppertal-Budapest collaboration [22]

(black spheres) and the HotQCD collaboration [72] (blue spheres). . . . . . 24

2.6 DQPM total elastic cross sections between different partons for the on-shell

case from Eq. ( 43) evaluated in the center of mass of the collision system

as a function of the collision energy
√
s for µB = 0, T = 0.19 GeV (top

left), µB = 0, T = 0.19, 0.316, 0.458 GeV (top right), µB = 0, 0.2, 0.5 GeV

(bottom left) and for various values of baryon chemical potential µB = 0,

0.2, 0.5 GeV for T = 2 Tc(µB) (bottom right). The initial masses of the

colliding partons are taken as the pole masses. The figure is taken from [6]. 25

2.7 Quark off-shell interaction rate (left) as a function of scaled temperature

T/Tc for µB = 0 and (right) for moderate chemical potentials µB ≤ 0.5

GeV as a function of the scaled temperature T/Tc(µB) and the baryon chem-

ical potential µB. The contributions from the scattering with light quarks

(green), antiquarks (blue), and gluons (pink) are given by the lower hatched

bands, which arise from the finite statistics in the evaluation of the integrals

by Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Relaxation time of a quark (left) and gluon (right) as a function of the scaled

temperature T/Tc(µB) and the baryon chemical potential µB evaluated by

the average parton interaction rate from Eq. (62). . . . . . . . . . . . . . . 31

2.9 Ratio of shear η/T 3 and bulk ζ/T 3 viscosities to the temperature cubed as

a function of temperature T for µB = 0. The solid red line and the dashed

blue line show the DQPM results for the shear and bulk ratios accordingly,

using the parton interaction rate Γi(p, T, µ) for the relaxation time. . . . . 32

133



LIST OF FIGURES

2.10 Specific shear viscosity η/s (left) as a function of the scaled temperature

T/Tc for µB = 0 and (right) for moderate chemical potentials µB ≤ 0.5 GeV

as a function of the scaled temperature T/Tc(µB) and the baryon chemical

potential µB. The lines shows the DQPM result for ηi/stot from Eq. (63)

using the interaction rate Γi(p, T, µ) for different quasiparticle species: light

quarks and anti-quarks (short dashed orange line), strange quarks and anti-

quarks (dot-dashed magenta line), gluons (dotted blue line). The solid red

line and the dashed green line show the DQPM results for total ratios of

viscosity to entropy density using the parton interaction rate Γi(p, T, µ) and

the spectral width 2γi(T, µ) for the relaxation time. The pentagons show

the lQCD prediction for pure SU(3) gauge theory taken from Ref. [85]. . . 34

2.11 Specific bulk viscosity to entropy density ζ/s (left) as a function of the scaled

temperature T/Tc for µB = 0 and (right) for non-zero µB as a function of

the scaled temperature T/Tc(µB) and the baryon chemical potential µB.

The solid red line and the dashed green line show the DQPM results within

the RTA from Eq. (64) using the parton interaction rate Γi(p, T, µ) and

the spectral width 2γi(T, µ) for the relaxation time. The symbols display

the lQCD data for Nf = 0 pure SU(3) gauge theory taken from Refs. [87]

(pentagons) and [88] (circles). The solid blue line shows the estimate from

a Bayesian analysis of experimental heavy-ion data taken from Ref. [86]. . . 35

2.12 Scaled electric conductivity σQ/T (left) as a function of the scaled tempera-

ture T/Tc for µB = 0 and (right) for non-zero µB as a function of the scaled

temperature T/Tc(µB) and the baryon chemical potential µB. The solid

red line and the dashed green line show the DQPM results within the RTA

from Eq. (65) using the parton interaction rate Γi(p, T, µ) and the spectral

width 2γi(T, µ) for the relaxation time. The symbols display lQCD data for

Nf = 2 taken from Refs. [94, 95] (red circles with brown borders), (yellow

circles with green borders) and for Nf = 2 + 1 taken from Refs. [83, 96]

(spheres). The dot-dashed magenta line corresponds to the results from the

first order Chapman-Enskog approximation taken from Ref. [52]. . . . . . . 37

2.13 Ratio of the baryon diffusion coefficent to the temperature squared κB/T 2 ≡
σB/T (left) as a function of scaled temperature for a fixed baryon chemical

potential µB = 0 and 0.3 GeV and (right) as a function of scaled temperature

for moderate baryon chemical potentials µB ≤ 0.5 GeV. The dashed lines

represent the AdS/CFT results for κSSB , which are obtained using the results

from Ref. [101] and the DQPM EoS. The dot-dashed lines correspond to

the results from the first order Chapman-Enskog approximation taken from

Ref. [52]. The light green dotted line and dashed black line correspond to

the results from the Einstein-Maxwell-Dilaton (EMD) holographic model [49]. 39

134



LIST OF FIGURES

2.14 Left: Scaled electric conductivity, σQQ/T = κQQ/T
2, as a function of the

scaled temperature T/Tc at vanishing chemical potentials, µq = 0, from

various approaches. The results from the CE (DQPM) are shown by the

red solid line, and from DQPM RTA by the black dashed line. These are

compared to results from the lattice QCD calculations: quenched: orange

circle-shaped points [109], light green rhombus-shaped points [110], Nf = 2 :

light cyan circle-shaped points [94], magenta rhombus-shaped points [95],

and Nf = 2 + 1 : dark cyan circle-shaped points [96] and blue stars [111]),

the kinetic partonic cascade model BAMPS (dark-green solid line with

triangular-shaped points) [112], and from non-conformal EMT holographic

models A [113] (violet dashed-dotted line) and B [49] (blue dotted line).

For T < Tc = 0.158 GeV we show results from a variety of hadronic models:

SMASH [40, 105, 114] (grey short-dashed line with squared points), effec-

tive field theory (EFT) [115] (blue dashed-dotted line), and CE tuned to

a hadron gas [CE (HRG)] from Refs. [52, 104, 106] (dark-red dashed line).

Right: Scaled electric conductivity of the QGP at fixed scaled temperature,

T = 2Tc(µB), and µQ = µS = 0 are shown for varying baryon chemical

potential µB from the DQPM RTA (black dashed line with cross-shaped

points) and the CE (DQPM) (red solid line with circle-shaped points) eval-

uation. The figure is adopted from [6]. . . . . . . . . . . . . . . . . . . . . . 43

2.15 Scaled diffusion coefficients κqq′/T 2 from the DQPM as a function of T and

µB obtained within the RTA method from Eq. (180) for moderate chemical

potentials µB ≤ 0.5 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Scaled cross-electric conductivities, σQB/T
2 (left) and σQS/T

2 (right) as a

function of scaled temperature T/Tc at vanishing chemical potentials, µq =

0. We compare results from SMASH [40, 105] (grey short-dashed line with

square-shaped points), the DQPM RTA (black dashed line with cross-shaped

points), and the CE (DQPM) (red solid line with circle-shaped points) and

CE (HRG) [52,104] (dark-red dashed line). The figure is taken from [6]. . . 45

2.17 Scaled cross-electric conductivities, σQB/T
2 (left) and σQS/T

2 (right), from

the DQPM RTA (black dashed line with cross-shaped points) and the CE

(DQPM) evaluation at fixed scaled temperature, T = 2Tc(µB), shown versus

the baryon chemical potential µB in the range 0 to 0.5 GeV. The other

chemical potentials are fixed to zero, µQ = 0 and µS = 0. The figure is

taken from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.18 Scaled strange and strange-baryon diffusion coefficients, κSS/T 2 (left) and

κSB/T
2 (right), as a function of scaled temperature T/Tc at vanishing chem-

ical potentials, µq = 0. We compare results from CE (DQPM) (red solid line

with circles), DQPM RTA (black dashed-line with crossed-shaped points),

the CE (HRG) [52,104] (dark-red dashed line) and from conformal hologra-

phy [117] (blue dotted line). The figure is taken from [6]. . . . . . . . . . . 46

135



LIST OF FIGURES

2.19 Scaled strange and strange-baryon diffusion coefficients, κSS/T 2 (left) and

κSB/T
2 (right), from the DQPM RTA (black dashed line with cross-shaped

points) and the CE (DQPM) evaluation at fixed scaled temperature, T =

2Tc(µB), shown over baryon chemical potential µB in range 0 to 0.5 GeV.

Further, the other chemical potentials are fixed to zero, µQ = 0 and µS = 0.

The figure is taken from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.20 Scaled baryon diffusion coefficient, κBB/T
2, (left) at vanishing chemical po-

tentials, µq = µB = 0, as a function of the scaled temperature T/Tc from

various approaches and (right) at fixed scaled temperature, T = 2Tc(µB),

as a function of baryon chemical potential µB. The strange and electric po-

tential are fixed to zero: µS = 0 and µQ = 0. We show results from the CE

evaluation tuned to DQPM (red solid line), as described above, and tuned to

a hadron gas from Refs. [52,104] (dark-red dashed line). We again compare

to the calculation from DQPM RTA [2] (black dashed line with crosses) and

to the non-conformal holographic model results [117] (blue dotted line) as

for the electric conductivity. The figure is taken from [6]. . . . . . . . . . . . 47

3.1 Closed time contour C in the Schwinger-Keldysh formalism. C± denote the

time-ordered branch and the anti-time-ordered branch, respectively. . . . . . 51

3.2 Illustration of the time evolution of central Au+Au collisions (upper row,

section view) at a collisional energy of
√
sNN = 19.6 GeV within the PHSD

5.0 [143]. The local temperature T (middle row), baryon chemical potential

µB (lower row), as extracted from the PHSD for y ≈ 0. The black lines

(middle row) indicate the critical temperature Tc = 0.158 GeV. The figure

is taken from [143]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The T -profile (left) and µB-profile (right) in (x, y) at midrapidity (|ycell| <
1) at 1 and 4 fm/c (from 0.5 to 6 fm/c for the µB-profile) after the initial

collision for 5% central Pb+Pb collision at 158 A GeV from PHSD5.0. The

figure is taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Distributions in T and µB as extracted from the DQPM equation of state

in a PHSD simulation of a central Pb+Pb collision at 158 A GeV for cells

with a temperature T > Tc(µB) at midrapidity (|ycell| < 1). The scale

corresponds to the number of cells in the PHSD event in the considered bin

in T − µB divided by the total number of cells in the corresponding time

window (see legend). The solid black line is the DQPM phase boundary for

orientation; the gray dashed lines indicate ratios of µB/T ranging from 1 to

5 while the vertical line corresponds to µB = 0. The figure is adopted from [1]. 63

3.5 The QGP energy fraction from PHSD as a function of time t in central (im-

pact parameter b = 2 fm) Au+Au collisions for different collisional energies
√
sNN for |y| < 0.5. The figure is taken from [7]. . . . . . . . . . . . . . . . 64

136



LIST OF FIGURES

3.6 The rapidity distributions for 5% central Au+Au collisions at 10.7 A GeV

for PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross

sections and parton masses evaluated at the actual chemical potential µB in

each individual space-time cell (red lines) in comparison to the experimental

data from the E866 [146], E877 [147], E891 [148], E877 [149] and E896 [150]

collaborations. All PHSD results are the same within the linewidth. The

figure is taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 The rapidity distributions for 5% central Pb+Pb collisions at 30 A GeV for

PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross

sections and parton masses evaluated at the actual chemical potential µB
in each individual space-time cell (solid red lines) in comparison to the ex-

perimental data from the NA49 Collaboration [151–153]. All PHSD results

are practically the same within the linewidth. The figure is taken from [1]. . 65

3.8 The rapidity distributions for 5% central Pb+Pb collisions at 158 A GeV

for PHSD4.0 (green dot-dashed lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross

sections and parton masses evaluated at the actual chemical potential µB in

each individual space-time cell (red lines) in comparison to the experimental

data from the NA49 Collaboration [154–157]. All PHSD results are the same

within the linewidth except for the antibaryons. The figure is taken from [1]. 66

3.9 The transverse momentum distributions for 5% central Au+Au collisions at

11 A GeV (left panel) and Pb+Pb collisions at 30 A GeV (middle panel)

and 158 A GeV (right panel), in midrapidity (|y| < 0.5) for PHSD4.0 (green

lines), PHSD5.0 with partonic cross sections and parton masses calculated

for µB = 0 (blue lines) and with cross sections and parton masses evaluated

at the actual chemical potential µB in each individual space-time cell (red

lines) in comparison to the experimental data from the E917 and E866 col-

laborations [158,159] (left), from the NA49 Collaboration [151–153] (middle)

and [155,156,160] (right). The figure is taken from [1]. . . . . . . . . . . . . 67

3.10 Transverse momentum distributions for 10-20% central Au+Au collisions

at
√
sNN =19 GeV and midrapidity (|y|< 0.5) for PHSD4.0 (green lines),

PHSD5.0 with partonic cross sections and parton masses calculated for µB
= 0 (blue dashed lines) and with cross sections and parton masses evaluated

at the actual chemical potential µB in each individual space-time cell (red

lines) in comparison to the experimental data from the STAR collaboration

[161]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

137



LIST OF FIGURES

3.11 The rapidity distributions (left) and transverse momentum distributions

(right) for 5% central Au+Au collisions at
√
sNN = 200 GeV for PHSD4.0

(green dot-dashed lines), PHSD5.0 with partonic cross sections and parton

masses calculated for µB = 0 (blue dashed lines) and with cross sections and

parton masses evaluated at the actual chemical potential µB in each individ-

ual space-time cell (red lines) in comparison to the experimental data from

the BRAHMS [164,165], PHENIX [162] and STAR [163] collaborations. The

figure is taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.12 (Left) A non-central collision of two nuclei with impact factor b leads to an

almond-shaped interaction volume. (Right) The initial spatial anisotropy

with respect to the reaction plane evolves under pressure gradients into a

momentum anisotropy of the produced particles. . . . . . . . . . . . . . . . 70

3.13 Directed flow of identified hadrons as a function of rapidity at
√
sNN =

200 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross

sections and parton masses evaluated at the actual chemical potential µB
in each individual space-time cell (solid red lines) in comparison to the

experimental data of the STAR Collaboration [169]. . . . . . . . . . . . . . 70

3.14 Directed flow of identified hadrons as a function of rapidity at
√
sNN =

27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections

and parton masses calculated for µB = 0 (blue dashed lines) and with cross

sections and parton masses evaluated at the actual chemical potential µB in

each individual space-time cell (red lines) in comparison to the experimental

data of the STAR Collaboration [169]. . . . . . . . . . . . . . . . . . . . . . 71

3.15 Left (a): elliptic flow of charged hadrons as a function of pseudo-rapidity

η for minimum bias Au+Au collisions at
√
sNN=200 GeV for PHSD4.0

(solid green line), PHSD5.0 with partonic cross sections and parton masses

calculated for µB = 0 (blue dashed line), and with the actual µB (solid

red line) in comparison to the experimental data from STAR [172] (red

stars) and PHOBOS [173] (spheres) Collaborations. Middle (b): individual

contributions to v2 without their relative weights to the total v2, which are

indicated by a green solid line for PHSD5.0 with µB: the magenta dotted line

corresponds to the final hadrons coming from the QGP without rescattering

in the hadronic phase, the orange dashed line indicates the v2 of hadrons

coming from strings while the brown dot-dashed line shows the v2 of hadrons

coming from mesonic and baryonic resonance decays. Right (c): individual

contributions to v2 including their relative weights to the total v2. . . . . . 72

3.16 Elliptic flow of charged hadrons as a function of pT for 0–50% central Au+Au

collisions at
√
sNN = 200 GeV in comparison to the experimental data from

the STAR Collaboration [172] (spheres). The line description is similar to

Fig. 3.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

138



LIST OF FIGURES

3.17 Elliptic flow of identified hadrons (K±, p, p̄,Λ+Σ0, Λ̄+ Σ̄0) as a function of

pT at
√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic

cross sections and parton masses calculated for µB = 0 (blue dashed lines)

and with cross sections and parton masses evaluated at the actual chemical

potential µB in each individual space-time cell (red lines) in comparison to

the experimental data of the STAR Collaboration [174]. . . . . . . . . . . . 74

4.1 The effective masses of light (left) and strange (right) quarks as a function

of temperature T and quark chemical potential µq from the PNJL model.

The figure is adopted from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Meson masses (pion, eta, kaon) as well as double quark masses 2mq andms+

mq from the Nf = 3 PNJL model at µq = 0 as a function of temperature.

The dotted lines indicate the mpole±Γ, where Γ is the imaginary part of the

complex pole of the meson propagators and mpole is its real part (indicated

by solid lines). The figure is taken from [5]. . . . . . . . . . . . . . . . . . . 83

4.3 Meson, gluon, and quarks contributions to the total pressure as well as the

total pressure (solid black line) at µq = 0 as a function of the temperature.

The figure is taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Basic thermodynamic observables from the improved PNJL model (solid

lines): scaled pressure, entropy density, energy density and interaction mea-

sure as a function of temperature T at µq = 0 in comparison to the lattice

QCD results [72] (colored bands). The figure is taken from [5]. . . . . . . . . 85

4.5 Ratio of quark pressure to the pressure in the Stefan-Boltzmann limit as a

function of µB = 3µq for a temperature of T = 0.001 GeV. We compare the

resulting ratio for the PNJL approach (blue line) to the perturbative results

from Ref. [190] (orange area). The figure is taken from [5]. . . . . . . . . . . 86

4.6 Phase diagram of QCD matter described by the Nf = 3 PNJL model [175].

Scaled pion pressure Pπ/T
4 in the Nf = 3 PNJL model in the (T , µq)

coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Cross section σud as a function of
√
s at T = 190 MeV for µq = 0, 0.1, 0.2

GeV (top) and at µq = 0 for T = 190, 220 and 300 MeV (bottom). The

figure is taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Cross sections for the qq̄ → qq̄ channels: uū → uū, ud̄ → ud̄, uū → dd̄ and
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A

Comparison study: constant

isotropic cross sections

In order to evaluate the systematic differences between the RTA and the CE approaches

we consider here a ’model study’ by assuming a total cross section of σtot = 10 mb for all

interactions in the DQPM. For this comparison we incorporate the same assumptions as

described in Chapter 2.

In Fig. A.1 we show the results for the scaled baryon diffusion coefficient, κBB/T
2

(left plot), and the scaled electric diffusion coefficient, κQQ/T
2 = σel/T (right plot) as

a function of temperature T at µB = 0. The DQPM RTA calculations are presented

for two cases: (i) where all binary channels, including the inelastic ones (flavor changing

processes qq̄ → q′q̄′), are considered (blue dashed line); (ii) only the elastic channels are

taken into account (red dashed-double-dotted line). For the DQPM RTA results presented

here Eq. (180) has been used, where we employed the momentum-dependent relaxation

times τi(p, T, µB):

τi(p, T, µB) =
1

Γi(p, T, µB)
. (181)

The CE (DQPM) calculations are presented in Fig. A.1 also for two cases with only

elastic channels. In the first case we evaluate the coefficients in RTA with the help of

Eq. (180) (for a system obeying classical statistics, i.e. ai = 0 in Eq. (58) ) under the

assumption of the simplistic momentum-independent relaxation time

τ0(T, µB) =
1

ntotσtot
. (182)

The results are presented by the orange solid lines. For the second case (Full) we consider

the full linearized Boltzmann equation via Eq. (72) (for a system obeying classical statis-

tics, i.e. ai = 0 in Eq. (58) ). The results are presented by the green dashed-dotted line.

This ’model study’ shows the influence of the linearized Boltzmann equation compared to

its relaxation-time approximation, and the influence of the inelastic channels compared to

its neglection. We find that the consideration of the full linearized collision term effectively

reduces the scattering rate of a specific particle species, while in the RTA the scattering

rate is overestimated. This is because in the collision term not only the scattering of par-

ticles from a specific momentum bin into all other momentum bins is considered, but also

the rescattering into this particular momentum bin is accounted for (gain and loss term).

As argued in Ref. [104] such an overestimation of the scattering rate leads to a decrease of

the diffusion coefficients from RTA (which are anti-proportional to the rate).

Furthermore, we find that the inelastic channels lead to a further decrease of the dif-
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Figure A.1: The scaled baryon diffusion coefficient, κBB/T
2 (left), and the scaled electric

diffusion coefficient, κQQ/T
2 (right), for a partonic system with constant cross sections,

σtot = 10 mb at µB = 0 as a function of T from different approaches. We compare
the DQPM RTA (τi(p, T, µB)) results from Eq. (180) (for a system obeying quantum
statistics, i.e. ai = ±1 in Eq. (58)) with (blue dashed line) and without (red dashed-
double-dotted line) inelastic, flavor-changing channels to the CE (DQPM) results either in
RTA (τ0(T, µB)) (green dashed-dotted line) from Eq. (180) (for a system obeying classical
statistics, i.e. ai = 0 in Eq. (58)) or for the “full" linearized collision term (orange solid
line) from Eq. (72) (ai = 0 in Eq. (58)).

fusion coefficients due to the repeated effective increase of the scattering rate as shown

in Fig. A.1. Comparing the elastic version of the DQPM RTA evaluation with the CE

(DQPM) calculation in the RTA limit employing τ0(T, µB), we find a good agreement of

the results at high T . This can be explained by the fact that the only difference between

both calculations – DQPM RTA and CE (DQPM) in the RTA limit – is the consideration of

quantum corrections and the more sophisticated (momentum-dependent) relaxation time

in DQPM RTA.
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B

Quark-(anti)quark scattering in the

Nf = 3 PNJL model

B.0.1 Quark-quark scattering

There are two possible Feynman diagrams for quark-quark scattering, the t− and u−
channels as indicated in Fig. B.1.

Figure B.1: Feynman diagrams of quark-quark processes for the t− and u− channels.

The associated squared of the matrix elements for the t− and u− channels and their

interference term are defined as

1

4N2
C

∑

s,c

|Mu|2 = |DS
u |2u+14u+23 + |DP

u |2u−14u−23, (183)

1

4N2
C

∑

s,c

|Mut| =
1

4NC
[DS

t D
S∗
u (t+13t

+
24 − s+12s

+
34 + u+14u

+
23)

−DS
t D

P∗
u (t+13t

+
24 − s−12s

−
34 + u−14u

−
23)

−DP
t D

S∗
u (t−13t

−
24 − s−12s

−
34 + u+14u

+
23)

+DP
t D

P∗
u (t−13t

−
24 − s+12s

+
34 + u−14u

−
23)], (184)

1

4N2
C

∑

s,c

|Mt|2 = |DS
t |2t+13t+24 + |DP

t |2t−13t−24. (185)

Here we use the shorthand notation

t±ij = t− (mi ±mj)
2, (186)
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u±ij = u− (mi ±mj)
2, (187)

s±ij = s− (mi ±mj)
2. (188)

DS and DP denote the effective propagators of the exchanged scalar and pseudoscalar

meson, respectively, which reads

Da =
2igm

1− 2gmΠ±
ff ′(k0,~k)

, (189)

where gm is the coupling constant [186] and Π±
ff ′(k0,~k) is the quark-antiquark polarisation

function (see Chapter 4 for further details on Π±
ff ′ and gm).

Table 4 displays the mesons which can be exchanged in the t− and u− channels in the

different quark-quark cross sections [186].

Process Exchanged mesons Exchanged mesons
in u-channel in t-channel

ud→ ud π, σπ π, η, η′, σπ, σ, σ′

uu→ uu π, η, η′, σπ, σ, σ′ π, η, η′, σπ, σ, σ′

us→ us K, σK η, η′, σ, σ′

ss→ ss η, η′, σ, σ′ η, η′, σ, σ′

Table 4: Mesons which can be exchanged in the t− and u− channels in the different
quark-quark cross sections.

B.0.2 Quark-antiquark scattering

For quark-antiquark scattering only s− and t− channels are possible. The corresponding

diagrams are shown in Fig. B.2.

Figure B.2: Feynman diagrams of quark-antiquark processes for the t− and s− channels.

The corresponding matrix elements (squared) for the s− and t− channels and their
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interference term reads

1

4N2
C

∑

s,c

|Ms|2 = |DS
s |2s+12s+34 + |DP

s |2s−12s−34, (190)

1

4N2
C

∑

s,c

|Mst| =
1

4NC
[DS

sD
S∗
t (s+12s

+
34 − u+14u

+
23 + t+13t

+
24)

−DS
sD

P∗
t (s+12s

+
34 − u−14u

−
24 + t−13t

−
24)

−DP
s D

S∗
t (s−12s

−
34 − u−14u

−
23 + t+13t

+
24)

+DP
s D

P∗
t (s−12s

−
34 − u+14u

+
23 + t−13t

−
24)], (191)

1

4N2
C

∑

s,c

|Mt|2 = |DS
t |2t+13t+24 + |DP

t |2t−13t−24. (192)

Table 5 presents the mesons which can be exchanged in the s− and t− channels in the

different quark-(anti-)quark cross sections [186].

Process Exchanged mesons Exchanged mesons
in s-channel in t-channel

ud̄→ ud̄ π, σπ π, η, η′, σπ, σ, σ′

uū→ uū π, η, η′, σπ, σ, σ′ π, η, η′, σπ, σ, σ′

uū→ dd̄ π, η, η′, σπ, σ, σ′ π, σπ
us̄→ us̄ K, σK η, η′, σ, σ′

uū→ ss̄ η, η′, σ, σ′ K, σK
ss̄→ uū η, η′, σ, σ′ K, σK
ss̄→ ss̄ η, η′, σ, σ′ η, η′, σ, σ′

Table 5: Mesons which can be exchanged in the s− and t− channels in the different
quark-antiquark cross sections.
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C

Application of the Event-Plane

method to the PHSD

Here we describe the basic concepts of the so-called standard event-plane method [168].

It estimates the azimuthal angle of the reaction plane employing the observed event plane

angle, which is obtained from the anizotropic flow. The procedure is performed for each

harmonic of the Fourier decomposition.

The event flow vector Qn is a two-dimensional vector in the transverse plane:

Qn,x = Qncos(nΨn) =
∑

i

ωicos(nφi), (193)

Qn,y = Qnsin(nΨn) =
∑

i

ωisin(nφi), (194)

where φi and ωi denote the laboratory azimuthal angle and weight for particle i, with

ωi(−y) = −ωi(y) for odd harmonics. In Eq. (194) Ψn denotes the event plane angle,

which reads

Ψn =
1

n
arctan[

Qn,x

Qn,y
]. (195)

The observed vobsn is the nth harmonic of the azimuthal particle distribution with respect

to the event plane

vobsn =< cos[n(φi −Ψn)] > . (196)

Furthernore, the finite multiplicity limits the acuracy of the reaction plane angle. There-

fore, to obtain the flow coefficient vn, the observed value vobsn must be corrected for the

resolution of the reaction plane a follows

vn = vobsn /Rn, (197)

Rn =< cos[n(Ψn −ΨRP )] > . (198)

The resolution correction factor Rn depends on the multiplicity of particles that determine

the flow vector and the average flow of these particles throught the resolution parameter

as

χ = vn
√
M, (199)

Rk(χ) =
√
π/2χexp(−χ2/2)(I(k−1)/2(χ

2/2) + I(k+1)/2(χ
2/2)). (200)

Here I(k±1)/2 denotes the modified Bessel function. In order to estimate Rn one divides the

full event up into two independent sub-events of equal multiplicity. In our case we follow

Refs. [238, 239], where the η − sub method is utilized. The particles are divided into two
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sub-events for η < 0 and η > 0. Moreover, an additional gap of 0.1 between the sub-events

is employed, and then an average of the results from the two sub-events is performed. The

resulting Rn(sub), i.e. the solution for χ in Eq. (200), is obtained by iteration. The full

event plane resolution is obtained using Eq. (200) from the resolution of the sub-events by

Rfull
n = Rn(

√
2χsub). (201)

For all results presented in Chapter 3 we employ the TPC event plane method. As

an example we consider a second-order event plane angle (Ψn), which reconstructed for

the particles at mid-rapidity |η| < 1 following the method used by the STAR Collabo-

ration [238]. The second-order event plane resolution estimated for Au+Au collisions at
√
sNN=14.5 GeV is displayed in Fig. C.1 as a function of centrality. The PHSD results

(blue dots) are compared with the estimates from the STAR Collaboration [238] (red stars)

reconstructed by using the TPC tracks (|η| < 1).

Figure C.1: The second-order event plane resolution for Au+Au collisions at
√
sNN=14.5

GeV from PHSD5.0 as a function of centrality compared to the estimates from the STAR
Collaboration [238] (red stars) reconstructed by using the TPC tracks (|η| < 1).
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Abbreviations

CEP critical endpoint

DQPM dynamical quasiparticle model

EoS equation of state

FRG Functional Renormalisation Group

HICs heavy-ion collisions

HSD Hadron-String-Dynamics

LHC Large Hadron Collider

lQCD lattice QCD

PHSD Parton-Hadron-String-Dynamics

PNJL Polyakov extended Nambu-Jona Lasinio model

QCD quantum chromodynamics

QED quantum electrodynamics

QGP quark-gluon plasma

RHIC Relativistic Heavy-Ion Collider

RPA random-phase approximation

RTA relaxation-time approximation
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