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Chapter 1

Introduction

Mathematical population genetics is the synthesis of the Darwinian theory of evolu-

tion [Dar59] and Mendel’s laws of inheritance [Men65] started in the early twentieth

century by its founding fathers Fisher, Haldane and Wright.

The theory of population genetics aims to describe, among other topics, the

evolution of a population (or gene) in an idealised mathematical framework, to

answer questions arising both from a biological or from a mathematical background.

For an introduction to mathematical population genetics the reader is referred to the

monographs by Durret [Dur08], Etheridge [Eth11] and Ewens [Ewe04].

There are many forces acting on populations and influencing the frequency of an

allele or a specific type of individuals, for example genetic drift, selection, mutation

and migration to name only a few. In this thesis we are mostly concerned with the

interplay between selection and genetic drift and the resulting consequences for the

probability of survival and eventual fixation of a single beneficial mutant with small

selective advantage. Genetic drift refers to the random change in frequency of a gene

due to the random reproduction of individuals and should not be confused with the

notion of the drift of a diffusion process that is common in probability theory.

One of the widest known models in population genetics is the Wright-Fisher model

[Fis30] and [Wri31], where the evolution ofN haploid individuals is modelled in the

following way. In each of the discrete non-overlapping generations every child

chooses a parent independently and uniformly among the N possible individuals

in the previous generation, which results in multinomially distributed vector of off-

spring numbers. Let us assume there are two types of individuals, wildtype ones and

individuals of beneficial type and assume that children inherit the type of their parent.

We incorporate directional selection with strength s > 0 into this model, by decree-

ing that children choose a parent proportional to their weight, where a wildtype

individual has weight 1 and a beneficial individual has the increased weight 1 + s.
Therefore, the beneficial individuals are favoured compared to the wildtype individ-

uals and if the beneficial type is rare, each beneficial individual has in expectation

approximately 1 + s many offspring.

A natural question arising in these models is whether the beneficial type conquers

the whole population and eventually fixates or dies out, once the beneficial type

enters the population. This founding event might happen due to a migration or

mutation, however in the following we are not concerned with the origin of the

beneficial type and assume that no further beneficial individuals come into play by

these mechanisms.

The study of survival probabilities of stochastic processes especially of Galton-

Watson processes, has a long history and goes back to Galton and Watson [Gal73],

[GW74] and the at first overlooked work by Bienaymé [Bie45]. They were interested

in the probability of extinction of family names, see [Ken66] and [Ken75] for a short

summary on the early history of Galton-Watson processes.
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In a population genetic setting, Haldane [Hal27] argued that the fixation probabil-

ity π(s) of a single mutant gene in a large population with small selective advantage

s obeys the asymptotics

π(s) ∼ 2s as s ↓ 0.

For the early phase in which the selective mutant is sufficiently rare, Haldane approx-

imated the binomially distributed offspring numbers in the Wright-Fisher model by a

Galton-Watson process, where each individual has Pois(1+ s) many offspring. Since

the variance of Pois(1+s) converges to 1 as s ↓ 0, the factor 2 in the above asymptotics

equals 2/σ2. Thus, Haldane’s asymptotics can be read as

π(s) ∼ 2s

σ2
as s ↓ 0,

see [PW08] for a historical overview. In the context of Galton-Watson processes this

asymptotics was also observed by Kolmogorov [Kol38] and further investigated by

Athreya [Ath92], Eshel [Esh81], [Esh84], Hoppe [Hop92] and others.

The Wright-Fisher model was generalised by Cannings in the 1970s, by allowing

an exchangeable number of offspring, such that the population size stays constant

[Can74] and [Can75]. In [BGPW21b], which is Chapter 4 in this thesis, selection is

incorporated to a rather large subclass of Cannings models in a similar vein as in

Wright-Fisher models with selection. This approach differs from the ones taken by

other authors, see e.g. [LL07], but has the advantage of allowing a forward and back-

ward representation of the Cannings models. We then prove Haldane’s asymptotics

for the regime of moderately strong selection. This is achieved in a manner similar to

Haldane’s original program, by comparing the Cannings model with selection to su-

percritical Galton-Watson processes. For the case of Cannings models with moderately
weak selection a backwards approach turns out to be successful for proving Haldane’s

asymptotics. This has been accomplished in [BGPW21a], which is Chapter 3 in this

thesis. This approach can be seen as a continuation of the historical developments

described in the sequel.

At a similar time as Cannings, Moran [Mor58] introduced a population model

in continuous time, which allows for overlapping generations, now known as the

Moran model. For each pair of individuals reproduction events occur at rate 1. At

reproduction with equal probability one individual among the two replaces the

other one with its offspring, which inherits the type of its parent. Assume each

individual has one of two types, the wildtype or the beneficial type. Additional to the

just described neutral reproduction events, individuals experience selective reproduction
events at rate s, at which a randomly picked individual is replaced by the offspring

of the reproducing individual. However, these events are only realised when the

individual is of beneficial type.

All these models introduced so far describe the evolution of a population for-

wards in time. If one is interested in genealogies and in ancestries of a population,

one arrives at processes moving backwards in time. The most basic example for a

backwards process is Kingman’s coalescent introduced in the 1980s [Kin82a]. King-

man’s coalescent is a partition valued process in continuous time, where each pair

of blocks merges independently at rate 1. If one takes n individuals in the neu-

tral Wright-Fisher model or in the neutral Moran model, then its genealogy, when

properly rescaled, converges to Kingman’s coalescent [Kin82b]. However, King-

man’s coalescent describes the limiting genealogy only when dealing with neutral

evolution.
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Related to Kingman’s coalescent is the ancestral selection graph introduced by Krone

and Neuhauser [KN97], [NK97] for the Moran model with selection. Starting with

n individuals each pair of lines of the ancestral selection graph coalesces whenever

a neutral reproduction event occurs among the n individuals. In addition each

ancestral lineage branches into two potential ancestral lineages, whenever one of the

n individuals is targeted to be replaced by an individual outside of the sample at an

selective reproduction event. Ancestral processes have been studied in a wide range

of models, not exclusively of models involving selection. They have been extended

to models incorporating mutation, recombination or others, see [PP13], [BLW16],

[BB20], [Cor17] to only name a few.

Returning to the case of moderately weak selection in Cannings models, the scope

of [BGPW21a], which is Chapter 3 in this thesis, is twofold. First, we introduce the

Cannings ancestral selection graph, which describes the genealogy of a Cannings model

with selection and thus is an analogue of the Krone-Neuhauser ancestral selection

graph for Cannings models. We prove that the Cannings ancestral selection process,

which is the block counting process of the Cannings ancestral selection graph, is in

sampling duality to the Cannings frequency process (counting the number of wildtype

individuals). Secondly, Haldane’s asymptotics for Cannings models with moderate

selection is proven by making use of the aforementioned duality.

As the last part of this thesis, in the footsteps of Haldane and Kolmogorov, we

analyse the survival probability of supercritical branching processes in an iid ran-

dom environment ([BK21] which is Chapter 5 in this thesis). Branching processes in

a random environment are a natural generalisation of Galton-Watson processes and

were first introduced around the 1970s by Smith and Wilkinson [SW69] and Athreya

and Karlin [AK71b], [AK71a]. In contrast to classical Galton-Watson processes the

offspring distribution is now allowed to change between the generations in an in-

dependent fashion, which results in randomly fluctuating offspring means between

the generations. Under assumptions ensuring that the fluctuations of the random

offspring mean are not too large, we prove Haldane’s asymptotics for supercritical

branching processes in an iid random environment and furthermore obtain a smooth

adaption of Haldane’s asymptotics for the survival probability as the branching pro-

cess comes closer to criticality. In the proof we make use of an expression for the

survival probability of branching processes in random environment, which does not

rely on the classical fixed point characterization. This expression discloses similari-

ties to perpetuities known from a financial context. We obtain a limiting theorem for

perpetuities with vanishing interest rates. This result seems to be of interest in its

own right.

The subsequent part of this thesis is organised as follows. Chapter 2 is divided

into two parts. Section 2.1 introduces some mathematical background and further

describes the scope of this thesis. Afterwards, starting with Section 2.2 we give a

synopsis of the results and techniques used in [BGPW21b], [BGPW21a] and [BK21]

and conclude with an outlook on so far unpublished work in progress joint with

Matthias Birkner, Iulia Dahmer and Cornelia Pokalyuk in Section 2.2.5.

Chapters 3 to 5 are identical with the submitted or published versions of the cor-

responding papers, up to some small changes in the layout. The results of Chapter

3 and 4 have been obtained in collaboration with Adrián González Casanova, Cor-

nelia Pokalyuk and Anton Wakolbinger, whereas Chapter 5 is joint work with Götz

Kersting.
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Chapter 2

Framework and synopsis of results

In the following sections we will introduce and discuss the results from Chapter 3, 4

and 5. Further, we will comment on some recent so far unpublished results obtained

together with M. Birkner, I. Dahmer and C. Pokalyuk concerning the probability of

fixation in populations with offspring variance tending to infinity.

Section 2.1 reviews some basic probabilistic models of the evolution of popula-

tions, including the effect of selection. In addition we examine some results in the

literature concerning the survival or fixation probabilities of supercritical processes.

Afterwards, in Section 2.2.1 and 2.2.2, we define neutral Cannings model admitting

a paintbox construction and move on to incorporate directional selection into these

models in a way that allows for a forwards and backwards description of the model.

Next, in Section 2.2.3 and 2.2.4 the results and proofs of Chapter 3 and 4 are outlined.

Lastly, in Section 2.2.5 we discuss the fixation probability of Cannings models with

highly skewed offspring distributions, whose neutral genealogies are in the attraction

of Beta-coalescents.

Section 2.3 concludes this chapter with an introduction to branching processes in

an iid random environment and a discussion of the results and proofs of Chapter 5,

where we prove Haldane’s asymptotics for this class of processes. The proof is

accomplished through an expression for the survival probability, which relies on the

shape function for probability generating functions. We observe a connection to the

theory of perpetuities, known from a financial context, and prove a limiting theorem

for perpetuities with vanishing interest rates, which results in the proof of Haldane’s

asymptotics and a proof of a modified version of Haldane’s asymptotics close the the

regime of subcriticality.

2.1 Branching processes and population genetics

In this section we will summarize some essentials of the mathematical framework of

theoretical population genetics that are used in this thesis. Our aim is to analyse the

survival probabilities of individual-based stochastic population models, which are

slightly supercritical. We call a process slightly supercritical if the beneficial individual

has in expectation 1+ s > 1 offspring and we are considering the limit s ↓ 0. Perhaps

the most basic stochastic model for an evolving population is the Galton-Watson

process.

Definition 2.1.1 (Galton-Watson process).
We call (Zn, n ≥ 0) a Galton-Watson process or simply a branching process, if Zn fulfils the
recursion

Zn =

Zn−1∑
j=1

ξ
(n)
j , Z0 = z0 ≥ 1,
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where (ξ(n)j , j ≥ 1, n ≥ 1) are independent and identically distributed on N0, thus indepen-
dent copies of a random variable ξ.

For further background on branching processes we refer to [AN72], [HJV05] and

[Har63]. Galton-Watson processes are classified by the expectation m = E [ξ] of

their offspring distribution. If the Galton-Watson process is subcritical (m < 1) or

critical (m = 1), the process dies out almost surely (except in the degenerate case

P (ξ = 1) = 1). Only in the supercritical case (m > 1) the probability of survival is

larger than 0. Letting

f(t) =

∞∑
k=0

tkP (ξ = k) , t ∈ [0, 1],

denote the probability generating function, the survival probability π = 1− q can be

expressed through the smallest solution q of the fixed point equation

q = f(q). (2.1)

We call a sequence of Galton-Watson processes slightly supercritical if m = 1 + s
and consider the limit s ↓ 0. The survival probability of a slightly supercritical

Galton-Watson process with finite variance σ2 obeys Haldane’s asymptotics

π(s) ∼ 2s

σ2
, as s ↓ 0. (2.2)

This has been shown, for example under the assumption of uniformly bounded third

moments, in [Kol38], [Ath92] using the characterization of the survival probability

as in (2.1). We call s > 0 the selective advantage of the beneficial individuals.

Using purely Galton-Watson processes for modelling the evolution of a popula-

tion has the disadvantage that on the event of survival the population grows beyond

all bounds, obviously a behaviour not observed in reality. A simple model with

discrete non-overlapping generations, where the population size is kept constant, is

the Wright-Fisher model [Fis30], [Wri31].

Definition 2.1.2 (Neutral Wright-Fisher model).
Fix a population size N . In the neutral Wright-Fisher model in each generation g, g ∈ Z,
each child chooses a parent in the prior generation uniformly and independently among the
N possible parents, with the assumption that the choice of parents is independent between
generations. We denote by ν(g) = (ν

(g)
1 , . . . , ν

(g)
N ) the number of children of the parents

1, . . . , N in generation g.
By the definition of the model it is clear, that ν (a generic copy of ν(g)) is multino-

mially distributed with parameters (N ; 1
N , . . . ,

1
N ). Adding selection with parameter

s > 0 in this model can be achieved by decreeing, that each beneficial individual

now has weight 1 + s, whereas each wildtype individual has weight 1. Each child

now chooses its parent proportionally to the parent’s weight. This again results in a

multinomially distributed vector of offspring.

As long as beneficial individuals are rare, the expected number of offspring pro-

duced by an individual of beneficial type is approximately 1 + s. This observation

lead Haldane to argue that the survival probability π(s) for a single beneficial mutant

in the Wright-Fisher model should obey π(s) ∼ 2s, for small s. Haldane approxi-

mated the binomially distributed offspring number by a Poisson distribution with

parameter 1 + s. This is in accordance with (2.2), due to σ2 = 1 = lims↓0 Var (ξs),
where ξs is Poisson distributed with parameter 1 + s.
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While Fisher, Haldane and Wright considered models with discrete generations,

more than two decades later Moran proposed a time continuous model with constant

population size N and overlapping generations [Mor58].

Definition 2.1.3 (Moran model).
Assume a model with fixed population size N . For each pair of individuals (i, j) ∈ [N ]2 a
reproduction event occurs at rate 1

N . With probability 1
2 individual i reproduces, i.e. gets

an offspring and the offspring replaces individual j, with the same probability individual j
reproduces.

Later on we will be concerned with Moran models whose reproduction events

occur at rate γ > 0.

The Moran model can be graphically represented by considering N lines and

drawing an arrow from individual i to individual j, at the moment when j gets

replaced by the offspring of individual i, see Figure 2.1. In this graphical construction

1

2

3

4

5

t
t0

Figure 2.1: Graphical representation of a Moran model with 5 individ-

uals. At time t0 individual 4 is replaced by an offspring of individual 3.

we incorporate selection by adding selective arrows for each individual at rate s and

picking the individuals to replace uniformly at random. However, only individuals

of the beneficial type are able to reproduce using this mechanism, which ensures the

selective advantage of the beneficial individuals, see Figure 2.2.

Another model generalising the Wright-Fisher model, now again in discrete time,

is the Cannings model introduced by Cannings in the 1970s [Can74], [Can75], which

allows for a more general offspring distribution. In order to define this class of

models we recall the notion of exchangeability.

Definition 2.1.4 (Exchangeability).
We say that the random variables X1, . . . , Xn are exchangeable, if for all permutations
ψ : [n] → [n] we have

(X1, . . . , Xn)
d
= (Xψ(1), . . . , Xψ(n)).

This notion is basic in the definition of Cannings models.
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1

2

3

4

5

t0 t1

Figure 2.2: Selective arrows are depicted as dashed arrows. Individ-

ual 3 is of the beneficial type, shown in blue. Hence, individual 3 is

not replaced at time t0 since individual 5 is of wildtype. At time t1 the

beneficial descendant (individual 4) of individual 3 is able to use the

selective arrow

Definition 2.1.5 (Cannings model).
Fix a population of size N . Let ν(g) = (ν

(g)
1 , . . . , ν

(g)
N ) be the vector denoting the number of

offspring of the parents 1, . . . , N in generation g. Assume that L (ν(g)) does not depend on
the generation g and that (ν(g), g ∈ Z) are independent. Let ν(g) be exchangeable, and such
that

∑N
i=1 ν

(g)
i = N for all g ∈ Z. Then the resulting population model is called a Cannings

model.

Incorporating selection into the class of Cannings models is not as straightforward

as in the other models, since it is not obvious how to adapt the distribution of ν in

such a way that the beneficial individuals have a selective advantage. For example

this has been achieved in the analytical framework of Lessard and Ladret in [LL07],

however their construction did not allow for a backwards perspective on the model.

In Chapter 3 and 4 selection is incorporated to a subclass of Cannings models in a

way which allows to describe the Cannings frequency process (the number of wildtype

individuals in each generation) in a forwards and backwards perspective, elaborating

on ideas of Krone and Neuhauser [KN97], [NK97] and of González Casanova and

Spanò [GS18].

All the population models described so far in this section model the evolution of

a population forwards in time, meaning that given the distribution of the types in

the prior generation we are able to determine the distribution of types in the current

one. In the context of mathematical population genetics it is a common approach to

look backwards in time and follow the genealogy of a given sample of individuals.

Assume we are in the neutral Wright-Fisher model with two types and we aim to

determine the type of a sample of n individuals. We could either look at the model

forwards in time and observe the type of the n individuals through the generations

or we trace the ancestors of the n individuals backwards in time and look at the type

of the ancestors, which consequently gives us the type of the sample. Whenever

two individuals choose the same parent their ancestral lineages coalesce, hence one

speaks of coalescent processes.
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One of the widest known coalescent processes was introduced by Kingman

around the 1980s. The Kingman coalescent describes the time rescaled limiting ge-

nealogy e. g. of a neutral Wright-Fisher model. Let Pn denote the set of all partitions

of [n].

Definition 2.1.6 (Kingman coalescent).
We call a Pn-valued Markov process (Πn(t))t≥0 Kingman’s coalescent, if Πn(0) is the

partition into singletons {{1}, . . . , {n}} and each pair of blocks merges at rate 1 independently
from each other.

For neutral Cannings models the Kingman coalescent describes the limiting ge-

nealogy, whenever Möhle’s condition is fulfilled [Möh00]. Möhle’s condition states

that if the pair coalescence probability is of smaller order than the probability of

triple coalescence events

E [ν1(ν1 − 1)]

N − 1
= o

(
E [ν1(ν1 − 1)(ν1 − 2)]

(N − 1)(N − 2)

)
,

then the rescaled genealogy of a sample of size n converges to Kingman’s coalescent.

If Möhle’s condition is violated other limiting genealogies are possible. Here the

properly rescaled limiting genealogies are given for example as Λ-coalescents or

Ξ-coalescents, which are coalescents with multiple or simultaneous collisions and

were introduced independently by Pitman [Pit99], Sagitov [Sag99] and Donnelly and

Kurtz [DK99]. For an overview we refer to [Ber09]. We will further comment on this

case and generalisations of these models to scenarios with selection in Section 2.2.5

and study the asymptotic probability of fixation in these cases.

Related to the ideas of Kingman, which describe a neutral genealogy, are those

of Krone and Neuhauser in 1997, who introduced the ancestral selection graph for the

Moran model with selection [KN97] and [NK97]. The ancestral selection graph in

the Moran model with selection describes the genealogy of a sample backwards in

time and briefly stated the idea goes as follows.

Looking backwards in time the types of the parent individuals are not known.

Therefore, if we trace a lineage backwards in time, it is not clear which selective

arrows have actually been used for reproduction. Hence, whenever there is a selective

arrow both potential parents are traced further backwards in time which results in a

branching event for the ancestral process. Whenever there is a neutral reproduction

event among the individuals in the ancestral process, we observe a coalescing event

as in Kingman’s coalescent. Note that an individual is of beneficial type if and only

if at least one of its potential parents is of beneficial type.

In the following we will by concentrating on the ancestral selection process, which

counts the number of blocks in the ancestral selection graph.

Definition 2.1.7 (Moran ancestral selection process).
Assume the setting of a Moran model with selection strength s > 0. We call the Markov
process B = (Br)r≥0 with state space [N ] the ancestral selection process, if its transition
rates rx,y for x ∈ [N ] are given as

rx,x+1 = xs
(
1− x

N

)
,

rx,x−1 =

(
x

2

)
γ

N
,

for some parameter γ > 0, and rx,y = 0 for all y /∈ {x− 1, x+ 1}.
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Note that the Moran ancestral selection process with parameter γ corresponds to

a Moran model whose neutral reproduction events occur ar rate γ for each pair of

individuals.

The results of Chapter 3 and 4 are twofold in the following manner. On the one

hand we introduce a graphical construction for Cannings models, in the spirit of the

graphical construction of the Moran model, which allows to incorporate selection

with strength 0 < s < 1 into a subclass of Cannings’s models. This "forward" con-

struction is reminiscent of the way selection is added into the Wright-Fisher model,

but is flexible enough to allow for many possible limiting genealogies, including

Λ-coalescents or Ξ-coalescents.

On the other hand the way selection is introduced allows a backwards description

of the Cannings models with selection, which enables us to define a Cannings ancestral
selection graph and the corresponding Cannings ancestral selection process. The model

and both processes are defined in Section 2.2.1 and Section 2.2.2.

With the help of the Cannings ancestral processes we are able to prove Haldane’s

asymptotics for the case of moderately weak selection in Cannings models whose

neutral genealogies are in the attraction of Kingman’s coalescent. We speak of the

regime of moderate selection with selective strength 0 < sN < 1, if

sN → 0, sNN → ∞, as N → ∞.

See e.g. [PW20] where the case of moderate selection was considered in a related

setting.

Another regime of selection studied in population genetics is the regime of weak
selection, where

sN ∼ α

N
, as N → ∞,

for some α > 0. Here selection and the coalescence probability cN are of the same

order, i.e. sN = Θ(cN ), which is a different regime than the ones considered in Section

2.2.3 to 2.2.5. In the case of weak selection for large N the frequency of beneficial

individuals can be approximated by a Wright-Fisher diffusion with selection,

dXt = αdt+Xt(1−Xt)dWt, X0 = p ∈ (0, 1)

where (Wt)t≥0 is an independent Wiener process, see e.g. [Eth11]. In the diffusion

approximation the probability of fixation π can be calculated explicitly and is given

by

π =
1− e−

2αp

σ2

1− e−
2α
σ2

, (2.3)

where p ∈ (0, 1) denotes the initial frequency of the beneficial individuals and in

the classical Wright-Fisher model we have σ2 = 1. Again note that (2.3) is an

increasing function in α and a decreasing function in σ, which shows the same

interplay of genetic drift and selection as in Haldane’s asymptotics. The case of weak

selection in large populations was among others considered by Gillespie [Gil74],

[Gil75], Kimura [Kim62] and Moran [Mor59], [Mor60]. They concluded that the

fixation probability πN in a large population of size N in the case of weak selection

is asymptotically given by (2.3). This asymptotics has also been shown with the

help of ancestral processes by Pfaffelhuber and Pokalyuk in [PP13], who studied
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the equilibrium distribution of the Moran ancestral selection process with weak

selection. To the present day ancestral processes have been used to study a wide

range of problems related to population genetics, not only concerning models with

selection. This includes models which incorporate mutations [BLW16], [BCH18],

[LKBW15] or [Tay07], recombination [BB20], [GM97], or with diploid populations

[BBE13], [BLS18] , also see [BW21].

At this point let us further mention some results connected to the topic of selec-

tion acting on a population. The long term evolutionary experiment performed by

Lenski et al. since 1988 (see [LRST91] and [LT94]) studies an evolving population of

Escherichia coli under selective pressure. Every day the bacteria were given a nutrient

solution such that they could reproduce and at the end of the day approximately one

percent of the bacteria was sampled as a founding colony for the next day. This exper-

iment was the motivation for the papers [GKWY17] and [BGPW19]. The sampling

procedure of bacteria by Lenski et al. is reminiscent of the sampling procedure in

Cannings models as in [Sch03] and was modelled in [GKWY17] in the following way.

In every cycle, each individual produces a random number of potential offspring.

From this pool a random sample of sizeN is taken without replacement, which then

found the next generation. Hence, as we will see in Section 2.2.1, Cannings models

admitting a paintbox construction can be seen as the sampling with replacement

analogue (and generalisation of the offspring distribution) of the population model

developed in [GKWY17].

In this thesis we do not study the situation where multiple beneficial or delete-

rious mutations can accumulate as in [EPW09] and [DM11] (also see [RBW08] and

[DF07]). In [EPW09] one considers the question how fast deleterious mutations are

accumulated over time and analyses the time it takes the fittest type to vanish. The

situation in [DM11] is comparable, they consider the questions how fast beneficial

mutations accumulate and hence they analyse the speed at which the population

evolves, measured by the fitness difference of the current population compared to

the starting fitness. It might be promising for further research to link this framework

with the model described in the following section.
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2.2 Haldane’s asymptotics for Cannings models with moder-
ate selection

2.2.1 A graphical representation including selection

Consider a classical Cannings model [Can74], [Can75] with fixed population size

N ∈ N, which is characterized by the distribution of its exchangeable and nonnegative

offspring vector ν = (ν1, . . . , νN ), such that ν1+ · · ·+νN = N , see Definition 2.1.5. In

the following we will concentrate on the special subclass of Cannings models which

admit a paintbox construction.

We introduce the vector W (N) = (W
(N)
1 , . . . ,W

(N)
N ) of random weights, such that

W (N)
is exchangeable and

N∑
j=1

W
(N)
j = 1, W

(N)
i ≥ 0, i ∈ [N ].

For notational simplicity we do not always display dependence of W (N)
on N , and

simply write W . However, sometimes we want to emphasize the random weights

belonging to the individuals in generation g, which we denote by W (g)
. We assume

that the family (W (g))g∈Z is independent and identically distributed.

The number of offspring from one generation to the next is generated by a two-

step procedure. First, sample the vector of random weights W , then given W we let

ν be multinomially distributed with parameters (N ;W ). For example, one obtains

the classical Wright-Fisher model (Definition 2.1.2), if one chooses Wi =
1
N for all

i ∈ [N ]. A special class of random weights, the class of Dirichlet-type weights, will be

introduced in Section 2.2.4.

Let us briefly recall the parental relations between individuals in generation g−1
and g. Denote by (i, g), i ∈ [N ] the individuals in generation g. Each individual (i, g)
is assigned a parent (V (i, g), g − 1) in generation g − 1, with the property that for all

j ∈ [N ]

P
(
V (i, g) = j|W (g−1)

)
=W

(g−1)
j , (2.4)

conditionally on W (g−1)
independently for all i ∈ [N ] and independently over the

generations. An advantage of this construction is the existence of the following

graphical representation to construct the parental relations in this class of Cannings

models.

For every g ∈ Z let U
(g)
1 , . . . , U

(g)
N be independent and uniformly distributed

random variables on the unit square [0, 1]× [0, 1] and divide the square intoN stripes

[0, 1]× I
(g−1)
1 , . . . , [0, 1]× I

(g−1)
N , such that I

(g−1)
j has length W

(g−1)
j , precisely

I
(g−1)
j =

[
j−1∑
i=1

W
(g−1)
i ,

j∑
i=1

W
(g−1)
i

]
, j ∈ [N ].

In light of (2.4), we have the equality of events

{V (i, g) = j} = {U (g)
i ∈ [0, 1]× I

(g−1)
j },

which is illustrated in Figure 2.3.
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10

1

I
(g−1)
1

I
(g−1)
2

I
(g−1)
3

I
(g−1)
4

• U (g)
1

• U (g)
2

• U (g)
3

• U (g)
4

Figure 2.3: A realisation of a neutral Cannings model admitting a

paintbox representation with N = 4 individuals. For example, indi-

vidual 2 in generation g has chosen individual 4 in generation g− 1 as

its parent, since U
(g)
2 ∈ [0, 1]× I

(g−1)
4 .

We incorporate directional selection with strength sN ∈ (0, 1) into this model

in the following way. Assume each individual is either of wildtype or beneficial type
and each child inherits the type of its parent. Define the vector of modified weights

W̃ (g−1) = (W̃
(g−1)
1 , . . . , W̃

(g−1)
N ) such that W̃

(g−1)
i = (1−sN )W (g−1)

i , if i is of wildtype

and W̃
(g−1)
i = W

(g−1)
i , if i is of beneficial type, for all i ∈ [N ]. Hence, the weight of

each wildtype individual is reduced by the factor (1−sN ), resulting in an approximate

selective advantage of 1 + sN for a single beneficial individual.

In the same manner as before, generation g results from a multinomial sampling

with weights proportional to W̃ (g−1)
. More precisely, we decree that (j, g − 1) is the

parent of individual (i, g) with probability

P
(
V (i, g) = j|W̃ (g−1)

)
=

W̃
(g−1)
j∑N

k=1 W̃
(g−1)
k

, j ∈ [N ],

again conditionally on W̃ (g−1)
independently for all i ∈ [N ] and independently

between the generations.

The sampling procedure can be incorporated into the graphical construction by

defining the sets

B(g−1) := {i ∈ [N ] : (i, g − 1) is of beneficial type},
C (g−1) := {i ∈ [N ] : (i, g − 1) is of wildtype}.

Now let (U
(g)
1 , . . . , U

(g)
N ) be independent and uniformly distributed on Γ(g−1)

, with

Γ(g−1) :=
⋃

j∈B(g−1)

[0, 1]× I
(g−1)
j ∪

⋃
j∈C (g−1)

[0, 1− sN ]× I
(g−1)
j .
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I
(g−1)
1

I
(g−1)
2

1− sN 1

I
(g−1)
3

I
(g−1)
4

• U (g)
1

• U (g)
2

• U (g)
3

•U
(g)
4

Figure 2.4: An example of a realisation of a transition step in a Can-

nings model with N = 4 individuals. Individual 4 is beneficial,

whereas the other three individuals are of wildtype.

We then have the equality of events (compare with (2.4) and see Figure 2.4),

{V (i, g) = j} = {U (g−1)
i ∈ [0, 1]× I

(g−1)
j }, for j ∈ B(g−1),

{V (i, g) = j} = {U (g−1)
i ∈ [0, 1− sN ]× I

(g−1)
j }, for j ∈ C (g−1).

In the following we aim to study the extinction of the wildtype individuals (or equiv-

alently the fixation of the beneficial individuals). To keep track of their frequency

along the generations we define their counting process.

Definition 2.2.1 (Cannings frequency process).
Denote byKg the number of wildtype individuals in generation g and denote byK = (Kg)g≥0

the Cannings frequency process with selection strength sN , population size N and weight
distribution L (W ).

Note that due to the exchangeability of W the transition probabilities of K do not

depend on the precise configuration of beneficial individuals in the prior generation,

hence K is a Markovian process. Furthermore, due to the sampling procedure as

described before, given Kg−1 = k and W (g−1)
the transition probabilities are the

same as a mixed binomial random variable with parameters N and P (k,W ), with

P (k,W ) :=
(1− sN )

∑k
i=1Wi

(1− sN )
∑k

i=1Wi +
∑N

i=k+1Wi

.

The Cannings frequency process describes the evolution of the wildtype individ-

uals forwards in time, however the aforementioned construction also allows for a

backwards description of the model, which is introduced in the next section.
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2.2.2 The Cannings ancestral selection process

Due to the construction of Cannings models as in Section 2.2.1, where the offspring

distribution results from a paintbox sampling procedure, there exists an ancestral

process A, which is dual to K. The Cannings ancestral selection process A = (Am)m∈N0

with parameters N, sN and L (W ) counts the number of potential parents from any

subset of individuals m generations in the past.

The Cannings ancestral selection process is a Markov chain with state space [N ],
whose transition probabilities are governed by a branching and coalescing step. With

Am = a, first in the branching step generate a random sum H =
∑a

i=1G
(i)

, with G(i)

being independent geometric random variables with parameter 1 − sN , thus H is

negatively binomial distributed. Next, for the coalescing step, take a vector of random

weights W = (W1, . . . ,WN ) and putH balls randomly intoN boxes, where box i has

weightWi. The distribution of Am+1 is the same as the distribution of the number of

occupied boxes after this two step procedure.

Let us elaborate how this procedure arises naturally and explain why the distri-

bution ofAm+1 givenAm = a is described by this two-step procedure. A priori there

is no information given on how many beneficial individuals are present in the prior

generation. Therefore, we need to ensure that for every possible configuration of

beneficial individuals in the prior generation, the parental relations between the gen-

erations are distributed accordingly. Hence, we split each weight Wi into a neutral

part of mass (1− sN )Wi and a selective part of mass sNWi. This leads to the square

[0, 1]× [0, 1] being vertically divided into a neutral part N and a selective part S ,

N := [0, 1− sN ]× [0, 1] S := [1− sN , 1]× [0, 1],

as depicted in Figure 2.5. For each individual j ∈ [N ] in generation g consider a

sequenceU
(1,g)
j , U

(2,g)
j , . . . of independent and uniform distributed random variables

on the unit square. We now proceed as follows, for each individual we wait until the

first of these uniforms falls into the area N and denote this number by γ(j, g),

γ(j, g) := min{ℓ ≥ 1 : U
(ℓ,g)
j ∈ N}.

This ensures no matter the configuration of beneficial individuals in the prior gen-

eration, that there will be a valid parent of (j, g). Obviously, γ(j, g) is geometrically

distributed with parameter (1− sN ) and we call the individuals k ∈ [N ] such that

U
(ℓ,g)
j ∈ [0, 1]× I

(g−1)
k , for some 1 ≤ ℓ ≤ γ(j, g)

potential parents of (j, g). See Figure 2.5 for an illustration.

Since we started with a individuals we obtain through this procedure a different

sets of potential parents. We are only keeping track of the total number of distinct

potential parents among these a sets, which corresponds to checking how many

stripes I
(g−1)
k are occupied. This leads to the aforementioned coalescing step where

H balls are put randomly into N boxes with weights (W1, . . .WN ).
Observe that an individual is of wildtype if and only if all its potential parents

are of wildtype. Put differently, an individual is of beneficial type if and only if

at least one of its potential parents are of beneficial type. This observation is key

for the following sampling duality, connecting the forward and backward processes

K = (Kg)g∈N0 and A = (Ag)g∈N0 .
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1− sN 1
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Figure 2.5: A realisation of potential parents in a Cannings model with

N = 4 individuals. Individual 1 and 4 have chosen two respectively

three potential parents, with γ(1, g) = 2 and γ(4, g) = 3. Individuals

2 and 3 each have a single potential parent. E.g. individual 3 and 4
have in total three potential parents.

Theorem 1 (Sampling Duality).
Let g ≥ 0 and k, n ∈ [N ], then the following duality relations holds

E
[
Kg(Kg−1) · · · (Kg − n+ 1)

N(N − 1) · · · (N − n+ 1)

∣∣∣K0 = k

]
= E

[
k(k − 1) · · · (k −Ag + 1)

N(N − 1) · · · (N −Ag + 1)

∣∣∣A0 = n

]
.

The above duality can be interpreted in the following way. Given there are k
wildtype individuals at time 0, the probability that a sample of size n at time g only

consists of wildtype individuals is the same as the probability that all Ag potential

ancestors of the sample are among the k wildtype individuals. Note that the same

duality holds true in the Moran model with selection for the Moran frequency process

and the Moran ancestral selection process, but in continuous time instead, see Section

3.4 and compare [AS05], [Man09].

Specializing Theorem 1 to the case k = N − 1 and n = N yields an useful

expression for the fixation probability of a single beneficial mutant, which is used in

the proof of Theorem 2.

Corollary 2.2.2. LetAeq have the stationary distribution of the Cannings ancestral selection
process. Then we have

πN := lim
g→∞

P (Kg = 0|K0 = N − 1) = E
[
Aeq
N

]
.

Note that Theorem 1 allows to express the survival probability for any number

of initially present beneficial individuals. However, for this it is necessary to control

higher moments ofAeq. So far the distribution ofAeq is not explicitly known, therefore

it seems rather burdensome to accomplish sufficient control of the higher moments of

Aeq. In the case of the Moran ancestral selection process the equilibrium distribution

is known and there it is possible to calculate the survival probability, if one starts

with k ∈ [N ] beneficial individuals, see Section 3.4.
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2.2.3 The case of moderately weak selection

We say that a Cannings model with directional selection with strength sN ∈ (0, 1) is

in the regime of moderately weak selection, if

N−1+η ≤ sN ≤ N− 1
2
−η, (2.5)

for some η > 0. Often we equivalently denote b = bN := − log sN
logN , where (2.5)

translates to
1
2 < b < 1.

Throughout this section we assume, that for some ρ2 ≥ 1 we have

E
[(
W

(N)
1

)2]
=

ρ2

N2
+O(N−3), (2.6)

asN → ∞. Note that the requirement ρ2 ≥ 1 is no restriction, due to Var

(
W

(N)
1

)
≥ 0.

Note that assumption (2.6) yields for the variance of the offspring distribution

Var

(
ν
(N)
1

)
= ρ2 + o(1), as N → ∞.

The main result of Chapter 3 is proven under two different sets of assumptions.

Assumptions A1: We consider the following condition on the third moment of

W
(N)
1 and the smaller regime of moderately weak selection

E
[
(W

(N)
1 )3

]
= O(N−3), N−1+η ≤ sN ≤ N− 2

3
−η, (2.7)

for some η > 0, which corresponds to
2
3 < b < 1.

Alternatively, under Assumptions A2 we assume that there exists a sequence of

natural numbers hN , such that

hN → ∞ and hN = o(logN), as N → ∞,

with the property that for N big enough we have

E
[
(W

(N)
1 )n

]
≤
(
KhN
N

)n
, (2.8)

for some constant K ≥ 1 and n ≤ 2hN . Furthermore, assume that sN is as in (2.5).

Remark 2.2.3. Note that (2.7) as well as (2.8) together with (2.6) imply

NE
[
(W

(N)
1 )2

]
→ 0, and E

[
(W

(N)
1 )3

]
= o

(
E
[
(W

(N)
1 )2

])
,

which is sufficient for the neutral genealogy of a Cannings model with a paintbox construction
to be in attraction of Kingman’s coalescent [Kin82b], as a consequence of Möhle’s Lemma, see
[Möh00].

Theorem 2 (Haldane’s formula, moderately weak selection).
Let (K(N)

g )g≥1 be a sequence of Cannings frequency processes, with parameters N, sN and
L (W (N)). Assume that (2.6) is fulfilled. Then under either assumptions A1 or A2 we have
for the fixation probability πN of a single beneficial mutant, that

πN ∼ 2sN
ρ2

as N → ∞.
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The proof of Theorem 2 takes advantage of the duality in Corollary 2.2.2, which

allows to express the fixation probability in terms of the equilibrium distribution

of the Cannings ancestral selection process. However, approximating the expected

value of the Cannings ancestral selection process in stationarity turns out to be chal-

lenging. In Chapter 3 we lay out two different strategies of proof, under Assumptions

A1 or A2 respectively. Assumption A2 requires control of higher moments of W
(N)
1

compared to A1, however we are able to cover the whole regime of moderately weak

selection.

Under assumptions A1 a coupling approach with the Moran ancestral selection

process B = (Bt)t≥0 with parameter γ = ρ2 is successful, for a precise definition

see Definition 2.1.7. The stationary distribution of B is a binomial distribution with

parameters (N, 2sN
ρ2+2sN

) conditioned to be strictly positive, [Cor17] and [CM19]. One

easily checks that

E [Beq] ∼
2sNN

ρ2
,

with Beq being binomially distributed with parameters (N, 2sN
ρ2+2sN

) conditioned to

be strictly positive. Therefore, we need to ensure that the processes in stationarity

(Aeqg )g∈N0 and (Beq
t )t≥0 can be coupled sufficiently well, such that

E [Aeq] = E [Beq] (1 + o(1)) ∼ 2sNN

ρ2
, (2.9)

where Aeq is distributed according to the stationary distribution of (Ag)g≥0. Due to

Corollary 2.2.2 this yields Haldane’s asymptotics.

We achieve this coupling by considering three processes A,B and Beq, where Beq
is a Moran ancestral selection process started in equilibrium. In the spirit of Döblin,

we coupleB andBeq such that these two processes coincide once they simultaneously

hit the same state.

For the purpose of coupling A and B such that (2.9) holds, we identify a neigh-

bourhood U of
2sNN
ρ2

, such that B enters this neighbourhood sufficiently fast and

stays in U until it has approached its stationary distribution close enough. Within U
the processes A and B can be controlled to remain close for a sufficiently long time.

Precisely, due to Lemma 3.6.8 we get that for any starting distribution of B after a

time of order N b+δ
, δ > 0 the process is close enough to its stationary distribution

such that

E [BNb+δ ] ∼ E [Beq] ∼
2sNN

ρ2
.

Therefore, we chose U such that A and B stay in U for a time of orderN b+δ
with high

probability. This is achieved in Lemma 3.6.7 for B. In Lemma 3.6.1 we observe that

within U both processes have similar transition probabilities, thus in Lemma 3.6.9

we show that A and B can be coupled for a time of order N b+δ
such that with high

probability

|Ag −Bg| ≤ 1, for 0 ≤ g ≤ N b+δ,

if A is started in U . Furthermore, we ensure that both processes enter the region U
quickly enough, which is shown in Lemma 3.6.6 and Lemma 3.6.3. Altogether, this

allows us to deduce the desired asymptotics for the expectations in (2.9).

Under Assumptions A2 a different strategy of proof turns out to be successful.
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We estimate the drift ofAeq in every state x ∈ [N ] and observes that there is a unique

center of attraction at
2sNN
ρ2

(1+ o(1)), meaning that in expectation the process moves

towards
2sNN
ρ2

(1 + o(1)). Similar as before we define a neighbourhood U ′
around

2sNN
ρ2

which is large enough such that Aeq remains in U ′
long enough, but on the

other hand not too big such that we can deduce

E [Aeq] ∼
2sNN

ρ2
, (2.10)

which by Corollary 2.2.2 yields Haldane’s asymptotics. More precisely, in Lemma

3.7.4 and Lemma 3.7.5 we show that the process returns fast enough to U ′
, that is

in a polynomially long time with exponential high probability. Complementary,

Proposition 3.7.3 shows that the process stays in U ′
for an exponentially long time,

with sufficiently high probability. To prove the latter, a comparison argument to a

random walk with drift towards
2sNN
ρ2

, is applied. Altogether, this proves (2.10).

Remark 2.2.4. Let us briefly discuss the two arising boundary cases b = 2
3 and b = 1

2 under
the assumptions A1 and A2.

The strategy of proof under assumptions A1 in Section 3.6 relies on the coupling of A
and B in the region U . This is a rather sharp coupling, in the sense that only a difference of
1 between Ag and Bg is allowed for a time interval, which length is of order N b+δ, δ > 0.
However, such a coupling can only hold if jumps of size 2 or larger are unlikely in U , which
is the statement of Lemma 3.6.1. Below the boundary b = 2

3 the behaviour of A in U changes
such that jumps of arbitrary size become possible, which can be seen by the following heuristic.

Let aeq = a
(N)
eq = 2sNN

ρ2
denote our candidate for the asymptotic expectation under

stationarity of A. The probability that two pairs coalesce in a single transition step of A
is asymptotically given as a4eq

N2 , the squared pair-coalescence probability. Since the coupling
needs to hold for N b+δ generations we require

N b+δ
a4eq
N2

∼ cN2−3b+δ → 0,

which entails b > 2
3 . Thus, the jumps of A at the central region become larger and our

coupling approach fails.
To circumvent this problem and to prove Haldane’s asymptotics for b > 1

2 we apply
a different technique of proof under Assumptions A2. We observe that near the assumed
expectation of Aeq the process behaves comparable to a random walk with drift. For this
argument to work successfully it is essential that the jump sizes of this random walk in the
region U ′ are bounded with high probability. This is shown via Lemma 3.7.1 for the upward
jumps and in Lemma 3.7.2 for the downward jumps, which both rely on the assumption b > 1

2 .
Let aeq be as above. The branching part of the transition step of A transforms aeq into the
random sum H =

∑aeq
i=1Gi with Gi being independent geometric random variables with

parameter 1− sN . Hence, the expected number of additional branches is given as

E [H]− aeq = aeq

(
1

1− sN
− 1

)
∼ sNaeq.

The above entails that in expectation we get N1−2b additional branches, letting b < 1
2 the

number of additional branches diverges asN → ∞, which breaks our coupling with a random
walk with bounded jump sizes. The same difficulty arises for the downward jumps.

Hence, at both boundaries the transition probabilities of A change such that larger jumps
become likely, at the boundary b = 2

3 jumps of size larger than 2 become likely, but jump sizes
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stay bounded with high probability and at the boundary b = 1
2 even larger jumps become

possible. Consequently, a coupling approach becomes harder to realise at these boundaries.

2.2.4 The case of moderately strong selection

Similarly as in Section 2.2.3 we are again considering the regime of moderate selection.

However, selection is now on the stronger side, i.e. there exists η > 0 such that

N− 1
2
+η ≤ sN ≤ N−η, (2.11)

which connects well to the regime of moderately weak selection in (2.5). With the

same notion as before, b = bN = − log sN
logN the above reads 0 < b < 1

2 .

In this section we assume that the weights W (N)
are of Dirichlet-type.

Definition 2.2.5 (Dirichlet-type weights).
We say that a vector of random exchangeable weights W (N) is of Dirichlet-type if there exist
Y1, . . . , YN which are independent copies of Y with P (Y > 0) = 1, such that

W
(N)
i =

Yi∑N
j=1 Yj

, i ∈ [N ].

For example, if Y is gamma distributed, W is symmetrically Dirichlet distributed.

Furthermore, the Wright-Fisher model corresponds to Y = c almost surely, for some

c > 0.

The main theorem in Chapter 4 is proven under the assumption

E [exp(hY )] <∞, (2.12)

for some h > 0. For a possible relaxation of this condition see Remark 4.3.2 a)

and 4.3.3 a). For example in the case of slowly varying tails, one can weaken this

assumption to the existence of the 4-th moment. Assumption (2.12) implies by

Möhle’s Lemma that the neutral genealogy is in attraction of Kingman’s coalescent,

see Lemma 4.4.2.

The main result of Chapter 4 is that for Cannings models with moderately strong

selection and Dirichlet-type weights fulfilling (2.12), Haldane’s asymptotics holds

true as well.

Theorem 3 (Haldane’s formula, moderately strong selection).
Let (K(N)

g )g≥1 be a sequence of Cannings frequency processes with parameters N, sN and
L (W (N)) and assume that the random weights are of Dirichlet-type fulfilling (2.12) and that
(2.11) and (2.6) hold. Then the fixation probability πN of a single beneficial mutant obeys

πN ∼ 2sN
ρ2

as N → ∞.

Let us briefly discuss the strategy of proof. The proof of Theorem 3 is divided

into three phases, in which the number of beneficial individuals reaches the levels

N b+δ
, εN , N respectively, for some ε, δ > 0.

In the first phase, to reach the level N b+δ
the number of beneficial individuals is

approximated from above and below by a Galton-Watson process with a mixed Pois-

son offspring distribution and a mixed Binomial offspring distribution, respectively,

see Lemma 4.5.1. Both offspring distributions have offspring mean 1+sN+o(sN ) and

offspring variance ρ2 + o(1). Relying on results by ([Ath92], [Esh81] or [Hop92]) on
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the survival probability of slightly supercritical Galton-Watson processes, we show

that the number of beneficial individuals reaches the level N b+δ
with probability

2sN
ρ2

(1 + o(1)).
For the second phase, the frequency process of the beneficial individuals grows

in a first order approximation deterministically, where in each generation the process

grows by at least the factor (1−ε)sN until it reaches the level εN with high probability.

Let g0 be the number of generations needed, such that the expected number of

beneficial individuals reaches the level 2εN . We estimate the accumulated variance

after g0 generations for this process, see Lemma 4.5.4 and observe that the variance

is of smaller order than the squared expected value after g0 steps. Hence, we deduce

that the level εN is reached with high probability.

Lastly, we make use of the duality (Theorem 1) and the fact that the wildtype

fixates if and only if there is no beneficial individual in the set of potential ances-

tors. However, the number of potential ancestors in equilibrium converges to ∞ in

probability, as N → ∞. Hence, if initially at least εN (out of N ) individuals are of

beneficial type, the probability that all potential ancestors are of wildtype converges

to 0, therefore the beneficial type fixates with high probability.

Remark 2.2.6. a) As in the case of moderately weak selection we discover the boundary
case b = 1

2 . The most crucial step of the proof of Theorem 3 is the approximation with
slightly supercritical Galton-Watson processes. If the number of beneficial individuals
reaches the level N b+δ, they fixate with probability tending to 1. Hence, to go beyond
b = 1

2 the approximation with Galton-Watson processes has to hold for more than
√
N

individuals. However, at the level
√
N , due to the birthday problem, the beneficial

individuals start to interfere. With non-trivial probability in the lower bounding
Galton-Watson process a new beneficial individual is added, while in the original
process a beneficial individual replaces another beneficial individual. Consequently, the
approximation with a Galton-Watson process from below fails.
This phenomenon has been observed also by other authors modelling interacting systems
with the help of branching processes ([BR13], [BD95], [GKWY17]). Nevertheless, we
have no reason to doubt that Haldane’s asymptotics holds true in this case. It seems
plausible that a connection of the forwards and backwards approaches from Chapter
3 and Chapter 4 might be successful. For another possible route to attack b = 1

2 see
Remark 2.2.9.

b) The application of the duality (Theorem 1) allows to replace and simplify the commonly
used approach to show fixation of the beneficial individuals after the number of beneficial
individuals has reached the level εN . Usually, this approach involves two steps, first
an approximation with ordinary differential equation is used, in the regime where the
frequency process reaches the level (1− ε)N from εN and afterwards a comparison of
the wildtype individuals to a subcritical Galton-Watson process, which consequently
dies out with probability 1, see for example [GKWY17].

At this point we can give some motivation for the questions in [BK21], which

are connected to the proof of Theorem 3. As discussed an extension of the proof

of Theorem 3 to a regime b ≥ 1
2 is not straightforward. The proof relies on the

coupling with Galton-Watson processes until the Galton-Watson process reaches a

level of order N b+δ
, δ > 0. This coupling crucially depends on Lemma 4.4.4, which

allows us to consider the random weights as if they were independent for k ≤ N b+δ

up to some small correction and therefore we can compare the Cannings frequency

process to Galton-Watson processes, where each individual branches independently.

To go beyond b = 1
2 one would need a similar result as Lemma 4.4.4.
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A promising approach to obtain a comparable result to Lemma 4.4.4 would be the

following. Consider the random variables (Ỹi, i ∈ [N ]) such that for 1 ≤ i ≤ ⌈N b+δ⌉
we have that Ỹi are independent copies of Y and for i > ⌈N b+δ⌉we let Ỹi = Yi. Again,

we define W̃ = (W̃1, . . . , W̃N )

W̃i :=
Yi∑N
i=1 Ỹi

=
Yi∑⌈Nb+δ⌉

i=1 Ỹi +
∑N

i=⌈Nb+δ⌉+1 Yi
.

Note that due to this construction conditionally on

∑N
i=1 Ỹi the random weights W̃i,

i ≤ ⌊N b+δ⌋ are independent. For the resulting approximating process to have the

same asymptotic probability of fixation one needs that the expectations NW1 and

NW̃1 are close up to an error of order o(sN ). We observe for some α > b

P
(
|NW1 −NW̃1| > N−α

)
= P

(∣∣∣∣∣N Y1∑N
i=1 Yi

−N
Y1∑N
i=1 Ỹi

∣∣∣∣∣ > N−α
)

∼ P

(∣∣∣∣∣
∑N

i=1 Yi −
∑N

i=1 Ỹi
NY1

∣∣∣∣∣ > N−α
)

∼ P

N− b+δ
2

∣∣∣ ⌊Nb+δ⌋∑
i=1

Yi − Ỹi

∣∣∣ > N1−α− b+δ
2

 ,

where the above probability is small by means of the central limit theorem if one has

1 − α − b
2 > 0, which entails b < 2

3 . Since the random weights W̃ are independent

only when conditioned on

∑N
i=1 Ỹi, we deal with a branching process in random

environment. This lead to the project described in Section 2.3 which is concerned

with the survival probabilities of a branching process in an iid random environment.

In this setting we prove a similar result as for classical Galton-Watson processes.

The remaining step in the program to extend the proof via a Galton-Watson

process approximation to b < 2
3 would be to prove a coupling result of the Cannings

frequency process with branching processes in an iid random environment in the

spirit of Lemma 4.5.1. However, so far such a result has not been obtained, since the

coupling becomes more involved, see Remark 2.2.6.
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2.2.5 Moderate selection and heavy-tailed offspring distributions

We now complement our synopsis of Cannings models with moderate selection

with an outlook on a manuscript in preparation, joint with M. Birkner, I. Dahmer

and C. Pokalyuk. This concerns the fixation probability of a slightly beneficial mutant

in Cannings models, where the neutral genealogy converges properly rescaled to a

class of Λ-coalescents, the so-called Beta(2− α, α) coalescents.

Definition 2.2.7 (Λ-coalescent).
A Λ-coalescent is a Markov process (Xt, t ≥ 0) taking its values in the partitions of N, such
that the restriction Xn

t to [n] is also a Markov process. If Xn
t consists of k blocks, j ≤ k of

these blocks are merging into 1 at rate λk,j , with

λk,j =

∫ 1

0
xj−2(1− x)k−jΛ(dx),

for a finite measure Λ on [0, 1].

Taking Λ as the Dirac measure in 0 yields the Kingman-coalescent. An important

subclass of Λ-coalescents is the class of Beta-coalescents, indexed by a parameter

α ∈ [1, 2). Here Λ is the Beta(2− α, α) distribution, i.e.

Λ(dx) = β2−α,α(dx) :=
1

Γ(2− α)Γ(α)
x1−α(1− x)α−1dx. (2.13)

The case α = 1 corresponds to the well known Bolthausen-Sznitman coalescent

[BS98] and [Rue87] and turns out to be a boundary case for the fixation probability,

see Theorem 4 and Remark 2.2.9.

As in Section 2.2.1 we consider Cannings models admitting a paintbox con-

struction, and like in Section 2.2.4 we assume random weights W of Dirichlet type.

However, in contrast to the assumptions in Section 2.2.4 we assume that the random

variable Y is heavy-tailed with exponent α,

P (Y > y) ∼ ℓαy
−α, as y → ∞, (2.14)

for some α ∈ (1, 2) and a constant ℓα > 0.

Due to Theorem 1iii) by Huillet and Möhle in [HM21] the neutral genealogy

converges to a β2−α,α-coalescent (also compare [Sch03] ) after speeding up time by

the factor c−1
N , with

cN ∼ αB(2− α, α)

µα
ℓα

Nα−1
,

where µ = E [Y ], α ∈ (1, 2) and B(2 − α, α) denotes the beta function. Similarly as

before we consider the regime of moderate selection, sN ∼ N−b
and assume

b < α− 1, implying

sN
cN

→ ∞, as N → ∞. (2.15)

The assumption in (2.15) entails that selection and genetic drift are of different order,

hence we speak of moderate selection in the heavy-tailed case. This is in accordance

with the regimes of moderate selection discussed in Section 2.2.3 and 2.2.4, where

one would have α = 2.
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Theorem 4. Under the assumptions (2.14) and (2.15), the fixation probability πN of a single
beneficial mutant obeys

πN ∼ c
− 1

α−1
α s

1
α−1

N (2.16)

with cα = ℓαΓ(2−α)
(α−1)µα .

Remark 2.2.8. Since s
1

α−1

N = o(sN ), the fixation probability in the heavy-tailed case is of
smaller order than in the corresponding Cannings models in the attraction of Kingman’s
coalescent. Note that the variance of the offspring distribution is of order N2−α and hence
a naive application of Haldane’s asymptotics would imply that the fixation probability is
asymptotically of order Nα−b−2, which is different from the asymptotics in (2.16).

Let us mention here two cases, where the same exponent 1
α−1 is observed. In so far

unpublished work by M. Birkner, I. Dahmer and B. Eldon they consider a Cannings model
with moderate selection and heavy-tailed offspring distribution, but selection is incorporated
through a different mechanism. They show that the fixation probability obeys the asymptotics
(2.16). Furthermore, they prove that the survival probability of a supercritical branching
process with infinite variance and a heavy-tailed offspring distribution with exponent α, such

that the offspring expectation is given as 1 + sN , obeys the asymptotics s
1

α−1

N , as sN → 0, for
some constant C > 0.

In light of the work by Slack [Sla68], the same exponent appears in the case of critical
branching processes. If one considers a branching process with mean one and a heavy tailed
offspring distribution ξ with parameterα ∈ [1, 2), such thatP (ξ > y) ∼ y−αL(y) as y → ∞
for some slowly varying function L. Then by a Tauberian Theorem (see [Fel71] XIII), one
obtains that the probability of survival up to time n decays like ( 1n)

1
α−1 L̃(n), for some slowly

varying function L̃.

Lastly, we give a brief outline of the proof. We proceed similarly as in the proof

of Theorem 2 and apply the duality stated in Corollary 2.2.2. Again we have

πN =
E
[
AΛ
eq

]
N

,

where AΛ
eq denotes the Cannings ancestral selection process with Dirichlet-type

weights fulfilling (2.14) in stationarity. The process AΛ
is defined by the same two-

step procedure as before: GivenAΛ
m = awe setH as a negative binomially distributed

random variable with parameters a and 1− sN and then put H balls randomly into

N boxes with weights W and count the number of occupied boxes (compare Section

2.2.2). The difference to Section 2.2.2 arises due to the different distribution of W .

Since the neutral genealogy converges to a β(2−α,α)-coalescent, when time is

rescaled by the factor c−1
N , we expect that the ancestral selection process behaves

similarly to the time rescaled line counting process of a β(2−α,α)-coalescent in the

downward movement, but additionally branching events occur per line at rate sN .

This gives rise to the heuristic that the equilibrium of AΛ
should be concentrated at

that level n = n(N) where upwards and downwards drift cancel, i.e.

nsN ≈ cN

n∑
j=2

(
n

j

)
λn,j(j − 1). (2.17)

The right-hand side in (2.17) corresponds to the expected drift of the time rescaled

line counting process in state n.
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To simplify the right-hand side of (2.17), we observe(
n

j

)
λn,j =

(
n

j

)
1

B(2− α, α)

∫ 1

0
xj−1−α(1− x)n−j+α−1dx

=
Γ(n+ 1)

Γ(j + 1)Γ(n− j + 1)

B(j − α, n− j + α)

B(2− α, α)

=
n

B(2− α, α)

Γ(j − α)

Γ(j + 1)

Γ(n− j + α)

Γ(n− j + 1)
.

Then an application of an hypergeometric identity yields for large n

ncN

n∑
j=2

(
n

j

)
λn,j(j − 1) ∼ cN

B(2− α, α)

Γ(2− α)

α(α− 1)
nα

∼ nα
Γ(2− α)ℓα
(α− 1)µα

N1−α = cαn
αN1−α.

Finally, in light of (2.17) we obtain

E
[
AΛ
eq

]
∼
(

1

cα
Nα−1sN

) 1
α−1

.

and hence by Corollary 2.2.2 we arrive at

πN =
E
[
AΛ
eq

]
N

∼
(

1

cα

) 1
α−1

s
1

α−1

N .

To show rigorously that E
[
AΛ
eq

]
is asymptotically given as

(
1
cα
Nα−1sN

) 1
α−1

we apply

the following reasoning, we refer to Glynn and Zeevi for further insights [GZ08].

Denote by ν the stationary distribution of AΛ
. We aim to calculate νf , with f being

the identity function, read as a column vector. For a Markov chain with transition

matrix P and stationary distribution ν, we have for any column vector g,

νP = ν and νPg = νg.

Hence, if we can find a vector g and a constant c such that

Pg ≤ g − f + ce, (2.18)

with e = (1, . . . , 1)T we have ν(g − f + ce) ≤ νg, implying

νf ≤ c.

The lower bound follows in the same way by choosing g and c such thatPg ≥ g−f+ce.
With this approach, estimating the expectation of AΛ

eq from above reduces to find a

vector g such that (2.18) is fulfilled for some c ∼
(

1
cα

) 1
α−1

s
1

α−1

N . It turns out that

for the upper bound it is sufficient to consider "linear vectors", i.e. vectors of the

form g = (g(1), . . . , g(N)) with g(x) = aNx and some aN ∈ R. This corresponds to

an analysis of the expected drift of Aλ
in every state x ∈ [N ]. For the lower bound

additionally second moments of Aλ
have to be estimated.
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Remark 2.2.9. a) The approach described in this section might also be useful in order to
close the gap b = 1

2 in the case of Cannings models within the attraction of Kingman’s
coalescent. However, it seems necessary wo control even higher moments of W1 than
under Assumption A2, in fact

E
[
Wn+1

1

]
≤ hN

N
E [Wn

1 ] ,

for some hN → ∞ as N → ∞ and n ≤ N/2.

b) An interesting boundary case are Cannings models within the attraction of the Bolthausen-
Sznitman coalescent, hence α = 1 in (2.13). Here the pair-coalescent probability cN
is of order log(N)−1, hence the case of moderate selection corresponds to selection of
strength sN ∼ log(N)−b for 0 < b < 1, since this implies sN

cN
→ ∞. In this case we

believe that with similar techniques as in the case α ∈ (1, 2) one shows that the survival
probability πN of a single beneficial mutant obeys

πN ∼ exp
(
(logN)1−b

)
,

c) At the moment we make the rather strict assumption

P (Y > y) ∼ ℓαy
−α, as y → ∞,

for some constant ℓα > 0. It should be possible to consider general Pareto-distributions,
i.e. to assume that ℓα can be replaced by a slowly varying function ℓα(y) at infinity.
Furthermore, as in Sections 2.2.3 and 2.2.4 it should be achievable to relax the assump-
tion sN ∼ N−b to the notion

Nα−1−η < sN < N−η

for some η > 0.
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2.3 Haldane’s asymptotics for branching processes in an iid
random environment

In this section we summarize the results and techniques of proof used in [BK21],

which is Chapter 5 in this thesis. These results concern Haldane’s asymptotics

for supercritical branching processes in an iid random environment. We prove

that Haldane’s asymptotics remains valid for branching processes in an iid random

environment, provided that the fluctuations induced by the environment are not too

large compared to the expected drift. For the precise statement see Theorem 5 below.

In the proof we make use of a connection to perpetuities, which seems not to have

been described in the literature before, see however [Als21] which appeared in arXiv

only a few days after [BK21].

First, we give a precise definition of a branching process in random environment

and develop the necessary notation. For an introduction and further background

to branching processes in random or varying environment we refer to [KV17] and

[VZ93].

Denote by P(N0) the space of all probability measures on N0. It turns out that it

is convenient to identify a measure f with its generating function f(t), t ∈ [0, 1]

f(t) =
∞∑
k=0

tkf [k], t ∈ [0, 1],

where f [k] denotes the mass of f in k. Recall that the first and second factorial

moment can be expressed through the generating function as

f ′(1) =
∞∑
z=1

zf [z], f ′′(1) =
∞∑
z=2

z(z − 1)f [z]. (2.19)

EndowP(N0)with the total variation metric and the induced Borel-σ-algebra. Hence,

P(N0) is a measurable space, which allows to consider a random measureF onP(N0).
A sequence V = (F1, F2, . . . ) of random measures on P(N0) will be called a random
environment. Furthermore, we call V an iid random environment, if V consists of

independent and identically distributed (Fi, i ≥ 1), thus the Fi are independent

copies of a random measure F .

Definition 2.3.1 (Branching process in random environment).
Let V = (F1, F2, ...) be a random environment. We say that (Zn, n ≥ 0) is a branching
process in random environment, if Zn obeys the recursion

Zn =

Zn−1∑
i=1

ξi,n, Z0 = 1,

where (ξi,n, i ≥ 1, n ≥ 1) are conditionally on V independent and for each n ∈ N the family
(ξi,n, i ≥ 1) is conditionally on V independent and identically distributed with distribution
Fn. Thus ξi,n is a copy of some random variable ξ.

If we choose Fi = f almost surely for some f ∈ P(N0), we obtain a classical

Galton-Watson process with offspring distribution f .
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Similar as in (2.19) the (now random) first and second factorial moment can be

expressed as

F ′(1) =
∞∑
z=1

zF [z], F ′′(1) =
∞∑
z=2

z(z − 1)F [z].

In the following we consider a sequence (Z(N), N ≥ 1) of slightly supercritical

branching processes in an iid random environment and aim to study the asymptotic

behaviour of the survival probability πN . We indicate the dependency of N by a

subscript of the probabilities or expectations, for example by writing

πN = PN (Z∞ > 0) := P(Z(N)
∞ > 0)

for the survival probability.

Let

εN := EN [F ′(1)]− 1, νN := VarN (F
′(1)),

hence εN denotes the excess above 1 of E [ξ] and νN denotes the variance in offspring

expectation between the generations. Since we are interested in the survival proba-

bility of a slightly supercritical branching processes we assume εN > 0 and consider

the setting εN → 0 as N → ∞. Furthermore, we assume stabilization of the variance

of ξ, as well as uniform boundedness of the 4-th moments of ξ. Specifically, we

require

VarN (ξ) = σ2 + o(1), EN [ξ4] = O(1), (2.20)

with σ2 > 0. Finally, for the first moment of F we assume

EN [F ′(1)−4−δ] = O(1), EN [|F ′(1)− EN [F ′(1)]|4+δ] = O(ν
2+ δ

2
N ) (2.21)

for some δ > 0. The latter assumption in (2.21) allows us to control the fluctuations of

F ′(1) sufficiently well, whereas the first assumption is more of technical importance.

Theorem 5 (Survival probability for branching processes in random environment).

Assume that εN → 0 as N → ∞. Then under the Assumptions (2.20) and (2.21), we have:

a) If νN = o(εN ), then the survival probability obeys

πN ∼ 2εN
σ2

as N → ∞.

b) If νNεN → ρ, with 0 < ρ < 2, then

πN ∼ (2− ρ)εN
σ2

as N → ∞.

c) If νNεN → ρ with 2 < ρ <∞ then for large N

πN = 0



2.3. Haldane’s asymptotics for branching processes in an iid random environment 29

Remark 2.3.2. Let us briefly comment on the results and different regimes of Theorem 5.

a) The case νN = o(εN ) corresponds to the situation that the variance of the fluctuations in
the random mean are asymptotically of smaller order than εN , which is the deterministic
growth rate. In this case the survival probability of branching processes in random
environment obeys the same asymptotic as classical branching processes, see [Ath92]
for the latter. However, note that the fluctuations of F ′(1) up to order √νN are possible,
thus of considerably larger magnitude than εN .
In light of the fact, that the accompanying Kolmogorov asymptotics for critical processes
does not carry over to the case of random environments, see [GK00], it is remarkable
that Haldane’s asymptotics holds true for such a large regime. For critical Galton-
Watson processes the probability of survival up to generation n decays like 2

σ2n
[Kol38],

whereas for critical branching processes in random environment the probability of
survival up to generation n decays like βn−

1
2 for some constant β > 0, hence one has

two different asymptotics. In this sense supercritical branching processes in random
environment inherit more properties of classical Galton-Watson processes than their
critical counterparts.

b) The intermediate case νN
εN

→ ρ with ρ ∈ (0, 2) interpolates between these two bound-
ary cases a) and c) of Theorem 5. The resulting formula can be seen as a smooth
linear interpolation between the two asymptotics of a) and c) and connects the sub-
critical/critical regime with the supercritical one. Only in this regime the random
environment influences the survival probability considerably.

c) On the other side of the spectrum lies case c) of Theorem 5, where the variance of the
random mean is of the same order as the expected deterministic growth and so large that
in fact the process is no longer supercritical. Indeed by checking the classical condition
for subcriticality, which is EN [logF ′(1)] < 0 ([Smi68] and [SW69]), we see that the
process in this regime is subcritical for N big enough, therefore extinction is almost
certain.

For the boundary case ρ = 2 between subcritical and supercritical behaviour,

a finer analysis would be necessary. Investigating the proof of Theorem 5 c) in

Chapter 5, it is apparent that higher moments ofF ′(1)determine whether the process

is sub- or supercritical or even critical.

The proof of Theorem 5 relies on the subsequent proposition, which gives an

expression for the survival probability π for any supercritical branching process in

an iid random environment, under conditions which are only slightly stronger than

the usual conditions for supercriticality [SW69], i.e. E [logF ′(1)] > 0. A similar

approach has been used to determine the decay of the survival probability in the

subcritical case [GK00]. Note that the following approach does not use the familiar

fixed point characterization of π.

For any probability generating function F with positive finite mean F ′(1) > 0 we

introduce the shape function φ(t) via the equation

1

1− F (t)
=

1

F ′(1)(1− t)
+ φ(t), t ∈ [0, 1).

By means of a Taylor expansion φ(t) can be continuously extended to the entire unit

interval by setting

φ(1) =
F ′′(1)
2F ′(1)2

.
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In the following we consider for all k ∈ N the random shape function corresponding

to the environment Fk in generation k. We denote this function by φk(t), t ∈ [0, 1],
and abbreviate

µk =
k∏
i=1

F ′
i (1), µ0 = 1.

Proposition 2.3.3. Let (Zn, n ≥ 0) be a branching process in an iid random environment
V = (F1, F2, ..) consisting of independent copies of F . Assume

0 < E
[
logF ′(1)

]
<∞ and E

[
log+ F ′′(1)

]
<∞.

Then the survival probability π can be expressed as

π = E
[
1

X

]
,

with

X :=
∞∑
k=0

φk+1(P (Z∞ = 0 | Zk+1 = 1, V ))

µk
<∞ a.s.

Note that the assumptions in Proposition 2.3.3 are only slightly stronger than

the classical requirements for supercriticality, i.e. E [logF ′(1)] > 0. Further, the

result holds equally true if one considers a branching process in a stationary ergodic

random environment.

With Proposition 2.3.3 to prove Theorem 5 it remains to determine the asymptotic

behaviour of E
[
1
X

]
under the assumptions of Theorem 5. Since we are in the slightly

supercritical setting it seems reasonable to expect that the probability of extinction

should converge to 1 as N → ∞, hence PN (Z∞ = 0 | Zk+1 = 1, V ) → 1 as N → ∞.

Therefore, we consider the approximating random variable Y of X , defined via

Y :=

∞∑
k=0

φk+1(1)

µk
,

which is shown to be a reasonable approximation, in the sense that εN (X − Y ) → 0
in probability, in Lemma 5.4.5.

Observe that Y fulfils the stochastic recursion

Y = φ1(1) +

∞∑
k=1

φk+1(1)

µk

d
= φ(1) +

1

F ′(1)
Y, (2.22)

withφ(1) andF ′(1) being independent of Y . The recursion (2.22) is sometimes called

annuity equation in a financial context [BDM16] and Y is called a perpetuity.

For random variables Y fulfilling (2.22) with nonnegative (A,B) such that

Y
d
= A+BY,

with

βN := 1− EN [B], γN := VarN (B),
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we prove the following limiting theorem for perpetuities with vanishing interest

rates. This theorem might be useful in other contexts than the one presented here.

In this context we also mention the recent work by Alsmeyer [Als21] on branching

processes in random environment and perpetuities.

Theorem 6 (Limiting theorem for perpetuities).

Assume that in the limit N → ∞, we have

βN → 0, γN → 0, EN [A] = α+ o(1), EN [A1+δ] = O(1),

with α > 0 and some δ > 0, furthermore EN [|B − 1|2+δ] = o(βN + γN ). Additionally
assume

βN
γN

→ ρ̂ with − 1

2
< ρ̂ ≤ ∞.

Then we have:

i) If ρ̂ = ∞, then βNY converges to α in probability.

ii) If ρ̂ ∈ (−1/2,∞), then γNY is asymptotically inverse-gamma distributed, with density
ba

Γ(a)x
−a−1e−b/xdx on R+ and parameters (a, b) = (2ρ̂+ 1, 2α).

The proof of Theorem 6 uses classical tools, convergence of the Laplace-transforms

to the corresponding limiting Laplace-transforms is established with the help of

Lemma 5.3.1 and tightness of the sequence (βN + γN )Y is shown in Lemma 5.3.2.

The proof of Theorem 5 then follows with the help of some technical results

immediately. By an application of Theorem 6 one obtains that εNY converges in

probability to
σ2

2 , if
νN
εN

→ 0 asN → ∞. Whereas if
νN
εN

→ ρwith 0 < ρ < 2, then νNY

is asymptotically inverse gamma distributed with parameters (a, b) =
(
2−ρ
ρ , σ2

)
.

The proof of Theorem 5 a) and b) is then concluded via the asymptotics

πN = E
[
1

X

]
∼ E

[
1

Y

]
∼
{

2εN
σ2 if νN/εN → 0
2εN
σ2

(
1− ρ

2

)
if νN/εN → ρ̂ ∈ (0, 2),

which are shown with the help of Lemma 5.4.4 and Lemma 5.4.5.
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Chapter 3

Haldane’s formula in Cannings
models: The case of moderately
weak selection

We introduce a Cannings model with directional selection via a

paintbox construction and establish a strong duality with the line

counting process of a new Cannings ancestral selection graph in dis-

crete time. This duality also yields a formula for the fixation prob-

ability of the beneficial type. Haldane’s formula states that for a

single selectively advantageous individual in a population of hap-

loid individuals of size N the probability of fixation is asymptoti-

cally (as N → ∞) equal to the selective advantage sN divided by

half of the offspring variance. For a class of offspring distributions

within Kingman attraction we prove this asymptotics for sequences

sN obeying N−1 ≪ sN ≪ N−1/2
, which is a regime of “moderately

weak selection”. It turns out that for sN ≪ N−2/3
the Cannings

ancestral selection graph is so close to the ancestral selection graph

of a Moran model that a suitable coupling argument allows to play

the problem back asymptotically to the fixation probability in the

Moran model, which can be computed explicitly.

3.1 Introduction

In population genetics the standard model for the neutral reproduction of haploid

individuals in discrete time and with constant population size N is the classical

Wright-Fisher model: the offspring numbers from one generation to the next arise by

throwing N times a die with N faces and are thus Multinomial(N ; 1/N, . . . , 1/N)-
distributed. This is a special instance within the general class of Cannings models, see

[Can74] and [Ewe04, Chapter 3.3], where the offspring numbers are assumed to be

exchangeable and to sum to N .

In the Wright-Fisher model directional selection can be included by appropriately

biasing the weights of individuals that have a selectively beneficial type or a wildtype.

While for general Cannings models it is not completely clear how to incorporate

selection, a biasing of weights can be done in a natural way for the large class of

Cannings models that admit a paintbox representation (in the sense that the N -tuple

of offspring numbers is mixed multinomial, see Section 3.2.1).

For this class of models we introduce a graphical representation which extends

to the case with directional selection, and leads to a time discrete version of the

ancestral selection graph that was developed by Krone and Neuhauser in [KN97] for

the (continuous time) Moran model.
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Recently González Casanova and Spanò constructed in [GS18] an ancestral selec-

tion graph for a special class of Cannings models. While their construction relies on

analytic arguments, we provide here a probabilistic construction which works for a

wider class of models and also gives a clear interpretation of the role of the geometric

distribution of the number of potential parents in this context. This construction will

be explained in Section 3.5. We will prove a sampling duality between the Cannings

frequency process and the line counting process of the discrete ASG (alias Cannings
ancestral selection process or CASP), see Theorem 7. This also allows to obtain a hand-

some representation of the fixation probability of the beneficial type in terms of the

expected value of the CASP in equilibrium, see Corollary 3.3.2.

The calculation of fixation probabilities is a prominent task in mathematical

population genetics; for a review including a historical overview see [PW08]. A

classical idea going back to Haldane, Fisher and Wright (see [Hal27], [Fis23] and

[Wri31]) and known as Haldane’s formula, is to approximate the probability of fixation

of a beneficial allele with small selective advantage s by the survival probability π(s)
of a supercritical, near-critical Galton-Watson branching process,

π(s) ∼ s

ρ2/2
as s→ 0 (3.1)

where ρ2 is the offspring variance and 1 + s is the expected offspring size.

In Remark 3.3.4b) we will briefly discuss perspectives and frontiers of a derivation

of (3.1) in terms of a branching process approximation. Couplings with Galton-

Watson processes were used by González Casanova et al. in [GKWY17] to prove

that (3.1) indeed gives the asymptotics for the fixation probability for a class of

Cannings models (with mixed multi-hypergeometric offspring numbers) that arise

in the context of experimental evolution. This was achieved under the assumption

that sN ∼ N−b
with 0 < b < 1/2, i.e. for a moderately strong selection. There,

the question remained open if (3.1) also captures the asymptotics of the fixation

probability for sN ∼ N−b
with 1/2 ≤ b < 1.

For the case 1/2 < b < 1, our second body of main results gives an affirmative

answer for subclasses of Cannings models admitting a paintbox representation, and

in particular also for the Wright-Fisher model with selection. In Theorem 8a) we

prove Haldane’s formula under the condition

N−1+η ≤ sN ≤ N−2/3−η
(3.2)

(with η > 0) for a class of paintboxes that satisfy in particular Möhle’s condition

(which guarantees that the coalescents of the neutral Cannings model are in the do-

main of attraction of Kingman’s coalescent, see [Möh00]). Under these assumptions

we show in Section 3.6 that the CASP is close to the ASG line counting process of a

corresponding Moran model over a long period of time. Indeed, for a Moran model

with directional selection, a representation of the fixation probability in terms of the

ASG line counting process is valid, and the fixation probability can be calculated

explicitly; this we explain in Section 3.4.

Relaxing (3.2), in Theorem 8b) we prove for sequences (sN ) with

N−1+η ≤ sN ≤ N−1/2−η
(3.3)

under more restrictive moment conditions on the paintbox. Examples fulfilling these

moment conditions include the Wright-Fisher case as well as paintboxes that are of

Dirichlet-type, for more details see Section 3.3.2. The main tool of the proof under
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these conditions is a concentration result on the equilibrium distribution of the CASP,

see Section 7. This yields a sufficiently good estimate of the expected value of the

CASP in equilibrium to show Haldane’s formula by means of the above-mentioned

Corollary 3.3.2.

3.2 Cannings models with selection

3.2.1 A paintbox representation for the neutral reproduction

In a neutral Cannings model with population size N , the central concept is the

exchangeable N -tuple ν = (ν1, . . . , νN ) of offspring sizes, with non-negative integer-

valued components summing to N . A reasonably large class of such random vari-

ables ν admits a paintbox construction, i.e. has a mixed multinomial distribution with

parameters N and W , where W = (W1,W2, . . . ,WN ) is an exchangeable random

N -tuple of probability weights taking its values in

∆N =

{
(x1, x2, . . . xN ) : xi ≥ 0,

N∑
i=1

xi = 1

}
.

While this is clearly reminiscent of Kingman’s paintbox representation of exchange-

able partitions of N, here we are dealing with a finite N . As such, obviously, not

all exchangeable offspring sizes are mixed multinomial – consider e.g. a uniform

permutation of the vector (2, . . . , 2, 0, . . . , 0). On the other hand, the exchangeable

mixed multinomials cover a wide range of applications; e.g., they can be seen as

approximations of the offspring sizes in a model of experimental evolution, where

at the end of each reproduction cycle N individuals are sampled without replacement
from a union of N families with large i.i.d. sizes; see [GKWY17] and [BGPW19],

where the distribution of the family sizes was assumed to be geometric with expec-

tation γ = 100. This leads to a mixed multi-hypergeometric offspring distribution,

whose analogue for γ = ∞ would be a mixed multinomial offspring distribution

with L (W ) the Dirichlet(1, . . . , 1)-distribution on ∆N .

Let us now briefly review the graph of genealogical relationships in a Cannings

model. In each generation g, the individuals are numbered by i ∈ [N ] := {1, . . . , N}
and denoted by (i, g). A parental relation between individuals in generation g and g−1
is defined in the following way. LetW (g), g ∈ Z, be i.i.d. copies ofW . Every individual

(j, g) is assigned a parent (V(j,g), g− 1) in generation g− 1 by means of an [N ]-valued

random variable V(j,g) with conditional distribution P(V(j,g) = i|W (g−1)) = W
(g−1)
i ,

i ∈ [N ]. For each g ∈ Z, the random variables V(j,g), j = 1, . . . , N , are assumed

to be independent given W (g−1)
. Also, for each g ∈ Z, due to the exchangeability

of (W
(g−1)
1 , . . . ,W

(g−1)
N ), the random variables V(1,g), . . . , V(N,g) are uniformly dis-

tributed on [N ], and in general are correlated. With this construction within one gen-

eration step we produce an exchangeableN -tuple of offspring sizes, i.e. the number of

children for each individual (i, g − 1), i ∈ [N ]. Due to the assumed independence of

the random variables W (g), g ∈ Z, the offspring sizes as well as the “assignments to

parents” (V(1,g), . . . , V(N,g)) are independent along the generations g.

3.2.2 A paintbox representation incorporating selection

We now build directional selection with strength sN ∈ (0, 1) into the model. Assume

that each individual has one of two types, either the beneficial type or the wildtype.



36

Chapter 3. Haldane’s formula in Cannings models:
The case of moderately weak selection

Let the chances to be chosen as a parent be modified by decreasing the weight of

each wildtype individual by the factor 1− sN . In other words, if individual (i, g) has

the wildtype the weight reduces to W̃i := (1 − sN )Wi and if the individual has the

beneficial type the weight remains W̃i := Wi. Let W̃ (g) := (W̃
(g)
1 , . . . , W̃

(g)
N ). Given

the type configuration in generation g − 1, the parental relations are now generated

in a two-step manner: First, assign the random weights W̃ (g−1)
to the individuals in

generation g − 1, then follow the rule

P((i, g − 1) is parent of (j, g) | W̃ (g−1)) =
W̃

(g−1)
i∑N

ℓ=1 W̃
(g−1)
ℓ

. (3.4)

Individual (j, g) then inherits the type from its parent. Note that W̃ (g−1)
is mea-

surable with respect to W (g−1)
together with the type configuration in generation

g − 1. Because of the assumed exchangeability of the W
(g−1)
i , i = 1, . . . , N , the dis-

tribution of the type configuration in generation g only depends on the number of

individuals in generation g − 1 that carry the beneficial type. Thus, formula (3.4)

defines a Markovian dynamics for the type frequencies. We will denote the number

of wildtype individuals in generation g by Kg, and will call (Kg)g=0,1,... a Cannings
frequency process with parameters N , L (W ) and sN . In particular, (3.4) implies that

given {Kg−1 = k}, Kg is mixed Binomial with parameters N and P (k,W ), where

P (k,W ) =
(1− sN )

∑k
i=1Wi

(1− sN )
∑k

ℓ=1Wℓ +
∑N

ℓ=k+1Wℓ

. (3.5)

3.2.3 The Cannings ancestral selection process

Again let N ∈ N, W as in Section 3.2.1, and sN ∈ (0, 1). The Cannings ancestral
selection process (CASP) (Am)m=0,1,... with parameters N , L (W ) and sN counts the

number of potential ancestors in generation g−m of a sample taken in generation g.

We will give a graphical representation in Section 3.5; in the present section we define
the CASP as an [N ]-valued Markov chain whose one-step transition is composed of

a branching and a coalescence step as follows:

Given Am = a, the branching step takes a into a sum H =
∑a

ℓ=1G
(ℓ)

of inde-

pendent Geom(1 − sN )-random variables; in other words, the random variable H
has a negative binomial distribution with parameters a and 1 − sN , and thus takes

its values in {a, a + 1, . . .}. (Here and below, we understand a Geom(p)-distributed

random variable as describing the number of trials (and not only failures) up to and

including the first success in a coin tossing with success probability p.)
The coalescence step arises (in distribution) through a two-stage experiment: first

choose a random W according to the prescribed distribution L (W ), then, given W
and the number H from the branching step, place H balls independently into N
boxes, where Wi is the probability that the first (second,. . . , H-th) ball is placed into

the i-th box, i = 1, . . . , N . The random variable Am+1 is distributed as the number

of non-empty boxes.
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3.3 Main results

3.3.1 Duality of Cannings frequency and ancestral selection process

For N ∈ N, W as in Section 3.2.1, and sN ∈ (0, 1), let (Kg)g≥0 be the Cannings

frequency process with parametersN , L (W ) and sN as defined in Section 3.2.2, and

let (Am)m≥0 be the Cannings ancestral selection process with parameters N , L (W )
and sN as defined in Section 3.2.3.

Theorem 7 (Sampling duality). Let g ≥ 0, and k, n ∈ [N ]. Let Jn be uniformly chosen
from all subsets of [N ] of size n, and givenAg = a, a ∈ [N ], let Ag be uniformly chosen from
all subsets of [N ] of size a. Then we have the following duality relation

P(Jn ⊂ [Kg] | K0 = k) = P(Ag ⊂ [k] | A0 = n). (3.6)

Remark 3.3.1. A strong (pathwise) version of the duality relation (3.6) will be provided by
formula (3.23) in Section 3.5, which roughly spoken says that “A sample from generation g is
entirely of wildtype if and only if all of its potential ancestors in generation 0 are of wildtype”.

Expressed in terms of Kg and Ag, the sampling duality relation (3.6) becomes

E
[
Kg(Kg − 1) · · · (Kg − n+ 1)

N(N − 1) · · · (N − n+ 1)

∣∣K0 = k

]
= E

[
k(k − 1) · · · (k −Ag + 1)

N(N − 1) · · · (N −Ag + 1)

∣∣A0 = n

]
. (3.7)

Specializing (3.7) to k = N − 1 and n = N gives

P(Kg = N |K0 = N − 1) = 1− E
[
Ag
N

∣∣∣A0 = N

]
(3.8)

Taking the limit g → ∞ in (3.8) leads to

Corollary 3.3.2. LetAeq have the stationary distribution of the Cannings ancestral selection
process (Am)m≥0. The fixation probability of a single beneficial mutant is

πN := lim
g→∞

P[Kg = 0|K0 = N − 1] = E
[
Aeq

N

]
. (3.9)

Remark 3.3.3. In the light of Remark 3.3.1, the representation (3.9) can be interpreted as
follows: With a single beneficial mutant in generation 0, the beneficial type goes to fixation
if and only if the beneficial mutant is among the potential ancestors in generation 0 of the
population at a late generation g. In the limit g → ∞ the number of these potential ancestors
is distributed asAeq, and givenAeq, the probability that the beneficial mutant is among them
is Aeq

N .

3.3.2 Haldane’s formula for Cannings models with selection

Let (sN ) be a sequence in (0, 1) that satisfies (3.2). For each N let

W (N) = (W
(N)
1 , . . . ,W

(N)
N ) be as in Section 3.2.1, and assume that for some ρ2 ≥ 1

E
[(
W

(N)
1

)2]
=

ρ2

N2
+O(N−3), (3.10)
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with theO(·)-terms referring toN → ∞. (The requirement ρ2 ≥ 1 is natural because

E
[
W

(N)
1

]
= 1

N .) We consider the following condition:

E
[(
W

(N)
1

)3]
= O(N−3) (3.11)

Note that (3.10) and (3.11) imply

NE
[(
W

(N)
1

)2]
→ 0 and E

[(
W

(N)
1

)3]
= o

(
E
[(
W

(N)
1

)2])
. (3.12)

For Cannings processes admitting a paintbox representation, (3.12) is equivalent to

Möhle’s condition, see [Möh00], which, in turn, is equivalent to the neutral Cannings

coalescent being in the domain of attraction of a Kingman coalescent as N → ∞.

We also consider the following condition which is stronger than (3.11):

There exists a sequence (hN ) of natural number with the properties

hN → ∞ and hN = o(lnN) as N → ∞ (3.13)

such that for all sufficiently large N and all n ≤ 2hN

N

hN
E
[(
W

(N)
1

)n+1
]
≤ E

[(
W

(N)
1

)n]
. (3.14)

As we will prove at the very end of Section 3.7, (3.14) is satified for all sequences

of symmetric Dirichlet distributions whose sequence of parameters αN converges as

N → ∞.

Theorem 8 (Haldane’s formula).
Consider a sequence of Cannings frequency processes with parametersN , L (W (N)) and sN .
Assume that the selection is moderately weak in the sense that (sN ) satisfies (3.3), and assume
that L (W (N)) satisfies (3.11) and (3.10) with ρ ≥ 1. Then the fixation probabilities πN of
single beneficial mutants follow the asymptotics

πN =
2sN
ρ2

+ o(sN ) as N → ∞ (3.15)

provided one of the following additional requirements a) or b) is satisfied:

a) (sN ) satisfies (3.2),

b) the moments of (W (N)
1 ) obey (3.14), with a sequence (hN ) that satisfies (3.13).

In particular, (3.10) and the requirement b) are satisfied in the Wright-Fisher caseW (N)
i ≡ 1

N

(with ρ2 = 1) as well as in the case where L (W (N)) is a Dirichlet(αN , . . . , αN )-distribution
with αN+1

αN
= ρ2 +O(1/N) as N → ∞.

The proof of part a) will be given in Section 3.6 and that of part b) in Section 3.7.

Here we give brief sketches of the proofs.

Part a): We know that the asymptotics (3.15) holds for the fixation probabilities

πMN (starting from a single beneficial mutant) in a sequence of Moran(N)-models with

neutral reproduction rate ρ2/2 (or equivalently with pair coalescence probability ρ2)
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and selection strength sN . Indeed, in Section 3.4 we will argue that

πMN =
E
[
B

(N)
eq

]
N

, (3.16)

where B
(N)
eq has the stationary distribution of the line counting process (B

(N)
r )r≥0

in the ancestral selection graph belonging to the Moran model. As observed in

[Cor17], B
(N)
eq is a binomially distributed random variable with parameters N and

pN := 2sN
2sN+ρ2

that is conditioned not to vanish. In particular,

E
[
B

(N)
eq

]
N

= pN
1

1− (1− pN )N
, (3.17)

which because of sN → 0 and sNN → ∞ equals
2sN
ρ2

+ o(sN ).
We show in Section 3.6 that thanks to conditions (3.10) and (3.11) and Assumption

(3.2), we can couple (A
(N)
m )m≥0 and (B

(N)
r )r≥0 long enough to ensure E

[
A

(N)
eq

]
=

E
[
B

(N)
eq

]
(1 + o(1)), which proves Theorem 8a).

Part b): In Section 3.7 we show that the CASP needs a polynomially long time

to enter a region of size N−εsNN around the “center”
2
ρ2
sNN , for ε small enough,

but does not leave this region up to any polynomially long time with sufficiently

high probability. This yields that the expectation of the CASP in equilibrium is

2
ρ2
sNN(1 + o(1)) and gives with Corollary 3.3.2 Haldane’s formula.

Remark 3.3.4. a) (Moderately strong seletion and the equilibrium of the CASP) Our
method of proof of Theorem 8 employs Corollary 3.3.2, for part a) by the just indicated
coupling of (Am) and (Br) and for part b) via a concentration analysis of the equilibrium
distribution of (Am). In both cases it is essential that sN is not too large, which is
responsible for the upward jumps by branching of (Am) and hence the number of lines
of a CASP in equilibrium is not too large; this is guarenteed by the conditions (3.2)

and (3.3), respectively. In particular, the backwards approach relies on the assumption
sN ≪ N−1/2. To apply Corollary 3.3.2 we need to show that the expectation of the
CASP in equilibrium is 2

ρ2
NsN (1 + o(1)). We show that the CASP needs an at most

polynomially long time to enter a central region of the CASP from outside, but does
not leave this central region up to any polynomially long time with sufficiently high
probability. For this purpose we couple A with a random walk that makes jumps only
of limited size. To show that large jumps (upwards or downwards) are negligible, we
make use of the assumption sN ≪ N−1/2. The probability that the CASP (in a state
close to the “center”, that is of the order ofNsN ) makes a jump at least of size hN (with
1 ≪ hN ≪ NsN ) upwards can essentially be estimated by the probability that for at
least hN individuals at the branching step at least 2 lines are generated. The probability
that at the branching step for a given individual 2 lines are generated is ≈ sN . There are
(NsN )!/(NsN − hN )! = Θ((NsN )

hN ) possibilities to choose hN individuals out of
sNN many individuals. The probability that for individuals 1, . . . hN at the branching
step 2 lines are generated is shNN . Consequently, the probability for a jump of at least of
size hN upwards can be estimated from above by O(shNN (NsN )

hN ) = O((Ns2N )
hN ),

which is of negligible size, if sN ≪ N−1/2.

b) (Moderately weak selection and Galton-Watson approximations) A regime for which
it is possible to derive (3.15) by means of a Galton-Watson approximation is that of
moderately strong selection 1 ≫ sN ≫ N−1/2. A proof of this assertion (under
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somewhat more restrictive moment conditions on the paintbox W than those in Theorem
8 is the subject of a paper in preparation; see also the discussion in the paragraph
following (3.1) in the Introduction. Together with the approach of the present paper
this does not yet cover the case sN ∼ N−1/2; we conjecture that Haldane’s formula
is valid also for this particular exponent. Here is a quick argument which explains
the relevance of the exponent 1/2 as a border for the applicability of a Galton-Watson
approximation. The beneficial type is with high probability saved from extinction if
the number of individulas of the benenficial type exceeds (of the order of) s−1

N . Hence,
for a proof via approximations with Galton-Watson processes one wants couplings
of the CASP with GW-processes to hold until this number of beneficial individuals
is reached. However, a Galton-Watson approximation works only until there is an
appreciable amount of “collisions” between the offspring of the beneficial individuals
in a branching step, since collisions destroy independence. By well-known “birthday
problem” considerations, such an amount of collisions happens as soon as there are
(of the order of) N1/2 beneficial individuals in the population. Consequently, for the
GW-approach we require s−1

N ≪ N1/2.

c) (Coupling with a Moran model) The relevance of Condition (3.2) for our proof of part
a) of Theorem 8 (whose details are worked out in Section 3.6) can heuristically be seen
as follows. An inspection of the jump probabilities described in Section 3.2.3 shows
that in a regime of negligible multiple collisions the quantity a(N)

eq := N sN
ρ2/2

is an
asymptotic center of attraction for the dynamics of A(N). Since B(N) is close to its
equilibrium after a time interval of length s−(1+δ)

N we require the coupling of A(N) and
B(N) to hold for s−(1+δ)

N many generations. This works if within this time interval the
number of potential ancestors A(N)

m makes at most jumps of size 1 in each generation.
The number of potential parents decreases by 1 if a single pair coalesces. Near a(N)

eq the
number of pairs within A(N)

eq is of the order (a(N)
eq )2. Hence, the probability of a pair

coalescence per generation is of the order (a(N)
eq )2/N , and the probability of more than

a single pair coalescence per generation is of the order (a
(N)
eq )4/N2, or equivalently,

of the order N2s4N , since this probability can be estimated by the probability for two
pair coalescences, see Lemma 3.6.1. Analogously, the probability that the number of
potential parents increases by more than 1 is also of orderN2s4N . Hence, the probability
that jumps at most of size 1 occur for s−(1+δ)

N generations, that have to be considered,
is of the order (1 − N2s4N )

s
−(1+δ)
N . This probability is high, if N2s3−δN ≪ 1, which

corresponds to the upper bound in (3.2).

d) (Possible generalisations) The introduced duality method for Cannings models with
selection may well prove beneficial also in more general settings. The construction of
the Cannings ancestral selection graph given in Section 3.5 can for example also be
carried out in a many-island situation, with migration between islands in discrete or
continous time. This should then lead to generalizations of Theorems 7 and 8. Under
assumption (3.2), and with an appropriate scaling of the migration probabilities, one
might expect that the Cannings ancestral selection graph is again close to the (now
structured) Moran ancestral selection graph.

3.4 Haldane’s formula in the Moran model

In a two-type Moran model with constant population sizeN and directional selection

(see e.g. [Dur08, Chapter 6]), each individual reproduces at a constant rate γ/2, γ > 0,
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and individuals of the beneficial type reproduce with an additional rate sN > 0. Let

Y N
t be the number of wildtype individuals at time t, and let (BN

r )r≥0 be the counting

process of potential ancestors traced back from some fixed time. The process (Br)r≥0,

which we call the Moran ancestral selection process (or MASP for short), is a Markov

jump process with jumps from k to k+1 at rate ksN
N−k
N for 1 ≤ k ≤ N − 1 and from

k to k − 1 at rate
γ
N

(
k
2

)
, see [KN97]. The well-known graphical representation of the

Moran model yields a strong duality between (Y N
t )t≥0 and (BN

r )r≥0. Stated in words

this says that a sample J ⊂ [N ] at time t consists solely of wildtype individuals if

and only if all the potential ancestors of J are wildtype. This immediately leads to

the following (hypergeometric) sampling duality

E
[
Y N
t (Y N

t − 1) · · · (Y N
t − (n− 1))

N(N − 1) · · · (N − (n− 1))

∣∣∣Y N
0 = k

]
= E

[
k(k − 1) · · · (k − (BN

t − 1))

N(N − 1) · · · (N − (BN
t − 1))

∣∣∣BN
0 = n

]
where t ≥ 0 and k, n ∈ [N ]. Specializing the latter to n = N and k = N −1 we obtain

as in Corollary 3.3.2 that the probability πMN of fixation of a single beneficial mutant

is given by (3.16). Thus πMN is given by the r.h.s. of (3.17) with ρ2 replaced by γ.

In particular, for sN = α
N , α > 0 (the case of weak selection) this specializes to

Kimura’s formula [Kim57]

πMN =
2sN
γ

1

1− e
− 2α

γ

(1 + o(N−1)).

ForN−η ≥ sN ≥ N−1+η
(the case of moderate selection) we obtain Haldane’s formula

πMN =
2sN
γ

(1 + o(sN ))

and for s > 0 (the case of strong selection) this results in

πMN =
2s

2s+ γ
(1 +O(N−1)).

3.5 The Cannings ancestral selection graph. Proof of Theo-
rem 7

We now define the Cannings ancestral selection graph, i.e. the graph of potential

ancestors in a Cannings model with directional selection as announced in Section

3.2.3. The final harvest of this section will be the proof of Theorem 7.

While the branching-coalescing structure of the Moran ancestral selection graph

and the sampling duality stated in Section 3.4 serve as a conceptual guideline, the

ingredients of the graphical construction turn out to be quite different from the

Moran case, not least because of the discrete generation scheme.

We first describe how, given W (g−1) and the configuration of types of the indi-

viduals (i, g − 1) in generation g − 1, the parent (as well as the type) of an individual

(j, g) is constructed from a sequence of i.i.d. uniform picks from the unit square.

After this we describe how, given W (g−1)
(and without prior knowledge of the

type configuration in generation g − 1), the just mentioned i.i.d. uniform picks from

the unit square lead to the potential parents of an individual (j, g). The latter form a

random subset of [N ]× {g − 1}.
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To this purpose, as illustrated in Figure 3.1, think of the two axes of the unit

square as being partitioned in two respectivelyN subintervals. The two subintervals

that partition the horizontal unit interval are [0, 1 − sN ] and (1 − sN , 1]. The N

subintervals of the vertical unit interval have lengths W
(g−1)
1 , . . . ,W

(g−1)
N ; we call

these subintervals I
(g−1)
1 , . . . ,I

(g−1)
N . Let

B(g−1) := {i ∈ [N ] : (i, g − 1) is of beneficial type},
C (g−1) := {i ∈ [N ] : (i, g − 1) is of wildtype},

and define

Γ(g−1) :=
⋃

i∈B(g−1)

[0, 1]× I
(g−1)
i ∪

⋃
i∈C (g−1)

[0, 1− sN ]× I
(g−1)
i . (3.18)

Definition 3.5.1. For fixed j ∈ [N ] and g ∈ Z, let U (j,g,1), U (j,g,2), . . . be a sequence of
independent uniform picks from [0, 1]× [0, 1] and put

γ(j, g) := min{ℓ : U (j,g,ℓ) ∈ Γ(g−1)}.

Given B(g−1), C (g−1),W (g−1) and U (j,g,1), U (j,g,2), . . ., there is a.s. a unique p(j, g) ∈ [N ]

for which U (j,g,γ(j,g)) ∈ [0, 1] × I
(g−1)
p(j,g) . The individual (p(j, g), g − 1) is defined to be the

parent of (j, g).

Decreeing that individual (j, g) inherits the type of its parent, we obtain that a.s.

{(j, g) is of wildtype} := {(p(j, g), g − 1) is of wildtype}
= {U (j,g,γ(j,g)) ∈ [0, 1− sN ]×

⋃
i∈C (g−1)

I
(g−1)
i }

We thus get the transport of C (g−1)
to the next generation g by putting

C (g) := {j ∈ [N ] : (j, g) is of wildtype}.

Remark 3.5.2. The [N ]-valued process |C (g)|, g = 0, 1, . . . is a Cannings frequency process
with parameters N , L (W ) and sN , as defined in Section 3.2.2. Indeed, given C (g−1) and
W (g−1), the random variables U (j,g,γ(j,g)), j = 1, . . . , N , are independent and uniformly
distributed on Γ(g−1), hence (3.19) and the exchangeability of the components of W (g−1)

implies that given {|C (g−1)| = k} (and with an arbitrary allocation of these k elements in the
set [N ]), the random variable |C (g)| has a mixed Binomial distribution with parameters N
and P (k,W ) specified by (3.5).

Let us now turn to a situation in which the type configuration of the previous

generation is not given, i.e. in which the sets B(g−1)
and C (g−1)

and hence also the

set Γ(g−1)
is not know a priori.

Definition 3.5.3. i) For fixed j ∈ [N ] and g ∈ Z, let U (j,g,1), U (j,g,2), . . . be as in
Definition 3.5.1 and define

G(j, g) := min{ℓ : U (j,g,ℓ) ∈ [0, 1− sN ]× [0, 1]}. (3.20)

We call (i, g − 1) a potential parent of (j, g) if U (j,g,ℓ) ∈ [0, 1] × I
(g−1)
i for some

ℓ ≤ G(j, g). Similarly, we call (i, g−2) a potential grandparent of (j, g) if (i, g−2)



3.5. The Cannings ancestral selection graph. Proof of Theorem 7 43

I
(g−1)
1

I
(g−1)
2

I
(g−1)
k+1

I
(g−1)
k

I
(g−1)
N

1− sN 1

b

b

b

b

U (j,g,1)

U (j,g,2)

U (j,g,3)

U (j,g,G(j,g)) = U (j,g,4)

0
0

1

Figure 3.1: This figure illustrates a case in which C (g−1) = {1, . . . , k},

B(g−1) = {k+1, . . . , N}, γ(j, g) = 2,G(j, g) = 4. The individual (j, g)
is of beneficial type. Since in this example γ(j, g) is strictly smaller

than G(j, g), the individual (j, g) must be of beneficial type.

is a potential parent of a potential parent of (j, g). By iteration this extends to the
definition of the set A

(j,g)
m of potential ancestors of (j, g) in generation g − m,

m ≥ 1, with A
(j,g)
0 := {(j, g)}.

ii) For a set J ⊂ [N ] and for m ≥ 0 let A
(J ,g)
m :=

⋃
j∈J A

(j,g)
m be the set of potential

ancestors of J × {g} in generation g −m. Moreover, let A(J ,g)
m := |A (J ,g)

m | be the
number of potential ancestors of J × {g} in generation g −m.

The a.s. equality of events asserted in the following lemma is both crucial and

elementary.

Lemma 3.5.4. For j, g, U (j,g,1), U (j,g,2) . . . , γ(j, g) as in Definition 3.5.1 and G(j, g) as in
(3.20),

{U (j,g,γ(j,g)) ∈ [0, 1− sN ]×
⋃

i∈C (g−1)

I
(g−1)
i } (3.21)

a.s.
= {U (j,g,1), . . . , U (j,g,G(j,g)) ∈ [0, 1]×

⋃
i∈C (g−1)

I
(g−1)
i }.

Proof. To see that the l.h.s. almost surely implies the r.h.s., consider the first pick that

falls into the area Γ(g−1)
and assume that it lands in a horizontal stripe belonging to

a wildtype individual in generation g − 1. Then this must be also the first one of the

picks that lands in [0, 1 − sN ] × [0, 1], and no one of the preceding picks could have

landed in a horizontal stripe belonging to a beneficial individual in generation g− 1.

Conversely, to see that the r.h.s. (3.21) a.s. implies the l.h.s., consider the first pick

that lands in [0, 1 − sN ] × [0, 1]. If all the picks up to and including this pick have
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landed in a horizontal stripe belonging to a wildtype individual in generation g − 1,

then also the first pick that falls into the area Γ(g−1)
must land in a horizontal stripe

belonging to a wildtype individual in generation g − 1.

Combining (3.19) and (3.21) with Definition 3.5.3 we see that for all g ∈ N and all

J ⊂ [N ]

{J ⊂ C (g)} a.s.
= {A (J ,g)

1 ⊂ C (g−1)} (3.22)

Iterating (3.22) we arrive at

{J ⊂ C (g)} a.s.
= {A (J ,g)

g ⊂ C (0)}. (3.23)

It is obvious that the random variables G(j, g) defined in (3.20) are independent of

the W (g′)
, g′ ∈ Z, and have the property

G(j, g), g ∈ Z, j ∈ [N ], are independent and Geom(1− sN ) distributed. (3.24)

This leads directly to the following observation on the number of potential ancestors.

Remark 3.5.5. Let g ∈ Z and J ⊂ [N ] be fixed.

i) The process |A (J ,g)
m |,m = 0, 1, . . ., is a Cannings ancestral selection processs (CASP)

with parametersN , L (W ) and sN , as defined in Section 3.2.3. Indeed, each transition
consists of a branching and a coalescence step, where only the latter depends on the
W (g′), g′ ∈ Z. Specifically, given |A (J ,g)

m | = a, let H have a negative binomial
distribution with parameters a and 1 − sN . Given H = h, |A (J ,g)

m+1 | is distributed as
the number of distinct outcomes in h trials, which given W (g−m−1) are independent
and follow the probability weights W (g−m−1).

ii) Form ≥ 1 the exchangeability of the components of W implies that, given |A (J ,g)
m | = a,

the set A
(J ,g)
m is a uniform pick of all subsets of [N ] of cardinality a.

Proof of Theorem 7. Let k, n and Jn be as in Theorem 7. In (3.23) we choose J := Jn
and C0 := [k]. Then

P(Jn ⊂ [Kg] | K0 = k) = P(Jn ⊂ C (g)) = P(A (Jn,g)
g ⊂ C (0)) = P(Ag ⊂ [k] | A0 = n),

where the first equality follows from Remark 3.5.2, the second one from (3.23) and

the third one from Remark 3.5.5. □
Another consequence of (3.23) together with Remark 3.5.5 is the following mo-

ment duality, which is interesting in its own right, not least because this was the

route through which [GS18] discovered the “discrete ancestral selection graph” in

the “quasi Wright-Fisher case”, i.e. for P(W1 = · · · =WN ) → 1.

Corollary 3.5.6. Let (Kg) and (Am) be as in Section 3.3.1, let k, n ∈ [N ] and assume that
the number of wildtype individuals in generation 0 is k. Then the probability that a sample
of n individuals taken in generation g ≥ 1 consists of wildtype individuals only is

E


Kg−1∑

i=1

Wi


n∑

j=1
G(j)

| K0 = k

 = E


(

k∑
i=1

Wi

)Ag−1∑
j=1

G(j)

| A0 = n

 ,
where G(1), G(2), . . . are independent and Geom(1− sN )-distributed.
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3.6 Coupling of the Cannings and Moran ancestral selection
processes. Proof of Theorem 8a

In this section we provide a few lemmata preparing the proof of part a) of Theorem

8, and conclude with the proof of that part. In particular, in Lemma 3.6.9 we give

a coupling of the Cannings ancestral selection process, for short CASP, (Am)m≥0

defined in Section 3.2.3 and the Moran ancestral selection process, for short MASP,

(Br)r≥0 whose jump rates we recalled in Section 3.4.

Assume throughout that the ∆N -valued random weights W (N) = (W
(N)
1 , . . . ,W

(N)
N )

fulfill the assumptions (3.10) and (3.11) required in the first part of Theorem 8. Let

(sN )N≥0 be a sequence in (0, 1) obeying (3.2). Frequently, we will switch to the

notation

bN := − ln sN
lnN

or equivalently to sN = N−bN
(3.25)

with (3.2) translating into

2

3
+ η ≤ bN ≤ 1− η.

For fixed N , and j ∈ [N ] let

G(j)
be independent and Geom(1− sN )-distributed;

these will play the role of the random variables G(j, g) defined in (3.18), see also

(3.24). (Here and whenever there is no danger of confusion, we will suppress the

superscripts N and g.)

Lemma 3.6.1 (Moran-like transition probabilities of the CASP).
Let ε ∈ (0, 16). The transition probabilities of the CASP (Am)m≥0 = (A

(N)
m )m≥0 obey,

uniformly in k ≤ N1−bN+ε,

P(Am+1 = k
∣∣Am = k) = 1− ksN −

(
k

2

)
ρ2

N
+O

(
k4N−2 + k2s2N

)
(3.26)

P(Am+1 = k + 1
∣∣Am = k) = ksN +O

(
k2s2N + k4N−2

)
(3.27)

P(Am+1 = k − 1
∣∣Am = k) =

(
k

2

)
ρ2

N
+O

(
k4N−2 + k2s2N

)
(3.28)

P(|Am+1 − k| ≥ 2
∣∣Am = k) = O(k4N−2 + k2s2N ). (3.29)

Remark 3.6.2. For k = 2 we have by (3.28) and (3.10)

P(Am+1 = k − 1|Am = k) = E

[
N∑
i=1

W 2
i

N

]
=
ρ2

N
+O(N−2),

where the first term on the r.h.s. is the pair coalescence property of the neutral Cannings
coalescent with the paintbox W .

Proof of Lemma 3.6.1. Recall that each transition of the CASP consists of a branching

and a coalescence step. To arrive at the transition probabilities (3.26) - (3.29) we first

estimate the probabilities that k individuals give rise to a total of k, k+1 or more than

k + 1 branches and then analyse the probabilities that a single individual is chosen

multiple times as a parent.

Since each individual has a Geom(1−sN )-distributed number of branches, the prob-

ability that k individuals give rise to a total of k branches in the branching step
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is

P

 k∑
j=1

G(j) = k

 = (1− sN )
k = 1− ksN +O

(
k2s2N

)
(3.30)

and the probability that the individuals give rise to k + 1 branches is

P

 k∑
j=1

G(j) = k + 1

 = k(1− sN )
ksN = ksN +O

(
k2s2N

)
. (3.31)

Adding the probabilities in (3.30) and (3.31) yields

P

 k∑
j=1

G(j) ≥ k + 2

 = O
(
k2s2N

)
.

Let us now calculate the probabilities of collisions in a coalescence step, that is

the probability that an individual is chosen as a potential parent more than once. For

two branches the pair coalescence probability cN is given by

cN = E

[
N∑
i=1

W 2
i

]
=
ρ2

N
+O(N−2). (3.32)

In the same manner we obtain the probability for a triple collision as

dN = E

[
N∑
i=1

W 3
i

]
= O(N−2). (3.33)

Using (3.32) and (3.33) we control the probability of the event E that there are two

or more collisions, with k individuals before the coalescence step. There are two

possibilities for this event to occur, either there is at least a triple collision or there

are at least two pair collisions. This yields

P (E) ≤
(
k

4

)
ρ4

N2
+O

((
k

3

)
N−2

)
+O

(
k4N−3

)
= O

(
k4N−2

)
. (3.34)

In order to estimate the probability of having exactly one collision we use the sec-

ond moment method for the random variable X =
∑k

i=1

∑k
j>iXi,j , where Xi,j =

1{i and j collide}. With (3.32) we get

E [X] = E

 k∑
i=1

k∑
j>i

Xi,j

 =

(
k

2

)
ρ2

N
+O(k2N−2). (3.35)
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Furthermore, the second moment of X can be written again due to (3.32) and (3.33)

as

E
[
X2
]
= E

 k∑
i=1

k∑
j>i

Xi,j

2
=

(
k

2

)(
ρ2

N
+O(N−2)

)
+O

(
k3E [X1,2X2,3]

)
+O

(
k4E [X1,2X3,4]

)
=

(
k

2

)
ρ2

N
+O(k3N−2) +O(k4N−2) =

(
k

2

)
ρ2

N
+O(k4N−2)

This together with (3.35) yields

P (X > 0) ≥ E [X]2

E [X2]
=

((
k
2

)ρ2
N

)2
+O

(
k4N−3

)
(
k
2

)ρ2
N +O(k4N−2)

=

(
k

2

)
ρ2

N
(1−O(k2N−1)),

where the first inequality follows by applying the Cauchy-Schwarz to X and I{X>0}.
Together with (3.34) we obtain for the random variable X which counts the number

of collisions (for k individuals before the coalescence step)

P (X = 0) = 1−
(
k

2

)
ρ2

N
+O(k4N−2)

P (X = 1) =

(
k

2

)
ρ2

N
+O(k4N−2)

P (X ≥ 2) = P (E) = O(k4N−2)

Let H :=
∑Ag

j=1G
(j)

. Then the above calculations allow us to obtain (3.26):

P(Am+1 = k + 1|Am = k)

= P(Am+1 = k + 1|Am = k,H = k)P(H = k|Am = k)

+ P(Am+1 = k + 1|Am = k,H = k + 1)P(H = k + 1|Am = k)

+ P(Am+1 = k + 1|Am = k,H ≥ k + 2)P(H ≥ k + 2|Am = k)

=

(
1−

(
k + 1

2

)
ρ2

N
+O(k4N−2)

)
(ksN +O(k2s2N )) +O(k2s2N )

= ksN +O
(
k2s2N + sNk

5N−2
)

The remaining transition probabilities (3.27) - (3.29) are derived analogously.

The next lemma controls the speed of convergence to 1 of the probability of the

event that the CASP comes down from N to (the still large state) N1−b+ε
within a

time interval of length o(N b). The quantities b, Am, τ appearing in this lemma all

depend on N ; we will suppress this dependence in the notation.

Lemma 3.6.3 (CASP coming down from huge to large). Let (Am)m∈N0 be a CASP,
0 < ε < 2

3 , A0 = N and denote by τ = inf
{
m ≥ 0 : Am ≤ N1−b+ε} the first time the

CASP crosses the level N1−b+ε. Then there exists a δ > 0, such that for any constant c > 0

P
( τ

N b
> c
)
= O(exp(−N δ)). (3.36)
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Proof. The branching step of the CASP dynamics only depends on sN and neither on

the distribution nor the realization of W , see Remark 3.5.5 i). On the other hand, the

coalescence step only depends on W . In Lemma 3.6.4 below we will show that the size

of this coalescence step is stochastically dominated from below by the corresponding

step in a Wright-Fisher coalescent. Thus, among all the CASP’s with selective strength

sN , the CASP of the Wright-Fisher model with selection is the slowest to come down

from N to N1−b+ε
; therefore we use the stopping time corresponding to the Wright-

Fisher model as a stochastic upper bound for τ . Consequently, we assume for the

rest of the proof that W = ( 1
N , . . . ,

1
N ).

To show (3.36) we estimate E [Am+1|Am = k] for 1 ≤ k ≤ N .

Am+1 denotes the number of potential parents of Am individuals, that is

Am+1 =
N∑
i=1

1{ Individual i is a potential parent of some of the Am individuals}.

Let H =
∑Am

j=1G
(j)

, with G(j) ∼ Geom(1− sN ) and independent for j ∈ [N ]. Then

P(Individual i is chosen as a potential parent|Am) = 1− E

[(
1− 1

N

)H ∣∣∣Am]

for i ∈ [N ]. Hence, for k ≥ 1 and x = 1
N(1−sN )

E [Am+1|Am = k] = NE

[(
1−

(
1− 1

N

)H)∣∣∣Am = k

]

= N

(
1−

(
1− 1

N(1− sN + sN
N )

)k)
(3.37)

≤ −N
(
k ln(1− x) +

(k ln(1− x))2

2
+

(k ln(1− x))2k ln(1− x)

6

)

≤ N

(
kx− (kx)2(1− 2sN )

3

)
=

k

1− sN
− k2(1− 2sN )

3N
, (3.38)

where for (3.37) we use the probability generating function of the negative bino-

mial distribution and for the next line we use an estimate for the remainder of the

corresponding Taylor expansion. Let 0 < ε′ < ε. From (3.38) follows

E [Am+1|Am] ≤ max

{
Am

1− sN
− AmN

1−b+ε′(1− 2sN )

3N
,N1−b+ε′

}
= max{qNAm, N1−b+ε′},

with qN = 1
1−sN − N1−b+ε′ (1−2sN )

3N . This yields

E [Am|A0 = N ] ≤ max{qmNN,N1−b+ε′}.
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For any m ≥ c1N
b−ε′ lnN , for some appropriate constant c1 > 0 we have thus the

estimate E [Am|A0 = N ] ≤ N1−b+ε′
. By Markov’s inequality we obtain

P(Ac1Nb−ε′ lnN > N1−b+ε) ≤ N ε′−ε → 0

as N → ∞. If (Am)m≥0 did not reach N1−b+ε
after c1N

b−ε′ lnN steps we can start

the process in N again and wait another c1N
b−ε′ lnN steps and check whether the

process did reach the levelN1−b+ε
. By using this argumentN δ1

times this yields, for

any 0 < δ1 < ε′, the following upper bound for the probability to stay above N1−b+ε

for the generations m ≤ c1N
b−ε′+δ1

:

P(Am > N1−b+ε
for m ∈ {0, . . . , c1N b−ε′+δ1 lnN}) ≤ P(Ac1Nb−ε′ lnN > N1−b+ε)N

δ1

≤ (N ε′−ε)N
δ1
.

Since ε > ε′ and N b−ε′+δ1 < N b
, we have (N ε′−ε)N

δ1 = O(exp(−N δ)) for some

appropriate δ > 0 from which the assertion follows.

We now append the lemma on the extremality of the Wright-Fisher coalesent which

we used in the previous proof, and put this lemma right away in the context of the

“coupon collector”.

Lemma 3.6.4. For natural numbers N and k let Z1, Z2 . . . , be i.i.d. [N ]-valued random
variables with wi := P(Z1 = i), i ∈ [N ]. Then for each k ∈ N the random variable
Ck := |{Z1, . . . , Zk}| is stochastically largest for w1 = · · · = wN = 1

N .

Proof. For ℓ ∈ [N ] we consider Tℓ := min{k : Ck ≥ ℓ}. Then we have the obvious

identity

{Ck ≥ ℓ} = {Tℓ ≤ k}.
[ABSS16, Theorem 2] states that P(Tℓ ≤ k) is largest for w1 = · · · = wN = 1

N .

From Lemma 3.6.3 we obtain the following corollary

Corollary 3.6.5. Let (Am)m≥0 be a CASP. Then for any m0 ≥ 0 there exists a C > 0 such
that for all N ≥ 1 and all j ≥ N1−b+ε

P
(
Am0+Nb > j|A0 = N

)
≤ CN1−b+ε/j,

E
[
Am0+Nb |A0 = N

]
= O(ln(N)N1−b+ε).

Proof. For simplicity assume that m0 = 0, but the same proof works for any m0 ∈ N
as P

(
Am0+Nb > j|A0 = N

)
≤ P

(
Am0+Nb > j|Am0 = N

)
. Due to Lemma 3.6.3 for the

stopping time τ = inf{m ≥ 0 : Am ≤ N1−b+ε} it holds P
(
τ > N b

)
= O(exp(−N−δ)),

with δ as in Lemma 3.6.3. By Lemma 3.6.1 we can compare the jump probabilities

and obtain that there exists some x0 ≤ N1−b+ε/2
such that above x0 the upward drift

is smaller than the downward drift. This yields that the process stopped in x0 is a

supermartingale. Consequently since x0 < N1−b+ε
, we have for any m′ ∈ N by the

strong Markov property

E [Aτ+m′ ] ≤ N1−b+ε.
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Hence by Markov’s inequality we obtain

P (ANb > j|A0 = N) ≤ P
(
ANb > j|A0 = N, τ ≤ N b

)
+ P

(
τ > N b

)
≤ E

[
ANb |A0 = N, τ ≤ N b

]
j

+O(exp(−N δ))

≤ E [Aτ ]

j
+O(exp(−N δ)),

which shows the first part. For the second part observe that

E [ANb |A0 = N ] =

N∑
j=1

P (ANb > j|A0 = N)

=

N1−b+ε∑
j=1

P (ANb > j|A0 = N) +

N∑
j=N1+b−ε

P (ANb > j|A0 = N)

≤ N1−b+ε +
N∑

j=N1+b−ε

N1−b+ε

j
= O(N1−b+ε lnN).

The following three lemmata provide some properties about the Moran process

and the coupling of a Moran process to a Moran process in stationarity. For the

remainder of this section we will fix three constants

δ1 ∈ (0, 1), 0 < δ3 < δ2/2. (3.39)

The role of δ1 will be to specify a region

[
2sN

2sN+ρ2
N(1− δ1),

2sN
2sN+ρ2

N(1 + δ1)
]

around

MASP’s center of attraction. The constant δ2 will appear in factors N δ2
that stretch

some time intervals, and the constant δ3 will be an exponent in small probabilities

O(exp(−N δ3)).

Lemma 3.6.6 (MASP’s hitting time of the central region). Let (Br)r≥0 be a MASP started
in some state n ∈ [N ] and let T = inf{r ≥ 0 : Br ∈ [ 2sN

2sN+ρ2
N(1−δ1), 2sN

2sN+ρ2
N(1+δ1)]}.

Then,

P
(
T ≤ N b+δ2 |B0 = n

)
= 1−O(exp(−N δ3)).

Proof. We proceed in a similar manner as [PP13] and separate the proof into two

cases

i) B0 >
2sN

2sN+ρ2
N(1 + δ1)

ii) B0 <
2sN

2sN+ρ2
N(1− δ1).

For case i) the proof relies on a stochastic domination of the MASP by a birth-death

process, while for case ii) we construct a pure birth process that is stochastically

dominated by the MASP. We start by proving case i).

Assume the most extremal starting point B0 = N . We couple the process (Br)r≥0

with a birth-death process (Br)r≥0 which stochastically dominates (Br)r≥0 until

(Br)r≥0 crosses the level
2sN

2sN+ρ2
N(1 + δ1). (Br)r≥0 is defined as the Markov process

with state space N0 and the following transition rates
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• k → k + 1 with rate ksN =: βk

• k → k − 1 with rate k sNρ
2

2sN+ρ2
(1 + δ1) =: αk.

Note that βk ≥ sNk(N − k)/N and αk ≤
(
k
2

)ρ2
N for any k ≥ 2sN

2sN+ρ2
N(1 + δ1).

Hence, we can couple (Br)r≥0 and (Br)r≥0 such that Br ≤ Br a.s. as long as

Br ≥ 2sN
2sN+ρ2

N(1 + δ1). In particular, we have

P(T ≥ r|B0 = k) ≤ P(τ0 ≥ r|B0 = k) (3.40)

when we set τ0 := inf
{
r ≥ 0 : Br = 0

}
and k ≥ 2sN

2sN+ρ2
N(1+δ1). For the birth-death

process Br we can estimate τ0, by a classical first step analysis

P(τ0 ≥ r|B0 = 1) =(1− (α+ β)dr)P(τ0 ≥ r − dr|B0 = 1)

+ βdr(1− (1− P(τ0 ≥ r − dr|B0 = 1))2)

Setting f(r) = P(τ0 ≥ r|B0 = 1) we obtain

f ′(r) = (β − α)f(r)− βf(r)2

with f(0) = 1 which is solved by

f(r) =
α− β

αer(α−β) − β
.

Observe that α− β = sNρ
2

ρ2+2sN
(1 + δ1)− sN = δ1sN (1 + o(1)), hence

f(N b+δ2) =
δ1sN (1 + o(1))

ρ2sN
2sN+ρ2

(1 + δ1) exp (N b+δ2δ1sN (1 + o(1)))− sN

=
δ1(1 + o(1))

ρ2

2sN+ρ2
(1 + δ1) exp (N δ2δ1(1 + o(1)))− 1

. (3.41)

From (3.40) and (3.41) we finally estimate

P(T < N b+δ2 |B0 = N) ≥ P(τ0 < N b+δ2 |B0 = N) ≥ 1−Nf(N b+δ2)

= 1−O(N exp(−N δ2) = 1−O(exp(−N δ3))

for any δ3 < δ2. This proves part i).

Now it remains to prove the case ii). Again assume the most extremal starting

point B0 = 1. Let (Br)r≥0 be a birth-death process which jumps

• from k to k + 1 at rate ksN (1− 2sN
2sN+ρ2

(1− δ1)) =: βk

• from k to k − 1 at rate k sNρ
2

2sN+ρ2
(1− δ1) =: αk.

Observe thatβk ≤ sNk(N − k)/N and αk ≥
(
k
2

)ρ2
N as long as k ≤ 2sN

ρ2+2sN
N(1 − δ1).

Hence, we can couple (Br)r≥0 and (Br)r≥0 such that Br ≥ Br as long as Br ≤
2sN

ρ2+2sN
N(1− δ1).
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The extinction probability ξ0 of (Br)r≥0 is the smallest solution of

ξ =
β

β + α
ξ2 +

α

β + α
,

that is ξ0 = α
β < 1. Let (BI

r)r≥0 be the pure birth process consisting of the immortal

lines of (Br)r≥0, i.e. each line branches at rate (1− ξ0)β.

Let τ = inf{r ≥ 0 : Br ≥ 2
ρ2
sNN(1− δ1)} be the time when (Br)r≥0 reaches the level

2
ρ2
sNN(1 − δ1) and define τ I and τ in the same way for the processes (BI

r)t≥0 and

(Br)r≥0 respectively in place of (Br)r≥0, then τ I ≥ τ ≥ τ a.s. In order to prove ii) it

remains to show P(τ I ≥ N b+δ2) = O(exp(−N δ3)) for δ3 > 0. We have

E
[
τ I
]
= E


⌊

2sN
2sN+ρ2

N(1−δ1)
⌋

∑
i=1

1

iβ(1− ξ0)

 =
1

β(1− ξ0)

(
ln

(
2sN (1− δ1)

2sN + ρ2
N

)
+O(1)

)

=
1

δ1sN

(
ln

(
2sN (1− δ1)

2sN + ρ2
N

)
+O(1)

)
=

1

δ1
N b ln

(
2(1− δ1)

ρ2
N1−b

)
(1 +O(sN ))

=
1− b

δ1
N b ln (N) (1 +O((lnN)−1)).

We can estimate P(τ I > N b+δ2 |BI
0 = 1) ≤ P1(τ

I > N b+δ2/2|BI
0 = 1)N

δ2/2
for

δ2 > 0 by separating the time interval of length N b+δ2
into N δ2/2

time intervals of

length N b+δ2/2
and realizing that if (BI

r)t≥0 did not reach the level
2
ρ2
sNN(1− δ1) in

a time interval of length N b+δ2/2
then in the worst case (BN

r )r≥0 is 1 at the start of

each time interval.

By Markov’s inequality we then arrive at

P(τ I ≥ N b+δ2) ≤ P(τ I > N b+
δ2
2 )N

δ2
2 ≤

(
1

δ1
N− δ2

2 lnN

)N δ2
2

= exp ln

( 1

δ1
N− δ2

2 lnN

)N δ2
2


≤ exp

(
−δ2

2
N

δ2
2

)
= O(exp(−N δ3)) (3.42)

for δ3 < δ2/2. From (3.42) we can directly conclude P(τ ≥ N b+δ2) = O(exp(−N δ3)),
which together with part i) finishes the proof.

Lemma 3.6.7 (MASP’s leaving time of the central region). Let (Br)r≥0 be a MASP
started in x ∈ [ 2sN

2sN+ρ2
N(1 − δ1),

2sN
2sN+ρ2

N(1 + δ1)] and assume in addition to (3.39) that
0 < δ1 <

1
2 and 0 < δ2 <

η
3 . Let S = inf{r ≥ 0 : Br /∈ [ 2sN

2sN+ρ2
N(1− 2δ1),

2sN
2sN+ρ2

N(1 +

2δ1)]}. Then

P
(
S > N b+δ2

)
≥ 1− o(exp(−N1−b−3δ2)). (3.43)
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Proof. Assume we have B0 ∈ [ 2sN
2sN+ρ2

N(1 − δ1),
2sN

2sN+ρ2
N(1 + δ1)]. To prove (3.43)

we couple (Br)r≥0 with a symmetric (discrete time) random walk (Sn)n≥0, and thus

ignore the drift to
2sN

2sN+ρ2
N . An application of Theorem 5.1 iii) of [Jan18] yields that

(Br)r≥0 makes at most N1−b+2δ2
many jumps in a time interval of length N b+δ2

with

probability 1−O(exp(−N1−b+2δ2), see also the estimate (3.47) in Lemma 3.6.9 below,

where we analyze the jumps and jump times of the MASP in more detail. Hence,

Px
(
Br /∈ [

2sN
2sN + ρ2

N(1− 2δ1),
2sN

2sN + ρ2
N(1 + 2δ1)] for some r ≤ N b+δ2

)
≤P0

(
Sn /∈ [−δ1

2sN
2sN + ρ2

N, δ1
2sN

2sN + ρ2
N ] for some n ≤ N1−b+2δ2

)
=2P0

(
max

1≤n≤N1−b+2δ2

Sn /∈ [0, δ1
2sN

2sN + ρ2
N ]

)
=4P0

(
SN1−b+2δ2 > δ1

2sN
2sN + ρ2

N

)
(3.44)

≤4 exp
(
−cN1−b−2δ2

)
= o(exp(−N1−b−3δ2)) (3.45)

for some appropriate c > 0 independent ofN . To obtain equation (3.44) and inequal-

ity (3.45) we used the reflection principle and Hoeffding’s inequality. This finishes

the proof.

Lemma 3.6.8 (MASP close to stationarity). Let (Br)r≥0 be a MASP started in k individ-
uals, with 1 ≤ k ≤ N , then

dTV(L (BNb+δ2 ),L (Beq)) = O(exp(−N δ3))

with Beq = B
(N)
eq as in (3.16), i.e. distributed as a Binomial(N, 2sN

2sN+ρ2
)-random variable

conditioned to be strictly positive, and the constant in the Landau O is uniform in k.

Proof. We follow a similar strategy as the one used in the proof of Lemma 2.10 in

[PP13]. Let (Beq
r )r≥0 be a MASP started in the stationary distribution. Assume

that in the graphical representation at time 0 either the lines of B0 are contained

in Beq
0 or vice versa. Then Br ≤ Beq

r , for all r ≥ 0, or vice versa Beq
r ≤ Br. Then

P(BNb+δ2 = k) = P(Beq = k)(1−O(e−N
δ3 )) follows, once we show that at timeN b+δ2

both processes are equal with probability (1−O(e−N
δ3 )).

The tuple (Beq
r , Br)r≥0, and the tuple (Br, B

eq
r )r≥0 resp., have the following tran-

sition rates: jumps from (k, ℓ) for 1 ≤ k ≤ ℓ ≤ N to

• (k + 1, ℓ+ 1) occur at rate sNk(1− ℓ
N )

• (k, ℓ+ 1) occur at rate sN (ℓ− k)(1− ℓ
N )

• (k + 1, ℓ) occur at rate ksN
ℓ−k
N

• (k, ℓ− 1) occur at rate
ρ2

N

((
ℓ−k
2

)
+ (ℓ− k)k

)
• (k − 1, ℓ− 1) occur at rate

ρ2

N

(
k
2

)
.

To proceed further we consider the two cases

i) B0 > Beq
0

ii) B0 < Beq
0
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separately.

We begin with Case i). Consider the process (Zr)r≥0 defined asZr := Br−Beq
r and

condition on the two events that the process Beq
0 is started in a state in [ 2sN

2sN+ρ2
N(1−

δ1),
2sN

2sN+ρ2
N(1 + δ1)] and stays in [ 2sN

2sN+ρ2
N(1 − 2δ1),

2sN
2sN+ρ2

N(1 + 2δ1)] for some

0 < δ1 <
1
2 . The probability of each event can be estimated by 1−O(exp(−N δ2)), the

former event by Hoeffding’s inequality and the latter with Lemma 3.6.7. The process

(Zr)r≥0 jumps from z to z+1 at most at rate snz and under the above condition (Zr)r≥0

jumps from z to z − 1 at least at rate ρ2 2sN
2sN+ρ2

(1 − 2δ1)z: If (Zr, Br, B
eq
r ) = (z, ℓ, k)

jumps to (z− 1, ℓ− 1, k) occur at rate
ρ2

N (
(
z
2

)
+ zk) and jumps to (z− 1, ℓ, k+1) at rate

ksN
ℓ−k
N . Therefore, the process (Zr)r≥0 jumps from z → z−1 at rate rz,z−1 =

ρ2

N (
(
z
2

)
+

zk)+ksN
z
N . Due to the condition and the assumption that ℓ ≥ k ≥ 2sN

2sN+ρ2
N(1−2δ1)

we can bound

rz,z−1 =
ρ2

N

((
z

2

)
+ zk

)
+ ksN

z

N
≥ ρ2

2N
z(k + ℓ− 1) + z

2s2N
2sN + ρ2

(1− 2δ1)

≥ z
ρ2

2N
2

2sN
2sN + ρ2

N(1− 2δ1) = zρ2
2sN

2sN + ρ2
(1− 2δ1).

Hence, we can couple (Zr)r≥0 to a birth-death process (Z ′
r)r≥0 with individual birth

rate sN =: β′ and individual death rate ρ2 2sN
2sN+ρ2

(1 − 2δ1) =: α′
, such that Zr ≤ Z ′

r

a.s. Let ξ := inf{r ≥ 0 : Zr = 0} and ξ′ := inf{r ≥ 0 : Z ′
r = 0}. Obviously it holds

P(ξ ≥ r) ≤ P(ξ′ ≥ r) for all r ≥ 0. As in the proof of Lemma 3.6.6 we estimate

P(ξ′ ≥ N b+δ2 |Z ′
0 = 1) =

(
2ρ2(1−2δ1)
2sN+ρ2

− 1
)
sN(

2ρ2(1−2δ1)
2sN+ρ2

− 1
)
sN exp(

(
2ρ2(1−2δ1)
2sN+ρ2

− 1
)
N δ2)− sN

= O(exp(−cNN δ2))

with cN =
(
2ρ2(1−2δ1)
2sN+ρ2

− 1
)
→ 2(1− 2δ1)− 1 > 0. Since Z0 ≤ N the probability that

all lines go extinct before time N b+δ2
can be estimated by

P(ZNb+δ2 = 0) ≥
(
1− exp(−cNN δ2)

)N
= 1−O

(
exp(−N δ3)

)
,

which proves Lemma 3.6.8 in Case i).

In Case ii) we first wait until (Br)r≥0 reaches the level
2
ρ2
sNN(1 − δ1) within a

time interval of length O(N b+δ2) with probability 1− O(exp(−N δ3)) due to Lemma

3.6.6 and we assume thatBeq
0 is started in at least

2
ρ2
sNN(1−δ1), which happens with

probability 1 − O(exp(−δ21N)) due to Hoeffding’s inequality. Then due to Lemma

3.6.7 both processes remain bounded from below by
2
ρ2
sNN(1− 2δ1). When (Br)r≥0

has reached at least the level
2
ρ2
sNN(1− δ1)) consider Zr = Br −Beq

r . Then the same

arguments as in Case i) show the claim.

As mentioned in the sketch of proof of Theorem 8 in Section 3.3 we aim to couple

the CASP with the MASP. We have seen in the calculations before that in the regime

where the number of potential ancestors is at most of order N1−b+ε
for ε sufficiently

small the transition probabilities of these two processes are essentially the same for

a time interval of length of order O(N b+ε). In particular in a time interval of length

O(N b+ε) we can exclude jumps of size 2 or bigger in the CASP with probability
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O(N−δ)).

Lemma 3.6.9 (Coupling of MASP and CASP). Let 0 < ε < η
2 , and 0 < δ = 3η − 6ε.

There exists a coupling of the MASP (Br)r≥0 and the CASP (Am)m≥0 such that for all
common initial values k0 with 1 ≤ k0 ≤ N1−b+ε

P
(
|Am −Bm| ≤ 1, ∀m ∈ {0, . . . , N b+ε}

)
= 1−O(N−δ). (3.46)

with the constant in the Landau O uniform in k0.

Proof. Let A0 = B0 = k0 ≤ N1−b+ε
. We will show that the CASP and the MASP can

be coupled such that the jump times of the CASP and the MASP occur consecutively

with probability 1−O(N−δ). Since the transition probabilities of the CASP and the

MASP are essentially the same we can also couple the jump directions with high

probability. To show that the jump times occur consecutively we first show the

following claim.

Claim 1: With probability 1−O(N−δ) the MASP makes in each of the time intervals

[ℓ− 1, ℓ] at most one jump.

By Lemma 3.6.6 and 3.6.7 the MASP stays below 2N1−b+ε
with probability 1 −

O(exp(−N δ3)).
Denote by rk,k+1 and rk,k−1 the jump rates for the MASP from k to k + 1 and from k
to k − 1 respectively with γ = ρ2. Then

• rk,k+1 = ksN +O( kN )

• rk,k−1 =
(
k
2

)ρ2
N .

Define rk = rk,k+1 + rk,k−1 the total jump rate and

r⋆ = rN1−b+ε = max
1≤k≤N1−b+ε

rk = N1−2b+2ε(1 + o(1))

the maximal jump rate. We aim for the coupling to hold for an interval of lengthN b+ε
.

The jump times of (Br)r≥0 are exponentially distributed with a parameter bounded

from above by r⋆. To estimate the number of jumps falling into an interval of length

N b+ε
we use Theorem 5.1 iii) in [Jan18]. Let (Xi)i≥1 be a family of independent

Exp(r⋆) distributed random variables. For c = 1− b+ 4ε Theorem 5.1 iii) yields

P

(
Nc∑
i=1

Xi ≤ N b+ε

)
= O(exp(−N1−b+4ε)), (3.47)

that is the number of jumps is bounded byN1−b+4ε
with probability1−O(exp(−N1−b)).

ForE = {(Br)0≤r≤Nb has at most one jump in the intervals [j, j + 1] for each 0 ≤ j ≤
N b − 1} we have

P(E) ≥
(
1−O(exp(−N1−b))

) Nc∏
i=1

P(Xi > 1) ≥
(
1−O(exp(−N1−b)

)
e−r⋆N

c

= 1−O(N−δ)

which yields Claim 1.

Let TAi = inf
{
m ≥ TAi−1 : Am ̸= ATA

i−1

}
be the i-th jump of the CASP with the con-

vention TA−1 = 0. In the same manner let TBi = inf
{
r ≥ TBi−1 : Br ̸= BTB

i−1

}
be the
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i-th jump of the MASP again with the convention that TB−1 = 0. We have

P(BTB
i

= k + 1|BTB
i−1

= k) =
rk,k+1

rk,k+1 + rk,k−1
= P(ATA

i
= k + 1|ATA

i−1
= k) + ek,N

and

P(BTB
i

= k − 1|BTB
i−1

= k) =
rk,k−1

rk,k+1 + rk,k−1
= P(ATA

i
= k − 1|ATA

i−1
= k) + fk,N ,

where ek,N , fk,N ∈ O(max
{
k2s2N , k

4N−2, N−1
}
), the latter being the error terms

from (3.27) and (3.28). Note that ek,N , fk,N ≥ 0 because the CASP can make jumps of

size 2 or larger. Set dk,N = ek,N + fk,N .

We show that we can couple the times TAi and TBi , such that TBi+1 < TAi for i =
1, . . . , N1−b+4ε

with probability 1 − O(N−δ). From that follows the Assertion (3.46)

of the Lemma by coupling the jump directions.

We couple the jump times TAi and TBi such that for all i ∈ {1, . . . , ⌊N1−b+3ε⌋}

P(TBi+1 < TAi ) = O(N1−2b+2ε) (3.48)

from which follows the assertion. We explicitly construct the coupling for i = 1,

and the same holds for any i ∈ {1, . . . , ⌊N1−b+4ε⌋}. To show (3.48) observe that, if

A0 = k = B0 we can couple TA1 and TB1 by setting

TA1
d
=

⌈
lnU1

ln(1− rk + dk,N )

⌉
, TB1

d
= − lnU1

rk

forU1 ∼Unif([0, 1]), sinceTB1 is Exp(rk,k+1+rk,k−1)distributed andTA1 is Geom(rk,k+1+
rk,k−1 + dk,N ) distributed. Note that TA1 ≥ TB1 almost surely. The coupling holds

due to a) if

P(TB2 − TB1 < TA1 − TB1 ) = O(N1−2b+2ε). (3.49)

Furthermore observe

TA1 − TB1 ≥ lnU1

(
1

ln(1− rk + dk,N )
+

1

rk

)
=: ck lnU1

We can upper bound the probability in (3.49) if we assume TB2 − TB1 ∼Exp(rk+1),
thus we obtain for E2 ∼Exp(rk+1)

P(TB2 − TB1 < TA1 − TB1 ) ≤ P (E2 ≤ ck lnU1)

= 1−
∫ 1

0
e−rk+1ck lnudu = 1−

∫ 1

0
u−rk+1ckdu

= 1− 1

rk+1ck + 1
= 1− 1

rk+1

ln(1−rk+O(eN )) +
rk+1

rk
+ 1

= 1− 1

− rk+1

rk+dk,N+O(r2k)
+

rk+1

rk
+ 1

= 1− 1

− rk+1

rk
(1 +O(dk,N/rk) +O(rk)) +

rk+1

rk
+ 1

= O(dk,N/rk) +O(rk) = O(N1−2b+2ε).
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which proves (3.48). Together with Claim 1 this proves the assertion of the lemma.

We are now able to complete the proof of Theorem 8a.

Proof of Theorem 8a. Let (Am)m∈Z = (A
(N)
m )m∈Z be a stationary version of the CASP

with parameters N , L (W (N)) and sN (where as in the previous statements and

proofs we are going to suppress the superscript N in A
(N)
m ). By Corollary 3.3.2 it

suffices to analyse E [A0] /N in order to obtain the probability of fixation of a single

beneficial mutant. Let

E := E(N) := {A−⌊Nb+ε⌋ ≤ N1−b+ε, |A−j −B−j | ≤ 1, 0 ≤ j ≤ ⌊N b+ε⌋} (3.50)

be the event that the (stationary) CASP (Am)m∈Z is not unusually big at time−⌊N b+ε⌋
and can be coupled with a MASP (Br)r≥−⌊Nb+ε⌋ for the time between −N b+ε

and 0
such that there the CASP and the MASP differ at most by 1. Due to the Lemmata

3.6.3 and 3.6.9 we can estimate the probability of this event by

P (E) = (1−O(N−δ))(1−O(exp(−N δ))) = 1−O(N−δ)

and a suitable δ > 0. This yields

E [A0]

N
=

1

N
E [A0|E ]P (E) + 1

N
E [A0|Ec]P (Ec) (3.51)

We analyse the two expectations above separately, the first one will give us the desired

Haldane formula, whereas the second is an error term of order o(sN ). By Lemma

3.6.8 we get that with

B(N)
eq

d
= Bin(N,

2sN
2sN + ρ2

) conditioned to be strictly positive, (3.52)

1

N
E [A0|E ]P (E) = 1

N

N∑
j=1

jP (A0 = j|E) (1−O(N−δ))

=
1

N

N∑
j=1

jP
(
B(N)

eq = j
)
(1−O(N−δ))

=
1

N

N2sN
2sN + ρ2

(1−O(N−δ)) =
2sN
ρ2

(1 + o(sN )).

It remains to bound the second expectation on the r.h.s. of (3.51), with the worst case

being A−⌊Nb+ε⌋ = N . Then using the second part of Corollary 3.6.5 gives us

1

N
E [A0|Ec]P (Ec) = O

(
N1−b+ε

N
N−δ

)
= O(N−b+ε−δ) = o(sN ),

since ε > 0 can be chosen small enough such that δ > ε. This finishes the proof of

Theorem 8.

Corollary 3.6.10. Let A(N)
eq have the stationary distribution of the CASP with parameters

N , L (W (N)) and sN . Then, with pN := sN
ρ2/2+sN

, µN := NpN and σ2N = NpN (1− pN ),

the sequence of random variables
(
A

(N)
eq − µN

)
/σN converges asN → ∞ in distribution to

a standard normal random variable.
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Proof. In the previous proof we have worked, for a stationary CASP (A
N)
m )m∈Z, with

a decomposition of E[A(N)
0 ] according to the events E and Ec, with E defined in (3.50).

We now use the same decomposition for the distribution of (A
(N)
0 − µN )/σN and

obtain for any f ∈ Cb(R) with the same line of reasoning as in the previous proof

and with B
(N)
eq as in (3.52)

lim
N→∞

E[f((A(N)
0 − µN )/σN )] = lim

N→∞
E[f((B(N)

eq − µN )/σN )] = E[f(Z)],

where Z is a standard normal random variable.

Remark 3.6.11. Using the technique of [Kur70] it is not difficult to show that
(
A

(N)

⌊rs−1
N ⌋/µN

)
r≥0

converges in distribution asN → ∞ uniformly on compact time intervals to the solution of a
dynamical system whose stable fixed point is 1. One might then also ask about the asymptotic
fluctuations of the process A(N). Although available results in the literature (like [Kur81,
Theorem 8.2] or [EK86, Theorem 11.3.2]) do not directly cover our situation (because e.g.
of boundedness assumptions required there), the coupling between A(N) and B(N) analysed
above seems a promising tool to obtain a Ornstein-Uhlenbeck functional limit theorem for
the fluctuations of A(N), which in view of Corollary 3.6.10 should include also time infinity.
Let us mention in this context [Cor17], which contains a fluctuation result (including time
infinity) for the Moran frequency process under strong selection and two-way mutation.

3.7 A concentration result for the equilibrium distribution of
the CASP. Proof of Theorem 8

LetA(N) = (A
(N)
m )m≥0 be the Cannings ancestral selection process (CASP) as defined

in Sec. 3.2.3. We will show in the present section that under the assumptions (3.3),

(3.10) and (3.14) the expectation of the equilibrium state A
(N)
eq of A(N)

satisfies the

asymptotics

E
[
A(N)

eq

]
=

2

ρ2
sNN(1 + o(1)). (3.53)

The proof of Theorem 8b is then immediate from Corollary 3.3.2.

Let us describe here the strategy of our proof. We will show that the distribution of

A
(N)
eq is sufficiently concentrated around the “center”

2
ρ2
sNN asN → ∞. Throughout,

we will fix a sequence (hN ) obeying (3.13) such that (3.14) is satisfied. As in the

previous section we will switch to bN defined by (3.25). The assumption (3.3), which

is now the standing one, thus translates into

1

2
+ η ≤ bN ≤ 1− η.

Frequently we will suppress the subscript N in bN , thus denoting the sequence sNN
simply by N1−b

. We will show in the subsequent lemmata that the CASP A(N)

needs only a relatively short time to enter a small box around
2
ρ2
sNN , compared to

the time it spends in this box. The former assertion is provided by Lemmata 3.7.4

and 3.7.5. The behaviour of A(N)
near the center is controlled by Proposition 3.7.3.

This is prepared by Lemmata 3.7.1 and 3.7.2 which bound the probability of jumps

of absolute size larger than hN near the center. This allows to couple the process

A := A(N)
with a process Au

which in a certain box close to the center replaces all

the jumps of A of size 2, . . . , hN by an upward jump of size hN and is constructed
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such that it stochastically dominates A on an event of high probability. See Figures

3.2 and 3.3 for illustrations of this construction; the definition of Au
is given in the

proof of Proposition 3.7.3.

2
ρ2
N1−b ñ(γ) n(β) n(α) = ⌊ 2

ρ2N
1−b +N1−b−α⌋

+hN+1−1
n(γ)

reset to n(β)

Iu

Figure 3.2: A sketch of the transition dynamics of the “upper stochas-

tic dominant” Au
of the CASP A: In the box Iu = [ñ(γ), n(α)], the

process Au
performs jumps of size ±1 whenever A makes a jump

±1, and makes a jump +hN whenever A makes a jump +2, . . . ,+hN .

Whenever Au
reaches ñ(γ), it is reset to its starting point n(β). The

quantities n(β) and ñ(γ) as well as the transition probabilities of Au

are defined in the proof of Proposition 3.7.3.

The following lemma controls the probability of large upward jumps of A near

the center, using the construction of the branching step of the CASP described in

Section 3.2.3.

Lemma 3.7.1 (Probability for large jumps upwards).
Let k = ⌈κN1−b⌉ for some κ > 0, then

P (Am+1 ≥ Am + hN |Am = k) = O((N1−2b)hN )) as N → ∞.

Proof. We want to estimate

P (Am+1 ≥ Am + hN |Am = k) ≤ P

(
k∑
i=1

G(i) ≥ k + hN

)
,

for independent Geom(p) with p = 1− sN distributed random variables G(i)
, i ≥ 1.

With k′ = k + hN , Sk′ a Bin(k′, p)-distributed random variable, and a = k
k′ , we can

estimate the r.h.s. from above by

P (Sk′ ≤ k) = P
(
Sk′ ≤ ak′

)
,

Using the Chernoff bound for binomials we can estimate

P
(
Sk′ ≤ ak′

)
≤ exp(−k′H(a)), (3.54)
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with rate function H(a) = a ln
(
a
p

)
+ (1 − a) ln

(
1−a
1−p

)
. Inserting our parameters

yields

H(a) =
k

k + hN
ln

(
k

k + hN

1

1− sN

)
+

hN
hN + k

ln

(
hN

k + hN

1

sN

)
=

κN1−b

κN1−b + o(N1−b)
ln

(
1− hN

κN1−b (1 + o(1))

)
+

hN
κN1−b + o(N1−b)

ln

(
N bhN

κN1−b + o(N1−b)

)
=

hN
κN1−b ln

(
1

κ
N2b−1hN

)
(1 + o(1))− 1

κ
N b−1hN (1 + o(1))).

The dominating term above is
1
κN

b−1hN ln(N2b−1) and plugging this back into (3.54)

one obtains

P
(
Sn′ ≤ an′

)
≤ exp(−κN1−b 1

κ
N b−1hN ln(N2b−1)(1 + o(1)))

= exp(−hN ln(N2b−1))(1 + o(1)) = (N1−2b)hN (1 + o(1)).

Next, we set out to bound the probability for downward jumps of size at least

hN near the center. In view of the construction of the coalescence step described in

Section 3.2.3 this is settled by the following lemma.

Lemma 3.7.2 (Probability for large jumps downwards).
Let W (N) = (W

(N)
1 , . . . ,W

(N)
N ) be as in Theorem 3.5b, let κ > 0 and k(N) ≤ κN1−b. For

N ∈ N sort k(N) balls independently intoN boxes, such that the ball with number ν is sorted
into box i with probability W (N)

i , i ∈ [N ], ν ∈ [k(N)]. Then the probability that no more
than k(N) − hN boxes are occupied is

O
(
h4NN

1−2b
)hN

as N → ∞.

Proof. We will suppress the superscript (N) and write k := k(N)
, W := W (N)

. For

h := hN let ph be the probability of the event that no more than k − h boxes are

occupied. This is equal to the event that at least h collisions occur, where we think of

the balls with numbers 1, . . . , k being subsequently sorted into the boxes and say that

the ball with number ν produces a collision if it lands in an already occupied box. In

the following we record the occupation numbers of (only) those boxes that receive

more than one ball. These are of the form β = (β1, . . . βℓ) ∈ {2, . . . , h + 1}ℓ with

ℓ ∈ {1, . . . , h} and β1 + · · ·+ βℓ − ℓ = h. For a given β of this form, and ℓ given boxes

with |β| := β1+ · · ·+βℓ, assume that β1 balls are sorted into the first box, β2 balls into

the second box, etc, and the remaining k − |β| balls are sorted into arbitrary boxes

(so that, as required, the number of occupied boxes is at most ℓ + k − |β| = k − h).

Given the weightsW1, . . . ,WN , the probability to sort the first β1 balls into box 1, the

following β2 balls into box 2, . . . , and finally βℓ balls into box ℓ is

ℓ∏
i=1

W βi
i .
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There are
N !

(N−ℓ)! many possibilities to choose ℓ different boxes out of N . Further-

more, there are

(
k

β1,...,βℓ,k−|β|
)

many possibilities to choose |β| many balls out of k

balls and sort these balls into ℓ boxes, such that βi balls are sorted into box i.
Due to exchangeability of the weights W1, . . . ,WN we get

ph ≤
∑
β∈B

E

ℓ(β)∏
i=1

W βi
i

 N !

(N − ℓ(β))!

(
k

β1, . . . , βℓ, k − |β|

)
, (3.55)

where

B :=
⋃

ℓ∈{1,...,h}
{β = (β1, . . . , βℓ) : β1 + · · ·+ βℓ − ℓ = h and β1 ≥ β2 ≥ · · · ≥ βℓ}

and ℓ = ℓ(β) denotes the length of the vector β ∈ B.

To obtain an upper bound of the r.h.s. of (3.55) we estimate the moments

E
[∏ℓ

i=1W
βi
i

]
. Since (W1,W2, . . . ,WN ) are negatively associated, we can use the

property 2 in [JDP83] of negatively associated random variables, which reads

E

[
ℓ∏
i=1

W βi
i

]
≤

ℓ∏
i=1

E
[
W βi
i

]
Applying Jensen’s inequality we can estimate for β1 ≥ β2

E
[
W β1

1

]
E
[
W β2

2

]
≤ E

[
W β1

1

]
E
[
W β1

2

]β2
β1 = E

[
W β1

1

]1+β2
β1

≤ E
[
W β1+β2

1

]
.

Hence,

ℓ∏
i=1

E
[
W βi
i

]
≤ E

[
W

|β|
1

]
.

We will now analyse the quantities

aβ := E
[
W

|β|
1

] N !

(N − ℓ(β))!
, β ∈ B. (3.56)

ForN sufficiently large, and any two occupation vectors β, γ ∈ B with ℓ(β) = ℓ(γ)+1
and |β| = |γ|+ 1 we obtain from (3.14)

aβ
aγ

=
E
[
W

|γ|+1
1

]
N !

(N−(ℓ(γ)+1))!

E
[
W

|γ|
1

]
N !

(N−ℓ(γ))!
≤ hN

N
(N − ℓ(γ)) ≤ hN . (3.57)

For the occupation vector β̃ := (1+hN ) ∈ B (with length ℓ(β̃) = 1 and |β̃| = 1+hN )

we have, again because of (3.14),

aβ̃ = E
[
W hN+1

1

]
N = O

((
hN
N

)hN)
. (3.58)
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Combining (3.57) and (3.58) we obtain for all β ∈ B the estimate

aβ ≤ O
(
N−hN (hN )2hN

)
. (3.59)

For the rightmost term in (3.55) we have the estimate(
k

β1, . . . , βℓ, k − |β|

)
≤
(

k

2, . . . , 2, k − 2hN

)
≤ (κN1−b)2hN (3.60)

and the number of occupation vectors β appearing in the sum in (3.55) (i.e. the

cardinality of B) can be estimated from above by (hN + 1)hN . Hence we obtain from

(3.55), (3.56), (3.59) and (3.60),

phN = O
(
(κN1−b)2hNN−hN (h2hNN (hN + 1)hN

)
= O

(
(N1−2bh4N )

hN
)
.

Building on the previous two lemmata, the next result shows that the CASP does

not leave the centeral region up to any polynomially long time with high probability.

Proposition 3.7.3 (CASP stays near the center for a long time).
Consider α, β with 0 < α < β < 2b−1

3 , let

I :=

[⌈
2

ρ2
N1−b −N1−b−α

⌉
,

⌊
2

ρ2
N1−b +N1−b−α

⌋]
and define τI := inf{m ≥ 0 : Am /∈ I}. Then for all θ > 0 and all ε > 0

P
(
τI ≤ N θ|A0 = k

)
= O((N1−2b+ε)hN ) as N → ∞ (3.62)

uniformly in k ∈ [⌈ 2
ρ2
N1−b −N1−b−β⌉, ⌊ 2

ρ2
N1−b +N1−b−β⌋].

Proof. To show the above claim we bound stochastically A from above and from

below by simpler processes, which in certain boxes close to the center of attraction

of A follow essentially a time changed random walk dynamics with constant drift.

In the first part of the proof we will construct a time-changed Markov chain Au
that

dominates A = (Am)m≥0 from above for a sufficiently long time. This construction

will rely on Lemma 3.7.1. In this first part we will give all details; in the second part

of the proof we will indicate how an analogous construction can be carried out “from

below”, then making use of 3.7.2.

1. Let γ ∈ (β, 2b−1
3 ) and write, in accordance with Figure 3.2,

n(ζ) := ⌈2N1−b

ρ2
+N1−b−ζ⌉, ζ ∈ {α, β, γ}.

Observing that n(γ) < n(β) < n(α), we consider the box

Iu :=
[
n(γ), n(α)

]
,
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Figure 3.3: An example of a realisation of the processes A and Au
,

displaying that Au
dominates A as long as it is below the level n(α).

Note that Au
is reset to n(β) whenever it hits the level ñ(γ); see also

Figure 3.2.

and take n(β) as the starting point of both A and Au
. The dynamics of Au

will be

such that Au
is re-set to its starting point n(β) as soon as it hits the level

ñ(γ) := n(γ) + hN .

Consider the following Markov chain Āu
. We decree that within the box (ñ(γ), n(α)]

the process Āu
makes only jumps −1,+1 and +hN . Here, the probabilites for jumps

−1,+1 of Āu
from an arbitrary state in (ñ(γ), n(α)] are set equal to the probabilities

for jumps −1,+1 of A from the state n(γ), and the probability for a jump +hN of Āu

from an arbitrary state in (ñ(γ), n(α)] is set equal to the probability of a jump of A
from the state n(γ) that has an absolute size larger than 1. More formally, we define

c
(γ)
N = P(|Am+1 −Am| > 0|Am = n(γ))

and observe that

c
(γ)
N = P(|Am+1 −Am| > 0|Am = n(γ)) = sNn

(γ) +

(
n(γ)

2

)
ρ2

N
(1 + o(1)).

We define the jump probabilities as follows:

P(Āui = k + 1 | Āui−1 = k) =
1

c
(γ)
N

sNn
(γ), k > ñ(γ),

P(Āui = k + hN | Āui−1 = k) = 1− 1

c
(γ)
N

(
sNn

(γ) +

(
n(γ)

2

)
ρ2

N

)
, k > ñ(γ)

P(Āui = k − 1 | Āui−1 = k) =
1

c
(γ)
N

(
n(γ)

2

)
ρ2

N
, k > ñ(γ),

P(Āui = n(β)|Āui−1 = ñ(γ)) = 1.
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Note that

1

c
(γ)
N

sNn
(γ) =

1

2

(
1− ρ2

4
N−γ

)
(1 +O(sNn

(γ))),

1

c
(γ)
N

(
n(γ)

2

)
ρ2

N
=

1

2

(
1 +

ρ2

4
N−γ

)
(1 +O(sNn

(γ))),

1− 1

c
(γ)
N

(
sNn

(γ) +

(
n(γ)

2

)
ρ2

N

)
= O(N1−2b),

which results in a small downwards drift of Āu
in Iu. The process Au

is defined as

follows. Denote by τi the time of the i-th non-trivial jump (that is a jump of size ̸= 0)

of A for i ≥ 1 and let τ0 = 0. We set for τi−1 ≤ m ≤ τi − 1, with i ≥ 1,

Aum = Āui−1.

Putting TN := ⌈N θ⌉, we now consider the events

EN := {Au
has not left Iu by time TN}

and

FN := {A has not performed jumps of absolute size larger than hN by time TN}.

We can now couple A and Au
such that on the event EN ∩FN and for allm ≤ TN we

have Am ≤ Aum. In order to show that the probability of the event {A reaches n(α)

before time TN} is bounded by the r.h.s. of (3.62) it thus suffices to show that

P(EcN ) = O((N1−2b+ε)hN ) and P(F cN ) = O((N1−2b+ε)hN ) as N → ∞. (3.63)

From Lemmata 3.7.1 and 3.7.2 it is obvious that

P(F cN ) = O(TN (h
4
NN

1−2b)hN ). (3.64)

We claim that there exists a δ > 0 such that

P(EcN ) = O(exp(−N δ)). (3.65)

Write phit for the probability that Au
, when started from n(β), hits (or crosses) n(α)

before it hits ñ(γ). The jump size of the process Au
is at least -1 at each generation.

Therefore, at least N1−b−β
generations are necessary to reach the level n(γ) when

starting from level n(β). Thus, with the θ given in the Proposition, within N θ
gener-

ations the process Au
makes at most N θ/N1−b−β

transitions from n(β) to n(γ).
The probability that Au

crosses n(α) within a single excursion from n(β) that reaches

ñ(γ) is obviously upper bounded by the probability that the process Ãm =
∑m

i=1Xi,

m = 0, 1, . . ., crosses the level n(α), where theXi are i.i.d. and distributed as the jump

sizes of the process Āu
in a state x > ñγ ; thus, other than the process Āu

the process

Ã is not reset to n(β) at an attempt to cross ñ(γ). For λN = N−2γ
one has

E [exp(λNX1)] = 1− ρ2

4
N−3γ +O(N1−2b) + o(N−3γ) < 1,

for N large enough, since γ < 2b−1
3 . Therefore the process Ym = exp (λN

∑m
i=1Xi)
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is a supermartingale. Define τ̃ = inf{m ≥ 0 : Ãm ≥ n(α)}, then by the Martingale

Stopping Theorem

n(β) = E [Y0] ≥ E [Ym∧τ̃ ] ≥ E
[
Yτ̃1{τ̃<m}

]
≥ exp(λNn

(α))P(τ̃ < m),

which yields the Cramér-Lundberg bound phit ≤ n(β) exp(−λNn(α)). Thus, we can

estimate

P(EN ) ≥ (1− phit)
Nθ−1+b+β

,

which proves (3.65). Clearly, (3.65) and (3.64) imply (3.63), which completes the first

part of the proof.

2. It remains to prove also the “lower part” of (3.62), i.e. to control the time it

takes A to leave I in downwards direction. We argue similarly by defining a process

Aℓ
which bounds A from below in a box Iℓ correspondingly chosen to the box Iu.

This process is again a Markov chain that makes jumps of size 1 and -1 and (rarely)

jumps of size −hN and whose drift coincides with that of A at the upper bound-

ary of the box Iℓ. Due to Lemma 3.7.2 jumps downwards at least of size hN occur

with exponentially small probability and hence, these jumps can be ignored in the

time frame of interest and Aℓ
is stochastically dominated by A with sufficiently high

probability.

We now show that the time to reach the center from state N is with high proba-

bility no larger than polynomial .

Lemma 3.7.4 (Coming down from N ).
Let 0 < ε < 2b−1

3 , B := [ 2
ρ2
N1−b− 2N1−b−ε, 2

ρ2
N1−b+2N1−b−ε] and τB := inf{m ≥ 0 :

Am ∈ B}. Then for any ε < ε′ < 2b−1
3 and 0 < δ ≤ ε′ − ε

P
(
τB ≥ N2b+2ε′ | A0 = N

)
= O(exp(−N δ)).

Proof. The proof will be divided in three steps.

1. The coalescence probabilities of the Wright-Fisher model are the smallest in our

class of Cannings models with selection, see Lemma 3.6.4. Therefore, the stopping

time τB for the CASP is stochastically dominated from above by the corresponding

stopping time in a Wright-Fisher model with selection. Consequently, we assume in

the following that W = (1/N, . . . , 1/N) and ρ2 = 1.

2. We analyse the drift of (Am)m≥0 in each point y in B′ = [2N1−b + 2N1−b−ε′ , N ].
We will show in part 3 of the proof that

y − E [A1|A0 = y] ≥ 2N1−2b−ε′ , for all y ∈ B′. (3.66)

The estimate (3.66) on the drift of A in B′
yields that for m0 = ⌈N2b+ε′⌉ it holds

E [Am0 ] ≤ 2N1−b + 2N1−b−ε
, since by Proposition 3.7.3 after entering the box B the

process A does not leave the box up to any polynomially long time except on an

event with probability O((N1−2b+ε)hN ). Applying Markov’s inequality yields for
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m0 = ⌈N2b+ε′⌉

P(Am0 ≥ 2N1−b + 2N1−b−ε) ≤ E [Am0 ]

2N1−b + 2N1−b−ε ≤ 2N1−b + 2N1−b−ε′

2N1−b + 2N1−b−ε

= 1 +
N1−b−ε′ −N1−b−ε

N1−b +N1−b−ε = 1 +
N−ε′ −N−ε

1 +N−ε

= 1−N−ε(1 +N−(ε′−ε))(1 +O(N−ε)).

Hence, after time ⌈N2b+ε′⌉ the process started in N is with a probability of at least

1 −N−ε(1 + o(1)) in B. If the process A did not enter B until time ⌈N2b+ε′⌉, in the

worst case the process is still in the state N . Therefore, recalling that δ ≤ ε′ − ε,
the probability that the process is after time ⌈N2b+2ε′⌉ still above B can be estimated

from above via

P(A⌈N2b+2ε′⌉ ≥ 2N1−b + 2N1−b−ε) ≤ P(Am0 ≥ 2N1−b + 2N1−b−ε)N
ε′ ≤ (1−N−ε)N

ε′

= O(exp(−N δ)).

3. It remains to show (3.66). Recalling the “balls in boxes” description of the one-step

transition probability of the CASP as described in Sec. 3.2.3, let χi be the indicator of

the event that the i-th box is occupied by at least one ball. We can rewrite

y − E [A1|A0 = y] = y − E

[
N∑
i=1

χi|A0 = y

]

= y −N

(
1− E

[(
1− 1

N

)H])
(3.69)

with H =
∑y

i=1G
(i)

with G(1), . . . , G(y)
independent and G(i) ∼ Geom(1− sN ). The

expectation in (3.69) is the generating function of a negative binomial distribution

with parameters y and (1− sN ) evaluated at 1− 1
N , which allows to continue (3.69)

as

= y −N

(
1−

[
(1− sN )(1− 1

N )

1− sN (1− 1
N )

]y)

= y −N

(
1−

[
1− 1

N

1

1− sN + sN
N

]y)
(3.70)

Using Taylor expansion for the function x 7→ (1 − x)y around 0 with the remainder

in Lagrange form yields

(1− x)y = 1− yx+

(
y

2

)
x2 −

(
y

3

)
x3(1− ξ)y−3 ≥ 1− yx+

(
y

2

)
x2 −

(
y

3

)
x3 (3.71)

for some ξ ∈ [0, x]. Abbreviating u := 1
1−sN+

sN
N

in (3.69) and using (3.71) yields

(3.70) ≥ y −N

(
1−

[
1− y

u

N
+

(
u

2

)
u2

N2
−
(
y

3

)
u3

N3

])
= y − uy +

u2

N

(
y

2

)
− u3

N2

(
y

3

)
=: h(y).
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In order to show that the polynomial h(y) is bounded away from 0 as claimed in

(3.66) we check that h is positive at the lower boundary and that the derivative h′ is

positive on the interval B′
. We can factorise h as h(y) = yh̃(y), with

h̃(y) = 1− u+
u2

2N
(y − 1)− u3

6N2
(y − 1)(y − 2)

It is straightforward to check for y0 = 2N1−b + 2N1−b−ε′
that h̃(y0) > 0. Thus it

suffices to show that h̃′ is strictly positive on B′
. We have

h̃′(y) = − u3

3N2
y +

1

2

u3

N2
+

u2

2N
.

Hence h̃′(y) > 0 is implied by the inequality

0 ≤ y ≤ 3

2

N

u
+

1

2

which is fulfilled for all y ∈ B′
. Hence the drift E [A1|A0 = y] − y is negative for all

states y ∈ B′
with minimal absolute value bounded from below by

h(y0) ≥ 2N1−2b−ε′(1 +O(N−ε′)).

which proves (3.66).

Similar as Lemma 3.7.4 we show now that the time to reach the boxB from below

is also no longer than polynomial with high probability.

Lemma 3.7.5 (Going up from 1).
Let B and τB as in Lemma 3.7.4. Then for 0 < ε < ε′ < 1−2b

3 and δ ≤ ε′ − ε.

P
(
τB ≥ N2b+2ε′ | A0 = 1

)
= O((N1−2b+ε)hN ).

Proof. The strategy of the proof is similar to the proof of Lemma 3.7.4: we estimate

the drift in each point y in the box B′
from below, with B′ := [1, 2

ρ2
N1−b −N1−b−ε′ ].

1. Assume we have shown for y ∈ B′
and N large enough

E [A1|A0 = y]− y ≥ y
ρ2

4
N−b−ε′ . (3.72)

Then

E [Am0 |A0 = 1] ≥ inf{
(
1 +

ρ2

4
N−b−ε′

)m0

,
2

ρ2
N1−b −N1−b−ε′},

as long asm0 is at most of polynomial order inN , since due to Proposition 3.7.3 after

entering the box B the process Am does not leave the box up to any polynomially

long time with probability 1−O((N1−2b+ε)hN ). In particular, form0 = ⌈cN b+ε′ lnN⌉
and some constant c > 0, we have E [Am0 ] ≥ 2

ρ2
N1−b −N1−b−ε′

.
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Now applying Markov’s inequality yields

P(Am0 ≤ 2

ρ2
N1−b −N1−b−ε) = P(N −Am0 ≥ N − 2

ρ2
N1−b +N1−b−ε)

≤ E [N −Am0 ]

N − 2
ρ2
N1−b +N1−b−ε ≤

N − 2
ρ2
N1−b +N1−b−ε′

N − 2
ρ2
N1−b +N1−b−ε

= 1−N−b−ε(1 + o(1)) (3.73)

In the worst case at time m0 the process A is still in state 1. Iterating the argument in

(3.73) yields that the probability that after time ⌈N b+ε′⌉m0 the process is still below

2
ρ2
N1−b −N1−b−ε

is of order O(exp(−N δ)), as claimed in the Lemma.

2. Now it remains to show (3.72). For y ∈ B′
we observe that

E [A1|A0 = y]− y = N(1− E
[
(1−W1)

H |A0 = y
]
)− y

= N(1− E
[
E
[
(1−W1)

H |A0 = y,W1

]]
)− y

= N(1− E
[(

1− W1

1− sN + sNW1

)y
|A0 = y

]
)− y

= NE

[
yW1

1− sN + sNW1
−

(
y
2

)
W 2

1

(1− sN + sNW1)2
+O(y3W 3

1 ))

]
− y

≥ NE

[
yW1

1− sN + sNW1
−

(
y
2

)
W 2

1

(1− sN )2
+O(y3W 3

1 ))

]
− y (3.74)

We analyse the first summand in the expectation separately, since the denominator

and nominator both contain the random variable W1.

E
[
y

W1

1− sN + sNW1

]
= E

[
yW1(1 + sN +O(sNW1 + s2N ))

]
=

y

N
(1 + sN +O(s2N ))

Using that E
[
W 3

1

]
= O(N−3) (which follows from the assumptions of Theorem 8),

one can continue (3.74) as

= y(1 + sN +O(s2N ))−
(
y

2

)
ρ2

N

1

(1− sN )2
− y +O(yN−b−1) +O(y3

1

N2
))

≥ y

(
1 + sN +O(s2N )−

sN − ρ2

2 sNN
−ε′

(1− sN )2
− 1 +O(N−b−1) +O(

y2

N2
)

)

≥ y
ρ2

4
sNN

−ε′ ,

where in the first inequality we used that y ∈ B′
is bounded from above. This gives

the desired estimate (3.72) for the drift, and completes the proof of the lemma.

Completion of the proof of Theorem 8b.
1. For proving (3.53) we will make use of Corollary 3.3.2, and to this purpose

derive asymptotic upper and lower bounds on the expectation of Aeq := A
(N)
eq via

stochastic domination from above and below. Consider a time-stationary version

Astat = (Astat
m )m∈Z and a CASP A = (Am)m≥0 that is started in N . We can couple
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both processes such that a.s. Am ≥ Astat
m for all m ≥ 0. This implies

E [Aeq] = E
[
Astat
m

]
≤ E [Am] , m ≥ 0.

Fix 0 < α < β < 2b−1
3 , and consider the box Bα = [ 2

ρ2
N1−b ±N1−b−α] as well as the

(smaller) box Bβ = [ 2
ρ2
N1−b ± N1−b−β]. Define τBβ := inf{m ≥ 0 : Am ∈ Bβ}, the

first hitting time ofBβ
, and τ̃Bα := inf{m ≥ τBα : Am /∈ Bα}, the first leaving time of

Bα
. Choosing the time horizon m0 = ⌈N2b+2ε⌉ with 0 < ε < 1− b, we obtain

E [Am0 ] = E [Am0 |τ̃Bα > m0 ≥ τBβ ]P(τ̃Bα > m0 ≥ τBβ )

+ E [Am0 |m0 < τBβ ]P(m0 < τBβ )

+ E [Am0 |m0 > τ̃Bα ≥ τBβ ]P(m0 > τ̃Bα ≥ τBβ ).

By Lemma 3.7.4 the second summand on the right hand side is of orderO(N exp(−N δ))
and by Lemma 3.7.3 the third summand is of order O(N(N1−2b+α)hN ). Concerning

the first summand we obtain P(τ̃Bα > m0 ≥ τBβ ) = 1−O(N(N1−2b+α)hN ). Observ-

ing that Am0 = 2
ρ2
N1−b(1 + o(1)) whenever Am0 ∈ Bα

we thus conclude

E [Am0 ] = E [Am0 |τ̃Bα > m0 ≥ τBβ ]P(τ̃Bα > m0 ≥ τBβ ) +O(N(N1−2b+α)hN )

=
2

ρ2
N1−b(1 + o(1)).

This yields the desired upper bound on E
[
A

(N)
eq

]
. The same argument applies for

the lower bound, where we use a CASP started in the state 1 and apply Lemma 3.7.5

instead of Lemma 3.7.4.

2. It remains to show that, as claimed in Theorem 8b), the conditions (3.10) and (3.14)

are satisfied in the Wright-Fisher case W
(N)
i ≡ 1

N (with ρ2 = 1) as well as in the case

where L (W (N)) is a Dirichlet(αN , . . . , αN )-distribution with
αN+1
αN

= ρ2+O(1/N) as

N → ∞. For the Wright-Fisher case this is immediate because E[(W (N)
1 )n] = N−n

.

In the symmetric Dirichlet case, W
(N)
1 is Beta(αN , (N − 1)αN )-distributed, with n-

th moment
Γ(αN+n)
Γ(αNN+n) . In particular, the second moment is

αN+1
αN

, which because

of its assumed convergence gives (3.10). The ratio E[(W (N)
1 )n+1]/E[(W (N)

1 )n] equals

αN+n
αNN+n , from which (3.14) is immediate because of the assumed convergence of (αN ).
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Chapter 4

Haldane’s formula in Cannings
models:
The case of moderately strong
selection

For a class of Cannings models we prove Haldane’s formula,

π(sN ) ∼ 2sN
ρ2

, for the fixation probability of a single beneficial mu-

tant in the limit of large population size N and in the regime of

moderately strong selection, i.e. for sN ∼ N−b
and 0 < b < 1/2.

Here, sN is the selective advantage of an individual carrying the

beneficial type, and ρ2 is the (asymptotic) offspring variance. Our

assumptions on the reproduction mechanism allow for a coupling

of the beneficial allele’s frequency process with slightly supercritical

Galton-Watson processes in the early phase of fixation.

4.1 Introduction

Analysing the probability of fixation of a beneficial allele that arises from a single

mutant is one of the classical problems in population genetics, see [PW08] for a

historical overview. A rule of thumb known as Haldane’s formula states that the

probability of fixation of a single mutant of beneficial type with small selective

advantage s > 0 and offspring variance ρ2 in a large population of individuals, whose

total number N is constant over the generations, is approximately equal to 2s/ρ2.
Originally, this was formulated for the (prototypical) model of Wright and Fisher,

in which the next generation arises by a multinomial sampling from the previous

one (which leads to ρ2 = 1− 1
N in the neutral case), with the “reproductive weight”

of an individual of beneficial type being increased by the (small) factor 1 + s. A

natural generalization of the Wright-Fisher model are the Cannings models; here one

assumes exchangeable offspring numbers in the neutral case ([Can74], [Ewe04]), and

separately within the sets of all individuals of the beneficial and the non-beneficial

type in the selective case ([LL07]).

The reasoning in the pioneering papers by [Fis23], [Hal27] and [Wri31] was based

on the insight that, as long as the beneficial type is rare, the number of individuals

carrying the beneficial type is a slightly supercritical branching process for which

the survival probability is

π(s)∼2s

ρ2
as s→ 0,
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where 1+ s is the offspring expectation and ρ2 is the offspring variance (see [Ath92],

Theorem 3). The heuristics then is that the branching process approximation should

be valid until the beneficial allele has either died out or has reached a fraction of the

population that is substantial enough so that the law of large numbers dictates that

this fraction should rise to 1.

Notably, [LL07] obtained (for fixed population size N ) the result

π(s) =
1

N
+

2s

ρ2
+ o(s) as s→ 0, (4.1)

as a special case of their explicit analytic representation of π(s) within a quite general

class of Cannings models and selection mechanisms.

An interesting parameter regime as N → ∞ is that of moderate selection,

sN ∼ cN−b
with 0 < b < 1, c > 0, (4.2)

which is between the classical regimes of weak and strong selection. Is the Haldane
asymptotics

π(sN ) ∼
2sN
ρ2

as N → ∞, (4.3)

valid in the regime (4.2)?

If one could bound in this regime the o(s)-term in (4.1) by o(N−b), then (4.1)

would turn into (4.3). Such an estimate seems, however, hard to achieve in the

analytic framework of [LL07].

The main result of the present paper is a proof of the Haldane asymptotics

using an approximation by Galton-Watson processes in the regime of moderately
strong selection, which corresponds to (4.2) for 0 < b < 1

2 . Hereby, we assume that

the Cannings dynamics admits a paintbox representation, whose random weights are

exchangeable and of Dirichlet-type, and fulfil a certain moment condition, see Section

4.3. Here, the effect of selection is achieved by a decrease of the reproductive weights

of the non-beneficial individuals by the factor 1− sN .

An approximation by Galton-Watson processes was used in [GKWY17] to prove

the asymptotics (4.3) in the regime of moderately strong selection for a specific

Cannings model that arises in the context of experimental evolution, with the next

generation being formed by sampling without replacement from a pool of offspring

generated by the parents.

In the case b ≥ 1
2 the method developed in the present paper would fail, because

then the Galton-Watson approximation would be controllable only up to a time at

which the fluctuations of the beneficial allele (that are caused by the resampling)

still dominate the trend that is induced by the selective advantage. However, in

[BGPW21a] we proved the Haldane asymptotics (4.3) for the case of moderately weak
selection, i.e. under Assumption (4.2) with

1
2 < b < 1. There a backward point of

view turned out to be helpful, which uses a representation of the fixation probability

in terms of sampling duality via the Cannings ancestral selection graph developed in

[BGPW21a] (see also [GS18]).

The results of the present paper together with those of [BGPW21a] do not cover

the boundary case b = 1
2 between moderately strong and moderately weak selection.

We conjecture that the Haldane asymptotics (4.3) is valid also in this case.
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4.2 A class of Cannings models with selection

This section is a short recap of [BGPW21a] Section 2; we include it here for self-

containedness.

4.2.1 Paintbox representation in the neutral case

Neutral Cannings models are characterized by the exchangeable distribution of the

vector ν = (ν1, . . . , νN ) of offspring sizes; here the νi are non-negative integer-valued

random variables which sum to N . An important subclass are the mixed multinomial
Cannings models. Their offspring size vector ν arises in a two-step manner: first, a

vector of random weights W = (W1, . . . ,WN ) is sampled, which is exchangeable and

satisfies W1 + ...+WN = 1 and Wi ≥ 0, 1 ≤ i ≤ N .

In the second step, a die withN possible outcomes 1, . . . , N and outcome probabilities

W = (W1, . . . ,WN ) is thrownN times, and νi counts how often the outcome i occurs.

Hence, given the random weights W the offspring numbers ν = (ν1, ..., νN ) are

Multinomial(N,W )-distributed. Following Kingman’s terminology, we speak of a

paintbox representation for ν, and call W the underlying (random) paintbox.

This construction is iterated over the generations g ∈ Z: LetW (g) = (W
(g)
1 , . . . ,W

(g)
N )

be independent copies of W , and denote the individuals in generation g by (i, g),
i ∈ [N ]. Assume that each individual (j, g + 1), j ∈ [N ] := {1, . . . , N} in generation

g + 1, chooses its parent in generation g, with conditional distribution

P((i, g) is the parent of (j, g + 1)|W (g)) =W
(g)
i , ∀ i ∈ [N ].

where given W (g)
the choices of the parents for individuals {(j, g + 1), j ∈ [N ]}

are independent and identically distributed. This results in exchangeable offspring

vectors ν(g) which are independent and identically distributed over the generations

g.

For notational simplicity we do not always display dependence of W (g)
on the

generation g, and write W instead. From time to time however we want to emphasise

the dependence of W on N and therefore write W (N)
instead of W .

Some exchangeable offspring vectors do not have a paintbox representation, for

example a random permutation of the vector (2, ..., 2, 0, ..., 0). Prototypical paint-

boxes are W = ( 1
N , . . . ,

1
N ), which leads to the Wright-Fisher model, and the class

of Dirichlet(α, . . . , α)-distributed random weights. In particular, the offspring dis-

tribution with Dirichlet(1, . . . , 1)-distributed paintbox can be seen as a limiting case

of the offspring distribution for the model of experimental evolution considered in

([BGPW19], [GKWY17]).

4.2.2 A paintbox representation with selection

Let W (g)
, g ∈ Z, be as in the previous section, and let sN ∈ [0, 1). Assume each indi-

vidual carries one of two types, either the beneficial type or the wildtype. Depending

on the type of individual (i, g) we set

W̃
(g)
i = (1− sN )W

(g)
i
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if (i, g) is of wildtype and W̃
(g)
i = W

(g)
i if (i, g) is of beneficial type. The probability

that an individual is chosen as parent is now given by

P((i, g) is parent of (j, g + 1)) =
W̃

(g)
i∑N

ℓ=1 W̃
(g)
ℓ

(4.4)

for all i, j ∈ [N ]. Parents are chosen independently for all i ∈ [N ] and the distribution

does not change over the generations. If (i, g) is the parent of (j, g + 1) the child

(j, g + 1) inherits the type of its parent. In particular, this reproduction mechanism

leads to offspring numbers that are exchangeable among the beneficial as well as

among wildtype individuals.

4.2.3 The Cannings frequency process

In the previous section we gave a definition for a Cannings model which incorporates

selection, by decreasing the random weight of each wildtype individual by the factor

1−sN . This allows to define the Cannings frequency process X = (Xg)g≥0 with state

space [N ] which counts the number of beneficial individuals in each generation g.

Assume there are 1 ≤ k ≤ N beneficial individuals at time g; due to the exchange-

ability of W (g)
we may assume that the individuals (1, g), . . . , (k, g) are the beneficial

ones. Given W (g) = W , the probability that individual (j, g + 1) is of beneficial type

is then due to (4.4) equal to ∑k
i=1Wi∑k

i=1Wi + (1− sN )
∑N

i=k+1Wi

, (4.5)

and is the same for all j ∈ [N ]. Hence, givenW (g) = W and given there arek beneficial

individuals in generation g, the number of beneficial individuals in generation g + 1
has distribution

Bin

(
N,

∑k
i=1Wi∑k

i=1Wi + (1− sN )
∑N

i=k+1Wj

)
; (4.6)

this defines the transition probabilities of the Markov chain X .

4.3 Main Result

Before we state our main result we specify the assumptions on the paintbox and the

strength of selection.

Definition 4.3.1. (Dirichlet-type weights) We say that a random vector W (N) with ex-
changeable components W (N)

1 , . . . ,W
(N)
N is of Dirichlet-type if

W
(N)
i =

Yi∑N
ℓ=1 Yℓ

, i = 1, . . . , N, (4.7)

where Y1, . . . , YN are independent copies of a random variable Y with P(Y > 0) = 1.

We assume that

E [exp(hY )] <∞, (4.8)
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for some h > 0, which implies the finiteness of all moments of Y . The relevance (and

possible relaxations) of Condition (4.8) are discussed further in Remark 4.3.3 a), see

also the comment in Remark 4.3.2 a).

Remark 4.3.2. a) The biological motivation for considering Dirichlet-type weights comes
from seasonal reproductive schemes. At the beginning of a season a set (of size N ) of
individuals is alive. These individuals and their offspring reproduce and generate a
pool of descendants within that season. Only a few individuals from this pool survive
till the next season. The number N in the model is assumed to be the total number
of individuals that make it to the next season. Dirichlet-type weights arise in the
asymptotics of an infinitely large pool of offspring; then sampling with and without
replacement coincide. Condition (4.8), which we will require for the proof of Theorem 9
(see also Remark 4.3.3), guarantees that the pool of descendants of a single individual is
not too large in comparison to the pool of descendants generated by the other individuals.
The simplifying assumption P(Y > 0) = 1 implies that the weight W (N)

i of a parent
cannot be equal to zero. Observe, however, that weights of single parents can be
arbitrarily small if (e.g.) Y has a density which is continuous and strictly positive in
zero.

b) The case of a deterministic Y corresponds to W (N)
i ≡ 1/N , i.e. the classical Wright-

Fisher model. If Y has a Gamma(κ)-distribution, then W (N) is Dirichlet (κ, . . . , κ)-
distributed.
Theorem 1 in [HM21], gives a classification of a large class of Cannings models with a
paintbox of the form (4.7) with regard to the convergence of their rescaled genealogies.

c) Let ν(N) be a sequence of Cannings offspring numbers that are represented by the
paintboxes W (N). It is well known (and easily checked) that

Var
(
ν
(N)
1

)
= N(N − 1)E[(W (N)

1 )2]. (4.9)

If W (N) is of the form (4.3.1) with E[Y 2] <∞, which is clearly implied by (4.8), then
(see [HM21] Theorem 1 (i)) the right hand side of (4.9) converges to E[Y 2]

E[Y ]2
as N → ∞.

In view of Remark 4.3.2 c) we have for the asymptotic neutral offspring variance

lim
N→∞

Var

(
ν
(N)
1

)
=: ρ2 =

E[Y 2]

E[Y ]2
. (4.10)

ReplacingY byY ′ = Y
E[Y ] does not affect (4.7), hence we can and will assumeE[Y ] = 1

in the proofs, which simplifies (4.10) to ρ2 = E[Y 2] (and makes (4.10) consistent with

the notation of [HM21]). Under the assumption E[Y 4] <∞, which is implied by (4.8)

as well, the following asymptotics is valid

Var

(
ν
(N)
1

)
= ρ2 +O(N−1), as N → ∞. (4.11)

We will discuss the relevance of this asymptotics in Remark 4.3.3 b), and prove it in

Lemma 4.4.2 b).
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Turning to the selective advantage, we assume that for a fixed η ∈ (0, 14) the se-

quence (sN ) obeys

N− 1
2
+η ≤ sN ≤ N−η, (4.12)

which we call the regime of moderately strong selection, thus generalizing the corre-

sponding notion introduced in Section 4.1. (Note that (4.12) has an analogue in the

regime of moderately weak selection as discussed in [BGPW21a]). In order to connect

to (4.2) we define

bN := − ln sN
lnN

(4.13)

which is equivalent to sN = N−bN
, with (4.12) translating to

η ≤ bN ≤ 1

2
− η.

We now state our main result on the asymptotics (as N → ∞) of the fixation

probability of the Cannings frequency process (X
(N)
g ) = (Xg) defined in Subsection

4.2.3. Note that the Markov chain (Xg) has the two absorbing states 0 and N , with

the hitting time of {0, N} being a.s. finite for all N .

Theorem 9. (Haldane’s formula)
Assume that Conditions (4.7), (4.8) and (4.12) are fulfilled. Let (Xg)g≥0 be the number

of beneficial individuals in generation g, withX0 = 1. Let τ = inf {g ≥ 0 : Xg ∈ {0, N}},

then

P(Xτ = N)∼ 2sN
ρ2

, as N → ∞. (4.14)

We give the proof of Theorem 9 in Section 4.5, after preparing some auxiliary

results in Section 4.4. Next we give a strategy of the proof and its main ideas, with

an emphasis on the role of Condition (4.12). In Remark 4.3.3 we discuss possible

relaxations of Condition (4.8) and the boundary case b = 1
2 .

The proof of Theorem 9 is divided into three parts, corresponding to three growth

phases of X . Concerning the first phase we show that the probability to reach the

level N b+δ
is

2sN
ρ2

(1 + o(1)), for some small δ > 0 and b := bN ; this is the content of

Proposition 4.5.3. The proof is based on stochastic domination from above and below

by slightly supercritical Galton-Watson processes Z and Z with respective offspring

distributions (4.29) and (4.30).

To construct a Galton-Watson stochastic upper bound Z of X in its initial phase,

we recall that the transition probabilities of X are mixed Binomial specified by (4.6).

Using (4.7) we approximate (4.5) from above by

1 + sN + o(sN )

N

k∑
ℓ=1

Yℓ. (4.15)

As we will show in Lemma 4.4.4, this is possible with probability1−O(exp(−c′N1−2α))
for some α < 1

2 and c′ > 0, and for k ≤ N b+δ
with b + δ < 1/2. We will then be

able to dominate the mixed Binomial distribution (4.6) by the mixed Poisson dis-

tribution with random parameter (4.15), again up to an error term of order o(sN ).
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Noting that (4.15) is a sum of independent random variables, we arrive at the up-

per Galton-Watson approximation for a single generation. For any small ε > 0 this

can be repeated for N b+ε
generations, which (as an application of Lemma 4.4.1 will

show) is enough to reach either the level 0 or the levelN b+δ
with probability 1−o(sN ).

To obtain a Galton-Watson stochastic lower boundZ ofX in its initial phase, we adapt

an approach that was used in [GKWY17] in a related situation. As in Subsection 4.2.1,

number the individuals in generation g by (i, g), now with (1, g), . . . , (Xg, g), being

the beneficial individuals, and denote by ω
(g)
i the number of children of the individ-

ual (i, g), 1 ≤ i ≤ Xg. As will be explained in the proof of Lemma 4.5.1, as long asXg

has not reached the level N b+δ
, the distribution of ω

(g)
i can be bounded from below

by a mixed binomial distribution

Bin

(
N − ⌈N b+δ⌉, Y1

1 + sN + o(sN )

N

)
with probability 1 − O(exp(−N ε)) for some sufficiently small ε > 0, again for

b + δ < 1/2. A suitable stopping and truncation at the level N b+δ
will give the

Galton-Watson process approximation from below for the first phase.

We will verify in Subsection 4.4.1 that both slightly supercritical branching pro-

cesses Z and Z reach the level N b+δ
with probability

2sN
ρ2

(1 + o(1)).

As to the second phase, we will argue in Section 4.5.2 that, after reaching the level

N b+δ
the Cannings frequency process X will grow to a macroscopic fraction εN with

high probability. If the frequency of beneficial individuals is at least N b+δ
(but still

below εN ), then in a single generation the frequency of beneficial individuals grows

in expectation at least by 1 + (1 − ε)sN + o(sN ). Hence, cs−1
N lnN generations after

X has reached the level N b+δ
, the expected value of the process X reaches the level

2εN . Similarly one bounds the variance produced in a single generation and derives

from this an estimate for the variance accumulated over cs−1
N lnN generations. This

bound being sufficiently small, an application of Chebyshev’s inequality yields that

(after cs−1
N lnN generations) X crosses the level εN with probability tending to 1

after reaching the level N b+δ
.

In Section 4.5.3) we deal with the last phase, and will show that the fixation prob-

ability tends to 1 as N → ∞ if we start with at least εN individuals of beneficial

type. Here we use the representation for the fixation probability that is based on a

sampling duality between the Cannings frequency process and the Cannings ances-

tral selection process (CASP) which was provided in [BGPW21a]. For a subregime

of moderately weak selection the claim will follow quickly from the representation

formula combined with a concentration result for the equilibrium distribution of the

CASP that was proved in [BGPW21a]. To complete the proof we will then argue

that both the CASP and the representation of the fixation probability depend on the

selection parameter in a monotone way.

Remark 4.3.3. a) With some additional work the assumption (4.8) of the existence of
some exponential moment of Y can be relaxed to some weaker moment condition. In
order not to overload the present paper, we restrict here to a sketch.
In Lemma 4.5.1 we couple the frequency process of the beneficial individuals with
Galton-Watson processes for N b+δ generations. By means of the estimates in Lemma
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4.4.3 and Lemma 4.4.4 we show that these couplings hold for a single generation
with probability 1 − O(exp(−N c′)) for some appropriate c′ > 0. Since we need the
couplings to hold for N b+δ generations, it suffices that the couplings hold in a single
generation with probability 1 − O(N−2(b+δ)) for some δ > 0 (since in this case the
probability of the coupling to fail is o(sN ) and therefore can be neglected with regard
to (4.14)). Such probability bounds can also be obtained under weaker assumptions
on the distribution of the random variable Y . Assume e.g. that Y has a regularly
varying tail, i.e. P(Y > x) ∼ x−βL(x) for some β > 0 and L is a slowly varying
function. For the proof of Lemma 4.5.1 we need to estimate the probability of the
event figuring in Lemma 4.4.3 with b < c ≤ 1 and the probability of the event
figuring in Lemma 4.4.4 with b < α < 1

2 . To show that these probabilities are of
order O(N−2(b+δ)) we only need that P (

∑n
i=1 Yi > x) = O(n−2(b+δ)) (since the

remaining probability in Lemma 4.4.3 can be estimated with Hoeffding’s inequality,
see [Hoe94]) with n = N, x = N1−α in Lemma 4.4.4 and n = N c, x = N c in Lemma
4.4.3. The asymptotics (3.2) in [MN98] states that P (

∑n
i=1 Yi > x) ∼ nx−βL(x).

Consequently, we need to choose β > 0 such thatN1−β(1−α)L(N1−α) = O(N−2(b+δ))
as well as N c−βcL(N c) = O(N−2(b+δ)). This works for all choices of 0 < b < 1

2 ,
provided that β ≥ 4.
It would be nice to have a proof of the asymptotics (4.14) under the assumption that the
4th moment of Y is finite, even without the assumption of a regularly varying tail.
The investigation of the analogue to (4.14) in the absence of finite second moments, i.e.
for Cannings models with heavy-tailed offspring distributions, is the subject of ongoing
research, and will be treated in a forthcoming paper.

b) Relation (4.11) will be used in the proof of Lemma 4.5.4. Moreover, this relation is
also instrumental in the companion paper [BGPW21a] (on the regime of moderately
weak selection). The special case n = 3 in Lemma 4.4.2 a) shows that the assumption
E[Y 3] <∞ implies

E[(W (N)
1 )3] = O(N−3).

This gives a rate of decay O(N−2) for the triple coalescence probability (and is the
moment condition (3.6) in [BGPW21a]).
Condition (4.8) (on the existence of an exponential moment of Y ) guarantees the
Haldane asymptotics (4.14) for Cannings models with weights of Dirichlet type also
in the whole regime of moderately weak selection N−1+η ≤ sN ≤ N− 1

2
−η without

any further assumption. In particular the assumption on the finiteness of a negative
moment of Y in [BGPW21a], Lemma 3.7 b), is unnecessary. Indeed, in the proof
of Lemma 4.4.2 a) we show that E[(W (N)

1 )n] ≤
(
2
N

)n
(E[Y n] + o(1)). As shown

in the proof of Lemma 3.7 b) in [BGPW21a] Condition (4.8) guarantees that for a
sequence (hN ) with hN → ∞ and hN ∈ O(logN) for all n ≤ 2hN we can estimate
E[Y n] from above by C

(
2hN
c

)n
for appropriate constants C, c > 0. Consequently, for

N sufficiently large we have E[(W (N)
1 )n] ≤

(
KhN
N

)n
for some appropriate constant

K > 0, that is Condition (3.8) in [BGPW21a] is fulfilled.

c) It seems a mathematically intriguing question whether in the regime of moderate selec-
tion all Cannings models which admit a paintbox representation with Dirichlet-type
weights and are in Kingman domain of attraction, also follow the Haldane asymptotics
(4.14).
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An example of a sequence of Cannings models (with weights not of Dirichlet-type)
which fulfil Möhle’s condition but do not follow the Haldane asymptotics, is the follow-
ing. In each generation a randomly chosen individual gets weightN−γ , 0 < γ < 1

2 and
all the other individuals have a weight of 1−N−γ

N−1 . Then we have E
[
W 2

1

]
∼ N−1−2γ

and E
[
W 3

1

]
= o(E

[
W 2

1

]
), therefore by Möhle’s criterion the genealogy lies in the at-

traction of Kingman’s coalescent. However, the Haldane asymptotics would predict that
the survival probability is of order sN/(N2N−1−2γ) ∼ N−1−b+2γ , which for γ < b/2
is ≪ N−1. Since the fixation probability of a beneficial allele cannot be smaller than
the fixation probability under neutrality (which is 1

N ), (4.14) must be violated in this
example.

d) The present work together with the approach in [BGPW21a] does not cover the boundary
case b = 1

2 . A quick argument why our arguments cannot be extended simply to the
boundary case is the following. We show that once the beneficial type exceeds (in the
order of magnitude) the frequency s−1

N = N b it goes to fixation with high probability.
In the regime b < 1

2 we use couplings with Galton-Watson processes to show that this
threshold is reached with probability 2sN

ρ2
(1 + o(1)). However, these couplings are not

guaranteed as soon as collisions occur, i.e. when beneficial individuals are replacing
beneficial individuals. By the well known ”birthday problem“ collisions are common
as soon as N

1
2 individuals are of the beneficial type. Therefore we require N b ≪ N

1
2 ,

i.e. b < 1
2 .

In the light of the results of the present paper and of [BGPW21a], there is little reason
to doubt that the assertion of Theorem 9 should fail in the boundary case b = 1/2.
However, the question remains open (and intriguing) whether then the backward or the
forward approach (or a combination of both) is the appropriate tool for the proof.

4.4 Auxiliary results

4.4.1 Slightly supercritical Galton-Watson processes

Throughout this subsection, (sN )N∈N is a sequence of positive numbers converging

to 0, σ2 is a fixed positive number, and Z(N) = (Z
(N)
n )n≥0, N = 1, 2, . . . are Galton-

Watson processes with offspring expectation

E1[Z
(N)
1 ] = 1 + sN + o(sN ), (4.16)

offspring variance σ2 + o(1) and uniformly bounded third moments E1[(Z
(N)
1 )3].

Unless stated otherwise we assume that Z
(N)
0 = 1. We write

ϕN := P
(
lim
n→∞

Z(N)
n = ∞

)
= 1− P

(
Z(N)
n = 0 for some n > 1

)
(4.17)

for the survival probability of (Z(N)) and observe

ϕN∼
2sN
σ2

. (4.18)

The derivation and discussion of the asymptotics (4.18) has a venerable history, a few

key references being [Hal27], [Kol38], [Esh81], [Hop92], [Ath92] Theorem 3, [HJV05]

Theorem 5.5.

Lemma B.3 in [GKWY17] gives a statement on the asymptotic probability that

Z(N)
either quickly dies out or reaches a certain (moderately) large threshold. The
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following lemma improves on this in a twofold way. It dispenses with the assumption

sN ∼ cN−b
for a fixed b ∈ (0, 1) and more substantially, it gives a quantitative estimate

for the probability that, given non-extinction, the (moderately) large threshold is

reached quickly.

Lemma 4.4.1. Fix δ > 0, and let T (N) := inf{n ≥ 0 : Z
(N)
n /∈ {1, 2, ..., ⌈( 1

sN
)1+δ⌉}. Then,

for all ε > 0

P1

(
T (N) > (1/sN )

(1+ε)
)
= O

(
exp

(
−cs−ε/2N

))
, (4.19)

with c = − log
(
7
8

)
.

Proof. Observe that

P1

(
T (N) > (1/sN )

1+ε
)
≤ P1

(
T (N) > (1/sN )

1+ε
∣∣∣ZN survives

)
+ P1

(
T (N) > (1/sN )

1+ε
∣∣∣ZN dies out

)
. (4.20)

In Part 1 of the proof we will estimate the first probability on the r.h.s. of (4.20); this

will give the above-mentioned improvement of Lemma B.3 in [GKWY17]. Part 2 of

the proof deals with the second probability on the r.h.s. of (4.20).

Part 1. Like in the proof of Lemma B.3 in [GKWY17] we obtain an upper bound

on the time at which the process Z(N)
reaches the level (1/sN )

1+δ
given survival,

by considering the process Z⋆ = (Z⋆n)n≥0 consisting of the immortal lines of Z(N)

conditioned to non-extinction. (For simplicity of notation we drop a superscript N
in Z⋆.) Let ϕN denote the survival probability of Z(N)

as in (4.17). The offspring

distribution of Z⋆ arises from that of Z(N)
as

P1(Z
⋆
1 = k) =

1

ϕN
E1

[(
Z

(N)
1

k

)
ϕkN (1− ϕN )

Z
(N)
1 −k

]
, k ≥ 1. (4.21)

(see [LP17] Proposition 5.28). In particular one has

E1[Z
⋆
1 ] =

1

ϕN
E1[Z

(N)
1 ϕN ] = E1[Z

(N)
1 ].

Denote, as usual, for a random variable X and an event A by E [X;A] := E [X1A].
Furthermore,

E1[Z
⋆
1 ;Z

⋆
1 ≥ 3] ≤ 1

ϕN
E1

[(
Z

(N)
1

3

)
ϕ3N

]
= O(ϕ2N )

because of the assumed uniform boundedness of the third moments of Z
(N)
1 . These

two relations together with (4.16), (4.18) and the fact that E1[Z
⋆
1 ;Z

⋆
1 = 1] ≤ 1 imme-

diately give a lower bound for E1[Z
⋆
1 ;Z

⋆
1 = 2] ≤ 1, implying that for any β ∈ (0, 1)

P1(Z
⋆
1 ≥ 2) ≥ βsN , P1(Z

⋆
1 = 1) ≤ 1− βsN . (4.22)

Hence the process Z(N)
, when conditioned on survival, is bounded from below by

the counting process Z⋆ of immortal lines, which in turn is bounded from below by

the process Z̃ = (Z̃n)n≥0 with offspring distribution

ν = (1− βsN )δ1 + βsNδ2.
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So far we closely followed the proof in [GKWY17], but now we deviate from that

proof to obtain the rate of convergence claimed in (4.19).

An upper bound for the time T̃ := inf{n ≥ 0 : Z̃n ≥ (1/sN )
1+δ} also gives

an upper bound for the time T (N)
. The idea is now to divide an initial piece of

k ≤ (1/sN )
(1+ε)

generations into ⌊(1/sN )ε/2⌋ parts, each of n0 ≤ (1/sN )
(1+ε/2)

gener-

ations. Because of the immortality of Z̃ and the independence between these parts

we obtain immediately that

P(T̃ ≥ (1/sN )
(1+ε)) ≤ P1(Z̃j ≤ (1/sN )

1+δ
for j = 1, . . . , k) ≤

(
P1(Z̃n0 ≤ (1/sN )

1+δ)
)⌊(1/sN )ε/2⌋

We then bound P1(Z̃n0 > (1/sN )
1+δ) from below by an application of the Paley-

Zygmund inequality in its form

P
(
X ≥ E[X]

2

)
≥ 1

4

(E[X])2

E[X2]
, (4.23)

whereX is a non-negative random variable (with finite second moment). For a super-

critical Galton-Watson process with offspring expectation m and offspring variance

σ2 the n-th generation offspring expectation and n-th generation offspring variance

σ2n are given by mn
and

σ2mn(mn − 1)/(m2 −m) (see [AN72], p.4). Hence, we obtain

E1[Z̃n] = (1 + βsN )
n, Var1[Z̃n] =

βsN (1− βsN )(1 + βsN )
n((1 + βsN )

n − 1)

(1 + βsN )2 − (1 + βsN )
.(4.24)

We choose the smallest n0 such that

E1[Z̃n0 ]≥2(1/sN )
1+δ. (4.25)

Observe that n0 ∼ 1
βsN

log(2( 1
sN

)1+δ) which ensures that (1/sN )
ε/2n0 ≤ (1/sN )

1+ε

for N large enough. We now estimate E1[(Z̃n0)
2] using (4.24) as follows

E
[
Z̃2
n0

]
=
βsN (1− βsN )(1 + βsN )

n0((1 + βsN )
n0 − 1)

(1 + βsN )2 − (1 + βsN )
+ (1 + βsN )

2n0

≤ βsN (1 + βsN )
2n0

βsN + (βsN )2
+ (1 + βsN )

2n0 ≤ 2(1 + βsN )
2n0 .

Applying (4.23) with X := Z̃n0 yields

P1

(
Z̃n0 ≥ 1

2
E
[
Z̃n0

])
≥ 1

4

(1 + βsN )
2n0

2(1 + βsN )2n0
=

1

8
,

which because of (4.25) implies P1(Z̃n0 ≤ (1/sN )
1+δ) ≤ 7

8 . If after time n0 the process

Z̃n0 is still smaller than our desired bound (1/sN )
1+δ

, we can iterate this argument

⌊(1/sN )ε/2⌋ times and arrive at

(P1(Z̃n0 ≤ (1/sN )
1+δ)⌊(1/sN )ε/2⌋ ≤

(
7

8

)⌊(1/sN )ε/2⌋
= exp(−c⌊(1/sN )ε/2⌋),

with c = − log 7
8 . This gives the desired bound for the first term in (4.20).
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Part 2. We now turn to the second term on the r.h.s. of (4.20). Define

T
(N)
0 := inf{n ≥ 0 : Z(N)

n = 0}.

Obviously T (N) ≤ T
(N)
0 , and so it suffices to prove

P
(
T
(N)
0 > (1/sN )

1+ε|Z(N)
dies out

)
≤ exp(−βs−εN (1 + o(1))). (4.26)

This proof follows closely that of the second part of Lemma B.3 in [GKWY17]; we

include it here for completeness.

We observe

E1

[
Z

(N)
1 |Z(N)

dies out

]
=

1

1− ϕN
E1

[
(1− ϕN )

Z
(N)
1 Z

(N)
1

]
= E1

[
(1− ϕN )

Z
(N)
1 −1Z

(N)
1

]
= P1(Z

⋆
1 = 1),

where the first and the last equality follow from the branching property and from

(4.21), respectively. We have shown in (4.22) that P1(Z
⋆
1 = 1) ≤ 1− βsN + o(sN ) and

hence we can conclude

E
[
Z⌊(1/sN )1+ε⌋|Z(N)

dies out

]
≤ (1− βsN + o(sN ))

⌊(1/sN )1+ε⌋ ≤ exp(−βs−εN (1 + o(1))).

Finally, an application of Markov’s inequality yields (4.26)

P(T (N)
0 > (1/sN )

1+ε|Z(N)
dies out ) ≤ P(Z⌊(1/sN )1+ε⌋ ≥ 1|Z(N)

dies out ) ≤ exp(−βs−εN (1 + o(1))).

4.4.2 Estimates on the paintbox

The following lemma provides the asymptotics (4.11) as well as the moment bounds

for the Dirichlet-type weights that were addressed in Remark 4.3.3 b).

Lemma 4.4.2 (Moments of the weights). Let Y, Y1, ..., YN be iid positive random variables
with E[Y ] = 1 and ρ2 = E[Y 2]. We abbreviate HN := Y1 + · · ·+ YN .
a) Assume E[Y n] <∞ for some n ∈ N. Then

E

[(
Y

(Y +HN )

)n]
= O(N−n).

b) Assume E[Y 4] <∞. Then

E

[(
Y

(Y +HN )

)2
]
=

ρ2

N2
+O(N−3).
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Proof. a) Consider the event FN := {HN
N ≤ 1

2}. First we note that

E
[(

Y

(Y +HN )

)n]
≤ E

[(
Y

Y +HN

)n
1FN

]
+ E

[(
Y

HN

)n
1F c

N

]
≤ P (FN ) +

(
2

N

)n
E [Y n] .

Let K be so large that E[Y ∧K] > 1
2 . Hoeffding’s inequality applied to the sample

mean of i.i.d. copies of the bounded random variable Y ∧ K implies that P(FN )
decays exponentially fast. Since E [Y n] is bounded this yields the claim.

b) We observe that

E

[
Y 2

(Y +HN )2

]
=

1

N2
E

 Y 2(
Y
N + HN

N

)2
 .

LetE
(1)
N := {HN

N > 5
4}, E

(2)
N := {HN

N < 3
4} andE

(3)
N := {Y > N

4 }.Markov’s inequality

applied to P

((∑N
i=1(Yi − 1)

)4
≥ N4

44

)
together with the assumption E[Y 4] < ∞

implies P(E
(1)
N ) = O(N−2). Likewise, P(E

(3)
N ) = O(N−4). Furthermore, let K be so

large that E[Y ∧K] > 3
4 . Again, Hoeffding’s inequality applied to the sample mean

of i.i.d.copies of the bounded random variable Y ∧ K together with monotonicity

imply that P(E(2)
N ) decays exponentially; a fortiori we have P(E(2)

N ) = O(N−3).

Let EN := E
(1)
N ∪ E(2)

N ∪ E(3)
N . We have E

[
Y 2(

HN
N

+ Y
N

)21EN

]
= O(N−1) since on E

(1)
N

we have
Y 2(

HN
N

+ Y
N

)2 ≤ Y 2
and on E

(2)
N and E

(3)
N we have

Y 2(
HN
N

+ Y
N

)2 ≤ N2
. Hence, it

remains to show thatE

[
Y 2(

HN
N

+ Y
N

)21Ec
N

]
= ρ2+O(N−1).DefineZN := 1√

N
(HN −N)

and observe

E

 Y 2(
HN
N + Y

N

)21Ec
N

 = E

 Y 2(
1 + ZN√

N
+ Y

N

)21Ec
N

 .
Abbreviate RN = 2

(
ZN√
N

+ Y
N

)
+
(
ZN√
N

+ Y
N

)2
. On EcN we have −1

2 ≤ RN and hence

1−RN ≤ 1(
HN
N + Y

N

)2 =
1

1 +RN
≤ 1−RN + 2R2

N .

Thus

E[Y 2(1−RN )1Ec
N
] ≤ E

 Y 2(
HN−N
N + Y

N

)21Ec
N

 ≤ E[Y 2(1−RN + 2R2
N )1Ec

N
].(4.27)

By Cauchy-Schwarz we haveE[Y 2
1Ec

N
] = E[Y 2]+O(N−1). Similarly,E[Y 2ZN1EN

] =

E[Y 2ZN ] +O(N−1) = O(N−1), since E[Y 2ZN ] vanishes due to the independence of

Y and ZN . The remaining terms in (4.27) are O(N−1) as well, which completes the

proof of Lemma 4.4.2.
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We now prove a bound on the deviations for the total weight of k individuals.

Lemma 4.4.3. (Large deviations bound for a moderate number of random weights)
Let (Yi) and (W

(N)
i ) satisfy (4.7), (4.8),E[Y ] = 1 and let k = kN ≤ N c for some 0 < c ≤ 1.

Then for all ε > 0 there exists a positive constant cε depending only on ε and the distribution
of Y such that

P

(
k∑
i=1

W
(N)
i ≥ (1 + ε)N c−1

)
= O(exp(−cεN c)). (4.28)

Proof. This follows by a combination of two Cramér bounds. Indeed, the l.h.s. of

(4.28) is by assumption bounded from above by

P

(∑⌈Nc⌉
i=1 Yi∑N
j=1 Yj

≥ (1 + ε)N c−1

)
.

Abbreviating E := {∑N
j=1 Yj ≥ (1 − ε′)N} with ε′ such that (1 + ε)(1 − ε′) > 1 we

estimate the latter probability from above by

P

⌈Nc⌉∑
i=1

Yi ≥ (1 + ε)N c−1
N∑
j=1

Yj , E

+ P (Ec)

≤ P

⌈Nc⌉∑
i=1

Yi ≥ N c(1 + ε)(1− ε′)

+ P (Ec)

= O(e−N
cI((1+ε)(1−ε′))) +O(e−NI(1−ε

′)),

denoting by I(y) the rate function of Y . Due to (4.8) I(y) exists around E[Y ] = 1 and

is strictly positive for y ̸= 1 (see [DZ94] Theorem 2.2.3). This yields an upper bound

of O(exp(−cεN c)) with cε = min{I((1 + ε)(1− ε′)), I(1− ε′)}.

The next lemma gives stochastic upper and lower bounds for the sums of the

random weights in terms of sums of the independent random variables Yi.

Lemma 4.4.4. (Bounds for the random weights)
Assume that Conditions (4.7) and (4.8) are fulfilled and E[Y ] = 1. Let 0 < α < 1

2 , then for
k = kN ≤ N

P

(
1−N−α

N

k∑
i=1

Yi ≤
k∑
i=1

W
(N)
i ≤ 1 +N−α

N

k∑
i=1

Yi

)
≥ 1− exp

(
−c′N1−2α

)
(1 + o(1)),

for some c′ > 0.

Proof. It suffices to show

P

(∣∣∣∣∣ N∑N
j=1 Yj

− 1

∣∣∣∣∣ ≥ N−α
)

= O(exp(−N1−2α)).
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For 0 < c < 1 we have

P

(
N∑
i=1

Yi < cN

)
= O(exp(−NI(c))),

where I(y) is the rate function of Y . Condition (4.8) ensures that I(c) > 0 for

E [Y1] = 1 ̸= c, see [DZ94] Theorem 2.2.3.

For any a, a′ ≥ 1 one has

∣∣ 1
a − 1

a′

∣∣ ≤ |a− a′|. This yields

P

(∣∣∣∣∣ N∑N
j=1 Yj

− 1

∣∣∣∣∣ ≥ N−α
)

= P

(
1

c

∣∣∣∣∣ Nc∑N
j=1 Yj

− c

∣∣∣∣∣ ≥ N−α
)

≤ P

(
1

c2

∣∣∣∣∣
∑N

j=1 Yj

N
− 1

∣∣∣∣∣ ≥ N−α
)

+O(e−NI(c))

= P

(
1√
N

∣∣∣∣∣
N∑
i=1

(Yi − 1)

∣∣∣∣∣ ≥ c2N
1
2
−α
)

+O(e−NI(c)).

Using [Cra38] Theorem 1, the probability on the r.h.s. can, with a suitable c̃ > 0, be

estimated from above by

exp(c̃N1−3α) exp(−c
4

2
N1−2α)(1 +O(N−α logN)) = exp

(
−c

4

2
N1−2α

)
(1 + o(1)),

which gives the desired result.

4.5 Proof of the main result

Recall from (4.13) that we denote the order of the selection strength by bN = − log sN
logN .

To simplify notation we will drop the subscript and simply write b := bN . As

mentioned already in the sketch of the proof of Theorem 9 we assume without loss

of generality that E[Y ] = 1.
The proof of the Theorem is divided into three parts, which correspond to three

phases of growth for the Cannings frequency process X . The initial phase is decisive:

due to Proposition 4.5.3, the probability that X reaches the level N b+δ
for some

sufficiently small δ is given by the r.h.s. of (4.14). Lemma 4.5.4 and Lemma 4.5.5

then guarantee that, once having reached the level N b+δ
, the process X reaches

N with high probability. The proof of the Theorem is then a simple combination

of these three results and the strong Markov property. Indeed, with τ1, τ2, τ3 as

in Proposition 4.5.3, Lemma 4.5.4 and Lemma 4.5.5, and with δ, δ′, ε fulfilling the

requirements specified there, the fixation probability in the l.h.s. of (4.14) can be

rewritten as

P(Xτ = N) = P(Xτ3 = N |Xτ2 ≥ εN)P(Xτ2 ≥ εN |Xτ1 ≥ N b+δ)P1(Xτ1 ≥ N b+δ)

= (1− o(1))(1−O(N−δ′))
2sN
ρ2

(1 + o(1))

∼2sN
ρ2

.
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4.5.1 First phase: From 1 to N b+δ

In this section we show that as long as Xg ≤ N b+δ
the process X can be upper

and lower bounded (with sufficiently high probability) by two slightly supercritical

branching processes Z = (Zg)g≥0 and Z = (Zg)g≥0. To construct the upper bound Z
we take the highest per capita selective advantage, which occurs when only a single

individual is beneficial. Using Lemma 4.4.3 and Lemma 4.4.4, we will approximate

the thus arising mixed binomial distribution by a mixed Poisson distribution, which

leads for Z to the offspring distribution

Pois (Y1(1 + sN + o(sN ))) , (4.29)

where Y1 is the random variable figuring in (4.7). To arrive at the lower bounding

Galton-Watson process Z we note that the per capita selective advantage is bounded

from below by the one when ⌈N b+δ⌉ beneficial individuals are present in the parent

generation, as long as the process X has not reached the level N b+δ
. Again using

Lemma 4.4.3 and Lemma 4.4.4 we will show that the offspring distribution of Z can

be chosen as the mixed binomial distribution

Bin

(
N − ⌈N b+δ⌉, Y1

N
(1 + sN + o(sN ))

)
. (4.30)

Lemma 4.5.1. (Coupling with Galton-Watson processes)
Let δ and α be such that 0 < δ < η and 1

2 − η < α < 1
2 , and put

τ1 = inf{g ≥ 0 : Xg = 0 or Xg ≥ N b+δ}.

Then X can be defined on one and the same probability space together with two branching
process Z and Z with offspring distributions (4.30) and (4.29), respectively, such that for
j = 1, 2, . . .

P(Zj∧τ1∧⌈N b+δ⌉ ≤ Xj∧τ1∧⌈N b+δ⌉ ≤ Zj∧τ1
∣∣Zj−1∧τ1 ≤ Xj−1∧τ1 ≤ Zj−1∧τ1)(4.31)

≥ 1− e−c
′N1−2α

(1 + o(1)),

with c′ as in Lemma 4.4.4.

Applying the latter estimate g times consecutively yields immediately the following

corollary:

Corollary 4.5.2. Let δ, α, τ1,Z and Z be as in Lemma 4.5.1. If X0 ≤ N b+δ, then for all
g ∈ N0

P(Zg∧τ1∧⌈N b+δ⌉ ≤ Xg∧τ1∧⌈N b+δ⌉ ≤ Zg∧τ1 |Z0 ≤ X0 ≤ Z0) ≥
(
1−O(exp(−c′N1−2α))

)g
.

(4.32)

Proof. of Lemma 4.5.1. We proceed inductively, assuming that for g = 1, 2, . . .we have

constructedX ,Z andZ up to generation g−1 such that (4.31) holds for j = 1, . . . , g−1.

Together with Xg we will construct Zg and Zg, and check the asserted probability

bound for the coupling.

Given {Xg−1 = k} and the weights (Wi) in generation g− 1, the number of beneficial

individuals Xg in generation g has the binomial distribution (4.6). Aiming first at

the construction of the upper bound Z , we relate (4.6) to (4.29) in terms of stochastic

order. For p, p′ ≥ 0, a Bin(N, p)-distributed random variable B is stochastically
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dominated by a Pois(Np′)-distributed random variable P if

e−p
′ ≤ (1− p), (4.33)

see (1.21) in [KM10]. Indeed, in this case the probability of the outcome zero is not

larger for a Pois(p′)-distributed random variableP1 than for a Bernoulli(p)-distributed

random variable B1, which yields B1 ⪯ P1, where ⪯ denotes the usual stochastic

ordering of the random variables. Consequently

B
d
=

N∑
i=1

Bi ⪯
N∑
i=1

Pi
d
= P.

with Bi and Pi being independent copies of B1 and P1, respectively. In particular,

for p ≥ 0 and p′ = p(1 +N b+2δ−1) we have

e−p
′ ≤ 1− p′ + (p′)2 = 1− p(1 +N b+2δ−1) + p2(1 +N b+2δ−1)2.

Hence Condition (4.33) holds if

p(1 +N b+2δ−1)2 < N b+2δ−1. (4.34)

Given (Wi), the success probability of the binomial distribution (4.6) is bounded from

above via

p :=

(
k∑
i=1

Wi

)
/(1− sN ).

Thus by Lemma 4.4.3, (4.34) is fulfilled with probability 1−O(exp(−cεN b+δ)) with cε
as in Lemma 4.4.3. In this sense the number of beneficial offspring is dominated by

a Pois

(
N

∑k
i=1Wi

(1−sN ) (1 +N b+2δ−1)
)

-distributed random variable with high probability.

Applying Lemma 4.4.4 yields that with probability 1− exp(−c′N1−2α)(1 + o(1)) the

following chain of inequalities is valid:

N

∑Xg−1

i=1 Wi

(1− sN )
(1 +N b+2δ−1) ≤

∑Xg−1

i=1 Yi
(1− sN )

(1 +N b+2δ−1)(1 +N−α)

=

Xg−1∑
i=1

Yi(1 + sN + o(sN )) ≤
Zg−1∑
i=1

Yi(1 + sN + o(sN )).

In this way X can be coupled with a branching process Z with a mixed Poisson

offspring distribution of the form (4.29).

The lower bound also uses a comparison with a Galton-Watson process, now with a

mixed binomially distributed offspring distribution:

Number the individuals in generation g−1by (i, g−1), with (1, g−1), . . . , (Xg−1, g−
1), being the beneficial individuals. Given W , we use a sequence of coin tossings to

determine which of the individuals from generation g are the children of (i, g − 1).
The firstN tosses determine which individuals are the children of (1, g−1). Denoting

the number of these children by ωg−1
1 , the next N − ωg−1

1 tosses (with an updated

success probability) determine which individuals are the children of (2, g − 1), etc.

Observe that as long asXg−1 ≤ N b+δ
, and given W and

∑i−1
ℓ=1 ω

(g−1)
ℓ =: h, then ω

(g−1)
i



88

Chapter 4. Haldane’s formula in Cannings models:
The case of moderately strong selection

for i ≤ Xg−1 has distribution

Bin

N − h,
Wi∑Xg−1

ℓ=i Wℓ + (1− sN )
∑N

ℓ=Xg−1+1Wℓ

 . (4.35)

Note that the success probability in (4.35) can be estimated from below by

Wi∑Xg−1

ℓ=1 Wℓ + (1− sN )
∑N

ℓ=Xg−1+1Wℓ

=
Wi

1− sN + sN
∑Xg−1

ℓ=1 Wℓ

.

As long as Xg−1 ≤ ⌈N b+δ⌉, Lemma 4.4.3 ensures that for ε > 0

Wi

1− sN + sN
∑Xg−1

j=1 Wj

≥ Wi

1− sN + (1 + ε)N δ−1
(4.36)

with probability 1−O(exp(−cεN b+δ)). Lemma 4.4.4, in turn, yields that the r.h.s. of

(4.36) is bounded from below by

Yi
N(1− sN + (1 + ε)N δ−1)

(1 +N−α) =
Yi
N

(1 + sN + o(sN ))

with probability at least 1− exp(−c′N1−2α)(1 + o(1)).

Thus, if ω
(g−1)
1 + · · · + ω

(g−1)
i−1 = h ≤ ⌈N b+δ⌉, then the distribution of ω

(g−1)
i

specified in (4.35) is bounded from below by

Bin

(
N − ⌈N b+δ⌉, Wi

1− sN + (1 + ε)N δ−1

)
with probability 1−O(exp(−cεN b+δ)).

If ω
(g−1)
1 + · · · + ω

(g−1)
i−1 = h > ⌈N b+δ⌉, then we have Zg∧τ1 ∧ ⌈N b+δ⌉ ≤ Xg∧τ1 ∧

⌈N b+δ⌉. Consequently X can be coupled with a Galton-Watson process Z with

offspring distribution of the form (4.30) such that also the lower estimate in (4.32) is

fulfilled. This completes the proof of Lemma 4.5.1.

We are now ready to prove that X reaches the levelN b+δ
with probability

2sN
ρ2

(1+

o(1)).

Proposition 4.5.3. (Probability to reach the critical level)
Assume Conditions (4.7), (4.8) and (4.12) are fulfilled and define τ1 = inf{g ≥ 0 : Xg ≥
N b+δ or Xg = 0} with 0 < δ < η, then

P(Xτ1 ≥ N b+δ) =
2sN
ρ2

(1 + o(1)). (4.37)

Proof. We use the couplings of X with the slightly supercritical branching processes

Z and Z from Corollary 4.5.2 and show that both processes reach the levelN b+δ
with

probability
2sN
ρ2

(1 + o(1)). Let δ′ > 0 and E be the event that the stochastic ordering

between Z,X and Z holds until generation n0 = ⌈N b+δ′⌉, that is

E = {Z0∧⌈N b+δ⌉ ≤ X0∧⌈N b+δ⌉ ≤ Z0, ..., Zn0
∧⌈N b+δ⌉ ≤ Xn0∧⌈N b+δ⌉ ≤ Zn0}.
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We show below that the stopping time τ1 fulfils

P(τ1 ≥ ⌈N b+δ′⌉) = o(sN ). (4.38)

For some g that is polynomially bounded in N , the r.h.s. of (4.32) is bounded from

above by 1− o(sN ). Thus, combining Corollary 4.5.2 and (4.38) we deduce

P(E, τ1 ≤ ⌈N b+δ′⌉) = 1− o(sN ).

We are now going to bound (4.37) from above by estimating the corresponding

probability for Z and the stopping time τ1 = inf{g ≥ 0 : Zg ≥ N b+δ
or Zg = 0}.

More precisely,

P(Xτ1 ≥ N b+δ) = P(Xτ1 ≥ N b+δ, τ1 ≤ ⌈N b+δ′⌉, E) + o(sN )

≤ P(Zτ1 ≥ N b+δ, τ1 ≤ ⌈N b+δ′⌉, E) + o(sN )

≤ P(Zτ1 ≥ N b+δ) + o(sN ).

To obtain an upper bound for the probability of Z to reach the level N b+δ
it suffices

to estimate the survival probability of Z . For notational simplicity let us write

{Z survives} for the event {∀g ≥ 0 : Zg > 0} and similarly {Z dies out} for the event

{∃g ≥ 0 : Zg = 0}. We have

P1

(
Zτ1 ≥ N b+δ

)
≤P1

(
Zτ1 ≥ N b+δ|Z survives

)
P1(Z survives ) + P1

(
Zτ1 ≥ N b+δ|Z dies out

)
≤P1(Z survives ) + P

(
all ⌈N b+δ⌉ individuals die out

)
= P1(Z survives ) + (1− P1(Z survives ))⌈N

b+δ⌉.

The survival probability of Z will now be estimated by means of (4.18). To this

purpose we calculate the expectation and variance of the offspring distribution (4.29).

The expectation is 1 + sN + o(sN ) and the variance is given by

Var (Pois (Y1(1 + sN + o(sN ))))

= Var

(
E
[
Pois (Y1(1 + sN + o(sN )))

∣∣∣Y1])+ E
[
Var

(
Pois (Y1(1 + sN + o(sN )))

∣∣∣Y1)]
= Var (Y1(1 + sN + o(sN ))) + E [Y1(1 + sN + o(sN ))]

= (1 + sN + o(sN ))
2
Var (Y1) + 1 + sN + o(sN ) = ρ2(1 + o(1)).

Equation (4.18) yields that the survival probability of the process Z is given by

2sN
ρ2

(1 + o(1)). The lower bound in (4.37) follows by similar arguments by consider-

ing the process Z instead.

It remains to show (4.38). Define τ (0) and τ (u) as the stopping times that the

process Z reaches 0 and the process Z reaches the upper bound N b+δ
, respectively,

i.e.

τ (0) = inf{g ≥ 0 : Zg = 0}, τ (u) = inf{g ≥ 0 : Zg ≥ N b+δ},
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with the convention that the infimum over an empty set is infinity. Then

P(τ1 ≥ ⌈N b+δ′⌉) ≤ P(τ1 ≥ ⌈N b+δ′⌉, E) + P(Ec)

≤ P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E) + P(Ec)

= P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E,Z dies out )

+ P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E,Z survives ) + P(Ec)

= P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E,Z dies out )

+O(e−c
′N

δ′
2 ) +O(N b+δ′e−

1
2
N1−2α), (4.39)

by an application of Lemma 4.4.1 and Corollary 4.5.2 and α < 1
2 as defined there.

To keep the notation simple we denote by eN terms of the order exp(−N c) for some

c > 0. Proceeding with (4.39) we obtain

(4.39) = P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E,Z dies out ,Z survives)

+ P(τ (u) ≥ ⌈N b+δ′⌉, τ (0) ≥ ⌈N b+δ′⌉, E,Z dies out ,Z dies out) + eN

≤ P(Z dies out ,Z survives, E) + eN , (4.40)

again by an application of Lemma 4.4.1. Note that

P(Z dies out ,Z survives, E) + P(Z survives ,Z survives, E)

=P(Z survives, E) =
2sN
ρ2

(1 + o(1)).

In order to show that (4.40) is o(sN ) it suffices to prove that

P(Z survives ,Z survives, E) =
2sN
ρ2

(1 + o(1)).

Considering again the event {τ (u) ≤ ⌈N b+δ′⌉} and applying (4.18) one obtains

P(Z survives ,Z survives, E) = P(Z survives ,Z survives, E, τ (u) ≤ ⌈N b+δ′⌉) + eN

= P(Z survives , E, τ (u) ≤ ⌈N b+δ′⌉) + eN ,

since the events E and {τ (u) ≤ ⌈N b+δ′⌉)} imply that Zg ≥ N b+δ
for some g ≤ N b+δ′

and the probability forZ to die out after reachingN b+δ
is (1− 2sN

ρ2
(1+o(1)))N

b+δ
= eN .

One more application of (4.18) yields

P(Z survives , E, τ (u) ≤ ⌈N b+δ′⌉) = 2sN
ρ2

(1 + o(1)),

which finishes the proof.

4.5.2 Second phase: from N b+δ to εN

In this section we show that X , once having reached the level N b+δ
, will reach the

level εN with probability tending to 1 as N → ∞.
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Lemma 4.5.4. (From N b+δ to εN with high probability)
Assume X0 ≥ N b+δ with 0 < δ < η, let 0 < ε < δ

2−2η−δ and define the stopping time

τ2 = inf{g ≥ 0 : Xg /∈ {1, 2, ..., ⌊εN⌋}}.

Then there exists some δ′ > 0 such that

P (Xτ2 ≥ εN) = 1−O(N−δ′).

Proof. By monotonicity it is enough to prove the claim forX0 = ⌈N b+δ⌉. By definition

we have

L (Xg+1|Xg) = Bin

N, ∑Xg

i=1Wi∑Xg

i=1Wi + (1− sN )
∑N

i=Xg+1Wi

 . (4.41)

Next we lower-bound X by the process X̃ = (X̃g)g≥0, X̃0 = X0, with conditional

distribution

L (X̃g+1|X̃g) = Bin

N, ∑X̃g

i=1Wi

1− sN
∑N

i=εN+1Wi

 (4.42)

as long as X̃g ≤ εN . If X̃g > εN we assume that X̃g+1 is distributed as a slightly

supercritical branching process with Pois(Y1qN ) distributed offspring, where

qN = NE

[
W1

1− sN
∑N

i=εN+1Wi

]
. (4.43)

We will see that by this definition in each generation the expectation of X̃ increases

by the factor qN , see (4.45) and (4.46). The generation-wise increase of the variance

conditioned on the current state can be estimated from above by a factor ρ2(1+o(1)),
see (4.45) and (4.47), leading to an iterative estimate on the variance of the form (4.48).

As long asXg ≥ X̃g, the success probability in the mixed Binomial distribution on the

r.h.s. of (4.41) dominates the corresponding one on the r.h.s. of (4.42). Consequently,

starting X̃ and X both in ⌊N b+δ⌋ we can couple them, such that X̃g ≤ Xg as long

as X̃ did not cross the level εN . In particular, we have for τ̃ = inf{g ≥ 0 : X̃g /∈
{1, 2, ..., εN}}

P
(
Xτ ≥ εN

)
≥ P

(
X̃τ̃ ≥ εN

)
. (4.44)

To show P
(
X̃τ̃ ≥ εN

)
= 1−O(N−δ′) we will estimate the first and second moment

of X̃g0 for a suitably chosen g0 ∈ N and then use Chebyshev’s inequality to show

that X̃g0 is above εN with sufficiently high probability. For this purpose we consider

m(x) and v(x), the one-step conditional expectation and variance of X̃ at x ∈ N, that

is

m(x) = E
[
X̃1|X̃0 = x

]
, v(x) = Var

(
X̃1|X̃0 = x

)
.
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From the definition of X̃ as a branching process above εN we have for x > εN

m(x) = qNx, v(x) = ρ2x(1 + o(1)). (4.45)

Next we show that m(x) and v(x) fulfil relations similar to (4.45) also for x ≤ εN ,

which will allow to estimate the expectation and the variance of X̃g0 .

For x ≤ εN we have due to (4.42)

m(x) = NE

[ ∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

]

= NE

[
x∑
i=1

Wi

(
1 + sN

N∑
i=εN+1

Wi +O(s2N )

)]
= x(1 + sN (1− ε)N2E [W1WεN+1] +O(s2N ))

= x
(
1 + sN (1− ε)(1 +O(N−1)) +O(s2N )

)
= x

(
1 + (1− ε)sN +O(s2N )

)
.

In the penultimate equality we used E [W1W2] =
1
N2 + O(N−3) which results from

the fact

1 = E

( N∑
i=1

Wi

)2
 = NE

[
W 2

1

]
+N(N − 1)E [W1W2]

and (4.11). Consequently, we have for all x ∈ N, recalling (4.43),

m(x) = xqN = x
(
1 + (1− ε)sN +O(s2N )

)
. (4.46)

Next we analyse v(x), again for x ≤ εN . In view of (4.42), a decomposition of the

variance gives

v(x) = Var

(
N

∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

)
+ E

[
N

∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

(
1−

∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

)]

≤ E

(N ∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

)2
− E

[
N

∑x
i=1Wi

1− sN
∑N

i=εN+1Wi

]2
+ E

[
N

∑x
i=1Wi

1− sN

]

≤ E

[(
N

∑x
i=1Wi

1− sN

)2
]
− E

[
N

x∑
i=1

Wi

]2
+ E

[
N

∑x
i=1Wi

1− sN

]
.

Because of the negative correlation of the Wi, the sum of the first and the second

term is not larger than xN2
Var (W1), which because of (4.11) is ≤ x(ρ2−1)+O(N−1).

Since the third term is x(1 +O(sN )), we have for all x ≤ εN

v(x) ≤ ρ2x(1 + o(1)). (4.47)
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Combining (4.46) and (4.47) allows us to estimate the variance Var

(
X̃g

)
for g ∈ N,

again by decomposing the variance:

Var

(
X̃g

)
= Var

(
E
[
X̃g|X̃g−1

])
+ E

[
Var

(
X̃g|X̃g−1

)]
(4.48)

= Var

(
m(X̃g−1)

)
+ E

[
v(X̃g−1)

]
≤ q2NVar

(
X̃g−1

)
+ ρ2E

[
X̃g−1

]
(1 + o(1))

= q2NVar

(
X̃g−1

)
+ ρ2qg−1

N X̃0(1 + o(1)).

Iterating this argument yields

Var

(
X̃g

)
= ρ2X̃0q

g−1
N

g−1∑
j=0

qjN (1 + o(1))

= ρ2X̃0q
g−1
N

qgN − 1

qN − 1
(1 + o(1)).

Choose the minimal g0 ∈ N such that 2εN ≤ E
[
X̃g0

]
= qg0NX0, which yields

recalling the initial condition X0 = ⌈N b+δ⌉

g0 =

⌈
log(2εNX−1

0 )

log qN

⌉
=

⌈
log(2εN1−b−δ)

(1− ε)sN +O(s2N )

⌉
.

Applying Chebyshev’s inequality with X̃0 = X0, we obtain

P
(
|X̃g0 − E

[
X̃g0

]
| ≥ εN

)
≤
ρ2X̃0q

g0−1
N

q
g0
N −1
qN−1 (1 + o(1))

ε2N2

≤
ρ2N b+δq2g0N

Nb

(1−ε)(1 + o(1))

ε2N2

=
ρ2

ε2(1− ε)
N2b+δ−2(1 + (1− ε)sN +O(s2N ))

2g0(1 + o(1))

≤ cρ,εN
2b+δ−2 exp(2g0sN (1 +O(sN )))(1 + o(1))

≤ cρ,εN
2b+δ−2N

2
1−ε

(1−b−δ)(1 + o(1))

= O(N−δ′),

for some small δ′ > 0 due to the assumptions on ε.

Since E
[
X̃g0

]
≥ 2εN , this implies

P
(
X̃τ̃ ≥ εN

)
≥ P(X̃g0 ≥ εN) ≥ 1−O(N−δ′)

and due to (4.44) this finishes the proof.
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4.5.3 Third phase: from εN to N

Lemma 4.5.5 below concerns the last step of the proof, showing that once the process

X has reached the level ⌊εN⌋, it goes to fixation with high probability. Our proof

relies on a representation of the fixation probability of X in terms of (a functional

of) the equilibrium state Aeq := A
(N)
eq of the counting process A := A(N) = (Am)m≥0

of the potential ancestors in the time discrete Cannings ancestral selection graph as

provided by [BGPW21a]. The processA(N)
is called Cannings ancestral selection process

(CASP) in [BGPW21a]; for fixed N , it is a recurrent, [N ]-valued Markov chain whose

transition probabilities are specified in [BGPW21a] Section 2.3.

Theorem 3.1 and Formula (3.2) (see also Corollary 3.3) in [BGPW21a] provide

the following sampling duality representation of the fixation probability of X when

started with k individuals:

Pk(X eventually hits N) = 1− E
[
(N − k)(N − k − 1) · · · (N − k −Aeq + 1)

N(N − 1) · · · (N −Aeq + 1)

]
.(4.49)

Intuitively, this says that X goes extinct if and only if a random sample of (random)

size Aeq, drawn without replacement from the population of size N , avoids the k
beneficial individuals.

Formula (4.49) implies

P⌈εN⌉(X eventually hits N) ≥ 1− E
[
(1− ε)A

(N)
eq

]
. (4.50)

The representation of the transition probabilities of A in [BGPW21a] Section 2.3

in terms of two half steps yields that for fixed N CASPs with different selection

parameters can be coupled in such a way that A
(N)
eq is increasing in sN . Take a

sequence (s̃N ) satisfying s̃N ≤ sN and Condition (1.2) in [BGPW21a], i.e.

N−1+η ≤ s̃N ≤ N−2/3+η.

Let Ã
(N)
eq be the equilibrium state belonging to s̃N (and to the same Dirichlet-type

paintbox as that of X ). The central limit result [BGPW21a], Corollary 6.10, implies

that Ã
(N)
eq → ∞ in probability asN → ∞. Because of the just mentioned monotonicity

in the selection coefficient, the same convergence holds true for the sequence

(
A

(N)
eq

)
.

The following lemma is thus immediate from (4.50) and dominated convergence:

Lemma 4.5.5. (From εN to N with high probability)
Let X be a Cannings frequency process with X0 = k ≥ εN for some 0 < ε < 1/2. Assume
that Conditions (4.7), (4.8) and (4.12) are fulfilled. Define τ3 := inf{g ≥ 0 : Xg ∈ {0, N}}.
Then

Pk(Xτ3 = N) = 1− o(1).

4.6 Discussion

The analysis of fixation probabilities of slightly beneficial mutants is at the heart

of population genetics; some seminal and more modern references are given in the

Introduction. Our main result concerns Haldane’s asymptotics (4.3) for the fixation

probability in a regime of moderate selection.
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Our framework is that of Cannings models with selection (as reviewed in Section

4.2), where the corresponding neutral genealogies are assumed to belong to the

domain of attraction of Kingman’s coalescent. This class of models is motivated by

seasonal reproduction cycles in which within each season a large number of offspring

is generated but only a comparatively small number (concentrated around a carrying

capacityN ) of randomly sampled offspring survive to the next season. In this setting

it is reasonable to approximate sampling without replacement by sampling with

replacement. Thus, under the assumption of neutrality, the probability that the j-th
offspring that survives till the next generation is a child of parent i is approximately

given by the random weight

Wi =
Yi∑N
ℓ=1 Yℓ

,

where Y1, . . . , YN are the sizes of (potential one-generation) offspring of parents

1, . . . , N . These sizes are assumed to be independent and identically distributed in

the present paper, leading to the concept of weights of Dirichlet type. The subsequent

generation then arises by a multinomial sampling with random weights, and to add

selection the weights of wildtype parents are decreased by the factor (1 − sN ). For

a closely related model with a specific distribution of Yi (and sampling without re-

placement) in the context of Lenski’s long-term evolution experiment see [GKWY17]

and [BGPW19].

We prove Haldane’s asymptotics in the case of moderately strong selection, see

Theorem 9, in which the selection strength sN obeys

N− 1
2
+η ≤ sN ≤ N−η

for some η > 0 and a large population size N . In the companion paper [BGPW21a]

the range of moderately weak selection was considered, i.e. in the case

N−1+η ≤ sN ≤ N− 1
2
−η

for some η > 0. Since sN ≫ N−1
in the regime of moderate selection, selection acts

in this case on a faster timescale than genetic drift.

In [BGPW21a] an ancestral selection graph for the just described class of Cannings

models with selection was defined, and it was shown that the fixation probability

πN is equal to the expeced value E
[
A

(N)
eq

N

]
, where A

(N)
eq is the number of lines of

the ancestral selection graph in its equilibrium. While we could analyse directly the

asymptotics of that quantity in the regime of moderately weak selection, we were

facing too large fluctuations of ANeq in the regime of moderately strong selection in

order to be successful with this approch. Conversely, it turned out that the classical

idea of branching process approximation is suitable precisely in that latter regime.

For highly skewed offspring distributions an asymptotics for the fixation prob-

ability arises which is different from (4.3). In cases where the neutral genealogy is

attracted by a Beta(2 − α, α)-coalescent, [OH21] argue that the fixation probability

is proportionally to s
1

α−1

N , if 1 ≫ sN ≫ N−(α−1)
. Thus the probability of fixation is

substantially smaller than in Haldane’s asymptotics, which is reasonable since the

offspring variance is diverging as N → ∞. Notably, since the evolutionary timescale

of Cannings models in the domain of attraction of Beta-coalescents is of the order

Nα−1
, the case 1 ≫ sN ≫ N−(α−1)

corresponds to the regime of moderate selection;
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note also that the case of coalescents being in the domain of attraction of a Kingman

coalescent corresponds formally to α = 2.
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Chapter 5

Haldane’s asymptotics for
Supercritical Branching Processes
in an iid Random Environment

Branching processes in a random environment are a natural

generalisation of Galton-Watson processes. In this paper we

analyse the asymptotic decay of the survival probability for a

sequence of slightly supercritical branching processes in a random

environment, where the offspring expectation converges from

above to 1. We prove that Haldane’s asymptotics, known from

classical Galton-Watson processes, turns up again in the random

environment case, provided that one stays away from the critical

or subcritical regimes. A central building block is a connection to

and a limit theorem for perpetuities with asymptotically vanishing

interest rates.

Keywords and Phrases. branching process, random environ-

ment, supercriticality, perpetuity, survival probability

MSC 2010 subject classification. Primary 60J80, Secondary 92D25

5.1 Introduction and main result

In the early twentieth century Fisher [Fis23], Haldane [Hal27] and Wright [Wri31]

studied the survival probability of a beneficial mutant gene in large populations.

They argued that as long as the mutant is sufficiently rare and the selective advantage

is small the number of mutants should evolve like a slightly supercritical Galton-

Watson process. As Haldane concluded, the probability π of ultimate survival obeys

the asymptotics

π ≈ 2ε

σ2

for small ε > 0, where 1+ε is the offspring expectation and σ2 the offspring variance.

This approximation gained a lot of attention in the literature, see [PW08] for an

overview. For Galton-Watson processes this asymptotics was considered among

others by Kolmogorov [Kol38], Eshel [Esh81], Athreya [Ath92] and Hoppe [Hop92].

In this paper we consider the same problem, and study the asymptotic survival

probability of a slightly supercritical branching process in a random environment.

As it turns out Haldane’s asymptotics remains valid for branching processes in an
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iid random environment, as long as one keeps away from subcritical behaviour.

This might come as a surprise, since the corresponding Kolmogorov asymptotics for

critical Galton-Watson processes does not turn up in the case of an iid random envi-

ronment [GK00]. Close to subcriticality one observes a slightly different behaviour

of the survival probability, a smooth adaption of Haldane’s formula.

Let us recall the notion of a branching process in random environment. Denote

by P(N0) the space of all probability measures on N0 = {0, 1, 2, ...}. For f ∈ P(N0) it

is convenient to identify the measure f with its probability generating function

f(s) =

∞∑
z=0

szf [z], 0 ≤ s ≤ 1,

where f [z] denotes the weight of f in z ∈ N0. The mean and the second factorial

moment can be expressed through the generating functions as

f ′(1) =
∞∑
z=1

zf [z], f ′′(1) =
∞∑
z=2

z(z − 1)f [z].

Endow the space of probability measures P(N0) with the total variation metric and

the induced Borel-σ-algebra. This allows to consider random probability measures

on P(N0) and we define a random environment V = (F1, F2, ...) as a sequence of

random probability measures. In this paper, we consider branching process in an

iid random environment, in this case the environment V = (F1, F2, ...) consists of

independent copies of a random measure F . As before we can express the now

random mean and random second factorial moment as

F ′(1) =
∞∑
z=1

zF [z], F ′′(1) =
∞∑
z=2

z(z − 1)F [z].

Given a sequence V = (F1, F2, ...) of random probability measures we call (Zn, n ≥ 0)
a branching process in random environment, if it has the representation

Zn =

Zn−1∑
i=1

ξi,n, Z0 = 1,

where conditionally on V the family (ξi,n, i ≥ 1, n ≥ 1) is independent and for

each n ∈ N the sequence (ξi,n, i ≥ 1) is identically distributed with distribution

Fn. Unconditionally, the random variables ξi,n are just identically distributed, thus

copies of a generic random variable ξ. For more background on branching processes

in random environment, see the monograph [KV17].

In the following we focus on supercritical branching processes in an iid random

environment. It is known that they exhibit similar behaviour as supercritical Galton-

Watson processes. Tanny [Tan88] derived the Kesten-Stigum theorem in the random

environment setup, see also [Ham92]. More recently finer asymptotics have been

achieved, among others in [BB09],[BB14], [GLM17] and [HL14].

Here, we consider a sequence (Z(N), N ≥ 1) of branching processes in an iid

random environment and study the asymptotic behaviour of their survival proba-

bilities. In order to keep the notation accessible we suppress the index N at random

quantities and quote it at probabilities and expectations. Thus we write e.g. the
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survival probability as

πN := lim
n→∞

PN (Zn > 0) ,

and not as limn→∞ P(Z(N)
n > 0).

Let

εN := EN
[
F ′(1)

]
− 1, νN := VarN

(
F ′(1)

)
.

We are considering supercritical processes, implying εN > 0 for allN . Like Haldane,

we are concerned with the situation εN → 0 as N → ∞. We point out that even in

this situation critical/subcritical behaviour is not excluded. However, if we stay in

the supercritical regime, Haldane’s asymptotics remarkably enough remains valid,

apart from a narrow region of transition, where the processes behaviour changes

from supercritical to subcritical. This region occurs if the standard deviation of F ′(1)
is of order

√
εN , thus of notably larger order than εN , the expected excess of F ′(1)

above 1. Only here the random environment gains impact.

Let us state the conditions of our main result. We assume that the annealed

variance of ξ stabilizes for large N ,

VarN (ξ) = σ2 + o(1), EN
[
ξ4
]
= O(1) as N → ∞, (5.1)

with σ2 > 0. Without further mentioning we require F ′(1) > 0 PN -almost surely,

since otherwise πN = 0 trivially. Moreover, we assume that for some δ > 0

EN
[
F ′(1)−4−δ

]
= O(1), EN

[
|F ′(1)− EN

[
F ′(1)

]
|4+δ

]
= O(ν

2+ δ
2

N ). (5.2)

Theorem 10. Let εN → 0 as N → ∞. Then, under the assumptions (5.1) and (5.2), we
have

i) If νN = o(εN ), then the survival probability obeys

πN ∼ 2εN
σ2

as N → ∞.

ii) If νNεN → ρ with 0 < ρ < 2, then

πN ∼ (2− ρ)εN
σ2

as N → ∞.

iii) If νNεN → ρ with 2 < ρ <∞, then for large N

πN = 0.

In the case ρ = 2 a finer analysis of the asymptotics would be needed.

The proof of Theorem 10 follows a new strategy and does not rely on the familiar

fixed point characterization of the survival probability. Instead we use an explicit

representation for the survival probability, given in Section 5.2. It has a similar

structure as perpetuities, which are known from a financial context. Indeed a major

step of the proof is to derive a limit theorem for perpetuities with asymptotically

vanishing interest rates. This result, given in Section 5.3, might be of independent

interest. With these ingredients the proof of Theorem 10 is completed in Section 5.4.
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5.2 An expression for the survival probability

In the following we derive an expression for the survival probability

π = lim
n→∞

P (Zn > 0)

of a branching process in random environment (Zn, n ≥ 0), using ideas of [Ker20].

Consider an iid sequence of random measures V = (F1, F2, ...) on P(N0). If we

condition on the event {F1 = f1, F2 = f2, ...} for a sequence (f1, f2, ...) in P(N0), we

may express the conditional generating function of Zn as

E
[
sZn | Z0, ..., Zn−1, F1 = f1, ..., Fn = fn

]
= fn(s)

Zn−1 , 0 ≤ s ≤ 1.

Iterating this formula yields

E
[
sZn | F1 = f1, ..., Fn = fn

]
= f1(f2(· · · fn(s) · · · )), 0 ≤ s ≤ 1.

We set for k ≤ n− 1

gk,n(s) := fk+1 ◦ ... ◦ fn(s), 0 ≤ s ≤ 1,

with the convention gn,n(s) = s. Similarly to classical Galton-Watson processes we

obtain

P(Zn > 0 | F1 = f1, ..., Fn = fn) = 1− g0,n(0). (5.3)

Next, for any probability generating function f on N with positive finite mean m
as in [Ker20] we define the so-called shape function ψ : [0, 1) → R via the equation

1

1− f(s)
=

1

m(1− s)
+ ψ(s).

ψ can be extended continuously to [0, 1] by setting

ψ(1) :=
f ′′(1)
2f ′(1)2

.

Noting that gk,n(s) is also a probability generating function and letting ψk be shape

the function belonging to fk, we obtain iteratively

1

1− g0,n(s)
=

1

1− f1(g1,n(s))
=

1

f ′1(1)(1− g1,n(s))
+ ψ1(g1,n(s))

=
1

f ′1(1)f
′
2(1)(1− g2,n(s))

+
ψ2(g2,n(s))

f ′1(1)
+ ψ1(g1,n(s))

=
1

f ′1(1) · · · f ′n(1)(1− s)
+

n−1∑
k=0

ψk+1(gk+1,n(s))

f ′1(1) · · · f ′k(1)
.

In the unconditional setting, we write φk(s) for the shape function of Fk(s), in

particular

φk(1) =
F ′′
k (1)

2F ′
k(1)

2
, k ∈ N (5.4)
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and let

µk =
k∏
i=1

F ′
i (1), µ0 = 1.

Using (5.3) and (5.4) we obtain

1

P(Zn > 0 | V )
=

1

µn
+

n−1∑
k=0

φk+1(P(Zn = 0 | Zk+1 = 1, V ))

µk
a.s. (5.5)

Equation (5.5) will be crucial in the proof of the following Proposition.

Proposition 5.2.1. Let (Zn, n ≥ 0) be a branching process in random environment V =
(F1, F2, ..) consisting of independent copies of F . Assume 0 < E [logF ′(1)] < ∞ and
E
[
log+ F ′′(1)

]
<∞. Then the survival probability π can be expressed as

π = E
[
1

X

]
, (5.6)

with

X :=
∞∑
k=0

φk+1(P (Z∞ = 0 | Zk+1 = 1, V ))

µk
<∞ a.s.

Remark 5.2.2. The assumptions in Proposition 5.2.1 are slightly stronger than the classical
requirements for supercriticality, see [SW69] and [Tan77]. However, these references contain
no representation as (5.6). We note that Proposition 5.2.1 holds equally for a stationary and
ergodic random environment.

Proof. Taking the limit n→ ∞ in (5.5) yields, with Z∞ := lim
n→∞

Zn

1

P (Z∞ > 0 | V )
= lim

n→∞

[
1

µn
+
n−1∑
k=0

φk+1(P(Zn = 0 | Zk+1 = 1, V ))

µk

]
.

Observe that µn → ∞ almost surely, since

µn = exp

 n∑
j=1

logF ′
j(1)

 = exp
(
nE
[
logF ′(1)

]
+ o(n)

)
, (5.7)

by the strong law of large numbers. Thus

1

P (Z∞ > 0 | V )
= lim

n→∞

n−1∑
k=0

φk+1(P(Zn = 0 | Zk+1 = 1, V ))

µk
.

Furthermore, we have P(Zn = 0 | Zk+1 = 1, V ) → P(Z∞ = 0 | Zk+1 = 1, V ) a.s.

which yields

φk+1(P(Zn = 0 | Zk+1 = 1, V )) → φk+1(P(Z∞ = 0 | Zk+1 = 1, V )) a.s.
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by continuity. This implies

1

P (Z∞ > 0 | V )
=

∞∑
k=0

φk+1(P(Z∞ = 0 | Zk+1 = 1, V ))

µk
, (5.8)

provided that we can justify the interchange of limits. By Lemma 1 in [Ker20] we

have for k ≤ n

φk+1(P(Zn = 0 | Zk+1 = 1, V ))

µk
≤ 2

φk+1(1)

µk
.

Thus, letting

Y :=

∞∑
k=0

φk+1(1)

µk
,

it is sufficient in view of dominated convergence to prove Y <∞ almost surely. Note

that φk(1) = exp(logF ′′
k (1)−2 logF ′′

k (1)) and by the strong law of large numbers and

a known Borel-Cantelli argument we have logF ′
k(1) = o(k) and log+ F ′′

k (1) = o(k),
therefore φk(1) = eo(k). Together with (5.7) it follows Y <∞ almost surely.

5.3 On perpetuities with small interest rates

Let (An, Bn), n ≥ 1, be independent copies of the random pair (A,B) and assume that

the components A,B are nonnegative and independent. Define Cn := B1B2 · · ·Bn,

C0 = 1 for n ∈ N and consider the series

Y =

∞∑
k=0

CkAk+1,

which in a financial context is called a perpetuity, see [AIR09] and the literature cited

therein. The random variable Y fulfils a stochastic recursion, the annuity equation
[BDM16]

Y
d
= A+BY, (5.9)

where on the right hand side (A,B) and Y are assumed to be independent.

In the following we study the limiting behaviour of a sequence of perpetuities

Y as the expectation of B tends to 1 (which in a financial setting corresponds to

vanishing interest rates). As before we keep the sequence indexN just as a subscript

of the expectations and probabilities. Let

βN := 1− EN [B] , γN := VarN (B) .

We stay in the region βN > −γN
2 (elsewhere one typically has Y = ∞ almost surely).

Depending on the ratio of
βN
γN

we observe different limiting distributions for rescaled

versions of Y .

Theorem 11. Assume in the limit N → ∞

βN → 0, γN → 0, EN [A] = α+ o(1), EN
[
A1+δ

]
= O(1),
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with α > 0 and some δ > 0, furthermore EN
[
|B − 1|2+δ

]
= o(βN + γN ). Additionally

assume

βN
γN

→ ρ̂ with − 1

2
< ρ̂ ≤ ∞.

Then we have:

i) If ρ̂ = ∞, then βNY converges to α in probability.

ii) If ρ̂ ∈ (−1/2,∞), then γNY is asymptotically inverse gamma distributed, with density
ba

Γ(a)x
−a−1e−b/xdx on R+ and parameters (a, b) = (2ρ̂+ 1, 2α).

We prepare the proof of Theorem 11 by three lemmata.

Lemma 5.3.1. Let τN denote either βN or γN , and define

ℓτ (λ) = EN [exp(−λτNY )]

to be the Laplace transform of τNY . Then under the assumptions of Theorem 11, for any
λ > 0,

i) EN
[
e−λτNA

]
= 1− λτNα+ o(τN ) ,

ii) EN [ℓτ (λB)] = ℓτ (λ)− βNλℓ
′
τ (λ) +

γN
2 λ

2ℓ′′τ (λ) + o(βN + γN ).

Proof. i): We split the expectation EN
[
e−λτNA

]
into two parts. On the one hand we

obtain for any η > 0

EN
[
e−λτNA; τNA > η

]
≤ PN (τNA > η) ≤ τ1+δN

η1+δ
EN
[
A1+δ

]
= o(τN ). (5.10)

On the other hand, using the Taylor expansion e−λτNA = 1 − λτNAe
−λτNA′

with

0 ≤ A′ ≤ A, we have

|EN
[
e−λτNA; τNA ≤ η

]
− EN [1− λτNA] |

≤ |EN [1− λτNA; τNA > η]|+
∣∣∣EN [λτNA(1− e−λτNA

′
); τNA ≤ η

]∣∣∣
≤ PN (τNA > η) + EN [λτNA; τNA > η] + EN

[
λτNA(1− e−λη)

]
≤
(
τ1+δN

η1+δ
+
λτ1+δN

ηδ

)
EN
[
A1+δ

]
+ EN

[
λτNA(1− e−λη)

]
= λτNEN [A] (1− e−λη) +O(τ1+δN ).

Therefore, together with (5.10) we obtain for any η > 0∣∣∣EN [e−λτNA]− (1− λτNα)
∣∣∣ ≤ λτNα(1− e−λη) + o(τN ).

Since the left-hand side does not depend on η and η can be chosen arbitrarily small,

we have proven i).

ii): Again we split the expectation EN [ℓτ (Bλ)] into two parts. We have for any

η > 0

EN [ℓτ (Bλ); |B − 1| > η] ≤ PN (|B − 1| > η) ≤ EN
[
|B − 1|2+δ

]
η2+δ

= o(βN + γN ).
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Using a Taylor expansion we get for some B′
between 1 and B

ℓτ (λB) = ℓτ (λ) + ℓ′τ (λ)(λB − λ) +
1

2
ℓ′′τ (λB

′)(λ− λB)2.

Therefore,∣∣∣∣EN [ℓτ (λB); |B − 1| ≤ η]− EN
[
ℓτ (λ) + ℓ′τ (λ)(λB − λ) +

1

2
ℓ′′τ (λ)(λB − λ)2

]∣∣∣∣
≤
∣∣∣∣EN [ℓτ (λ) + ℓ′τ (λ)(λB − λ) +

1

2
ℓ′′τ (λ)(λB − λ)2; |B − 1| > η

]∣∣∣∣
+
∣∣EN [(ℓ′′τ (λ)− ℓ′′τ )(λB

′)(λB − λ)2; |B − 1| ≤ η
]∣∣

=
∣∣EN [ℓ′′′τ (λB′′)λ(B′ − 1)(λB − λ)2; |B − 1| ≤ η

]∣∣+O(EN
[
|B − 1|2+δ

]
)

≤ ηλ3
∣∣ℓ′′′τ (λ(1− η))

∣∣EN [(B − 1)2; |B − 1| ≤ η
]
+ o(βN + γN ), (5.11)

with some B′′
between B′

and 1. We have the estimate∣∣ℓ′′′τ (λ(1− η))
∣∣ = EN

[
(τNY )3e−λ(1−η)τNY

]
≤ sup

y∈R+

y3e−λ(1−η)y <∞.

This allows to bound (5.11) from above for some constant c > 0 by the expression

cηλ3EN
[
λη(B − 1)2; |B − 1| ≤ η

]
≤ cηλ3(β2N + γN ).

Therefore, putting our estimates together, we have shown that for any η > 0∣∣∣∣EN [ℓτ (λB)]− EN
[
ℓτ (λ)− ℓ′τ (λ)(λB − λ) +

1

2
ℓ′′τ (λ)(λB − λ)2

]∣∣∣∣
≤ cηλ3(βN + γN ) + o(βN + γN ).

Letting η → 0, the claim ii) follows.

Lemma 5.3.2. Under the assumptions of Theorem 11, for all η > 0 there exists a constant
c = c(η, ρ̂) > 0 (not depending on EN [A]) such that for βN + γN sufficiently small

PN

(
(βN + γN )

∞∑
k=0

CkAk+1 ≥ cEN [A]

)
≤ η.

Proof. First we determine an u ∈ (0, 1) such thatEN [Bu] < 1. Hence, we splitEN [Bu]
into two parts and obtain

EN [Bu; |B − 1| > u] ≤ PN (B − 1 < −u) + (1 + u)u

uu
EN [(B − 1)u;B − 1 > u]

≤ EN
[
|B − 1|2+δ

]( 1

u2+δ
+

(1 + u)u

u2+δ

)
= o(βN + γN ).
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Moreover, by means of a Taylor expansion

EN [Bu; |B − 1| ≤ u] ≤ EN
[
1 + u(B − 1) +

u(u− 1)

2
(1 + u)u−2(B − 1)2; |B − 1| ≤ u

]

≤ 1− uβN − u(1− u)

2(1 + u)2−u
(γN + β2N )

− uEN
[
(B − 1) +

u− 1

2(1 + u)2−u
(B − 1)2; |B − 1| > u

]
= 1− u(βN +

1

2

1− u

(1 + u)2−u
(γN + β2N )) +O

(
EN
[
|B − 1|2+δ

])

= 1− u(βN +
1

2

1− u

(1 + u)2−u
(γN + β2N )) + o(βN + γN ).

Due to our assumption
βN
γN

→ ρ̂ ∈ (−1
2 ,∞] there exists u = uρ̂ ∈ (0, 1), such that

βN + 1
2

1−u
(1+u)2−u (γN + β2N ) + o(βN + γN ) ≥ θ(βN + γN ) for some θ = θρ̂ > 0 and

βN + γN small enough. This yields

EN [Bu] ≤ 1− θ(βN + γN ) ≤ e−θ(βN+γN ). (5.12)

Next, the process Mk :=
∏k
i=1B

u
i /EN [Bu] is a nonnegative martingale, with

M0 = 1. For the stopping time T = min{k ≥ 0 : Mk ≥ a} a ≥ 1, we get by means of

the optional stopping theorem for all t ∈ N0

1 = EN [MT∧t] ≥ aPN (T ≤ t) .

Taking the limit t→ ∞ we obtain

PN (T <∞) ≤ 1

a
.

Together with (5.12) we conclude that on the event {T = ∞} for all k ≥ 0

k∏
i=1

Bi =

(
k∏
i=1

Bu
i

) 1
u

≤
(
a

k∏
i=1

EN [Bu
i ]

) 1
u

≤ a
1
u exp

(
−θ(βN + γN )k

u

)
.
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This yields

PN

(
(βN + γN )

∞∑
k=0

CkAk+1 ≥ cEN [A]

)

≤ 1

a
+ PN

(
(βN + γN )a

1
u

∞∑
k=0

exp

(
−θ(βN + γN )k

u

)
Ak+1 ≥ cEN [A]

)

≤ 1

a
+

(βN + γN )a
1
u

cEN [A]
EN

[ ∞∑
k=0

exp

(
−θ(βN + γN )k

u

)
Ak+1

]

=
1

a
+

(βN + γN )a
1
u

c

1

1− exp
(
− θ(βN+γN )

u

)
≤ 1

a
+ 2

a
1
uu

cθ

for βN+γN small enough. Letting a = 2
η and c = c(η, ρ̂) large enough, the probability

above can be made smaller than any η > 0.

Remark 5.3.3. As we have seen in the proof of Lemma 5.3.2, it is only required that the
random variables Ak, k ≥ 1 are nonnegative and have one and the same expectation. This
will be useful later in the proof of Lemma 5.4.5.

Lemma 5.3.4. LetW be inverse gamma distributed with parameters a > 0, b > 0, that isW
has density ba

Γ(a)x
−a−1e−b/xdx. The Laplace transform h(λ) = E[exp(−λW )] then fulfils

the second order differential equation

λh′′(λ) = (a− 1)h′(λ) + bh(λ), h(0) = 1.

Proof. By the definition of h we have

h(λ) =
ba

Γ(a)

∫ ∞

0
e−λxx−a−1e−b/xdx

Differentiating two times with respect to λ, gives

h′(λ) = − ba

Γ(a)

∫ ∞

0
e−λxx−ae−b/xdx

h′′(λ) =
ba

Γ(a)

∫ ∞

0
e−λxx−a+1e−b/xdx.

Using integration by parts applied to the functions −e−λx and x−a+1e−b/x yields

λh′′(λ) =
ba

Γ(a)

[
[−e−λxx−a+1e−b/x]∞0 −

∫ ∞

0
e−λx

(
(a− 1)x−ae−b/x − bx−a−1e−b/x

)
dx

]

= − ba

Γ(a)
(a− 1)

∫ ∞

0
e−λxx−ae−b/xdx+ b

ba

Γ(a)

∫ ∞

0
e−λxx−a−1e−b/xdx

= (a− 1)h′(λ) + bh(λ),

which is the claimed result.
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Proof of Theorem 11. The proofs of parts i) and ii) are using the same ideas. We will

prove convergence of the Laplace transform of βNY or γNY towards the Laplace

transform of a Dirac distributed random variable or to the Laplace transform of a

inverse gamma distributed random variable.

i): Recall the notation ℓβ(λ) = EN [exp(−λβNY )] from Lemma 5.3.1. From (5.9)

we have for any λ > 0

ℓβ(λ) = EN
[
e−λβNA

]
EN
[
e−λβNBY

]
= EN

[
e−λβNA

]
EN [ℓβ(λB)] ,

by independence of A,B and Y . Since γN = o(βN ), it follows by Lemma 5.3.1

ℓβ(λ) = [1− βNλα+ o(βN )]
[
ℓβ(λ)− βNλℓ

′
β(λ) +O(γN ) + o(βN )

]
= (1− βNλα)ℓβ(λ)− βNλℓ

′
β(λ) + o(βN ) (5.13)

Due to Lemma 5.3.2 (or alternatively due to the fact that the annuity equation (5.9)

implies EN [βNY ] → α as βN → 0), the family {βNY } is tight. Moreover, let βN ′Y
be a subsequence converging in distribution. We have to show that the limiting

distribution of βN ′Y is unique. Now, convergence of βN ′Y implies convergence of

the Laplace-transforms together with their derivatives. Dividing both sides in (5.13)

by λβN ′ we obtain the limiting differential equation

0 = −αℓ(λ)− ℓ′(λ), ℓ(0) = 1,

which has the unique solution ℓ(λ) = e−αλ, the Laplace transform of a random

variable which takes the value α with probability 1. This proves part i) of Theorem

10.

ii): Choosing τN = γN in Lemma 5.3.1 we get by the same line of arguments as

before

ℓγ(λ) = [1− γNλα+ o(γN )]
[
ℓγ(λ)− βNλℓ

′
γ(λ) +

γN
2
λ2ℓ′′γ(λ) + o(γN )

]
= (1− γNλα)ℓγ(λ)− βNλℓ

′
γ(λ) +

γN
2
λ2ℓ′′γ(λ) + o(γN ). (5.14)

Due to Lemma 5.3.2 the family {γNY } is tight. Moreover, let γN ′Y be a subsequence

converging in distribution. Taking the limit and dividing both sides in (5.14) by λγN ′

we obtain the limiting differential equation

0 = −αℓ(λ)− ρ̂ℓ′(λ) +
1

2
λℓ′′(λ), ℓ(0) = 1, (5.15)

with −1
2 < ρ̂ < ∞. This differential equation is a variant of the Bessel equation and

can be solved by means of modified Bessel functions. However, we will not use this

fact.

Instead we shall confirm that there is only one solution corresponding to a Laplace

transform. To make this argument firm note that for any Laplace transform ℓ(λ)
of a nonnegative random variable it holds that ℓ(λ) → µ0 as λ → ∞, where µ0
corresponds to the mass in 0 and that ℓ′(λ) → 0 as λ → ∞. This implies, due to

(5.15), that λℓ′′(λ) → 2αµ0 which in the case µ0 > 0 entails that ℓ′(λ) → ∞ and

contradicts ℓ′(λ) → 0. Therefore, we have µ0 = 0 for any Laplace transform fulfilling

(5.15).

Now take two Laplace transforms ℓ1, ℓ2 fulfilling (5.15). We show that ℓ1 ≡ ℓ2.
Consider the difference d = ℓ1 − ℓ2. Since d(0) = 0 and d(λ) → 0 as λ → ∞ there
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exists a λ0 > 0 which is an extremal value, i.e. d′(λ0) = 0. However, if d(λ0) > 0 this

implies due to (5.15) that d′′(λ0) > 0 which is a contradiction, and the same holds

true, if d(λ0) < 0. Therefore, we have d ≡ 0 and there is only one Laplace transform

fulfilling (5.15). Lemma 5.3.4 shows, that γNY converges in distribution to an inverse

gamma law with parameters a = 2ρ̂+ 1 and b = 2α.

5.4 Proof of Theorem 10

We prepare the proof of Theorem 10 by several lemmata.

Lemma 5.4.1. Under the assumptions of Theorem 10, we have

i) EN [F ′(1)−r] = 1− rεN + r(r+1)
2 νN + o(εN ) for r ∈ [0, 2],

ii) EN
[
F ′′(1)
F ′(1)2

]
= σ2(1 + o(1)).

Proof. i): Again we split the expectation EN [F ′(1)−r] into parts. Let 0 < η < 1, then

EN
[
F ′(1)−r; |F ′(1)− 1| > η

]
≤ EN

[
F ′(1)−2r

] 1
2 PN

(
|F ′(1)− 1| > η

) 1
2

≤ EN
[
F ′(1)−2r

] 1
2

1

η2+δ/2
EN
[
|F ′(1)− 1|4+δ

] 1
2

= O(ν
1+δ/2
N + ε2+δN ) = o(εN ), (5.16)

due to assumption (5.2). A Taylor expansion forF ′(1)−r, yields with someU between

F ′(1) and 1

F ′(1)−r = 1− r(F ′(1)− 1) +
r(r + 1)

2
U−r−2(F ′(1)− 1)2.

Therefore,∣∣∣∣EN [F ′(1)−r; |F ′(1)− 1| ≤ η
]
− EN

[
1− r(F ′(1)− 1) +

r(r + 1)

2
(F ′(1)− 1)2

]∣∣∣∣
≤
∣∣∣∣EN [1− r(F ′(1)− 1) +

r(r + 1)

2
(F ′(1)− 1)2; |F ′(1)− 1| > η

]∣∣∣∣
+

∣∣∣∣EN [r(r + 1)

2
(F ′(1)− 1)2(1− U−r−2); |F ′(1)− 1| ≤ η

]∣∣∣∣
≤ r(r + 1)

2
EN
[
(F ′(1)− 1)2

] (
(1− η)−r−2 − 1

)
+O(EN

[
|F ′(1)− 1|4+δ

]
)

=
(
(1− η)−r−2 − 1

)
(νN + ε2N ) + o(εN ).

Together with (5.16) we have shown∣∣∣∣EN [F ′(1)−r
]
− (1− rεN +

r(r + 1)

2
νN )

∣∣∣∣ ≤ r(r + 1)

2

(
(1− η)−r−2 − 1

)
νN + o(εN ),

which proves i) by letting η → 0.
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ii): Due to assumption (5.1) we have

EN
[
F ′′(1)
F ′(1)2

]
= EN

[
F ′′(1)

]
+ EN

[
F ′′(1)

(
1

F ′(1)2
− 1

)]
= σ2 + o(1) + EN

[
F ′′(1)

(
1

F ′(1)2
− 1

)]
.

Moreover,

EN
[∣∣∣∣F ′′(1)

(
1

F ′(1)2
− 1

)∣∣∣∣] ≤ EN
[
F ′′(1)2

] 1
2 EN

[(
1

F ′(1)2
− 1

)2
] 1

2

.

The first term on the right-hand side is uniformly bounded by (5.1). For the second

term note that the integrand converges to 0 in probability and is uniformly integrable

due to (5.2), which implies that the second term converges to 0. This finishes the

proof.

Lemma 5.4.2. Under the assumptions of Theorem 10 there exists θ > 0 and p0 ∈ (0, 1) such
that for large N

PN (φ(0) ≥ θ) ≥ p0.

Proof. By the definition of φ we have

PN (φ(0) ≥ θ) = PN
(

1

1− F (0)
≥ θ +

1

F ′(1)

)
.

From our assumptions we have F ′(1) → 1 in probability and therefore one obtains

PN (φ(0) ≥ θ) ≥ PN
(

1

1− F (0)
≥ 1 + 2θ

)
+ o(1)

≥ PN (F (0) ≥ 2θ) + o(1)

≥ EN [F (0)]− 2θ + o(1). (5.17)

Thus, it suffices to bound EN [F (0)] away from 0. Note that EN [F (0)] = PN (ξ = 0).
Since ξ2 is uniformly integrable due to (5.1) we have for k ≥ 2 and k large enough

σ2 + o(1) = EN
[
(ξ − 1)2

]
= PN (ξ = 0) + EN

[
(ξ − 1)2; 2 ≤ ξ ≤ k

]
+ EN

[
(ξ − 1)2; ξ > k

]

≤ PN (ξ = 0) + (k − 1)EN [ξ − 1; ξ ≥ 2] +
σ2

2

= PN (ξ = 0) + (k − 1)(εN + PN (ξ = 0)) +
σ2

2
.

This leads to the estimate

σ2

2k
+ o(1) ≤ PN (ξ = 0) = EN [F (0)] .

Choosing θ small enough, (5.17) yields

PN (φ(0) ≥ θ) ≥ σ2

2k
− 2θ + o(1) ≥ p0,
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for some p0 > 0 and N sufficiently large.

We aim to study the limiting behaviour of the random variableX asN → ∞. For

this purpose we recall the notion

Y =
∞∑
k=0

φk+1(1)

µk
,

with µk and φk(1) as introduced in Section 5.2.

Lemma 5.4.3. Under the assumptions of Theorem 10,

i) if νNεN → 0 as N → ∞, then εNY converges in probability to σ2

2 ,

ii) if νNεN → ρ as N → ∞ with 0 < ρ < 2, then νNY is asymptotically inverse gamma
distributed with parameters (a, b) =

(
2−ρ
ρ , σ2

)
.

Proof. The proof follows from Theorem 11. Note that Y fulfils the annuity equation

(5.9),

Y
d
= φ(1) +

1

F ′(1)
Y,

with A = φ(1) and B = 1/F ′(1). It remains to verify the assumptions from Theorem

11. By Lemma 5.4.1 ii)

EN [φ(1)] = EN
[
F ′′(1)
2F ′(1)2

]
=
σ2

2
(1 + o(1)),

thus α = σ2

2 . Also we have EN
[
φ(1)1+δ

]
= O(1) for some δ > 0 sufficiently small,

due to

EN
[
φ(1)1+δ

]
≤ EN

[
F ′′(1)1+δ

F ′(1)2+2δ

]
≤ EN

[
F ′′(1)2+2δ

] 1
2 EN

[
F ′(1)−4−4δ

]
= O(1) (5.18)

by assumption (5.1) and (5.2).

For βN = EN
[

1
F ′(1)

]
− 1, Lemma 5.4.1 i) yields

βN = εN − νN + o(εN ).

Similarly, we obtain for γN = VarN (1/F ′(1))

γN = EN
[
F ′(1)−2

]
− EN

[
F ′(1)−1

]2
= 1− 2εN + 3νN + o(εN )− (1− εN + νN + o(εN ))

2

= νN + o(εN ).
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Finally, we have to confirm EN
[
| 1
F ′(1) − 1|2+δ

]
= o(βN + γN ) = o(εN ). We have for

δ > 0 sufficiently small

EN

[∣∣∣∣ 1

F ′(1)
− 1

∣∣∣∣2+δ
]
= EN

[∣∣∣∣1− F ′(1)
F ′(1)

∣∣∣∣2+δ
]

≤ EN
[
|1− F ′(1)|4+2δ

] 1
2 EN

[
F ′(1)−4−2δ

] 1
2

= O(ν
2+δ
2

N + ε2+δN ) = o(εN ),

by assumption (5.2).

Altogether we may apply Theorem 11. In case i) the assumption νN/εN → 0
implies

γN
βN

=
νN

εN − νN
→ 0,

hence εNY → α = σ2

2 in probability.

In case ii), that is
νN
εN

→ ρ with 0 < ρ < 2, we have

βN
γN

=
εN − νN + o(εN )

νN
→ 1− ρ

ρ
.

Thus, by an application of Theorem 11 ii) νNY is asymptotically inverse gamma

distributed with parameters

(a, b) =

(
2(1− ρ)

ρ
+ 1, σ2

)
.

This concludes the proof.

Recall from Proposition 5.2.1 the notation

X =
∞∑
k=0

φk+1(PN (Z∞ = 0 | Zk+1 = 1, V ))

µk
.

Lemma 5.4.4. Under the conditions of Theorem 10 i) or ii) , the sequence
(

1
εNX

, N ≥ 1
)

is
uniformly integrable.

Proof. We have to prove that for any choice of η there exists a constant c > 0 such

that EN
[

1
εNX

; 1
εNX

> c
]
≤ η. SinceX ≥ 1 almost surely due to (5.8), we have for any

κ0 ∈ N0

EN
[

1

εNX
;

1

εNX
≥ 2κ0

]
=

1

εN
EN
[
1

X
;X ≤ 2−κ0

εN

]

≤ 1

εN

⌊ log 1/εN
log 2

⌋∑
κ=κ0

εN2
κ+1PN

(
2−(κ+1)

εN
< X ≤ 2−κ

εN

)

≤
⌊ log 1/εN

log 2
⌋∑

κ=κ0

2κ+1PN
(
X ≤ 2−κ

εN

)
. (5.19)
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Let us estimate the right hand probabilities. Using Lemma 1 in [Ker20] we have for

φk+1 the lower bound
1
2φk+1(0) and get

PN
(
X ≤ 2−κ

εN

)
≤ PN

( ∞∑
k=0

1

2

φk+1(0)

µk
≤ 2−κ

εN

)
≤ PN

⌊ε−1
N ⌋∑
k=0

φk+1(0)

µk
≤ 2−κ+1

εN

 .

Let W = #{j ≤ ⌊ε−1
N ⌋ : φj(0) ≥ θ}. Noting that φ0(0), φ1(0), ... are independent and

identically distributed, the probability PN
(
W < q

εN

)
is of order o(εN ) for any q < p0

due to Lemma 5.4.2 and e.g. Hoeffding’s inequality. Therefore,

PN
(
X ≤ 2−κ

εN

)
≤ PN

⌊ε−1
N ⌋∑
k=0

φk+1(0)

µk
≤ 2−κ+1

εN
,W ≥ q

εN

+ PN
(
W <

q

εN

)

≤ PN

(
qθ

εN
min

k≤⌊ε−1
N ⌋

µ−1
k ≤ 2−κ+1

εN

)
+ o(εN ).

Next, define the random variables ζj , j ≥ 1 by the equation F ′
j(1) = 1+ εN +

√
νNζj ,

thus one has EN [ζj ] = 0 and VarN (ζj) = 1. Also let Sk =
∑k

j=1 ζj , then

µk =
k∏
j=1

(1 + εN +
√
νNζj) ≤ exp(kεN +

√
νN

k∑
j=1

ζj)

≤ exp(1 +
√
νNSk),

for k ≤ ⌊ε−1
N ⌋. This implies

PN
(
X ≤ 2−κ

εN

)
≤ PN

(
qθ min

k≤⌊ε−1
N ⌋

(exp(1 +
√
νNSk))

−1 ≤ 2−κ+1

)
+ o(εN )

≤ PN

(
max

k≤⌊ε−1
N ⌋

Sk ≥
1√
νN

log

(
2κ−1 qθ

e

))
+ o(εN )

Note that the term o(εN ) above does not depend on κ. We aim to show that for some

c > 0 and any κ such that log(2k qθ2e) > 0

PN

 max
k≤⌊ε−1

N ⌋
Sk ≥

log
(
2κ qθ2e

)
√
νN

 ≤ exp

(
−cεN (log 2

κ)2

νN

)
+ o(εN ), (5.20)
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with o(εN ) holding uniformly in κ. We defer the proof of (5.20) to the end. Applying

the bound (5.20) and plugging this back into (5.19) we obtain

EN
[

1

εNX
,

1

εNX
> 2κ0

]
≤

⌊ log 1/εN
log 2

⌋∑
κ=κ0

2κ+1

PN

 max
k≤⌊ε−1

N ⌋
Sk ≥

(
log 2κ qθ2e

)
√
νN

+ o(εN )



≤
⌊ log 1/εN

log 2
⌋∑

κ=κ0

2κ+1

(
exp

[
−c(log 2

κ)2εN
νN

]
+ o(εN )

)

≤
∞∑

κ=κ0

(
2κ+1 exp

[
−cκ

2(log 2)2εN
νN

])
+ o(1).

Due to the assumptions in Theorem 10 i) or ii) we have νN = O(εN ). Also, the series∑
κ 2

κe−cκ
2

is convergent for all c > 0, therefore

EN
[

1

εNX
;

1

εNX
≥ 2κ0

]
≤ η + o(1),

if one chooses κ0 big enough, which is the claimed result of the lemma.

It remains to prove (5.20), which we achieve via a Skorokhod embedding of

Sk =
∑k

i=1 ζi into a standard Wiener process (Bt)t≥0. The Skorokhod embedding

theorem states that there exists a sequence of stopping times 0 = τ0 ≤ τ1 ≤ τ2, ...
such that

(S1, S2, ..., Sk)
d
= (Bτ1 , Bτ2 , ..., Bτk).

with EN [τi − τi−1] = EN
[
ζ2i
]
= 1 and EN

[
(τi − τi−1)

2+δ
]
≤ c2+δEN

[
ζ4+2δ
i

]
= O(1)

due to assumption (5.2) for some positive constant c2+δ only depending on δ, see

[Roo69]. We estimate

PN

 max
k≤⌊ε−1

N ⌋
Sk ≥

log
(
2κ qθ2e

)
√
νN


≤ PN

 sup
t≤τ⌊1/εN ⌋

Bt ≥
log
(
2κ qθ2e

)
√
νN

, τ⌊1/εN ⌋ ≤ 2⌊ε−1
N ⌋

+ PN
(
τ⌊1/εN ⌋ > 2⌊ε−1

N ⌋
)

≤ PN

sup
t≤t0

Bt ≥
log
(
2κ qθ2e

)
√
νN

+ PN
(
τ⌊1/εN ⌋ > 2⌊ε−1

N ⌋
)
, (5.21)

with t0 = 2ε−1
N . The probability in the first term on the r.h.s of (5.21) simply concerns

the maximum of a standard Brownian motion and can be estimated as

PN

sup
t≤t0

Bt ≥
log
(
2κ qθ2e

)
√
νN

 = 2PN

Bt0 ≥
log
(
2κ qθ2e

)
√
νN

 ≤ 2 exp

(
−cεN (log 2

κ)2

νN

)
,
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for some c > 0. For the right-hand probability in (5.21) we express τ⌊1/εN ⌋ as a sum

of independently and identically distributed random variables (Ti, i ∈ N), such that

τ⌊1/εN ⌋ =
⌊1/εN ⌋∑
i=1

Ti, Ti := τi − τi−1.

We obtain for some constant c′ only depending on δ,

PN
(
τ⌊1/εN ⌋ > 2⌊ε−1

N ⌋
)
≤ PN

⌊1/εN ⌋∑
i=1

(Ti − EN [Ti]) ≥
1

εN


≤ (εN )

2+δ EN


∣∣∣∣∣∣
⌊1/εN ⌋∑
i=1

(Ti − EN [Ti])

∣∣∣∣∣∣
2+δ


≤ (εN )
2+δ c′

(
1

εN

) 2+δ
2

= o(εN ).

This finishes the proof.

Lemma 5.4.5. Under the assumptions of Theorem 10, the random variable εN (X − Y )
converges to 0 in probability.

Proof. Letting Qk = PN (Z∞ = 0 | Zk = 1, V ) we have

εN |Y −X| ≤ εN

∞∑
k=0

1

µk
|φk+1(Qk+1)− φk+1(1)|.

Thus, we prove that the right-hand side converges to 0 in probability. Note that

we are in the setting of Lemma 5.3.2 with Ak = |φk(Qk) − φk(1)|, Bk = F−1
k and

Ck = µ−1
k and with the sequence Ak, k ≥ 1 being identically distributed. As seen

in the proof of Lemma 5.4.3 we have βN + γN = εN + o(εN ). Therefore, in view of

Lemma 5.3.2 and Remark 5.3.3 it is sufficient to show that EN [|φ1(Q1)− φ1(1)|] → 0.

Let S = 1− η2F ′
1(1)

3
andD = 1

ηF ′
1(1)

with η > 0. On the event {0 < S < Q1} we have

by Lemma 2 in [Ker20]

|φ1(Q1)− φ1(1)| ≤ 2F ′
1(1)

F ′′
1 (1)

2

F ′
1(1)

4
(1− S) + 2D

F ′′
1 (1)

F ′
1(1)

2
(1− S)

+
2

F ′
1(1)

2
EN
[
ξ2; ξ > D | V

]
≤ 2η2F ′′

1 (1)
2 + 2ηF ′′

1 (1) + 2η2EN
[
ξ4 | V

]
. (5.22)

Taking the expectation in (5.22) one obtains by Lemma 1 in [Ker20]

EN [|φ1(Q1)− φ1(1)|] ≤ 2ηEN
[
ηF ′′

1 (1)
2 + F ′′

1 (1) + ηξ4
]
+ 2EN [φ1(1); {0 < S < Q}c] .

Since η can be chosen arbitrarily small and (5.1), it remains to show

EN [φ1(1); {0 < S < Q}c] → 0. Because of (5.18) φ1(1) is uniformly integrable, thus

it suffices to show PN ({0 < S < Q1}c) → 0. Note that S → 1 − η2 in probability in

view of (5.2), thus to finish the proof we show Q1 → 1 in probability.
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As a consequence of Lemma 5.4.4 it follows EN
[
1
X

]
→ 0. Then Proposition 5.2.1

implies that πN → 0, hence Q1 → 1 in probability, provided that the assumptions of

Proposition 5.2.1 are satisfied.

From the proof of Lemma 5.3.2, it follows that for u > 0 sufficiently small,

EN [Bu] = EN
[
F ′(1)−u

]
< 1.

Therefore, via Jensen’s inequality

EN
[
logF ′(1)

]
= −1

u
EN
[
logF ′(1)−u

]
> −1

u
logEN

[
F ′(1)−u

]
> 0.

The remaining assumptions of Proposition 5.2.1 are immediate from (5.1) and (5.2).

Proof of Theorem 10. i): Here,
νN
εN

→ 0. From Lemma 5.4.3 and 5.4.5 we get

1

εNX
→ 2

σ2
in probability.

Since
1

εNX
is uniformly integrable (Lemma 5.4.4) it follows

EN
[

1

εNX

]
→ 2

σ2
.

By Proposition 5.2.1 the proof is concluded.

ii): Now we have
νN
εN

→ ρ ∈ (0, 2). By the same line of arguments we obtain

EN
[

1

νNX

]
→ ba

Γ(a)

∫ ∞

0

1

x
x−a−1e−

b
xdx =

a

b
=

2(1− ρ) + ρ

ρσ2
.

By Proposition 5.2.1 we get that

PN (Z∞ > 0) = νNEN
[

1

νNX

]
∼ νN

2

σ2
1− ρ

2

ρ
∼ εN

2

σ2

(
1− ρ

2

)
,

which gives the claim.

iii): We want to confirm that EN [logF ′(1)] < 0 holds for large N , which implies

that the branching process is subcritical and dies out almost surely, see [SW69]. To

this end we prove

EN
[
logF ′(1)

]
= εN − 1

2
νN + o(εN ), (5.23)

which indeed implies EN [logF ′(1)] < 0 for N large enough, since we have
νN
εN

→ ρ,

with ρ > 2.

We split the expectation EN [logF ′(1)] into two parts and obtain for any η > 0

EN
[
logF ′(1); |F ′(1)− 1| > η

]
≤ EN

[
(logF ′(1))2

] 1
2 PN

(
|F ′(1)− 1| > η

) 1
2

≤ EN

[(
1

F ′(1)
+ F ′(1)

)2
] 1

2 1

η2+δ/2
EN
[
|F ′(1)− 1|4+δ

] 1
2

= O(ε
2+δ/2
N + ν

1+δ/2
N ) = o(εN ),
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because of (5.2). By a Taylor expansion we have for some U between 1 and F ′(1)

logF ′(1) = (F ′(1)− 1)− 1

2
(F ′(1)− 1)2U−2.

Therefore,∣∣∣∣EN [logF ′(1); |F ′(1)− 1| ≤ η
]
− EN

[
(F ′(1)− 1)− 1

2
(F ′(1)− 1)2

]∣∣∣∣
≤
∣∣∣∣EN [12(F ′(1)− 1)2(U−2 − 1); |F ′(1)− 1| ≤ η

]∣∣∣∣
+

∣∣∣∣EN [(F ′(1)− 1)− 1

2
(F ′(1)− 1)2; |F ′(1)− 1| > η

]∣∣∣∣
≤ EN

[
1

2
(F ′(1)− 1)2((1− η)−2 − 1)

]
+O(EN

[
|F ′(1)− 1|2+δ

]
)

=
1

2
(νN + ε2N )((1− η)−2 − 1) + o(εN )

Altogether this implies∣∣∣∣EN [logF ′(1)
]
− EN

[
(F ′(1)− 1)− 1

2
(F ′(1)− 1)2

]∣∣∣∣ ≤ 1

2
νN ((1− η)−2 − 1) + o(εN ),

Letting η → 0 this proves (5.23).
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Appendix A

Zusammenfassung

A.1 Haldanes Asymptotik für leicht superkritische Prozesse

Die Theorie der mathematischen Populationsgenetik ist die Synthese der von Dar-

win begründeten Evolutionstheorie [Dar59] und der Mendelschen Vererbungslehre

[Men65] und wurde maßgeblich von Fisher, Haldane und Wright zu Beginn des

zwanzigsten Jahrhunderts begründet. Ein Ziel der Populationsgenetik ist es die

Evolution eines Typs (oder Allels) in einem idealisierten mathematischen Modell zu

beschreiben, wobei die Population unterschiedlichen evolutionären Mechanismen

wie Gendrift, Selektion, Mutation oder Migration ausgesetzt ist.

In der vorliegenden Arbeit wird vor allem der Zusammenhang zwischen geneti-

schem Drift und Selektion betrachtet. Dies geschieht unter verschiedenen Annahmen

an die Stärke dieser Einflüsse. Wir analysieren dabei wie sich die Fixationswahr-

scheinlichkeit in Abhängigkeit des selektiven Vorteils asymptotisch verhält.

Die klassische Frage nach der Fixationswahrscheinlichkeit (also die Wahrschein-

lichkeit dass sich der bevorzugte Typ in der ganzen Population durchsetzt) geht

bereits zurück auf Haldane um 1920 [Hal27], der die mittlerweile nach ihm benann-

te Asymptotik entwickelt hat. Betrachtet man einen bevorzugten Typ mit kleinem

selektiven Vorteil s in einer großen Population, so ist die asymptotische Fixations-

wahrscheinlichkeit π(s) gegeben durch

π(s) ∼ 2s

σ2
, für s ↓ 0

wobei σ2 die Varianz der Nachkommenverteilung bezeichnet. Im Folgenden definie-

ren wir zunächst kurz die grundlegenden stochastischen Modelle und stellen diese

vor. Danach erläutern wir die Resultate aus [BGPW21a], [BGPW21b] und [BK21], die

den Kapiteln 3 bis 5 entsprechen. Die Arbeiten sind in Zusammenarbeit mit Adrián

González Casanavoa, Cornelia Pokalyuk und Anton Wakolbinger, sowie mit Götz

Kersting entstanden. Abschließend geben wir noch einen kurzen Ausblick auf eine

in Vorbereitung befindliche Arbeit, die auf einer Kollaboration mit Matthias Birkner,

Iulia Dahmer und Cornelia Pokalyuk beruht.

A.1.1 Einleitung

In diesem Abschnitt werden wir den mathematischen Rahmen der theoretischen

Populationsgenetik, der in dieser Arbeit benötigt wird, vorstellen und kommen-

tieren. Unser Ziel ist es, die Überlebens- oder Fixationswahrscheinlichkeiten von

individuen-basierten stochastischen Populationsmodellen zu untersuchen, die leicht

superkritisch sind. Mit leicht superkritisch bezeichnen wir Prozesse, bei denen der be-

vorzugte Typ (im Gegensatz zum Wildtyp) in Erwartung 1+s > 1 Nachkommen hat
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und wir betrachten den Grenzwert s ↓ 0. Das wohl einfachste stochastische Modell

für die Evolution einer Population ist der Galton-Watson-Prozess.

Definition A.1.1 (Galton-Watson-Prozess).
Wir nennen (Zn, n ≥ 0) einen Galton-Watson-Prozess, falls Zn die Rekursion

Zn =

Zn−1∑
j=1

ξ
(n)
j , Z0 = z0 ≥ 1

erfüllt, wobei (ξ(n)j , j ≥ 1, n ≥ 1) unabhängige Kopien einer auf N0 verteilten Zufallsvaria-
blen ξ sind.

Galton-Watson-Prozesse werden mithilfe des Erwartungswertes m = E [ξ] der

Nachkommenverteilung klassifiziert, siehe [AN72] oder [Har63]. Falls der Galton-

Watson-Prozess subkritisch (m < 1) oder kritisch (m = 1) ist, stirbt der Prozess fast

sicher aus (abgesehen vom trivialen Fall P (ξ = 1) = 1). Nur im superkritischen Fall

(m > 1) ist die Überlebenswahrscheinlichkeit größer als 0. Sei

f(t) =

∞∑
k=0

tkP (ξ = k) , t ∈ [0, 1]

die wahrscheinlichkeitserzeugende Funktion. Die Überlebenswahrscheinlichkeit

π = 1− q, kann durch die kleinste Lösung der Fixpunktgleichung

q = f(q) (A.1)

ausgedrückt werden. Im Folgenden betrachten wir oft Folgen von Prozessen die

leicht superkritisch sind. Für einen leicht superkritischen Galton-Watson-Prozess

mit m = 1 + s und endlicher Varianz σ2, ist die Überlebenswahrscheinlichkeit π(s)
durch Haldanes Asymptotik gegeben

π(s) ∼ 2s

σ2
, für s ↓ 0.

Diese Asymptotik wurde zum Beispiel unter der Annahme gleichmäßig beschränk-

ter dritter Momente [Kol38], [Ath92] mithilfe der Charakterisierung der Überlebens-

wahrscheinlichkeit in (A.1) gezeigt, siehe auch [Esh81] und [Hop92]. Wir nennen

s > 0 den selektiven Vorteil der bevorzugten Individuen. Im Abschnitt A.1.7 werden

wir auf eine Erweiterung von Galton-Watson-Prozessen zurückkommen und die

Überlebenswahrscheinlichkeit von Verzweigungungsprozessen in zufälliger Umge-

bung betrachten. Die Verwendung von reinen Galton-Watson-Prozessen zur Mo-

dellierung der Evolution einer Population hat den Nachteil, dass die Population im

Überlebensfall über alle Grenzen hinaus wächst, was in der Realität offensichtlich

nicht beobachtet wird.

Ein einfaches Modell zur Beschreibung einer Population mit konstanter Popula-

tionsgröße N in diskreter Zeit, ist das Cannings-Modell [Can74] und [Can75]. Dazu

definieren wir zunächst den Begriff der Austauschbarkeit.

Definition A.1.2 (Austauschbarkeit).
Wir nennen die Zufallsvariablen X1, . . . , Xn austauschbar, falls für alle Permutationen
ψ : [n] → [n] gilt.

(X1, . . . , Xn)
d
= (Xψ(1), . . . , Xψ(n)).
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Mit dieser Definition können wir die Klasse der Cannings-Modelle einführen.

Im folgenden bezeichnen wir mir ν = (ν1, . . . , νN ) den zufälligen Kinderzahlvektor,

also den Vektor der die Anzahl Nachkommen je Individuum beschreibt.

Definition A.1.3 (Cannings-Modell).
Sei N die feste Populationsgröße. Bezeichne mit ν(g) den Kinderzahlvektor in Generation g.
Wir nehmen an, dass die Verteilung L (ν(g)) nicht von der Generation g abhängt und dass
die ν(g), g ∈ Z unabhängig sind. Weiterhin sei ν(g) austauschbar, mit

∑N
i=1 ν

(g)
i = N für

alle g ∈ Z. Das resultierende Populationsmodell nennen wir Cannings-Modell.

Der Spezialfall, dass ν multinomialverteilt mit Parametern (N ; 1
N , . . . ,

1
N ) ist, ist

als das Wright-Fisher-Modell [Fis30] und [Wri31] bekannt. Die Klasse der neutralen

Cannings-Modelle mit einem selektiven Mechanismus auszustatten ist nicht wie bei

anderen Modellen direkt möglich. Es ist nicht offensichtlich wie die Verteilung

von ν so angepasst werden kann, dass die bevorzugten Individuen einen selektiven

Vorteil haben, vergleiche hierzu den Ansatz von Lessard und Ladret [LL07]. Beim

Wright-Fisher Modell geschieht dies, indem man den bevorzugten Individuen das

Gewicht 1 + s zuweist, wohingegen die Wildtyp Individuen das Gewicht 1 erhalten.

Der Kinderzahlvektor entsteht dann wieder durch multinomiales Ziehen, wobei

die Wahrscheinlichkeit ein Individuum als Elter zu ziehen proportional zu seinem

Gewicht ist.

Im Abschnitt A.1.2 werden wir eine Möglichkeit aufzeigen selektive Cannings-

Modelle zu definieren, die den eben beschriebenen Ansatz für Wright-Fisher-Modelle

mit Selektion aufgreift. Dies wird auf eine Art und Weise getan, die es erlaubt den

Cannings-Anzahlprozess (die Anzahl der Wildtyp-Individuen in jeder Generation)

vorwärts in der Zeit zu beschreiben als auch einen dualen Rückwärts-Prozess nach

Ideen von Krone und Neuhauser [KN97], [NK97] und González Casanova und Spanò

[GS18] zu definieren.

Alle bisher in diesem Abschnitt beschriebenen Populationsmodelle modellieren

die zeitliche Entwicklung einer Population vorwärts in der Zeit. Das bedeutet, wenn

die Verteilung der Typen in der vorherigen Generation bekannt ist, so kann die

Verteilung der Typen in der nächsten Generation bestimmt werden. Im Kontext der

mathematischen Populationsgenetik ist es ein weit verbreiteter Ansatz, in der Zeit

zurückzublicken und die Ahnenlinien einer Stichprobe von Individuen zu verfolgen.

Angenommen, wir befinden uns in einem neutralen Wright-Fisher-Modell mit

zwei Typen und wir möchten den Typ einer Stichprobe von n Individuen bestimmen.

Wir können das Modell entweder zeitlich vorwärts betrachten und die Typen der n
Individuen beobachten oder wir können die Ahnenlinien der n Individuen zeitlich

rückwärts verfolgen und die Typen der Vorfahren bestimmen, was uns folglich die

Typenverteilung der Stichprobe liefert. Immer wenn zwei Individuen denselben

Elter wählen, verschmelzen ihre Ahnenlinien, daher sprechen wir von Koaleszenten.

Einer der bekanntesten Koaleszenten wurde um 1980 von Kingman eingeführt

[Kin82a]. Der Kingman-Koaleszent beschreibt (unter anderem) den Grenzwert der

reskalierten Genealogie einer Stichprobe im neutralen Wright-Fisher-Modells, nach-

dem die Zeit passend beschleunigt wurde. Dazu sei Pn die Menge aller Partitionen

von [n].

Definition A.1.4 (Kingman-Koaleszent).
Wir nennen einen Pn-wertigen Markov-Prozess (Πn(t))t≥0 Kingmans-Koaleszent, falls
Πn(0) die Partition in n Blöcke {{1}, . . . , {n}} ist und jedes Paar von Blöcken unabhängig
voneinander mit Rate 1 verschmilzt.
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Für neutrale Cannings-Modelle beschreibt der Kingman-Koaleszent die Genealo-

gie im Grenzwert, falls Möhles Bedingung [Möh00] erfüllt ist, nämlich dass die Paar-

verschmelzungswahrscheinlichkeit von kleinerer Ordnung ist als die Wahrschein-

lichkeit für Tripel-Verschmelzungen, also

E [ν1(ν1 − 1)]

N − 1
= o

(
E [ν1(ν1 − 1)(ν1 − 2)]

(N − 1)(N − 2)

)
.

Falls diese Bedingung nicht erfüllt ist, sind andere Genealogien möglich, wie zum

Beispiel die Klasse der Λ-Koaleszenten welche unabhängig von einander von Pit-

man [Pit99], Sagitov [Sag99] und Donnelly und Kurtz [DK99] eingeführt wurden.

Cannings-Modelle mit Selektion bei denen die neutrale reskalierte Genealogie gegen

einen Λ-Koaleszenten konvergiert werden im Abschnitt A.1.6 betrachtet.

A.1.2 Cannings-Modelle mit moderater Selektion

Betrachten wir ein klassisches Cannings-Modell [Can74], [Can75] mit fester Popu-

lationsgröße N ∈ N, das durch die Verteilung seiner austauschbaren und nicht

negativen Nachkommenverteilung ν = (ν1, . . . , νN ), mit ν1 + · · ·+ νN = N definiert

ist, siehe Definition A.1.3. Im Folgenden konzentrieren wir uns auf den Spezialfall

von Cannings-Modellen, die eine Paintbox-Konstruktion ermöglichen.

Sei W (N) = (W
(N)
1 , . . . ,W

(N)
N ) ein Vektor von zufälligen Gewichten, so dass W (N)

austauschbar ist und

N∑
j=1

W
(N)
j = 1, W

(N)
i ≥ 0, i ∈ [N ]

gilt. Um die Notation im Folgenden zu vereinfachen unterdrücken wir an manchen

Stellen die Abhängigkeit von N . Manchmal schreiben wir auch W (g)
für den Vektor

der zufälligen Gewichte in Generation g. Wir nehmen an, dass (W (g))g∈Z eine Familie

unabhängig und identisch verteilter Zufallsvariablen ist.

Die Anzahl der Nachkommen von einer Generation zur nächsten wird durch ein

zweistufiges Verfahren erzeugt. Zunächst generieren wir den Vektor der zufälligen

Gewichte W . Gegeben W sei dann ν multinomialverteilt mit Parametern (N ;W ).
Als Beispiel erhalten wir das klassische Wright-Fisher-Modell, wenn wir Wi =

1
N

wählen, für alle i ∈ [N ].
Die genealogischen Beziehungen zwischen den Individuen der Generation g − 1

und g werden folgendermaßen beschrieben. Mit (i, g), i ∈ [N ] bezeichnen wir die

Individuen der Generation g. Jedem einzelnen (i, g) wird ein Elter (V (i, g), g − 1) in

der Generation g − 1 zugewiesen, so dass für alle j ∈ [N ] gilt

P
(
V (i, g) = j|W (g−1)

)
=W

(g−1)
j , (A.2)

gegeben W (g−1)
unabhängig für alle i ∈ [N ] und unabhängig zwischen den Genera-

tionen. Ein Vorteil dieser Definition ist die Existenz einer graphischen Darstellung

für diese Klasse der Cannings-Modelle.

Für jedes g ∈ Z sei U
(g)
1 , . . . , U

(g)
N eine Folge unabhängig und identisch auf dem

Einheitsquadrat [0, 1] × [0, 1] verteilter Zufallsvariablen. Wir teilen das Quadrat

[0, 1]× [0, 1] inN Streifen [0, 1]×I
(g−1)
1 , . . . , [0, 1]×I

(g−1)
N , so dass I

(g−1)
j die Länge
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W
(g−1)
j hat, also

I
(g−1)
j =

[
j−1∑
i=1

W
(g−1)
i ,

j∑
i=1

W
(g−1)
i

]
, j ∈ [N ].

Im Sinne von (A.2), erhalten wir die Gleichheit der Ereignisse

{V (i, g) = j} = {U (g)
i ∈ [0, 1]× I

(g−1)
j },

dies ist illustriert in Abbildung A.1.

10

1

I
(g−1)
1

I
(g−1)
2

I
(g−1)
3

I
(g−1)
4

• U (g)
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• U (g)
3

• U (g)
4

Abbildung A.1: Eine Realisierung eines neutralen Cannings-Modells

mit einer Paintbox-Darstellung und N = 4 Individuen. Zum Beispiel

hat das Individuum 2 in der Generation g das Individuum 4 in der

Generation g − 1 als Elternteil gewählt, da U
(g)
2 ∈ [0, 1]× I

(g−1)
4 .

Wir führen Selektion mit Stärke sN ∈ (0, 1) in diesem Modell folgendermaßen

ein. Angenommen jedes Individuum ist entweder vom Wildtyp oder vom bevorzugten
Typ und jedes Kind erbt den Typ seines Elters. Definiere den Vektor der modifizierten

Gewichte W̃ (g−1) = (W̃
(g−1)
1 , . . . , W̃

(g−1)
N ) mit W̃

(g−1)
i = (1− sN )W

(g−1)
i wenn i vom

Wildtyp ist und W̃
(g−1)
i = W

(g−1)
i , falls i vom bevorzugten Typ ist, für alle i ∈ [N ].

Auf die gleiche Weise wie zuvor ergibt sich die Generation g durch multinomaiales

Ziehen mit Gewichten proportional zu W̃ (g−1)
. Also ist (j, g − 1) der Elter des

Individuums (i, g) mit Wahrscheinlichkeit

P
(
V (i, g) = j|W̃ (g−1)

)
=

W̃
(g−1)
j∑N

k=1 W̃
(g−1)
k

, j ∈ [N ],

und gegeben W̃ (g−1)
unabhängig für alle i ∈ [N ] und unabhängig zwischen den

Generationen.
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Dieses Verfahren binden wir in die graphische Darstellung ein und definieren

dafür die Mengen

B(g−1) := {i ∈ [N ] : (i, g − 1) ist vom bevorzugten Typ},
C (g−1) := {i ∈ [N ] : (i, g − 1) ist vom Wildtyp}.

Außerdem seien (U
(g)
1 , . . . , U

(g)
N ) unabhängig und uniform verteilt auf Γ(g−1)

, mit

Γ(g−1) :=
⋃

j∈B(g−1)

[0, 1]× I
(g−1)
j ∪

⋃
j∈C (g−1)

[0, 1− sN ]× I
(g−1)
j .

I
(g−1)
1

I
(g−1)
2

1− sN 1

I
(g−1)
3

I
(g−1)
4

• U (g)
1

• U (g)
2

• U (g)
3

•U
(g)
4

Abbildung A.2: Beispiel einer Realisierung eines Übergangsschrittes

eines Cannings-Modells mit N = 4 Individuen. Das Individuum 4
ist vom bevorzugten Typ, wohingegen die anderen Individuen vom

Wildtyp sind.

Dies liefert die Gleichheit der Ereignisse (vergleiche mit dem Ausdruck in (A.2)

und Abbildung A.2),

{V (i, g) = j} = {U (g−1)
i ∈ [0, 1]× I

(g−1)
j }, für j ∈ B(g−1),

{V (i, g) = j} = {U (g−1)
i ∈ [0, 1− sN ]× I

(g−1)
j }, für j ∈ C (g−1).

Im Folgenden betrachten wir das Aussterben der Wildtyp-Individuen (beziehungs-

weise das Überleben der selektiv bevorzugten Individuen). Um ihre Häufigkeit über

die Generationen hinweg zu verfolgen, definieren wir den Zählprozess der Wildtyp-

Individuen.

Definition A.1.5 (Cannings-Anzahl-Prozess).
Mit K = (Kg)g≥0 bezeichnen wir den Cannings-Anzahl-Prozess mit Parametern N, sN
und L (W ) und Zustandsraum [N ]. Dabei zählt Kg die Anzahl der Wildtyp Individuen in
Generation g.

Aufgrund der Austauschbarkeit von W hängen die Übergangswahrscheinlich-

keiten von K nicht von der genauen Konfiguration der bevorzugten Individuen

in der vorherigen Generation ab, weswegen K ein Markov-Prozess ist. Aufgrund
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der zuvor beschriebenen Prozedur zur Generierung des Kinderzahlvektors sind die

Übergangswahrscheinlichkeiten für Kg, gegeben Kg−1 = k und W (g−1)
die gleichen

wie bei einer gemischt binomial verteilten Zufallsvariable mit Parametern N und

P (k,W ), mit

P (k,W ) :=
(1− sN )

∑k
i=1Wi

(1− sN )
∑k

i=1Wi +
∑N

i=k+1Wi

.

A.1.3 Der anzestrale Selektionsprozess im Cannings-Modell

Für Cannings-Modelle mit Paintbox-Darstellung wie in Abschnitt A.1.2, existiert

ein anzestraler Prozess, der dual zu K ist. Der Cannings anzestrale Selektionsprozess,
A = (Am)m∈N0 mit den Parametern N, sN und L (W ), zählt die Anzahl potenzieller

Eltern von einer Stichprobe von Individuen m Generationen in der Vergangenheit.

Der Cannings anzestrale Selektionsprozess ist eine [N ]-wertige Markovkette,

deren Übergangswahrscheinlichkeiten durch einen Verzweigungs- und einem Ver-

schmelzungsschritt beschrieben werden. Gegeben Am = a, verzweigt der Prozess

zunächst in die zufällige Summe H =
∑a

i=1G
(i)

, wobei G(i)
unabhängige geome-

trisch verteilte Zufallsvariablen mit Parameter 1 − sN sind. Also ist H negativ-

binomialverteilt mit Parametern a und 1− sN . Für den Verschmelzungsschritt wer-

den H Kugeln auf N Boxen je mit Wahrscheinlichkeit W = (W1, . . . ,WN ) verteilt.

Die Verteilung von Am+1 gegeben Am = a ist die gleiche wie die Verteilung der

Anzahl belegter Boxen nach diesem zweistufigen Verfahren.

Dieses Verfahren entsteht aufgrund der folgenden Beobachtungen auf natürliche

Weise. Da der Prozess in der Zeit zurückblickt, gibt es keine Informationen dar-

über, wie viele bevorzugte Individuen in der vorherigen Generation vorhanden sind.

Deswegen wird jedes Gewicht Wi in einen neutralen Anteil (1 − sN )Wi und einen

selektiven Anteil sNWi aufgeteilt. Dies führt dazu, dass das Quadrat [0, 1] × [0, 1]
vertikal in einen neutralen Teil N und einen selektiven Teil S aufgeteilt wird,

N := [0, 1− sN ]× [0, 1] S := [1− sN , 1]× [0, 1].

Für jedes Individuum j ∈ [N ] in der Generation g betrachten wir nun eine Fol-

ge uniform auf dem Einheitsquadrat verteilter Zufallsvariablen U
(1,g)
j , U

(2,g)
j , . . . die

unabhängig und identisch verteilt sind. Für jedes Individuum warten wir bis die

erste uniforme Zufallsvariablen in den Bereich N fällt und bezeichnen den entspre-

chenden Index mit γ(j, g),

γ(j, g) := min{ℓ ≥ 1 : U
(ℓ,g)
j ∈ N}.

Also ist γ(j, g) geometrisch verteilt mit Parameter 1− sN und wir nennen die Indivi-

duen k ∈ [N ] mit

U
(ℓ,g)
j ∈ [0, 1]× I

(g−1)
k , für ein 1 ≤ ℓ ≤ γ(j, g)

potentielle Eltern von (j, g), dies wird in Abbildung A.3 illustriert.
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1− sN 1

I
(g−1)
1

I
(g−1)
2

I
(g−1)
3

I
(g−1)
4

•
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1
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•
U
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•
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Abbildung A.3: Eine Realisierung der potentiellen Vorfahren in einem

Cannings-Modell mit N = 4 Individuen. Die Individuen 1 und 4
haben zwei beziehungsweise 3 potentielle Eltern also γ(1, g) = 2 und

γ(4, g) = 3. Die Individuen 3 und 4 haben insgesamt 3 potentielle

Eltern

Da wir mit a Individuen begonnen haben, erhalten wir durch dieses Verfahren

a verschiedene Mengen potentieller Eltern. Wir verfolgen nur die Gesamtzahl der

potentiellen Eltern, dies entspricht der Anzahl Streifen die getroffen wurden. Damit

erhalten wir den oben erwähnten Verschmelzungsschritt, bei demH Kugeln zufällig

in N Kästen mit den Gewichten (W1, . . .WN ) verteilt werden.

Es ist zu beachten, dass eine Stichprobe der Größe n genau dann vom Wildtyp

ist, falls alle potentiellen Vorfahren vom Wildtyp sind. Anders ausgedrückt, ein

einzelnes Individuum ist vom bevorzugten Typ, wenn mindestens ein potentieller

Vorfahre vom bevorzugten Typ ist. Diese Beobachtung ist die Erklärung für die fol-

gende Sampling-Dualität, die die beiden Prozesse K = (Kg)g∈N0 und A = (Ag)g∈N0

verbindet.

Satz A.1.6. Sei g ≥ 0 und k, n ∈ [N ], es gilt die folgende Dualität

E
[
Kg(Kg−1) · · · (Kg − n+ 1)

N(N − 1) · · · (N − n+ 1)

∣∣∣K0 = k

]
= E

[
k(k − 1) · · · (k −Ag + 1)

N(N − 1) · · · (N −Ag + 1)

∣∣∣A0 = n

]
.

Der Fall k = N − 1 und n = N in Satz A.1.6 liefert uns einen hilfreichen Aus-

druck für die Überlebenswahrscheinlichkeit, welcher im Beweis von Theorem A.1.8

Verwendung findet.

Korollar A.1.7. Sei Aeq so verteilt wie die stationäre Verteilung des Cannings anzestralen
Selektionsprozesses, dann gilt

πN := lim
g→∞

P (Kg = 0|K0 = N − 1) = E
[
Aeq
N

]
.
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A.1.4 Der Fall moderat schwacher Selektion

Wir sagen das die Selektionsstärke sN ∈ (0, 1) eines Cannings Modells moderat
schwach ist, falls

N−1+η ≤ sN ≤ N− 1
2
−η, (A.3)

für ein η > 0 gilt. Im Folgenden schreiben wir oft b = bN := − log sN
logN , wobei die

Bedingung (A.3) dann
1
2 < b < 1 impliziert.

Im Verlauf dieses Abschnittes nehmen wir an, dass für ein ρ2 ≥ 1 gelte

E
[(
W

(N)
1

)2]
=

ρ2

N2
+O(N−3), (A.4)

für N → ∞. Aufgrund der Annahme (A.4) erhalten wir für die Varianz der Nach-

kommenverteilung

Var

(
ν
(N)
1

)
= ρ2 + o(1), für N → ∞.

Das Hauptresultat in Kapitel 3 beweisen wir unter den Bedingungen B1 sowie (al-

ternativ) unter den Bedingungen B2.

Bedingungen B1: Wir treffen die folgenden Annahmen an das dritte Moment

von W
(N)
1 und schränken das Regime der moderat schwachen Selektion weiter ein

E
[
(W

(N)
1 )3

]
= O(N−3), N−1+η ≤ sN ≤ N− 2

3
−η,

für ein η > 0.

Alternativ dazu nehmen wir unter den Bedingungen B2 an, dass eine Folge

natürlicher Zahlen hN existiert, so dass

hN → ∞ und hN = o(logN), für N → ∞,

mit der Eigenschaft

E
[
(W

(N)
1 )n

]
≤
(
KhN
N

)n
,

für N groß genug, eine beliebige Konstante K > 0 und alle n ≤ 2hN .

Sowohl unter den Bedingungen B1, als auch unter B2, folgt, dass die reskalierte

neutrale Genealogie des Cannings Modells gegen den Kingman Koaleszenten kon-

vergiert [Möh00].

Satz A.1.8 (Haldane’s-Formel, moderat schwache Selektion).
Sei (K

(N)
g )g≥1 eine Folge von Cannings Anzahl Prozessen mit Parametern N, sN und

L (W (N)). Wir nehmen an, das (A.4) gilt. Unter den Bedingungen B1 oder B2, folgt
für die Fixationswahrscheinlichkeit πN eines einzelnen bevorzugten Individuums, dass

πN ∼ 2sN
ρ2

für N → ∞.

Für eine Erläuterung des Beweises verweisen wir auf den Abschnitt 2.2.3 oder

auf Abschnitt 3.3.2.
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A.1.5 Der Fall moderat starker Selektion

Ähnlich wie im Abschnitt A.1.4 behandeln wir den Fall moderater Selektion, jetzt im

Fall in dem die Selektion stärker ist als in Abschnitt A.1.4. Wir nehmen an, dass ein

η > 0 existiert, so dass

N− 1
2
+η ≤ sN ≤ N−η, (A.5)

gilt, was an den Fall moderat schwacher Selektion (A.3) anschließt. Mit der vorher

eingeführten Schreibweise impliziert dies 0 < b < 1
2 .

Definition A.1.9 (Dirichlet-Typ Gewichte).
Wir nennen einen Vektor zufälliger Gewichte W (N) vom Dirichlet-Typ, falls

W
(N)
i =

Yi∑N
j=1 Yj

, i ∈ [N ],

wobei Y1, . . . , YN unabhängige Kopien einer Zufallsvariablen Y mit P (Y > 0) = 1 sind.

Falls man Y gamma-verteilt wählt, so ist W symmetrisch Dirichlet-verteilt. Das

klassische Wright-Fisher-Modell erhalten wir, falls Y = c fast sicher gilt, für ein c > 0.

Das Hauptresultat in Kapitel 4 wird unter der folgenden Annahme bewiesen

E [exp(hY )] <∞, (A.6)

für ein h > 0. Für eine mögliche Abschwächung dieser Bedingung verweisen wir auf

Bemerkung 4.3.2 a) und 4.3.3 a); im Fall einer Verteilung mit langsam variierenden

schweren Rändern beispielsweise, kann man Annahme (A.6) auf die Existenz des

vierten Moments abschwächen. Auch hier ist es so, dass (A.6) die Konvergenz der

reskalierten neutralen Genealogie gegen Kingmans Koaleszenten impliziert, siehe

Lemma 4.4.2. Unter diesen Bedingungen lässt sich der folgende Satz beweisen,

der das gleiche asymptotische Verhalten der Fixationswahrscheinlichkeit wie in Satz

A.1.8 beschreibt, jedoch unter leicht anderen Annahmen.

Satz A.1.10 (Haldane’s-Formel, moderat starke Selektion).
Sei (K(N)

g )g≥1 eine Folge von Cannings Anzahlprozessen mit ParameternN, sN undL (W (N))
und wir nehmen an, dass die zufälligen Gewichte vom Dirichlet-Typ seien und (A.6) gelte.
Außerdem soll (A.5) erfüllt sein. Dann gilt für die Fixationswahrscheinlichkeit πN eines
einzelnen bevorzugten Individuum die Asymptotik

πN ∼ 2sN
ρ2

für N → ∞.

Der Beweis von Satz A.1.10, sowie die Bedeutung der Bedingung 0 < b < 1
2

werden in Abschnitt 2.2.4 genauer diskutiert.

A.1.6 Moderate Selektion und Nachkommenverteilungen mit schweren
Rändern

Die Analyse von Cannings-Modellen mit moderater Selektion schließen wir mit

einem Ausblick auf ein in Vorbereitung befindliches Manuskript zusammen mit M.

Birkner, I. Dahmer und C. Pokalyuk ab. Dort wird die Fixationswahrscheinlichkeit

eines leicht selektiven Mutanten in Cannings-Modellen betrachtet, bei denen die

reskalierte neutrale Genealogie zu einer Klasse von Λ-Koaleszenten, den Beta(2 −
α, α)-Koaleszenten, konvergiert, mit α ∈ (1, 2).
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Definition A.1.11 (Λ-Koaleszent).
Ein Λ-Koaleszent ist ein Markov-Prozess (Xt, t ≥ 0) dessen Zustandsraum die Partitionen
von N sind und für den die Einschränkung Xn

t auf [n] ebenfalls ein Markov-Prozess ist.
Falls Xn

t = k so findet das nächste Verschmelzungsereignis, bei dem j ≤ k Blöcke zu einem
verschmelzen, mit Rate λk,j unabhängig von n statt, mit

λk,j =

∫ 1

0
xj−2(1− x)k−jΛ(dx),

für ein endliches Maß Λ auf [0, 1].

Wählt man für Λ das Dirac Maß in 0, so erhält man den Kingman Koaleszen-

ten. Eine gut untersuchte Teilklasse von Λ-Koaleszenten sind die Beta-Koaleszenten,

indiziert mit dem Paramter α ∈ [1, 2). Hierbei wird Λ als die Betaverteilung mit

Parameter (2− α, α) gewählt, also

Λ(dx) = β2−α,α(dx) :=
1

Γ(2− α)Γ(α)
x1−α(1− x)α−1dx.

Hervorzuheben ist hier der Fall, α = 1 welcher dem Bolthausen-Sznitman Koales-

zenten entspricht ([BS98] und [Rue87]).

Wie im Abschnitt A.1.2 betrachten wir Cannings-Modelle die eine Paintbox-

Konstruktion erlauben und wir nehmen wieder an, dass die Gewichte W vom

Dirichlet-Typ sind. Im Gegensatz zu der Annahme in Abschnitt A.1.5 nehmen wir

jetzt jedoch an, dass die Verteilung der Zufallsvariable Y schwere Ränder mit Para-

meter α hat, also

P (Y > y) ∼ ℓαy
−α, für y → ∞, (A.7)

mit α ∈ (1, 2) und einer Konstanten ℓα > 0.

Aufgrund des Satzes 1 iii) von Huillet und Möhle in [HM21] erhalten wir, dass

die neutrale Genealogie des Cannings-Modells gegen einen β2−α,α-Koaleszent kon-

vergiert (vgl. [Sch03]), wenn wir die Zeit mit dem Faktor c−1
N beschleunigen, mit

cN ∼ αB(2− α, α)

µα
ℓα

Nα−1
,

wobei µ = E [Y ] undB(2−α, α) die Beta-Funktion bezeichne. Wie in den vorherigen

Abschnitten betrachten wir das Regime der moderaten Selektion, also sN ∼ N−b
und

nehmen an

b < α− 1, also

sN
cN

→ ∞, für N → ∞. (A.8)

Satz A.1.12. Unter den Annahmen (A.7) und (A.8), gilt für die Fixationswahrscheinlichkeit
πN eines einzelnen bevorzugten Mutanten die Asymptotik,

πN ∼ c
− 1

α−1
α s

1
α−1

N

mit cα = ℓαΓ(2−α)
(α−1)µα .

Eine kurze Bemerkung zum Beweis von Satz A.1.12 findet sich in Abschnitt 2.2.5,

außerdem wird in Bemerkung 2.2.8 genauer auf die obige Asymptotik eingegangen,

welche nicht mehr der klassischen Haldane Asymptotik entspricht, wie wir sie in

den vorherigen Abschnitten dieser Arbeit gesehen haben.
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A.1.7 Haldanes Asymptotik für Verzweigungsprozesse in zufälliger u.i.v.
Umgebung

Abschließend gehen wir in diesem Abschnitt auf die Resultate und Beweistechniken,

die in [BK21] verwendet werden, ein. Wir untersuchen Haldanes Asymptotik für

superkritische Verzweigungsprozesse in einer unabhängig und identisch verteilten

(u.i.v.) zufälligen Umgebung. Es wird gezeigt, dass Haldanes Asymptotik auch

für Verzweigungsprozesse in einer zufälligen Umgebung gilt, sofern die durch die

Umgebung erzeugte Fluktuationen im Vergleich zum erwarteten Drift nicht zu groß

sind. Dies ist die Aussage von Satz 5. Für den Beweis haben wir uns eines bisher

nicht beschriebenen Zusammenhangs mit "perpetuities" (ewigen Renten) bedient.

Zunächst definieren wir einen Verzweigungsprozess in zufälliger Umgebung und

führen die notwendige Notation ein, für eine Einführung und weitere Hintergründe

zu Verzweigungsprozessen in zufälliger oder variierender Umgebung verweisen wir

auf [KV17] und [VZ93].

Wir bezeichnen mit P(N0) den Raum der Wahrscheinlichkeitsmaße auf N0. Im

Folgenden identifizieren wir jedes Maß f auf P(N0) mit seiner wahrscheinlichkeits-

erzeugenden Funktion f(t), t ∈ [0, 1],

f(t) =
∞∑
k=0

tkf [k], t ∈ [0, 1],

wobei f [k] die Masse von f in k bezeichnet. Für Wahrscheinlichkeitsmaße auf

N0 kann das erste und zweite faktorielle Moment durch die erzeugende Funktion

ausgedrückt werden, mit

f ′(1) =
∞∑
z=1

zf [z], f ′′(1) =
∞∑
z=2

z(z − 1)f [z]. (A.9)

Statten wirP(N0)mit der Totalvariationsmetrik und der induzierten Borel-σ-Algebra

aus, so erlaubt dies ein zufälliges Maß F auf P(N0) zu betrachten. Eine Folge

V = (F1, F2, . . . ) von zufälligen Maßen auf P(N0) wird eine zufällige Umgebung
genannt. Weiterhin nennen wir V eine u.i.v. zufällige Umgebung, wenn V aus

unabhängigen und identisch verteilten (Fi, i ≥ 1) besteht, also die Fi unabhängige

Kopien eines zufälligen Maßes F sind.

Definition A.1.13 (Verzweigungsprozess in zufälliger Umgebung).
Sei V = (F1, F2, ...) eine zufällige Umgebung. Wir nennen (Zn, n ≥ 0) einen Verzwei-
gungsprozess in zufälliger Umgebung, falls Zn die Rekursion

Zn =

Zn−1∑
i=1

ξi,n, Z0 = 1

erfüllt, wobei (ξi,n, i ≥ 1, n ≥ 1) bedingt auf V unabhängig sind und für alle n ∈ N die
Familie (ξi,n, i ≥ 1) bedingt auf V unabhängig und identisch verteilt mit Verteilung Fn ist.
Also sind die ξi,n Kopien einer Zufallsvariablen ξ.

Wählt man Fi = f fast sicher für ein f ∈ P(N0), erhält man einen klassischen

Galton-Watson-Prozess mit Nachkommenverteilung f .
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Vergleichbar wie in (A.9) kann das (jetzt zufällige) erste und zweite faktorielle

Moment ausgedrückt werden durch

F ′(1) =
∞∑
z=1

zF [z], F ′′(1) =
∞∑
z=2

z(z − 1)F [z].

Wir betrachten eine Folge (Z(N), N ≥ 1) von Verzweigungsprozessen in einer u.i.v.

zufälligen Umgebung und wollen das asymptotische Verhalten der Überlebenswahr-

scheinlichkeit πN untersuchen. Wir kennzeichnen die Abhängigkeit von N durch

einen Index bei den Wahrscheinlichkeiten oder Erwartungen, zum Beispiel in dem

wir für die Überlebenswahrscheinlichkeit

πN = PN (Z∞ > 0) := P(Z(N)
∞ > 0)

schreiben.

Sei

εN := EN [F ′(1)]− 1, νN := VarN (F
′(1)),

also bezeichnet εN die Differenz von E [ξ] zu 1 und νN die Varianz des Erwartungs-

wertes der Nachkommenverteilung zwischen den Generationen. Da uns die Über-

lebenswahrscheinlichkeit leicht superkritischer Verzweigungsprozesse interessiert,

nehmen wir εN > 0 an und betrachten den Grenzwert εN → 0 für N → ∞. Weiter-

hin nehmen wir an, dass sich die Varianz von ξ stabilisiert, und setzen gleichmäßig

beschränkte 4. Momente von ξ voraus. Konkret heißt das

VarN (ξ) = σ2 + o(1), EN [ξ4] = O(1), (A.10)

für σ2 > 0. Außerdem nehmen wir für das erste Moment von F an, dass

EN [F ′(1)−4−δ] = O(1), EN [|F ′(1)− EN [F ′(1)]|4+δ] = O(ν
2+ δ

2
N ) (A.11)

für ein δ > 0.

Satz A.1.14 (Asymptotische Überlebenswahrscheinlichkeit von Verzweigungspro-

zessen in zufälliger Umgebung).
Wir nehmen εN → 0 für N → ∞ an. Unter den Bedingungen (A.10) und (A.11) gilt:

a) Falls νN = o(εN ), dann erfüllt die Überlebenswahrscheinlichkeit die Asymptotik

πN ∼ 2εN
σ2

für N → ∞.

b) Falls νN
εN

→ ρ, mit 0 < ρ < 2, dann gilt

πN ∼ (2− ρ)εN
σ2

für N → ∞.

c) Falls νN
εN

→ ρ mit 2 < ρ <∞, dann gilt für große N

πN = 0.
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Der Beweis von Satz A.1.14 beruht auf der folgenden Proposition, die einen

Ausdruck für die Überlebenswahrscheinlichkeit für jeden superkritischen Verzwei-

gungsprozess in einer u.i.v. zufälligen Umgebung unter Bedingungen liefert, die

nur geringfügig stärker sind als die üblichen Bedingungen für Superkritikalität, also

E [logF ′(1)] > 0 [SW69]. Ein ähnlicher Ansatz wurde verwendet, um die Asymptotik

der Überlebenswahrscheinlichkeit im subkritischen Fall [GK00] zu untersuchen. Zu

beachten ist, dass dieser Ansatz nicht die übliche Darstellung von π als Fixpunkt der

wahrscheinlichkeitserzeugenden Funktion verwendet.

Für jede wahrscheinlichkeitserzeugende Funktion F mit positivem endlichem

Erwartungswert F ′(1) > 0 führen wir die shape-Funktion φ(t) über die Gleichung

1

1− F (t)
=

1

F ′(1)(1− t)
+ φ(t), t ∈ [0, 1).

ein. Die shape-Funktion kann mithilfe einer Taylorentwicklung stetig auf das Inter-

vall [0, 1] fortgesetzt werden, durch

φ(1) =
F ′′(1)
2F ′(1)2

.

Im Folgenden bezeichnen wir mit φk(t), t ∈ [0, 1] die zu Fk gehörige shape-Funktion

in Generation k ∈ N. Außerdem schreiben wir

µk =
k∏
i=1

F ′
i (1), µ0 = 1.

Proposition A.1.15. Sei (Zn, n ≥ 0) ein Verzweigungsprozess in u.i.v. zufälliger Umge-
bung V = (F1, F2, ..), welche aus unabhängigen Kopien von F besteht. Sei

0 < E
[
logF ′(1)

]
<∞ und E

[
log+ F ′′(1)

]
<∞.

Dann kann die Überlebenswahrscheinlichkeit π ausgedrückt werden durch

π = E
[
1

X

]
,

mit

X :=

∞∑
k=0

φk+1(P (Z∞ = 0 | Zk+1 = 1, V ))

µk
<∞ f.s.

Mit Proposition A.1.15 bleibt zum Beweis von Satz A.1.14 noch die Asymptotik

von E
[
1
X

]
unter den Annahmen von Theorem A.1.14 zu bestimmen. Da wir uns im

leicht superkritischen Fall befinden, scheint es vernünftig zu erwarten, dass die Aus-

sterbewahrscheinlichkeit für N → ∞ gegen 1 konvergiert, also PN (Z∞ = 0 | Zk+1 =
1, V ) → 1 für N → ∞. Daher betrachten wir die approximierende Zufallsvariable Y
von X , definiert durch

Y :=
∞∑
k=0

φk+1(1)

µk
.
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Man beachte, dass Y die stochastische Rekursion

Y = φ1(1) +
∞∑
k=1

φk+1(1)

µk

d
= φ(1) +

1

F ′(1)
Y, (A.12)

erfüllt, wobei φ(1) und F ′(1) unabhängig von Y sind. Die Rekursion (A.12) wird

im finanzmathematischen Kontext manchmal Annuitäts-Gleichung genannt [BDM16]

und entsprechend Y als Perpetutity (ewige Rente) bezeichnet. Für Zufallsvariablen

Y die (A.12) erfüllen mit nicht negativen Zufallsvariablen (A,B), so dass

Y
d
= A+BY,

mit

βN := 1− EN [B], γN := VarN (B),

beweisen wir den folgenden Grenzwertsatz für ewige Renten mit verschwindendem

Zinssatz, welcher auch unabhängig von dem Kontext dieser Arbeit von Interesse sein

kann.

Satz A.1.16 (Grenzwertsatz für ewige Renten).
Angenommen, es gelte im Grenzwert N → ∞, dass

βN → 0, γN → 0, EN [A] = α+ o(1), EN [A1+δ] = O(1),

mit α > 0 und ein δ > 0. Außerdem gelte EN [|B − 1|2+δ] = o(βN + γN ), sowie

βN
γN

→ ρ̂ mit − 1

2
< ρ̂ ≤ ∞.

Dann gilt:

i) Im Fall ρ̂ = ∞, konvergiert βNY gegen α in Wahrscheinlichkeit.

ii) Im Fall ρ̂ ∈ (−1/2,∞), ist γNY asymptotisch invers-gamma verteilt, mit Dichte
ba

Γ(a)x
−a−1e−b/xdx auf R+ und Parametern (a, b) = (2ρ̂+ 1, 2α).

Der Beweis von Satz A.1.14 baut auf dem obigen Satz auf, für weitere Details

verweisen wir an dieser Stelle auf Abschnitt 2.3.
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