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How poor are they that have no patience […] 
Thou know’st we work by wit, and not by witchcraft 

And wit depends on dilatory time 
Othello, W. Shakespeare 

 

 

 

 

 

 

 

 

 

 

 
For my mum 

Time has come to thank you for telling us “mice tales” where everything was possible! 
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General Introduction 

 

What exactly determines the range boundaries of a species is a question that has kept 

biologists busy ever since Wallace wrote his Geographical distribution of animals (1876): 

Why is a beetle species found on this beech tree but not on the next one? Why did this snail 

settled in this lake and not the neighbouring ditch? In the context of global change, it is 

particularly relevant to better know the processes determining species ranges. Human 

activities are responsible for habitat fragmentation and the resulting barriers to gene flow 

among populations. On the contrary, global trade is enhancing the dispersal of some 

organisms. Finally, increasing levels of greenhouse gases are causing worldwide climatic 

changes.  

 

Species ranges 

The range of a species can be defined as the area where stably reproducing populations are 

found (Gaston, 1996). Ecological factors as well historical factors shape the range of a 

species. Two conditions are fulfilled in this area: (1) abiotic and biotic conditions match the 

fundamental ecological requirements (niche, Hutchinson, 1957), so that populations can 

survive and reproduce successfully and (2) the species was actually able to reach this region 

during its life-history (Holt, 2003). The biotic conditions encompass the intrinsic 

physiological and ecological characteristics of the organism itself as well as the interactions 

with other organisms, among others predation, competition and parasitism. 

 

In the face of environmental change, populations can avoid declining in three ways: be 

plastic, move, or evolve (Jackson & Overpeck, 2000). Three processes thus govern the species 

range dynamics: phenotypic plasticity, adaptation and dispersal. The intrinsic phenotypic 

variability of a population may allow maintenance of a positive growth rate. As well, the 

ability of a species to adapt to conditions outside its ancestral niche would enable surviving a 

new parasite or an increase in temperature, for example. Dispersal, on the other hand, allows 

tracking the environmental niche and establishing populations in newly suitable habitats. The 

interplay of these processes determines the range changes and eventually the fate of a species. 

If unable to adapt, a poor disperser is unlikely to survive important environmental changes. 

 

 

 



 7

Climate change and its consequences on the environment 

The evidence for a rapid and profound climate change within the next century is now largely 

undisputed. Temperatures are predicted to rise further at a rapid rate (Houghton et al., 2001) 

and without proper action to limit anthropogenic greenhouse gases emissions, the 

intergovernmental Panel on Climate Change (IPCC) predicts increases in global average 

surface temperature of 1.1°C to 6.4°C for the year 2100 (IPCC, 2007), associated with 

changes in precipitation patterns. These alterations in abiotic conditions on large spatial scales 

(Gates, 1993) will have economical consequences such as increased risk of forest fires, loss of 

agricultural potential and water shortage in the Mediterranean region, and will cause a rise in 

the elevation of snow cover and alter river runoff regimes in mountainous regions (Schröter et 

al., 2005).  

 

Inland waters make up only 0.01% of the world’s total water, yet they support an important 

part of the overall biodiversity (Dudgeon et al., 2006). Freshwater ecosystems are essential 

contributors to the diversity and productivity of the biosphere (Poff et al., 2002) and their 

biodiversity provides a broad variety of valuable goods and services for human societies. 

Despite their importance for the sustainability of functioning ecosystems, (Baron et al., 2002; 

Dudgeon et al., 2006 and citations therein), freshwater habitats have been rather neglected in 

studying the influence of climate change on biodiversity.  

In freshwater habitats, predicted climate change will mainly affect runoff regimes, the 

seasonality of water availability and the average temperature, as an increase in air temperature 

translates directly into warmer water temperature (Carpenter et al., 1992; Poff et al., 2002). 

This in turn is likely to affect the life processes of many aquatic organisms such as 

reproduction and growth rate. Furthermore, warmer waters hold less dissolved oxygen, which 

could have consequences for organisms requiring high oxygen levels. 

 

Consequences on species ranges 

While some of the emerging conditions may be buffered by phenotypic plasticity and/or local 

adaptation, significant changes in species ranges may also be expected, as past climate 

changes have shown (Hewitt, 1999; Davis & Shaw, 2001). Significant effects of global 

climate change have already been observed on the ranges of a variety of organisms, from 

fungus to fishes and trees (Parmesan & Yohe, 2003; Root et al., 2003). The first expected 

symptoms of a climate change-generated biodiversity crisis in the northern hemisphere are 

range contractions and extinctions at lower elevational and latitudinal limits to species 
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distributions. Indeed, the study conducted by Araujo et al. (2005a) showed a northward shift 

of birds breeding ranges on Great Britain, while Wilson et al. (2005) observed an upward shift 

of butterflies species ranges in the last 30 years in Spain, correlated with temperature 

increases. For freshwater habitats, Burgmer et al. (2007) showed that trends in average 

temperature have already had profound impacts on macrozoobenthos species composition in 

lakes.  

Recent insights into the consequences of climate change on biodiversity have also been 

gained through climatic envelop models, based on the niche concept (Hutchinson, 1957). The 

niche of a species is the set of environmental conditions that allow a positive growth rate for a 

given organism (Emerson & Gillespie, 2008 for a review). Ecological Niche Modelling 

(ENM) infers the niche of a species from its known geographic distribution (for an extensive 

review see Guisan & Zimmermann, 2005). This niche is then projected on a map, showing the 

extent of the suitable area given the variables included in the model. This modelling approach 

was extensively used to quantitatively predict the impact of climate change on the potential 

future distribution of e.g. trees (Thuiller et al., 2006), forest herbs (Skov & Svenning, 2004) 

and other higher plants (Bakkenes et al., 2002). All found a substantial northward shift of 

species ranges (in the northern hemisphere) and many taxa at extinction risk (Thomas et al., 

2004). 

Such changes in the species ranges, meaning for example the disappearance of key species or 

the invasion of non-indigenous species, are likely to affect in turn the ecosystem as a whole. It 

is therefore a major challenge for ecology to estimate and predict the consequences of global 

warming on biodiversity. 

 

The Pulmonate group 

In this thesis, I will focus on the effect of climate change on freshwater pulmonates, which 

represent a substantial part of freshwater biodiversity. They inhabit a large variety of 

freshwater ecosystems, from creeks and rivers to ponds, lakes, ditches and sewages (Dillon, 

2000). Most freshwater pulmonates carry an air bubble in their richly vascularised mantle 

cavity (the ‘lung’), which they replenish at the surface, and which they also use to regulate 

their vertical movements. This allows many species to inhabit warm, eutrophic waters where 

dissolved oxygen may be quite low. However, some smaller and cold-water species (e.g. 

limpets) do not seem to breathe at the surface, and their mantle cavities are found to be filled 

with water rather than air (Dillon, 2000). Pulmonates mainly feed on periphyton and detritus 

resulting from the decomposition of other freshwater organisms (plants and animals), and are 
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a food source for fishes and other macrozoobenthos (Økland, 1990; Brönmark & Hansson, 

1998). Thus, they occupy a prominent place in the foodweb of aquatic ecosystems 

(Vadeboncoeur et al., 2002; Woodward & Hildrew, 2002; Liu et al., 2006), shaping the 

community structure of both their food resources and theirs predators (Brönmark & Hansson, 

1998; Dillon, 2000). Any change in gastropod community structure is therefore likely to have 

profound effects on entire freshwater ecosystems (Dillon, 2000). Furthermore, freshwater 

pulmonates are well known intermediate hosts in the transmission of parasite larvae (e.g. 

Lymnaeid/fasciolid parasites, Remigio, 2002), and changes in their ranges are likely 

accompanied by simultaneous changes in the parasites ranges. 

There are reasons to presume that the ranges of these freshwater snails will be significantly 

affected by a changing climate. Range changes as a result of past climate changes have 

already been shown for numerous other gastropod taxa (Hugall et al., 2002; Pfenninger & 

Posada, 2002; Wilke & Pfenninger, 2002; Pfenninger et al., 2003a; Pinceel et al., 2005; 

Dépraz et al., 2008). The predicted climatic shifts may affect freshwater pulmonates as 

follow: 

 1) The presence of more or less permanent water bodies is a mandatory requirement 

for the entire taxon. Increasing evaporation due to global warming and changes in 

precipitation will cause periods of drought, particularly at lower latitudes, leading to partial 

habitat loss. 

 2) Survival, fertility and generation lengths depend on ambient water temperature (van 

der Schalie & Berry, 1973; Costil & Daguzan, 1995a, b). Therefore, shifts of water 

temperature will likely induce a shift of the regions where reproduction is possible (change of 

latitudinal limits). 

 3) The pulmonates species that lost the air reservoir function of their mantle cavity 

ensure their oxygen intake through dissolved oxygen. These species, such as Ancylus 

fluviatilis, may be affected by the reduction of oxygen concentration in water due to the rising 

temperatures. 
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Thesis outline 

My general aim was to infer the impact of past and future climate change on the ranges of 

freshwater pulmonates. Specifically, I addressed the following questions: 

 1) What impact has the impending climate change on freshwater snail ranges?  

 2) What are the relationships between species niche characteristics and range size and 

-shifts? 

 3) Which climatic factors influence the biodiversity in north-western Europe and to 

what extent does climate change affect biodiversity? 

 4) Where were the refuges during the last glacial maximum and how did the species 

re-colonise its present range?  

 5) Did the climatic niche evolve during expansions and can we plausibly forecast the 

species’ ranges in a climate change scenario? 

 

To answer these questions, I relied on two different approaches. First, a macroecological 

analysis on North European species was conducted, of which the results are presented in 

CHAPTER 1. This approach comparatively analysed patterns of present day species ranges, and 

included information on abiotic factors (hydrological and climatic) in a phylogenetic 

framework (Felsenstein, 1985). This gave insight into the relative importance of climatic 

factors limiting the distribution of the taxon as a whole. Additionally, the assessment of 

phylogenetic signals in the data allowed estimating the evolutionary inertia of clades 

concerning e.g. climate tolerance related characters. This method thus offered an insight into 

the evolutionary potential of clades to adapt to changing conditions (Blomberg et al., 2003). 

Subsequently, the information gathered on the occupied niche was used to assess the impact 

of future climate change on the species ranges, with ecological niche modelling.  

 

The drawbacks of the approach outlined above are the rather global information relating to the 

entire taxon and of no or negligible intraspecific differences. The latter is a generally 

unrealistic assumption because of population history, genetic drift, isolation by distance and 

local adaptation. 

 

A second approach, focused on model-species, was therefore used to address the subject of 

intraspecific variability, as substantial variation in relevant traits (reproduction and survival) 

in the European freshwater pulmonate Radix has been shown for example by Lam & Calow 

(1989) and was suggested by the results of Pfenninger et al. (2003b) for the genus Ancylus. 
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This approach relied on the analysis of interpopulation variation throughout ranges of model 

species in a phylogeographic framework. In particular, the inference of the population history 

allowed drawing conclusions on the impact of past climate changes on the species ranges 

(Hewitt, 1999). Furthermore, insights into the past colonisation patterns and their speed 

allowed making assumptions about contemporary reactions to the current global warming. 

The two model species chosen for this purpose have different ecological preferences, the 

freshwater limpet Ancylus fluviatilis being preferentially found in running waters, while Radix 

balthica inhabits all sorts of still waters, from ditches to lakes (Økland, 1990)(Glöer, 2002). 

 

In CHAPTER 2, I present the results of a phylogeographic analysis of A. fluviatilis s.s. The aim 

was to understand the historical processes that have shaped the present day distribution of the 

freshwater limpet A. fluviatilis. I also inferred the shifts in niche requirements by measuring 

the variance in climatic preferences at the species level among populations. Subsequently, I 

assessed the possible consequences of the impending global climate change for the species’ 

range. 

 

In CHAPTER 3, I used a recently developed analytical framework, drawing both on 

phylogeography and Ecological Niche Modelling (Dépraz et al., 2008) (ENM) to analyse the 

past range dynamics of Radix balthica and make reliable predictions about the influence of 

global warming on its range. The possible Last Glacial Maximum (LGM) refugia of R. 

balthica was first inferred through projection of the present niche requirements of the species 

onto climatic surface data for the LGM. The resulting and alternative hypotheses were then 

tested with statistical phylogeography methods. This allowed the evaluation of niche 

conservatism in R. balthica, a prerequisite to predict the future range of the species through 

ENM. 
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1ST CHAPTER 

 

Assessing the effects of climate change on the distribution of pulmonate 

freshwater snail biodiversity 
 

 
Abstract 
 
Global warming is expected to be associated with diverse changes in freshwater habitats in north-western 

Europe. Increasing evaporation, lower oxygen concentration due to increased water temperature and changes in 

precipitation pattern are likely to affect the survival ratio and reproduction rate of freshwater gastropods. In this 

study, we showed that for a great proportion of genera the ranges were projected to contract by 2080, even if 

unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence 

of new suitable areas, but also reduced drastically the available habitat in the southern part of the studied region. 

Phylogenetic signal was inferred for some dimensions of the climatic niche. Independent contrast analyses, 

taking into account the phylogenetic relationships between the taxa, showed a positive correlation between niche 

width and the size of future suitable area. Finally, we showed that expected temperature changes by 2080 

surprisingly had a greater influence on the biodiversity than changes in precipitation. In summary, the results 

predict a profound faunal shift for Central Europe, either permitting the establishment of species currently living 

south of the studied region or the proliferation of organisms relying on the same food resources, if dispersal 

abilities do not match the rate of climate change.  

 

 

 

 

 

 

 

 

 

 

Global Change Biology, submitted, together with A. Pfenninger, B. Streit and M. Pfenninger 
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1.1 Introduction 

 

The evidence for a rapid and profound climate change within the next century is now largely 

undisputed. Temperatures are predicted to rise by up to 4 °C by 2100 in certain areas, 

associated with changes in precipitation patterns. This profound change in environmental 

conditions will probably strongly influence the diversity and distribution of species world 

wide (Gates, 1993). Numerous studies assessed the impact of climate change on diverse taxa, 

such as butterflies (Parmesan et al., 1999), amphibians and reptiles (Araujo et al., 2006), 

forest herbs (Skov & Svenning, 2004), most of them relying on Ecological Niche Modelling 

to predict future suitable areas for the analysed taxa. This method predicts potential 

distributions for species by deriving an environmental envelope from known distribution 

points and projecting this envelope onto a spatially interpolated climate surface of an area. 

Ecological modelling has been used to accurately model the present distribution of many 

species (e.g. Peterson, 2001; Anderson et al., 2002; Hijmans & Graham, 2006). However, 

such approaches necessarily make inferences based on the realised niche rather than on the 

fundamental niche, and are therefore biased. The fundamental niche is a theoretical construct 

and represents the total range which could be occupied by a species if there were no 

competition, predation and historical factors that limit its observed range (Hutchinson, 1957), 

but see (Emerson & Gillespie, 2008, for a glossary). The realised niche is inferred from this 

observed range; hence it does not represent the species’ complete potential. Furthermore, to 

use the ecological modelling approach to predict past or future ranges, one assumes that a 

species’ climatic niche (the set of abiotic conditions under which surviving and reproduction 

are possible) is constant over time, a concept referred to as niche conservatism, or 

phylogenetic inertia (Blomberg & Garland, 2002).  

A species showing niche conservatism can be affected by a change in its environment in many 

ways, depending on its dispersal abilities. If unable to disperse, the species would eventually 

go extinct. At the other extreme, when able to disperse without limits, the species may track 

its climatic niche almost in real time and therefore occupy all newly emerging suitable area. 

However, the frequency of niche conservatism is not known for many animal and plant taxa. 

Evidence for niche conservatism has been shown for several taxa (Peterson et al., 1999; 

Prinzing et al., 2001; Peterson & Holt, 2003; Martinez-Meyer et al., 2004; Dépraz et al., 

2008; Cordellier & Pfenninger, 2009), but it may not be a general pattern. Niche shifts have 

been shown in snail species (Pfenninger et al., 2007), in the Swainson’s thrush (Ruegg et al., 
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2006) and in jays (Rice et al., 2003), and predictions of the future range through Ecological 

Niche Modelling may be invalid. 

Our study aims at evaluating the effects of climate change on freshwater gastropods species’ 

ranges and the inference of niche conservatism in these taxa. Freshwater pulmonate snails 

such as the ear pond snail, the freshwater limpet, the ramshorn (respectively the genera Radix, 

Ancylus, Anisus) occupy a variety of habitats, ranging from running waters to muddy ponds. 

Pulmonates represent a substantial part of freshwater biodiversity. They occupy a prominent 

place in the food web of aquatic ecosystems (Woodward & Hildrew, 2002), shaping the 

community structure of both their food resources and their numerous predators (Dillon, 2000). 

Any change in gastropod community structure is therefore likely to have profound effects on 

the entire freshwater ecosystem (Dillon, 2000).  

There are reasons to presume that the ranges of these freshwater snails will be seriously 

affected by a warming climate. Climate change has already affected other freshwater 

ecosystems, such as stream fish assemblages (Buisson et al., 2008). A recent study showed a 

correlation between the invertebrate community composition and temperature change in lakes 

(Burgmer et al., 2007). Furthermore, there is a correlation between the northward range shift 

of freshwater pulmonates and the increase in water temperature in Swedish lakes 

(unpublished data, M. Pfenninger).  

The changes associated with the global warming would have diverse consequences on 

pulmonates’ survival. The presence of more or less permanent water bodies is per se a 

mandatory requirement for the entire taxon. Increasing evaporation will cause prolonged 

periods of drought, preferentially at lower latitudes, leading to partial habitat loss there. 

Survival, fertility and generation lengths depend on ambient water temperature, with 

substantial differences in minimum, maximum and range of tolerable temperatures among 

species (van der Schalie & Berry, 1973). Last but not least, the temperature of water directly 

influences the dissolved oxygen rate. Higher water temperatures are inevitably associated 

with less oxygenated waters which will impact species demanding high water oxygenation. 

Furthermore, the changes in precipitation correlated with the temperature shift will directly 

affect the availability of freshwater habitats. Therefore, climate induced shifts in these 

parameters will differentially alter the regions where successful reproduction is possible for 

each species, in particular their latitudinal limits.  

We investigate potential impacts of climate change by modelling potential distributions of 

freshwater Basommatophora genera in response to two climate change scenarios for 2080. By 

comparing future vs. current potential distributions, we assess whether suitable climate space 
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for freshwater Basommatophora is projected to increase or decrease with projected climate 

change in Europe under two extreme dispersal scenarios, unlimited dispersal or no dispersal. 

Furthermore, the importance of niche conservatism is also inferred through the analysis of 

correlation between phylogenetic distances and ecological distances in the Basommatophora 

group. Last, we infer which shifts of climatic variables (anomalies) will cause loss or gain of 

biodiversity by 2080. 

Altogether, the analyses presented in this study should allow drawing reliable conclusions on 

the impact of climate change on freshwater gastropod biodiversity and hence on freshwater 

ecosystems. The following questions will be addressed in this study: i) which impact has the 

oncoming climate change on freshwater snail ranges? ii) what are the relationships between 

species niche characteristics and range size and -shifts? iii) which climatic factors influence 

the biodiversity in north-western Europe and to which extent do the climate change affects the 

biodiversity? 

 

1.2 Materials and methods 

 

Point occurrence data 

Distributional data for Basommatophora genera were assembled from North Western Europe. 

This region, delimitated in the South by the Pyrenees and the Alps, is a homogeneous 

biogeographic area where the taxa are presumed to have reached ecological distribution 

equilibrium (Guisan & Zimmermann, 2005). The distribution data came from various sources, 

like natural history museums and public databases. The data from the museums in Brussels, 

Frankfurt, London and Vienna were gathered directly from the collection labels or copied 

from already existing inventories and subsequently georeferenced. Digital databases were 

provided by the curators of Budapest and Bern museums. The distribution data for Sweden 

was downloaded from the Swedish national monitoring databases at the Swedish University 

of Agricultural Sciences (SLU). The survey conducted in Norway by J. Økland (1990) was 

digitalized and georeferenced. We excluded occurrence data collected after 2000 to match the 

climatic data, as well as specimens with imprecise points of origin (e.g. Rhône delta, France). 

Occurrence records are often biased towards areas that are easily accessible (along roads) or 

near cities or other areas of high population density (Hijmans et al., 2000), and such a 

geographic bias can influence the result of the bioclimatic modelling. Our occurrence records 

showed indeed a more intense sampling around towns and the density was negatively 

correlated with the size of the country (e.g. Belgium was more densely sampled than 
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Germany, see Figure 1.1A). To remove this putative bias we created a grid of 0.5° cells and 

randomly selected a single point from each cell with one or more sampling points. This 

procedure was recommended by Graham et al. (2004) to handle museum data and applied for 

example in Ruegg et al. (2006). Such treatment also avoids high spatial autocorrelation which 

biases the results of ecological niche modelling. This reduced the number of records from 

14506 to 4729 sites, more evenly distributed across the studied area.  

 

A B

DC

 
 
Figure 1.1: An example of the modelisation of a genus potential range, here for the Stagnicola genus. Maps of 
point occurrence data (A), predicted range for present climatic conditions (B), predicted range under climatic 
conditions for 2080 according to the B2 IPCC scenario (C), predicted range under climatic conditions for 2080 
according to the A2 IPCC scenario (D), all at a 2.5 min resolution. 
 

The taxonomy of the group is highly problematic. Species changed their names across time 

sometimes more than once (see Glöer & Meier-Brook, 1998; Glöer, 2002) and studies on the 

genera Ancylus and Radix revealed cryptic species and a poor taxonomic resolution based on 

morphological attributes (Pfenninger et al., 2003b; Pfenninger et al., 2006). Furthermore, the 

collections are composed of the shells only, not the entire organism, which makes the 

taxonomic revision of them difficult, if not impossible. Consequently, even some curators of 

the collections discouraged the use of species labelling. Therefore, we considered the 

unequivocal genus level rather than the often misleading species level.  
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Table 1.1: Variables used for the ecological modelling, from the Worldclim and Hydro1k datasets. 

Original 
name Variable Variable calculation 

Abbreviation in 
regression tree 

BIO1 Annual mean Temperature  ann.mean.T 
BIO2 Mean Monthly Temperature range  mean.M.T.Ra 
BIO3 Isothermality (BIO2/BIO7)(*100) iso 
BIO4 Temperature seasonality (Standard deviation*100) T.seas. 
BIO5 Max Temperature Warmest month  max.T.warmM 
BIO6 Min Temperature coldest month   min.T.coldM 
BIO7 Temperature annual range (5-6) T.ann.ra 
BIO8 Mean Temperature Wettest quarter  mean.T.wetQ 
BIO9 Mean Temperature Driest quarter  mean.T.driQ 
BIO10 Mean Temperature Warmest quarter  mean.T.warmQ 
BIO11 Mean Temperature coldest quarter  mean.T.coldQ 
BIO12 Annual Precipitation  ann.P. 
BIO13 Precipitation Wettest month  P.wetM 
BIO14 Precipitation Driest month  P.driM 
BIO15 Precipitation seasonality Coefficient of variation P.seas. 
BIO16 Precipitation Wettest quarter  P.wetQ 
BIO17 Precipitation Driest quarter  P.driQ 
BIO18 Precipitation Warmest quarter  P.warmQ 
BIO19 Precipitation Coldest quarter  P.coldQ 
h_dem hydrologically correct DEM   
h_aspect aspect   
h_flowdir flow directions direction of flow from each cell in the DEM to its steepest down-slope neighbor  
h_flowacc flow accumulations upstream catchment area  

h_slope slope direction of maximum rate of change in the elevations between each cell and its eight 
neighbors  

h_topoind compound topographic (wetness) index function of the upstream contributing area and the slope of the landscape  
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Environmental data 

A set of climate parameters were derived from a publicly available climate data base, 

downloaded from http://www.worldclim.org. The database provides monthly values for the 

years 1960–1990 in a 2.5 minutes grid resolution. Maximal and minimal monthly temperature 

and precipitation in grid cells covering the study area were used to calculate values of 

nineteen different climate parameters (Table 1.1) for the period 1960–1990 (referred to as 

‘baseline data’). Climate-change scenarios from HadCM3 (Hadley Centre for Climate 

Prediction and Research’s General Circulation Model) were also downloaded from the same 

site for the period of 2050–2080 (referred to as the 2080 data), also in a 2.5 minutes grid 

resolution. We choose to use only one of the available models because a similar study on 

reptiles and amphibians by Araujo et al. (2006) revealed no significant differences between 

the climate models. Two scenarios for the General Circulation Model (GCM) HadCM3, 

reflecting different IPCC SRES (Intergovernmental Panel on Climate Change, Special Report 

on Emission Scenarios) assumptions about demographic changes, socio-economic and 

technological development (Nakicenovic, 2000) were used. These scenarios present two 

storylines (A2 and B2), which reflect pessimal and optimal greenhouse gas emission 

pathways that might be taken during the 21st century. The climate data for 2080 was treated 

in the same way as the baseline data, to provide nineteen different climatic variables values 

for 2080. 

 
We also included hydrological variables in the modelling. The Hydro1K variables are 

available at http://edc.usgs.gov/products/elevation/gtopo30/hydro/europe.html at a ~1km 

resolution and were resampled at 2,5 minutes resolution using cubic resampling in ArcView 9 

(ESRI, Redlands, CA, USA) to match the climate grids. All six available variables (see Table 

1.1) describe physical characteristics, such as slope, flow direction, catchment area or a 

derivation thereof. No significant change in these characteristics is likely to happen within the 

next 100 years. We therefore included the same values of these variables into both present and 

future environmental layers sets. All grids were clipped to a study region corresponding 

approximately to Europe (33°-80°N; 15°W-40°E). 

 
Ecological Niche Modelling 

The potential distributions of the genera were modelled with Maxent v3.1.0 (Phillips et al., 

2006). The maximum entropy algorithm estimates the distribution of a taxon (i.e the number 

of grid cells potentially suitable) by finding the probability distribution of maximum entropy 

(i.e. closest to uniform), subject to the constraint that the expected value of each of a set of 
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environmental variables (or functions thereof) under this estimated distribution closely 

matches its empirical average (Phillips et al., 2006). Maxent has been developed to address 

the problems associated with presence-only datasets (Phillips et al., 2006) and has been 

shown to perform very well for species distribution modelling (Elith et al., 2006). 

For the projections we used the default convergence threshold (10-5) and maximum number of 

iterations (500) values, using 25% of localities for model training. We let the program select 

both suitable regularisation values and functions of environmental variables automatically, 

which it achieved based on considerations of sample size. Maxent outputs a continuous 

probability value (cumulative values), which is an indicator of relative suitability for the 

species. 

We chose a presence threshold to render each projection into a binary form. We considered 

grid cells with a cumulative probability of more than 10 (from a range of 0-100) as suitable, 

as suggested by Waltari et al. (2007) and Pearson et al. (2007). This threshold identified 

smaller areas than a lowest presence threshold that yielded zero omission error, thus resulting 

in more restricted pictures of potential distributions.  

 
Evaluation of grids 

The size of each genus’ potential range was inferred from the number of suitable grid cells for 

three different climatic conditions: present, HadCM3_A2 and HadCM3_B2. We then 

calculated the shift in the genus potential range size under two dispersal scenarios. The 

Unlimited-Dispersal scenario (UD) assumed that the genus would be able to track its niche 

shift without any restriction, and the No-Dispersal scenario (ND) assumed the genus would 

survive only in the places where the present range and the future projected range overlap. For 

each distribution range modelled in Maxent, we also inferred the centroid of the range (i.e. 

center of mass) and calculated the absolute shift distance, as well as its latitudinal and 

longitudinal components, for each of the genera. 

 
Niche definition of Basommatophoran genera 

For all occurrence points, 19 biologically meaningful parameters (see Table 1.1) were 

extracted from present day climatic layers. All values falling outside the upper and lower 90% 

percentiles were excluded as outliers for further analysis. The lower and upper 90% 

percentiles values are referred to as Minimum and Maximum (Min and Max). The 

environmental range covered by each genus was calculated as the difference between 

Maximum and Minimum values for each of the 19 variables. The same procedure was applied 

to hydrological variables. In order to reduce the number of variables, Principal Components 



 20

Analysis (PCA) axes were extracted from each set of variables to examine the variation in 

environmental space within the freshwater Pulmonates. The coordinates of each genus on the 

three most important axes of each PCA were used as variables in comparative analyses. In 

total, 6 niche dimensions resulted from these PCAs (three axes times two variable sets). 

 
Comparative analyses 

In order to evaluate the influence of the species niche characteristics on the species ranges and 

their changes, we employed comparative methods that correct for the phylogenetic 

dependence of the data (Harvey & Pagel, 1991). We extended the method to a Bayesian 

approach, taking the uncertainty associated with the phylogenetic reconstruction of molecular 

clock trees into account. As no complete phylogeny of the taxa under scrutiny was publicly 

available, we used published mitochondrial COI and 16S sequences (see Appendix S1) to 

reconstruct the phylogenetic relations of the genera.  

While the alignment of the protein coding COI sequences was straightforward and resulted in 

a data set of 1041 positions, the 16S ribosomal DNA sequences had to be aligned by hand 

according to the molluscan secondary structure model published by Lydeard et al. (2000). In 

particular, loop regions that could not be unambiguously aligned were excluded, leaving an 

alignment of 369 positions.  

We used the program BEAST v.1.4.7 (Drummond & Rambaut, 2007) to obtain ultrametric 

trees required for comparative analyses. We analysed the data under a standard GTR + Γ + I 

model and an uncorrelated lognormal-distributed relaxed molecular clock (Drummond et al., 

2006). We used a Yule speciation model as the tree prior. For each model the MCMC was run 

for 10,000,000 steps and sampled every 1000 steps. The first 1,000,000 steps of each run were 

discarded as burn-in. This resulted in effective sample sizes for the posterior probability of 

much more than 500 for all parameters. We randomly sampled the posterior probability 

distribution of trees 1000 times after the Monte Carlo Markov Chain converged. This sample 

thus accounts for the uncertainty associated with phylogenetic reconstruction, choice of 

sequence evolution model parameters and molecular clock rate heterogeneity.  

To test whether the niche characteristics and the ranges studied contained phylogenetic signal, 

i.e. whether closely related species tend to exhibit more similar traits than expected by chance, 

we conducted the permutation test on the variance of independent contrasts proposed in 

Blomberg et al. (2003). The null distribution was obtained by permuting the species trait 

values randomly 100 times over the 1000 phylogenies sampled. The p value was found by 

determining the quantile rank of the highest observed variance of each trait for the 
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corresponding null distribution. The calculations were performed with COMPARE 4.6 

(Martins, 2003).  

To remove the phylogenetic non-independence from the data, we employed an independent-

contrast approach, suggested by Felsenstein (1985), as implemented in the software 

COMPARE 4.6. This method assumes that the branch lengths of the phylogeny are known 

and proportional to the amount of evolutionary change. Relationships among species niche 

characteristics and range size and -shifts were explored using correlation analyses. To this 

end, we calculated correlation coefficients between the independent contrasts of the variables 

in question for all 1000 sampled trees. See Table 1.4 for a list of the variables tested for 

correlation. 
No dispersal
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Figure 1.2: Maps of modelled biodiversity change under no dispersal hypothesis (A) and unlimited dispersal 
hypothesis (B), at a 5 minutes resolution. The value “biodiversity change” is calculated as the difference between 
the number of genera predicted to be present in a grid cell in 2080 (t2) and the number of genera predicted to 
exist at present (t1). 
 



 22

Climatic drivers of biodiversity change 

To identify particular climatic factors causing changes in genera’ richness within grid cells, 

we calculated and mapped two measures of range shifts for freshwater snail genera at a 5 

minutes grid resolution. The resolution was downscaled compared to previous analyses 

because of software limitations. Biodiversity change with no dispersal (BND) was calculated 

as BND=R(ND)t2-Rt1, where R(ND)t2 was the projected genera richness for 2080 (scenario A2) 

and Rt1 was the projected genera richness for present (see Figure 1.2A). Biodiversity change 

with unlimited dispersal (BUD) was calculated as BUD=R(UD)t2-Rt1, where R(UD)t2 was the 

projected genera richness for 2080 (see Figure 1.2B). 

The relationships between biodiversity changes and climate anomalies (i.e. climatet2-

climatet1) were inferred with a regression tree analysis (Breiman et al., 1984). Regression-

type problems are generally those where one attempts to predict the values of a continuous 

variable from one or more predictor variables. Here we attempt to predict the change in 

genera richness per grid cell from climate anomalies predictor variables. Roughly, regression 

tree analysis consists of recursively finding the variable and the bipartition of data 

combination that minimises the within-group variance. Tree methods are particularly well 

suited for data mining tasks, where there is only little a priori knowledge about causal 

relations. The use of regression trees analysis has many advantages, among them the 

simplicity of the interpretation and the possibility to uncover complex nonlinear relationships. 

The rpart library in R (R Development Core Team, 2008) was used to calculate the trees, with 

tenfold cross-validation and a Gaussian response model. 

 

1.3. Results 

 

Genera and their response to the climate change scenario 

Losses in the total suitable area in northwestern Europe were predicted for most genera under 

both scenarios (Table 1.2). However, the predicted changes varied greatly among genera. Two 

out of 17 genera (Planorbis and Stagnicola) were predicted to have a larger suitable area by 

2080, under the scenario A2. One more genus (Myxas) was also predicted to gain suitable area 

under the B2 scenario. Six out of the remaining fourteen genera were predicted to have a 

smaller suitable area under B2 than under A2. The stochasticity of change was greater under 

the A2 scenario: the area size loss ranged from 4 to 59% of the present suitable area, while 

this loss ranges from 13 to 46% under B2 (Table 1.2). 
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Table 1.2: Potential range size (number of grid cells) inferred in Maxent, for the HadCM3 Climatic model, under 2 dispersal hypothesis, and two IPCC scenario (A2 and B2). 
The percentage of area loss (number of grids cells in the future relative to the number of grid cell at present time) is also indicated on the right part of the table. 
 

 Suitable area size (no. of grid cells)  Percentage of lost suitable area 
  Unlimited dispersal No dispersal   Unlimited dispersal No dispersal 
  A2 B2 A2 B2   A2 B2 A2 B2 
Genus Present HadCM3 HadCM3  HadCM3 HadCM3   HadCM3 HadCM3  HadCM3 HadCM3
Acroloxus 103308 74866 75143 32107 42302  28 27 69 59 
Ancylus 170677 149560 137179 85005 101073  12 20 50 41 
Anisus 140570 102484 110419 40414 67884  27 21 71 52 
Aplexa 112421 45839 60015 13225 36631  59 47 88 67 
Bathyomphalus 172074 122710 133181 55801 78021  29 23 68 55 
Galba 219206 191537 175806 124537 131770  13 20 43 40 
Gyraulus 219206 192195 175806 119189 140525  12 20 46 36 
Hippeutis 128789 109687 107228 36181 54273  15 17 72 58 
Lymnea 169474 135602 140502 66393 92926  20 17 61 45 
Myxas 122775 108659 125457 40274 66966  11 -2 67 45 
Omphalaria 82212 45040 55149 35565 48301  45 33 57 41 
Planorbis 126249 140234 137554 81754 99245  -11 -9 35 21 
Planorbarius 126249 120602 109227 57044 70359  4 13 55 44 
Radix 236681 214921 205735 135766 150466  9 13 43 36 
Segmentina 106020 65274 74152 14851 41701  38 30 86 61 
Stagnicola 195890 227993 206132 119806 129870  -16 -5 39 34 
Physa 152212 123645 108199 65394 72198  19 29 57 53 
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A general change in location measured as the centroid shift of the suitable area was predicted, 

ranging from 631 km to 1304 km under A2, and from 390 km to 884 km under B2. Over the 

considered time span (roughly 100 years), it means the suitable area moved north-eastwards 4 

to 13 km/year. The total suitable area will on average moved strongly northwards and 

moderately eastwards under B2, and more strongly so under A2. 

The two extreme dispersal scenario considered yielded as expected different outcomes. Under 

an unlimited dispersal hypothesis, the genera would track their suitable habitat and would 

therefore undergo the range changes as described above. Model projections assuming no 

dispersal predicted all species to contract, sometimes drastically. These reductions in the 

potential range are due to the fact that the overlap between present potential range and future 

potential range is often small. The contraction of the range was more important under the A2 

scenario than under the B2 for all genera: 35 to 88% of the actual suitable habitat was lost 

(see Table 1.2).  
 

Table 1.3: Test on phylogenetic signal 

Test on 
phylogenetic 

signal 

Mean variance of 
independent contrasts 

(over 1000 
phylogenies) 

Probability of finding lower than observed mean 
variance of independent contrasts by chance 

(randomly distributing trait values 1000 times over 
the 1000 phylogenies) 

Present 1.99E+10 0.406   
HadCM3_a 2.52E+10 0.560   
HadCM3_b 1.72E+10 0.698   
shift pres_a 3.87E+11 0.452   
shift_presb 2.51E+11 0.906   
PCA1 282.78 0.349   
PCA2 73.67 0.000 highly significant phylogenetic signal 
PCA3 32.18 0.390   
hydro_PCA1 50.78 0.806   
hydro_PCA2 26.39 0.103 tendency for phylogenetic signal 
hydro_PCA3 9.8 0.083 tendency for phylogenetic signal 
longshift a 69.26 0.497   
latshift a 17.04 0.328   
longshift b 53.23 0.687   
latshift b 12.46 0.725   
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Phylogenetic signal and mode of evolution 

The presence of significant phylogenetic signal was detected in the trait PCA2 (Table 1.3). 

This axis explains 13% of the overall variance of the PCA. Additionally, the variables 

hydroPCA2 and hydroPCA3 were close to significance (P<0.10), suggesting that common 

phylogenetic history may have reduced variance in these traits, too. 

No other phylogenetic signal was detected through this analysis, which may have two 

explanations: either the real absence of this signal for other variables than PCA2, or an 

irrelevant taxonomic level: the evolutionary retention took place rather at species level, within 

genera. 

 

Niche definition and correlation analysis 

The probability of observing a significant (p <= 0.05) correlation for N=17 is usually reached 

by a correlation coefficient (r) of 0.48. Once corrected for phylogenetic signal, the 

independent contrast analysis showed a significant negative correlation between the variables 

PCA1 and hydroPCA1 and the range size for all projections (present and both future scenario, 

Table 1.4). The variable PCA1 explained 61% of the overall variance in the PCA values of 

climatic variables for present (Table 1.5). The ranges covered by the genera for all of these 

climatic variables were negatively correlated with the axis of the PCA, with the exception of 

four variables expressing the homogeneity of precipitation or temperatures throughout the 

year (mean monthly temperature range, isothermality, temperature seasonality, temperature 

annual range and precipitation seasonality). One can therefore handle the scores of the genera 

on this PCA factor thus as a tolerance index. The higher its value, the lower the tolerance of 

the taxa towards climatic variation is. The variable hydro_PCA1 explained 40% of the overall 

variance in the PCA on values of hydrological variables. Minimum values for TopoInd were 

positively correlated with this axis, while maximum values and range for DEM and Slope 

were negatively correlated with it. Minimum values for TopoInd were positively correlated 

with this axis, while maximum values and range for DEM and Slope were negatively 

correlated with it. 

This analyse revealed also a significant positive correlation between the variables PCA1 and 

hydro PCA1 and centroid and longitudinal shift of the suitable area. All the other variables 

failed to reach the significance level, and there were no other detected correlations between 

range shifts and environmental variables.  
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Table 1.4: Average correlation coefficients of phylogenetically independent contrasts (1000 phylogenies sampled from the posterior probability distribution, thus taking rate 
uncertainty, clock uncertainty and phylogenetic uncertainty into account) of climatic and hydrologic niche variables against range sizes and range shifts 
 
  Area size  Shift of area centroid   Longitude shift   Latitude shift 
  Present HadCM3_a HadCM3_b   A2 B2   A2 B2   A2 B2 
              
Present PCA1 -0.9 -0.84 -0.82  0.7 0.46  0.63 0,61  0.21 0.19 
 PCA2 0.46 0.19 0.28  0.04 0.24  0.03 0.17  0.02 0.29 
 PCA3 -0.01 -0.16 -0.18  -0.20 -0.36  -0.17 -0.2  -0.19 -0.35 
             
 hydro_PCA1 -0.89 -0.73 -0.74  0.48 0.25  0.54 0.48  0.21 0.07 
Hydrologic niche hydro_PCA2 -0.16 -0.04 -0.07  0.40 0.32  0.11 0.17  0.20 0.37 
 hydro_PCA3 -0.28 -0.35 -0.41  0.04 -0.11  -0.25 -0.20  -0.44 -0.33 
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Table 1.5: Principal component analysis (PCA). Variables scores on the three first PCA axis account for 81% of 
total variance. The overall variance each axis explains is also showed. 

  present 
  PCA1 PCA2 PCA3 

percentage of variation 61.4 13.25 6.89 
     
range rangeBio1 -0.93 0.22 -0.22 
 rangeBio2 -0.78 -0.16 -0.05 
 rangeBio3 -0.75 -0.13 0.21 
 rangeBio4 -0.74 0.58 -0.13 
 rangeBio5 -0.93 -0.15 0.00 
 rangeBio6 -0.85 0.42 -0.24 
 rangeBio7 -0.77 0.53 -0.20 
 rangeBio8 -0.86 0.26 0.04 
 rangeBio9 -0.95 -0.04 -0.17 
 rangeBio10 -0.92 -0.09 -0.07 
 rangeBio11 -0.88 0.33 -0.23 
 rangeBio12 -0.85 0.00 0.51 
 rangeBio13 -0.83 0.00 0.53 
 rangeBio14 -0.95 -0.18 0.07 
 rangeBio15 -0.78 -0.49 -0.17 
 rangeBio16 -0.83 0.00 0.54 
 rangeBio17 -0.94 -0.09 0.18 
 rangeBio18 -0.83 -0.39 -0.15 
 rangeBio19 -0.90 0.02 0.36 
min MinBio1 0.67 -0.69 0.18 
 MinBio2 0.61 -0.17 -0.10 
 MinBio3 0.49 -0.02 0.25 
 MinBio4 0.54 -0.08 0.14 
 MinBio5 0.78 -0.41 -0.11 
 MinBio6 0.67 -0.71 0.20 
 MinBio7 0.49 -0.11 0.19 
 MinBio8 0.80 -0.29 -0.10 
 MinBio9 0.75 -0.60 0.17 
 MinBio10 0.76 -0.47 -0.06 
 MinBio11 0.66 -0.69 0.22 
 MinBio12 0.79 0.04 0.28 
 MinBio13 0.66 0.09 0.35 
 MinBio14 0.83 0.45 0.12 
 MinBio15 0.73 0.36 0.16 
 MinBio16 0.70 0.11 0.32 
 MinBio17 0.82 0.42 0.13 
 MinBio18 0.83 0.48 0.15 
 MinBio19 0.78 -0.36 0.11 
max MaxBio1 -0.85 -0.44 -0.18 
 MaxBio2 -0.69 -0.40 -0.17 
 MaxBio3 -0.64 -0.16 0.34 
 MaxBio4 -0.66 0.69 -0.10 
 MaxBio5 -0.77 -0.57 -0.08 
 MaxBio6 -0.76 -0.45 -0.19 
 MaxBio7 -0.74 0.63 -0.15 
 MaxBio8 -0.67 -0.02 -0.25 
 MaxBio9 -0.79 -0.49 -0.12 
 MaxBio10 -0.77 -0.54 -0.16 
 MaxBio11 -0.84 -0.41 -0.15 
 MaxBio12 -0.79 0.00 0.61 
 MaxBio13 -0.77 0.02 0.62 
 MaxBio14 -0.90 0.04 0.20 
 MaxBio15 -0.78 -0.49 -0.17 
 MaxBio16 -0.76 0.01 0.63 
 MaxBio17 -0.88 0.10 0.32 
 MaxBio18 -0.68 -0.26 -0.11 
 MaxBio19 -0.88 -0.01 0.39 
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Regression trees  

The regression tree obtained through the analysis of biodiversity change under the No-

Dispersal hypothesis (BND) showed only genera loss (Figure 1.3A). The distribution of these 

projected losses over the area can be seen in Figure 1.2A. 

The first splitting factor of the regression tree for BND was the summer precipitation, with a 

splitting value of -69.12 mm. The left part of the tree described the losses occurring in areas 

where the decline of summer precipitation was moderate (less than 69.12 mm). When 

combined with an increase in mean winter temperature above 0.49°C, there was almost no 

observed loss. In contrast, when the change in mean winter temperature was inferior to 

0.49°C (i.e a small increase, or a decrease), the loss ranged from one to eleven genera, 

depending on the combination of other climatic factors. An increase between present and 

2080s’ mean temperature of driest quarter less than 1.4°C led to the loss of almost 5 genera. If 

the increase was larger (1.40°C and above), the variation in predicted loss is high. In areas 

showing a limited decrease of the annual precipitation, three genera were predicted to 

disappear. If the decline in annual precipitation was higher than 154.3 mm, in combination 

with a change in mean temperature of wettest quarter above -0.06°C (i.e. slight decrease or 

increase), seven genera would be lost. For areas where the decline in the wettest quarter 

temperature was greater than 0.06°C and the anomaly in mean monthly temperature range 

was higher than 0.04°C, more than 11 genera were predicted to disappear. However, if the 

mean monthly temperature range increased by less than 0.04°C, less than 2 genera were 

predicted to go extinct in these areas. 

The right part of the tree described the anomalies leading to losses in areas where the summer 

drought due to climate change was more important (more than 69.12 mm decrease between 

today and 2080). In these areas, there was almost no loss when the anomaly for the 

temperature seasonality was less than -11.2. That is to say, when standard deviation of 

temperatures throughout the year was only slightly decreasing or even increasing between 

today and 2080. A decrease in temperature seasonality superior to 11.2 led to losses in most 

of the cases, whatever the variables combination was.  
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Figure 1.3: Regression tree for the predicted biodiversity variation (i.e. genera richness) per grid cell, at a 5 min 
resolution. Acronyms have the following meaning: T: temperature, P: precipitation, warm: warmest, dri: driest, 
cold: coldest, wet: wettest, seas: seasonality, iso: isothermality, ann: annual, Q: quarter, M: month. The units are 
associated with the variable name. The variable name is inserted in a box, framed with the threshold value. The 
terminal branches indicate the direction and the value of biodiversity change. Branch length is proportional to the 
error in the fit. A: under no dispersal hypothesis (ND), B: under unlimited dispersal hypothesis (UD). The 
branches for the first split are truncated 
 

In areas with a precipitation seasonality increase less than 2.205, a too high increase of 

minimum winter temperature caused a mean loss of 1.8 genera. A moderate increase (less 
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than 0.45°C) in winter minimum temperature led to losses from 3 to up to 10 genera. When 

associated with an increase in maximum summer temperature less than 0.5°C, nearly 3 genera 

were predicted to disappear, while at least 6 genera were predicted to go extinct when the 

anomaly for the maximum winter temperature was above 0.49°C. In this case, the anomaly in 

winter precipitations (threshold value 19.73) determined the severity of the losses. 

In places where the precipitation seasonality increase exceeded 2.205, the genera loss ranges 

from 0 to 7. When winters became wetter with mean temperature anomaly not exceeding 

0.49°C, the loss ranged from almost three to seven genera. On the opposite, moderate change 

in winter precipitation caused almost no losses. 

A general feature of the regression tree under the ND hypothesis was the complexity of the 

interactions between the climatic anomalies leading to losses. 

The distribution of the projected diversity changes is shown in Figure 1.2B. The southern part 

of the studied region was affected by losses, Germany and Poland being the most affected 

countries. At the opposite, Scandinavia was projected to gain genera under the unlimited 

dispersal hypothesis. 

The regression tree obtained for the biodiversity change under the unlimited dispersal 

hypothesis (BUD) showed a first split (Figure 1.3B), segregating the gain of genera and the 

loss of genera. The direction of biodiversity change was therefore conditioned only by the 

value of the temperature seasonality anomaly. Temperature seasonality as defined in the 

Worldclim dataset is the standard deviation of temperature within a year. If the variation in 

this standard deviation between today and 2080 was above -11.02, then a loss in genera was 

predicted to occur in the grid cell. The severity of loss or gain was then determined by a 

combination of factors. On the left part of the tree the gains were ranging from 0 to 12 genera. 

A moderate increase (less than 1.19) or a decrease of the isothermality combined with a 

change in winter mean temperature less than 0.83°C (small increase or decrease) caused the 

gain of two genera. However, if the mean winter temperature increased by more than 0.83, the 

expected gain reached almost 10 genera. When isothermality increased for more than 1.195 

but was combined with a limited augmentation of maximum summer temperature, less than 

one genus was predicted to establish. In areas where the previously cited isothermality 

increase was combined with an augmentation of the maximum summer temperature more 

than 0.32°C, the number of genera gain greatly varied, depending on the combination of 

temperature seasonality, isothermality and maximum summer temperature. In areas where the 

latter increased by more than 0.46°C and where the temperature seasonality decreased by 

more than -58.33, 12 genera were predicted to appear. If the temperature seasonality only 
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slightly decreased, the gain stayed low (-0.5). In areas where the maximum summer 

temperature increased by less than 0.46°C and where the isothermality increased by more than 

1.655, more than 8 genera were predicted to establish. When the change in isothermality was 

smaller, roughly 3 genera were predicted to be gained. 

The gains predicted under the unlimited dispersal hypothesis were caused only by temperature 

factors; none of the precipitation variables played a role. The right part of the tree (Figure 

1.3B) shows the predicted loss in biodiversity. At places where the temperature seasonality 

decreased by less than 11.02 or even increased, suitable areas were predicted to be lost. A 

slight increase (or a decrease) in mean temperature of driest quarter caused a loss ranging 

from almost 0 to six genera; if the precipitation seasonality at these places increased by more 

than 2.035, one genus was likely to disappear. For a precipitation seasonality changing by less 

than 2.035 and a temperature annual range rising for more than 0.12°C, the net loss was of 6 

genera. By contrast, there was almost no loss (-0.3) when the temperature annual range 

change was less than 0.12°C (which implies not only moderate increase of this variable, but 

also decreases). An increase in the mean temperature of driest quarter for more than 1.23°C 

led to the most important predicted loss in biodiversity (minus nine genera), when combined 

with an increase in winter temperature under 4.9°C (or a decrease), an increase in monthly 

temperature range above 0.04°C, and a moderate decrease in annual precipitation (less than -

142 mm). If the decrease in annual precipitation was more important (more than -142 mm), 

then the loss was of roughly 4 genera. At places where the winter temperature increased by 

more than 4.9°C, the predicted genera loss was limited (-0.5). 

 

1.4. Discussion 

 

Range size changes and shifts 

Our study suggests that the climatic changes likely to occur over the next 80 years could have 

drastic consequences on the distribution of north-western European freshwater pulmonates. 

Even under a low carbon emission increase scenario (B2), the following consequences are 

predicted 1) Moderate to large losses of suitable habitat for most genera, 2) The centroids of 

the suitable areas will move substantially towards the northeast for most species, 3) If the 

genera are able to track their suitable habitat within ecological time, their new range will 

comprise areas in Scandinavia, but substantial southern parts of the range will be lost. When 

the dispersal is not possible, the size of the suitable area is predicted to become drastically 

reduced. Some studies suggested good dispersal abilities for freshwater snails (Cordellier & 



 32

Pfenninger, 2009; pers. comm. M. Salinger), but the necessary vectors - since active dispersal 

appears impossible over larger areas - are not well known. Previous studies revealed the 

influence of migratory waterfowl to freshwater invertebrates’ dispersal (Bilton et al., 2001; 

Figuerola et al., 2005; Frisch et al., 2007). From this preliminary knowledge, we suggest that 

the “no dispersal” hypothesis is rather unrealistic, and consider the unlimited dispersal 

hypothesis as closer to reality. The time factor may be determining: the last global warming 

event after the glacial maximum took place over a much longer period, and the pace of 

recolonisation and range expansion was therefore less constrained. Currently, the climate is 

projected to change more rapidly and with greater magnitude over the next century than has 

been experienced at least during the past 1000 years (Houghton et al., 2001). Projected 

climate change rates thus might overstrain even the best migrants. 

Even though the B2 scenario is based on less greenhouse gases emissions than A2, we found 

that the former does not have necessarily less severe consequences on the suitable area size. 

This may be due to the similar loss in southern parts of Europe both under A2 and B2, but a 

smaller extension of the suitable area in its northern part under B2 than under A2. Even if the 

absolute suitable area is larger under A2, it is also farther north, and the organisms may have 

difficulties to reach it.  

 

Correlatives to present and predicted range size  

The above described changes in suitable area and their consequences on the effective ranges 

assume that species occupy the same ecological niche over time (i.e. what could be termed 

anagenetic niche conservatism). Studies conducted on single gastropod species had variable 

outcomes in this regard: in the species Ancylus fluviatilis, an evolution of the occupied niche 

over time could not be excluded (Cordellier & Pfenninger, 2008), while in Radix balthica it 

appeared to be stable (Cordellier & Pfenninger, 2009).  

However, a significant phylogenetic signal on the genus level was revealed for the winter 

temperatures the snails can endure, as well as the temperature variance throughout the year 

within the Basommatophora group, i.e. related genera had a greater ecological similarity in 

this regard than expected by chance (Table 1.3). This showed that on a cladogenetic level, the 

evolution of certain traits is phylogenetically constrained. It was therefore necessary to take 

this relation into account for valid correlation analyses (Harvey & Pagel, 1991).  

The independent contrast correlation analysis showed a relationship between species niche 

characteristics and suitable area size. A low tolerance (narrow climatic range) was correlated 

with a small suitable area size at present (Table 1.4). This result is rather intuitive, and such a 
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relationship was also shown for central European tree species (Köckemann et al., 2009). 

However, this low tolerance also conditions the size of the future suitable area: the genera 

with a narrower niche will be a priori the most affected by climate change. The independent 

contrast correlation analysis also assessed the correlation between niche characteristics and 

suitable area shift. For low tolerance genera, the area shifts are eastwards rather than 

northwards. The direction of suitable area shifts is meaningful for organisms presumably 

relying on passive dispersal through birds. While switching between nesting and wintering 

places, migratory waterfowl follows south/north migration routes rather than west/east routes, 

thus possibly rendering bird mediated colonisation ineffective.  

 

Changes in biodiversity  

While the warmer temperatures enhance reproduction and growth rates (van der Schalie & 

Berry, 1973), this effect is counterbalanced by lower water oxygenation. The importance of 

temperature factors to biodiversity and even their prevalence (Gates, 1993) was confirmed by 

the regression tree analysis (Figure 1.3B). One would have expected precipitation changes to 

play a greater role in the survival of freshwater organisms, since precipitation determines to 

some extent the availability of habitats and their persistence. However, the factors predicting 

the diversity shift by 2080 are almost only temperature changes. In particular, the analysis of 

biodiversity change under the unlimited dispersal hypothesis revealed the striking influence of 

temperature seasonality, its value in the future determining the direction of change. A general 

outcome of this analysis is the complexity of the interactions of climatic factors; the 

interdependency has a strong influence on the biodiversity shift predicted between present and 

2080. This biodiversity shift is predicted to be very important in countries such as Germany, 

France and Poland. The species of this group being generalist, the disappearance of one taxon 

at a time in a given area may be buffered by the replacement through other, ecologically 

similar taxa. However, the biodiversity loss in Germany is predicted to concern almost all of 

the genera taken into account in this study, which will have no longer suitable habitat by 

2080. This excludes a replacement by local species. However, a similar shift of suitable 

habitat can be expected for the taxa currently inhabiting adjacent areas on the Southern 

European peninsulas, which may thus replace the current freshwater pulmonate biodiversity 

in the studied area. 
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Conclusions 

An important fauna shift is predicted to take place in Central Europe within the next decades: 

this area will no longer be climatically suitable for the present freshwater snail fauna. The 

most probable outcome is their replacement by related pulmonates presently inhabiting 

southern Europe, adapted to warmer climates. This replacement would assure the continuity 

of the existing food-webs. However, the colonisation by southern taxa can only take place if 

dispersal keeps pace with the suitable area shift. If not, the consequences of freshwater snail 

range changes on the freshwater ecosystems are difficult to predict, though some hypotheses 

can be formulated. The Basommatophora are generalists regarding their food resources, 

feeding on detritus and/or biofilm (Dillon, 2000). The reduction or the disappearance of these 

populations would mean less grazing pressure, and therefore the proliferation of organisms 

relying on the same food sources. No matter which scenario will actually take place, our study 

suggests that the consequences of the predicted climate change will be dramatic for the 

presence and composition of freshwater pulmonates in north-western Europe. 
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2ND CHAPTER 

Climate-driven range dynamics of the freshwater limpet Ancylus fluviatilis 

(Pulmonata, Basommatophora) 
 

Abstract 

Aim 

Our aim was to understand the processes that have shaped the present-day distribution of the freshwater limpet 

Ancylus fluviatilis sensu stricto in order to predict the consequences of global climate change on the geographic 

range of this species. 

Location 

North-western Europe. 

Methods 

We sampled populations of A. fluviatilis s.s. over the entire range of the species (north-western Europe) and 

sequenced 16S ribosomal RNA (16S) and cytochrome oxidase subunit I (COI) mitochondrial fragments to 

perform phylogenetic and phylogeographical analyses. Climatic niche modelling allowed us to infer the climatic 

preferences of the species. A Principal Component Analysis identified the most important climatic factors 

explaining the actual range of Ancylus fluviatilis. We also identified which climatic factor was the most limiting 

at range margins, and predicted the species’ geographic range under a climate change scenario (Community 

Climate Model 3 – CCM3). 

Results 

By means of the phylogeographic analysis, we inferred that A. fluviatilis s.s. occupied northern refuges during 

the last glacial maximum. We showed that the climatic preferences of Baltic populations are significantly 

different from those of Central Europe populations. The projection of the occupied area under the CCM3 climate 

model predicts a moderate poleward shift of the northern range limits, but a dramatic loss of areas currently 

occupied, for instance in northern Germany and in southern Great Britain.  

Main conclusions 

Post-glacial range dynamics of A. fluviatilis were not governed by niche conservatism. Therefore, we must be 

cautious about bioclimatic model predictions: the expected impact of climate change could be tempered by the 

adaptive potential this species has already shown in its evolutionary history. Thus, modelling approaches should 

rather be seen as conservative forecasts of altered species ranges as long as the adaptive potential of the 

organisms in question cannot be predicted. 

 

 

 

 

Journal of Biogeography (2008), 35, 1580-1592, together with M. Pfenninger 
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2.1. Introduction 

 

The realized geographical range of a species can be defined as the area where stably 

reproducing populations are found (Gaston, 1996). Thus, this area (1) offers the possibility for 

survival and reproduction; i.e abiotic and biotic conditions match the fundamental niche 

requirements of the species, and (2) was reached via dispersal during the species’ history 

(Holt, 2003). The dynamics of a species’ range can therefore be governed by the following 

two processes: (1) spatial tracking of the environmental niche without adaptation, including 

extinction if the niche vanishes, and (2) adaptation to ecological conditions outside the 

ancestral niche, either permitting colonization of areas not yet occupied or allowing the 

species to remain in the ancestral area despite changing conditions.  

The cyclic climatic changes of the Pleistocene glaciations have been the most significant 

events in shaping the contemporary ranges of many extant lineages (Avise, 1998; Bernatchez 

& Wilson, 1998; Taberlet et al., 1998; Hewitt, 1999, 2000). A close relationship between 

climatic conditions, such as temperature or precipitation, and species ranges has indeed been 

shown many times (Hugall et al., 2002; Pfenninger et al., 2007). The prevailing paradigm of 

species survival during the Pleistocene cold cycles consists of a retreat to southern European 

refuges, such as the Iberian Peninsula, Italy, the Balkans, areas near the Caucasus and the 

Caspian Sea (Taberlet et al., 1998; Hewitt, 1999, 2004). However, there is growing evidence 

also for northern refuges for cold-adapted animals (e.g. Nesbo et al., 1999; Stewart & Lister, 

2001; Pinceel et al., 2005; Kotlik et al., 2006). Previous studies suggested that Ancylus 

fluviatilis might belong to this group (Pfenninger et al., 2003b). 

In this paper, we aim to understand the historical processes that have shaped the present day 

distribution of the freshwater limpet A. fluviatilis and subsequently assess the possible 

consequences of the oncoming global climate change for the species’ range. A previous study 

conducted on A. fluviatilis sensu lato revealed the presence of four cryptic species (Pfenninger 

et al., 2003b), one of which was identified as A. fluviatilis (O.F. Müller, 1774) sensu stricto. 

The range of the latter comprises north-western Europe and the north-western part of the 

Iberian Peninsula. The species occurs in most permanent lowland rivers, creeks, the shore 

zone of lakes, and even irrigation channels or fountains, without demanding high water 

quality (Økland, 1990; Glöer & Meier-Brook, 1998). High mountain ranges, such as the Alps 

or the Pyrenees, are not colonized by these limpets (Turner et al., 1998; own observations), 

most likely because the considerable bed-load of high mountain streams does not allow the 

establishment of stable populations. The presence of a hard substrate, from which the limpets 
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graze the biofilm and where the egg-clutches are deposited, is a necessary prerequisite for 

their occurrence. The life cycle is annual, with reproduction in spring after which most of the 

individuals die. Ancylus fluviatilis is highly selfing (Städler et al., 1993) and local populations 

can consist of reproductively more or less isolated strains (Städler, 1997).  

To understand the reactions of A. fluviatilis to past climate changes, we focused on the 

following questions. (1) Where were the refuges during the glaciations and how did the limpet 

re-colonize its present range? (2) Did the climatic niche evolve during expansions and can we 

plausibly forecast the species’ range in a climate change scenario? 

 

2.2 Materials and Methods 

 

 
 
Figure 2.1: Map of Europe showing the range of Ancylus fluviatilis s.s. and the sampling localities. Squares 
stand for locations of the Baltic Area (BA) phylogroup, triangles for locations of the Iberian Peninsula 
phylogroup (IP) and circles for locations of the Central Europe (CE) phylogroup. Haplotypes from both 
phylogroups (CE and BA) were found at localities GB1 and POL1. The dashed line represents the ice cap extent 
at last glacial maximum (after Andersen & Borns, 1997). 
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Populations sampled and geographical distribution of the species 

Forty-four populations across the geographical range of the species Ancylus fluviatilis sensu 

stricto were sampled, mainly from Sweden, France, Great Britain and Poland. Additionally, 

we included in this study the sequences of the 42 populations published in Pfenninger et al., 

(2003b, Acc. Num. AY 238703-57), covering the remainder of the study area, making a total 

of 86 populations (Figure 2.1). Sampling sites and number of individuals sequenced are 

shown in Appendix S2.  

 

DNA extraction, fragment amplification and sequencing 

Specimens preserved in 70% ethanol were extracted from their shells and DNA was isolated 

following a slightly modified hexadecyltrimethylammonium bromide (CTAB) protocol 

published in Winnepennickx et al. (1993). A 5’-fragment of the 16S target-rRNA was 

amplified for all samples by polymerase chain reaction (PCR) with primers of the sequence 

5’>CGCCTGTTTATCAAAAACAT<3’ 16Sar and 16Sbr 

5’>CCGGTCTGAACTCAGATCACGT<3’ (Palumbi, 1996). Amplification was performed 

with Invitrogen Taq DNA polymerase in 25µL total reaction volume with standard reaction 

conditions. Samples were amplified for 10 cycles (90°C for 30 s, 46°C for 30 s and 72°C for 

40 s) and 30 cycles (90°C for 30 s, 50°C for 40 s, ramp 0.3°C/s and 72°C for 40 s) after initial 

incubation at 92°C for 2 min 30 s. A 3-minute final elongation step at 72°C followed. PCR 

products were then cut out of a gel and cleaned with peqGOLD Gel Extraction Kit (Peqlab, 

Germany) following the protocol provided. Both strands of the purified amplification 

products were cycle-sequenced with ABI BigDye®Terminator v.3.1 Ready Reaction 

Sequencing mix (Applied Biosystems, USA), and read automatically on the ABI 3130xl 

sequencer from the same manufacturer. Sequences were deposited in GeneBank (Acc. Nos. 

EU000274-97). Sequences were initially aligned with ClustalW and adjusted manually, using 

the BioEdit software. After initial phylogeographic analysis (see below), one to four 

individuals for some of the haplotypes inferred with 16S sequences were chosen for additional 

analysis with partial cytochrome oxidase subunit I sequences (COI) (Appendix S2). The COI 

fragment was amplified with primers described in Folmer et al. (1994) and a group-designed 

reverse primer 5’>TGTTGATATAAAATAGGATC<3’ (designed for Basommatophoran by 

K. Kuhn, pers. comm.) in 25µL reaction under the following conditions described in 

Pfenninger et al. (2006). PCR products were then cleaned using the Invitrogen kit. The 

sequences had been obtained following the same protocol as described above for 16S and also 

deposited in GenBank (Acc. Nos. EU376490-522). 
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Phylogeographic analyses 

Phylogeographical patterns were inferred from the spatial distributions of sequences of two 

mitochondrial fragments. To distinguish recurrent population processes from historical events, 

we used nested clade analysis (NCA) (Templeton et al., 1995). This statistical approach first 

tries to reject the null hypothesis of random association between haplotype variation and 

geography, and then interprets the significant patterns using explicit criteria that include an 

assessment of sampling adequacy. The NCA approach uses the temporal information 

contained in a haplotype network to partition historical (e.g. fragmentation, colonization) 

from recurrent (e.g. gene flow, drift, mating system) processes responsible for the observed 

pattern of genetic variation. The computer program TCS (Clement et al., 2000) first compiled 

the sequences into haplotypes and constructed a network using statistical parsimony (SP), 

with the connection limit set at 95%. Due to multiple possible connections, we performed 

analysis on a subset of 16S haplotypes, which were additionally sequenced for COI, to 

increase phylogenetic resolution (see Appendix S2). The 16S network was modified 

accordingly, and the consensus network is shown in Figure 2.2. The nesting design was 

overlaid on this consensus network following the recommendations of Crandall (1996) and 

Templeton et al. (1995). Random association between geographical position of clades and 

nesting clades was tested by calculating the clade distance (Dc) and nested clade distance 

(Dn). The frequency of haplotypes/clades and the sample size per location were used to 

simulate and test the null hypothesis of random distribution of haplotypes and clades in 

Geodis 2.5 (Posada et al., 2000). The biological inferences of the observed patterns were 

interpreted using the most recent inference key by Templeton (2004). Based on the 

phylogeographic inference, we defined three phylogroups, named according to their 

distribution centre: Iberian Peninsula (IP) populations from Spain and Portugal; Central 

Europe (CE) populations mainly from France, Germany, Austria and Great Britain; and Baltic 

Area (BA) populations from the Baltic Sea surroundings (Norway, Sweden, Poland, Lithuania 

and Latvia). 

 

Estimating the variation of effective population size over time 

To infer range expansion from the haplotype data, we relied on two conceptually different 

approaches, in addition to the phylogeographic analysis. The first approach was based on the 

assumption that geographic range expansions should be accompanied by a demographic 

population growth. This growth is expected to leave traces in the shape of gene-trees 

compared with neutral expectations in coalescent theory. Tajima’s D (Tajima, 1989) and D* 
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and F* statistics (Fu & Li, 1993) examine the shape of gene-trees to test for deviation from a 

selectively neutral coalescent process in a population of constant effective size. The F-statistic 

(Fu, 1997) detects an excess of low-frequency alleles expected in the course of a population 

expansion (Schneider & Excoffier, 1999). Significant negative deviations of these indexes 

from zero are interpreted either as evidence of selective sweeps (Fu, 1997) or population 

expansions (Slatkin & Hudson, 1991; Fu, 1997). Positive deviations may indicate a long-

lasting population subdivision (Slatkin & Hudson, 1991; Fu, 1997). All calculations were 

performed with DnaSP, version 4.0 (Rozas et al., 2003). 

Past demographic population dynamics were also estimated from the 16S dataset with a 

Bayesian skyline plot model of exponential growth implemented in BEAST v. 1.4 

(Drummond et al., 2005) for the joint CE and BA groups. The Bayesian skyline plot model 

generates a posterior distribution of effective population size through time using a Markov 

chain Monte Carlo (MCMC) sampling. These distributions are then used to generate 

credibility intervals of the desired parameter that represent both phylogenetic and coalescent 

uncertainty (Drummond et al., 2005). It should be noted that coalescence analyses such as 

these assume there is no population subdivision. This assumption is certainly violated here, 

but it probably affects only the accuracy of the numerical parameters and not their general 

trend (Finlay et al., 2007). 

A lognormal model that relaxes the molecular clock hypothesis was used (Drummond et al., 

2006). We ran 30,000,000 generations (sampled every 1000 iterations), of which the first 10% 

were discarded as burn-in. The substitution model applied was GTR+Γ+I with no strong a 

priori parameter expectations, i.e. the parameters were also estimated by the MCMC. This 

model was chosen, because it makes best use of the Bayesian approach (Huelsenbeck & 

Rannala, 2004). Also, no a priori information on the mean substitution rate per year was 

available. We used a strong prior for the mutation rates, within a reasonable range for 

freshwater molluscs (DeJong et al., 2001; Johnson, 2005; Bunje & Lindberg, 2007; Liu & 

Hershler, 2007) to all analyses (mean = 2x10-8 substitutions per site and year, lower bound = 

5x10-9, upper bound = 5x10-8, corresponding to 0.5-5% nucleotide substitutions per one 

million years). The convergence and sampling efficacy of the Bayesian skyline plot were 

monitored using Tracer v. 1.2.1 (available at http://evolve.zoo.ox.ac.uk/software/). 

 

Phylogeny 

The 16S and COI sequences were concatenated for 33 individuals to perform a Bayesian 

analysis of phylogeny, with Planorbarius corneus and Ferrissia sp. as outgroup species, as 
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well as representative sequences from Ancylus clades described in Pfenninger et al. (2003b). 

We performed the phylogenetic analyses based on Bayesian inference using MrBayes version 

3.1 (Ronquist & Huelsenbeck, 2003). Based on the Akaike information criterion calculated 

with Modeltest (Posada & Crandall, 1998), we chose unlinked GTR+R+I models for both 

partitions, with no a priori parameter estimates. We ran four Metropolis coupled Monte Carlo 

Markov chains (MC3) for 1,000,000 generations, sampling every 100 generations, and the 

first 1000 trees were discarded as burn-in. Bayesian inference of phylogeny is based upon a 

quantity called the posterior probability distribution of trees, which is the probability of a tree 

conditioned on the observations. Convergence of the MCMC chain was monitored by plotting 

maximum likelihood values of the trees against the number of runs.  

 

Estimation of climatic niche and range prediction 

 
Table 2.1: Description of the BIOCLIM variables and loadings on PCA axis. The four variables with the highest 
loadings on each PCA factor are shown in bold. 

  Loadings of the variables on PCA factors 
Variable Description Factor 1 Factor 2 Factor 3 
BIO1 Annual Mean Temperature 0.5977 -0.7655 0.0353 
BIO2 Mean Monthly Temperature Range 0.0779 -0.7173 0.3453 
BIO3 Isothermality 0.8480 -0.3669 -0.0841 
BIO4 Temperature Seasonality -0.9026 -0.0324 0.3434 
BIO5 Max Temperature Warmest Month -0.0305 -0.9017 0.3349 
BIO6 Min Temperature Coldest Month  0.8659 -0.3557 -0.2485 
BIO7 Temperature Annual Range -0.7841 -0.2824 0.4407 
BIO8 Mean Temperature Wettest Quarter -0.8106 -0.1460 0.1055 
BIO9 Mean Temperature Driest Quarter 0.7983 -0.4925 -0.0406 
BIO10 Mean Temperature Warmest Quarter -0.0128 -0.9049 0.2967 
BIO11 Mean Temperature Coldest Quarter 0.8475 -0.4635 -0.1693 
BIO12 Annual Precipitation 0.7741 0.4194 0.4585 
BIO13 Precipitation Wettest Month 0.5883 0.2629 0.7394 
BIO14 Precipitation Driest Month 0.6640 0.5828 -0.0600 
BIO15 Precipitation Seasonality -0.3639 -0.2078 0.6836 
BIO16 Precipitation Wettest Quarter 0.5884 0.3116 0.7163 
BIO17 Precipitation Driest Quarter 0.7338 0.4917 0.0189 
BIO18 Precipitation Warmest Quarter -0.1521 0.7383 0.3873 
BIO19 Precipitation Coldest Quarter 0.8887 0.1537 0.3282 
     
Eigenvalue 8.4916 5.0885 2.7421 
Overall variance (%) 44.6929 26.7814 14.4319 

 

The realized environmental niche can be estimated from presence-only data with high 

precision by extracting niche dimensions from spatial information on the distribution of 

environmental parameters (Nix, 1986). For the sites of each of the 86 populations of A. 

fluviatilis (effective-presence dataset), 19 biologically meaningful parameters (see Table 2.1) 

were extracted from the WorldClim (Hijmans et al., 2005; http://www.worldclim.org) 
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environmental layers with a spatial resolution of 2.5 min as implemented in the software 

DIVA-GIS 5.2 (Hijmans et al., 2001). Principal components analysis (PCA) axes were 

extracted from the climatic variables to examine the variation in environmental space between 

populations of A. fluviatilis. Environmental niche dimension PCA factor values of the groups 

BA, CE and IP were compared by one way analysis of variance (ANOVAs).  

A second data set was built from museum data from northern Europe. As a predictive niche 

modelling approach depends critically on unequivocal species identification, we only 

considered the area where the presence of A. fluviatilis s.s. was molecularly proven. The 

collections of the Senckenberg Museum, Frankfurt, the Naturkunde Museum, Bern, the 

Natural History Museum of London, the Natural History Museum of Budapest, the 

Naturhistorisches Museum of Wien, and the Royal Natural History Museum in Brussels, as 

well as the inventory of J. Økland (1990), were examined for A. fluviatilis samples, resulting 

in a database of 672 localities.  

The BIOCLIM model (Nix, 1986; Busby, 1991) was used to predict the area where A. 

fluviatilis is likely to occur under current climatic conditions, using the 86 populations from 

the molecular dataset. We first inferred which climatic factor was the most limiting at range 

boundaries. To this end, the variable for which the percentile score was lowest (or highest) is 

mapped on the grid cells falling in the 95% percentile. It results in a map showing the most 

limiting factor for the distribution of the species. For the purpose of this study, areas that fell 

within the 5±95 percentiles of all climatic parameters of the profile were termed the ‘range’ of 

the predicted domain (true/false method). We evaluated the quality of this projection by 

matching the predicted range against the locations listed in the museum dataset. 

The species’ bioclimatic niche was also projected on a future climate scenario for the year 

2100, according to the publicly available Community Climate Model 3 (CCM3, double 

preindustrial CO2 conditions, annual mean surface temperature 2K higher for the Northern 

Hemisphere; Govindasamy et al., 2003). Future areas of climatic suitability were then 

compared with present day suitable areas and actual distribution.  

The use of BIOCLIM for predictive niche modelling has recently received considerable 

criticism. For example, Elith et al. (2006) showed that newly developed models such as BRT, 

MAXENT and GDM perform better than the popular BIOCLIM and GARP models in 

predicting current ranges. However, Hijmans & Graham (2006) showed the superiority of 

BIOCLIM concerning the prediction of species’ distributions under climate change scenarios, 

which was our primary goal here. 
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A major point of criticism on the use of predictive niche modelling in general is that dispersal 

and interactions with other species, such as predation or competition, are not adequately taken 

into account (Davis et al., 1998). While some studies have suggested that these factors are 

relatively negligible at large scales (e.g. Pearson et al., 2002)), recent analyses by Araujo et 

al. (2005b) showed that strong fit between niche models and contemporary distributions is not 

necessarily a reliable guide to the ability of such models to predict changes in distribution 

under climate change. Notwithstanding, despite the inherent limitations of the approach, 

climate envelope models provide one of the few analytical means to study species’ ranges 

(Beaumont et al., 2005).  

 

2.3 Results 

 
MtDNA sequence variation and parsimony network 

 
Figure 2.2: Statistical Parsimony consensus network. Circle sizes are proportional to the number of sequences in 
the represented haplotype. Small open circles are undetected haplotypes. 
 

In total, 119 snails were sequenced from 44 populations (Appendix S2). 440 bp of the 16S 

fragment could be recovered and aligned and 17 polymorphic sites were observed, defining 

24 new mtDNA haplotypes, in addition to 20 already described in Pfenninger et al. (2003b). 
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The haplotypes, their distributions among the populations and their affiliation to each 

phylogroup are presented in Appendix S2. For the additional COI sequences, 559 bp could be 

recovered for 33 individuals (Appendix S2). The resolved SP haplotype network is shown in 

Figure 2.2. 

Nesting design is presented in Figure 2.2, while the results of the analysis performed in 

Geodis, as well as the inference reached by the key given in Templeton (2004), are presented 

in Table 2.2. Two of the three level-1 clades which had significant departures from the null 

hypothesis were characterized by restricted gene flow (1-2 and 1-1). NCA identified long 

distance movements for both 2-1 and 2-2 clades. 

 
Table 2.2: Chi-squared test of geographical association of clades and biological inference from the NCA 
analysis of Ancylus fluviatilis s.s. Probability p is the probability of obtaining a χ² statistic larger than or equal to 
the observed statistic by randomly permuting the original contingency table 9999 times. Inferences were 
obtained following the key given in Templeton (1998). Abbreviations for the inferences are: CRE, contiguous 
range expansion; LDD, long distance dispersal; LDC, long distance colonization; IBD, isolation by distance; PF, 
past fragmentation; and RG, restricted gene flow. 
 
Clades 
nested 
with 

Permutational 
χ² statistic p Chain of inference Inference 

Clade 1-1 982.53 0.000 1-2-3-5-6-7-YES RG/Dispersal with some LDD 
Clade 1-2 111.22 0.0009 1-2-3-4-NO RG with IBD 

Clade 1-17 7.00 0.0485 1-2-11-12-13-14-YES 
CRE or LDD or PF (inadequate sampling 

design) 
Clade 2-1 1855.32 0.000 1-2-3-5-15-21-YES LDC 

Clade 2-2 23.00 0.0002 
1-19-20-2-11-RE-12-13-

YES LDC with possible Subsequent Fragmentation 
Clade 2-3 19.00 0.0083 1-19-20-NO Inadequate sampling design 

 or alternative explanation 1-2-11-RE-13-14 CRE, LDC 
Total  448.73 0.0000 1-2-3-5-15-NO PF and/or LDC 
 

Identification of range expansions 

Although Fu’s Fs (-0.28908, p<0,001) was highly significant, the other statistics failed to 

detect departures from the neutral expectation with values as follows: Tajima’s D, -0.05186; 

Fu & Li’s D*, -0.02874; and F*, -0.03227. The Bayesian demographic analysis showed a 

steady but slight increase in population sizes of A. fluviatilis over time (Figure 2.3).  
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Figure 2.3: Bayesian skyline plot of the evolution of the effective population size of Ancylus fluviatilis s.s. 
through time for Central Europe and Baltic Area populations. The 95% highest posterior density (HPD) limits 
are shown as thin dashed lines.  
 
 

 
 
Figure 2.4: Bayesian inference tree of distance among Ancylus fluviatilis s.s. 16S haplotypes; cryptic species 
designation follows Pfenninger et al. (2003b). Planorbarius corneus and Ferrissia sp. were used as outgroups. 
Posterior probabilities from the Bayesian analysis are indicated above the branch, and the bootstrap values (from 
MP analyses) in italics, underneath. The phylogroups Iberian Peninsula and Baltic Area are accented with dashed 
lines. 
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Haplotype phylogeny 

The Bayesian analysis of the A. fluviatilis sequences showed that all individuals belong to a 

well-supported monophyletic group equivalent to the other clades defined in Pfenninger et al. 

(2003b) (Figure 2.4). A maximum parsimony analysis yielded a congruent topology, 

regarding the major groups (data not shown). 

 

Climatic niche 

The PCA on climate variables retained three meaningful (larger than expected eigenvalues 

according to a broken-stick model) niche dimensions, accounting for 85.9% of the overall 

variance (Table 2.1). Axis 1, accounting for 44.7% of the total variation, opposed sites with 

cold and dry winters and annually variable temperatures, to populations in areas with warm 

and wet winters and more uniform temperatures. Axis 2 (26.8%) was a climatic gradient from 

warm and dry to cool and wet summers. The third axis (14.4%) distinguished between 

locations experiencing a wet summer and seasonally varying precipitations and a dry summer 

and a uniform precipitation regime throughout the year. Because the number of samples in 

each class was highly unbalanced (81 North Europe vs. five Iberian Peninsula, and 65 Central 

Europe vs. 16 Baltic Area), we performed new ANOVAs with subsets of the larger groups. 

Twenty random sub samples of size five were draw from North Europe locations and twenty 

random sub samples of size 16 from Central Europe populations as well. We then compared 

these new smaller groups to Iberian Peninsula and Baltic Area, respectively. It could be 

shown that the significant difference on Axis 3 observed between North and Iberian groups is 

due to some extreme values. The other results did not differ qualitatively from those presented 

here. 

The realized climatic niche of the Iberian Peninsula populations differed significantly from 

those of the remaining populations for the second axis (Figure 2.5). Populations from the 

Iberian Peninsula experience a significantly warmer and drier summer than the northern 

populations. The Central Europe and Baltic sites also differed significantly from each other 

for the other two niche dimensions (Figure 2.5). While populations from the Baltic area 

endure relatively wet summers and seasonally strongly varying precipitations, those from 

Central Europe face drier summers and a more uniform precipitation regime throughout the 

year. The annual mean temperature was the most limiting of the climatic factors to account 

for the northern boundary of the range of A. fluviatilis.  
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Figure 2.5: ANOVAs of Principal Components Analysis (PCA) factor values among phylogroups of Ancylus 
fluviatilis s.s. Error bars indicate 95% confidence intervals. IP, Iberian Peninsula; CE, Central Europe; BA, 
Baltic Area. 
 

Species range prediction 

The results of climate niche modelling are shown in Figure 2.6A. From the 672 point 

localities of the museum data set used to evaluate the quality of the modelling approach, 81% 

were included in the predicted area. We therefore assume that our sampling data set provides 

an adequate basis on which to model the area that would be occupied under a climate change 

scenario. The examination of predicted areas of climatic suitability at the end of the 21st 

century indicated a range shift of A. fluviatilis s.s. to the north and a dramatic loss of habitat in 

Central Europe (Figure 2.6B). In total, a loss of 43.6% of the area currently occupied by A. 

fluviatilis is predicted. Modelling predicted areas for the different phylogroups separately 

yielded very similar results (data not shown).  
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Figure 2.6: Predicted bioclimatic area, inferred with a BIOCLIM model from the effective presence data, 
showing the area occupied by Ancylus fluviatilis s.s. (light grey). (A) Map showing the potential present area 
(inferred with WorldClim climate data), with the sampling locations. (B) Map showing the potential future area, 
under the niche conservatism assumption (inferred with modelled climate data for year 2100, CCM3 model). 
 

2.4 Discussion 

 

Evidence for Central European refugium  

Bayesian demographic analysis indicated that the most recent common ancestor of the 

northern clade, gathering populations from Central Europe and Baltic Area, lived at least 

40,000 yr BP (Figure 2.3, lower 95% posterior density margin). The past fragmentation of the 

Iberian clade must therefore have taken place before that period. We can thus assume that the 

northern clade already existed during the last glacial maximum (LGM) and was never present 
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on the Iberian Peninsula. Moreover, southern French populations (FRA3, FRA4) resulted 

more recently from a long distance colonization event. Southern France is therefore unlikely 

to have been a potential refuge. The current distribution of the most likely ancestral haplotype 

6 is Central Europe. Survival through the LGM in Central Europe therefore seems to be the 

most parsimonious explanation for the observed phylogeographical pattern.  

Although the nested clade analysis showed a range expansion of the species, other analyses of 

the molecular data (Fu’s, Bayesian inference) did not yield clear evidence for an increase in 

effective population size in the past. An explanation could be the relatively small size of the 

expansion area compared with the refuge area. The colonisation of the expansion area, thus 

not requiring exponential demographic growth, didn’t left traces in the shape of the gene tree. 

Fossil records of A. fluviatilis (Baltic Ice Lake stage, 10,000-11,000 yr BP, Yoldia Sea stage, 

9500 yr BP) in the Baltic area (Bennike & Lemke, 2001) strengthen the inference of this 

species’ presence in Central Europe at early stages of deglaciation. Evidence for similar 

northern refuges for freshwater fishes of the genus Cottus (Hänfling et al., 2002; Volckaert et 

al., 2002), Perca (Nesbo et al., 1999) and Lota (Van Houdt et al., 2005) also reinforce the 

possibility of northern refugia for a freshwater gastropod. 

Evidence for central or northern European refugia has also been found for several woodland 

tree species (Stewart & Lister, 2001) and voles and other small mammals (Bilton et al., 1998; 

Brunhoff et al., 2003; Kotlik et al., 2006). High alpine plant species survived the glaciations 

either by ‘nunatak’ survival or survival at the periphery of the Alps (Schonswetter et al., 

2003; Tribsch & Schonswetter, 2003). All previous phylogeographical studies on land snails 

with a Palaearctic distribution (Haase et al., 2003; Pfenninger et al., 2003a; Wilke & Duncan, 

2004, Pinceel, 2005 #55) suggest relatively northern refugia. Thus, the pattern of Pleistocene 

survival in southern refuges may be more complicated than proposed in Taberlet et al. (1998) 

and Hewitt (1999). 

 

Taxonomic considerations 

Both phylogeographic and phylogenetic analysis revealed the presence of a well-supported 

distinct lineage on the Iberian Peninsula that differed significantly in realized climatic niche 

and occupied a distinct geographical area. BIOCLIM analysis has already contributed 

substantially to the identification of two distinct species, for example in the Australian brown 

Antechinus species complex (Sumner & Dickman, 1998). However, the sequence divergence 

(Figure 2.4) between the monophyletic group located on the Iberian Peninsula and the other 

populations of A. fluviatilis s.s. is lower than the sequence divergence observed between A. 
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fluviatilis s.s. and the cryptic species described in Pfenninger et al. (2003b). Moreover, the 

lineage has no sister taxon relationship to the rest of the species. Further investigations with 

increased sampling in particular on the Iberian Peninsula are still necessary to determine if 

this clade represents a case of incipient speciation.  

 

Climatic niche evolution 

Most populations in the northern part of the current species range were sampled in previously 

glaciated areas in the Baltic area. We show that the realized niche of these populations differs 

significantly from the niche of Central Europe populations. Putatively living in waters of the 

tundra and steppe of the periglacial area during the LGM (Andersen & Borns, 1997), the 

species may have followed the northern shift of its habitat during the retreat of the ice cap. 

The populations that stayed in Central Europe experienced warming conditions, but rather 

than disappearing from this area they adapted to the new conditions. Even though a certain 

variation in environmental conditions may be expected over larger latitudinal distribution 

ranges, as in the present case, the non-overlapping confidence intervals and low internal 

heterogeneity on climate PCA axis 1 (Figure 2.5) suggested that the Central Europe 

populations now experience climatic conditions completely outside the ancestral climatic 

range. This large niche shift suggests adaptive evolution rather than phenotypic plasticity, the 

more so since Central European individuals of A. fluviatilis are relatively vulnerable to water 

temperature changes (unpublished data).  

With few exceptions (Davis & Shaw, 2001), phylogeographical studies have relied on the 

tacit or explicit assumption of niche conservatism to explain inferred range expansions 

(Taberlet et al., 1998; Hewitt, 2004). However, several well-known examples show that local 

adaptation is possible in very short evolutionary time, if the selection pressure is strong 

enough, even in the face of gene-flow (Grant & Grant, 1993; Carvalho et al., 1996; Schluter 

et al., 2001; Hoekstra et al., 2004; van Heerwaarden & Hoffmann, 2007), and this might be 

also the case with A. fluviatilis. 

Temperature was found to be the most limiting factor for A. fluviatilis on its actual northern 

range margin, low annual average temperature probably preventing the species from 

expanding its range further. However, it is possible that A. fluviatilis has not reached the 

limits of its potential range simply because of limited dispersal capacities (i.e. historical 

reasons). However, the generally good dispersal ability of small freshwater organisms (Bilton 

et al., 2001), also studied for several snails (Brönmark, 1985; Myers et al., 2000), indicates 

that this species has rather reached its physiological limits. 
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The approach we chose to assess the validity of the species’ distribution allowed us to draw 

well-supported conclusions about the evolution of the range of A. fluviatilis through time. We 

also showed the ability of A. fluviatilis to adapt, in a relatively short evolutionary time, to 

changing bioclimatic conditions. We must therefore be cautious about the predictions of the 

model. We have to consider the hypothesis that this species is able to adapt to the new 

conditions, as it did in the past. The crucial question is whether the species can cope with the 

speed of the oncoming global change. If not, this species may experience a dramatic decrease 

in its distribution range if the model itself is reliable. In such an event, this may affect the 

entire ecosystem, because grazing pressure on the biofilm by Ancylus fluviatilis would 

probably be reduced. However, some of the climatically differently adapted cryptic species 

described in Pfenninger et al. (2003b) may colonize the vacant niche.  

Bioclimatic models often represent the most feasible method of examining potential 

distributions of species (Beaumont et al., 2005). However, bioclimatic model predictions 

based on the same data but derived from different algorithms can produce widely divergent 

outcomes and even when consistent in their predictions have a high probability of being 

wrong (Araujo et al., 2005b). This paper adds a supplementary cautionary note to the 

predictive power of such approaches that do not consider evolutionary processes. Once the 

frequency of niche evolution, as well as its speed and extent are better understood, it might be 

possible to include this uncertainty in predictive modelling. 
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3RD CHAPTER 

 

Inferring the past to predict the future: climate modelling predictions and 

phylogeography for the freshwater gastropod Radix balthica (Pulmonata, 

Basommatophora) 
 

 
Abstract 

Understanding the impact of past climatic events on species may facilitate predictions of how species will 

respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica 

over the entire species range (NW Europe). Using a recently developed analytical framework that employs 

ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we 

inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was 

performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically 

suitable range at the last glacial maximum (LGM) ca 21 kyr ago. Ecological Niche Modelling predicted two 

suitable areas at LGM within the present species range. Phylogeographic model selection on a COI mtDNA 

dataset confirmed that R. balthica most likely spread from these two disjunct refuges after the last glacial 

maximum. The match observed between the potential range of the species at LGM given its present climatic 

requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche 

conservatism in R. balthica, allowing thus to predict the future range. The subsequent projection of the potential 

range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a 

dramatic loss of areas currently occupied in France, western Great Britain and southern Germany. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Molecular Ecology (2009), 18, 534-544, together with M. Pfenninger 
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3.1. Introduction 

 

The evidence for a rapid and profound climate change within the next century is now largely 

undisputed. Temperatures are predicted to rise by up to 4 °C by 2100, associated with changes 

in precipitation patterns. Ecologists already observed poleward and upward shifts of the 

species ranges (Thuiller et al., 2005). It is therefore a major challenge for ecology to estimate 

and predict the consequences of global warming on biodiversity. 

One means to achieve such predictions is Ecological Niche Modelling (ENM). This method 

predicts potential distributions for species by deriving an environmental envelope from known 

distribution points and projecting this envelope onto a spatially interpolated climate surface of 

an area. Ecological modelling has been used to accurately model the present distribution of 

many species (e.g. Peterson, 2001; Anderson et al., 2002; Hijmans & Graham, 2006). 

However, it can be used to predict past and future distributions under the assumption that a 

species’ climatic niche (the set of abiotic condition under which surviving and reproduction 

are possible) is constant over time. Many studies (Bakkenes et al., 2002; Berry et al., 2002; 

Humphries et al., 2002; Skov & Svenning, 2004; Thuiller et al., 2006) assumed such niche 

conservatism to predict the future potential geographical distributions of plants and animal 

species, resulting in many cases in dramatically reduced species ranges (Thomas et al., 2004). 

However, the degree to which geographical distribution shifts follow consistent climate 

regimes is poorly known. Evidence for niche conservatism has been shown for several taxa 

(Peterson et al., 1999; Peterson & Holt, 2003; Martinez-Meyer et al., 2004), but it may not be 

a general pattern (Rice et al., 2003; Ruegg et al., 2006; Pfenninger et al., 2007). Thus, it 

appears advisable to test the assumption of niche conservatism before reasonable predictions 

about the future distribution of a particular species can be made. 

The comparison of inferences obtained through phylogeographic analysis and ENM provides 

a test of the niche conservatism assumption. Phylogeography was successfully used in the 

past two decades to reconstruct refugial distributions at the last glacial maximum (LGM) and 

the subsequent range dynamics from the current distribution pattern of genes across 

landscapes (Hewitt, 2001). A match between phylogeographically inferred refugial areas and 

the potential range of the species at LGM given its present climatic requirements can be 

considered as a clear argument in favour of niche conservatism. This in turn justifies the use 

of ENM for future predictions. A mismatch between both inferences, however, can have 

several explanations, beginning with methodological errors either in phylogeographic 

inference, ENM modelling, or barriers to dispersal. If such errors can be ruled out, a possible 
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alternative explanation is that the species’ climatic niche has indeed evolved, as has been 

suggested e.g. for the land snail Candidula (Pfenninger et al., 2007).  

The genus Radix Montfort 1810, formerly included in Lymnaea, is part of the Lymnaeidae 

family (Basommatophora). A previous study conducted on the genus Radix revealed the 

presence of at least five reproductively isolated Molecularly defined Operational Taxonomic 

Units (MOTU) in north-western Europe, whose taxonomic affiliation remain uncertain 

(Pfenninger et al., 2006). MOTU 2 was found exclusively in north-western Europe and fits 

therefore the assumed distribution of the described species Radix balthica (L., 1758). 

Although no formal taxonomic attribution to this name has yet been made, we will use this 

name hereafter.  

The species occurs in many permanent slow-flowing rivers, the shore zone of lowland lakes 

and ponds, and even irrigation channels or fountains, without demanding a particular substrate 

or high water quality (Økland, 1990; Glöer & Meier-Brook, 1998). Though prone to 

fossilisation like all shell-bearing molluscs, a reconstruction of its historical distribution by 

the fossil record is not possible, because the shell shape is not species specific in Radix and 

allows thus no unequivocal assignment (Wullschleger & Jokela, 2002; Pfenninger et al., 

2006).  

Here we used a recently developed analytical framework, drawing both on phylogeography 

and ENM (Dépraz et al., 2008) to analyse the past range dynamics of a Radix species and 

make reliable predictions about the influence of global warming on its range. We achieved 

this by first inferring possible LGM refugia of R. balthica through projection of the present 

niche requirements of the species onto climatic surface data for the LGM. We then tested the 

resulting and alternative hypotheses with statistical phylogeography methods. This proceeding 

allowed the evaluation of niche conservatism in R. balthica, in order to reasonably predict the 

future range of the species in the oncoming climate change. 

 

3.2. Materials and Methods 

 

Populations sampled and distribution of the species 

One hundred seventy-two individuals from 49 populations covering the entire range of R. 

balthica were sampled and immediately stored in 95% ethanol. Additionally, we included in 

this study the sequences of 60 individuals from 29 populations published in Pfenninger et al. 

(2006) (Acc. Num. DQ980030-0193), making a total of 232 individuals from 78 populations. 
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Sampling sites and number of individuals sequenced are shown in Appendix S3, and are 

mapped in Figure 3.1.  
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Figure 3.1: Map of the sampled populations of molecularly identified R. balthica. This represents the most 
accurate estimation of the species range given the problems with morphological species identification in the 
genus (Pfenninger et al., 2006). 
 

Climatic data 

The climatic envelope occupied by the species is described through 19 environmental 

variables, listed in Table 3.1. These 19 bioclimatic variables likely summarise dimensions of 

climate particularly relevant in determining species distributions (Waltari et al., 2007). We 

have not taken hydrological variables into account, because they are not available at a relevant 

scale. Since the grid cells of climatic layers are about 5x5 kilometres, the presence of 

principally suitable habitats (drainages ditches, small creeks, ponds, etc…) can be assumed 

for all cells considered. For Last Glacial Maximum (LGM), present and future climate 

conditions, we used three sets of monthly climate data (precipitation and temperature). For 

current conditions (means 1950-2000) we used WorldClim, a global climate database with a 

spatial resolution of 2.5 minutes (Hijmans et al., 2005), available at 

http://www.worldclim.org. The LGM climate layers were kindly provided by E. Waltari and 

R. Hijmans, described in Waltari et al. (2007) and created as follows. Data for LGM were 
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drawn from general circulation model (GCM) simulations from the Model for 

Interdisciplinary Research on Climate (MIROC) (Hasumi & Emori, 2004). The original 

MIROC3.2 data were obtained from the PMIP2 website (http://pmip2.lsce.ipsl.fr, 01-25-

2008) with a spatial resolution of 2.8°, and downscaled to a definition of 2.5 minutes. To 

obtain past climatic data with this resolution, the differences between LGM and recent (pre-

industrial) MIROC climate data were first calculated at the native coarse resolution. The 

interpolated difference maps were then added to the WorldClim current climate data which 

has a spatial resolution of 2.5 minutes. This established procedure (Ruegg et al., 2006; 

Waltari et al., 2007) has the double advantage of producing data at a resolution relevant to the 

spatial scale of analysis, and of calibrating the downscaled LGM climate data to actual 

observed climate conditions. The species’ bioclimatic niche was also projected on a future 

climate scenario for the end of 21nd century, according to the GCM HadCM3, with a scenario 

reflecting an important increase in CO2 concentration as a result of non-restricted CO2 

emission (Intergovernmental Panel on Climate Change, Special Report on Emission 

Scenarios, scenario A2; Nakicenovic, 2000). 

 
Table 3.1: Bioclimatic variables used for the ecological niche modelling 

  Name Variable definition 
BIO1 Annual mean Temperature  
BIO2 Mean Monthly Temperature range  
BIO3 Isothermality (BIO2/BIO7)(*100) 
BIO4 Temperature seasonality (Standard deviation*100) 
BIO5 Max Temperature Warmest month  
BIO6 Min Temperature coldest month   
BIO7 Temperature annual range (BIO5-BIO6) 
BIO8 Mean Temperature Wettest quarter  
BIO9 Mean Temperature Driest quarter  
BIO10 Mean Temperature Warmest quarter  
BIO11 Mean Temperature coldest quarter  
BIO12 Annual Precipitation  
BIO13 Precipitation Wettest month  
BIO14 Precipitation Driest month  
BIO15 Precipitation seasonality Coefficient of variation 
BIO16 Precipitation Wettest quarter  
BIO17 Precipitation Driest quarter  
BIO18 Precipitation Warmest quarter  
BIO19 Precipitation Coldest quarter  

 

Estimation of climatic niche and range prediction 

The realised environmental niche can be estimated from presence-only data with high 

precision by extracting niche dimensions from spatial information on the distribution of 

environmental parameters (Nix, 1986). From the multitude of available ecological niche 
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modelling methods, the Maximum entropy model (Maxent, Phillips et al., 2004; Phillips et 

al., 2006) was used to predict where R. balthica is likely to occur under current climatic 

conditions. We chose the maximum entropy approach because of its good performance with 

presence only data, as shown in Elith et al. (2006). Maxent generates ENM using presence-

only records, contrasting them with pseudo-absence data sampled from the remainder of the 

study area. The present day ENM was developed based on the 78 molecularly confirmed 

occurrence points of the species. The species’ bioclimatic niche was then projected on past 

climate layers to predict the species potential range at LGM. The species’ bioclimatic niche 

was also projected on future climate layers. Future areas of climatic suitability were compared 

with present day suitable areas and present distribution, by calculating the percentage of area 

lost under two dispersal scenarios: no dispersal and unlimited dispersal. The no dispersal 

scenario assumed that the species is incapable of dispersal, in which case the new suitable 

area is the overlap between current and future potential range, while the unlimited dispersal 

assumed that the future species suitable area becomes the entire potential future range 

projected with ENM.  

We used the default convergence threshold (10-5) and maximum number of iterations (500) 

values, using 25% of localities for model testing. We let the program select both suitable 

regularisation values and functions of environmental variables automatically, which it 

achieves based on considerations of sample size. Maxent outputs a continuous probability 

value (cumulative values), which is an indicator of relative suitability for the species. We 

chose a presence threshold to render each projection into a binary form. We considered grid 

cells with a cumulative probability of more than 10 (from a range of 0-100) as suitable, as 

suggested by Waltari et al. (2007) and Pearson et al. (2007). This threshold identified smaller 

areas than a lowest presence threshold that yielded zero omission error, thus resulting in a 

more restricted picture of the potential distribution. The area under the ROC curve (AUC) 

gave an evaluation of the projections’ overall quality. An AUC score above 0.7 is considered 

good model performance (Fielding & Bell, 1997). 

 

DNA extraction, fragment amplification and sequencing 

Individuals preserved in 95% ethanol were extracted from their shell and DNA isolated 

following a slightly modified CTAB protocol published in Winnepennickx et al. (1993). A 5’-

fragment of the COI target mtDNA was amplified for all samples by PCR with universal 

primers described in Folmer et al. (1994). Amplification was performed with Invitrogen Taq 

DNA polymerase in 25µL total reaction volume with standard reaction conditions. Samples 
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were amplified for 40 cycles (90°C for 30 s, 48°C for 1 min, ramp 0.3°C/s to 72°C, and 72°C 

for 1:30 min) after initial incubation at 94°C for 2 min 30 s. PCR products were purified using 

the PureLink PCR Purification Kit (Invitrogen, USA) and directly cycle-sequenced with ABI 

BigDye®Terminator v.3.1 Ready Reaction Sequencing mix (Applied Biosystems, USA) on 

the ABI 3130xl capillary sequencer. Sequences were deposited in GenBank (Acc. Nos. 

FJ470328–93). All the sequences were initially aligned with CLUSTALW as implemented in 

BIOEDIT and adjusted manually. 

 

Phylogenetic relation of haplotypes 

A minimum-spanning network among mtDNA haplotypes was constructed using ARLEQUIN 

(Excoffier et al., 2005). The minimum-spanning network represents all possible minimum 

length connections among the genotypes.  

 

Estimating variation in effective population size over time 

To infer range expansion from haplotype data, we relied on two conceptually different 

approaches. The first approach is based on the assumption that geographic range expansions 

should be accompanied by a demographic population growth. This growth is expected to 

leave traces in the shape of gene-trees compared to neutral expectations in coalescent theory. 

Tajima’s D (Tajima, 1989) examines the shape of gene-trees to test for deviation from a 

selectively neutral coalescent process in a population of constant effective size. The F-statistic 

(Fu, 1997) detects an excess of low-frequency alleles expected in the course of a population 

expansion (Schneider & Excoffier, 1999). Significant negative deviations of these indexes 

from zero are interpreted either as evidence of selective sweeps (Fu, 1997) or population 

expansions (Slatkin & Hudson, 1991; Fu, 1997). Positive deviations may indicate a long 

lasting population subdivision (Slatkin & Hudson, 1991; Fu, 1997). All calculations were 

performed on the entire dataset with ARLEQUIN (Excoffier et al., 2005). 

The second approach is based on the assumption that episodes of population growth and 

decline may also leave characteristic signatures in the distribution of pairwise nucleotide 

differences of populations (mismatch distribution; Rogers & Harpending, 1992). The validity 

of the demographic expansion hypothesis was tested using a parametric bootstrap approach, in 

which the sum of squared deviation (SSD) among the observed distribution and the expected 

distribution was compared to the SSD among the simulated distributions and the expected 

distribution. This test was conducted in ARLEQUIN v. 3.1 (Excoffier et al., 2005). Since we are 

aware of limitations of this approach (different processes may produce similar mismatch 
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patterns resulting in partially unrealistic assumptions (Rogers & Harpending, 1992; Excoffier, 

2004), we simply use it as additive arguments for inferred phylogeographical scenarios. 

 

Refugial model selection 

To evaluate different explicit refugial hypotheses simultaneously, we applied a model 

selection approach (Johnson & Omland, 2004; Stephens et al., 2007), which was first 

introduced in phylogeography in Pfenninger & Posada (2002) and extended in Dépraz et al., 

(2008) and Jesse et al. (2008). We formulated twelve hypotheses reflecting potential spatial 

settings and processes governing the initial postglacial colonisation. These hypotheses 

combined three colonisation modes (stepping-stone, direct and passive waterfowl migration) 

with four refugial area scenarios (Central, Southern, Western and “two-refugia”). The latter 

reflected the hypothesis gained from ENM. The passive waterfowl migration pathways are 

derived from personal communication of K. Schwenk.  

In order to find general patterns and to keep computations feasible, the 78 sampling sites were 

pooled into geographically coherent clusters. This clustering was performed with a spatially 

restricted k-means approach modified from Guiller et al. (2006). The k-means clustering was 

first performed 10 times on the average pairwise population sequence divergence matrix for k 

values between 4 and 10. To obtain geographically coherent clusters, the algorithm was 

constrained by the connections of the Delaunay triangulation network among sampling sites. 

The k-means software was kindly provided by A. Guiller. For each clustering result, an 

AMOVA (Excoffier et al., 2005) was then performed, grouping the populations according to 

the obtained clusters. We retained the configuration that maximised the variance among 

groups for further analyses. The different hypotheses were translated into corresponding 

migration matrices. It should be noted that the migration matrices contrasted different 

hypothesis on the initial colonisation rather than the probably more complex current gene-

flow patterns. The maximum likelihood migration rates among these clusters and associated 

thetas for all models were then estimated using Migrate-n version 3.0 (Beerli & Felsenstein, 

2001).  

The first genealogy was started with a random tree. Initial theta and migrant values were 

generated from an FST calculation. A static heating scheme with four different temperatures 

was applied. We ran ten short chains with 40,000 generations each, from which 1000 trees 

were recorded in regular intervals after a burn in phase of 20,000 generations. These were 

followed by three long chains of 1,000,000 generations each from which 10,000 trees were 

sampled after a burn in period of 20,000 generations. Parameter estimates were gained from 
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the last chain. Log-likelihood estimates cannot be compared over different runs with Migrate-

n. We ran therefore a final analysis with an unconstrained migration model. Using the 

likelihood-ratio-test option, we gained comparable log-likelihood estimates for the previously 

estimated parameter sets under this model. We used these estimates and the number of free 

parameters in each model to calculate the Akaike Information Criterion (AIC, Akaike, 1974) 

and resulting Akaike weights to obtain measures of relative model support.  

 

3.3. Results 

 

Maxent modelling of current, paleo- and future distribution 

The present range of R. balthica predicted through the projection of its bioclimatic niche on 

present climate is shown on Figure 3.2A. The AUC score for this modelisation was high 

(0.94). The niche projection on climatic layers for Last Glacial Maximum (Figure 3.2B) 

predicted a substantial reduction in range during the drier and cooler conditions of the LGM. 

One major refuge area, stretching from central France to central Germany was suggested. The 

modelling additionally predicted small discrete refugees north of the eastern Alps (area 

around Salzburg, Austria), south-western France and the eastern Pyrenees, in northern Spain, 

in the now Venetian Gulf and Slovenia, and in northern Balkans. Except for the first, 

however, these small predicted refuges are presently not inhabited by R. balthica and could 

therefore not be considered in the phylogeographic analysis.  

The projection of the future bioclimatically suitable area of the snail showed a general shift of 

the present predicted range to the north (Figure 3.2C). Northern Great Britain was predicted to 

become suitable, as well as northern parts of Scandinavia (Norway and Finland). In the centre 

of the range, France and south-western Germany become unsuitable, as well as Poland. The 

area predicted to be suitable decreases by 30% between today and 2080 under the unlimited 

dispersal scenario. Under the no dispersal scenario, the area predicted to be suitable decreases 

by almost 60%. 
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Figure 3.2: Prediction of present (A), past (B) and future (C) range of R. balthica, as inferred from respectively 
WorldClim, MIROC3.2 and HadCM3_A2 climatic datasets (equal area projection). Unsuitable areas are light 
grey, suitable dark grey and white represent the areas without data. The dashed line indicates the approximate 
limits of ice sheets (Peltier, 1994; Ray & Adams, 2001). Black dots represent locations where Radix balthica 
was sampled. 
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MtDNA sequence variation and parsimony network 

In total 232 individuals from 78 populations were available for analysis (Appendix S3). We 

could recover and align 405 bp of the COI fragment. Eighty-two polymorphic sites were 

observed, defining 95 mtDNA haplotypes. The haplotypes and their distribution among the 

populations are presented in Appendix S3. The Minimum Spanning Network is shown in 

Figure 3.3. 

 
 
Figure 3.3: Minimum Spanning Network. Each circle represents a haplotype, its size being proportional to the 
frequency of occurrence of a certain haplotype. Small plain circles represent haplotypes that where not sampled. 
Connecting lines represent one mutational step.  
 

Changes in population size 

Fu’s Fs (-25,49813 ***) was highly significant. This suggests a population expansion (Slatkin 

& Hudson, 1991; Fu, 1997; Ray et al., 2003). This is confirmed by Tajima’s D (-2,136***), 

also significant. Neither a sudden expansion model nor a spatial expansion model could be 

rejected by the match-mismatch distribution analysis (Figure 3.4).  
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Figure 3.4: Results of mismatch distribution analysis. Bars represent the frequency of observed pairwise 
differences among R. balthica haplotypes. The black line depicts the theoretical distribution as expected under 
the hypothesis of sudden expansion, the dotted line the distribution under of spatial expansion hypothesis. 
Various demographic parameters are also shown: τ the expansion parameter expressed in units of mutational 
time; P(rag) the probability of observing by chance a higher value of the raggedness index than the observed one 
under the hypothesis of population expansion and P(SSD) the probability of observing by chance a higher value of 
the sum of squared deviations than the observed one under the hypothesis of population expansion. 
 

Model selection 

A maximum of among group variance (23.8%) was found with eight clusters, containing 2 to 

21 populations. The population pooling scheme is given in Figure 3.5A. Two of the inferred 

population cluster (Central and East) matched two predicted LGM refugia. Model selection 

criteria supported two dispersal scenarios, both within the two-refugia hypothesis. The 

“stepping-stone” dispersal scenario had an AIC of 7979, with an Akaike weight of 0.82, while 

the “migratory waterfowl” dispersal scenario yields an AIC of 7982 with an Akaike weight of 

0.17. The other scenarios were not supported by the data (cumulative Akaike weight < .0.01, 

Figure 3.5B). The supported model implied at least two LGM refugia (Central and East) in 

central Europe, one spanning from north-eastern France to south-western Germany, the other 

north of the eastern Alps (area around Salzburg, Austria). 
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Figure 3.5: Design and results of migration model selection approach. A: Population pooling scheme, derived 
from spatial clustering for Migrate-analysis. The grey shaded area correspond to the Maxent predicted suitable 
area. B: Migration models applied. Grey areas denote source populations; arrows indicate assumed direction of 
gene-flow. LnL denotes the log-likelihood of the parameter set, K gives the number of free parameters in the 
model. AIC values measure the fit of the models to the data, taking different parameterisation into account. Note 
that smaller AIC values indicate better fit. The Akaike weight informs about relative model support. 
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3.4. Discussion 

 

Climate modelling of the present range 

Ecological niche modelling has been extensively used to deduce species potential ranges from 

known occurrence data. However, its very nature makes ENM prone to range overestimation, 

because it uses only a limited number of all possible biotic and abiotic factors. For instance, 

ENM has been criticised for not including historical factors such as dispersal processes (Davis 

et al., 1998). However, given the good dispersal capacities of small freshwater animals 

(Bilton et al., 2001), we assume that the snail could reach all potentially suitable areas since 

the last glaciation event. Other factors not taken into account by current ENM are biotic 

interactions. These may explain some discrepancies between the predicted area and our 

knowledge of the species range. We know from previous studies that R. balthica does not 

occur in eastern Europe, more precisely the Balkans (Pfenninger et al., 2006), where 

substantial areas are predicted as suitable in the ENM (Figure 3.2A). However, a closely 

related species of R. balthica occurs in the eastern predicted range (Pfenninger et al., 2006). 

Indeed, suitable area for a species can be occupied by sister species having similar 

requirements (Peterson et al., 1999; Cook et al., 2004; Waltari et al., 2007). Nevertheless, the 

performance indicator (AUC, area under the curve) used to estimate the quality of the 

projection scored high (0.94).  

 

Paleoclimate modelling and hindcasting LGM refugia 

Until recently, precise climatic data for LGM were available only for restricted regions. 

Concerted efforts of climatologists have recently provided climatic data for LGM based on 

various sources (pollen, glaciology). Despite the considerable amount of work such databases 

represent, their use in ecology is still deemed difficult, mainly because of their very coarse 

scale. The downscaling method used here is aimed at overcoming this difficulty, but relies on 

assumptions in need of further validation (Waltari et al., 2007).  

In this study, the projection of the current climatic requirements of R. balthica onto LGM 

climatic layers yielded several potentially suitable areas across Europe (Figure 3.2B). Two of 

them lay within the current species range and could thus be used to generate hypotheses for 

the model selection analyses (Figure 3.2A). The other areas also defined as climatically 

suitable might as well have served as LGM refugia. However, since the populations from 

these hypothetical refugia are extinct (if they ever existed in the first place), their contribution 

to the current genetic diversity is at best indirect via existing populations.  



 66

 

Phylogeographic test of ENM derived hypotheses 

The retreat of the ice sheet was followed by the emergence of suitable habitat for R. balthica. 

The resulting species range expansion, tracking its habitat, must have been logically 

associated with a demographic expansion. This was supported by the results of the match-

mismatch distribution analysis (Figure 3.4), even though it was not possible to make a 

distinction between a sudden and a spatial expansion model. The indices D and Fs also deliver 

results concordant with an expansion event.  

The model selection approach permitted testing relative support of the different plausible 

refugial/colonisation scenario (Figure 3.5B). An advantage of model selection is that it allows 

testing simultaneously different competing models, instead of testing each of them against a 

null model (Johnson & Omland, 2004). This allows the inclusion of prior information to the 

model, such as a gene flow direction consistent with the direction of the ice sheet retreat, and 

refugial areas outside the ice sheet at LGM. Model selection clearly showed that two dispersal 

scenarios within the “two-refugia” hypothesis received overwhelming support by the data, 

compared to the competing models (Figure 3.5). Their isolation in the Pleistocene was also 

supported by the match of the population grouping inferred by spatial clustering with 

proposed ENM refugias at LGM. According to the analyses conducted on mitochondrial data, 

R. balthica was thus isolated in at least two distinct refugia in north-western Europe during 

LGM, and expanded then its range to areas south-, north- and westward. This species joins the 

currently growing group of species inferred to have had cryptic refugia (for reviews see 

Provan & Bennett, 2008 and Stewart & Lister, 2001). The model selection approach also 

allowed assessing the relative support of different dispersal scenarios. The “migratory 

waterfowl” dispersal scenario gained some support by the data, which suggested that this 

process played a role in the post glacial colonisation, as already suspected by Darwin for 

freshwater invertebrates in general (1859). However, the better support of the stepping stone 

scenario indicated that short scale dispersal played a more important role in tracking the 

emerging habitat. Altogether, our analyses suggested that the post glacial colonisation 

succeeded through complex processes, where diverse dispersal modes had their part.  

 

The match between statistical phylogeography analysis and ecological niche modelling argues 

for niche conservatism in R. balthica. This finding adds the snail to several animal and plant 

species where such an absence of niche evolution has been demonstrated (Prinzing et al., 

2001; Martinez-Meyer et al., 2004; Martinez-Meyer & Peterson, 2006; Waltari et al., 2007; 
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Dépraz et al., 2008). We could thus put some confidence into the future range prediction 

under a global warming scenario (Figure 3.2C). The northward shift of the range as a 

predicted consequence of doubled CO2 level in atmosphere matches the general trend: species 

are moving polewards as already shown for example in Araujo et al. (2005a); for more 

references see Parmesan (2006). This predicted northward expansion of the species has 

already been observed in Sweden as a consequence of increasing lake temperatures 

(Pfenninger, pers. com.). R. balthica, however, was predicted to be also affected in other parts 

of its range. The projection predicted considerable loss of suitable area in central Europe. This 

does not necessarily mean that these habitats will remain unoccupied. With a lower 

competition pressure, these areas will be possibly colonised by sister species presently 

inhabiting southern Europe (Pfenninger et al., 2006). The MOTUs 3 and 5 described there 

potentially have greater tolerance to drought and higher water temperatures. The impacts of 

such a replacement alone on an ecosystem are difficult to predict, but likely limited. On the 

contrary, the arrival of R. balthica in habitats of newly emerging suitable areas in northern 

Europe will probably affect the ecosystem there. The arrival of a new detritus feeder might 

affect the existing food web structure. The increase of the snail population could also allow 

the proliferation of their predators and parasites. 

The possible extinction of R. balthica from its former range (central Europe) is also likely to 

have an impact the overall genetic variability of the species. This is illustrated by the potential 

loss of the 40 haplotypes occurring exclusively in populations of the predicted unsuitable area 

out of the total 95 haplotypes (42%). Per se, refugial areas are hosting the highest variability. 

The disappearance of those populations could influence the overall survival of the species as a 

whole by enhancing its genetic impoverishment and thus potential adaptability. 

 

Conclusions 

ENM and phylogeography have already been used together for cross validation (Hugall et al., 

2002; Waltari et al., 2007). However, the recently developed approach (Dépraz et al., 2008) 

applied here has the advantage of combining both approaches in a rigorous statistical 

framework and thus constitutes an attractive prospect for the field (Provan & Bennett, 2008). 

It is particularly suited to test the assumption of niche conservatism which is a necessary 

prerequisite for reliable prediction on future ranges under climate change scenarios. 
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General discussion 

 

In this last part of my thesis, I will develop a general view on the effects of global climate 

change on the ranges of freshwater pulmonates. Initially, I will summarize the main answers 

to the questions I asked at the onset of this project: 1) What are the relationships between 

species niche characteristics and range size and -shifts? 2) What was the species reaction to 

past climate changes such as the LGM? 3) What impact has the oncoming climate change on 

freshwater snail ranges? 4) Did the climatic niche evolve during expansions and can we 

plausibly forecast the species’ range in a climate change scenario? I describe the general 

findings of my study hereafter and show how prediction of ranges changes can benefit from 

our knowledge of past ranges changes. Furthermore, I discuss the implications of predicted 

range changes on the population structure. Finally, I will suggest future research directions to 

improve predictions of the future ranges and infer the role of range shifts in the species 

evolutionary history. 

 

Forecasting the ranges of species is frequently achieved with climate envelope models 

(ecological niche modelling). Bioclimate envelope models use associations between 

environmental variables and known distributions of species to define environmental 

requirements (niche) that can be projected under other climate scenarios (past and future). I 

used this approach in Chapter 1 to infer the changes in the climatically suitable area for 

Basommatophora genera. I showed that for a great proportion of European Basommatophora 

genera the suitable areas were projected to contract by 2080. The forecasted warming in the 

cooler northern ranges predicted the emergence of new suitable habitats, but also reduced 

drastically the available habitat in the southern part of the studied region. 

 

It is hypothesised that widespread species are more likely to cope with environmental change 

than smaller range species, because of their putative phenotypic plasticity. In Chapter 1, I 

showed through comparative analyses a positive correlation between the niche width of 

Basommatophora genera (i.e. the climatic range covered by the species) and the suitable area 

size at present, assessed through ecological niche modelling. A similar result was found for 

trees by Köckemann et al. (2009). I also showed that there was a significant positive 

correlation between the niche width and the future area suitable to the genera, putting the less 

widespread genera at increased risk. 
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However, before translating the changes in suitable area modelled through ecological 

modelling into range changes predictions, one has to consider several factors. The use of 

ENM relies on many assumptions (Araujo & Guisan, 2006); in particular, the absence of 

change in climate preferences throughout time, also called phylogenetic niche conservatism 

(PNC). But the degree to which geographical distribution shifts follow consistent climate 

regimes (an evidence for niche conservatism, at least at coarse scales) is poorly known. 

 

Therefore, I first assessed the impact of past climate change on the species range. Species are 

likely to move in response to climate change primarily by leading-edge range shifts (Hewitt, 

1999), but also by jump dispersal and corridors. As such, the lessons from postglaciation 

should often apply to predicting climate change response (Wilson et al., 2009). In chapters 2 

and 3, I showed that past climate changes had an effect on the ranges of two species of 

European Basommatophora. The projection of R. balthica current climatic preferences on 

Last Glacial Maximum data showed a small suitable area in central Europe (Chapter 3). This 

result was confirmed by the phylogeographic analyses. The same refugial pattern was 

observed for A. fluviatilis (Chapter 2). Both of these cold adapted species had a narrower 

range and occupied central European refuges during the Last Glacial Maximum. The survival 

of species in small northern cryptic refuges has been shown to be more widespread among 

taxa (reviewed in Stewart & Lister, 2001; Provan & Bennett, 2008) than previously thought, 

challenging the classical refugia hypothesis (Balkans, Iberic Peninsula, Italy; Taberlet et al., 

1998). In particular, cold adapted species seems to have survived the last glaciations at places 

that were previously not considered suitable (citations in Provan & Bennett, 2008). 

 

As stated in a recent review by Losos (2008), PNC is not ubiquitous among all taxa (see 

citations therein). Niche conservatism applies for several taxa (Peterson et al., 1999; Peterson 

& Holt, 2003; Martinez-Meyer et al., 2004), but may not be a general pattern (Rice et al., 

2003; Ruegg et al., 2006; Pfenninger et al., 2007). This variability in PNC is well reflected in 

the results of my thesis. In Chapter 2, I exposed the case of A. fluviatilis, which exhibits a 

high variability in climatic preferences. Furthermore, the clades inferred through the 

phylogeographic analyses corresponded to the populations exhibiting significantly different 

climatic preferences, which speak for a possible ongoing speciation. However, the analyses 

conducted do not allow a conclusive outcome. In chapter 3, on the other hand, R. balthica has 

been shown to keep the same climatic preferences within (at least) the last 20,000 years. In 

this case, the concordance of two independent analyses allows putting a high confidence in 
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this inference of niche conservatism. Given these results, outlining the differences within the 

Basommatophora groups in regard to PNC, one should be careful when assuming PNC to 

predict future ranges. All the more, it appears advisable to test the assumption of niche 

conservatism before predictions about the future distribution of a particular species can be 

reasonably made. The use of ENM without quantifying the phylogenetic niche conservatism 

could be misleading, predicting drastic reductions in ranges although the species adaptive 

potential is very high. 

 

However, an important issue in this case is the time frame considered. Species which exhibit a 

high adaptive potential (i.e. limited PNC) would nevertheless need time. As emphasised at the 

beginning of my thesis, the rate of the present change is much higher than the one of the 

warming event which followed, for example, the last glacial maximum. The climate warming 

following the last glacial maximum had a slower pace, since conditions similar to today’s 

climate were reached approximatively 8000 years ago (Andersen & Borns, 1997)(stabilisation 

within roughly 10000 years). In chapter 3, it was showed that R. balthica exhibited niche 

conservatism during the last 20,000 years. This speaks for stability throughout time of the 

species climatic preferences. On the other hand, A. fluviatilis as well as R. balthica now 

occupy a wide range in Europe. This supposes a wide climatic tolerance and a high 

phenotypic variability within the species, since present populations are found in significantly 

different climatic spaces (Chapter 2). This phenotypic variability, if not counterbalanced by 

genetic local adaptation, could allow the populations to survive the ongoing global change. 

 

An alternative for a species to adapt to the new conditions in its historical range is to disperse, 

following its climatic niche. The importance of dispersal to the species persistence should not 

be underestimated, as the analyses conducted in Chapter 1 considering two extreme dispersal 

scenario yielded drastically different results. Species not able to disperse are deemed to have 

their range considerably reduced, while under an unlimited dispersal scenario, some genera 

are predicted to have an even larger range by 2080. Species exhibit various dispersal 

capacities, and this has an impact on their expansion in the newly suitable areas. Translating 

the predicted changes in the suitable area into changes in the effective ranges thus requires 

measuring dispersal ability. The interplay of this trait with the adaptive potential determines 

the survival chances of the populations/species in areas subjected to environmental changes 

(Gaston, 1996). 
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The influence of migratory waterfowl on dispersal of freshwater organisms have been 

hypothesised in several studies (Malone, 1965; Rees, 1965; Frisch et al., 2007), and (Boag, 

1986) tested its feasibility. Waterfowl-mediated passive dispersal has been shown to play a 

role in inter-population gene flow in small invertebrates (Figuerola et al., 2005). The results 

presented in the chapter 3, inferring the post LGM recolonisation of Europe by R. balthica, 

although supporting a stepping stone model as the main expansion way, also supported this 

hypothesis. However, the prerequisite for this type of migration is a successful hitchhiking 

event, where the living snail or egg masses stick to the legs or feathers, and whose likelihood 

has not been yet measured. Furthermore (Dillon, 2000) stressed: “On a coarse geographic 

scale, one must figure high the likelihood that freshwater mollusc distributions derive from 

vagaries of chance colonization”, the dispersal of freshwater snail is highly dependent on 

random events. Very little is known about the frequency of these events and its measurement 

is not an easy task. Nevertheless, hitchhiking is presumably not species-specific. Numerous 

species of waterfowl are very widespread in Europe, and fly daily between water bodies. One 

can therefore presume that dispersal, though random, is frequent enough to ensure the 

colonisation of new habitats. 

 

Independently from the dispersal rate of the studied taxa, I showed in chapter 1 that there will 

be a profound faunal shift for Central Europe. This is reinforced by the species-specific 

projections in chapters 2 and 3. Following the projections, this area is no longer suitable for 

the species currently living in central European habitats. The consequences of such a change 

are difficult to predict because the many factors discussed above (dispersal, adaptation, 

phenotypic plasticity) are intertwined. In the case of dispersal abilities which match the rate of 

climate change, the areas in central Europe could be colonised by species currently living 

south of the studied region and/or by populations that were locally adapted to warmer climatic 

conditions. In the case of either no arrival of migrants or no adaptation of the present 

populations to new conditions, the populations occupying these habitats will suffer a fitness 

decrease and eventually die out, and their niche left vacant. This would permit the 

proliferation of organisms relying on the same food resources, but also likely affect their 

predators’ fitness.  

 

The establishment of Basommatophora populations in newly suitable habitats is also likely to 

have consequences on local communities. The arrival of new detritus feeders will have an 

impact on the food web as a whole. However, global change is also affecting the ranges of 
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other organisms that where not included in my study. Northern Europe could constitute a 

newly suitable area for eastern European species as well. For example, the suitable area of the 

Radix taxon presently inhabiting eastern Poland (Pfenninger et al., 2006) could also shift to 

northern Europe, increasing the competition there. Northern Europe is thus likely to host 

completely new communities, composed of organisms that were until now not in contact with 

each other. Ecological Niche Modelling indeed delivers a rather optimistic point a view, since 

competition and predation are not included in the predictions.  

 

While central Europe may become climatically challenging for local populations, it is also 

likely to become suitable for marginal populations at the warmer distributional border of 

widespread taxa such as R. balthica and A. fluviatilis, facilitating their establishment. These 

migrants may be a source of adaptive alleles to central parts of the range. Traditionally, gene 

flow has been viewed as an antagonistic process opposing local adaptation by introducing 

locally maladaptive variants, but its role may change when the environment changes. In 

spatially shifting climatic areas, gene flow may provide novel alleles from warm adapted 

populations (Davis & Shaw, 2001; Ayre & Hughes, 2004; Hewitt & Nichols, 2005). Such 

beneficial alleles are expected to spread faster than neutral alleles. In this case, the gene flow 

may prevent central European populations to disappear. However, the introgression of “better 

genes” may be negatively correlated with the degree of selfing, which should not be 

underestimated in freshwater snails. They are hermaphroditic and capable of self fertilisation. 

For example, A. fluviatilis has a very high selfing rate, while others such as Radix or Lymnea 

exhibit extremely variable mating strategies (from complete outcrossing to selfing, but see 

(Meunier et al., 2004; Wullschleger & Jokela, 2002; Jarne & Städler, 1995)). 

 

Selfing is a double-edged sword: on one hand, a high amount of selfing may prevent gene-

flow at the centre of the range, thus preventing the local populations from benefiting from 

novel alleles that would eventually allow maintaining the populations’ fitness. Furthermore, 

self-fertilisation increases the homozygosity level. The newly established populations may 

suffer from inbreeding depression, as deleterious alleles have a higher probability to be found 

at a homozygous state. On the other hand, a single founder event is enough to create a 

population in newly suitable habitats at the northern margin. The mixed mating system of 

freshwater snails could prove being a very advantageous trait, in the case of rapid 

environmental change. The fact that founders can reproduce without needing a sexual partner 

is likely to favour a rapid expansion of their range. For a given habitat, the probability that a 
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second colonisation event (two independent arrival of a living individual) occurs is probably 

quite low. The results of chapter 3 also indicate a low gene-flow between established 

populations, thus reinforcing this inference. Freshwater snails, though not able to disperse by 

themselves over large distances, may be considered as good colonisers, thanks to their ability 

to self-fertilise.  

 

Perspectives 

 

The insights I gained on adaptive potential and climate niche of Basommatophora allow 

confidence in the projection of species ranges in the future. However, they also open a wide 

range of questions to answer, in order to better understand the processes governing range 

dynamics and its consequences on the genetic structure of the species. 

 

What we would like to know is whether and how evolution will play out in the near future, 

and whether it would be fast enough to keep track with environmental change (Gomulkiewicz 

& Holt, 1995; Reusch & Wood, 2007). To this end, the use of increasingly inexpensive 

genomics tools will allow systematic identification of key genes and traits critical for 

population persistence under global change. These traits range from factors favouring and 

enhancing dispersal (resistance to desiccation, behavioural traits), to heat shock proteins 

(HSP), whose expression level is under selection and varies in a pattern consistent with a 

thermal environment (Sørensen et al., 2003). 

 

For the taxa studied here, the area where a faunal shift is predicted to occur is also the core of 

the range, with the highest genetic variability per se. The extinction of these populations is 

likely to have profound effects in the overall genetic diversity of the species. Likewise, if the 

dispersal abilities match the rate of climate change, the series of founder events this dispersal 

at the northern range margin represents would lead to a loss of alleles and to homozygosity, 

possibly enhanced in this case by the mating system of freshwater snails; rapid continued 

expansion would produce large areas of reduced genetic diversity in Northern Europe (Hewitt, 

1999). Whether or not the resulting loss of genetic diversity plays a role for the survival of 

these species needs further assessment. 

 

Finally, I underlined the importance of dispersal both for the prediction of range shifts and as 

a way to gain new alleles allowing the persistence of populations. The modes of dispersal, its 
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speed in terms of km/year therefore need to be further assessed. Furthermore, very little is 

known about birds (or other animals) species which may transport freshwater snails from one 

location to another. Further investigations on this dispersal factor are therefore necessary. 

Whether the migrants arriving at a site dispersed from a neighbouring location (stepping stone 

model) or from more distant sites (long distance colonisation) has a non-negligible influence 

on the composition of the new populations and hence on their fitness.  
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Summary 

 

Global warming is expected to be associated with diverse changes in freshwater habitats in 

north-western Europe. Increasing evaporation, lower oxygen concentration due to increased 

water temperature and changes in precipitation pattern are likely to affect the survival ratio 

and reproduction rate of freshwater gastropods (Pulmonata, Basommatophora). This work is a 

comprehensive analyse of the climatic factors influencing their ranges both in the past and in 

the near future. A macroecological approach showed that for a great proportion of genera the 

ranges were projected to contract by 2080, even if unlimited dispersal was assumed. The 

forecasted warming in the cooler northern ranges predicted the emergence of new suitable 

areas, but also reduced drastically the available habitat in the southern part of the studied 

region. In order to better understand the ranges dynamics in the past and the post glacial 

colonisation patterns, an approach combining ecological niche modelling and phylogeography 

was used for two model species, Radix balthica and Ancylus fluviatilis. Phylogeographic 

model selection on a COI mtDNA dataset confirmed that R. balthica most likely spread from 

two central European disjunct refuges after the last glacial maximum. The phylogeographic 

analysis of A. fluviatilis, using 16S and COI mtDNA datasets, also inferred central European 

refugia. The absence of niche conservatism (adaptive potential) inferred for A. fluviatilis puts 

a cautionary note on the use of climate envelope models to predict the future ranges of this 

species. However, the other model species exhibited strong niche conservatism, which allow 

putting confidence into such predictions. A profound faunal shift will take place in Central 

Europe within the next century, either permitting the establishment of species currently living 

south of the studied region or the proliferation of organisms relying on the same food 

resources. This study points out the need for further investigations on the dispersal modes of 

freshwaters snails, since the future range size of the species depend on their ability to 

establish in newly available habitats. Likewise, the mixed mating system of these organisms 

gives them the possibility to fund a new population from a single individual. It will probably 

affect the colonisation success and needs further investigation. 



 76

Reference list 

 

AKAIKE H. (1974) A new look at the statistical model identification. IEEE Transactions on 

Automatic Control, 19, 716-723. 

ANDERSEN B.G., BORNS H.W.J. (1997) The Ice Age World. Scandinavian University Press, 

Oslo. 

ANDERSON R.P., GOMEZ-LAVERDE M., PETERSON A.T. (2002) Geographical distributions of 

spiny pocket mice in South America: insights from predictive models. Global Ecology 

and Biogeography, 11, 131-141. 

ARAUJO M.B., GUISAN A. (2006) Five (or so) challenges for species distribution modelling. 

Journal of Biogeography, 33, 1677-1688. 

ARAUJO M.B., PEARSON R.G., THUILLIER W., ERHARD M. (2005a) Validation of species-

climate impact models under climate change. Global Change Biology, 11, 1504-1513. 

ARAUJO M.B., THUILLER W., PEARSON R.G. (2006) Climate warming and the decline of 

amphibians and reptiles in Europe. Journal of Biogeography, 33, 1712-1728. 

ARAUJO M.B., WHITTAKER R.J., LADLE R.J., ERHARD M. (2005b) Reducing uncertainty in 

projections of extinction risk from climate change. Global Ecology and Biogeography, 

14, 529-538. 

AVISE J.C. (1998) The history and purview of phylogeography: a personal reflection. 

Molecular Ecology, 7, 371-379. 

AYRE D.J., HUGHES T.P. (2004) Climate change, genotypic diversity and gene flow in reef-

building corals. Ecology Letters, 7, 273-278. 

BAKKENES M., ALKEMADE J.R.M., IHLE F., LEEMANS R., LATOUR J.B. (2002) Assessing 

effects of forecasted climate change on the diversity and distribution of European 

higher plants for 2050. Global Change Biology, 8, 390-407. 

BARON J.S., POFF N.L., ANGERMEIER P.L., DAHM C.N., GLEICK P.H., HAIRSTON N.G., 

JACKSON R.B., JOHNSTON C.A., RICHTER B.D., STEINMAN A.D. (2002) Meeting 

ecological and societal needs for freshwater. Ecological Applications, 12, 1247-1260. 

BEAUMONT L.J., HUGHES L., POULSEN M. (2005) Predicting species distributions: use of 

climatic parameters in BIOCLIM and its impact on predictions of species' current and 

future distributions. Ecological Modelling, 186, 250-269. 

BEERLI P., FELSENSTEIN J. (2001) Maximum likelihood estimation of a migration matrix and 

effective population sizes in n subpopulations by using a coalescent approach. 



 77

Proceedings of the National Academy of Sciences of the United States of America, 98, 

4563-4568. 

BENNIKE O., LEMKE W. (2001) Late-glacial and early Postglacial finds of Ancylus fluviatilis 

from the southwestern Baltic Sea. Geologiska Föreningens Förhandligar, 123, 81-84. 

BERNATCHEZ L., WILSON C.C. (1998) Comparative phylogeography of nearctic and palearctic 

fishes. Molecular Ecology, 7, 431-452. 

BERRY P.M., DAWSON T.P., HARRISON P.A., PEARSON R.G. (2002) Modelling potential 

impacts of climate change on the bioclimatic envelope of species in Britain and 

Ireland. Global Ecology and Biogeography, 11, 453-462. 

BILTON D.T., FREELAND J.R., OKAMURA B. (2001) Dispersal in freshwater invertebrates. 

Annual Review of Ecology and Systematics, 32, 159-181. 

BILTON D.T., MIROL P.M., MASCHERETTI S., FREDGA K., ZIMA J., SEARLE J.B. (1998) 

Mediterranean Europe as an area of endemism for small mammals rather than a source 

for northwards postglacial colonization. Proceedings of The Royal Society of London 

Series B-Biological Sciences, 265, 1219-1226. 

BLOMBERG S.P., GARLAND T. (2002) Tempo and mode in evolution: phylogenetic inertia, 

adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899-910. 

BLOMBERG S.P., GARLAND T., IVES A.R. (2003) Testing for phylogenetic signal in 

comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. 

BOAG D.A. (1986) Dispersal in pond snails - potential role of waterfowl. Canadian Journal of 

Zoology - Revue Canadienne de Zoologie, 64, 904-909. 

BREIMAN L., FRIEDMAN J.H., OLSHEN R.A., STONE C.J. (1984) Classification and regression 

trees. Chapman & Hall, New York. 

BRÖNMARK C. (1985) Freshwater snail diversity: effects of pond area, habitat heterogeneity 

and isolation. Oecologia, 67, 127-131. 

BRÖNMARK C., HANSSON L.-A. (1998) The Biology of Lakes and Ponds. Oxford University 

Press, Oxford. 

BRUNHOFF C., GALBREATH K.E., FEDOROV V.B., COOK J.A., JAAROLA M. (2003) Holarctic 

phylogeography of the root vole (Microtus oeconomus): implications for late 

Quaternary biogeography of high latitudes. Molecular Ecology, 12, 957-968. 

BUISSON L., THUILLER W., LEK S., LI P., GRENOUILLET G. (2008) Climate change hastens the 

turnover of stream fish assemblages. Global Change Biology, 14, 2232–2248. 



 78

BUNJE P.M.E., LINDBERG D.R. (2007) Lineage divergence of a freshwater snail clade 

associated with post-Tethys marine basin development. Molecular Phylogenetics and 

Evolution, 42, 373-387. 

BURGMER T., HILLEBRAND H., PFENNINGER M. (2007) Effects of climate-driven temperature 

changes on the diversity of freshwater macroinvertebrates. Oecologia, 151, 93-103. 

BUSBY J.R. (1991) BIOCLIM - a bioclimatic analysis and prediction system. In: Nature 

Conservation: cost effective biological surveys and data analysis  (eds MARGULES C. 

R., AUSTIN M. P.), CSIRO, Melbourne. pp. 64-68. 

CARPENTER S.R., FISHER S.G., GRIMM N.B., KITCHELL J.F. (1992) Global Change and 

Freshwater Ecosystems. Annual Review of Ecology and Systematics, 23, 119-139. 

CARVALHO G.R., SHAW P.W., HAUSER L., SEGHERS B.H., MAGURRAN A.E. (1996) Artificial 

introductions, evolutionary change and population differentiation in Trinidadian 

guppies (Poecilia reticulata: Poeciliidae). Biological Journal of The Linnean Society, 

57, 219-234. 

CLEMENT M., POSADA D., CRANDALL K.A. (2000) TCS: a computer program to estimate gene 

genealogies. Molecular Ecology, 9, 1657-1659. 

COOK J.A., RUNCK A.M., CONROY C.J. (2004) Historical biogeography at the crossroads of 

the northern continents: molecular phylogenetics of red-backed voles (Rodentia: 

Arvicolinae). Molecular Phylogenetics and Evolution, 30, 767–777. 

CORDELLIER M., PFENNINGER M. (2008) Climate-driven range dynamics in the freshwater 

limpet Ancylus fluviatilis (Pulmonata, Basommatophora). Journal of Biogeography, 

35, 1580-1592. 

CORDELLIER M., PFENNINGER M. (2009) Inferring the past to predict the future: climate 

modelling predictions and phylogeography for the freshwater gastropod Radix 

balthica (Pulmonata, Basommatophora). Molecular Ecology, 18, 534-544. 

COSTIL K., DAGUZAN J. (1995a) Comparative life-cycle and growth of 2 fresh-water 

gastropod species, Planorbarius corneus (L) and Planorbis planorbis (L). 

Malacologia, 37, 53-68. 

COSTIL K., DAGUZAN J. (1995b) Effect of temperature on reproduction in Planorbarius 

corneus (L) and Planorbis planorbis (L) throughout the life-span. Malacologia, 36, 

79-89. 

CRANDALL K.A. (1996) Multiple interspecies transmissions of human and simian T-cell 

leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution, 13, 

115-131. 



 79

DARWIN C. (1859) On the origin of species by means of natural selection. Murray,J., London. 

DAVIS A.J., JENKINSON L.S., LAWTON J.H., SHORROCKS B., WOOD S. (1998) Making mistakes 

when predicting shifts in species range in response to global warming. Nature, 391, 

783-786. 

DAVIS M.B., SHAW R.G. (2001) Range shifts and adaptive responses to Quaternary climate 

change. Science, 292, 673-679. 

DEJONG R.J., MORGAN J.A.T., PARAENSE W.L., POINTIER J.P., AMARISTA M., AYEH-KUMI 

P.F.K., BABIKER A., BARBOSA C.S., BREMOND P., CANESE A.P., DE SOUZA C.P., 

DOMINGUEZ C., FILE S., GUTIERREZ A., INCANI R.N., KAWANO T., KAZIBWE F., 

KPIKPI J., LWAMBO N.J.S., MIMPFOUNDI R., NJIOKOU F., PODA J.N., SENE M., 

VELASQUEZ L.E., YONG M., ADEMA C.M., HOFKIN B.V., MKOJI G.M., LOKER E.S. 

(2001) Evolutionary relationships and biogeography of Biomphalaria (Gastropoda : 

Planorbidae) with implications regarding its role as host of the human bloodfluke, 

Schistosoma mansoni. Molecular Biology and Evolution, 18, 2225-2239. 

DÉPRAZ A., CORDELLIER M., HAUSSER J., PFENNINGER M. (2008) Postglacial recolonisation at 

a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using 

model selection. Molecular Ecology, 17, 2449-2462. 

DILLON R.T. (2000) The ecology of freshwater molluscs. Cambridge University Press, 

Cambrige. 

DRUMMOND A.J., HO S.Y.W., PHILLIPS M.J., RAMBAUT A. (2006) Relaxed phylogenetics and 

dating with confidence. PLoS Biology, 4, 699-710. 

DRUMMOND A.J., RAMBAUT A. (2007) BEAST: Bayesian evolutionary analysis by sampling 

trees. BMC Evolutionary Biology, 7, 214. 

DRUMMOND A.J., RAMBAUT A., SHAPIRO B., PYBUS O.G. (2005) Bayesian Coalescent 

Inference of Past Population Dynamics from Molecular Sequences. Molecular Biology 

and Evolution, 22, 1185-1192. 

DUDGEON D., ARTHINGTON A.H., GESSNER M.O., KAWABATA Z.-I., KNOWLER D.J., LÉVÊQUE 

C., NAIMAN R.J., PRIEUR-RICHARD A.-H., SOTO D., STIASSNY M.L.J., SULLIVAN C.A. 

(2006) Freshwater biodiversity: importance, threats, status and conservation 

challenges. Biological Reviews, 81, 163-182. 

ELITH J., GRAHAM C.H., ANDERSON R.P., DUDIK M., FERRIER S., GUISAN A., HIJMANS R.J., 

HUETTMANN F., LEATHWICK J.R., LEHMANN A., LI J., LOHMANN G., LOISELLE B.A., 

MANION G., MORITZ C., NAKAMURA M., NAKAZAWA Y., OVERTON M.J., PETERSON 

A.T., PHILLIPS S.J., RICHARDSON K., SCACHETTI-PEREIRA R., SCHAPIRE R.E., 



 80

SOBERON J., WILLIAMS S., WISZ M.S., ZIMMERMANN N.E. (2006) Novel methods 

improve prediction of species' distributions from occurence data. Ecography, 29, 129-

151. 

EMERSON B.C., GILLESPIE R.G. (2008) Phylogenetic analysis of community assembly and 

structure over space and time. Trends in Ecology & Evolution, 23, 619. 

EXCOFFIER L. (2004) Patterns of DNA sequence diversity and genetic structure after a range 

expansion: lessons from the infinite island-model. Molecular Ecology, 13, 853-864. 

EXCOFFIER L., LAVAL G., SCHNEIDER S. (2005) Arlequin ver. 3.0: An integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 

47-50. 

FELSENSTEIN J. (1985) Confidence limits on phylogenies using the bootstrap. Evolution, 39, 

783-791. 

FIELDING A.H., BELL J.F. (1997) A review of methods for the assessment of prediction errors 

in conservation presence/absence models. Environmental Conservation, 24, 38-49. 

FIGUEROLA J., GREEN A.J., MICHOT T.C. (2005) Invertebrate eggs can fly: evidence of 

waterfowl-mediated gene flow in aquatic invertebrates. American Naturalist, 165, 

274-280. 

FINLAY E.K., GAILLARD C., VAHIDI S.M.F., MIRHOSEINI S.Z., JIANLIN H., QI X.B., EL-

BARODY M.A.A., BAIRD J.F., HEALY B.C., BRADLEY D.G. (2007) Bayesian inference 

of population expansions in domestic bovines. Biology Letters, 3, 449-452. 

FOLMER O., BLACK M., HOEH W., LUTZ R., VRIJENHOEK R. (1994) DNA primers for 

amplification of mitochondrial Cytochrome C oxidase subunit I from diverse 

Metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299. 

FRISCH D., GREEN A.J., FIGUEROLA J. (2007) High dispersal capacity of a broad spectrum of 

aquatic invertebrates via waterbirds. Aquatic Sciences, 69, 568-574. 

FU Y.X. (1997) Coalescent theory for a partially selfing population. Genetics, 146, 1489-

1499. 

FU Y.X., LI W.H. (1993) Statistical Tests Of Neutrality Of Mutations. Genetics, 133, 693-709. 

GASTON K.J. (1996) Species-range-size distributions: patterns, mechanisms and implications. 

Trends in Ecology & Evolution, 11, 197-201. 

GATES D.M. (1993) Climate change and its biological consequences. Sinauer Associates, 

Sunderland, Massachussetts. 

GLÖER P. (2002) Mollusca I. Süßwassergastropoden Nord- und Mitteleuropas - 

Bestimmungsschlüssel, Lebensweise, Verbreitung. ConchBooks, Hackenheim  



 81

GLÖER P., MEIER-BROOK C. (1998) Süßwassermollusken. Hamburg. 

GOMULKIEWICZ R., HOLT R.D. (1995) When does evolution by natural-selection prevent 

extinction? Evolution, 49, 201-207. 

GOVINDASAMY B., DUFFY P.B., COQUARD J. (2003) High-resolution simulations of global 

climate, part 2: effects of increased greenhouse cases. Climate Dynamics, 21, 391-404. 

GRAHAM C.H., FERRIER S., HUETTMAN F., MORITZ C., PETERSON A.T. (2004) New 

developments in museum-based informatics and applications in biodiversity analysis. 

Trends in Ecology & Evolution, 19, 497-503. 

GRANT B.R., GRANT P.R. (1993) Evolution of Darwin's finches caused by a rare climatic 

event. Proceedings of the Royal Society of London Series B: Biological Sciences, 251, 

111-117. 

GUILLER A., BELLIDO A., COUTELLE A., MADEC L. (2006) Spatial genetic pattern in the land 

mollusc Helix aspersa inferred from a 'centre-based clustering' procedure. Genetical 

Research, 88, 27-44. 

GUISAN A., ZIMMERMANN N.E. (2005) Predictive habitat distribution models in ecology. 

Ecological Modelling, 135, 147-186. 

HAASE M., MISOF B., WIRTH T., BAMINGER H., BAUR B. (2003) Mitochondrial differentiation 

in a polymorphic land snail: evidence for Pleistocene survival within the boundaries of 

permafrost. Journal of Evolutionary Biology, 16, 415-428. 

HÄNFLING B., HELLEMANS B., VOLCKAERT F.A.M., CARVALHO G.R. (2002) Late glacial 

history of the cold-adapted freshwater fish Cottus gobio, revealed by microsatellites. 

Molecular Ecology, 11, 1717-1729. 

HARVEY P.H., PAGEL M.D. (1991) The comparative method in evolutionary biology. Oxford 

University Press, Oxford. 

HASUMI H., EMORI S. (2004) K-1 coupled GCM (MIROC) description. Center for Climate 

Research System, Tokyo. 

HEWITT G. (1999) Post-glacial re-colonization of European biota. Biological Journal of the 

Linnean Society, 68, 87-112. 

HEWITT G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. 

HEWITT G. (2001) Speciation, hybrid zones and phylogeography - or seeing genes in space 

and time. Molecular Ecology, 10, 537-549. 

HEWITT G. (2004) Genetic consequences of climatic oscillations in the Quaternary. 

Philosophical Transactions of the Royal Society B, 359, 183-195. 



 82

HEWITT G.M., NICHOLS R.A. (2005) Genetic and evolutionary impact of global change. In: 

Climate Change and Biodiversity  (eds LOVEJOY T. E., HANNAH L.), Yale University 

Press, New Haven, CT. pp. 176-192. 

HIJMANS R.J., CAMERON S.E., PARRA J.L., JONES P.G., JARVIS A. (2005) Very high resolution 

interpolated climate surfaces for global land area. International Journal of 

Climatology, 25, 1965-1978. 

HIJMANS R.J., GARRETT K.A., HUAMAN Z., ZHANG D.P., SCHREUDER M., BONIERBALE M. 

(2000) Assessing the geographic representativeness of genebank collections: the case 

of Bolivian wild potatoes. Conservation Biology, 14, 1755-1765. 

HIJMANS R.J., GRAHAM C.H. (2006) The ability of climate envelope models to predict the 

effect of climate change on species distributions. Global Change Biology, 12, 2272-

2281. 

HIJMANS R.J., GUARINO L., CRUZ M., ROJAS E. (2001) Computer tools for spatial analysis of 

plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 

15-19. 

HOEKSTRA H.E., DRUMM K.E., NACHMAN M.W. (2004) Ecological genetics of adaptative 

color polymorphism in pocket mice: geographic variation in selected and neutral 

genes. Evolution, 58, 1329–1341. 

HOLT R.D. (2003) On the evolutionary ecology of species' ranges. Evolutionary Ecology 

Research, 5, 159-178. 

HOUGHTON J.T., DING Y., GRIGGS D.J., NOGUER M., VAN DER LINDEN P.J., DAI X., MASKELL 

K., JOHNSON C.A. (2001) Climate change 2001: the scientific basis. Contribution of 

Working Group I to the Third Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge. 

HUELSENBECK J.P., RANNALA B. (2004) Frequentist properties of Bayesian posterior 

probabilities of phylogenetic trees under simple and complex substitution models. 

Systematic Biology, 53, 904-913. 

HUGALL A., MORITZ C., MOUSSALLI A., STANISIC J. (2002) Reconciling paleodistribution 

models and comparative phylogeography in the Wet Tropics rainforest land snail 

Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy 

of Sciences of the United States of America, 99, 6112-6117. 

HUMPHRIES M.M., THOMAS D.W., SPEAKMAN J.R. (2002) Climate-mediated energetic 

constraints on the distribution of hibernating mammals. Nature, 418, 313-316. 



 83

HUTCHINSON G.E. (1957) Concluding Remarks. Cold Spring Harbor Symposia on 

Quantitative Biology, 22, 415-427. 

IPCC (2007) Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of 

Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change. 

JACKSON S.T., OVERPECK J.T. (2000) Responses of plant populations and communities to 

environmental changes of the late Quaternary. Paleobiology, 26, 194-220. 

JARNE P., STÄDLER T. (1995) Population genetic structure and mating system evolution in 

freshwater pulmonates. Cellular and Molecular Life Sciences, 51, 482. 

JESSE R., PFENNINGER M., FRATINI S., SCALICI M., STREIT B., SCHUBART C.D. (2008) 

Disjunct distribution of the Mediterranean freshwater crab Potamon fluviatile - natural 

expansion or human introduction? Biological Invasions, in press 

JOHNSON J.B., OMLAND K.E. (2004) Model selection in ecology and evolution. Trends in 

Ecology & Evolution, 19, 101-108. 

JOHNSON S.G. (2005) Age, phylogeography and population structure of the microendemic 

banded spring snail, Mexipyrgus churinceanus. Molecular Ecology, 14, 2299-2311. 

KÖCKEMANN B., BUSCHMANN H., LEUSCHNER C. (2009) The relationships between 

abundance, range size and niche breadth in Central European tree species. Journal of 

Biogeography, early view 

KOTLIK P., DEFFONTAINE V., MASCHERETTI S., ZIMA J., MICHAUX J.R., SEARLE J.B. (2006) A 

northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of 

the National Academy of Sciences of the United States of America, 103, 14860-14864. 

LAM P.K.S., CALOW P. (1989) Intraspecific Life-History Variation in Lymnaea peregra 

(Gastropoda: Pulmonata). I. Field Study. The Journal of Animal Ecology, 58, 571-588. 

LIU H.P., HERSHLER R. (2007) A test of the vicariance hypothesis of western North American 

freshwater biogeography. Journal of Biogeography, 34, 534-548. 

LIU X.-Q., WANG H.-Z., LIANG X.-M. (2006) Food web of macroinvertebrate community in a 

Yangtze shallow lake: trophic basis and pathways. Hydrobiologia, 571, 283. 

LOSOS J.B. (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship 

between phylogenetic relatedness and ecological similarity among species. Ecology 

Letters, 11, 995-1003. 

LYDEARD C., HOLZNAGEL W.E., SCHNARE M.N., GUTELL R.R. (2000) Phylogenetic analysis 

of molluscan mitochondrial LSU rDNA sequences and secondary structures. 

Molecular Phylogenetics and Evolution, 15, 83-102. 



 84

MALONE C.R. (1965) Killdeer (Charadrius vociferus Linnaeus) as a means of dispersal for 

aquatic gastropods. Ecology, 46, 551-552. 

MARTINEZ-MEYER E., PETERSON A.T. (2006) Conservatism of ecological niche characteristics 

in North American plant species over the Pleistocene-to-Recent transition. Journal of 

Biogeography, 33, 1779-1789. 

MARTINEZ-MEYER E., PETERSON A.T., HARGROVE W.W. (2004) Ecological niches as stable 

distributional constraints on mammal species, with implications for Pleistocene 

extinctions and climate change projections for biodiversity. Global Ecology and 

Biogeography, 13, 305-314. 

MARTINS E.P. (2003) Computer programs for the statistical analysis of comparative data. 

COMPARE, v. 4.6, http://compare.bio.indiana.edu/  

MEUNIER C., HURTREZ-BOUSSÈS S., JABBOUR-ZAHAB R., DURAND P., RONDELAUD D., 

RENAUD F. (2004) Field and experimental evidence of preferential selfing in the 

freshwater mollusc Lymnaea truncatula (Gastropoda, Pulmonata). Heredity, 92, 316-

322. 

MYERS M.J., MEYER C.P., RESH V.H. (2000) Neritid and thiarid gastropods from French 

Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, 

passive) affect population structure. Freshwater Biology, 44, 535-545. 

NAKICENOVIC N. (2000) Greenhouse gas emissions scenarios. Technological Forecasting and 

Social Change, 65, 149-166. 

NESBO C.L., FOSSHEIM T., VOLLESTAD L.A., JAKOBSEN K.S. (1999) Genetic divergence and 

phylogeographic relationships among European perch (Perca fluviatilis) populations 

reflect glacial refugia and postglacial colonization. Molecular Ecology, 8, 1387-1404. 

NIX H.A. (1986) A biogeographic analysis of Australian Elapid snakes. In: Atlas of elapid 

snakes in Australia  (ed LONGMORE), Australian Government Publishing Service, 

Canberra. pp. 4-15. 

ØKLAND J. (1990) Lakes and Snails: Environment and Gastropoda in 1500 Norwegian lakes, 

ponds and rivers. U.B.S./Dr. W. Backhuys, Oegstegeest, The Netherlands. 

PALUMBI S.R. (1996) Nucleic Acids II: The Polymerase Chain Reaction. In: Molecular 

Systematics  (eds HILLIS D. M., MORITZ C., MABLE B. K.), Sinauer Associates, 

Sunderland. pp. 205-247. 

PARMESAN C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. 

Annual Review of Ecology, Evolution, and Systematics, 37, 637-369. 



 85

PARMESAN C., RYRHOLM N., STEFANESCU C., HILL J.K., THOMAS C.D., DESCIMON H., 

HUNTLEY B., KAILA L., KULLBERG J., TAMMARU T., TENNENT W.J., THOMAS J.A., 

WARREN M. (1999) Poleward shifts in geographical ranges of butterfly species 

associated with regional warming. Nature, 399, 579-583. 

PARMESAN C., YOHE G. (2003) A globally coherent fingerprint of climate change impacts 

across natural systems. Nature, 421, 37-42. 

PEARSON R.G., DAWSON T.P., BERRY P.M., HARRISON P.A. (2002) SPECIES: A Spatial 

Evaluation of Climate Impact on the Envelope of Species. Ecological Modelling, 154, 

289-300. 

PEARSON R.G., RAXWORTHY C.J., NAKAMURA M., PETERSON A.T. (2007) Predicting species 

distributions from small numbers of occurrence records: a test case using cryptic 

geckos in Madagascar. Journal of Biogeography, 34, 102-117. 

PELTIER W.R. (1994) Ice Age Paleotopography. Science, 265, 195-201. 

PETERSON A.T. (2001) Predicting species' geographic distributions based on ecological niche 

modeling. Condor, 103, 599-605. 

PETERSON A.T., HOLT R.D. (2003) Niche differentiation in Mexican birds: using point 

occurrences to detect ecological innovation. Ecology Letters, 6, 774-782. 

PETERSON A.T., SOBERON J., SANCHEZ-CORDERO V. (1999) Conservatism of ecological 

niches in evolutionary time. Science, 285, 1265-1267. 

PFENNINGER M., CORDELLIER M., STREIT B. (2006) Comparing the efficacy of morphologic 

and DNA-based taxonomy in the freshwater gastropod genus Radix 

(Basommatophora, Pulmonata). BMC Evolutionary Biology, 6, 100. 

PFENNINGER M., NOWAK C., MAGNIN F. (2007) Intraspecific range dynamics and niche 

evolution in Candidula land snail species. Biological Journal of the Linnean Society, 

90, 303-317. 

PFENNINGER M., POSADA D. (2002) Phylogeographic history of the land snail Candidula 

unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and 

secondary contact. Evolution, 56, 1776-1788. 

PFENNINGER M., POSADA D., MAGNIN F. (2003a) Evidence for survival of Pleistocene 

climatic changes in Northern refugia by the land snail Trochoidea geyeri (Soos 1926) 

(Helicellinae, Stylommatophora). BMC Evolutionary Biology, 3, 

PFENNINGER M., STAUBACH S., ALBRECHT C., STREIT B., SCHWENK K. (2003b) Ecological 

and morphological differenciation among cryptic evolutionary lineages in freshwater 



 86

limpets of the nominal form-group Ancylus fluviatilis (O.F. Müller, 1774). Molecular 

Ecology, 12, 2731-2745. 

PHILLIPS S.J., ANDERSON R.P., SCHAPIRE R.E. (2006) Maximum entropy modeling of species 

geographic distributions. Ecological Modelling, 190, 231-259. 

PHILLIPS S.J., DUDIK M., SHAPIRE R.E. (2004) A Maximum Entropy Approach to Species 

Distribution Modeling, Proceedings of the Twenty-First International Conference on 

Machine Learning, 655-662. Banff, Canada. 

PINCEEL J., JORDAENS K., PFENNINGER M., BACKELJAU T. (2005) Rangewide phylogeography 

of a terrestrial slug in Europe: evidence for Alpine refugia and rapid colonization after 

the Pleistocene glaciations. Molecular Ecology, 14, 1133-1150. 

POFF N.L., BRINSON M.M., DAY J.W.J. (2002) Aquatic ecosystems and global climate change. 

Pew Center on Global Climate Change, Arlington, USA. 

POSADA D., CRANDALL K.A. (1998) MODELTEST: testing the model of DNA substitution. 

Bioinformatics, 14, 817-818. 

POSADA D., CRANDALL K.A., TEMPLETON A.R. (2000) GeoDis: a program for the cladistic 

nested analysis of the geographical distribution of genetic haplotypes. Molecular 

Ecology, 9, 487-488. 

PRINZING A., DURKA W., KLOTZ S., BRANDL R. (2001) The niche of higher plants: evidence 

for phylogenetic conservatism. Proceedings of the Royal Society of London Series B: 

Biological Sciences, 268, 1-7. 

PROVAN J., BENNETT K.D. (2008) Phylogeographic insights into cryptic glacial refugia. 

Trends in Ecology & Evolution, 23, 564-571. 

R DEVELOPMENT CORE TEAM (2008) R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing, Vienna, Austria. 

RAY N., ADAMS J.M. (2001) A GIS-based vegetation map of the world at the Last Glacial 

Maximum (25,000-15,000 BP). Internet Archeology, 11, 

RAY N., CURRAT M., EXCOFFIER L. (2003) Intra-Deme Molecular Diversity in Spatially 

Expanding Populations. Molecular Biology and Evolution, 20, 76-86. 

REES W.J. (1965) The aerial dispersal of Mollusca. Proceedings of the Malacological Society 

of London, 36, 269-282. 

REMIGIO E.A. (2002) Molecular phylogenetic relationships in the aquatic snail genus 

Lymnaea, the intermediate host of the causative agent of fascioliasis: insights from 

broader taxon sampling. Parasitology Research, 88, 687-696. 



 87

REUSCH T.B.H., WOOD T.E. (2007) Molecular ecology of global change. Molecular Ecology, 

16, 3973-3992. 

RICE N.H., MARTINEZ-MEYER E., PETERSON A.T. (2003) Ecological niche differentiation in 

the Aphelocoma jays: a phylogenetic perspective. Biological Journal of the Linnean 

Society, 80, 369–383. 

ROGERS A.R., HARPENDING H. (1992) Population growth makes waves in the distribution of 

pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569. 

RONQUIST F., HUELSENBECK J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics, 19, 1572-1574. 

ROOT T.L., PRICE J.T., HALL K.R., SCHNEIDER S.H., ROSENZWEIG C., POUNDS J.A. (2003) 

Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60. 

ROZAS J., SANCHEZ-DELBARRIO J.C., MESSEGUER X., ROZAS R. (2003) DnaSP, DNA 

polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 

2496-2497. 

RUEGG K., HIJMANS R.J., MORITZ C. (2006) Climate change and the origin of migratory 

pathways in the Swainson’s Thrush, Catharus ustulatus. Journal of Biogeography, 33, 

1172-1182. 

SCHLUTER D., BOUGHMAN J.W., RUNDLE H.D. (2001) Parallel speciation with allopatry. 

Trends in Ecology & Evolution, 16, 283-284. 

SCHNEIDER S., EXCOFFIER L. (1999) Estimation of past demographic parameters from the 

distribution of pairwise differences when the mutation rates vary among sites: 

Application to human mitochondrial DNA. Genetics, 152, 1079-1089. 

SCHONSWETTER P., TRIBSCH A., NIKLFELD H. (2003) Phylogeography of the high alpine 

cushion plant Androsace alpina (Primulaceae) in the European Alps. Plant Biology, 5, 

623-630. 

SCHRÖTER D., CRAMER W., LEEMANS R., COLIN PRENTICE I., ARAUJO M.B., ARNELL N.W., 

BONDEAU A., BUGMANN H., CARTER T.R., GRACIA C.A., DE LA VEGA-LEINERT A.C., 

ERHARD M., EWERT F., GLENDINING M., HOUSE J.I., KANKAANPÄÄ S., KLEIN R.J.T., 

LAVOREL S., LINDNER M., METZGER M.J., MEYER J., MITCHELL T.D., REGINSTER I., 

ROUNSEVELL M., SABATÉ S., SITCH S., SMITH B., SMITH J., SMITH P., SYKES M.T., 

THONICKE K., THUILLER W., TUCK G., ZAEHLE S., ZIERL B. (2005) Ecosystem service 

supply and vulnerability to global change in Europe. Science, 310, 1333-1337. 

SKOV F., SVENNING J.C. (2004) Potential impact of climatic change on the distribution of 

forest herbs in Europe. Ecography, 27, 366-380. 



 88

SLATKIN M., HUDSON R.R. (1991) Pairwise comparisons of mitochondrial-DNA sequences in 

stable and exponentially growing populations. Genetics, 129, 555-562. 

SØRENSEN J.G., KRISTENSEN T.N., LOESCHCKE V. (2003) The evolutionary and ecological 

role of heat shock proteins. Ecology Letters, 6, 1025-1037. 

STÄDLER T. (1997) Populationsgenetik und Mikroevolution einer polyploiden 

Süßwasserschnecke (Ancylus fluviatilis): Populations-struktur, Fortpflanzungsystem, 

Genstilllegung und reproduktive Isolation. Ph.D. thesis, J.W. Goethe-Universität, 

Frankfurt am Main. 

STÄDLER T., LOEW M., STREIT B. (1993) Genetic evidence for low outcrossing rates in 

polyploid freshwater snails (Ancylus fluviatilis). Proceedings of the Royal Society of 

London Series B: Biological Sciences, 251, 207-213. 

STEPHENS P.A., BUSKIRK S.W., MARTINÉZ DEL RIO C. (2007) Inference in ecology and 

evolution. Trends in Ecology & Evolution, 22, 192-197. 

STEWART J.R., LISTER A.M. (2001) Cryptic northern refugia and the origins of the modern 

biota. Trends in Ecology & Evolution, 16, 608-613. 

SUMNER J., DICKMAN C.R. (1998) Distribution and identity of species in the Antechinus 

stuartii-A. avipes group (Marsupialia: Dasyuridae) in south-eastern Australia. 

Australian Journal of Zoology, 46, 27-41. 

TABERLET P., FUMAGALLI L., WUST-SAUCY A.-G., COSSON J.F. (1998) Comparative 

phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 

453-464. 

TAJIMA F. (1989) Statistical-method for testing the neutral mutation hypothesis by DNA 

polymorphism. Genetics, 123, 585-595. 

TEMPLETON A.R. (2004) Statistical phylogeography: methods of evaluating and minimizing 

inference errors. Molecular Ecology, 13, 789-809. 

TEMPLETON A.R., ROUTMAN E., PHILLIPS C.A. (1995) Separating population structure from 

population history: a cladistic analysis of the geographical distribution of 

mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. 

Genetics, 140, 767-782. 

THOMAS C.D., CAMERON A., GREEN R.E., BAKKENES M., BEAUMONT L.J., COLLINGHAM 

Y.C., ERASMUS B.F.N., FERREIRA DE SIQUEIRA M., GRAINGER A., HANNAH L., 

HUGHES L., HUNTLEY B., VAN JAARSVELD A.S., MIDGLEY G.F., MILES L., ORTEGA-

HUERTA M.A., PETERSON A.T., PHILLIPS O.L., WILLIAMS S.E. (2004) Extinction risk 

from climate change. Nature, 427, 145-148. 



 89

THUILLER W., LAVOREL S., ARAUJO M.B., SYKES M.T., PRENTICE I.C. (2005) Climate change 

threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 

of the United States of America, 102, 8245-8250. 

THUILLER W., LAVOREL S., SYKES M.T., ARAUJO M.B. (2006) Using niche-based modelling 

to assess the impact of climate change on tree functional diversity in Europe. Diversity 

and Distributions, 12, 49-60. 

TRIBSCH A., SCHONSWETTER P. (2003) Patterns of endemism and comparative 

phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the 

Eastern Alps. Taxon, 52, 477-497. 

TURNER H., KUIPER J., THEW N. (1998) Fauna Helvetica2: Mollusca. Neuchatel, Switzerland. 

VADEBONCOEUR Y., VANDER ZANDEN M.J., LODGE D.M. (2002) Putting the lake back 

together: Reintegrating benthic pathways into lake food web models. Bioscience, 52, 

44-54. 

VAN DER SCHALIE H., BERRY E. (1973) The effects of temperature on growth and reproduction 

of aquatic snails. Sterkiana, 50, 1-92. 

VAN HEERWAARDEN B., HOFFMANN A.A. (2007) Global warming: fly populations are 

responding rapidly to climate change. Current Biology, 17, R16. 

VAN HOUDT J.K.J., DE CLEYN L., PERRETTI A., VOLCKAERT F.A.M. (2005) A mitogenic view 

on the evolutionary history of the Holarctic freshwater gadoid, burbot (Lota lota). 

Molecular Ecology, 14, 2445-2457. 

VOLCKAERT F.A.M., HANFLING B., HELLEMANS B., CARVALHO G.R. (2002) Timing of the 

population dynamics of bullhead Cottus gobio (Teleostei: Cottidae) during the 

Pleistocene. Journal of Evolutionary Biology, 15, 930-944. 

WALLACE A.R. (1876) The Geographical Distribution of Animals: With a Study of the 

Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s 

Surface. Macmillan, London. 

WALTARI E., HIJMANS R.J., PETERSON A.T., NYÁRI A.S., PERKINS S.L., GURALNICK R.P. 

(2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche 

model predictions. PLoS ONE, 2, 563. 

WILKE T., DUNCAN N. (2004) Phylogeographical patterns in the American Pacific Northwest: 

lessons from the arionid slug Prophysaon coeruleum. Molecular Ecology, 13, 2303-

2315. 



 90

WILKE T., PFENNINGER M. (2002) Separating historic events from recurrent processes in 

cryptic species: phylogeography of mud snails (Hydrobia spp.). Molecular Ecology, 

11, 1439-1451. 

WILSON J.R.U., DORMONTT E.E., PRENTIS P.J., LOWE A.J., RICHARDSON D.M. (2009) 

Something in the way you move: dispersal pathways affect invasion success. Trends in 

Ecology & Evolution, 24, 136-144. 

WILSON R.J., GUTIERREZ D., GUTIERREZ J., MARTINEZ D., AGUDO R., MONSERRAT V.J. 

(2005) Changes to the elevational limits and extent of species ranges associated with 

climate change. Ecology Letters, 8, 1138-1146. 

WINNEPENNICKX B., BACKELJAU T., DE WACHTER R. (1993) Extraction of high molecular 

weight DNA from molluscs. Trends in Genetics, 9, 407. 

WOODWARD G., HILDREW A.G. (2002) Food web structure in riverine landscapes. Freshwater 

Biology, 47, 777-798. 

WULLSCHLEGER E.B., JOKELA J. (2002) Morphological plasticity and divergence in life-

history traits between two closely related freshwater snails, Lymnea ovata and Lymnea 

peregra. Journal of Molluscan Studies, 68, 1-5. 

 

 



 91

Zusammenfassung (German summary) 

 

Was genau die Grenzen eines Artverbreitungsgebiets bestimmt, ist eine Frage, mit der sich 

Biologen seit der Veröffentlichung von Wallaces Werk „Geographical distribution of 

animals“ im Jahre 1876 beschäftigen. Das Verbreitungsgebiet einer Art kann als der Bereich 

definiert werden, in dem sich fortpflanzungfähige Populationen befinden. Zwei Bedingungen 

sind in diesem Bereich erfüllt: (1) abiotische und biotische Bedingungen stimmen mit den 

fundamentalen ökologischen Anforderungen der Art überein, so dass die Populationen 

überleben und sich erfolgreich fortpflanzen können und (2) die Art hat tatsächlich in ihrer 

Verbreitungsgeschichte diese Region erreicht und eine Population etabliert. Für eine 

Population gibt es drei Wege auf Umweltveränderungen zu reagieren: Plastizität, Migration 

oder Anpassung. Drei Prozesse steuern die Dynamik der Verbreitungsgebiete: phänotypische 

Plastizität, Anpassungs- und Verbreitungsfähigkeit. Das Zusammenspiel dieser Prozesse 

bestimmt die Veränderungen der Verbreitungsgebiete und schließlich das Schicksal einer Art. 

 

Es liegen unbestrittene Beweise für einen schnellen und tief greifenden Klimawandel 

innerhalb des nächsten Jahrhunderts vor. Die Temperaturen werden voraussichtlich 

kontinuierlich ansteigen und unter anderem Veränderungen der Niederschlagsmuster mit sich 

bringen. In Süßwasserhabitaten wird der prognostizierte Klimawandel vor allem Einfluss auf 

das Durchflussregime, die saisonale Wasserverfügbarkeit und die durchschnittliche 

Temperatur haben. Dies wiederum wird voraussichtlich die Fortpflanzung und das Wachstum 

vieler im Wasser lebender Organismen beeinflussen. Während einige der auftretenden 

Habitatveränderungen durch phänotypische Plastizität und / oder lokale Anpassung gepuffert 

werden können, kann man davon ausgehen, dass sich Artverbreitungsgebiete wesentlich 

verändern werden. Dies war schon in der Vergangenheit der Fall. Die ersten zu erwartenden 

Auswirkungen in der nördlichen Hemisphäre sind Arealverkleinerungen und Artenaussterben. 

Solche Veränderungen in den Artverbreitungsgebieten, zum Beispiel das Verschwinden von 

Schlüsselarten oder die Invasion nicht heimischer Arten, werden das Ökosystem als Ganzes 

beeinflussen.  

 

Pulmonaten stellen einen wesentlichen Teil der Süßwasserbiodiversität dar und bewohnen 

eine Vielzahl von Ökosystemen. Sie ernähren sich hauptsächlich von Periphyton und Detritus 

und sind eine wichtige Nahrungsquelle für Fische und andere Arten des Makrozoobenthos. 

Daher spielen sie eine herausragende Rolle in der Nahrungskette der aquatischen 



 92

Ökosysteme. Jede Änderung innerhalb der Gastropodengemeinschaft hat daher tief greifende 

Auswirkungen auf diese Ökosysteme. Es gibt Grund zu der Annahme, dass die 

Klimaveränderung eine deutliche Auswirkung auf die Verbreitungsgebiete von 

Süßwasserschnecken haben wird. Die Erhöhung der Verdunstungsrate aufgrund der globalen 

Erwärmung und die Veränderung von Niederschlagsmengen führt zu Trockenperioden, vor 

allem in niederen Breitengraden, was zu einem teilweisen Lebensraumverlust führt. 

Überleben, Fruchtbarkeit und Generationsdauer von Süßwassermollusken sind von der 

Umgebungstemperatur abhängig; die Erhöhung der Wassertemperatur wird deswegen eine 

Verschiebung der Areale induzieren, in denen Vermehrung möglich ist. Letztlich kann die 

Fitness der Arten durch Verringerung der Sauerstoffkonzentration im Wasser reduziert 

werden.  

 

Das Ziel dieser Arbeit war es, die Auswirkungen der vergangenen und zukünftigen 

Klimaveränderungen auf die Verbreitungsareale der Süßwasserpulmonaten zu bewerten. 

Konkret sollten die folgenden Fragen beantwortet werden:  

1) Welche Auswirkungen hat der bevorstehende Klimawandel auf die Verbreitungsgebiete 

von Süßwasserschnecken? 

2) Was sind die Zusammenhänge zwischen den Eigenschaften der Nische einer Art und ihrer 

Arealgröße und -verschiebungen?  

3) Welche klimatischen Faktoren beeinflussen die Artenvielfalt in Nord-Westeuropa und in 

welchem Umfang hat der Klimawandel Auswirkungen auf die Biodiversität?  

4) Wo waren die Refugien während der letzten Eiszeit und wie haben die Arten ihre jetzigen 

Verbreitungsgebiete besiedelt? 

5) Verändert sich die klimatische Nische einer Art und können wir die zukünftigen 

Verbreitungsgebiete von Süßwassermollusken prognostizieren? 

 

Zunächst wurde eine makroökologische Analyse an den nordeuropäischen Gattungen 

durchgeführt. Dabei wurde die Korrelation zwischen heutigen Verbreitungsgebieten und 

abiotische Faktoren (hydrologisch und klimatisch), unter Berücksichtigung phylogenetischer 

Distanzen, untersucht. Diese Untersuchung gab einen Einblick in die relative Bedeutung der 

klimatischen Faktoren, die die Verteilung des Taxons beeinflussen und ermöglichte den 

Nachweis eines phylogenetischen Signals. Dadurch ließ sich das evolutionäre Potenzial der 

Kladen zur Anpassung an veränderte Umweltbedingungen abschätzen. Anschließend wurden 

die gesammelten Informationen über die besetzte ökologische Nische, mithilfe Ecological 
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Niche Modelling (ENM), zur Beurteilung der Auswirkungen des Klimawandels auf die 

Verbreitungsgebiete der Gattungen benutzt. Da sich erhebliche Unterschiede in den 

relevanten Merkmalen (Reproduktion und Überleben) auf intraspezifischer Ebene zeigen, 

wurde ein zweiter Ansatz mit zwei Modell-Arten benutzt. Dieser Ansatz stützte sich auf die 

phylogeographische Analyse der Arten Ancylus fluviatilis und Radix balthica und diese 

erlaubte Schlussfolgerungen über die Auswirkungen der vergangenen Klimaänderungen auf 

die Verbreitungsgebiete. Darüber hinaus, ermöglichen die so gewonnenen Kenntnisse über 

vergangene Kolonisationsmuster und ihre Geschwindigkeit eine Prognose über Reaktionen 

auf die aktuelle globale Erwärmung zu stellen. 

 

In den Kapiteln 2 und 3 wurde gezeigt, dass frühere Klimaveränderungen einen Einfluss auf 

die Verbreitungsareale von den zwei Modell-Arten hatten. Kombinierte ENM und 

phylogeographische Analysen zeigten, dass A. fluviatilis (Kapitel 2) und R. balthica (Kapitel 

3) während der letzten Eiszeit ein engeres Verbreitungsgebiet besetzten und ähnliche 

Refugien in Mitteleuropa hatten.  

Für einen großen Teil der europäischen Basommatophora-Gattungen, wurde modelliert dass 

sich die geeigneten Areale bis 2080 verkleinert haben werden (Kapitel 1). Die prognostizierte 

Erwärmung resultiert im kühleren Norden Europas in einer Entstehung neuer geeigneter 

Habitate, gleichzeitig führt sie zu einer drastischen Verkleinerung des verfügbaren 

Lebensraums im südlichen Teil der untersuchten Region. Durch vergleichende Analysen, 

wurde eine positive Korrelation zwischen der Nischenbreite von Basommatophora-Gattungen 

und der Größe ihrer aktuellen bewohnten Gebiete gezeigt. Es wurde des Weiteren eine 

signifikante positive Korrelation zwischen der Nischenbreite und der Größe des zukünftigen 

klimatisch geeigneten Gebiets festgestellt. Somit erhöht sich das Aussterberisiko für weniger 

weit verbreitete Gattungen. 

 

Wenn Arten anpassungsfähig sind, also geringen Phylogenetic Niche Conservatism (PNC) 

zeigen, wird das zukünftige Artverbreitungsareal nicht mit dem modellierten geeigneten 

Gebiet übereinstimmen. PNC gibt es nicht in allen Taxa, was auch in dieser Arbeit 

nachgewiesen werden konnte. In Kapitel 1 wurde ein schwaches phylogenetische Signal 

erkannt, womöglich verursacht durch die niedrige taxonomische Auflösung. Wenn die 

Analyse sich auf Artebene beschränkt, gibt es Unterschiede in der Größe des PNC. Die 

heutigen Populationen von A. fluviatilis besetzen Habitate, die sich klimatisch signifikant von 

ihrem Refugiumsgebiet unterscheiden (Kapitel 2). Dies weist auf einen relativ niedrigen PNC 
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hin. R balthica zeigt im Gegensatz dazu einen starken PNC, da diese Art dieselbe klimatische 

Nische seit 20.000 Jahren besetzt (Kapitel 3). Angesichts dieser gegensätzlichen Ergebnisse, 

erscheint es ratsam, den PNC genau zu prüfen bevor man eine Prognose über die 

Artverbreitungsgebiete mithilfe Ecological Niche Modelling macht. 

 

Die Verwendung von ENM ohne vorherige Quantifizierung des PNC könnte irreführend sein, 

weil es zu einer Vorhersage von drastischen Verengungen des Artverbreitungsareals führen 

könnte, obwohl das adaptive Potenzial der Art hoch ist. Dennoch, auch für solche Arten ist 

die Geschwindigkeit des aktuellen Wandels, die viel höher ist als die bisheriger klimatischer 

Ereignisse, ein wichtiger Faktor. Andererseits gibt es heute Populationen beider Arten, A. 

fluviatilis und R. balthica, in klimatisch unterschiedlichen Habitaten in Europa, was eine 

große klimatische Toleranz und eine hohe phänotypische Variabilität innerhalb der Arten 

voraussetzt (Kapitel 2). Diese phänotypische Variabilität könnte dazu führen, dass die 

Süßwassermollusken den globalen Wandel besser überstehen könnten, als die ENM-

Projizierungen vorhersagen. 

 

Die hier vorgestellte Arbeit hat gezeigt, dass die Verbreitung eine große Bedeutung für die 

Persistenz von Arten in Zeiten von Umweltveränderungen hat. Die Wichtigkeit diese nicht zu 

unterschätzen, zeigten die Analysen in Kapitel 1: zwei extreme Verbreitungsszenarien 

ergaben drastisch unterschiedliche Ergebnisse. Arten, die nicht in der Lage sind, sich effektiv 

auszubreiten, haben deutlich verkleinerte Verbreitungsgebiete in 2080. Im Rahmen eines 

unbegrenzten Verbreitungsszenarios, wird für einige Gattungen vorhergesagt, dass sie 2080 

ein größeres Verbreitungsgebiet als heute erreichen könnten. Die Verbreitung von 

Süßwasserschnecken ist in hohem Maße abhängig von zufälligen Ereignissen; es wird 

vermutet, dass diese Organismen zum Beispiel von Wasservögeln transportiert werden 

können. Sehr wenig ist bekannt über die Häufigkeit dieser Ereignisse und deren Messung ist 

keine leichte Aufgabe. Die Ergebnisse aus Kapitel 3, in welchem Kolonisationsrouten 

analysiert wurden, verstärken die Wasservogel-Hypothese. Zahlreiche Arten von 

Wasservögeln sind weit verbreitet in Europa, und ziehen täglich zwischen Gewässern. Man 

kann daher davon ausgehen, dass Verbreitungsereignisse häufig genug stattfinden, um die 

Besiedelung neuer Lebensräume zu sichern.  

 

Die Konsequenzen der prognostizierten Änderungen der Verbreitungsgebiete auf die gesamte 

Biodiversität in Europa sind schwer vorhersehbar. Dieser Arbeit zeigt, dass es eine erhebliche 
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Veränderung der mitteleuropäischen Fauna geben wird. Wenn die Verbreitungsfähigkeit einer 

Art der Geschwindigkeit des Klimawandels entspricht, könnte Mitteleuropa von Arten 

besiedelt werden, die derzeit in Südeuropa leben und / oder von Populationen, die vor Ort an 

wärmere klimatische Bedingungen angepasst sind. Im Falle, dass keine Migranten ankommen 

oder keine Anpassung der derzeitigen Populationen an die neuen Umweltbedingungen 

stattfindet, werden die Populationen einen Fitness-Rückgang erleiden und schließlich 

aussterben. Dies würde die starke Vermehrung von konkurrierenden Arten, welche auf die 

gleichen Ressourcen zugreifen, fördern. Gleichzeitig wird die Gründung neuer Populationen 

von Süßwassermollusken in den nordeuropäischen Habitaten Auswirkungen auf die lokalen 

Lebensgemeinschaften haben. Globaler Wandel betrifft auch die Artverbreitungsgebiete von 

anderen Organismen, die möglicherweise auch neue geeignete Lebensräume in Nordeuropa 

besiedeln werden. In Nordeuropa werden sich daher wahrscheinlich völlig neue 

Artgemeinschaften bilden von Organismen, die bisher nicht in Kontakt miteinander waren 

und um das neue Territorium konkurrieren werden. 

 

Der Hermaphroditismus der Basommatophora, mit der Möglichkeit zur Selbstbefruchtung 

und Auszuchtung, spielt wahrscheinlich auch eine Rolle bei der Ausweitung ihrer 

Verbreitungsareale. Aber Selbstbefruchtung ist ein zweischneidiges Schwert: ein hohes Maß 

an Selbstbefruchtung kann den Genfluss zwischen Populationen, trotz einer hohen 

Verbreitungsrate, behindern. Dadurch können mitteleuropäische Populationen von 

vorteilhaften Allelen eingewanderter, wärmeangepasster Individuen nicht profitieren. 

Selbstbefruchtung erhöht auch die Homozygotiefrequenz: die neu gegründeten Populationen 

könnten dadurch unter Inzuchtdepression leiden. Andererseits reicht ein einziges Individuum 

aus, um eine Population in einem neuen geeigneten Habitat zu gründen. Dies könnte bei 

raschen Veränderungen der Umwelt eine sehr vorteilhafte Eigenschaft sein. 

Süßwasserschnecken, die passiv verbreitet werden, könnten aufgrund ihrer Fähigkeit zur 

Selbstbefruchtung gute Erstbesiedler sein. 

 

Durch Weiterentwicklung der Kombination von ENM und Phylogeographie könnten die 

Ergebnisse dieser Arbeit in Zukunft vertieft werden. Dies würde erlauben, die Wirkungen von 

vergangenen Klimaveränderungen an mehreren Arten zu vergleichen. Zudem könnte man auf 

genetischer Ebene untersuchen, welche Gene eine Rolle bei der Temperaturanpassung 

spielen, und ob diese Gene schnell genug evolvieren können, um die Anpassung der Arten zu 

gewähren.  
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Appendixes 

 
Appendix S1: DNA sequences for COI and 16S fragments used in the Basommatophora phylogeny 

Species NCBI sequence COI NCBI sequence 16S 
Acroloxus lacustris AY282581 EF489311 
Ancylus fluviatilis AY282582 EF489312 
Aplexa hypnorum AY577504 AY577464 
Bathyomphalus contortus EF012166 EF012184 
Galba truncatula DQ980189 Acc. Numb to be provided 
Gyraulus albus Y14710 AY577480 
Hippeutis complanatus EF012170 EF012187 
Lymnea stagnalis EF489390 EF489314 
Myxas glutinosa DQ980191 Acc. Numb to be provided 
Omphalaria gla DQ980192  
Physa acuta AY282589 AY651219 
Physa fontinalis AY577505 AY577465 
Planorbarius corneus AY282590 AY577473  
Planorbis planorbis EF012175 AY350568 
Segmentina nitida EF012178 AY577481 
Stagnicola palustris  U82082 
Radix sp. 1 DQ980134 Acc. Numb to be provided 
Radix sp. 2 DQ980142 Acc. Numb to be provided 
Radix sp. 3 DQ980120 Acc. Numb to be provided 
Radix sp. 4 DQ980141 Acc. Numb to be provided 
Radix sp. 5 DQ980082 Acc. Numb to be provided 
Radix sp. 6 DQ980125 Acc. Numb to be provided 
Siphonaria serrata EF489380 EF489302 
Anisus vortex AY577518 AY577478 
Anisus leucostoma AY577517 AY577477 
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Appendix S2: Sampling localities, geographical position, distribution of A. fluviatilis haplotypes (columns) at each sampling location (rows), number of 16S and COI sequences for each locality and phylogeographical group of each haplotype. 
   Haplotypes   

SL Lat Long 16 17 20 65 66 67 68 1 4 2 19 69 70 6 7 9 3 12 10 11 13 18 8 5 71 14 15 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 N 16S N COI 
AUT2 48.69 16.00                     4                        4  
CZ1 49.90 14.37                        4                     4  
CZ2 50.67 14.17                        1                     1 1 

FRA1 47.32 6.43        2 1                                    3  
FRA2 47.06 6.22        2                                     2  
FRA3 43.46 2.44          3 2                                  5  
FRA4 43.53 5.29            3                                 3 2 
FRA5 47.22 0.31             1                                1 2 
FRA6 47.04 0.19             4                                4  
FRA16 46.13 3.85              1              1                 2 1 
FRA17 45.06 2.69                           3                  3 1 
FRA18 49.82 2.39        2                                     2  
FRA19 49.57 1.49        3                                     3  
FRA20 48.15 -0.23                               1              1 1 
FRA21 47.36 1.41              1                  2             3 1 
FRA22 45.66 0.24           4                                  4 1 
FRA23 45.01 1.09              2                               2  
FRA24 45.67 0.59              3                               3  
FRA25 45.37 0.65           1   2                            1   4 2 
FRA26 49.04 3.43              4                               4  
FRA27 49.03 3.38              3                               3  

GB1 50.96 -3.72              1          1                     2  
GB2 57.90 -4.84                    3                         3  
GB3 57.47 -5.01              5                               5  
GB5 52.11 0.74        2                           1          3 2 
GB6 53.89 -0.83              3                               3  
GB7 54.32 -1.51              1                      3         4 1 
GB8 54.53 -2.01                                     4        4 1 
GB9 54.57 -2.05                                      1       1 1 
GB10 54.89 -2.26              3                               3  
GB11 54.51 -2.92                                      1 2      3 1 
GB12 54.21 -2.65                                       1      1  
GB13 53.87 -2.23                                      1       1  
GB14 53.54 -1.85              4                               4 1 
GB15 53.26 -1.90        1      1                        1       3  
GB16 52.61 -1.52                                        2     2 1 
GB17 51.96 -0.92        4                                     4 1 
GER1 54.28 10.58              6                               6  
GER2 50.55 9.19              1  1                             2  
GER3 50.57 9.23              2 1                              3  
GER4 50.54 9.27              1                               1  
GER5 50.47 9.16              1                               1  
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GER6 50.44 9.20                 1                            1  
GER7 50.40 9.28                  1                           1  
GER8 50.27 9.41              1                               1  
GER9 50.23 8.36              2     1 1                         4  

GER10 49.99 8.29                     1                        1  
GER11 49.99 8.30              2                               2  
GER12 49.62 9.65              1                               1  
GER13 49.35 6.71              2                               2  
GER14 49.15 7.04              2                               2  
GER15 48.79 8.24                  1                           1  
GER16 48.53 9.05         2                                    2  
GER17 47.76 9.13                       1                      1  
GER18 48.95 11.73              1        1                       2  
GER23 54.17 10.07              2                               2 1 
GER24 54.29 10.59              3                               3  
GER25 53.72 11.89                             2 1               3  
GER26 54.61 9.37              1                               1  

LV1 57.13 24.92                        2                 1    3 1 
LV2 56.20 26.05                         5                    5  
LV3 56.46 23.24                         5                    5  
LIT1 54.11 24.32                        2                     2  
LIT2 54.08 24.27                                           4  4 1 
LIT3 54.12 24.30                        1                     1  
LIT4 55.58 26.25                                            2 2 1 

NOR1 59.92 10.71                        6                     6  
POL1 53.24 19.83                        1  1                   2  
POL2 50.16 19.63              4                               4  
POL3 50.08 21.96                        5                     5  
POL4 53.85 21.15                        2                     2  
POL5 54.07 18.45                        1                     1  
POL6 54.11 18.41                        3                     3  
POL7 53.27 23.03                        4                     4  
POR3 40.55 -7.84    1 1                                        2 1 
POR4 40.22 -7.85      5                                       5 3 
SLO1 46.65 16.09                           4                  4  
SPA1 40.86 -2.54 2                                            2  
SPA2 40.68 -0.12  1 1                                          2  
SPA4 43.19 -0.55       1                                      1  
SW1 55.72 14.16              1                   1            2 2 
SW2 59.59 14.55                        4                     4 1 
SW3 57.73 14.13                        3                     3  
SW4 56.20 13.66                                  4           4 1 

UKR1 48.31 23.05              2                               2  
UKR2 48.16 23.11                         5                    5  

  ∑ 2 1 1 1 1 5 1 16 3 3 7 3 5 69 1 1 1 2 1 4 5 1 1 40 15 1 7 1 2 1 1 2 1 4 1 3 4 4 3 2 1 1 4 2 235 33 
Phylogeo. Group IP IP IP IP IP IP IP CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE BA CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE BA CE BA BA   
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Appendix S3: Sampling localities, geographical position, distribution of Radix balthica haplotypes (columns) at each sampled location (rows), number of COI sequences for each locality 
   Haplotype 
Name Latitude Longitude 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
GVD2 46,554 7,074 3                                                 
ROS 46,720 7,109 3  2                                               
EST 46,856 6,840   1                                  4             
AUG 46,615 7,181   6                                               
GVD1 46,555 7,072    1                                              
GGK2 49,935 8,479     1                                             
SUL2 51,087 11,625      1                                            
MBV 46,492 7,047 3                                                 
REN 46,385 6,895       1          1                                 
RIE 54,149 11,689                                     2             
ROC 46,364 6,938       1 1                                          
CAZ 43,769 3,798         1                                         
BDO 54,075 11,936                                     1             
KBW 54,149 11,725                                     1             
GLO2 48,225 -3,404          2 1                                       
HER2 45,117 4,974            1 1                                     
LAV 45,830 4,804   1           3                                    
OUM 63,845 20,259               3 1                                  
VEG 48,179 -0,265                 1 1                                
CZA 53,682 16,925                   1 1                              
MIS 53,884 12,175                     1                2             
EGG 54,614 9,372                      1                            
FLE 54,699 9,505                       1                           
BUC 54,172 10,073                                     1             
ROG 53,729 10,94                        1 1 1                        
BER 50,673 2,704                           1          2             
NEU 53,362 13,071                            1                      
SOM 51,130 10,916                                     1             
BOD2 47,667 9,213           1 1  7 1 1             1 1                    
IVO 56,152 14,509                               1                   
ODE 56,623 15,673                                4                  
BJA 57,462 16,055                                 4                 
HJA 59,169 15,928                                  1   2             
DAR 59,896 15,688                                   3 1              
ALG 61,105 16,819                                     4             
STO 61,778 16,518                                      3            
RAN 62,337 16,973                                       1 3          
VIK 62,295 16,090                                         2 1        
FAG 61,825 14,876                                     2      1       
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   Haplotype 
Name Latitude Longitude 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
LJO 60,004 14,156                                     4             
LIM 59,586 14,555                                            1      
BJO 58,663 14,483                                     4             
VID 57,067 14,042                                     3        1     
VOM 55,698 13,554                                     1         2    
HOE 51,989 4,128                                     2             
GAI 53,195 -0,769                                               1 2  
SCO 53,498 -0,664                                     2          1   
MEL 53,887 -0,828                                                 2 
SWA 54,32 -1,512                                     1            1 
DAL 54,829 -2,981                                     1             
PAT 54,513 -2,924                                                  
KIR 54,214 -2,652                                                  
BUX 53,258 -1,905                                     3             
ALL 54,896 -2,259                                                  
HUR 54,571 -2,050                                     4             
DRY 52,319 -1,318                                                  
ATH 52,591 -1,548                                     1             
CHI 49,049 3,403                                                  
SIG 57,155 24,854                                                  
SAL 47,816 13,054                                                  
KON 47,581 12,99                                                  
POR 47,159 -1,482                                                  
DIJ 47,3568 5,1459   1                                               
ABO 47,7718 5,9847                                                  
LAB 48,6473 7,69                                                  
OBI 48,9501 6,7556   2                                               
NOM 48,89 6,215                                                  
BTB 48,7928 7,0216                                                  
CEN 46,9378 -1,884                                     2             
LAC 45,9758 4,6366                                                  
REM 47,3742 -0,3011                                                  
THO 47,7427 0,452                                                  
MAR 46,7399 -0,6581                                                  
LER 47,8765 -0,9758                                                  
ALD 48,1 8,703                                                  
BAL 48,273 8,86                                                  
LEY 45,642 5,859                                                  
WILL 48,166 8,737                                                  
N individuals 9 0 13 1 1 1 2 1 1 2 2 2 1 10 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 3 1 50 3 1 3 2 1 1 1 1 2 2 2 3 
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   Haplotype  

Name Latitude Longitude 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
N 

COI 
GVD2 46,554 7,074                                               3 
ROS 46,72 7,109                                               5 
EST 46,856 6,84                                               5 
AUG 46,615 7,181                                               6 
GVD1 46,555 7,072                                               1 
GGK2 49,935 8,479                                               1 
SUL2 51,087 11,625                                               1 
MBV 46,492 7,047                                               3 
REN 46,385 6,895                                               2 
RIE 54,149 11,689                                               2 
ROC 46,364 6,938                                               2 
CAZ 43,769 3,798                                               1 
BDO 54,075 11,936                                               1 
KBW 54,149 11,725                                               1 
GLO2 48,225 -3,404                                               3 
HER2 45,117 4,974                                               2 
LAV 45,83 4,804                                               4 
OUM 63,845 20,259                                               4 
VEG 48,179 -0,265                                               2 
CZA 53,682 16,925                                               2 
MIS 53,884 12,175                                               3 
EGG 54,614 9,372                                               1 
FLE 54,699 9,505                                               1 
BUC 54,172 10,073                                               1 
ROG 53,729 10,94                                               3 
BER 50,673 2,704                                               3 
NEU 53,362 13,071                                               1 
SOM 51,13 10,916                                               1 
BOD2 47,667 9,213                                               13 
IVO 56,152 14,509                                               1 
ODE 56,623 15,673                                               4 
BJA 57,462 16,055                                               4 
HJA 59,169 15,928                                               3 
DAR 59,896 15,688                                               4 
ALG 61,105 16,819                                               4 
STO 61,778 16,518                                               3 
RAN 62,337 16,973                                               4 
VIK 62,295 16,09                                               3 
FAG 61,825 14,876                                               3 
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   Haplotype  

Name Latitude Longitude 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
N 

COI 
LJO 60,004 14,156                                               4 
LIM 59,586 14,555                                               1 
BJO 58,663 14,483                                               4 
VID 57,067 14,042                                               4 
VOM 55,698 13,554                                               3 
HOE 51,989 4,128                                               2 
GAI 53,195 -0,769    1                                           4 
SCO 53,498 -0,664                                               3 
MEL 53,887 -0,828 1 1                                             4 
SWA 54,32 -1,512   2                                            4 
DAL 54,829 -2,981     3                                          4 
PAT 54,513 -2,924     3 1                                         4 
KIR 54,214 -2,652       2 1 1                                      4 
BUX 53,258 -1,905          1                                     4 
ALL 54,896 -2,259           4                                    4 
HUR 54,571 -2,050                                               4 
DRY 52,319 -1,318 3           1                                   4 
ATH 52,591 -1,548            3                                   4 
CHI 49,049 3,403             1                                  1 
SIG 57,155 24,854              1 1                                2 
SAL 47,816 13,054                1                               1 
KON 47,581 12,99                 1                              1 
POR 47,159 -1,482                       1   1      1               3 
DIJ 47,3568 5,1459                      1        1                 3 
ABO 47,7718 5,9847                                 1           3   4 
LAB 48,6473 7,69                                      2 1        3 
OBI 48,9501 6,7556                                    1           3 
NOM 48,89 6,215                  1                   1          2 
BTB 48,7928 7,0216                            1          2         3 
CEN 46,9378 -1,884                                               2 
LAC 45,9758 4,6366                                  2 1      2 1 1    7 
REM 47,3742 -0,3011                   3 3 1                          7 
THO 47,7427 0,452                       2 1   1                    4 
MAR 46,7399 -0,6581                       1 1 1                      3 
LER 47,8765 -0,9758                                        1       1 
ALD 48,1 8,703                                              1 1 
BAL 48,273 8,86                                      1       1  2 
LEY 45,642 5,859                               1                1 
WILL 48,166 8,737                             1       1           2 
N individuals 4 1 2 1 6 1 2 1 1 1 4 4 1 1 1 1 1 1 3 3 1 1 4 2 1 1 1 1 1 1 1 1 1 2 1 2 1 5 1 1 2 1 1 3 1 1 232 
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