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ABSTRACT

DNA oligonucleotides (ODN) applied to an organism
are known to modulate the innate and adaptive
immune system. Previous studies showed that
a CpG-containing ODN (CpG-1-PTO) and interest-
ingly, also a non-CpG-containing ODN (nCpG-
5-PTO) suppress inflammatory markers in skin. In
the present study it was investigated whether
these molecules also influence cell apoptosis.
Here we show that CpG-1-PTO, nCpG-5-PTO, and
also natural DNA suppress the phosphorylation
of PKB/Akt in a cell-type-specific manner. Interest-
ingly, only epithelial cells of the skin (normal human
keratinocytes, HaCaT and A-431) show a suppres-
sion of PKB/Akt. This suppressive effect depends
from ODN lengths, sequence and backbone. More-
over, it was found that TGFa-induced levels of
PKB/Akt and EGFR were suppressed by the ODN
tested. We hypothesize that this suppression
might facilitate programmed cell death. By testing
this hypothesis we found an increase of apoptosis
markers (caspase 3/7, 8, 9, cytosolic cytochrome c,
histone associated DNA fragments, apoptotic
bodies) when cells were treated with ODN in com-
bination with low doses of staurosporin, a well-
known pro-apoptotic stimulus. In summary the
present data demonstrate DNA as a modulator of
apoptosis which specifically targets skin epithelial
cells.

INTRODUCTION

Redundancy seems to be a basic principle of living matter
providing an economic handling with limited resources.

An example of this is the desoxyribonucleic acid (DNA)
that was for a long time only considered as carrier of
genetic information. It is more than one hundred years
ago since William Coley found that a preparation of
heat inactivated streptococci induces some immunological
response in cancer patients (1,2). It took until 1984 since
bacterial DNA itself was identified to convey this effect
(3). This observation demonstrated that information
within the DNA molecule is not restricted to the genetic
code. Later it was found that a specific sequence, a motif
displaying an unmethylated cytidine-phosphate-guanosine
(CpQG) is able to activate the immune system (4). The fact
that the CpG motif has a much lower incidence in human
DNA than predicted by random base utilization and the
increased amount of methylated cytidine residues makes
this motif an ideal pathogen-associated molecular pattern
(PAMP) recognized by the endosomal toll-like receptor-9
(5-8). Clinically, CpG and also some non-CpG
oligonucleotides (ODN) are currently tested as immuno-
modulators for immune protection, allergic response,
vaccination booster and in antitumor therapy (9). For
these applications much efforts have been placed on the
development of structurally modified ODN. Particularly,
the substitution of one of the nonbridging oxygen atoms
bound to phosphorus by sulfur is very commonly used.
These phosphorothioates offer an increased serum
stability and resistance against nucleases (10). Moreover,
phosphorothiates can form mRNA-DNA duplexes which
elicit RNase H activity triggering the degradation of
mRNA (11). This mechanism is considered to play an
important role in most antisense-based applications.
Both the presence of CpG-motifs and the modifica-
tion of the DNA-backbone with phosphorothiates
are described to stimulate pro-inflammatory responses
(4,12-14). Therefore, it was a surprise that a CpG-ODN
and a non-CpG-ODN both with phosphorothioate
backbones suppressed pro-inflammatory markers in skin
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keratinocytes and attenuated the cutaneous delayed-type
hypersensitivity response in a mouse model (15). These
findings speak for a tissue-specific mode of action.

As the duration of inflammation is frequently regulated
by apoptosis of the effector cells (16), we investigated the
impact of CpG-ODN, and non-CpG-ODN with and with-
out phosphorothiate backbones on apoptosis in a variety
of epithelial and non-epithelial cells. Of note, it was found
that epithelial cells of the skin namely, HaCaT cells, A-431
cells and normal human keratinocytes show PKB/Akt
suppression and facilitated apoptosis in response to
ODN. This effect was modulated by ODN backbone,
sequence and length. These findings suggest that ODN
can act as modulators of skin homeostasis.

MATERIALS AND METHODS
Reagents

ODN with phosphorothioate backbone were synthesized
and purified by BioSpring GmbH (Frankfurt/Main,
Germany), reconstituted in water and stored at —20°C.
ODN were given to the cells at the indicated concentration
without DNA complexing reagents. Hybridization of
CpG-1-PTO and its reverse strand CpG-1-PTO-rev was
performed as described (15). DNA from Escherichia coli,
Clostridium perfringens and DNA from Salmon sperm
were purchased from ICN Pharmaceuticals (Heidelberg,
Germany) and dissolved in water. Staurosporin (STS)
was purchased from Sigma (Taufkirchen, Germany).
TGFa was purchased from PeproTech (Hamburg,
Germany).

Cell culture

Spontaneously immortalized human keratinocyte cell line
(HaCaT) (a generous gift by Prof. Fusenig, German
Cancer Research Institute, Heidelberg, Germany) was
cultured in carbonate buffered Hank’s medium with 5%
fetal calf serum, 0.35g/l glutamine (Invitrogen, Paisley,
UK) and 1% penicillin—streptomycin solution (Biochrom
KG, Berlin, Germany) at 37°C in 5% CO, atmosphere.
The human epidermoid carcinoma cell line A-431, the
human epithelial kidney line HEK-293, the kidney fibro-
blast cell line Cos-7 (all purchased from the American
Type Culture Collection, ATCC), the human sebocyte
cell line SZ95 (kindly provided by Christos Zouboulis,
Universitdtsklinikum Benjamin Franklin, Berlin) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, Karlruhe, Germany) containing 1% penicillin—
streptomycin solution and 10% FCS. Normal human
keratinocytes (NHK) and fibroblasts were isolated from
skin specimen of cosmetic surgeries. NHK were propa-
gated in serum-free keratinocyte medium (Gibco) and
fibroblasts were held in RPMI 1640 medium (Biochrom,
Berlin, Germany) with 10% FCS and 1% penicillin—
streptomycin solution. Likewise, G-361 melanoma cells
(ATCC), derived from a 31-year-old Caucasian male
were cultured under the same conditions as fibroblasts.
Human umbilical vein endothelial cells (HUVEC) were
purchased from Promocell (Heidelberg, Germany)
and propagated in endothelial growth medium (EGM,
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Lonza, Wuppertal, Germany). The medium was renewed
twice a week. All experiments were done in agreement
with the local ethics commission.

Plasmids and transfection

The human dominant-negative TLR-9 plasmid was kindly
provided by Hermann Wagner (Technische Universitit
Miinchen, Miinchen, Germany) (17). The dominant-
negative flag-tagged MyD88 was kindly provided from
Tularik (San Francisco, USA) (17). Empty pcDNA-3
served as control vector. Transient transfection was per-
formed using A-431 cells plated in 6-well multidishes at a
confluence of 70% using Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturers’ instructions.
The following day, cells were treated with 4uM CpG-
1-PTO or nCpG-5-PTO. After 30min proteins were
extracted as described.

Mechanical stimulation

Stretching of in vitro cultured cells was performed as
described previously (18). Briefly, silicone elastomer
MED-4011 (Armando Medizin Technik, Diisseldorf,
Germany) was stirred, poured into preformed teflon
matrices and allowed to polymerize. For allowing cell
attachment silicone dishes were treated with 5.7% KOH
in methanol for 5min in order to neutralize the polymer-
ization-derived HCI. After washing with double-distilled
water, silicone dishes were coated with 2% arginine for 2 h
to facilitate cell attachment (19) and afterwards rinsed
with PBS. Subsequently, the dishes were incubated with
fetal calf serum for 2h. After withdrawal of the serum,
cells were plated in flexible silicone chambers and incu-
bated for 24 h under regular conditions. Prior to the appli-
cation of mechanical stretch, the cells were held for 24h
under serum-free conditions. For the last hour 4 uM ODN
were added to the cells. Then the silicone chambers were
extended to 10% for 5Smin. After stretch stimulation,
protein samples were prepared at the indicated time
intervals.

Immunoblotting

For detection of PKB/Akt and caspase 3 and 8 (antibodies
from Cell Signaling Technology, Frankfurt, Germany),
cells were lysed in 100l SDS sample buffer [62.5mM
Tris—=HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM
DTT, 0.1% bromphenol blue], sonicated and boiled
for Smin, and separated on SDS—polyacrylamide gels.
For detection of EGFR (Cell Signaling Technology),
cells were scraped into lysis buffer [20 mM Tris (pH 7.4),
150mM NaCl, ImM EDTA, ImM EGTA, 1%
Triton, 2.5mM  sodium  pyrophosphate, 1mM
B-glycerolphosphate, I mM Na3zVO,, 1pg/ml leupeptin,
ImM PMSF], sonicated and centrifuged. Protein con-
centration of the supernatant was determined (Biorad
DC Protein Assay Kit, Biorad, Miinchen, Germany)
and standardized using bovine serum albumin. Twenty
micrograms of protein were mixed with SDS sample
buffer and run on SDS-polyacrylamide gels. Con-
secutively, proteins were immunoblotted to a PVDF
membrane. The membrane was blocked in blocking
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buffer [TBS (pH 7.6), 0.1% Tween-20, 5% nonfat dry
milk] for at least 3h at 4°C followed by incubation with
the primary antibody in TBS (pH 7.6), 0.05% Tween-20
and 5% BSA. The bound primary antibodies were
detected using anti-mouse IgG-horseradish peroxidase
conjugate and visualized with the ECL detection system
(Amersham).

Cytosolic cytochrome ¢

In order to detect the amount of cytosolic cytochrome c,
cells were fractionated as described (20). Briefly, 2 x 10°
cells were trypsinated, washed and solubilized in 250 ul
phosphate buffered saline (PBS). A mild lysis of the
cell membrane was performed by adding 250 pl digitonin-
solution (80 pg/ml succrose solution, 500 mM). After vig-
orously vortexing for 10s, cell extracts were centrifuged
(1 min, 14000g, 4°C) and the protein content of the super-
natant was determined as described under Immunoblotting.
Thirty micrograms protein of the supernatant was applied
to a commercial human cytochrome ¢ immunoassay (R&D
Systems, Wiesbaden, Germany).

Histone-associated DNA fragments

Apoptosis was quantified on the basis of cytoplasmic
histone-associated DNA fragments using the Cell Death
Detection ELISA (Roche, Mannheim, Germany) accord-
ing to the manufacturer’s manual. In brief, cells were
cultured in microwell plates (2 x 10*cells per 0.33 cm?)
and treated with increasing amounts of staurosporin
(STS) in combination with different ODN. After 24 h cyto-
solic fraction (200g¢ supernatant) was used as antigen
source in a sandwich enzyme-linked immunosorbent
assay with primary anti-histone antibody coated to a
microtiter plate and secondary anti-DNA antibody
coupled to peroxidase. Optical density was measured at
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530nm in an ELISA reader (MR 5000, Dynatech,
Guernsey, UK).

Caspase 3/7 and 9 activity

Activity of caspase 3/7 and 9 was quantitatively assessed by
using commercial assays (Caspase-Glo 3/7, Caspase-Glo 9,
Promega, Mannheim, Germany). Cells were seeded in
microplate wells and treated with staurosporin (STS)
and ODN as aforementioned. After 24 h cells were lysed
and luminogenic substrates specific for the different
caspase species were added. Light emission was measured
in a luminometer (Berthold, Bad Wildbad, Germany).

Statistical analysis

The grey levels of western blot bands were measured using
ImageJ (Bethesda, USA). Data from western blots,
histone associated DNA fragments, cytosolic cytochrome
¢ and caspase 3/7 and 9 activity are given as means =+ SD.
Each column represents at least three independent experi-
ments. Statistical analysis was performed using the
Wilcoxon—-Mann—Whitney U-test (BIAS, Frankfurt,
Germany). Differences were considered significant at
P <0.05 indicated by asterisks. Figure legends indicate
the data columns which were compared.

RESULTS
CpG-1-PTO and non-CpG-5-PTO suppress PKB/Akt

HaCaT keratinocytes were exposed to increasing amounts
0.5, 1, 2, 4uM) of CpG-1-PTO or nCpG-5-PTO for
30 min. Protein extracts were separated by SDS-PAGE
and probed against phospho-PKB/Akt and total PKB/
Akt for loading control, respectively. Figure 1A shows a
dose-dependent suppression of basal PKB/Akt activation
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Figure 1. Oligonucleotides suppress basal PKB/Akt activation. Protein extracts derived from HaCaT cells exposed to CpG-1-PTO and nCpG-5-PTO
were separated by SDS-PAGE. The blotted proteins were probed with anti-PKB/Akt-Serd473, anti-PKB/Akt-Thr308 and phospho-non-specific
anti-PKB/Akt. (A) Concentration dependent effect of CpG-1-PTO and nCpG-5-PTO. Cells were exposed to 0.5, 1, 2, 4uM of CpG-1-PTO and
nCpG-5-PTO respectively for 30min. (B) Statistical analysis of (A). Each column represents at least three independent experiments; standard
deviations are indicated. Data were compared to untreated controls. *P < 0.05; solid bars, serine; white bars, threonine.
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Figure 2. Time-dependent suppression of basal PKB/Akt by CpG-1-PTO and nCpG-5-PTO. HaCaT cells were exposed for the indicated times to
4uM (A) CpG-1-PTO and (B) nCpG-5-PTO. (C) and (D) represent the statistical analysis of (A) and (B), respectively. Each column represents at
least three independent experiments; standard deviations are indicated. Data were compared to untreated controls. *P < 0.05; solid bars, serine; white

bars, threonine.

at both phosphorylation sites. Already a concentration of
0.5uM nCpG-5-PTO led to a significant suppression of
PKB/Akt (see statistical analysis in Figure 1B). In order
to test the dynamic of this suppression HaCaT cells were
exposed to 4uM CpG-1-PTO (Figure 2A) and nCpG-
5-PTO (Figure 2B), respectively for different times ranging
from 5Smin to 24 h. Statistical analysis in Figure 2C and D
shows a rapid and robust downregulation by both oligos.
Of note, the suppression of PKB/Akt phosphorylation
lasted for at least 24h. CpG-1-PTO and nCpG-5-PTO
have a length of 20 nucleotides. In order to test if
the lengths of the ODN molecules have an impact on
PKB/Akt suppression different deletion mutants were
tested (Table 1, Figure 3A-D). Deletion of flanking
nucleotides from both ends of CpG-1-PTO reversed the

PKB/Akt suppression in a length dependent manner.
The hexamer CpG-6-PTO which still bears a complete
CpG-motif shows no suppressive effect on PKB/Akt
at 4uM after incubation for 30 min. Vice versa nucleo-
tide deletion of nCpG-5-PTO showed also a length depen-
dent suppression of PKB/Akt (Figure 3B and D). ODN
molecules with lengths from 20 down to 16 nucleotides
showed a significant suppression of basal PKB/Akt
phosphorylation.

Natural DNA suppress PKB/Akt

The aforementioned data show that both, CpG- and
nCpG-ODN suppress basal PKB/Akt phosphorylation.
In order to test if DNA in general conveys this effect,
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Table 1. Oligonucleotides

CpG-1-PTO 5-TCC ATG ACG TTC CTG ACG TT-3
CpG-18-PTO 5-TCC ATG ACG TTC CTG ACG-3'
CpG-16-PTO 5-TCC ATG ACG TTC CTG A-3¥’
CpG-14-PTO 5-CC ATG ACG TTC CTG-3¥
CpG-12-PTO 5'-CAT GAC GTT CCT-¥

CpG-6-PTO 5-GAC GTT-3'

nCpG-5-PTO 5’-CCC CCC CCC CCC CcCcC ccc ce-3
nCpG-18-PTO 5’-CCC CCC CCC CCcC cccC cce-3
nCpG-16-PTO 5’-CCC CCC CCC CcCcC ccc ¢c-3
nCpG-14-PTO 5’-CCC CCC CCC ccc cc-3¥
nCpG-12-PTO 5’-CCC CCC CCcC ccc-3

nCpG-6-PTO 5-CCC CCC-3¥

Scramb 5-CTC TAG GAC TCT CTG GAC TT-¥
CpG-1-PTO-rev 5-AAC GTC AGG AAC GTC ATG GA-¥
nCpG-5-PDE 5'-cec cce cee cce cec cce ce-3

CpG-1-PDE 5'-tec atg acg tte ctg acg tt-3

Phosphorothioates (PTO) in capital letters, phosphodiesters (PDE) in
small letters. CpG-motifs are underlined.
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we treated HaCaT keratinocytes with different natural
occurring DNA derived from prokaryotes and eukaryotes.
Figure 4A and B show that DNA from Escherichia coli,
Clostridium perfringens and DNA derived from Salmon
sperm suppress the basal phosphorylation of PKB/Akt.
The observed effects are distinct but not as strong as for
synthetic CpG-1-PTO. Furthermore, the natural DNA
species offered no significant toxic effect on HaCaT cell
in the tested concentrations as detected by the release of
lactate dehydrogenase (LDH) (Figure S1, Supplementary
Data). Figure 4C shows ethidiumbromide stained DNA
samples separated by agarose gel electrophoresis. DNA
derived from Escherichia coli gives a smear over the
whole range and a slightly condensed section at approxi-
mately 10 kbp. This accumulation was more prominent for
DNA derived from Clostridium perfringens and Salmon
sperm. In order to test if shearing of DNA has an
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Figure 3. Lengths dependent suppression of basal PKB/Akt activation by CpG-PTO and nCpG-PTO. HaCaT cells were treated with different
deletion mutants (4 uM) of CpG-1-PTO and nCpG-5-PTO for 30 min. Then protein extracts were utilized for detection of PKB/Akt activation. (A)
Deletion mutants of CpG-1-PTO ranging from 6 (CpG-6-PTO) to 20 nucleotides (CpG-1-PTO). (B) Deletion mutants of nCpG-5-PTO ranging from
6 (nCpG-6-PTO) to 20 nucleotides (nCpG-5-PTO). (C) and (D) represent the statistical analysis of (A) and (B), respectively. Each column represents
at least three independent experiments; standard deviations are indicated. Data were compared to untreated controls. *P < 0.05; solid bars, serine;

white bars, threonine.
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Figure 4. Natural DNA suppresses basal PKB/Akt activation. (A) HaCaT cells were treated with different concentrations of DNA derived from
natural sources for 60 min. Then protein extracts were utilized for detection of PKB/Akt activation. CpG-1-PTO served as positive control. E. coli,
Escherichia coli; C. perfr., Clostridium perfringens, Salm. sp., Salmon sperm. (B) represents the statistical analysis of (A). Each column represents at
least three independent experiments; standard deviations are indicated. Data were compared to untreated controls. *P < 0.05; solid bars, serine; white
bars, threonine. (C) Agarose gel electrophoresis with DNA derived from E. coli, C. perfringens and Salmon sperm.

impact on the observed PKB/Akt suppression
preparations of all three DNA species were treated with
ultrasound. The effect of this treatment was monitored
by agarose gel electrophoresis as aforementioned
(Figure S2A, Supplementary Data). No changed effect
on PKB/Akt suppression was detected suggesting that
the molecular size is not a significant determinant in this
case (Figure S2B, Supplementary Data).

PKB/Akt suppression depends from DNA sequence and
backbone

In order to test what distinct information conveys the
suppressive effect on PKB/Akt different synthetic 20-mer
were tested (Figure 5A-C). It was found that both,
the sequence and backbone are important for the observed
effect. A CpG-I-molecule with phosphodiester bonds
(CpG-1-PDE) offered no significant suppressive effect on
PKB/Akt, whereas its phosphorothiotate counterpart

shows the already noted strong inhibition. A scrambled
sequence of CpG-1-PTO (Scramb) also shows strong
inhibition. nCpG-5-PDE, which is a phosphodiester
of nCpG-5-PTO, suppresses PKB/Akt in a moder-
ate manner. Furthermore, the effect of a DNA hybrid
was tested (Figure 5B). At first it was found that 4 uM
of the reverse strand of CpG-1-PTO (CpG-1-PTO-rev)
offered a slightly stronger suppressive effect than
CpG-1-PTO indicating sequence specificity. This strong
effect was maintained for the hybrid of CpG-1-PTO
and CpG-1-PTO-rev, indicating that a single strand is suf-
ficient to reduce PKB/Akt phosphorylation significantly.

Cell-specific suppression of PKB/Akt by CpG-1-PTO
and nCpG-5-PTO

The aforementioned data were derived from experiments
with HaCaT keratinocytes. In order to test if the suppres-
sion of PKB/Akt by CpG-1-PTO and nCpG-5-PTO is
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Figure 5. Suppression of PKB/Akt depends on DNA-backbone and sequence. HaCaT cells were treated with (A) different concentrations of CpG-
1-PTO (with phosphorothioate backbone), CpG-1-PDE (with phosphodiester backbone), a scrambled sequence of CpG-1-PTO (Scramb) and
with nCpG-5-PDE a phosphodiester of nCpG-5-PTO for 30min. Then protein extracts were utilized for detection of PKB/Akt activation.
(B) 4uM CpG-1-PTO, CpG-1-PTO-rev, the reverse strand, and the hybrid of both strands were given to the cells for 30 min. Then proteins were
analyzed as aforementioned. (C) represents the statistical analysis of (A) and (B), respectively. Each column represents at least three independent
experiments; standard deviations are indicated. Data were compared to untreated controls. *P < 0.05; solid bars, serine; white bars, threonine.

cell specific also other cell species from different tissues
were tested. Figure 6A shows the effect of CpG-1-PTO
or nCpG-5-PTO on basal PKB/Akt phosphorylation on
epithelial cells (A-431, HaCaT, NHK, HEK293, SZ95),
fibroblasts (skin fibroblasts, Cos-7), melanoma cells
(G361) and endothelial cells (HUVEC) after incubation
for 60min. The western blot analysis demonstrates a
suppression of PKB/Akt phosphorylation in A-431,
NHK and HaCaT cell as reference. Sebocytes (SZ95),
fibroblasts derived from human skin, melanoma cells
(G361), endothelial cells (HUVEC) and fibroblasts
from kidney tissue (Cos-7) show no shift in PKB/Akt
phosphorylation in response to ODN treatment. In
order to test if classical CpG-effects are induced by
CpG-1-PTO the murine macrophage cell line Raw264.7
was utilized (Figure 6B). It was found that treatment
with 4 uM CpG-1-PTO leads to a time-dependent activa-
tion of PKB/Akt. This effect is well described leading
to an anti-apoptotic response mediated via TLR-9, the

CpG-receptor (21). A control experiment using nCpG-
5-PTO devoid of a classical CpG-motif shows no activa-
tion of PKB/Akt in these cells. In sum, the results
presented show a heterogenic response to CpG-1-PTO
and nCpG-5-PTO depending on the cell species used. Of
note, in epithelial cells derived from skin (HaCaT, NHK)
and squamous epithelium (A-431) the ODN tested offer a
clear suppression of basal PKB/Akt phosphorylation
at both phosphorylation sites.

CpG-1-PTO and nCpG-5-PTO suppress induced levels
of PKB/Akt and EGFR

The aforementioned data show that CpG-1-PTO and
nCpG-5-PTO suppress the basal phosphorylation of
PKB/Akt. Figure 7A shows a concentration dependent
increase of PKB/Akt phosphorylation in response
to TGFa. This phosphorylation was attenuated by a
preincubation with CpG-1-PTO or nCpG-5-PTO at a
concentration of 4puM for 30min. As TGFa induces
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Figure 6. Cell-specific suppression of PKB/Akt by CpG-1-PTO and nCpG-5-PTO. (A) A-431, HaCaT (human keratinocyte cell line), NHK (normal
human keratinocytes), SZ95 (human sebocyte line), Fib (human skin fibroblasts), G-361 (human melanoma line), Cos-7 (monkey kidney fibroblast
line), HUVEC (human endothelial cells) and HEK-293 (human kidney epithelial line) were treated with 4 uM CpG-1-PTO or nCpG-5-PTO for
60 min. Then protein extracts were utilized for detection of PKB/Akt activation. (B) The murine macrophage cell line Raw267.7 known to activate
PKB/Akt in response to CpG-DNA was treated with 4 uM CpG-1-PTO or nCpG-5-PTO for the indicated time intervals. Proteins were extracted and

analyzed as aforementioned. The blots show representative results.

PKB/Akt phosphorylation via EGFR we investigated the
effect of ODN on EGFR activation (Figure 7B).
As expected, TGFa causes a dose dependent phosphory-
lation of EGFR. Interestingly, a pretreatment with
CpG-1-PTO and particularly nCpG-5-PTO reversed this
induction indicating a suppressive effect already at the
surface receptor level. A statistical analysis performed
for data given in Figure 7A and B shows significant reduc-
tions of PKB/Akt and EGFR in cells treated with TGFa
(exemplary tested for 10ng/ml) in the presence of CpG-
I-PTO or nCpG-5-PTO, respectively (Figure 7C and D).

No impact of dominant-negative expression of TLR-9 and
MyD88 on PKB/Akt suppression

CpG-DNA is recognized by a specific receptor, the toll-
like receptor 9 (8) which mediates its signal via the adaptor
protein MyD88 (22). In order to test if the here presented
suppression of PKB/Akt by CpG-ODN and also

non-CpG-ODN utilizes this signalling pathway A-431
cells were transfected with dominant-negative constructs
for TLR-9 and MyD88 (Figure 8). Data given in
Figure 8A and B show that mock transfected cells
(pcDNA3) show a similar suppression of PKB/Akt as
cells transfected with dominant-negative constructs for
TLR-9 (ATLR-9) and MyD88 (AMyD&88). These results
demonstrate that the observed effects are rather indepen-
dent from the TLR-9 signalling pathway.

CpG-1-PTO and nCpG-5-PTO suppress PKB/Akt
activation in response to stretch

In the previous experiments ODN suppressed basal levels
of PKB/Akt and after stimulation with a prototypical
soluble mediator (TGFa). In the following a complete
different stimulus, mechanical stretch, was applied to
HaCaT cells (see ‘Materials and Methods” section).
Published data from our group already identified
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Figure 7. Partial suppression of TGFa-induced activation of PKB/Akt and EGF-R by CpG-1-PTO and nCpG-5-PTO. HaCaT cells were treated
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mechanical stretch as strong inducer of PKB/Akt phos-
phorylation (23). Figure 9A shows that application of a
stretching stimulus for 5 min induces PKB/Akt phosphor-
ylation at both phosphorylation sites. A preincubation
with 4 uM CpG-1-PTO or nCpG-5-PTO for 30 min sup-
pressed the stretch-induced phosphorylation. Of note,
PKB/Akt induction by mechanical stretch shows some
variation in the time Kinetic resulting in a higher standard
deviation (Figure 9B). Nevertheless, treatment with
CpG-1-PTO or nCpG-5-PTO suppressed significantly
the stretch-induced PKB/Akt levels at all tested time
intervals.

CpG-1-PTO and nCpG-5-PTO sensitize for apoptosis

In the present study we have shown that treatment with
CpG-1-PTO and nCpG-5-PTO suppresses basal and
induced PKB/Akt—one of the key regulators in apoptosis.
From this it could be construed that the ODN tested
might change the sensitivity of cells against proapoptotic
stimulation. This issue was addressed by using a combi-
nation of ODN and staurosporin—a well-known inducer
of apoptosis. Data given in Figures 10 and 11 show that
CpG-1-PTO and nCpG-5-PTO increase the pro-apoptotic
effects staurosporin in HaCaT cells. In Figure 10A the

application of staurosporin for 24h led to a significant
increase of cleaved caspase 8 and 3 fragments in a dose
dependent manner. When staurosporin and 8 uM ODN
were applied at the same time the appearance of cleaved
caspases shifted to lower staurosporine concentrations
indicating an accelerated onset of apoptosis. By using a
quantitative detection kit for caspase 3/7 activity these
results were confirmed: §uM CpG-1-PTO and nCpG-
5-PTO significantly amplified the effect of staurosporin
(Figure 10B). These results were corroborated by measur-
ing the cytosolic levels of cytochrome ¢ (Figure 10C). A
treatment with increasing concentrations of staurosporin
alone for 14 h led to a concentration dependent increase of
cytosolic cytochrome ¢ as measured by ELISA. In the
presence of 8 uM CpG-1-PTO the amount of cytosolic
cytochrome ¢ at 0.5puM staurosporin almost doubles.
This effect was even more pronounced for 8 uM nCpG-
5-PTO: at 0.1 and 0.5uM staurosporin a significant
increase of cytochrome ¢ was measured. At 1.0 uM stau-
rosporin the measured levels of cytochrome ¢ decreased
again indicating advanced apoptosis. On the morpholog-
ical level treatment with 1 pM staurosporin for 8 h induced
the enhanced formation of apoptotic bodies as visualized
by bisbenzimide staining (1 pg/ml) (Figure 10D). In the
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presence of 8 uM CpG-1-PTO this effect was considerably
enhanced (Figure 10D).

The release of cytochrome ¢ from mitochondria marks
the onset of the intrinsic apoptosis triggering initiator
caspase 9 activation. Quantitative detection of caspase 9
activity showed a significant amplification of the stauros-
porin effect (Figure 11A). These data are coherent in
respect to results shown in Figure 10C documenting the
activation of caspase 3/7 which are downstream from cas-
pase 9. A late event in apoptosis is the degradation of
DNA which can be quantitatively measure by the forma-
tion of histone associated DNA fragments. Figure 11B
shows that CpG-1-PTO and nCpG-5-PTO enhance the
pro-apoptotic effect of staurosporin while the hexamers

of both ODN (CpG-6-PTO, nCpG-6-PTO) do not indi-
cating that the apoptosis sensitizing effect of ODN
depends on the molecule length. Finally, the effect of
ODN on apoptosis was tested in the murine macrophage
cell line RAW264.7 (Figure 11C). In contrast to skin
epithelial cells CpG-1-PTO protect RAW264.7 cell from

staurosporin induced apoptosis, an effect already
documented (21).

DISCUSSION

In the present study we show that CpG-ODN,

nCpG-ODN and also natural DNA suppress PKB/Akt
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phosphorylation in epithelial skin cells. This is interesting
as a recent study shows that a CpG-ODN from the same
subclass (CpG-B) activates PK B/Akt in the mouse macro-
phage cell line RAW264.7 with an anti-apoptotic effect
(21). This experiment was confirmed by us with using
CpG-1-PTO. Likewise to this experiment others have
found that CpG-ODN delay the onset of apoptosis in
neutrophil granulocytes (24). Surprisingly, in our experi-
mental setting using epithelial cells we found that both,
CpG-ODN and also non-CpG-ODN sensitize cells for
apoptosis. These results support current data showing
that ODN trigger unexpected responses in epithelial skin
cells and epithelial tissues (15). In this article it was
demonstrated that the same ODN as used in the present
study offer anti-inflammatory properties.

Besides the huge amount of data documenting the
effect of CpG ODN on human cells there is increasing
evidence that also some non-CpG ODN have physiologi-
cal significance (9). Similarly, to CpG ODN also non-CpG
ODN can exert an immune stimulatory effect in human
leukocytes (25). Interestingly, the mode of stimulation
differs between both ODN entities, and in contrast to
CpG ODN non-CpG ODN support a Th2-biased
response (26,27). Of note, the signaling of certain
non-CpG-ODN require the presence of functional TLR-
9 (27), which is surprising as previous work suggested
that only CpG ODN, but not non-CpG ODN, trigger
TLRY9-mediated signaling (17,28,29). In contrast our
data show that suppression of PKB/Akt in skin keratino-
cytes by CpG ODN, and non-CpG ODN seems to
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Figure 10. CpG-1-PTO and nCpG-5-PTO amplify staurosporin-induced caspase 3, 7, 8 activity, cytochrome ¢ liberation and formation of apoptotic
bodies. HaCaT cells were treated with 8§ uM CpG-1-PTO or nCpG-5-PTO in the presence of 0.1, 0.5 and 1 uM staurosporin (STS). (A) After 24h
proteins were extracted and analyzed for degradation of caspase 3 and 8. The blot shows representative results. (B) After 24 h caspase 3/7 activity
was assessed using a commercial assay as described under ‘Materials and Methods’ section. Activity of untreated cells was set to 100%. Each bar
represents the mean of four parallel experiments; the standard deviations are indicated (* P < 0.05). (C) After 14 h a cytosolic extract was analyzed for
cytochrome ¢. Each bar represents the mean of four parallel experiments; the standard deviations are indicated (*P < 0.05) (D) Cells were treated with
8uM CpG-1-PTO and 1uM STS for 8 h. Then cells were fixed and apoptotic bodies were stained using bisbenzimide (1 pg/ml). Experiments were

repeated with similar results.

be independent from TLR-9 signaling as displayed by
dominant-negative expression of TLR-9 and the adaptor
protein MyDS88. Instead a dependency from ODN lengths,
sequence and backbone was demonstrated. The relevance
of these parameters was also shown for immunostimula-
tion by non-CpG ODN (25). Similar to our findings phos-
phorothioates with lengths longer than 18 nucleotides
offer high stimulatory effects on B-cells. Interestingly,
these authors found thymidine-rich sequences more
effective than sequences with high amounts of cytosine.
Our data regarding PKB/Akt suppression show that
a sequence solely consisting of cytosines (nCpG-5-PDE)
is more effective than CpG-1-PDE with an amount
of almost 30% thymidines. Although, ODN with

phosphodiester bondings and also naturally occurring
DNA derived from bacteria and salmon sperm have the
potential to suppress PKB/Akt the presence of phos-
phorothiates amplified the efficacy.

The kinase PKB/Akt plays an important role in the
suppression of apoptotic cell death (30,31). Proximal
from surface receptors, the phosphoinositide 3-OH
kinase (PI3K) conveys activation of PKB/Akt via phos-
phoinositide-dependent kinases (PDK). It has been
demonstrated that PDK-1 phosphorylates PKB/Akt
at threonine-308 (32), whereas the mechanism of the
serine-473 phosphorylation is still under debate (33,34).
Treatment with ODN as performed in this study causes
suppression at both relevant phosphorylation sites,



3862 Nucleic Acids Research, 2009, Vol. 37, No. 12

A 500 <
o~ A
*x*
S 400 F -
§ T
5 300 = i
é e *
[n)]
= 200 - .
w
(03
[&]
100 - i
STS - 0105 - 0105 - 01 05
CpG-1-PTO  nCpG-5-PTO
B *
1000 T
*x*
< 800 =
(] *
=i
2w - -
O * l
]
@S T icd
®E 400 L
g O
S5 i
(Ii’é 200 ﬁ = |L|
STS - 001005 - 001005- 0.01005- 001005 - 001005
CpG-1-PTO  CpG-6-PTO nCpG-5-PTO nCpG-6-PTO
C
600 =
< 500
(] *
T 400
g B i
UM
S = 300 =
(7,
o C
@ S 200
EB *x* *
B 2 100 (T "‘r T
N g 263 *
A Al el
STS - 001 005 - 001 005 - 001 005
CpG-1-PTO 2uM EMY
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presence of 0.1, 0.5 and 1 uM staurosporin (STS). (A) After 24h caspase 9 activity was assessed using a commercial assay as described under
‘Materials and Methods’ section. Each bar represents the mean of four parallel experiments; the standard deviations are indicated (*P <0.05).
(B) After 24h cytoplasmic histone associated DNA fragments were assessed as described under ‘Materials and methods’ section. The effect of
20-mers (CpG-1-PTO, nCpG-5-PTO) was compared to hexamers (CpG-6-PTO, nCpG-6-PTO). Each bar represents the mean of four parallel
experiments; the standard deviations are indicated (*P < 0.05). (C) The murine macrophage cell line Raw267.7 was treated with STS and different
amounts of CpG-1-PTO. After 24h cytoplasmic histone associated DNA fragments were assessed as aforementioned. Each bar represents the
mean of four parallel experiments; the standard deviations are indicated (*P < 0.05).



although the lack of only one of these sites abrogates
PKB/Akt signalling (35). PKB/Akt is known to control
a plethora of molecules involved in apoptosis (31,36).
Interestingly, treatment with ODN in the absence of an
additional pro-apoptotic stimulus is not sufficient to trig-
ger apoptosis. Moreover, in the presence of staurosporin
the onset of apoptosis becomes facilitated. Our data
provide evidence for an activation of the mitochondrial
apoptosis machinery as documented by elevated
cytchrome ¢ levels in response to ODN treatment.
Suppression of PKB/Akt leads to activation of the BCL-
2 homology-3 domain-only proteins BIM and BAD which
in turn mediate the release of cytochrome ¢ (37,38). The
release of cytochrome ¢ from mitochondria marks the
onset of the intrinsic apoptosis with subsequent activation
of caspase-9 and caspase-3 (39). Furthermore, the activa-
tion of caspase-8, the increase of histone associated DNA
fragments and the presence of apoptotic bodies indicate
a massive induction of apoptosis at different stages.

More distal we found a suppression of the epidermal
growth factor receptor (EGFR) by CpG-1-PTO, and
particularly nCpG-5-PTO after stimulation with TGFa.
The EGFR is characterized as a key element in the down-
stream signaling to PKB/Akt (40-42). Rockwell et al. (43)
showed that the polyanionic nature of phosphorothiates
enables interaction with proteins of the cell surface.
Particularly, a specific inhibition of protein tyrosine
receptors including EGFR was found. We speculate that
the high amount of EGFR on epithelial cells may con-
tribute to the selective action of ODN presented in this
article.

Our findings suggest that ODN and particularly
phosphorothioates are interesting pharmacological com-
pounds in the treatment of hyperproliferative skin diseases
such as psoriasis or actinic keratosis. It could be specu-
lated that ODN containing preparations help to lower
the concentration of pro-apoptotic compounds with
toxic side effects maintaining similar clinical effects.
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