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1
I N T R O D U C T I O N

Photoionization is one of the archetypal quantum-mechanical phenonema. Here,
the photon transfers all its energy to a bound electron, which uses a fraction
of it to overcome the binding energy and takes the rest as kinetic energy. The
effect was arguably among the most important topics of 20th-century physics
and it is still investigated in modern day research. Its explanation is attributed to
A. Einstein [1], who developed it from M. Planck’s quantum theory of radiation [2].

The present work deals with photoionization in the realm of the absorption of
one single photon—as opposed to strong-field ionization (see p. 8). The formal
treatment of one-photon ionization usually employs a semi-classical approach,
where the electron’s initial and final states are described as quantum-mechanical
wave functions but the photon is treated as a classical electromagnetic wave (see
p. 9). In the calculation of photoionization cross sections with this semi-classical
method, there is an often used approximation which is called the electric dipole
approximation. Mathematically, the application of the dipole approximation cor-
responds to truncating the series expansion of an exponential after the leading
term (see Eq. 3.13). Physically, this means neglecting the linear photon momentum
and the spatial dependence of the light field. The dipole approximation is valid
if the wavelength of the light is much larger than the spatial extent of the target
and if the photon momentum is small compared to the momenta of the reaction
products, which is generally the case for photon energies short above the electron
binding energy.

For the present work, we experimentally investigated nondipolar photoionization, i.e.,
one-photon ionization at high photon energies where the dipole approximation
breaks down. In our experiments, we irradiated single atoms and molecules with
such high-energetic photons and measured the three-dimensional momentum
distributions of the reaction fragments to uncover the effects of the linear photon
momentum and the spatially-dependent light field on photoionization. Our ob-
servations allow the first profound insight into photoionization that reveals all
photon properties, i.e., photon energy, spin, linear momentum, and the speed of
light. Hopefully, our efforts make a constructive contribution to the understanding
and the further exploration of light-matter interaction.
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2
T H E L I G H T P H A S E A N D T H E P H O T O N M O M E N T U M

The present work deals with ionization of single atoms and molecules (the targets)
upon absorption of single photons beyond the electric dipole approximation, i.e.,
with nondipolar photoionization. The dipole approximation is a simplification
used regularly within the semi-classical formalism of light-matter interaction,
which will be discussed in Ch. 3. The dipole approximation is valid at small
photon energies where both of the following conditions are fulfilled:

1. The light wavelength λ is much larger than the spatial extent of the target
and the light phase is therefore nearly constant over the whole relevant
region of space.

2. The photon momentum is negligibly small compared to the momenta of the
reaction fragments.

Accordingly, dipolar photoionization is driven by the photon energy and the
photon spin alone, but the photon momentum and the spatial dependence of the
light phase play no role.
The experiments conducted for this work do not meet the requirements of the
dipole approximation. The present chapter introduces the two additional light
properties that come into play here.

The light phase

Light is an electromagnetic wave. The electric field and the orthogonal magnetic
field of the light wave oscillate in phase. To inspect the light phase, one can
therefore simply consider the electric field independently. The electric field vector
E of a light wave is given by

E(r, t) ∝ ǫ̂ sin (kγ · r − ωt) = ǫ̂ sin ϕ , (2.1)

where r is the position vector, t is the time, ǫ̂ is the polarization direction vector,
ω is the angular frequency, and kγ is the wave vector that specifies the light
propagation direction with the magnitude kγ = 2π/λ.1 For a certain time and
position, the light phase ϕ, which is given in radians, indicates the state of the
electric field vector within the wave’s oscillatory cycle.
The Bohr radius a0—the most probable distance between the electron and the
proton in a hydrogen atom—is a reasonable estimate for the magnitude of the
target’s spatial extent in photoionization. Figure 2.1 A shows a common illustration
of the electric dipole approximation. Here, the light phase is constant over the
whole relevant region of space, because the wavelength is much larger than the
Bohr radius. For short wavelengths, this approximation breaks down, as indicated
in Fig. 2.1 B. Here, the spatially extended target experiences different light phases
at any point in time.
The wavelength and the photon energy Eγ are related through Eγ = hc/λ, where
c is the speed of light and h is the Planck constant. The photon energies used in

1Throughout this work, vectors are set in bold italics (a). Vectors of unit length are denoted likewise
with an additional circumflex ("hat", â). The magnitude of a vector is set in non-bold italics, as are
scalar components (a, ax). Also, the center dot is reserved for the vector dot product. If the intended
meaning is multiplication, either the multiplication symbol (×) is used or there is no space between
the two parts of the expression. A multiplication symbol between two vectors denotes the vector cross
product (a × b).
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the light phase and the photon momentum

the present work range from 300 eV to 2160 eV, which corresponds to wavelengths
from 41.33 Å (≈ 78 × a0) to 5.74 Å (≈ 11 × a0). Even though these wavelengths
are still larger than the Bohr radius, the results presented in this work cannot be
explained by means of the dipole approximation alone.

E

 k̂γ

A

λ≫ a0

 ∆ϕ=2kγ a0

 λ=10a0

E

 k̂γ

B

Figure 2.1: Snapshot of a hydrogen atom (red) exposed to a linearly polarized electromag-
netic wave. (A) Electric dipole approximation: The light wavelength λ is much
larger than the Bohr radius a0, the electric field (blue) has no spatial depen-
dence, and the light phase is constant over the whole relevant region of space.
(B) Wavelength and Bohr radius have the same order of magnitude and the light
phase is spatially dependend.

In the corresponding literature, the spatially-dependent light phase provides the
prevailing interpretative approach for the effects associated with nondipolar pho-
toionization, but the role of the photon momentum is hardly given any attention
(see, e.g., Refs. [3, 4] for reviews). This is probably because nondipole studies
usually focus on the momentum distributions of photoelectrons, while the photon
momentum is mostly imparted onto the center of mass of the ionized target—
which is essentially given by the photoion (see p. 6). In the present work, we go
beyond such an incomplete view of photoionization and specifically search for the
photon momentum contribution in the ion momentum distribution.

The photon momentum

In his magnum opus titled A Treatise on Electricity and Magnetism that was published
in 1873, J. C. Maxwell states that an electromagnetic wave exerts a radiation
pressure parallel to its propagation direction [5]. The cause for this radiation
pressure is the linear momentum carried by the wave. An expression for this
momentum can be derived from the total Lorentz force acting on a charged
particle and Newton’s second law:

dpmech

dt
= q(E + v × B) , (2.2)

where pmech is the mechanical momentum of the particle, q is its charge, and v

is its velocity. E and B are the electric and magnetic field vectors of the wave.
Using the Maxwell equations and vector calculus (see, e.g., Ref. [6] for a detailed
derivation), Eq. 2.2 can be transformed into

dpmech

dt
+ ǫ0µ0

d

dt

∫

V
S dV =

∮

A
T dA , (2.3)

where ǫ0 is the vacuum permittivity, µ0 is the vacuum permeability, T is the
Maxwell stress tensor, and S is the Poynting vector. While the Poynting vector
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the light phase and the photon momentum

represents magnitude and direction of the energy-flux density of the electromag-
netic wave, the Maxwell stress tensor accounts for the interaction between the
Lorentz force and the mechanical momentum. Hence, the right-hand side of Eq. 2.3
describes the momentum flow per unit area across the surface A into the volume
V that acts on the combined system of particles and fields inside V. Without such
external interaction, the rate of change of mechanical momentum of a particle
interacting with the electromagnetic wave is given by

dpmech

dt
= −ǫ0µ0

d

dt

∫

V
S dV . (2.4)

Hence, the following expression describes the momentum carried by the electro-
magnetic wave inside volume V:

pem = ǫ0µ0

∫

V
S dV . (2.5)

In case of a monochromatic plane wave propagating parallel to the unit vector x̂,
the Poynting vector is simply given by

S = cux̂ , (2.6)

where c is the speed of light and u is the volumetric energy density of the
electromagnetic wave. With Eq. 2.6 substituted into Eq. 2.5, the momentum of the
electromagnetic wave becomes

pem = ǫ0µ0cx

∫

V
u dV =

Eem

c
x̂ , (2.7)

where Eem is the energy of the electromagnetic wave inside volume V and where
we have used the fundamental relation ǫ0µ0c2 = 1. Accordingly, the momentum
of an electromagnetic wave equals its energy divided by the speed of light.
Depending on the circumstances of the observation, light possesses wave- or
particle-like properties. The particle nature of electromagnetic radiation was first
acknowledged by A. Einstein in 1905: Studying the photoelectric effect led to him
to the conclusion that light consists of energy quanta [1]. The term photon for these
packets of light was later coined by G. Lewis in 1926 [7]. The photon momentum
is given by2

pγ =
Eγ

c
x̂ , (2.8)

where Eγ is the photon energy. This relation follows from Eq. 2.7 if one thinks
of the photon as a point-like particle that condenses its energy density u into an
infinitesimally small volume element.
However, Eq. 2.8 can also be derived from the relativistic energy-momentum
relation of a particle,

E2 = (pc)2 + (m0c2)
2

, (2.9)

where E is the total energy of the particle, p is its momentum, and m0 is its rest
mass [8]. As the photon is a massless particle, Eq. 2.8 follows directly from Eq. 2.9
with m0 = 0.
For easier use in our conventional units, we can rewrite Eq. 2.8 as

pγ[au] =
Eγ[eV] · e

c
· a0

h̄
≈ Eγ[eV]

3729
, (2.10)

2Throughout this work, p indicates a momentum vector, while |k| = k = 2π/λ describes a wave
vector, where λ is the wavelength of the wave. The relation p = h̄k applies for light and matter waves.
Only in atomic units, where h̄ = 1, p and k can be used interchangeably.
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the light phase and the photon momentum

where e is the elementary charge, a0 is the Bohr radius, and h̄ is the reduced Planck
constant (all in SI units). Note that h̄/a0 equals 1 au of linear momentum.

The radiation pressure of light drad is closely related to the linear momentum.
Radiation pressure is a many-particle phenomenon and an expression can be
derived considering the rate of momentum change of a continuous stream of
photons:

drad =
d

dt

Nkγ

A
=

d

dt

NEγ

Ac
=

I

c
, (2.11)

where N is the number of absorbed photons impinging perpendicular on the area
A during the time dt, and I is the intensity of the photon beam. Note that the
notion of a radiation pressure is obsolete for one-photon ionization of atoms and
molecules because no intensity can be assigned to a single photon.

Kinematics of photoionization

The prediction of detailed three-dimensional momentum distributions of the
final-state reaction fragments of photoionization requires quantum mechanical
calculations. However, considering the photon momentum, the photon energy,
and the respective conservation laws, one can derive boundary conditions for
these momentum distributions (see, e.g., Ref. [9]). With the least amount of free
parameters, this becomes particularly useful in the case of one-photon single
ionization, i.e., the emission of only one electron upon photoabsorption. Here, the
momentum conservation law dictates that

pe + pi = pγ , (2.12)

where pe and pi are the momentum vectors of the emitted electron (photoelec-
tron) and the recoiling ion (photoion). Furthermore, the conservation of energy
determines that

pe
2

2me
+

pi
2

2mi
= Eγ − Ebin , (2.13)

where me and mi are the electron and ion masses, and Ebin is the binding energy of
the electron. Here, we assume that the target system is in the energetic ground state
prior to and after the photoabsorption. For absorption of a photon propagating
in x̂ direction and with Eq. 2.12 substituted into Eq. 2.13, we get the following
relation

me pi,x
2 + mi(pγ − pi,x)

2

2memi
+

(me + mi)(pi,y
2 + pi,z

2)

2memi
=

Eγ − Ebin . (2.14)

Through an intermediate step,

pi,x
2 − 2mi pγ pi,x

me + mi
+

mi pγ
2

me + mi
× me + mi

me + mi
+ pi,y

2 + pi,z
2 =

2memi

me + mi
(Eγ − Ebin) , (2.15)

Eq. 2.14 can be transformed into its final form
(

pi,x −
mi

me + mi
pγ

)2
+ pi,y

2 + pi,z
2 =

2memi

me + mi
(Eγ − Ebin)−

memi

(me + mi)2 pγ
2 , (2.16)
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the light phase and the photon momentum

which is the equation of a sphere in momentum space for the ion. The right-
hand side of the equation is the square of the radius and the correction to the x̂

component of the ion momentum on the left-hand side indicates that the sphere is
not centered at the origin but shifted in positive x̂ direction. This shift indicates
that the photon momentum is shared among the reaction fragments proportional
to the ratios of the individual masses to the combined mass. Because mi ≫ me,
the photon momentum appears almost alone in the measured ion momentum
distributions (see Ch. 10).
However, the above derivation only holds true for single ionization. In case of dou-
ble (or multiple) ionization, there are additional free parameters and the relations
are less straightforward. For example, as outlined in Ch. 11, the photon momentum
can be imparted onto the electrons alone in one-photon double ionization.
If the photon momentum is small compared to the momenta of the reaction frag-
ments, the terms in Eq. 2.16 that depend on pγ can be neglected. At small photon
energies, where the electric dipole approximation is valid, this simplification is
usually justified. On the other hand, this indicates how the high photon ener-
gies used in this work are favorable in order to uncover the effect of the photon
momentum on photoionization.

Short review of photon momentum studies

Due to their close relationship, the photon momentum and the radiation pres-
sure share a similar research history. After Maxwell’s prediction of the radiation
pressure in 1873, it took nearly 30 years for experiments to follow up. But then in
1901, even two independent experimental reports confirmed the existence of the
radiation pressure. On the one hand, E. Nichols and F. Hull reported on the use
of a torsion balance to measure the radiation pressure of the focused light of an
electric light bulb [10]. In the same year, P. Lebedew published results of a similar
experimental setup that measured the radiation pressure of light emitted by an
arc lamp [11].
A process in which the momentum of single photons plays an important role is
the Compton effect. A. H. Compton received the Nobel Price in Physics in 1927

for its discovery [12]. The Compton effect describes the scattering of a photon by
an electron that receives energy due to the momentum transferred onto it. In his
experiment, Compton examined the wavelength of X-rays reflected from a graphite
block and compared it to the direct X-rays. The photon’s loss of energy to the
electron became observable by the change of the light’s wavelength. The Compton
effect and its quantum-mechanical description are still investigated today (see, e.g.,
Ref. [13]).
The first demonstration of the photon momentum’s influence on single atoms
was performed by O. R. Frisch in 1933 [14]. In his experiment, Frisch showed that
a beam of sodium atoms is deflected upon absorption of light emitted from a
sodium spectral lamp.
At the end of the twentieth century, the photon momentum became the basis of
some interesting applications. For instance, in 1997 the Nobel Prize in Physics was
awarded to S. Chu, C. Cohen-Tannoudji and W. D. Phillips for their development
of laser cooling, a technique that makes use of the linear momentum of light to
trap and cool atoms with lasers [15]. Another intriguing example for an application
of the radiation pressure are space propulsion techniques using solar-sails. This
space technology is believed to support human and robotic exploration of the
solar system in the future [16].
In recent years, the role of the photon momentum in photoionization received
renewed interest from the side of fundamental research. The photoionization
process can be considered in the one-photon (photoelectric effect) and strong-field
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the light phase and the photon momentum

ionization regimes. In one-photon ionization, the energy of the absorbed photon
must be larger than the binding energy of one or more electrons. For strong-field
ionization, the photon-density in the focus of a laser beam must either be large
enough for multiphoton absorption to take place, or the electric field has to be
strong enough to distort the potential barrier in such a way that the electron tunnels
through it (see, e.g., Ref. [17] for a comprehensive work on strong-field ionization).
In 2014, S. Chelkowski et al. addressed the question of how the photon momentum
is shared between the electron and the ion in these different photoionization
regimes [18]. For strong-field ionization and for the photoelectric effect, they
derived similar scaling rules for the average momentum shift of the reaction
fragments in light propagation direction as function of the photon momentum.
For strong-field ionization, these predictions were experimentally confirmed by
A. Hartung et al. in 2019 [19] and a comprehensive study of the general role of
the photon momentum in strong-field ionization can be found in Ref. [20]. The
experimental confirmation of Chelkowski’s photon momentum scaling rules for
one-photon ionization (Eqs. 10.1 & 10.2) is covered in Ch. 10 of this work.
Recently, K. Lin et al. further investigated nondipole effects in strong-field ioniza-
tion. They found experimental evidence, that the energies of electrons depend on
the emission direction because of the interaction between the moving electrons
with the incident laser pulse [21].
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3
T H E P H O T O I O N I Z AT I O N C R O S S S E C T I O N

The photoionization cross section σ quantifies the probability for the emission of an
electron from an atom or molecule upon absorption of a photon. The cross section
is traditionally given as an area in terms of barn [b], where 1 b = 10−28 m2. In order
to estimate the reaction rate for an experiment, the cross section is multiplied
by the photon current and the areal density of target particles. Vice versa, the
cross section of a particular reaction can be determined in a dedicated experiment
through measuring the reaction rate, if the current of projectiles and the areal
density of target particles are known.
Usually, the cross section is not examined in absolute terms but as function of one
or more parameters of the initial and final states of the reaction. For instance, the
cross section for one-photon single ionization of a certain atom is commonly given
as function of the photon energy and the energy level of the bound electron in
the initial state [22]. Another example is the emission probability of an electron in
photoionization as function of angles in a certain frame of reference (see Ch. 4).
Such a cross section is called differential and one has to integrate over (all) the free
parameters to get the (total) integrated cross section.
Integrated and differential cross sections are used throughout this work to compare
theoretical predictions and experimental results. How the experimental results
were obtained is the subject of Part II and the theoretical methods are referenced
appropriately. Nevertheless, the following paragraphs provide a general overview
and a minimal example on how the cross section can be calculated from quantum
theory, which is partly adapted from Ref. [23].

Semi-classical description of light-matter interaction

In quantum mechanics, a stationary physical system can be described by the
time-independent Schrödinger equation,

ĤΨ = EΨ, (3.1)

where Ĥ is the Hamilton operator,1 E is the system’s energy, and Ψ is the wave
function that characterizes the stationary state of the system (i.e., all observables
are independent of time). Equation 3.1 is an eigenvalue equation and the wave
function Ψ is an eigenfunction of the Hamilton operator with the corresponding
eigenvalue E.
For single-photon ionization of atoms and molecules, the quantum mechanical
treatment can be limited to the description of the free (a.k.a., continuous) and the
bound electrons, while the light is treated as a classical electromagnetic wave (see,
e.g., Ref. [24]).
In this semi-classical approximation, one mathematical method used regularly
to calculate cross sections is the time-dependent perturbation theory, which is
valid in situations where the perturbation is so weak that is does not distort the
initial and final states (see, e.g., Ref. [25]). Perturbation theory splits the system’s
Hamilton operator Ĥ into an unperturbed part Ĥ0, whose eigenvalue problem has
been solved, and a part of a small perturbation Ĥp. In photoionization, the light
accounts for the perturbation and the interaction of the photon with the system is
described by the interaction Hamiltonian Ĥint.

1Throughout this work, operators of quantum theory are set in non-bold italics with an additional
circumflex ("hat",Ĥ).
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the photoionization cross section

The probability for a transition from the initial state Ψi to the final state Ψ f upon
photoabsorption is proportional to the squared modulus of the complex-valued
transition amplitude (a.k.a., the transition matrix element),

Pi→ f ∝
∣

∣Mi→ f

∣

∣

2 × δ(E f − Ei − Eγ) , (3.2)

where the Dirac delta function δ expresses energy conservation and the transition
amplitude is given by

Mi→ f =
∫

d3r Ψ∗
f Ĥint Ψi , (3.3)

where Ψ∗
f is the complex conjugate of Ψ f and d3r = dx dy dz. The photoionization

cross section is given by

σ = 4π2αEγ

∣

∣Mi→ f

∣

∣

2 , (3.4)

where α is the fine-structure constant (see, e.g., Ref. [23] for an extensive derivation).
Hence, in order to estimate the photoionization cross section we need to find
expressions for the initial and final states of the reaction, and for the interaction
Hamiltonian.

Initial-state wave function

To derive an expression for the initial-state wave function, we consider electrons
trapped in a single-center Coulomb potential of an atomic nucleus of charge Z.
For a N-electron atom, the nonrelativistic Hamilton operator is then given by

Ĥ =
N

∑
i=1

(

−h̄2∇i
2

2me
− Ze2

4πǫ0ri

)

+
N

∑
i>j=1

e2

4πǫ0rij
, (3.5)

where ∇i is the partial derivative operator ( ∂
∂xi

, ∂
∂yi

, ∂
∂zi

),2 ri is the distance between
nucleus and electron i, me is the electron mass, e is the electron charge, ǫ0 is
the vacuum permittivity, and rij is the distance between electrons i and j [24].
Accordingly, for a hydrogen-like atom (N = 1) the Hamilton operator simply
becomes

Ĥ =
−h̄2∇2

2me
− Ze2

4πǫ0r
. (3.6)

With Eq. 3.6 inserted into Eq. 3.1, the following wave functions are exact analytic
solutions (eigenfunctions) of the single-electron Schrödinger equation

Ψnℓm(r, ϑ, ϕ) = Rnℓ(r)Yℓm(ϑ, ϕ) , (3.7)

where the tuple (r, ϑ, ϕ) characterizes the radial distance from the origin, the polar
angle, and the azimuthal angle in a spherical coordinate system centered at the
nucleus [26]. Rnl(r) expresses the radial dependence and Yℓm(ϑ, ϕ)—the spherical
harmonics (see Eq. 4.8)—describe the angular dependence of the wave function.
The radial part is given by

Rnℓ(r) =

√

(

2Z

na0

)3 (n − ℓ− 1)!
2n((n + ℓ)!)

e−ρ/2 ρℓ L2ℓ+1
n−ℓ−1(ρ) , (3.8)

where a0 is the Bohr radius, ρ is shorthand for ρ = 2Zr/(na0), and L2ℓ+1
n−ℓ−1(ρ) are

the associated Laguerre polynomials.

2Note that −ih̄∇ is the position space representation of the momentum operator P̂.
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the photoionization cross section

The principal quantum number n indicates the energy levels (eigenvalues) of the
state,

En = −Z2

n2 × 13.6 eV , (3.9)

the second quantum number ℓ determines its orbital angular momentum (ℓ =
0, ..., n − 1), and the magnetic quantum number m indicates the projection of ℓ
onto the quantization axis (m = −ℓ, ..., 0, ..., ℓ).
The square of a wave function like Eq. 3.7 describes the spatial probability density
of the electron as function of the angular coordinates and the distance from the
nucleus. This probability density is shifted further away from the nucleus with
increasing n. Hence, the principal quantum number (n = 1, 2, 3, ...) is often termed
electron shell (K, L, M,...) and the K-shell is closest to the nucleus. Similarly, the
second quantum number (ℓ = 0, 1, 2, 3, ...) is called the subshell (s, p, d, f ,...). For
a certain set of quantum numbers, a position space wave function like Eq. 3.7 is
called an atomic orbital.
In all experiments conducted for this work, the photoelectron originates from the
K-shell of the atom or molecule. For K-shell photoionization, the photoelectron’s
initial state is characterized by n = 1 and ℓ = m = 0. With these quantum numbers,
we get the following expressions

Y00(ϑ, ϕ) =

√

1
4π

, L0
0(ρ) = 1 , and R10(r) =

√

4Z3

a3
0

e−Zr/a0 .

Hence, in the hydrogen approximation—i.e., neglecting all electrons other than the
photoelectron—the ground-state wave function of an electron in a hydrogen-like
atom of nuclear charge Z becomes

Ψ100(r) =

√

Z3

πa3
0

e−Zr/a0 . (3.10)

Later, we will use such a hydrogen-like one-electron wave function as the initial
state for Eq. 3.3.
Beyond the hydrogen approximation, the electron-electron interaction (right sum
term in Eq. 3.5) prevents solving the eigenvalue problem exactly. Even the two-
electron Schrödinger equation for the helium atom has no exact analytic solution.
There are two conceptionally different ways to approach this problem. Either the
electron-electron interaction is ignored and the many-electron wave function is
written as the product of many hydrogen-like one-electron wave functions with
an appropriate Z (see, e.g., Ref. [27]), or numerical solutions of the Schrödinger
equation are used (see, e.g., Ref. [28] for an overview of numerical approaches to
describe the photo-double-ionization process of helium).

Interaction operator and electric dipole approximation

The interaction Hamiltonian for Eq. 3.3 can be obtained upon substituting the
momentum operator −ih̄∇ in Eq. 3.6 by −ih̄∇+ |e|

c A(r, t), where A(r, t) is the
light’s vector potential that describes the interaction of the electron with the
time-dependent external electromagnetic radiation.
As shown in Ref. [24], the vector potential has the form

A(r, t) ∝ ǫ̂ ei(kγ ·r−ωt) , (3.11)

and the interaction Hamiltonian can be isolated from the unperturbed Hamiltonian
and written as

Ĥint ∝ −ih̄∇ · ǫ̂ eikγ ·r e−iωt , (3.12)

11



the photoionization cross section

where ǫ̂ is the direction of the light polarization, ω is the angular frequency of the
radiation, and kγ is the light’s wave vector with magnitude kγ = pγ/h̄. This sim-
plified form of the interaction Hamiltonian uses the Coulomb gauge for A, where
∇ · A = 0, and it neglects the A2 term that accounts for two-photon processes like
the incoming and the outgoing photon in Compton scattering (see, e.g., Ref. [13]).

The eikγ ·r term from the interaction Hamiltonian can be expanded as

eikγ ·r = 1 + ikγ · r + O(kγ
2) , (3.13)

and replacing eikγ ·r by 1 in Eq. 3.12 indicates the application of the electric dipole
approximation of light-matter interaction. Application of the dipole approximation
is synonymous to neglecting the photon momentum and the spatially-dependent
light phase: If pγ = 0, then kγ = 0 and eikγ ·r = 1.

The present work demonstrates that the dipole approximation is not valid in
general for photoionization at photon energies between 300 eV and 2160 eV.
However, the influence of nondipole terms on the absolut cross section is very
small (see Ch. 4, p. 19) and for the remainder of the present chapter we set pγ = 0
accordingly.
To gain an explicit expression for the dipole interaction Hamiltonian, we assume
linear polarization parallel to the ẑ direction, where ∇ · ǫ̂ becomes ∂

∂z . We also
drop the term term e−iωt, because it becomes |e−iωt|2 = 1 when the modulus of
transition amplitude is squared to get the transition probability. Hence, we can
use

Ĥint =
−ih̄

meω

∂

∂z
, (3.14)

in Eq. 3.3 [23].

Final-state wave function and Born approximation

Eventually, we need an expression for the final-state wave function. As shown
by H. Bethe and E. Salpeter [29], the continuum state of the photoelectron can
be approximated as a free wave at high but non-relativistic energies, i.e., if Ip ≪
Eγ ≪ mec2, where Ip is the binding energy and mec2 ≈ 511 keV is the rest mass
of the electron. Bethe and Salpeter applied the so-called Born approximation [30]
to photoionization and neglected the interaction between the photoelectron and
the residual charged particles, i.e., the nucleus and other electrons in case of a
multi-electron system.
The Hamilton operator of the interaction-free particle is given by

Ĥ =
−h̄2∇2

2me
, (3.15)

and a solution of the corresponding Schrödinger equation that can be used in
Eq. 3.3 is the normalized plane wave

Ψk(r) =

√

mek

(2π)3h̄2 eik·r , (3.16)

where k is the electron wave vector with magnitude k = p/h̄ [23].
For more accurate calculations of photoionization cross sections beyond the Born
approximation, final-state wave functions can take the form of Coulomb waves
(see, e.g., Ref. [31]), or Hartree-Fock waves (see, e.g., Ref. [32]). While Coulomb
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waves account for the behavior of the electron in a Coulomb potential, the Hartree-
Fock method provides an approximation for the correlated wave function of a
many-electron system.

Transition amplitude and cross section

With Eqs. 3.14 & 3.16 substituted into Eq. 3.3, the transition amplitude becomes

Mi→ f =

√
k

h̄ω
√

me
(2π)−(3/2)

∫

(

−ih̄
∂

∂z
e−ik·r

)

Ψi(r) d3r . (3.17)

Here, the differential operator acts on the final state instead of the initial state,
which is allowed because of the identity

∫

Ψ f
∗ (ÔΨi

)

d3r =
∫

(

ÔΨ f

)∗
Ψi d3r (3.18)

for each Hermitian operator Ô including Ĥint. The plane-wave final state e−ik·r is an
eigenstate of −ih̄ ∂

∂z , which is the momentum operator parallel to the polarization
direction. The corresponding eigenvalue is h̄k cos ϑ, where ϑ is the angle enclosed
by the electron momentum vector and the photon polarization direction. Hence,
we can substitute −ih̄ ∂

∂z e−ik·r by h̄k cos ϑ e−ik·r and Eq. 3.17 becomes

Mi→ f =
k(3/2)

ω
√

me
cos ϑ (2π)−(3/2)

∫

e−ik·r Ψi(r) d3r . (3.19)

Furthermore, the integral can be substituted by the Fourier transform of the
initial-state wave function in position space,

Ψi(k) = (2π)−(3/2)
∫

e−ik·r Ψi(r) d3r , (3.20)

where Ψi(k) is the initial state in momentum space.3

Exact analytic expressions for the momentum-space wave functions of hydrogen-
like atomic orbitals can be obtained directly from solving the respective Schrödinger
equation in momentum representation (see, e.g., Ref. [34]). Here, we use an approx-
imation for large electron momenta from Bethe and Salpeter (Ref. [29], Eq. 70.4)
for initial ns states,

Ψn(k) =
2
√

2
πa0

(5/2)
× Z(5/2)

n(3/2)|k|4
. (3.21)

Accordingly, we can rewrite Eq. 3.19 as

Mi→ f =
2
√

2
πω

√
mea0

(5/2)
× Z(5/2)

n(3/2)k(5/2)
cos ϑ , (3.22)

and the squared modulus of the transition amplitude as

∣

∣Mi→ f

∣

∣

2
=

8
π2ω2mea05 × Z5

n3k5 cos2 ϑ . (3.23)

Before we insert the latter expression into Eq. 3.4 to calculate the cross section,
we make use of the following approximation: If the photon energy is much larger

3As suggested by Eqs. 3.19 & 3.20, photoionization is sometimes referred to as "simply" the Fourier
transform of the initial position-space wave function of the electron. Also, these relations support the
idea that the final-state momentum of the photoelectron must be present in its initial state already, which is
taught to Physics students at the Goethe University Frankfurt and which was used in Ref. [33] for the
imaging of a molecular wave function.
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than the binding energy of the photon, the photon and electron have roughly the

same energy, i.e., h̄ω = Eγ ≈ (h̄2k2)/(2me). Hence, we can insert k =
√

2meEγ/h̄2

into Eq. 3.23 and arrive at the expression

dσ

dΩ
=

32αEγ h̄2

mea05ω2h̄2 × Z5h̄5

n3(2meEγ)
(5/2)

cos2 ϑ

=
32αh̄7

2(5/2)me
(7/2)a05

× Z5

n3 Eγ
(7/2)

cos2 ϑ , (3.24)

which is the angle-differential cross section and integration over all angles yields
the integrated cross section

σ =
128παh̄7

3 × 2(5/2)me
(7/2)a05

× Z5

n3 Eγ
(7/2)

. (3.25)

For easier use in the conventional units, we can rewrite Eq. 3.25 as

σ[b] = 5.09 × 1011 Z5

n3 (Eγ[eV])(7/2)
. (3.26)

Equation 3.26 correctly reflects the key attributes of the cross section at high
energies: On the one hand, the quick drop for higher electronic shells (σ ∝ n−3)
and for increasing photon energies (σ ∝ E−7/2

γ ). On the other hand, the rapid
growth with higher proton numbers (σ ∝ Z5). However, at photon energies close
to the ionization threshold Ip—where the Born approximation breaks down—Eq.
3.26 dramatically overestimates the cross section.
By means of two adjustments, the accuracy of the approximation can be consider-
ably improved for the photon energies and reaction targets used in the present
work. First, we can use an exact momentum-space wave function instead of Eq. 3.21

for the calculation of the transition amplitude (see Eqs. 8.10 & 70.6a in Ref. [29]
and Eq. 5.79 in Ref. [23]). Second, we can abandon the hydrogen approximation
and use the effective nuclear charge Ze f f [35] (instead of Z) that accounts for the
shielding of the nuclear charge in a many-electron atom. Accordingly, Eq. 3.26

becomes

σ[b] = 5.09 × 1011
Z5

e f f (Eγ − Ip)(3/2)

n3 (Eγ)
5 , (3.27)

where the unit of all energies is eV. Accurate values for Ze f f can be found in
Ref. [36].
The predictions of Eq. 3.27 for the 1s-shells of hydrogen, helium and nitrogen
atoms are shown in Fig. 3.1 and tabulated in Tab. 3.1 for some relevant energies.
As the neutral helium and nitrogen atoms have two 1s electrons in their ground
states, the corresponding results of Eq. 3.27 have been doubled for the display in
Fig. 3.1 and in Tab. 3.1. The approximations are compared to accurate calculations
from Ref. [37] where the relativistic Dirac equation has been used instead of the
Schrödinger equation and the final states were described as Hartree-Fock waves.
The agreement between the approximation and the exact calculations is decent,
which is somehow surprising: Although the exact Fourier transform of the initial
state was used, the continuum state of the photoelectron is still described as a free
wave. Accordingly, Eq. 3.27 is a result of the Born approximation which is only
valid at photon energies high above threshold.
To sum up, Eq. 3.27 may prove useful in getting a quick estimate for K-shell
photoionization cross sections. Its derivation is supposed to serve as an instructive
example of how to calculate a photoionization cross section in general.
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Figure 3.1: Photoionization cross section of H, He, and N as function of the photon energy.
The solid lines show the results of Eq. 3.27 and the dashed lines present accurate
calculations from Ref. [37].

Ze f f

Eγ [eV]

H
1

800

He
1.6875

300

He
1.6875
1775

N
6.6651

880

N
6.6651
2160

Eq. 3.27 34.3 b 26.2 kb 57.9 b 258.6 kb 20.9 kb

Ref. [37] 24.4 b 16.1 kb 62.0 b 105.8 kb 8.5 kb

Table 3.1: Photoionization cross section of H, He, and N at some photon energies relevant
for the present work.
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4
P H O T O E L E C T R O N A N G U L A R D I S T R I B U T I O N S

A photoelectron angular distribution specifies the emission probability of the photo-
electron under a certain angle in a set frame of reference. Neglecting the normal-
ization factor, the term angle-differential cross section is often used synonymously.
Photoelectron angular distributions are a sensitive probe of nondipole effects and
consequently an important concept for this work. The present chapter deals with
the photoelectron angular distribution in the laboratory frame of reference. If the
target is a molecule, the photoelectron angular distribution can also be considered
in the molecular frame of reference (MFPAD), which will be discussed in Ch. 6.
The research field investigating angle-differential cross sections operates under the
name angle-resolved photoelectron spectroscopy (ARPES). A comprehensive review
of the early developments and milestone discoveries of ARPES was published by
J. Jenkin in 1981 [38]. A more recent review that focuses on nondipole effects in
photoelectron angular distributions is that of O. Hemmers et al. from 2004 [3].

Angular distribution of a photoelectron from a s-subshell

All photoelectrons measured for this work originate from the K-shell of the respec-
tive target where ℓ = 0. In the following paragraphs, we will derive an expression
for the shape of the angle-differential cross section of such photoelectrons that
includes the effect of the nonzero photon momentum. Here, we are not concerned
with the integrated value of the cross section. Therefore, some constants (a0, me,...)
and parameters (n, Z) are omitted occasionally and the wave functions are not
necessarily normalized.
Any s-state has no angular dependency and we can simply use

Ψs(r) = e−r (4.1)

for the position space wave function of the initial state.
To account for the effect of the photon momentum on the photoelectron angular
distribution, the interaction Hamiltonian must include the leading order nondipole
term. Accordingly, we truncate the series expansion of eikγ ·r only after the ikγ · r

term and the interaction Hamiltonian (Eq. 3.14) becomes

Ĥint ∝
∂

∂z
+

∂

∂z
ikγ · r , (4.2)

in which ikγ · r and ∂
∂z commute because the light propagation is parallel to the x̂

direction. We let this differential operator act on Ψs(r) and get

Ĥint e−r ∝

(

∂

∂z
+ ikγ · r

∂

∂z

)

e−r =
( z

r
+ ikγ

xz

r

)

e−r . (4.3)

Following the substitution of Eq. 4.3 into Eq. 3.3, we can separate the transition
amplitude into two parts,

D ∝

∫

d3r Ψ∗
f (r)

z

r
e−r and (4.4)

Q ∝ ikγ

∫

d3r Ψ∗
f (r)

xz

r
e−r , (4.5)

where D is the electric dipole (E1) term and Q is the electric quadrupole (E2)
term of the transition amplitude. In general, an additional magnetic dipole (M1)
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contribution originates from the ikγ · r term of the nondipole expansion but it
vanishes for the initial s-state because of the missing angular dependency (see,
e.g., Refs. [29, 39]).
In the previous chapter, we used a plane wave (Eq. 3.16) as the final state of the
photoionization process. Plane waves are the eigenstates of the Hamilton operator
of an interaction free particle (Eq. 3.15) in cartesian coordinates. In spherical
coordinates, these eigenstates are given by

Ψklm(r) =
iℓ

h̄

√

2mek

π
jℓ(kr) Yℓm(r̂) , (4.6)

where jℓ(kr) are the spherical Bessel functions of the first kind and Yℓm(r̂) are the
spherical harmonics. Equation 4.6 resembles a free spherical wave state and is
commonly called a partial wave.
Through the plane wave expansion and the spherical harmonic addition theorem,
any free plane wave can be expressed as the superposition of free spherical waves
of all possible ℓ values [27]. Accordingly, the use of a plane wave guarantees that
all partial waves are considered when calculating the integrated cross section.
Here, we want to identify those partial waves that are accessible in the reaction,
because their combination shapes the photoelectron angular distribution. The
procedure is to search for such combinations of ℓ and m where either D or Q are
non-zero by inserting Eq. 4.6 into Eqs. 4.4 & 4.5.
We solve this problem in spherical coordinates and choose ǫ̂ as the quantization
axis: x = r sin(ϑ) cos(ϕ), y = r sin(ϑ) sin(ϕ), and z = r cos(ϑ).1 Hence, Eq. 4.3
becomes

Ĥint e−r ∝
(

cos ϑ + ikγr cos ϑ sin ϑ cos ϕ
)

e−r , (4.7)

and the real part of the spherical harmonics is given by

Yℓm(ϑ, ϕ) =

√

2 ℓ+ 1
4 π

(ℓ− m)!
(ℓ+ m)!

Pℓm(cos ϑ) cos(mϕ), (4.8)

where Pℓm are the associated Legendre polynomials with cos ϑ as the argument.
In spherical coordinates, Eqs. 4.4 & 4.5 can be rewritten as

D ∝

∫

dΩ Y∗
ℓm(ϑ, ϕ) cos ϑ ×

∫

dr j∗
ℓ
(kr) r2 e−r and (4.9)

Q ∝ ikγ

∫

dΩ Y∗
ℓm(ϑ, ϕ)

(

cos ϑ sin ϑ cos ϕ
)

×
∫

dr j∗
ℓ
(kr) r3 e−r , (4.10)

where d3r = r2 sin ϑ dr dϑ dϕ = r2 dr dΩ is the volume element in spherical
coordinates.
With the explicit forms of two associated Legendre polynomials,

P10(cos ϑ) = cos ϑ and P21(cos ϑ) = −3 cos ϑ sin ϑ ,

we can write out the spherical harmonics,

Y10(ϑ, ϕ) =

√

3
4π

cos ϑ and Y21(ϑ, ϕ) = −
√

45
24π

cos ϑ sin ϑ cos ϕ ,

1Here, kγ is the azimuthal reference and parallel to x̂, while the direction of light polarization ǫ̂

defines the polar axis and is parallel to ẑ (see Appx. A for the definition of polar and azimuthal angles).
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and substitute them into Eqs. 4.9 & 4.10 to obtain

D ∝

√

4π

3

∫

dΩ Y∗
ℓm(ϑ, ϕ) Y10(ϑ, ϕ) ×

∫

dr j∗
ℓ
(kr) r2 e−r and (4.11)

Q ∝ − i

√

24π

45

∫

dΩ Y∗
ℓm(ϑ, ϕ) Y21(ϑ, ϕ)

×
∫

dr j∗
ℓ
(kr) kγ r3 e−r . (4.12)

Conveniently, the spherical harmonics form an orthogonal system, i.e.,
∫

dΩ Y∗
ℓm(ϑ, ϕ) Yℓ′m′(ϑ, ϕ) = δℓℓ′ δmm′ , (4.13)

where δ is the Kronecker delta function (δij = 1 for i = j, δij = 0 for i 6= j).
Hence, D is only non-zero if ℓ = 1 & m = 0, Q is non-zero if ℓ = 2 & m = 1, and
the angular part of the final-state wave function of a photoelectron originating
from a s-subshell can be written as

ψ f (ϑ, ϕ) = ad + aq := D cos ϑ + Q cos ϑ sin ϑ cos ϕ , (4.14)

where the angular dependencies resemble those of the spherical harmonics shown
in Fig. 4.1.
The photoelectron angular distribution corresponds to the squared modulus of
Eq. 4.14 and becomes

d

dΩ
P ∝ |ad|2 + 2 × Re(adaq) + |aq|2 . (4.15)

The explicit values for |Q| & |D| are mainly determined by the radial integrals of
Eqs. 4.11 & 4.12 (see, e.g., Ref. [27]). The radial integral of Q contains the acquainted
factor kγr that underlines how the quadrupole amplitude is insignificant in case
of small photon momenta.
The ratio |Q|/|D| is commonly expressed in terms of the so-called nondipole
(interference) parameter γ, which is defined as

γ = 6
|Q|
|D| (4.16)

for s-subshells [40].2 Accordingly, the shape of the angular distribution of a
photoelectron from a s-subshell can be written as

d

dΩ
P ∝ cos2 ϑ +

γ

3
cos2 ϑ sin ϑ cos ϕ +

γ2

36
cos2 ϑ sin2 ϑ cos2 ϕ . (4.17)

For instance, the nondipole parameter γ has a value of approximately 1 in case
of one-photon single ionization of helium at 1500 eV photon energy (see results
shown in Fig. 10.4). However, to emphasize the nondipole effects, we choose
γ = 3 and show the three individual terms of Eq. 4.17 in Figure 4.2 A (and their
superposition in B) in the plane defined by the photon momentum and the linear
polarization vector.
Apparently, the interference term 2 × Re(adaq) (dotted line in Fig. 4.2) does not
change the absolute value of the cross section at all, but it does significantly
change the shape of the photoelectron angular distribution. This nondipole effect

2In Ref. [40], the quadrupole amplitude is written independently of the photon momentum, which
is why the definition of γ is a function of kγ in the original reference. We have also omitted the
factor cos ∆φ, where ∆φ is the phase difference of the two partial waves, because this phase difference
vanishes in the Born approximation.
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is an important concept throughout the present work and we will focus on its
implications in Ch. 10.
The pure quadrupole part of the transition |Q|2 is much weaker than the inter-
ference term. In the photon energy range considered in the present work, its
implications are mostly insignificant and the contribution to the absolute cross
section can be neglected. However, in case of one-photon double ionization of He
and H2, a neat trick will allow us to directly observe the quadrupole transition
amplitude in a subset of experimental data where D = 0 & Q > 0 (see Ch. 11).

Figure 4.1: Modulus of the real spherical harmonics Re(Yℓm) where green resembles
sgn(Re(Yℓm)) = +1 and red corresponds to sgn(Re(Yℓm)) = −1. Note that
Y10 has odd parity (−1) because space inversion would swap the colors, but Y21
has even parity (+1) because it equals its space inverted counterpart. In general,
the parity of the spherical harmonics is given by (−1)ℓ.

k̂γ

ǫ̂

A

k̂γ

ǫ̂

B

Figure 4.2: (A) Contributions to the angular distribution of a photoelectron from a s-shell
(Eq. 4.17, γ = 3, ϕ = 0). The green two-lobed part is the pure dipole contribution,
the green four-lobed part is the pure quadrupole contribution, and the dotted
part is the dipole-quadrupole interference where red indicates sgn(Re(2 ×
Re(adaq)) = −1 and green resembles sgn(Re(2 × Re(adaq)) = +1. (B) Green
solid line: Sum of all three individual contributions shown in B. Black dotted
line: Eq. 4.26 for β = 2, γ = 3, δ = 0, and ϕ = 0.
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Partial waves and angular momentum

So far, we have shown that the wave function of the photoelectron can be described
in terms of partial waves, but what exactly is the physical meaning of that?
The Hamilton operator of an interaction-free particle (Eq. 3.15) contains the Laplace
operator ∇2 = ∇ · ∇. In spherical coordinates, the Laplace operator can be sepa-
rated into a radial and an angular part:

∇2 = ∇2
r +∇2

ϑ,ϕ .

The spherical harmonics are the eigenfunctions of the angular part of the Laplace
operator which in turn is proportional to the square of the angular momentum
operator L̂2:

L̂2 = −h̄2∇2
ϑ,ϕ .

The two essential eigenvalue equations are

L̂2 Yℓm(ϑ, ϕ) = h̄2
ℓ(ℓ+ 1) Yℓm(ϑ, ϕ) , (4.18)

for the square of the angular momentum, and

L̂z Yℓm(ϑ, ϕ) = h̄m Yℓm(ϑ, ϕ) , (4.19)

for the projection of the angular momentum onto the quantization axis [27].
For a more convenient use with circularly polarized light and to be consistent with
Sec. 11.2, we now choose the photon propagation direction as the quantization
axis and as the polar axis of the spherical coordinate system. Consequently, after
including the leading order nondipole term in the interaction Hamiltonian, we
find the spherical harmonics Y11(ϑ, ϕ) and Y21(ϑ, ϕ) in the final state of a photo-
electron originating from a s-subshell. The angular dependence of a s-subshell is
proportional to Y00(ϑ, ϕ) =

√

1/(4π) and the initial-state angular momentum of
the electron is zero accordingly.
In an electric dipole transition, one unit of angular momentum is transferred
to the photoelectron due to the photon spin. The photon spin vector is parallel
(or antiparallel) to the photon propagation axis. Consequently, we get ∆ℓ =
1 and ∆m = 1. In an electric quadrupole transition, on the other hand, one
additional unit of angular momentum is transferred through the coupling of the
photon momentum to the electron. In a classical picture, this corresponds to the
angular momentum vector pγ × r which is directed perpendicularly to the photon
propagation axis. As a result, we get ∆ℓ = 2 and ∆m = 1 in total.
Quantum theory determines that angular momentum is transferred only in integer
units of h̄. Note that pγ × a0r̂ = h̄ requires pγ = 1 au which corresponds to a
photon energy of approximately 3729 eV (see Eq. 2.10). Hence, the probability to
observe higher angular momenta in the final state is enhanced for large pγ and
for initial-state radial wave functions with a strong contributions at high r.

Intrinsic and orbital angular momentum

It is worth mentioning that the photon spin and the cross product of photon
momentum and electron position vector pγ × r did not appear when we let the
interaction Hamiltonian act on the initial-state wave function in Eq. 4.3. Rather, we
have used a classical electromagnetic wave to represent the light, where the notions
of photon spin and momentum do not appear. However, the photon spin and the
cross product have their classical analogs. As shown in many textbooks (see, e.g.,
Ch. 4B in Ref. [25]), the total angular momentum of a classical electromagnetic
wave consists of the intrinsic angular momentum and the orbital angular momentum.
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The intrinsic angular momentum does not depend on the choice of origin for
the frame of reference and consequently it has no spatial dependence. It can be
understood as the classical counterpart of the photon spin (it is also called spin
angular momentum).
The orbital angular momentum, on the other hand, does depend on the choice of
origin and it can be related to the term pγ × r.

General form of the photoelectron angular distribution

In 1948, C. N. Yang derived a general form for the angular distribution of reac-
tion products in scattering processes where an unpolarized beam of projectiles
impinges on a target nucleus [41]. Yang based his derivation on parity and angular-
momentum conservation laws and stayed within the electric dipole approximation.
The key points of the derivation were neatly summarized and applied to the
photoionization process by J. Cooper and S. T. Manson [42]:

(a) As only the photon propagation direction is specified before the reaction,
the angle-differential cross section is of the form

dσ

dΩ
= ∑

ℓ

aℓPℓ(cos ϑγ) , (4.20)

where Pℓ(cos ϑγ) are the Legendre polynomials and ϑγ is the angle enclosed
by pγ and pe. There is no dependence on an additional azimuthal angle.

(b) Odd values of ℓ in Eq. 4.20 imply a forward/backward asymmetry for the
photoelectron angular distribution with respect to the light propagation
direction. Such odd values of ℓ arise only from interference between final
states of opposite parity (see Fig. 4.2, where the ℓ = 2 and ℓ = 1 final states
interfere). However, all final states of an electric dipole transition, where
∆ℓ = ±1, have the same parity. Hence, only even values of ℓ are possible in
Eq. 4.20.

(c) If the incoming radiation carries angular momenta of up to ℓ′, the value of
ℓ in Eq. (4.20) cannot be higher than 2ℓ′. This holds true for any angular
momentum of the target’s initial state. The proof of this statement can be
found in Ref. [41]. In an electric dipole transition, the angular momentum of
the incoming wave is ℓ′ = 1 due to the photon spin.

Accordingly, Eq. (4.20) becomes

dσ

dΩ
= a0P0(cos ϑγ) + a2P2(cos ϑγ) , (4.21)

where P0(cos ϑγ) = 1 and P2(cos ϑγ) = (3 cos2 ϑγ − 1)/2, but it is more commonly
used in the form introduced by J. Cooper and N. Zare in 1968 [43], which is given
by

dσ

dΩ
=

σtot

4π

[

1 − β

2
P2(cos ϑγ)

]

=
σtot

4π

[

1 − β
3 cos2 ϑγ − 1

4

]

, (4.22)

where σtot is the total integrated cross section, and β is the so-called dipole (asym-
metry) parameter.3

3Although often missed in the literature, Eq. 4.22 and a formula to calculate β are already implicitly
contained in a work of H. Bethe from 1933 [44].
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Equation 4.22 works for randomly and circularly polarized light, but for linearly
polarized light it becomes

dσ

dΩ
=

σtot

4π
[1 + βP2(cos ϑǫ)] =

σtot

4π

[

1 + β
3 cos2 ϑǫ − 1

2

]

, (4.23)

where ϑǫ is the angle enclosed by the polarization vector ǫ̂ and pe.
Expressions like Eqs. 4.22 & 4.23 are often called parametrizations because they
write the angle-differential cross section in terms of parameters that define the
multiplicative factors in a series of common angular functions.
The asymmetry parameter β can take values between −1 and 2 and it can be
calculated through

β =
ℓ(ℓ− 1)Rℓ−1

2 + (ℓ+ 1)(ℓ+ 2)Rℓ+1
2 − 6ℓ(ℓ+ 1)Rℓ−1Rℓ+1 cos ∆φ

(2ℓ+ 1)
[

ℓRℓ−1
2 + (ℓ+ 1)Rℓ+1

2
] , (4.24)

where ℓ is the second quantum number of the initial state, Rℓ±1 are the dipole
radial integrals that depend on the radial parts of the initial and final state wave
functions (compare to Eq. 4.11), and cos ∆φ is the phase difference between the
two partial waves that are characterized by ℓ− 1 and ℓ+ 1 [42].4 Equations 4.22 &
4.23 are displayed in Fig. 4.3 for different values of β.
If the initial state is a s-subshell (ℓ = 0), Eq. 4.24 always yields β = 2 and the
prediction of Eq. 4.23 resembles the pure dipole term shown in Fig. 4.2 A. However,
the electric dipole approximation was used to derive Eq. 4.23 and as a consequence
it cannot reproduce the angular distribution displayed as the green solid line in
Fig. 4.2 A.

A parametrization of the photoelectron angular distribution that considers first-
order multipole corrections (E1-E2 and E1-M1 interferences, but not the pure
contributions E2-E2 and M1-M1) was established by J. Cooper in 1990 [45]. Ac-
cordingly, Eqs. 4.22 & 4.23 become

dσ

dΩ
=

σtot

4π

[

1 − β
3 cos2 ϑγ − 1

4
+
(γ

2
sin2 ϑγ + δ

)

cos ϑγ

]

(4.25)

for circular polarization, and

dσ

dΩ
=

σtot

4π

[

1 + β
3 cos2 ϑǫ − 1

2
+ (γ cos2 ϑǫ + δ) sin ϑǫ cos ϕǫ

]

(4.26)

for linear polarization, where ϕǫ is the azimuthal angle with respect to k̂γ.
Note that Eq. 4.25 is simply an alternative form of

dσ

dΩ
=

3

∑
ℓ=0

aℓPℓ(cos ϑγ) , (4.27)

where P1(cos ϑγ) = cos ϑγ and P3(cos ϑγ) = [cos ϑγ(2 − 5 sin2 ϑγ)]/2. Assuming
that the maximum orbital angular momentum of the incoming radiation is ℓ′ = 2,
Eq. 4.27 follows directly from Yang’s reasoning: The maximum value of ℓ in Eq. 4.21

is 4 and odd values of ℓ are allowed because the available final states do not all
have the same parity (∆ℓ = 0,±1,±2). Here, the ℓ = 4 term is omitted because
Cooper considered only those nondipole corrections to the cross section that scale

4The original publication of Cooper and Zare [43] contains a small error in the formula for
calculating β: an additional factor of 3 in the denominator. In the later work, the factor was removed
[42].
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photoelectron angular distributions

with kγr while he left out the (kγr)2 term, i.e., the pure electric quadrupole (E2-E2)
contribution.
The nondipole parameters γ and δ characterize the E1-E2 and E1-M1 interferences
and their values depend on the relative strengths of the E2 and M1 terms compared
to the E1 term. The explicit general expressions (like Eq. 4.24) to calculate γ and δ
can be found, e.g., in App. A of Ref. [39]. As shown in Fig. 4.4, both nondipole
parameters break the forward/backward symmetry of the angular distribution if
their values are nonzero.
In Fig. 4.2 B the black dotted line represents Eq. 4.26 for β = 2, δ = 0, and
γ = 3. Here, the reason for the small differences between the black dotted line
and the green solid line is that Eq. 4.26 does not reflect the pure E2-E2 contribution.

A parametrization that extends Cooper’s work by including the (kγr)2 terms of the
nondipole expansion was published by A. Derevianko et al. in 1999 [46]. For the
scope of the present work, however, Cooper’s nondipole parametrization (Eqs. 4.25

& 4.26) proved to be sufficient to adequately describe the measured photoelectron
angular distributions in the laboratory frame of reference. Nevertheless, it should
be noted that Cooper’s formula is not the only nondipole parametrization of the
angle-differential cross section and some other approaches can be found, e.g., in
Refs. [47–49].

24



photoelectron angular distributions
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Figure 4.3: Photoelectron angular distributions for circular polarization (A, Eq. 4.22) and
linear polarization (B, Eq. 4.23) displayed for different values of the dipole
asymmetry parameter: β = 2 in red, β = 1 in cyan, β = 0 in blue, and β = −1 in
green. The corresponding three-dimensional photoelectron angular distributions
can be obtained by rotating the curves around the light axis k̂γ in case of
circular polarization or around the polarization axis ǫ̂ for linear polarization.
At ϑ ≈ 54.7◦ the second Legendre polynomial P2(cos ϑ) is zero. Here, the angle
differential cross section is independent of β.
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Figure 4.4: Photoelectron angular distributions with nondipole corrections for linear polar-
ization (Eq. 4.26). (A) δ = 0.75 & γ = 0. (B) δ = 0 & γ = 2. Red: β = 2, cyan:
β = 1, blue: β = 0, green: β = −1. At ϑǫ ≈ 54.7◦, the angle differential cross
section does not depent on any parameter but on the azimuthal angle ϕǫ.
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5
M U LT I P L E I O N I Z AT I O N

So far, our discussion of photoioinization has implicitly focused on single ioniza-
tion. The present chapter briefly describes the processes that facilitate the emission
of a secondary electron upon absorption of a single photon.

5.1 one-photon double ionization of he and h2

For one-photon double ionization to happen, the photon energy must surpass the
double ionization threshold of the respective target. The single ionization threshold
of helium is I+p = 24.6 eV, and the double ionization threshold is I++

p = 79 eV.
Here, the excess energy (Eexc = Eγ − Ip) is entirely transferred to and shared
among the two electrons.
Single ionization of the hydrogen molecule requires at least 15.43 eV in a vertical
transition at the equilibrium distance between the two protons. The complete
breakup into two free protons and two free electron requires not less than 51 eV
of energy. In photon double ionization of H2, the fraction of the photon energy
that exceeds the sum of the adiabatic double ionization energy (31.03 eV) and the
variable sum of the kinetic energies of the protons (kinetic energy release, KER) is
shared among the two electrons.

The one-photon double ionization of helium has been studied extensively in the
past within the scope of the electric dipole approximation and comprehensive
reviews can be found, e.g., in Refs. [28, 50]. In a dipole transition, the double
ionization of helium is usually described and calculated by the means of a mixed
quantum-classical model that splits the process into two "mechanisms":

1. The two-step-one (TS1) is pictured as a two-part process. First, the mechanism
proceeds like one-photon single ionization where one electron is released
from its bound state after absorption of the photon. Second, on its way to the
continuum, the photoelectron collides with the second electron which is sub-
sequently kicked out.1 The second step is closely related to electron-impact
ionization. Here, the total cross section decreases rapidly with increasing
electron energy, because a certain interaction time is needed for the momen-
tum exchange. Consequently, the TS1 is the dominant process of double
ionization at relatively low excess energies [51].

The interaction between the electrons in TS1 transfers an arbitrary fraction of
kinetic energy from the first electron to the second electron. As a consequence,
the double-ionization cross section of TS1 as function of the so-called electron
energy sharing ǫ = E1/(E1 + E2), where E1,2 are the energies of electrons 1

and 2, is a relatively flat curve. In TS1, the two electron momentum vectors
p1,2 preferably enclose a mutual angle ϑ12 = cos−1 [(p1 · p2)/(p1 p2)] of 90◦

(see, e.g., Ref. [52]).

2. Double ionization via shake-off (SO) proceeds through the quasi-instantaneous
removal of the first electron, whereas the second electron cannot relax adia-
batically to the singly charged ionic ground state. Instead, the second electron

1Because of the way the second step is pictured, the mechanism is also known as the knock-out
process.
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5.1 one-photon double ionization of he and h2

is either shaken up to a discrete excited state or shaken off to the continuum.
The sudden change of ground states requires high excess energies and the
ratio of double to single ionization probability converges to the so-called
shake-off limit at high photon energies, where TS1 no longer plays a role [53].

The SO is characterized by a highly asymmetric energy sharing and the
distribution of the electron mutual angle ϑ12 is nearly isotropic [54].

Investigations of nondipole effects in the one-photon double ionization of helium
are rare. In 2004 and 2005, A. Istomin et al. published a number of theory papers
on how the angle-differential cross sections of He double ionization are modified
by nondipole effects [49, 55–57], but dedicated experimental investigations are still
pending.

In 1975, M. Amusia et al. predicted a third mechanism that facilitates helium
double ionization by means of a pure quadrupole transition [58]:

3. The quasifree mechanism (QFM) ejects two electrons from the part of the
initial-state two-electron wave function where both electrons are spatially
close together [59]. As shown by J. Ludlow et al. [60], the quadrupole part of
the interaction Hamiltonian can act directly on the relative electron position
vector r− = re1 − re2 (see p. 101 in Ch. 11 for the derivation). The respective
part of the quadrupole contribution to double ionization is responsible for
QFM. The name of the mechanism stems from the idea that the light interacts
with a quasi-free electron pair without involvement of the nucleus.

The QFM is characterized by electrons emitted back-to-back (ϑ12 ≈ 180◦)
with equal energy (ǫ ≈ 0.5), leaving the nucleus with close to zero recoil
momentum [61]. This final-state pattern is forbidden in a dipole transition
due to angular momentum conservation [62]. The absolute QFM cross section
is predicted to decrease with an increase of the nuclear charge Z [63]. The
relative contribution of QFM to the total double-ionization cross section is
supposed to increase with rising photon energy, but it is expected to become
the dominant mechanism only at hundreds of keV [64].

Feynman diagrams are a tool for the calculation of transition amplitudes [65],
but they are also useful for the pure visualization of the interaction process itself.
Figure 5.1 shows the Feynman diagrams of the three double-ionization mecha-
nisms [58]. For two-step-one (Fig. 5.1 A), the electron-electron interaction happens
after the photon absorption by means of a virtual photon. This supports the picture
that the first electron collides with the second one on its way out of the system.
In case of shake-off (Fig. 5.1 B), the initial-state correlation between the electrons
facilitates the double ionization as indicated by the virtual photon exchange prior
to the photon absorption. The Feynman diagram for the QFM (Fig. 5.1 C) depicts
how the incoming photon couples directly to the electron pair.

The existence of the QFM was confirmed by M. Schöffler et. al in 2013 through the
observation of doubly charged helium nuclei with close to zero recoil momenta in
one-photon double ionization at 800 eV photon energy [66]. The investigation of
the QFM in double ionization of helium continues in the present work with a focus
on the electronic fingerprint in the final state, which was previously inaccessible
(see Ch. 11).
The electronic structure of the hydrogen molecule is similar to that of the helium
atom and the double ionization of H2 can also be split into a shake-off and
a two-step-one part within the scope of the electric dipole approximation [67].
Consequently, one can also expect the QFM in the quadrupole contribution to the
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5.1 one-photon double ionization of he and h2

cross section of H2 double ionization. This expected existence is confirmed in the
present work (see Sec. 11.1).
Furthermore, we confirm that the relative contribution of QFM to the total double-
ionization cross section increases with Eγ (see Fig. 11.1) and visualize that QFM is
a pure quadrupole contribution to double ionization (see Sec. 11.2). Unfortunately,
we cannot investigate the dependence of QFM on the nuclear charge Z. For Z = 2,
however, we study the dependence as function of the distance between the two
point charges (see Sec. 11.3).

1s pe1

1s pe2

kγ

Shake-off

1s pe1

1s pe2

kγ

Two-step-one

A B

1s pe1

1s pe2

kγ

Quasifree mechanism

C

Figure 5.1: Feynman diagrams for the three double-ionization processes (adapated from
Refs. [58, 68]).
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5.2 K-shell ionization of n2 followed by auger decay

5.2 K -shell ionization of n2 followed by auger decay

The K-shell photoionization thresholds of N2 are Ip = 409.82 eV, if the vacancy is
left in the ungerade state, and Ip = 409.93 eV for the gerade vacancy respectively
(see Ch. 6, p. 35 for the definition of gerade and ungerade parity). Here, the ion is
left in its vibrational ground state. The energy splitting between these two states
of different parity is far too small to be resolved with the experimental setup used
in the present work and we consequently assume an average ionization threshold
of Ip = 409.88 eV for K-shell ioinization of N2. The average internuclear distance
of the N2 molecule is R = 2.07 au in the neutral ground state and R = 2.035 au in
the ground state with a K-shell vacancy [69].

The K-shell vacancy created upon photoionization is rapidly filled by a valence
electron as the system returns to a lower energy state. The potential energy dif-
ference is either radiated through a photon or transferred to another weakly
bound electron that is subsequently emitted. The radiationless decay—which is
the dominant process—is better known as Auger decay and the secondary electron
is called Auger electron (see Ref. [70] for a comprehensive work on the Auger decay).

In the present work, we inspect K-shell ionization of N2 with photon energies
of at least 880 eV that is followed by Auger electron emission at 370 eV kinetic
energy and fragmentation into N+ + N+. Here, we investigate the influence of
molecular effects on the forward/backward asymmetry of photoelectron emission
in the laboratory frame (see Ch. 7 for further background).
As shown in Ref. [71], Auger decay and break-up of the intermediate N2+

2 ion
happen fast compared to the typical rotation times of the molecule for any kinetic
energy release and the two N+ fragments are emitted along the direction of the
molecular axis at the instant of photoabsorption (i.e, the axial recoil approximation
is valid). Accordingly, we are also able to investigate the nondipole effects of
photoelectron emission in the molecular frame of reference.
Nondipole effects in Auger electron emission, e.g., a forward/backward asym-
metry in the emission probability, have never been investigated to the author’s
knowledge and are not subject of the present work.
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6T H E M O L E C U L A R D O U B L E - S L I T E X P E R I M E N T

If a photoelectron is emitted from a molecule, the photoelectron angular distribu-
tion can be transformed from the laboratory frame of reference into the body-fixed
frame of the molecule to obtain a so-called molecular frame photoelectron angular
distribution (MFPAD, see App. B on how to define the molecular frame). Diverse
multi-center effects shape the MFPAD and set molecular photoionization apart
from the atomic case. The present chapter features some of these peculiarities of
one-photon ionization of molecules.

6.1 interference in the photoionization of molecules

In the Born approximation, the electron’s final-state wave function is described in
terms of free waves. This approximation works well at high but non-relativistic
electron energies, where the influence of the molecular potential on the photoelec-
tron becomes insignificant. Within the scope of the Born approximation, simple
wave-interference models can be used to predict features of photoelectron emission
from molecules.

Cohen-Fano interference in the photoionization cross section

In 1965, J. Samson and R. Cairns reported on an experiment that obtained total
photoabsorption cross sections for three homonuclear diatomic molecules (H2, N2,
and O2) for photon energies between 20 eV and 62 eV [72]. Their results showed
that the downtrend of the photoabsorption cross section was superimposed by
oscillations that were previously unknown from the atomic case. In the subse-
quent year, H. Cohen and U. Fano attempted to explain these observations [73].
The authors suggested that for photoionization the two centers of a diatomic
homonuclear molecule may be considered as independent photon absorbers and
indistinguishable sources of coherent photoelectron waves. The interference be-
tween these photoelectron waves modulates the photoionization cross section:

σ = σH(Z)

[

1 +
sin(2πR/λe)

2πR/λe

]

, (6.1)

where σH(Z) is the cross section for a hydrogen-like atom of atomic number Z, R
is the internuclear distance, and λe is the wavelength of the photoelectron matter
wave. Stressing the relation λe = 2πh̄/p for matter waves (de Broglie wavelength),
where p is the photoelectron momentum, and using atomic units, where h̄ = 1,
Eq. 6.1 takes the more common form

σ = σH(Z)

[

1 +
sin(pR)

pR

]

. (6.2)

The oscillatory factor in brackets in Eq. 6.2 quantifies the so-called Cohen-Fano
interference. The factor is plotted in Fig. 6.1 for the average internuclear distances
of H2 and N2. The predictions according to the Cohen-Fano interference agreed
with the observations reported by Samson and Cairns in 1965. Such modulations
of total cross sections for molecular photoionization due to interference effects are
still being investigated in modern day research (e.g., [74–78]).
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Figure 6.1: Modulations of the total photoabsorption cross section of homonuclear diatomic
molecules due to two-center interference (Eq. 6.2) as function of the photoelec-
tron energy Ee. Note that if the photoelectrons originate from states of different
parity, twice as many maxima would emerge in any given interval of pR [73].

The molecular double-slit

Apart from the modulation of the total cross section as function of the photo-
electron energy, the interference of photoelectron waves has another intriguing
consequence that manifests in the molecular frame photoelectron angular distribu-
tion: Photoelectron emission from a homonuclear diatomic molecule mimics the
double-slit experiment.
The concept of a classical double-slit experiment is illustrated in Fig. 6.2 B. Here,
a plane wave impinges from below on a barrier that has two slits. Subsequently,
these two slits behave like individual sources of coherent spherical waves whose
amplitudes are superimposed behind the barrier, i.e., the two waves interfere with
each other.
A double-slit experiment usually detects an interference pattern, which is the mod-
ulation of the intensity measured on a detector in the far field. This interference
pattern is the result of different path lengths from each slit to the detection points.
The path difference is given by

∆s = d cos α , (6.3)

where d is the distance between the two slits and α is the angle enclosed by the slit
axis and the emission direction. Equation 6.3 is only valid in the far field where the
distance from the double-slit center to the detection point is much larger than d.
Here, the two paths from each slit to any detection point run nearly parallel to
one another. The path difference alters the relative phase between the two waves
and the phase difference is given by

∆φ =
2π d cos α

λ
, (6.4)

where λ is the wavelength. Eventually, the intensity distribution on the detector in
the far field becomes

I ∝ cos2
[

∆φ

2

]

= cos2
[

π d cos α

λ

]

. (6.5)

An exemplary result of Eq. 6.5 is shown in Fig. 6.2 A.
In photoelectron emission from a homonuclear diatomic molecule, the internuclear
distance R resembles the distance between the two slits and λ = λe is the de Broglie
wavelength of the electron matter wave. In analogy to Eq. 6.5, the probability
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6.1 interference in the photoionization of molecules

distribution for the detection of a single photoelectron on a detector in the far field
can be predicted as

P ∝ cos2
[

pR cos α

2

]

. (6.6)

Figure 6.3 illustrates the concept of such a molecular double-slit experiment. Note
that the angle α is defined in the molecular frame of reference. Hence, Eq. 6.6
makes a prediction about the molecular frame photoelectron angular distribution.
It is important to stress that such a "pure" MFPAD could only be observed
for an isotropic photoelectron emission probability in the laboratory reference
frame, which is hardly ever the case. Rather, any observable MFPAD contains the
anisotropy of the angle-differential cross section in the lab frame (see Ch. 7) and it
depends on the orientation of the molecule with respect to the light polarization
or propagation vectors. This aspect is not considered in Fig. 6.3.
A very instructive and comprehensive account of the interplay between molecular
and laboratory frame photoelectron angular distributions can be found in Ref. [79].
Another instructive example that includes nondipole effects is shown in Fig. B.4 in
the appendix of the present work.
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Figure 6.2: Classical double-slit experiment. (A) A plane wave (e.g., a water surface wave)
impinges from below on a barrier that contains two slits, which become the
sources of two coherent spherical waves that interfere behind the barrier. (B)
Intensity behind the barrier measured in the far field as function of the angle α.
The ratio between the slit distance and wavelength is d/λ = 1.65.
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6.1 interference in the photoionization of molecules

α

P

Figure 6.3: Photoelectron emission from a homonuclear diatomic molecule mimics the
double-slit experiment. The photon (white) impinges on the molecule (red) and
two coherent photoelectron waves are launched from the two atomic centers
simultaneously. The superimposed waves create the distinct interference pattern
that is familiar from the classical double-slit experiment. The probability for the
detection of a single electron on a detector in the far field (Eq. 6.6) is indicated
by the solid blue line. The dotted blue line represents the situation of opposite
phases at the two atomic centers (Eq. 6.7). Here, R/λe = 1.65, which corresponds
to 750 eV electron energy and 1.4 au internuclear distance. Note that in reality,
the photoelectron waves propagate through all three spatial dimensions and
cannot be described by the surface waves depicted here.
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6.1 interference in the photoionization of molecules

Gerade and ungerade initital states

Sometimes the interference pattern of a molecular double-slit experiment appears
as if the two superimposing waves are born with opposite phases. In that case,
Eq. 6.6 becomes

P ∝ cos2
[

pR cos α ± π

2

]

, (6.7)

and the positions of the interference maxima and minima on the detector are
swapped, as demonstrated by the dotted blue line in Fig. 6.3. The reason for this
phenomenon lies in the structure of the initial-state wave function from which
the electron wave originates. In Ch. 3, we have discussed the properties of atomic
orbitals. Here, we cover those concepts of molecular orbitals, i.e., position-space wave
functions of electrons bound in a molecule, that are important for the molecular
double-slit experiment.
The Hamilton operator of a single electron bound in a molecule must account for
the multi-center Coulomb potential. For the simple H+

2 ion, it is given by

Ĥ =
−h̄2∇2

2me
− e2

4πǫ0

[

1
ra

+
1
rb

]

, (6.8)

where ra,b = |r − Ra,b| are the distances of the electron from the protons a and b.
The internuclear distance is given by R = |Ra − Rb|. In H+

2 , the electron is located
at one of the two indistinguishable protons with equal probability.
If R = 0, Eq. 6.8 resembles the Hamiltonian of He+, whereas for R → ∞ it rep-
resents two individual hydrogen atoms. In these two extreme cases, the atomic
orbitals (Eq. 3.7) are solutions of the corresponding Schrödinger equation. Oth-
erwise, one useful way to approximate the eigenfunctions of Eq. 6.8 is the linear
combination of atomic orbitals (LCAO) [80].
By means of the LCAO method, two atomic orbitals—one from each atom and each
centered around its respective nucleus—are superimposed and form the orbitals
of the homonuclear diatomic molecule. The two atomic orbitals can overlap in two
ways depending on their relative sign relationship. This difference is illustrated in
Fig 6.4 for two hydrogen 1s orbitals. At each point in space where the two atomic
orbitals share the same sign, the resulting spatial probability density is enhanced.
Whereas for opposite signs, the probability density is reduced.
Determined by the subshells of the atomic orbitals and the parity of the combined
wave function, a molecular orbital is either binding or antibinding. The parity of
the molecular orbital is defined by how the sign of the wave function at each
point in space behaves during space inversion. If the sign remains unchanged,
the orbital has gerade (g) parity (Fig. 6.4 A). Whereas if the sign flips, the orbital
has ungerade (u) parity (Fig. 6.4 C).1 For the gerade combination of two s-type
orbitals, the spatial probability density of the electron between the two protons
is enhanced (Fig. 6.4 B). As a result, the molecular orbital is binding and the
Coulomb repulsion between the protons is countered by their mutual attraction
towards the electron. For the ungerade combination of two s-type orbitals, on
the other hand, the probability density between the protons is reduced and the
orbital is antibinding (Fig. 6.4 D). For two p-type atomic orbitals, on the other
hand, gerade parity results in an antibinding and ungerade parity in a binding
molecular orbital.
Apart from their parity, molecular orbitals are characterized by the projection
of the orbital angular momentum onto the molecular axis and the shape of the

1Conventionally, gerade and ungerade describe the parity of the orbital of a homonuclear diatomic
molecule, whereas even and odd characterize the parity of an atomic orbital.
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Figure 6.4: Symmetric (A) and antisymmetric (C) linear combination of two hydrogen 1s

orbitals, separated by an internuclear distance of 1.4 au, and the corresponding
spatial probabilty densities (B,D). The labels of the molecular orbitals, 1sσg (A)
and 2pσu (C), describe the united-atom configuration.

orbital in the united-atom configuration. The angular momentum quantum number
(λ = |m| = 0, 1, 2, 3, ...) is usually indicated by Greek letters (σ, π, δ, φ, ...). The
united-atom configuration regards the molecular orbital at small but nonzero
internuclear distances. Here, the symmetric combination of two 1s atomic orbitals
still roughly resembles the shape of a 1s orbital. However, the antisymmetric
combination is similar in shape to a 2p atomic orbital. These similarities determine
the first two digits of the label of a molecular orbital.2 Two exemplary labels are
included in Fig. 6.4.
The sign of the wave function marks its phase. The absolute phase of a single
orbital has no physical meaning but the relative phase between two mixing wave
functions determines how they interfere with each other. Opposite signs resemble
opposite phases and same signs resemble same phases. Accordingly, the parity
of the molecular orbital from which the photoelectron originates determines the
relative phase at birth time of the two superimposing waves in a molecular double
slit experiment. For gerade parity in the initial state, both outgoing waves have
the same phase (Eq. 6.6). Whereas for ungerade parity, the waves are born with
opposite phases (Eq. 6.7).

Resolving states of gerade and ungerade parity

When atoms bond to form molecules, the number of molecular orbitals corre-
sponds to the number of involved atomic orbitals. The electrons are distributed to
the lowest-energy molecular orbitals first and each orbital can hold two electrons
having opposite spins. For example, two atomic 1s orbitals make the 1sσg and
2pσu molecular orbitals. In the H+

2 and H2 ground states, only the 1sσg orbitals
are populated, because they are energetically lower than the 2pσu states, and the
overall parity of each system is gerade. Accordingly, the electron waves are born
with the same phases in one-photon single ionization of H+

2 and double ionization
of H2.
For single ionization of H2, however, the residual H+

2 molecule is not necessarily in
the ground state, but the photon energy can be used in part to elevate the system
to an excited state. If the electronic state of the residual H+

2 ion is ungerade, parity
conservation demands that the photoelectron waves are born with opposite phases
at the two protons. To observe a double-slit interference pattern in one-photon
single ionization of H2, either the parity of the remaining H+

2 system needs to be
resolved or one of the parity states must be predominantly populated. Otherwise
the patterns decribed by Eqs. 6.6 & 6.7 overlap and yield an isotropic distribution
because cos2(φ) + cos2(φ ± π/2) = 1.
The molecular orbital of the H+

2 ion and its parity may be identified from the ki-
netic energy release (KER) [33]. The kinetic energy release is the sum of the kinetic
energies obtained by the reaction fragments (except for electrons) through conver-

2A more rigorous definition can be found, e.g., in Ref. [81].
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6.1 interference in the photoionization of molecules

sion of potential energy. The total potential energy of the H+
2 ion is determined by

the molecular orbital and the internuclear distance. The potential-energy curves
for the three lowest-energy states of H+

2 in the Born-Oppenheimer approximation are
presented in Fig. 6.5 [81].3

In this so-called correlation diagram (Fig. 6.5), the single ionization of H2 resembles
a vertical transition from the potential energy curve of the H2 ground state to a
curve of a H+

2 state. The distribution of internuclear distances in the H2 ground
state determines at which R′ such a transition takes place. If the potential energy
difference on the H+

2 curve between R′ and R → ∞ is positive, the molecule
dissociates and the potential energy difference results in the kinetic energy release.
If the potential energy difference is negative, the H+

2 molecule stays bound.
The distribution of R in the H2 ground state is indicated by the grey line in Fig. 6.5.
At the lower end of this distribution, the potential energy of the 1sσg state at R′ can
be larger than at R → ∞. Here, the H+

2 ion dissociates even though the 1sσg state
has binding character, i.e., the minimum of the potential energy curve is not at
R → ∞. By measuring the small resulting kinetic energy release (KER < 2 eV), the
population of the 1sσg state can be determined unambiguously in an experiment.
On the other hand, the kinetic-energy-release distributions of the 2pσu and 2sσg

states overlap, but regions where either one dominate have been identified: For a
measured kinetic energy release below 15 eV, the H+

2 ion was most likely in the
2sσg state. Above 15 eV, the 2pσu state prevails [33].

In the ground state of the N2 molecule, the 1sσg and 2pσu states are populated by
two electrons each. Accordingly, photoelectron emission from the K-shell leaves a
gerade or ungerade vacancy that is filled by an outer-shell electron. The energy
difference is transferred to another outer-shell electron that is subsequently emitted
and called Auger electron (see Ch. 5). Similar to the dissociation of H+

2 , the parity
of the N2+

2 ion in the final state can be inferred from the kinetic energy release [83].
As Auger decay does not change the overall parity of the system, photoelectron
and Auger electron states have the same parity in case of a gerade N2+

2 state and
opposite parity for an ungerade final state of the ion [84].
Like photoelectron emission from a homonuclear diatomic molecule, the angular
distribution of Auger electrons in the molecular frame also carries features of
a double-slit-like interference pattern if the parity is resolved. By confining the
kinetic energy release and the Auger electron emission angle in the molecular
frame to regions of well defined parity, we will try to resolve the double-slit
interference of photoelectrons emitted from the N2 K-shell (see Refs. [84–87] for
works from which we have adapted this technique).

3The key assumption of the Born-Oppenheimer approximation is that the nuclei are much heavier
and move considerably slower than the electrons in a molecule. Accordingly, the electronic and nuclear
wave functions can be separated and considered independently [82].
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Figure 6.5: Potential-energy curves as function of the internuclear distance R for the H2

ground state (solid black line) and the three lowest-energy states of H+
2 (red: 1sσg,

blue: 2sσu, green: 2sσg) calculated in the Born-Oppenheimer approximation [81].
After single ionization of H2, the average kinetic energy release is the difference
between potential energies of the H+

2 state at the average internuclear distance
of H2 (R = 1.4 au) and at an infinite distance (R → ∞). E.g., 〈KER〉(2sσg) =
40.89 eV − 28.27 eV = 12.62 eV. With the double ionization of H2, the system is
lifted onto the 1/R curve (dotted black line) and the resulting average kinetic
energy release becomes 〈KER〉 = 50.47 eV − 31.03 eV = 19.44 eV, which equals
the potential energy of two elementary charges that are 1.4 au apart. The grey
line illustrates the distribution of R in the H2 ground state.
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6.1 interference in the photoionization of molecules

History of molecular double-slit experiments performed by the Frankfurt Atomic

Physics group

The molecular double-slit experiment was first proposed by I. Kaplan and A. Markin
in 1969 for photoionization of H2 [88]. The realization, however, proved to be chal-
lenging because it requires knowledge about the electron emission direction with
respect to the molecular axis.
It was not until 2007 that D. Akoury et al. reported on the first successful molecular
double-slit experiment [89]. The authors investigated one-photon double ionization
of H2 with circularly polarized light and photon energies of 160 eV and 240 eV. As
suggested by the axial recoil approximation [90], the orientation of the molecular
axis prior to the ionization was obtained from the measured three-dimensional
relative momentum of the two protons. In double ionization of H2, the excess
energy is shared among the two electrons. For highly asymmetric energy sharing,
the fast electron practically behaves like a photoelectron in single ionization [91].
The authors found that the measured MFPADs for such fast electrons at both
photon energies were in good agreement with the predictions of Eq. 6.6.
Related studies on one-photon double ionization of H2 later found that the momen-
tum of the dielectron, i.e., the quasiparticle consisting of both electrons, exhibits the
double-slit interference pattern in the molecular frame—even after integration over
the energy sharing distribution [92–95]. This finding suggests that both electrons
emerge from the same one of the two indistinguishable protons during the double
ionization process and that the electrons should be considered as one two-particle
wave instead of two one-particle waves.
This connection between the two electrons in one-photon double ionization of H2
has been used to study decoherence, i.e., the transition from quantum to classical
behavior. Experiments found that the double-slit interference pattern vanishes
gradually for the fast electron, if the fraction of kinetic energy transferred to the
secondary electron is increased [89, 95, 96].
In the experimental results of Akoury et. al [89] the double-slit interference pattern
appeared to be rotated in the polarization plane. As outlined by J. Fernandez
at al. in 2009 [97], this effect is a consequence of the circularly polarized light.
The circularly polarized light encodes its sense of rotation in the phase of the
electron wave. The scattering of the wave at the molecular potential translates
the angular-dependent phase into a rotation of the MFPAD that can be observed.
Thus, one can expect this rotation to vanish at high photoelectron energies where
the Born approximation is valid.
The double-slit character of dielectron emission in photoionization of H2 at 160 eV
photon energy was further underlined by M. Schöffler et al. in 2008 when they
found a similar dependence of the interference pattern on the internuclear distance
as one would expect from altering the distance between the two slits [98]: With
increasing R and constant p, the strength of the first-order interference maximum
increased relative to the zeroth-order maximum. As indicated in Fig. 6.5, the
internuclear distance prior to photon double ionization can be derived from the
measured kinetic energy release through

KER =
e2

4πǫ0R
, (6.9)

where e is the elementary charge and ǫ0 is the vacuum permittivity [90].

The double-slit character of Auger electron emission from dissociating N2+
2 ions

was first demonstrated experimentally by M. Schöffler et al. in 2008 [84] and
later theoretically underpinned by N. Cherepkov et al. [99]. At the photon energy
of 419 eV used in the experiment, the kinetic energy of the photoelectrons was
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6.1 interference in the photoionization of molecules

roughly 9 eV and that of the Auger electrons around 370 eV. For the compara-
tively small photoelectron energy, the double-slit model does not appropriately
describe the measured MFPAD, because the Born approximation is invalid and the
photoelectron interacts with the residual charged particles [100]. The angular dis-
tribution of the Auger electrons, that have sufficiently high kinetic energy, exhibits
double-slit interference features. Schöffler et al. utilized this molecular double-slit
experiment to address the heavily discussed question of whether electrons—or the
vacancies left upon photoionization—are localized at one center of a homonuclear
diatomic molecule or delocalized over both [96, 101, 102]. They found that the
answer to the question depends on how the entangled state—consisting of Auger
electron and photoelectron—is measured in the experiment.

In 2016, H. Sann et al. reported on an experiment on L-shell photoionization of
neon dimers at 36.56 eV photon energy that resulted in photoelectrons of around
15 eV kinetic energy [103]. Despite the small photoelectron energy, the angular dis-
tribution in the frame of reference of the dissociating Ne+2 dimer was in reasonable
agreement with the double-slit model prediction for waves born with opposite
phases (Eq. 6.7). Recently, double-slit electron interference has also been found in
strong-field ionization of neon dimers [104].

In 2017, M. Waitz et al. reported on the first successful molecular double-slit
experiment with one-photon single ionization of H2 [33]. With the method already
explained (see p. 37), the authors managed to resolve the final-state parity of
the dissociating H+

2 ion and could reveal the interference patterns of gerade and
ungerade photoelectron states. At the photon energy of 400 eV, the measured
molecular-frame angular distributions of the high-energetic photoelectrons were
in good agreement with the predictions of Eqs. 6.6 & 6.7. Inspired by theory
predictions [105, 106], Waitz et al. utilized this molecular double-slit experiment to
visualize the ground state two-electron wave function (see Eq. 3.20 for comparison).
A similar imaging technique was already successfully applied by M. Meckel et al.
in 2008 for the highest occupied molecular orbital through strong-field ionization
of O2 and N2.

As it is not essential how the electron wave is released from the diatomic homonu-
clear molecule, the molecular double-slit experiment also works with different
projectiles apart from one- and many-photon ionization. Some examples for elec-
tron and heavy ion impact ionization can be found in Refs. [107–109]. However,
molecular double-slit experiments mainly employ photon impact to study interfer-
ence in the ionization of molecules. Perhaps because of how the idea was originally
presented by Cohen and Fano in 1966.
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6.2 . . .beyond the dipole approximation

6.2 . . .beyond the dipole approximation

When two interfering waves that are born in a double slit have different phases at
their source, the resulting interference pattern is tilted. An example is depicted
in Fig. 6.6. The zeroth-order interference maximum occurs under the angle α0 for
which the far-field phase difference ∆φ between both waves vanishes:

∆φ =
2π d cos α0

λ
− ∆ϕ

!
= 0 , (6.10)

where ∆ϕ is the phase difference between the two waves at birth. By means of
measuring the angle α0, such an initial phase difference can be inferred. Accord-
ingly, the molecular double-slit experiment is a sensitive probe for the initial phase
difference between the two mixing photoelectron waves.

We have already discussed one possible origin of such a phase difference for the
molecular double-slit experiment, namely an ungerade parity of the initial state
from which the photoelectron originates. As outlined below, the initial phase
difference ∆ϕ may also be the result of nondipole effects.
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Figure 6.6: Classical double-slit experiment like Fig. 6.2, but the phase delay ∆ϕ in the
right slit causes a tilt of the interference pattern (∆ϕ = π/2). Through Eq. 6.10,
∆ϕ can be inferred from α0, that is the angle to which the central interference
maximum is shifted.
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6.2 . . .beyond the dipole approximation

Spatially dependent light phase

One simplification of the electric dipole approximation—where kγ is set to zero—is
that the light wavelength λ presumably becomes infinite (kγ = 2π/λ). Accordingly,
the electric field and its phase are constant over the whole relevant region of space
(see Fig. 6.7 A).
The electric dipole approximation breaks down in photoionization if the spatial
extent of the molecular (or atomic) orbital and the light wavelength share the same
order of magnitude. At the moment of photoabsorption in the nondipole regime,
each location of the orbital might experience different electric field vectors and
phases (see Fig. 6.7 B).

In the molecular double-slit experiment, the light phase is imprinted on the
electron waves which results in an initial phase difference of

∆ϕ = kγ · R = kγ R cos β , (6.11)

where β is the angle enclosed by the molecular axis and the light propagation
direction (see Fig. B.2). With this expression inserted into Eq. 6.5, the probability
distribution for the detection of a single photoelectron on a detector in the far field
becomes

P ∝ cos2
[

pR cos α − kγ R cos β

2

]

, (6.12)

and the zeroth-order interference maximum is shifted to

cos α0 =
kγ

p
cos β . (6.13)

Figure 6.8 illustrates these nondipole corrections to the molecular double slit
experiment.

Equation 6.12 was first presented by G. Yudin et al. in 2006 [110] as

P ∝ cos2
[

pR cos α − kγ R cos β

2
+

1
p

ln
(

1 + p · R/pR

1 − p · R/pR

)]

, (6.14)

where the additional term represents the influence of the molecular potential on
the photoelectron wave (see, e.g., Fig. B.4). These nondipole corrections to electron
emission in the body-fixed frame of a homonuclear diatomic molecule have never
been observed in an experiment until the present work.
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Figure 6.7: Homonuclear diatomic molecule exposed to a linearly polarized electromagnetic
wave. (A) Electric dipole approximation: The photon wavelength λ is much
larger than the internuclear distance R, the electric field (blue) has no spatial de-
pendence, and the light phase is constant over the whole relevant region of space.
(B, C) λ and R have the same order of magnitude: R/λ = 0.15. (B) Spatially
dependent light phase: For parallel alignment of light and molecule, the light
phase differs by ∆φ = kγR at the two atomic centers. In case of photoionization,
this phase difference is imprinted onto the two coherent waves that emerge
from the two atomic centers. If light and molecule are perpendicular, the phase
difference vanishes. (C) Birth time delay: A wavefront of constant phase sweeps
across the molecule and the birth time of the two coherent photoelectron waves
differs by ∆t = R/c for parallel alignment of molecule and light. The models
presented in B and C resemble two different interpretations for nondipolar
photoionization of molecules.

α

P α0

Figure 6.8: Photoelectron emission from a homonuclear diatomic molecule modified by
nondipole effects. The photon propagation direction is parallel to the molecular
axis and the two coherent photoelectron waves are launched from the two
atomic centers with different phases. The probability for the detection of a single
electron on a detector in the far field (Eq. 6.12) is indicated by the solid blue line.
Like in Fig. 6.3, R/λe = 1.65, which corresponds to 750 eV electron energy and
1.4 au internuclear distance. For illustrative purposes, we chose ∆ϕ = π/2. For
a photon of 800 eV energy, the wavelength λe is 15.5 Å. With the average bond
length of H2 (R = 0.74 Å), the initial phase difference becomes ∆ϕ = π/20.
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6.2 . . .beyond the dipole approximation

Birth time delay

Two stones dropped into a lake at two positions simultaneously create an interfer-
ence pattern on the surface that is symmetric around the center of the two drop
points. A skipping flat pebble that jumps off the water surface once before it sinks
at a position further away, results in an asymmetric interference pattern—like the
one depicted in Fig. 6.6—that is shifted towards the position where the stone sunk.
The reason for the asymmetry is the time delay between the birth of the two waves
on the lake’s surface.
This situation is an analogy4 to an alterantive picture for nondipolar photoioniza-
tion of a homonuclear diatomic molecule (Fig. 6.7 C). In this picture, a wavefront
of constant phase sweeps across the molecular orbital and releases the two con-
tributions to the total photoelectron wave upon arrival at each atomic center.
Accordingly, the birth time of the two mixing waves differs by

τ =
R cos β

c
, (6.15)

where c is the speed of light. We call this time difference birth time delay. Like
surface waves on a lake generated by a skipping pebble, photoelectron waves are
born at different times while the light traverses the molecule.
This physical picture is particularly appealing because it involves such ultrashort
time spans that were previously beyond reach in atomic physics. To put things
into perspective, we consider the speed of the particles involved in photon double
ionization of H2 at 800 eV photon energy. The average bond length of the hydrogen
molecule (0.74 Å) is the reference distance. For a proton that receives 10 eV
from the kinetic energy release of the molecular break-up, it takes roughly 1.7 fs
(1 femtosecond = 1 × 10−15 s) to cover the reference distance. For an electron at
750 eV kinetic energy, it takes 4.56 as (1 attosecond = 1 × 10−18 s). The travel time
of light to cover 0.74 Å is 247 zs (1 zeptosecond = 1 × 10−21 s).
The dynamics of atoms in chemical reactions on the femtosecond scale became
accessible at the end of the 1980s through efforts led by A. Zewail [111]. Since the
advent of attosecond technology by the mid-2000s, temporal aspects of electron
dynamics have been investigated experimentally [112]. However, the travel time
of light across a microscopic distance in the zeptosecond regime has never been
resolved so far.
In a molecular double slit experiment, the birth time delay can be resolved because
it leads to an initial phase difference between the two waves. One wave is emitted
and propagates with the phase velocity vph = E/p for the time τ before the second
wave is born. The covered distance (vph τ) constitutes an additional path length
difference and the phase difference between the two waves at birth becomes

∆ϕ = 2π
vph τ

λe
. (6.16)

Consequently, the far-field phase difference is

∆φ = 2π

[

R cos α

λe
−

vph τ

λe

]

. (6.17)

Following Eq. 6.10, the birth time delay can be inferred from a measured angle α0
through

τ = cos α0
R

vph
. (6.18)

4I did not come up with this analogy myself. Kudos go to Markus Bernards, the Science Commu-
nications Manager at Goethe-University.
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To some extent, the internuclear distance R and the electron phase speed vph—
i.e., the photoelectron energy—can be chosen by the experimentalist prior to
conducting a molecular double-slit experiment. Intuitively, one might think that a
larger R, that leads to a larger birth time delay τ, makes the measurement easier.
However, the birth time delay is derived from the observable α0 and that makes
the situation less straightforward. After substituting Eq. 6.15 into Eq. 6.18, we can
write

cos α0 =
vph

c
cos β . (6.19)

As illustrated in Fig. 6.9, an increase of the phase speed vph has no effect on the
birth time delay τ but magnifies the observable α0. On the other hand, increasing
the internuclear distance R leads to a larger τ, but the magnitude of α0 remains
the same. Still, a larger R makes it easier to infer α0 from the measurement because
the width of the zeroth-order interference maximum decreases.

An obvious question is how are the two physical pictures for nondipolar pho-
toioinization of a homonuclear diatomic molecule related? Upon substituting
Eq. 6.15, vph = E/p, and λe = h/p into Eq. 6.16, it becomes

∆ϕ = 2π
E

h c
R cos β . (6.20)

If the binding energy of the electron is small compared to the photon energy, we
can set E ≈ Eγ and use λ = h c/Eγ in Eq. 6.20, that subsequently becomes

∆ϕ =
2π

λ
R cos β = kγ R cos β , (6.21)

which is exactly the same as Eq. 6.11. Hence, the ideas of the spatially dependent
light field and the finite travel time of light across the relevant region of space are
two closely related pictures to describe the same physical reality.
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Figure 6.9: Shift of the zeroth-order interference maximum α0 (dashed lines) due to birth
time delay for different internuclear distances R and electron phase speeds
vph = E/p ∝
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6.2 . . .beyond the dipole approximation

Shift of the initial-state momentum

Last but not least, the nondipole corrections to the molecular double-slit experi-
ment can be considered in the momentum representation of the problem.
The diffraction of waves at periodic structures can lead to interference effects. The
intensity distribution of a diffracted wave as function of magnitude and direction
of the wave vector k is given by

I(k) ∝

∣

∣

∣

∣

∫

e−ik·r ρ(r) d3r

∣

∣

∣

∣

2
, (6.22)

where ρ(r) is the function that describes the geometrical structure of the diffraction
elements. Hence, the intensity of the wave as function of k is proportional to the
squared modulus of the Fourier transform of ρ(r).
For the molecular double-slit experiment, the geometrical structure may be de-
scribed as

ρ(r) = δ(r ± R

2
) , (6.23)

where δ ist the Dirac delta function. By using Eq. 6.23 in Eq. 6.22 and substituting k

by p—i.e., the electron wave vector that equals its momentum in atomic units—we
get the following probability distribution for the observation of a photoelectron
with momentum p

P ∝

∣

∣

∣
e−ip· R

2 + eip· R
2

∣

∣

∣

2
∝ cos2

[

p · R

2

]

, (6.24)

which is the same as Eq. 6.6. Hardly surprising, both descriptions of the molecular
double-slit experiment—i.e., in momentum and position representations—yield
the same photoelectron probability distribution within the dipole approximation.

The electric dipole approximation breaks down if the photon momentum is
not negligibly small compared to the momenta of the reaction fragments and
corresponding nondipole corrections must manifest in the description of the
molecular double-slit experiment in momentum representation. As discussed
in Kinematics of photoionization (see p. 6), the photon momentum is imparted
almost entirely onto the ion center of mass and the magnitude of the observable
photoelectron momentum vector does not depend on its emission direction in
the laboratory frame of reference. Accordingly, we cannot simply explain the
nondipole corrections to the molecular double-slit experiment by the inclusion of
the photon momentum in the final-state electron momentum.
An illustrative way to approach the molecular double slit in momentum space
was presented by Waitz et al. in Ref. [33]. For one-photon single ionization of H2,
the authors showed that the photoelectron angular distribution in the molecular
frame of reference images the initial-state wave function. The authors presented the
initial-state wave function in momentum space in a two dimensional coordinate
system, where the two axes were parallel (p‖) and perpendicular (p⊥) to R. In
such a picture, the possible photoelectron momenta lie on a circle centered at the
origin with radius p and probing the probability density of the initial-state wave
function along the path of the circle yields the photoelectron angular distribution
in the molecular frame of reference. In Fig. 6.10 A, we utilize the same method of
representation but approximate the initial-state wave function in momentum space
within the dipole approximation simply as the squared modulus of the Fourier
transform of ρ(r).
In the spirit of this approach, the nondipole corrections to the molecular double-
slit experiment can be explained as follows. The observable magnitude of the
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6.2 . . .beyond the dipole approximation

photoelectron momentum and the locations in position space, from where the two
waves originate, remain unchanged. However, the photon momentum shifts the
initial momentum-space distribution with respect to the reference frame of the
observation. This situation is illustrated in Fig. 6.10 B. Here, the photoelectron
angular distribution, which probes the structure of the initial-state wave function,
becomes asymmetric. The shown detection probability is the same as in Fig. 6.8.
To include these nondipole correction in Eq. 6.22, the Fourier transform of ρ(r)
has to be modified by writing

I(p) ∝

∣

∣

∣

∣

∫

e−iK·r ρ(r) d3r

∣

∣

∣

∣

2
, (6.25)

where K = p − kγ, which accounts for the initial-state modification of the wave
vector. Accordingly, Eq. 6.23 becomes

P ∝ cos2
[

(p − kγ) · R

2

]

, (6.26)

which is the same expression as Eq. 6.12. Accordingly, the momentum and the
spatial representation of the problem yield the same nondipole corrections to the
molecular double-slit experiment.
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Figure 6.10: Imaging of the initial-state wave function in momentum space as suggested in
Ref. [33]. The probability density of the wave function is encoded in the color
bar and it is approximated as the squared modulus of the Fourier transform
of Eq. 6.23, which describes the geometrical structure of the molecular double
slit with R = 1.4 au. All observable photoelectron momenta lie on the white
circle which is centered at the origin and has a radius of p = 7.4 au. Probing
the probability density along the path of the circle yields the probability for
the detection of an electron with a certain momentum, which is indicated by
the solid blue line. (A) Dipole approximation. (B) The nondipole corrections
manifest in a shift of the initial-state wave function in momentum space by kγ.
Here, kγ = 0.4 and the photon momentum vector is parallel to the molecular
axis, as indicated by the white arrow.

47



6.2 . . .beyond the dipole approximation

Review of nondipolar photoionization of molecules

Resolved in the laboratory-frame of reference, nondipole effects in photoioinization
of molecules have been extensively studied in the past. For example, experiments
observed forward/backward asymmetries in photoelectron emission from H2 [113,
114], from the N2 K-shell [115–117], from the N2 valence shell [118], and from
the carbon K-shell of CO [119]. Further theory predictions and derivations can be
found, e.g., in Refs. [120–122].

For the investigation of one-photon single and double ioinzation of H2, the experi-
ment conducted for the present work used the highest photon energy up to this
day (800 eV). The previous experiments on N2 K-shell photoionization used pho-
ton energies up to a maximum of 700 eV [116]. Recently, M. Kircher et al. observed
nondipole effects for photon energies between 12 and 40 keV [123]. The present
work deals with the intermediate range between 880 eV and 2160 eV photon energy.

Experimental nondipole studies resolved in the molecular-frame of reference
are much rarer. In 2002, R. Guillemin et al. reported on strong effects for K-
shell ionization of N2 at 660 eV photon energy [124]. However, the results were
questioned (e.g., Ref. [117]) and never theoretically underpinned or verified in
another experiment, as far as the author knows.
In 2019, M. Kircher et al. reported on K-shell ionization of N2 at 40 keV photon
energy and companion calculations [125]. The authors observed that the lab-frame
nondipole effects depend on the orientation of the molecules with respect to the
light, but they did not resolve the MFPAD.

The present work reveals nondipole effects on the molecular double-slit experiment
conducted with K-shell ionization of H2 and N2. The experiment on N2 was
conducted at several photon energies in order to uncover the interplay between
laboratory- and molecular-frame nondipole effects, that are discussed in the next
chapter.
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How do the previously discussed nondipole effects in the laboratory- and the
molecular-frame of reference influence each other?

The modifications of the laboratory-frame photoelectron angular distribution in
K-shell photoionization of N2 due to nondipole corrections to the MFPAD were
computed by D. Toffoli and P. Decleva in 2006 [126].1 As shown in Fig. 7.1 C & D,
the authors found that the forward/backward asymmetry of photoelectron emis-
sion in the lab frame—measured in terms of the nondipole parameter γ (see
Eqs. 4.25 & 4.26)—is modified by molecular nondipole effects, if the parity of the
initial state is resolved.
At high photon energies (Fig. 7.1 D), we can derive a simple explanation for the
calculated oscillations from the concepts introduced in the previous chapter. We
assume circularly polarized light and parallel alignment between molecule and
light propagation direction (i.e., cos β = 1). Hence, the electron emission angles in
the laboratory frame (ϑγ, see Eq. 4.25) and in the molecular frame (α, see Eq. 6.12)
coincide. We assume no initial atomic nondipole effects (γ = δ = 0) and a dipole
parameter of β = 2. Accordingly, the probability distribution as function of the
electron emission angle becomes

P(cos ϑγ) ∝ cos2
[

pR cos ϑγ − kγR

2

]

× [1 − P2(cos ϑγ)] , (7.1)

and the weighted average of cos ϑγ is

〈cos ϑγ〉 =
∫ 1

−1
cos ϑγ P(cos ϑγ) d cos ϑγ . (7.2)

The blue line in Fig. 7.1 A & B shows 〈cos ϑγ〉 as function of the photon energy
for R = 2.07 au and Ip = 410 eV, and the green line presents the counterpart of
Eq. 7.2 for an ungerade initial state. If 〈cos ϑγ〉 > 0, the nondipole parameter γ is
increased and vice versa.
At high photon energies, the oscillations of 〈cos ϑγ〉 and the calculated values for γ
are in phase. Accordingly, the nondipole corrections to the MFPAD—as presented
in Eq. 6.12—explain the modulation of the forward/backward asymmetry of
photoelectron emission in the laboratory frame. Note that for arbitrary orientation
of the molecular axis relative to the photon propagation direction, the derivation
becomes more complex and harder to imagine, but still yields the same result. At
low photon energies, where the Born approximation breaks down, the calculated
modulation of γ cannot be explained by the nondipole corrections to the molecular
double-slit experiment.
The magenta line in Fig. 7.1 A & B shows the Cohen-Fano interferences for
comparison (Eq. 6.2). Because of the mutual physical origin, the Cohen-Fano
interferences are in phase with the gerade oscillations of 〈cos ϑγ〉 at high photon
energies.
The dashed purple lines in Fig. 7.1 B & D indicate the photon energies used in our
experiments to confirm the calculations presented by Toffoli and Decleva.

1The authors were so kind to provide us with the numerical results of their study.
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Figure 7.1: (A, B) Green: Average photoelectron emission angle in the laboratory frame of
reference for parallel alignment of light and homonuclear diatomic molecule
(cos β = 1) under the assumption of no atomic nondipole effects (β = 2, γ =
δ = 0), as calculated from Eq. 7.2 for R = 2.07 au, Ip = 410 eV, and a molecular
orbital of gerade parity. Blue: Like green, but for ungerade parity. Magenta:
Cohen-Fano interferences (Eq. 6.2). (C, D) Calculated nondipole parameter γ

as function of the photon energy resolved for photoelectron emission from the
gerade (green) and ungerade (blue) K-shell state of N2 [126].
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Vice versa, atomic nondipole effects modify photoelectron emission measured
in the molecular frame. Again, we assume circular polarization and parallel
alignment between molecule and light (cos β = 1), but we set kγ = 0, β = 2, γ = 3,
and δ = 0. Now, the probability distribution as function of the electron emission
angle becomes

P(cos α) ∝ cos2
[

pR cos α

2

]

×
[

1 − P2(cos α) +
3
2

sin2 α cos α

]

. (7.3)

The red line in Fig. 7.2 displays Eq. 7.3 for R = 1.4 au and p = 7.4 au. Even
though there is no initial phase difference between the two interfering waves, the
center of the zeroth-order interference maximum (cos α0) is shifted due to the
atomic nondipole effect. Accordingly, if the initial phase shift is calculated from a
measured cos α0 (see Eq. 6.10), this has to be kept in mind.
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Figure 7.2: Shift of the zeroth-order interference maximum cos α0 due to the atomic
nondipole effect. Here, we have assumed R/λe = 1.65, kγ = 0, parallel align-
ment of light and homonuclear diatomic molecule (cos β = 1), β = 2, γ = 3, and
δ = 0.
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8E X P E R I M E N T

The purpose of this chapter is two-fold. First, it provides any reader with a
broad overview of how the experimental setup works while detailed literature
is referenced throughout the text. Second, it contains all necessary information
needed by an expert experimentalist to reproduce the raw data.

8.1 cold target recoil ion momentum spectroscopy

To obtain the experimental results of this thesis, we employed a method called cold
target recoil ion momentum spectroscopy (COLTRIMS) [9].
The basic principles of this technique are the following (see Fig. 8.1): A supersonic
jet of a target gas is intersected with a light beam at right angle inside an interaction
chamber under vacuum. The charged reaction fragments—electrons and ions
created via photoionization—are guided by electric and magnetic fields from the
interaction zone towards two time- and position-sensitive detectors. From the time
of flight and the position of impact, the three-dimensional momentum vector is
determined for each detected particle.
The exceptional strength of the COLTRIMS technique is the coincident mea-
surement scheme, which allows to group the detected particles into individual
photoionization events. The subsequent analysis can be limited to sets of events
that fulfill certain conditions. Given enough statistics, this concept allows to obtain
conditional reaction probabilities depending on any observable degree of freedom
of initial and final state, i.e., the fully-differential cross section of the process.
A machine implementing this technique is a COLTRIMS reaction microscope. An
in-depth account of hardware employed in a reaction microscope can be found
in Ref. [127]. In the following, we will briefly cover the essential components. A
detailed review of the very reaction microscope used to obtain the results of the
present work can be found in Ref. [87].

Photon source

All experiments for this thesis were carried out at beamline P04 [128] of the
synchrotron light source PETRA III at DESY in Hamburg, Germany. PETRA III
is an electron storage ring of 2.3 km circumference. With a kinetic energy of up
to 6.0 GeV, the orbiting electrons travel at close to speed of light. The COLTRIMS
technique demands a certain minimum time between two photoionization events,
mainly to prevent the time-of-flight distributions from two consecutive events to
overlap. Thus, PETRA III was operated in the so-called time-resolved mode during
the experiments. Here, the total number of electrons orbiting the ring are grouped
into 40 bunches that are equally spaced over the circumference. Accordingly, the
elapsed time between two bunches passing a stationary location inside the ring
was 192.17 ns.
Electrons, deflected from their straight paths by magnetic fields, emit the syn-
chrotron light [129]. At beamline P04, the custom magnetic field is created by an
APPLE-2 type undulator [130] that forces electrons onto a slalom- or cork-screw-like
path. While the former path generates linearly polarized photons, the latter makes
circularly polarized light. The combination of both settings facilitates the undulator
at P04 to generate any elliptical polarization. In all our experiments, however,

53



8.1 cold target recoil ion momentum spectroscopy

we used circularly polarized photons because beamline P04 was not yet able to
provide linearly polarized light due to technical difficulties.
In the reference frame of the electron, a spectral line produced by the APPLE-2
undulator is roughly Gaussian shaped with a relative energy resolution (FWHM)
of about 1/72 (the relative energy resolution is inversely proportional to the
number of undulator periods [131]). However, due to higher harmonics and
Doppler frequency shifts, the observed overall spectrum is broadened and biased
in the laboratory frame of reference (see, e.g., Fig. 6.6 in Ref. [129]). Thus, a
monochromator, consisting of diffraction gratings and apertures, is used to cut a
narrow energy peak from the undulator spectrum before delivering the photons
to the experimental endstation.
Beamline P04, in particular, is suitable for application in the photon energy range
from 250 eV – 3000 eV. Using the standard monochromator gratings, a photon
flux of up to 5 × 1012 photons/s can be achieved. For the H2 experiment at
800 eV photon energy, we have used an aluminum blank mirror instead of the
usual monochromator gratings. By setting the monochromator to zeroth order
(diffraction angle equal to incident angle) we generated a so-called pink beam
and increased the photon flux to an estimated maximum of 1.6 × 1014 photons/s.
To remove contaminating low-energy photons, a stacked filter (Al 255.9 nm +
B 716.5 nm + Cu 76.8 nm + polyamide) was inserted into the beam path. Because
of the low cross section of H2 double ionization at 800 eV photon energy, this
high-flux pink beam was crucial for this experiment’s success.

Target preparation system

The supersonic jet is initiated in an adiabatic expansion of the target gas from a
high driving pressure into a low pressure container through a circular aperture
(nozzle). The adiabatic expansion converts the inner energy of the gas into a
directed momentum distribution. Using a special cone-shaped aperture (skimmer),
a narrow jet is then sliced from this plume and guided towards the interaction
region. A comprehensive account on this target preparation technique can be
found, e.g., in Ref. [132].
Here we used the same target preparation system for all experiments and just
exchanged the gas cylinders containing the target gases. A graphical illustration
of the system’s geometry can be found in Ref. [133]. The nozzle had a diameter
of 0.03 mm and all target gases were at room temperature before the expansion.
The individual properties of the target gas jet can be found in Sec. 8.2 for each
experiment.

Spectrometer and electric field

The spectrometer generates the electric field which is one part of the ion optics
that guide the charged reaction fragments towards their respective detectors. The
spectrometer’s geometry can be customized for each use of a reaction microscope
in order to optimize the ion optics with regard to the process under investigation.
The spectrometer kit used here consisted of square copper plates (100 mm edge
length and 0.5 mm thickness) with a central circular hole (80 mm diameter), that
could be stacked on top of each other (5 mm separation).
In a most basic version, the spectrometer creates an electric field that is homoge-
neous over the whole open volume. However, a more sophisticated custom electric
field can compensate for the adverse effects of the extended (rather than point-like)
reaction volume, i.e., the overlap of light beam and gas jet, on the momentum
resolution (see, e.g., Ref. [134] for a detailed account).
First, a combination of a homogeneous acceleration field followed by a field-free
drift region can project reaction fragments with the same initial momentum but
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different starting positions in ẑ direction onto the same time of flight. Due to
longer acceleration, particles starting further away from the detector gain more
speed before entering the drift and catch up to particles that start closer to the
detector. To optimize the focusing effect, the ideal configuration of acceleration
length to drift length is at a ratio of two to one [135].
Second, an electrostatic lens can have a similar momentum focusing effect in the
x̂-ŷ plane. While a homogeneous electric field requires constant steps of potential
changes from one spectrometer plate to the next one, a larger step creates such
an electrostatic lens. It can project particles with the same initial momentum but
different starting positions onto the same position of impact because the deflection
angle depends on the trajectory’s distance from the central axis while propagating
through the lens. The focusing power of the lens is characterized by the lens factor
which is the ratio of maximum field strength generated by the lens compared to
the homogeneous acceleration field strength.
The spectrometer geometry, the acceleration field strength, and whether these
focusing techniques are necessary or not depend on the details of the experiment.
All those experimental parameters can be found in Sec. 8.2.

Helmholtz pair of coils and magnetic field

The magnetic field, i.e., the second essential part of the ion optics, is created by a
Helmholtz pair of coils whose axis is aligned with the spectrometer axis (ẑ axis).
The magnetic field is used to confine the electrons on a cyclotron motion inside
the cylinder-shaped open volume of the spectrometer. Due to the much higher
mass, ions are barely influenced by the magnetic field. Therefore, ions roughly
follow a simple curved path, but electrons gyrate towards the detector on a more
complex trajectory (see Fig. 8.1).
Each coil used here had 15 turns, a diameter of 145 cm, and was water cooled. The
distance between the coils was 72 cm. This large size facilitated a homogeneous
magnetic field covering the whole inside volume of the spectrometer’s electron
arm. The two power supplies in parallel operation that fed the coils could produce
an electric current of up to roughly 300 A. Thus, the maximum value of the
magnetic field is about 56 G.
The higher the electron energy, the stronger the magnetic field has to be to confine
the electrons inside the spectrometer. Theoretically, the used reaction microscope
could detect electrons of up to 1060 eV kinetic energy with initial momenta
perpendicular to the ẑ direction, considering the maximum magnetic field strength
of 56 G and the 80 mm diameter of the cylinder-shaped open volume of the
spectrometer.
However, a high magnetic field has adverse effects on the quality of the measured
relation between the particle’s time of flight and position of impact, which is later
used to calculate the vector momentum. A consequence of the electron’s cyclotron
motion is that after a certain time—the gyration period tg—all electron trajecto-
ries intersect again with the ẑ-axis. This leads to the characteristic nodes in the
histogram depicting the relation between the particle’s time of flight and position
of impact (see Fig. 9.1 C). The information about the initial vector momentum is
lost for electrons whose time of flight is an integer multiple of the gyration period
because the whole x̂-ŷ momentum distribution is compressed into a single spot on
the detector. The higher the magnetic field, the more unfavorable nodes are packed
into a given electron time-of-flight distribution, because the gyration period is
inversely proportional to the magnetic field strength. Consequently, the magnetic
field strength should be chosen as high as necessary but as low as possible.
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Detectors

The time- and position-sensitive detectors consist of two key components. One is
the microchannel plate that detects a single particle’s time of impact [136]. Such a
plate is a glass wafer penetrated by parallel channels that are slightly tilted with
regard to the plate’s surface normal (bias angle). The face sides of the plate are
electrically well conducting but the channel walls are covered by a high-resistance
coating. When in operation, a voltage is applied between the face sides of the
plate. If a particle impinges on a channel wall, an electron bunch is released and
accelerated towards the channel exit. On its path, the bunch strikes the channel
walls several times and grows in electron number. The time-of-impact signal is
tapped from the current compensating the depletion of negative charge upon exit
of the electron bunch.
The electron bunch is then accelerated towards a position-sensitive delay-line
anode [137], the other key detector component. Here, the electron bunch generates
a signal on a wire that propagates in opposite directions with constant velocity.
The position of impact in one direction of the detector plane is calculated from the
different arrival times of the signal at the two wire ends. A combination of at least
two linearly independent delay-line wires facilitates position read-out within the
whole detector plane.
The detectors used here were largely similar for electron and ion detection. Both
had an active circular detection area of 80 mm diameter. Both used a stack of
two microchannel plates arranged in the so-called Chevron configuration [136]. Two
hexagon delay-line anodes [138] were used for position read-out, which—instead of
two—consist of three delay-line wires at angles of 60◦ to each other. However, a
funnel microchannel plate replaced the standard one on top of the stack for the ion
detector in Session 2 and Session 3 to increase detection efficiency [139].

Signal processing and raw data acquisition

Ideally, each particle impinging on the detector generates seven analog signals for
further processing: One microchannel-plate signal and six delay-line signals, one
for each end of the three layers. After amplification, these signals enter a constant
fraction discriminator that transforms the analog pulse shape into a rectangular
pattern suitable for digitization via a time-to-digital converter. The time-to-digital
converter passes the arrival time of each signal relative to some reference time to
the acquisition program COBOLD that stores the raw data on a hard drive.
These arrival times are not stored in a continuous stream of data, but the recording
produces self-contained events that should ideally resemble the single photoioniza-
tion events. Each event includes ion and electron signals, and has its own reference
time frame. One of the signal pipelines is assigned as the trigger that defines time
zero when the corresponding channel of the time-to-digital converter registers the
first signal. Along with establishing time zero, the trigger-channel’s first signal
opens a time window reaching into the past and the future, to which all channels
contribute the time information of incoming pulses. The size of the time window
is chosen according to the expected time span needed to include all particles from
the reaction under investigation. To calculate the times of flight, the so-called
bunchmarker signal is stored along with the particle signals within each event’s
time window (see p. 64 for further details).
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Figure 8.1: Concept of cold target recoil ion momentum spectroscopy (COLTRIMS) and the
laboratory frame of reference. A supersonic jet (green) of a target gas is crossed
with synchrotron light (violet) at right angle. A homogeneous electric field E,
generated by a spectrometer (copper plates), and a homogeneous magnetic
field B, created by a Helmholtz pair (copper rings), guide the charged reaction
fragments (red trajectory: ion, blue trajectory: electron) towards time- and
position-sensitive detectors. The initial three-dimensional vector momentum
of each reaction fragment (blue and red arrows) is calculated from the time of
flight and the position of impact on the detectors (marked with a red and a blue
cross).
The right-handed coordinate system (black) shows the laboratory frame of
reference. The positive x̂ direction is parallel to the light propagation and
the positive ŷ direction is aligned to the jet. The positive ẑ direction points
towards the electron detector. The origin of the coordinate system is centered
at the intersection of light beam and gas jet (interaction point). The x̂-ŷ plane
is frequently called detector plane, because it is parallel to the detector surface.
The ŷ-ẑ plane is frequently called polarization plane, because at the instant of
photoionization the light polarization vector lies within that plane at an arbitrary
angle in case of circular polarization.
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8.2 experimental sessions

The raw data sets used for this thesis were recorded in three sessions at beamline
P04 at DESY. During each session, we sometimes changed the experimental pa-
rameters and took data in several runs to approach different research questions.
This section provides an overview with the goals of each session, the different
spectrometer designs, and those experimental parameters for each run that are
relevant to reproduce the raw data.

Session 1: He QFM (June 16 - 24, 2016)

The main research goal of this experimental session was to obtain fully-differential
cross sections of the quasi-free mechanism (QFM) in helium one-photon double
ionization. Hence, the initial three-dimensional vector momentum of two electrons
and the helium nucleus—independent of their orientation in the laboratory frame—
had to be determined.
High photon energies are a prerequisite for QFM and capturing the resulting high
energetic electrons without sacrificing full solid-angle acceptance while still achiev-
ing reasonable momentum resolution is a challenge in COLTRIMS experiments
(see magnetic field, p. 55).

In each one of the three experimental sessions we faced a similar challenge and
always approached it with the following well-established method: If a photoion-
ization process produces N fragments but only the three-dimensional momentum
vectors of N − 1 particles are detected, momentum conservation allows to recon-
struct the vector momentum of the missing particle. In He double ionization the
available excess energy Eexc is shared among the two electrons. If the magnetic
field strength is chosen in order to detect electrons of up to Eexc/2 kinetic energy
with full solid-angle acceptance, an undetected higher-energetic electron could
always be inferred from momentum conservation.

Spectrometer geometry: The electron arm of the spectrometer consisted of an
acceleration region of 91 mm length that terminated with a steel grating. The
distance between the steel grating and the microchannel plate was roughly 7 mm.
The ion arm had an acceleration length of 124 mm and a 800 mm drift which
terminated with a steel grating, as well. The distance between the front of the ion
detector and the grating was also roughly 7 mm. Situated between 88 mm and
94 mm away from the interaction zone, an electrostatic lens with a lens factor of
20.5 was part of the ion acceleration region. The relatively large size of the ion arm
was a consequence of the low kinetic energies of helium ions after photoionization.
The detector had to be placed at a far distance from the reaction point in order to
use its whole active area for imaging the momentum distribution in the x̂-ŷ plane.
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Run 1A – Helium at 800 eV photon energy

• Cross section: 863 barn for one-photon single ionization [22], 19.6 barn for
one-photon double ionization [140].

• Data acquisition time: 37 h.
• Data acquisition rates: 31 kHz electrons, 16 kHz ions.
• Jet: 0.03 mm nozzle diameter, 50 bar driving pressure, 300 K gas temperature

before expansion. Estimated values: 0.63 mm jet diameter at interaction zone,
5.3 × 1011 atoms/cm2 target area density, 3.1 × 10−4 mbar inner target pres-
sure, 0.065 au (0.13 au) momentum uncertainty in jet direction (perpendicular
to jet).

• Beamline: 0.3 mm exit slits, right circular polarization (positive undulator
shift).

• Fields: 20.15 V/cm acceleration, 34.0 G magnetic field.
• Potential settings: +2628 V electron delay-line anode, −50 V electron microchannel-

plate front, −202 V electron spectrometer grating, −914 V ion drift, −2050 V
ion microchannel-plate front, +316 V ion delay-line anode.1

• Vacuum interaction chamber: 8.5 × 10−10 mbar.
• Calibration measurements: Helium at 385.0 eV and argon at 248.9 eV, 250.9 eV,

253.9 eV, 258.9 eV, 278.9 eV, 308.9 eV, 348.9 eV, and 408.9 eV photon energy.

Run 1B – Helium at 1100 eV photon energy

• Cross section: 304 barn for one-photon single ionization [22], 7.6 barn for
one-photon double ionization [141].

• Data acquisition time: 50 h.
• Data acquisition rates: 20 kHz electrons, 9 kHz ions.
• Jet: 0.03 mm nozzle diameter, 54 bar driving pressure, 300 K gas temperature

before expansion. Estimated values: 0.63 mm jet diameter at interaction zone,
5.4 × 1011 atoms/cm2 target area density, 3.2 × 10−4 mbar inner target pres-
sure, 0.058 au (0.13 au) momentum uncertainty in jet direction (perpendicular
to jet).

• Beamline: 0.4 mm exit slits, right circular polarization (positive undulator
shift).

• Fields: 20.15 V/cm acceleration, 43.3 G magnetic field.
• Potential settings: +2696 V electron delay-line anode, −53 V electron microchannel-

plate front, −202 V electron spectrometer grating, −913 V ion drift, −2207 V
ion microchannel-plate front, +255 V ion delay-line anode.

• Vacuum interaction chamber: 3.3 × 10−9 mbar.
• Calibration measurements: Helium at 550.0 eV and 575.0 eV, and argon at

248.8 eV, 250.8 eV, 252.8 eV, 258.8 eV, 288.8 eV, 348.8 eV, and 708.8 eV photon
energy.

1Note that all further potentials were set via voltage dividing resistors.

59



8.2 experimental sessions

Session 2: H2 QFM and birth time delay (April 12 - 17, 2018)

The research goals of this experimental session were to confirm the quasi-free
mechanism occurring in H2 double ionization and to observe birth time delay in
molecular photoionization for the first time ever. The three-dimensional vector mo-
menta of two electrons and both protons had to be determined and again we made
use of the momentum conservation trick: The magnetic field was set for full solid
angle acceptance of electrons up to half of the excess energy. The momentum of an
undetected high-energetic electron was determined from momentum conservation.

While determining the proper electric field strength for the experiment, we failed
to consider the gain in kinetic energy due to the photoelectron recoil onto the
protons. Thus, the electric field was set a little too low and the calculation of
proton momenta required particular corrections (see p. 77).

Spectrometer geometry: The electron arm of the spectrometer consisted of a sim-
ple acceleration region of 73 mm length that terminated right at the front of the
detector (no grating was used). The ion arm had an acceleration length of 119 mm
and a 308 mm drift which terminated with a steel grating. The distance between
the front of the ion detector and the grating was roughly 7 mm. This stretch of
distance was used for post acceleration of ions to increase the kinetic energy for
maximum detection efficiency. Situated between 113 mm and 119 mm away from
the interaction zone, an electrostatic lens with a lens factor of 40 was placed at the
end of the ion acceleration region. To shield the interaction zone from the influence
of the strong electrostatic lens, spectrometer plates with a varying open diameter
were used for some part of the ion acceleration. The spectrometer geometry is
shown in Fig. 8.2.

Figure 8.2: Geometry and electric field of the H2 spectrometer. The red curves show the
equipotential lines of the electric field. The black trajectories are from ions with a
kinetic energy of 10 eV and different angular orientation of the initial momentum
vector. The blue trajectories are from electrons at 400 eV kinetic energy. The
magnetic field confines these electrons on a gyration inside the spectrometer.
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Run 2A – H2 at 800 eV photon energy

• Cross section: 62 barn for single ionization, 0.77 barn for double ionization
[140].

• Data acquisition time: 132 h.
• Data acquisition rates: 16 kHz electrons, 3 kHz ions.
• Jet: 0.03 mm nozzle diameter, 12 bar driving pressure, 300 K gas temperature

before expansion. Estimated values: 0.63 mm jet diameter at interaction
zone, 1.1 × 1011 molecules/cm2 target area density, 6.5 × 10−5 mbar inner
target pressure, 0.255 au (0.085 au) momentum uncertainty in jet direction
(perpendicular to jet).

• Vacuum interaction chamber: less than 5 × 10−10 mbar.
• Beamline: 0.5 mm exit slits, right circular polarization (positive undulator

shift), pink beam (see p. 53).
• Fields: 39.0 V/cm acceleration, 36.15 G magnetic field.
• Potential settings: +2605 V electron delay-line anode, −229 V electron

microchannel-plate front, −254 V electron spectrometer first electrode, −1758 V
ion drift, −2627 V ion microchannel-plate front, +174 V ion delay-line anode.

• Calibration measurements: H2 at 248.0 eV, and argon at 247.0 eV, 250.0 eV,
255.0 eV, 265.0 eV, 290.0 eV, 357.0 eV, 407.0 eV, and 607.0 eV photon energy.
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Session 3: N2 and He nondipole energy scans (March 28 - April 3, 2019)

The objective of this session was to observe the interplay of atomic and molecular
nondipole effects in N2 photoionization from gerade and ungerade initial orbitals.
For Run 3A, the magnetic field was set to detect the Auger electron at about 370 eV
kinetic energy. Again, the photoelectron was reconstructed from two detected N+

ions and the Auger electron by means of momentum conservation.
The energy scan on He photoionization, Run 3B, was measured to obtain a purely-
atomic reference. Here, we only detected He+.

Spectrometer geometry: We have used a spectrometer of the exact same design
as in Session 2 (see Fig. 8.2).

Run 3A – N2 photon energy scan

• Total data acquisition time: 60 h.
• Photon energies used (and approximate2 cross sections for single ionization

[22]): 880 eV (0.22 Mbarn), 1330 eV (0.085 Mbarn), 1510 eV (0.063 Mbarn),
1720 eV (0.046 Mbarn), 1930 eV (0.035 Mbarn), and 2160 eV (0.027 Mbarn).

• Jet: 0.03 mm nozzle diameter, 14.5 bar driving pressure, 300 K gas tempera-
ture before expansion. Estimated values: 0.63 mm jet diameter at interaction
zone, 4.1 × 1011 molecules/cm2 target area density, 2.4 × 10−4 mbar inner
target pressure, 0.783 au (0.318 au) momentum uncertainty in jet direction
(perpendicular to jet).

• Vacuum interaction chamber: approx. 3.3 × 10−9 mbar.
• Beamline: 0.1 mm – 0.9 mm exit slits, right circular polarization (positive

undulator shift).
• Fields: 43.3 V/cm acceleration, 36.0 G magnetic field.
• Potential settings: +2031 V electron delay-line anode, −228 V electron

microchannel-plate front, −233 V electron spectrometer first electrode, −1913
V ion drift, −2120 V ion microchannel-plate front, +237 V ion delay-line
anode.

• Calibration measurements: None.

Run 3B – He photon energy scan

• Total data acquisition time: 4 h.
• Photon energies used (and cross sections for single ionization [22]): 300 eV

(17600 barn), 500 eV (3704 barn), 600 eV (2050 barn), 945 eV (498 barn), 1125
eV (367 barn), 1335 eV (170 barn), 1545 eV (101 barn), and 1775 eV (62 barn).

• Jet: 0.03 mm nozzle diameter, 28.5 bar driving pressure, 300 K gas tempera-
ture before expansion. Estimated values: 0.63 mm jet diameter at interaction
zone, 1.7 × 1011 molecules/cm2 target area density, 9.8 × 10−5 mbar inner
target pressure, 0.138 au (0.130 au) momentum uncertainty in jet direction
(perpendicular to jet).

• Vacuum interaction chamber: approx. 3.3 × 10−9 mbar.
• Beamline: 0.05 mm – 1.0 mm exit slits, right circular polarization (positive

undulator shift).
• Fields: 42.1 V/cm acceleration, no magnetic field.
• Potential settings: +2031 V electron delay-line anode, −228 V electron

microchannel-plate front, −233 V electron spectrometer first electrode, −1866
V ion drift, −2120 V ion microchannel-plate front, +267 V ion delay-line
anode.

• Calibration measurements: None.

2Two times the atomic K-shell cross section.
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D ATA A N A LY S I S

This chapter covers the procedure for converting the signal arrival times stored
in the raw data (see Signal processing and raw data acquisition, p. 56) into the three-
dimensional momentum vector for each particle in a recorded photoionization
event. We have used the lmf2root1 analysis software to handle the raw data and to
produce the histograms for data presentation.

The analysis of data generated in a COLTRIMS experiment usually follows the
same steps that have been described extensively in the available literature. An
in-depth and instructive account can be found, e.g., in Ref. [142].
The present chapter provides only a broad overview of the process in general,
but thoroughly covers the parts where our analysis differed from the standard
approach. This concerns in particular the calculation of ion momenta, where the
effects of the electrostatic lens complicated the procedure.
A comprehensive collection of standard momentum and energy distributions
generated from the data used for the present thesis—after application of all
correction measures described below—can be found in Appendix C.

9.1 preparatory steps

Along with the spectrometer’s geometry and the properties of the electromagnetic
field, the calculation of a particle’s momentum requires the associated position
of impact on the detector and the time of flight (TOF). As described below, these
values were determined from the raw data.
A further preparatory step is to apply broad filters on the measured times of flight
and positions of impact to limit the momentum calculation procedure to events
that are physically reasonable. This step is called presorting and described on p. 66.

Position of impact

The procedure to determine the position of impact of a particle on the detector was
the same for electrons and ions. For each of the three layers of the delay-line anode
(labelled as u, v, and w layer), the position of impact along the layer’s delay-line
direction was calculated as

u = η (tu1 − tu2) , (9.1)

where η is given in mm/ns and represents the propagation speed of the signal
perpendicular to the wire, and tu1 and tu2 are the signal arriving times at the two
ends of delay-line wire u. The v and w layers were treated in the same way.
A simple coordinate transformation yielded the position of impact in terms of x
and y in the laboratory frame of reference (see Fig. 8.1). Note that the combination
of at least two linearly independent delay-line directions would suffice, but the
redundant information could be used for cross checks and the additional layer
increased the multiple-hit readout capacity of the detector [138].
Figure 9.1 shows a histogram of the positions of impact in terms of x and y—i.e.,
a detector image—for electrons in subfigure A and for ions in B.

1Version 3, developed by A. Czasch and T. Jahnke.
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9.1 preparatory steps

Time of flight

The time of flight (TOF) of a particle is the time that passes between the moment
of the photoionization reaction and the moment of the particle’s impact on the
detector. Identifying the exact moment of photoionization from the measured data
requires the following considerations.
The bunchmarker signal correlates to the moments at which an electron bunch
passes a certain position inside the PETRA III electron storage ring. While tak-
ing experimental data, the bunchmarker signal was recorded repetitively every
Tbm = 192.17 ns (bunchmarker period) during the time window opened upon reg-
istration of a signal in the trigger channel of the time-to-digital converter. However,
due to the unknown length of the signal path, a constant offset ∆tbm materialized
between the moment of the photoionization reaction and the corresponding time
information that was stored in the raw data. Calculating the times of flight requires
to accurately determine this offset.

As the longest possible electron time of flight was shorter than the bunchmarker
period in all of our experiments, the value was always calculated as

TOFe = mod (te − tBM, Tbm) + ∆tbm , (9.2)

where te is the electron’s recorded time of impact, tBM is an arbitrary bunchmarker
signal, and mod is the modulo operation that returns the remainder of the division
of te − tBM by Tbm.
To determine ∆tbm, we exploited that electrons return to their starting point in the
x̂-ŷ plane after integer multiples of the gyration period tg due to their cyclotron
motion inside the magnetic field. Hence, we varied ∆tbm until the first node in the
histogram depicting the relation between the electron’s time of flight and position
of impact coincided with TOFe = tg, as shown in Fig. 9.1 C.

For all ions on the other hand, the times of flight were much longer than Tbm, but
the ions shared the same ∆tbm against the recorded bunchmarker signal as the
electrons. Accordingly, the ion time of flight could be calculated as

TOFi = ti − te + TOFe , (9.3)

where ti is the ion’s recorded time of impact. Figure 9.1 D exemplarily shows the
relation between the time of flight and the position of impact for ions.

During the data acquisition of Run 3B (He photon energy scan), the electron
detector was switched off and we only measured the photoions. Hence, the true
time of flight could not be determined from the recorded data. To calculate the
ion momentum in ẑ direction, we had to use the quantity

TOFi,bm = mod (ti − tBM, Tbm) + ∆tbm (9.4)

as a substitute for TOFi in Eq. 9.12. This approach is justified because TOFi −
TOFi,0 = TOFi,bm − TOFi,bm,0, where TOFi,0 and TOFi,bm,0 correspond to an ion
with zero initial momentum in ẑ direction. Note that for this approach to work,
the true time-of-flight distribution of the particle must be narrower than the
bunchmarker period.
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Figure 9.1: Detector images for electrons (A) and ions (B), and unfiltered time-of-flight
versus position-of-impact distributions for electrons (C) and ions (D), all ob-
tained from H2 photoionization at 800 eV photon energy (Run 2A). Note that
histograms B and D contain the first and second detected ion, whereas A and C
show only one electron.
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9.1 preparatory steps

Presorting

To avoid unnecessary momentum calculations and thereby reduce computation
time, the raw data of each experimental run was presorted prior to further process-
ing. Here, the presorting reduced the raw data set to only those events where all
expected particles were recorded within a reasonable time-of-flight range.
To identify valid events for the break-up of the diatomic molecules H2 and N2, we
have plotted the time of flight of the first detected ion against the time of flight
of the second detected ion, as shown in Fig. 9.2. The conditions on the times of
flight of the two ions, as used for presorting the raw data sets of Run 2A (H2 at
800 eV photon energy) and Run 3A (N2 photon energy scan), are indicated by the
black rectangles. These conditions ensured that two ions with reasonable times of
flight and one electron were present in each valid event, because the electron is a
prerequisite for the calculation of the ion time of flight (see Eq. 9.3).
In case of Runs 1A and 1B (Helium at 800 eV and 1100 eV photon energy), the
presorter demanded an ion time of flight in the range between 5310 ns and 5380 ns,
which enclosed the entire distribution of He++ and which ensured one measured
electron.
No presorter was used to preprocess the data of Run 3B (He photon energy scan).
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Figure 9.2: Measured photoion-photoion coincidences. (A) Time of flight (TOF) of the first
detected particle as function of the time of flight of the second detected particle
from Run 2A (H2 at 800 eV photon energy). The black rectangle encloses the
area within which two protons can be detected. The two protons originate from
dissociation of H2 (pale blue line), or from the photon-induced break-up of
residual H2O inside the vacuum chamber (broad red/yellow patch). (B) Time
of flight of the first detected particle as function of the time of flight of the
second detected particle from Run 3A (N2 photon energy scan). The black
rectangle encloses the area within which two singly charged nitrogen atoms can
be detected.
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9.2 electron momentum and energy calculations

The electron arms of the spectrometers used for our experiments did not contain
electrostatic lenses and the momentum calculation procedure could follow the typ-
ical steps. Under consideration of the magnetic (B) and electric (E) field strengths,
and the length of the electron acceleration region (l), the initial momenta of the
electrons were calculated from their positions of impact and times of flight.
The analytic solution of an electron’s equation of motion in a homogeneous
electromagnetic field yields the following relations [143]:

pe,x =
me(bxe − aye)

a2 + b2 , (9.5)

pe,y =
me(−bxe − aye)

a2 + b2 , and (9.6)

pe,z = me

(

l

TOFe
− 1

2
eE

me
TOFe

)

, (9.7)

with

a =
1 − cos(ω · TOFe)

ω
, b =

sin(ω · TOFe)

ω
, and ω =

eB

me
,

where e and me are the electron charge and mass.
The electron’s kinetic energy Ee is calculated from the squared magnitude of the
momentum vector,2

Ee =
pe

2

2me
=

pe,x
2 + pe,y

2 + pe,z
2

2me
. (9.8)

The value of B can be estimated from the properties of the Helmholtz pair (see
p. 55) and the electric current that flows through the coils, but it is more accurate
to calculate it from the gyration period,

tg = (2πme)/(eB) , (9.9)

which can be determined from a time-of-flight versus position-of-impact spectrum
as shown in Fig. 9.1 C.
The values of l and E were known approximately from the spectrometer design
and power supply settings. However, finding more accurate values and accounting
for possible field inhomogeneities to ensure that the momentum calculation yields
correct values for all possible electron energies required the electron momentum
calibration as described below.

Electron momentum calibration

The accuracy to which the parameters that enter the momentum calculation
procedure can be identified from measuring the spectrometer’s geometry and from
using the set values of the power supplies is usually not sufficient. During most
experimental runs, we have therefore conducted several calibration measurements
to further straighten the calculation procedure.
For the calibration measurements, we produced electrons of well defined kinetic
energies through photoionization that were subsequently recorded under the same

2For easier use in conventional units, we can rewrite Eq. 9.8 as pe[au] ≈
√

Ee[eV] × 0.27 .
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9.2 electron momentum and energy calculations

conditions as the main measurements. The resulting calibration data was then
used as the input to the momentum calculation procedure and the parameters that
enter the calculation could be fine-tuned until the procedure yielded the expected
values for all calibration energies.
For most calibration measurements, we used argon as the target and addressed
the Ar(2p) electrons, which resulted in photoelectrons with favorable angular
distributions. The Ar(2p) electrons have binding energies of 250.6 eV (2p1/2)
and 248.4 eV (2p3/2) and the photon energies were chosen so that the excess
energies covered the whole range of electron energies that were expected in the
corresponding main measurements.
For example, Fig. 9.3 shows the results of the calibration measurements conducted
during Run 2A (H2 at 800 eV photon energy) as calculated with the final parame-
ters. Here, the electron energy is shown as function of the spherical coordinates
ϕ = tan−1 (pe,x/pe,y

)

and ϑ = cos−1 (pe,z/pe).
The negative effects of the high magnetic field and the ion arm’s electrostatic
lens on the quality of the electron momentum measurement become apparent
in Fig. 9.3 B & C. The distributions are intersected by curves where the intensity
vanishes that correspond to the nodes in the time-of-flight versus position-of-
impact distribution (see Fig. 9.1). In the vicinity of these curves, the momentum
calculation becomes inaccurate because the whole momentum distribution in the
x̂-ŷ plane is compressed into a small area of impact on the detector.
Furthermore, the momentum vectors of electrons that follow trajectories influenced
by the field of the ion lens cannot be calculated by means of the procedure
introduced above. Figure 9.3 B shows that the calculation procedure is inaccurate
at high electron energies if cos (ϑ) > 0, i.e., if the electrons are emitted towards
the ion detector.
As an electrostatic lens was used on the ion side of the spectrometer in all exper-
imental sessions, we generally removed those recorded events from the results
presented in this work where the emission direction of the measured electron
fulfilled cos (ϑ) > 0.

Reconstructing the momentum vector of the missing second electron

In most experimental runs, we have directly detected all reaction fragments except
for one electron (Runs 1A, 1B, 2A, and 3A). This second electron’s momentum
vector was subsequently reconstructed using momentum conservation including
the photon momentum through

pe2 = pγ − (pe1 + pi) , (9.10)

where pi = piSum = pi1 + pi2 in case of the diatomic break-up of H2 or N2, or
prec = pHe+/++ in case of helium single or double ionization.
How the ion momenta used in Eq. 9.10 were calculated, is addressed in Sec. 9.3
below.
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Figure 9.3: Results of the calibration measurements conducted during Run 2A: Photoion-
ization of Ar(2p) electrons at photon energies of 250.0 eV, 255.0 eV, 265.0 eV,
290.0 eV, 357.0 eV, 407.0 eV, and 607.0 eV. (A,C) Electron energies calculated
through Eq. 9.8 as function of ϕ = tan−1 (pe,x/pe,y

)

. (B,D) Electron energies
calculated through Eq. 9.8 as function of ϑ = cos−1 (pe,z/pe). The expected
electron energies were: (a) 0.6 eV, (b) 4.4 eV, (c) 6.6 eV, (d) ≈ 15.5 eV, (e) ≈ 40.5 eV,
(f) ≈ 107.5 eV, (g) ≈ 157.5 eV, (h, Auger electron) ≈ 205.0 eV, and (i) ≈ 357.5 eV,
according to Ee = Ebin − Eγ, where Ebin = 250.6 eV (2p1/2) and Ebin = 248.4 eV
(2p3/2). Note that the energy splitting between Ar(2p1/2) and Ar(2p3/2) is only
resolved for 250.0 eV and 255.0 eV photon energy.
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9.3 ion momentum and energy calculations

If an electrostatic lens is used in the ion arm of the spectrometer, an analytic
retrieval of the momentum of the ions is practically impossible.
We have used the following approximations to calculate the momenta of singly and
doubly charged helium ions (Runs 1A, 1B, and 3B). Assuming that the electrostatic
lens does not affect the ion velocity in x̂ and ŷ direction, the respective momentum
components can be approximated as

pi,x =
xi

TOFi
mi and pi,y =

yi

TOFi
mi , (9.11)

where mi is the mass of the ion.3 A similar linear relation can be used for the ẑ

component,

pi,z =
qiE

f
(TOFi − TOFi,0) , (9.12)

where f = 124.38 [C · V · s · au−1 · cm−1] according to Ref. [134], qi is the charge of
the ion, and TOFi,0 is the time of flight of an ion with zero initial momentum in
ẑ direction.
As discussed in Ch. 2 on p. 6, the linear photon momentum shifts the center
of the ion momentum distribution, which complicates the calculation of the ion
momentum. The procedure to locate the position of impact in light propagation
direction that corresponds to pi,x = 0 is shown in Sec. 9.3.1.
To calculate the momenta of the ionic reaction fragments after the diatomic break-
up of H2 and N2, the calculation procedure introduced above proved to be not
sufficiently precise. The alternative procedure used for the analysis of the data
from Runs 2A (H2 at 800 eV photon energy) and 3A (N2 photon energy scan) is
shown in Sec. 9.3.2.
If the correct ion momentum is obtained eventually, the ion’s kinetic energy is
given by4

Ei =
pi

2

2mi
=

pi,x
2 + pi,y

2 + pi,z
2

2mi
. (9.13)

Sum and relative momentum

If the reaction produced two ionic fragments (i1 and i2), the sum momentum, the
relative momentum, and the kinetic energy release (KER) were calculated as

piSum = pi1 + pi2 , (9.14)

prel = pi1 − pi2 , and (9.15)

KER = Ei1 + Ei2 =
|prel |2
2mred

, (9.16)

where mred = (mi1mi2)/(mi1 + mi2) is the reduced mass of the two ions with
masses mi1 and mi2.

3Note that in Runs 1A and 1B, the high magnetic field and the long ion arm of the spectrometer
caused a slight rotation of the ion positions of impact in the x̂-ŷ plane, which had to be corrected (see
Ref. [133] for further details).

4For easier use in conventional units, we can rewrite Eq. 9.13 as pi[au] ≈
√

Ei[eV] × mi[u] × 11.6 .
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The sum momentum describes the motion of the center of mass of the two ions.
This diatomic center of mass behaves like the photoion in ionization of an atomic
target, i.e., the photon momentum and the electron recoil momenta are imprinted
onto it.

Axial recoil approximation

The orientation of the molecular target in the laboratory frame prior to photoion-
ization was determined a posteriori for every recorded event. For this, we assumed
that the direction of the relative momentum vector prel is parallel to the molecular
axis, because the ionic fragments are emitted along the molecular axis at the
moment of photoionization. This assumption is true, if the axial recoil approximation
[144] is valid, i.e., if the fragmentation is fast in comparison to the rotation of the
intermediate molecular ions (H+/++

2 or N++
2 ).

As shown, e.g., in Ref. [71] for K-shell ionization of N2 followed by Auger decay
and in Refs. [90, 98] for photo-double-ionization of H2, the axial recoil approxima-
tion is valid in the scope of the present work.
Hence, we define the direction of the molecular axis as

R̂ = prel/|prel | . (9.17)

In case of H2 double ionization, the kinetic energy release is purely determined
by the Coulomb repulsion of the two bare protons. Assuming the protons are at
rest initially, the internuclear distance R—i.e., the molecular bond length—and the
kinetic energy release are related through5

KER =
e2

4πǫ0R
. (9.18)

A more thorough discussion, that includes the role of initial momenta, and the
relation to a quantum treatment can be found in Ref. [145].

5For easier use in the conventional units note that KER[eV]/27.211 ≈ KER[au] and KER[au] =
1/R[au].
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9.3.1 Zero Momentum in Light Propagation Direction

The photon momentum modifies the momenta of the reaction fragments in
nondipolar photoionization. In the photon energy regime covered in the present
work, however, the photon momentum is still small compared to the momenta of
the reaction fragments6 and measuring its effects requires a high precision of the
momentum calibration. It is particularly important to precisely locate the position
of impact and the time of flight that corresponds to zero particle momentum for
each detector in each experimental run.
In the standard approach for the data analysis of a COLTRIMS experiment, the lab-
oratory frame of reference is first described in terms of spherical coordinates. The
zero position of impact and the zero time of flight are then located by eliminating
any variation in the calculated magnitudes of the particle momenta (or energies)
as function of the angular coordinates (see, e.g., Ref. [142]). This approach requires
that all particle momenta are located on a sphere in momentum space that is
centered around the origin. But as discussed in Kinematics of photoionization for
one-photon single ionization (see p. 6), the electron and ion momentum spheres
are shifted in positive x̂ direction due to the linear photon momentum. This shift is
proportional to the ratios of the individual particle masses to the combined mass
and can therefore be neglected for electrons. Accordingly, the standard approach
to locate zero position of impact in x̂ direction is not suitable in nondipolar pho-
toionization for the ion momentum calculation.

Figure 9.4 outlines how the zero position of impact in x̂ direction has been located
for the ion momentum calculation in the data analysis for the present work. The
approach is shown for one-photon single ionization of helium at 300 eV, 600 eV,
1125 eV, and 1775 eV photon energy (part of Run 3B, He photon energy scan), but
it has been applied to all other data sets as well.
For each measured ion momentum, we have calculated

ρ = pi − pγ and ϕγ = cos−1 [ρx/ρ] , (9.19)

and plotted |ρ| as function of ϕγ as shown in Fig. 9.4 C & D.
Note that in the cases of diatomic targets that broke up during the reaction, the
sum momentum of the ionic fragments piSum was used instead of the helium ion
momentum pi in Eq. 9.19.
If the zero position in x̂ direction and all other momentum calculation parameters
are set correctly, the distributions of |ρ| as function of ϕγ should follow a straight
line for each photon energy (see Fig. 9.4 D). For an incorrect set of momentum
calculation parameters, the distributions vary as function of ϕγ, as shown in
Fig. 9.4 C.

6E.g., pγ = 0.215 au, pe = 7.521 au for single ionization of He at Eγ = 800 eV.
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Figure 9.4: Approach to identify the zero position of impact in light propagation direction
(x̂ direction). (A) In one-photon single ionization, all ion momenta are located on
a sphere in momentum space that is shifted away from the origin by the linear
photon momentum (solid red circle). The vector ρ (see Eq. 9.19) points from the
origin of the shifted momentum sphere to its surface and encloses the angle ϕγ

with the photon momentum vector pγ. (B) Magnitude of ρ as function of ϕγ for
correct choice of momentum calculation parameters (solid red line) and for two
exemplary incorrect choices (dotted green and blue lines, compare to A). (C)
Magnitude of ρ as function of α for helium single ionization at 300 eV, 600 eV,
1125 eV, and 1775 eV photon energy for an incorrect choice of parameters. (D)
Same as C, but as calculated with the final set of parameters.
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9.3.2 Correction of Lens Distortions

If an electrostatic lens is used in the ion arm of a spectrometer, it might distort
the ion trajectories in such a way that a linear approximation alone (Eqs. 9.11 &
9.12) is not sufficient anymore to calculate initial momenta from the times of flight
and positions of impact. Analysis of the data proved that the four-body break-
ups (H2 + γ → 2H++2e & N2 + γ → 2N++2e ), where one electron momentum
vector was reconstructed by means of momentum conservation instead of being
measured directly, demanded a higher validity of the ion momentum calculation
procedure than the linear approximation provided.

The alternative calculation procedure introduced below requires an accurate
model of the spectrometer—including geometry and electric field—to simulate
the trajectories of ions with particular initial momentum vectors. The approach is
a two-step process:
(1) The initial ion momenta preal

i are set as an input to the simulation and they are
subsequently recovered through a map that depends only on the simulated times
of flight and positions of impact. This map consists of a simple linear relation that
is subsequently modified by polynomial functions.
(2) This map is applied on the measured times of flight and positions of impact to
calculate the initial momentum vectors for the experimental data.

This approach is shown below for the analysis of the data obtained in Run 2A
(H2 at 800 eV photon energy), but it has also been applied for Run 3A (N2 photon
energy scan). We have used the SIMION® software package for the simulation.
The model of the spectrometer model is depicted in Fig. 8.2.

In the simulation we took advantage of the spectrometer’s cylindrical symmetry
and let the x̂ direction represent any direction perpendicular to the ẑ axis (time-
of-flight direction). We used protons of 5 eV, 10 eV, and 15 eV kinetic energy that
were launched from a single point at the center of the reaction zone at angles of
θ = tan−1(preal

i,x /preal
i,z ) = 0◦, 5◦, 10◦,..., 350◦, and 355◦.

These particle properties were chosen to reflect the values expected during the
actual experiment. We could expect that roughly 95% of the measured kinetic
energy releases (KER) would fall into the range of 16 eV - 24 eV [98]. The KER is
equally shared among the two protons. The fraction of the 800 eV photon energy
that exceeds the sum of the adiabatic double ionization energy of H2 (31.03 eV)
and the KER is shared between the two electrons. Thus, for KER = 24 eV, the
maximum possible recoil transferred to the H2 center of mass is 10.4 au, if the two
electrons are emitted into the same direction with half of the excess energy. Each
proton carries half of the recoil momentum that may point in the same direction
as the KER-related momentum of 40.2 au at 12 eV kinetic energy. Consequently,
we have to expect proton momenta of up to 45.4 au and 15.3 eV kinetic energy to
be present in the experimental data.

The distribution of the times of flight and positions of impact as obtained from
the corresponding simulation is shown in Fig. 9.5.
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Figure 9.5: Times of flight and positions of impact as obtained from the simulation that
models the spectrometer geometry and electric field of the H2 experiment at
800 eV photon energy (Run 2A). The two reference points (r1 and r2) are required
for Eqs. 9.20 & 9.21.

Linear relations

The alternative calculation procedure began with a linear relation between TOFi

and praw
i,z (resp. xi and praw

i,x ), which was subsequently modified by correction
functions to approach preal

i,z (preal
i,x ).

The two linear factors were gained from the two reference points (r1 and r2) which
are displayed in Fig. 9.5. These reference points resemble the times of flight and
positions of impact of protons with 10 eV kinetic energy—roughly the experimental
expectation value—whose momentum vectors are either parallel or perpendicular
to the ẑ direction.
Note that the kinetic energy related to these reference points should not be chosen
randomly because here the final momentum calculation yields the most accurate
results.
The resulting linear relations are

praw
i,x = xi ·

pr1

xr2
and (9.20)

praw
i,z = (TOFi − TOFr2) ·

pr1

TOFr1 − TOFr2
. (9.21)

For this example we chose pr1 = pr2 = 36.68 au (momentum of a proton at
10 eV kinetic energy). We determined xr2 = 34.9 mm, TOFr1 = 1057 ns, and
TOFr2 = 1169 ns from the simulated data.
The application of Eqs. 9.20 & 9.21 to all simulated data points yielded the raw
momenta displayed in Fig. 9.6 (black dots). The real initial momenta are shown
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for comparison (red squares). The black lines connect each raw momentum with
its real initial counterpart. The average length of the black lines 〈∆p〉, determined
for each kinetic energy separately, approximates the error of the momentum calcu-
lation.

Up to this point, the alternative calculation procedure is practically the same as the
standard linear approximation (Eqs. 9.11 & 9.12). For the case that an electrostatic
lens is employed, the heterogeneous nature of the errors—as indicated by the black
lines in Fig. 9.6—highlights the inadequacy of the linear approximation, where
the calculated momentum vectors are uniformly shifted and stretched until the
errors are minimal. As apparent from Fig. 9.6, such a purely linear map would not
suffice to obtain accurate momenta. To overcome this shortcoming, we used the
momentum correction functions that are discussed below.

40 20 0 20 40
pi, z (au)

40

20

0

20

40

p
i,
x
 (a

u)

preal
i

praw
i

5 e
V

10
 eV

15
 eV

5 eV: 
〈
∆p

〉
 = 1.87 au     10 eV: 

〈
∆p

〉
 = 1.79 au    15 eV: 

〈
∆p

〉
 = 3.50 au

Figure 9.6: Comparison between the real initial momenta (red squares) and the calculated
ones (black dots) using the linear relations from Eqs. 9.20 & 9.21. The black
lines connect the calculated raw momenta to each real counterpart. The average
lengths of these lines for each kinetic energy approximate the average errors
〈∆p〉.
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(A) Momentum corrections in the x̂-ŷ plane as function of the position of im-

pact

If one considers that the electric field vector is perpendicular to the equipotential
lines (see Fig. 8.2), it becomes apparent that an ion experiences acceleration
perpendicular to the ẑ direction due to the electrostatic lens. While this allows
for the momentum focusing of an extended target in x̂ and ŷ direction, it also
implies that the position of impact does not depend linearly on the respective
initial momentum component alone. The magnitude of preal

i,x determines at which
distance to the central axis the trajectory passes through the lens. Similar to the
spherical aberration of an optical lens, the further a trajectory is away from the
central axis while passing through the lens, the shorter is the effective focus length.
On our detector, located at a fixed distance from the lens and oriented perpen-
dicular to the central axis, this spherical aberration causes the non-linear relation
between xi and preal

i,x that is depicted in Fig. 9.7 A. The protons used in this simula-
tion were all launched parallel to the x̂ axis with kinetic energies ranging from
0 eV to 20 eV.

As Fig. 9.7 A further demonstrates, mapping the position of impact to a momentum
can be ambiguous. The simulation showed that if preal

i,x > 43.4 au (14 eV kinetic
energy), then dxi/dpreal

i,x < 0. This has the following consequence. If protons
with preal

i,x > 43.4 au occur experimentally, they will overlap with protons where
preal

i,x < 43.4 au on the detector. Here, retrieval of the correct initial momentum
from the corresponding position of impact becomes impossible. We expect protons
of up to 15.3 eV kinetic energy (45.4 au). If the momentum vector is parallel to
the x̂ direction, the position of impact is xi = 37 mm. Protons of 12.5 eV kinetic
energy (41.0 au) get projected onto that same position of impact. Accordingly, if
xi ≥ 37mm, the proton and the associated event must be discarded.
Note that this unfortunate aspect is the consequence of an improper choice for
the electric field strength during the experiment and it could have been avoided.
As we failed to consider the gain in kinetic energy due to the electron recoil
momentum, the electric field strength was set to low. In the later experiment (Run
3A, N2 photon energy scan), the electric field allowed that all occurring preal

i,x were
projected onto a unique position of impact.

For each simulated momentum vector that had a unique position of impact, we
could derive the correction function to estimate preal

i,x from praw
i,x and xi. To this

end, we plotted the ratio preal
i,x /praw

i,x as function of xi for the valid data points and
searched for a function fc(xi) that accurately describes the behavior as shown in
Fig. 9.7 B. Eventually, we could use

pi,x = fc(xi)× praw
i,x (9.22)

to calculate the ion momentum in x̂ direction.
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(B) Momentum corrections in ẑ direction as function of the time of flight

Next, we considered corrections to the linear relation between the time of flight and
the ion momentum in ẑ direction. Figure 9.8 A shows the relationship between
TOFi and preal

i,z that resulted from our simulation, where we used −36.7 au ≤
preal

i,z ≤ 36.7 au and preal
i,x = 0. The ratio preal

i,z /praw
i,z as function of TOFi and the

function gc(TOFi) that describes the behavior are shown in Fig. 9.8 B. By means of
this correction function, we could calculate the proton’s momentum in ẑ direction
through

pi,z = gc(TOFi)× praw
i,z . (9.23)

The momenta calculated through Eqs. 9.22 & 9.23 from the simulated times of
flight and positions of impact are shown in Fig. 9.9. Compared to the results
shown in Fig. 9.6, the average error is decreased substantially.

(C) Momentum corrections in the x̂-ŷ plane as function of the time of flight

An alternative way to correct for the spherical abberation of the electrostatic lens is
shown in Fig. 9.8 C & D. Figure 9.8 C shows the relationship between TOFi and preal

i,x
resulting from our simulation, where preal

i = 36.7 au and θ = tan−1(preal
i,x /preal

i,z ) =
0◦, 5◦, 10◦,..., 175◦, and 180◦. Accordingly, the simulated data points reproduce a
sphere in momentum space of protons at 10 eV kinetic energy. In Fig. 9.8 D we
plot the ratio preal

i,x /praw
i,x as function of TOFi for these data points and draw the

fitted function hc(xi) that accurately describes the behavior. As an alternative to
Eq. 9.22, we can now calculate the proton’s momentum in x̂ direction through

pi,x = hc(TOFi)× praw
i,x . (9.24)

The momenta calculated through Eqs. 9.22 & 9.24 from the simulated times of
flight and positions of impact are shown in Fig. 9.10.

From the comparison between the results shown in Figs. 9.9 & 9.10, we found that
the application of the momentum correction function fc(xi) (Eq. 9.22) yields good
error reduction over a wide range of kinetic energies, but using hc(TOFi) (Eq. 9.24)
results in excellent error reduction for protons of one single kinetic energy.

For the analysis of the data obtained in Run 2A (H2 at 800 eV photon energy), we
have used the correction functions fc(xi) and gc(TOFi). The two reference points
from the simulation (see Fig. 9.5) resembled protons with 10 eV kinetic energy.
Figure 9.11 shows the comparison between the momentum calculation for the
experimental data set using only the linear relations (Eqs. 9.20 & 9.21) and the
calculation using the correction functions (Eqs. 9.22 & 9.24).

For the analysis of the data obtained in Run 3A (N2 photon energy scan), on the
other hand, we have used gc(TOFi) and hc(TOFi). Due to the rich structure of the
KER-distribution, two separate sets of fit functions were constructed for N+ ions
at 3.9 eV and at 5.25 eV kinetic energy (see Fig. C.17 for a comparison).
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Figure 9.7: (A) Simulated positions of impact of protons launched parallel to the x̂ axis
with kinetic energies ranging from 0 eV to 20 eV. The spherical aberration of the
electrostatic lens results in the nonlinear relation between xi and preal

i,x . The green
squares resemble momenta expected in the experiment (up to 45.4 au). The
red squares show higher momenta to better illustrate the effect of the spherical
aberration. The red region contains momenta and corresponding positions of
impact that occur in the experiment but have to be discarded because of the
ambiguous mapping (41.0 au < preal

i,x < 45.4 au). (B) Ratio preal
i,x /praw

i,x as function
of xi (black squares) for all xi < 37 mm and preal

i,x < 41.0 au. The correction
function fc(xi) (blue line, polynomial of degree four) is obtained through curve
fitting to the data points.
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Figure 9.8: (A) Simulated times of flight of protons launched parallel to the ẑ axis with
momenta ranging from −36.7 au to 36.7 au (red squares). (B) Ratio preal

i,z /praw
i,z

as function of TOFi (black squares). The correction function gc(xi) (blue line,
polynomial of degree three) is obtained through curve fitting to the data points.
(C) Simulated positions of impact of protons launched at θ = tan−1(preal

i,x /preal
i,z )

= 0◦, 5◦, 10◦,..., 175◦, and 180◦, where preal
i = 36.7 au (red squares). (D) Ratio

preal
i,x /praw

i,x as function of TOFi (black squares). The correction function hc(xi)
(blue line, polynomial of degree five) is obtained through curve fitting to the
data points.

80



9.3 ion momentum and energy calculations

40 20 0 20 40
pi, z (au)

40

20

0

20

40

p
i,
x
 (a

u)
preal
i

praw
i, x · fc(xi)

praw
i, z · gc(TOFi)

5 e
V

10
 eV

15
 eV

5 eV:
〈
∆p

〉
 = 0.82 au  10 eV:

〈
∆p

〉
 = 0.68 au  15 eV:

〈
∆p

〉
 = 1.96 au

Figure 9.9: Comparison between the real initial momenta (red squares) and the calculated
ones (black dots) using Eqs. 9.22 & 9.23.
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Figure 9.11: Ion momentum distribution of single protons from photo-double-ionization
of H2 at 800 eV photon energy. (A) Momentum calculated using only the
linear relations (Eqs. 9.20 & 9.21). (B) Calculation using the correction functions
(Eqs. 9.22 & 9.24). Here, the calculated momenta lie on a sphere in momentum
space.
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9.3.3 Sum Momentum Corrections

The reconstruction of the second electron’s momentum vector using momentum
conservation—as explained on p. 68—required to determine the ion sum momen-
tum (Eq. 9.14) with the best possible accuracy. To further improve the quality of
the ion momentum calculation, we followed the approach described in Ref. [87]
and exploited that the recoil momentum transferred onto the ion center of mass
is independent of the molecular orientation prior to the ionization and indepen-
dent of the kinetic energy release. These corrections were necessary because the
simulated spectrometer is only an imperfect model of the real one.

Corrections depending on the molecular orientation

The sum-momentum distributions along any of the laboratory-frame axes should
not vary as function of the molecular orientation, which is related to the relative
momentum (Eq. 9.17). To check this, we filled praw

sum,m as a function of prel,n/prel

in a histogram, where m = x, y, z and n = x, y, z. For each row of these nine
histograms, we identified the center of the sum-momentum distribution through
a Gaussian fit and determined the polynomial function fm,n that describes the
position of these centers as function of prel,n/prel .7 The corrected sum momentum
component is subsequently given by

psum,m = praw
sum,m − fm,n . (9.25)

The sum momentum, however, is calculated directly from the two single-ion
momenta according to Eq. 9.14. Hence, we applied the correction functions to the
single-ion momenta directly in equal parts:

pi1,m = praw
i1,m − 0.5 × fm,n and (9.26)

pi2,m = praw
i2,m − 0.5 × fm,n . (9.27)

This correction procedure was applied to the ion momentum calculations of
Run 2A (H2 at 800 eV photon energy) and Run 3A (N2 photon energy scan). As
an example, Fig. 9.12 shows the procedure for Run 2A with m = z and n = y.

Corrections depending on the kinetic energy release

During data analysis, we found that the sum-momentum distributions in ẑ direc-
tion from Run 2A and Run 3A varied as function of the kinetic energy release.
The distributions in the x̂ and ŷ directions showed no such behavior. As shown in
Fig. 9.13 exemplarily, we have again identified a correction function fKER and the
corrected sum momentum component in ẑ direction is subsequently given by

psum,z = praw
sum,z − fKER . (9.28)

Again, we applied the correction functions to the single-ion momenta directly in
equal parts:

pi1,z = praw
i1,z − 0.5 × fKER and (9.29)

pi2,z = praw
i2,z − 0.5 × fKER . (9.30)

This correction procedure was applied to the ion momentum calculations of
Run 2A (H2 at 800 eV photon energy) and Run 3A (N2 photon energy scan).

7Note that we have also searched for similar correction functions that depend on prel,n or even
on the measured times of flight or positions of impact of the individual particles, but the method
presented here proved to be most suitable.
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Figure 9.12: Sum momentum distribution in ẑ direction of the two protons from photo-
double-ionization of H2 at 800 eV photon energy as function of prel,y/prel . For
each row of the histograms, the centers of the sum-momentum distribution
(white crosses) were identified through a Gaussian fit. The positions of the
centers as function of prel,y/prel are described by fz,y (black line, polynomial of
degree three) in A. (A) Sum momentum calculated without further corrections.
(B) Sum momentum corrected according to Eq. 9.25.
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Figure 9.13: Sum momentum distribution in ẑ direction of the two nitrogen atoms from
K-shell ionization of N2 at 1330 eV photon energy followed by Auger decay
as function of the kinetic energy release. For each column of the histograms,
the centers of the sum-momentum distribution (white crosses) were identified
through a Gaussian fit. The positions of the centers as function of the KER are
described by fKER (black line, polynomial of degree three) in A. (A) Sum mo-
mentum calculated without further corrections. (B) Sum momentum corrected
according to Eq. 9.28.
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Corrections depending on the data acquisition time

The power supplies that set the potentials of the spectrometer and the detectors
showed unsteady performance over time during the experiments. One recurring
problem was the triggering of a fuse and the subsequent deactivation of the corre-
sponding power-supply channel. Depending on which one of the six used channels
was affected, particles were either not detected anymore or they experienced a
different electric field. Another problem was that the potentials supplied by the
devices were not always constant, but could drift over time. Here, the detection of
particles was not affected, but the particles were exposed to a time-dependent elec-
tric acceleration field. Such occurrences were not always recognized immediately
and recorded in the laboratory journal by the experimentalist.
These changes of the electric field were observable in the ion momentum distribu-
tion in ẑ direction, but the distributions in the x̂ and ŷ directions were unaffected.
Accordingly, it was mandatory to check the ion momentum distribution in ẑ direc-
tion in all recorded data sets as function of the time of acquisition, for which we
used the eventcounter as a proxy variable. The eventcounter assigns an increasing
number to each event in the presorted data file, where the data is still arranged in
a chronological order.
In Fig. 9.14 we show the ion sum momentum distribution in ẑ direction as function
of the eventcounter for N2 K-shell ionization followed by Auger decay at 1330 eV
photon energy. Figure 9.14 A reveals an electric field drift at the beginning of the
data acquisition and a jump in the second half of the acquisition. As the drift
was rather short in time, we discarded all events affected by it. After the electric
field jump, the ion sum momentum distribution was shifted in ẑ direction by a
constant offset. This offset was determined and considered in the calculation of the
single-ion momenta in equal parts. Figure 9.14 B shows the ion sum momentum
distribution in ẑ direction as function of the eventcounter after the correction
measures were applied.
Similar measures had to be applied to the ion momentum calculations of Run 1A
(see Ref. [52] for details) and for all remaining photon energies of Run 3A. We
found that the electron momentum distributions remained unaffected by electric
field jumps and drifts within the scope of our momentum resolution. During Runs
1B, 2A, and 3B, the electric field remained constant.
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Figure 9.14: Ion sum momentum distribution in ẑ direction as function of the eventcounter
for N2 K-shell ionization followed by Auger decay at 1330 eV photon energy.
(A) An electric field drift at the beginning of the data acquisition and a jump in
the second half affect the sum momentum distribution. (B) The affected events
are discarded and the momentum distribution after the jump was shifted by a
constant factor.
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Part III

R E S U LT S

The following results are based on six peer-reviewed publications [140,
141, 146–149] to which the author contributed substantially. In addition
to the publications, further details and results are shown here.



10
F O RWA R D / B A C K WA R D A S Y M M E T R I E S I N
P H O T O I O N I Z AT I O N

I have dealt with the theory of asymmetric photoelectron emission,
and to my surprise I found a forward momentum greater by a factor of 9/5

than would have been expected on the simple momentum law.

— A. Sommerfeld in a letter to P. Auger (found in Ref. [38]).

In one of the earliest photoionization studies, performed in 1927, P. Auger and
F. Perrin were puzzled by the observation that the average forward shift of photo-
electron momenta was "more than 50% higher than the momentum of the photon"
[150]. Soon afterwards, the application of wave mechanics on photoionization
explained the effect as a result of the inteference between electric dipole and
electric quadrupole transitions (e.g., Ref. [151]). However, there are still misleading
formulations on the photon momentum transfer in the literature. For instance,
H. Bethe and E. Salpeter state that the "absorbed photon imparts its own mo-
mentum to the ejected electron", suggesting that this "kick" is responsible for the
average forward shift of photoelectron momenta [29].

Momentum conservation demands that the photoion’s final momentum equals
the photon momentum minus the photoelectron momentum. Consequently, as
first formulated by A. Sommerfeld and G. Schur in 1930 [151], photoionization
might attract single atoms and molecules towards the light source because the
photoelectron on average receives more forward-directed momentum than the
photon provides. The photoion is essentially the system’s center of mass and from
intuition one would arguably expect that the radiation pressure pushes it away
from the light source. Hence, the experimental confirmation of the photoion back-
ward emission makes a significant and important contribution to the fundamental
understanding of photoionization.
A closely related subject is that photoion backward emission must influence the
dynamics of stellar outer layers and gaseous nebulae, as discussed theoretically
since the 1970s (see, e.g., Refs. [152–157]). To our knowledge, astrophysical ob-
servations still lack confirmation and investigating the effect under laboratory
conditions might be relevant for this research field.

In the present chapter, we show how the photon momentum itself and its addi-
tional orbital angular momentum transfer break the symmetry of photoionization
along the light propagation direction. On the basis of one-photon single and
double ionization of helium, we show forward/backward asymmetries for all
reaction fragments and how they originate.
The experimental results shown in this chapter were obtained in Run 1A, Run 1B,
and Run 3B. For helium double ionization, the experimental results are compared
to calculations that solve the two-electron Time-Depended Schrödinger Equation
(TDSE) and that were performed by S.-G. Chen, W.-C. Jiang, H. Liang, M.-X. Wang,
L.-Y. Peng, and Q. Gong [147].
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10.1 the origin of photoion backward emission

In 2014, S. Chelkowski, A. Bandrauk, and P. Corkum derived explicit scaling
rules for the "photon momentum sharing between an electron and an ion in
photoionization" from a perturbative treatment [18].1 Accordingly, for the average
momentum in the light-propagation direction (x̂ direction) of photoions 〈pi,x〉 and
photoelectrons 〈pe,x〉 the following applies:

〈pe,x〉 =
8
5

Eγ − Ip

c
=

8
5

pγ

∣

∣

∣

∣

Ip=0
and (10.1)

〈pi,x〉 = −3
5

Eγ − Ip

c
+

Ip

c
= −3

5
pγ

∣

∣

∣

∣

Ip=0
, (10.2)

where Eγ − Ip = Ee is the kinetic energy of the photoelectron, c is the speed of
light, and Ip is the ionization potential which accounts for 24.6 eV in helium single
ionization. We have extensively tested these scaling rules in our experiments.
In Fig. 10.1 we compare experimental results from helium photoionization to
Eqs. 10.1 & 10.2. Shown in black are the measured mean momentum values in
the direction of the light propagation for electrons (A) and ions (B) originating
from helium single ionization as function of the photon energy. The solid red lines
represent Eqs. 10.1 & 10.2 for helium single ionization and the solid blue line
shows the photon momentum as function of the photon energy for comparison.
The green data points in subfigure B show measured ion momenta from helium
double ionization and the dotted red line represents Eq. 10.2 with I++

p = 79 eV
respectively.
The experimental observations are in excellent agreement with the scaling rules.
They confirm the counterintuitive effect of photoion backward emission and
emphasize that the photoelectron receives more forward-directed momentum than
the photon carries.
As suggested by the results shown in Fig. 10.1 B, not only do the scaling rules ap-
ply for photoions generated in helium single ionization but also for helium double
ionization. This is confirmed further in Fig. 10.2 where we compare the measured
He++ momentum distribution in light propagation direction (black circles) to
TDSE computations for photon energies of 385 eV (A), 800 eV (B), and 1100 eV (C).
These computations have been performed either within the electric dipole approx-
imation (solid green lines) or beyond (solid red lines) [147]. The dipole results
are symmetric in forward/backward direction but the nondipole computations,
that account for the nonzero photon momentum, show a forward/backward
asymmetry and are in excellent agreement with the experimental results.
Furthermore, in Ref. [146] K-shell ionization of N2 was investigated in the photon
energy range of 12 keV–40 keV. This high-energy experiment was mainly conducted
and analyzed by M. Kircher and it is consequently not shown in the present work.
The scaling rules also agree nicely with these high-energy results.
Taken together, the experimental and TDSE results at hand attest a broad applica-
bility of the scaling rules. The findings suggest that photoion backward emission
is a prevalent phenomenon in photoionization.
Our fully differential experimental data, from which the results in Figs. 10.1 &
10.2 show only integrated values, allow to uncover how this photoion backward
emission manifests.

1S.G. finds that this is another instance of a misleading formulation on the photon momentum
transfer.
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In Fig. 10.3 we show the momentum distributions of He+ photoions and photo-
electrons after ionization by photons with 300 eV, 600 eV, 1125 eV, and 1775 eV
energy. The red concentric circles are centered at the origin in momentum space.
Their radii correspond to

r[au] =
√

(Eγ − Ip)[eV]× 0.27 , (10.3)

which is the absolute momentum expected for the photoelectron (see Eq. 9.8). The
measured photoelectron momenta accumulate on those circles in Fig. 10.3 A. For
the photoions in Fig. 10.3 B, however, the measured values are shifted against the
red circles. This is best visible for the outermost events. Relative to the red circle,
the blue one is moved to the right by the magnitude of the respective photon
momentum (pγ = 0.476 au). The blue circle properly indicates the position of the
photoion momentum distribution. As discussed in Kinematics of photoionization on
p. 6, the results underline that the photon momentum is mostly imparted onto
the ion. This shift in momentum space is purely a consequence of energy and
momentum conservation. Hence, it is irrespective of the details of the ionization
process, i.e., of the orbital of the atomic or molecular species which is ionized.
Furthermore, momentum conservation dictates that the angular distribution of
the photoelectrons in the laboratory frame and the distribution of ions on a
sphere shifted by the photon momentum are direct mirror images of each other,
as shown in Fig. 10.3. To abide by the scaling rules, a backward-directed recoil
momentum from the photoelectron emission must overcompensate the forward-
directed photon momentum transfer.
As apparent in Fig. 10.3 A, the photoelectron angular distributions are not isotropic
with respect to the angle ϑγ, which is enclosed by the photon propagation direction
and the photoelectron momentum vector. As discussed in Ch. 4 on p. 23, the shape
of these photoelectron angular distributions—which resemble angle-differential
cross sections—can be parametrized as

dσ

dϑγ
∝ 1 − β

3 cos2 ϑγ − 1
4

+ γ
sin2 ϑγ cos ϑγ

2
(10.4)

for circularly (and unpolarized) light [39, 45]. Here, β is the dipole anisotropy
parameter and γ is the nondipole parameter characterizing the interference be-
tween electric dipole and quadrupole transitions. We neglect the magnetic dipole
contribution and the corresponding parameter δ that appears in Eq. 4.25, because
it vanishes for any initial s-state (see p. 17).
The measured photoelectron angular distributions from helium single ionization
at 300 eV, 600 eV, 1125 eV, and 1775 eV photon energy are shown in Fig. 10.4 A-D.
Such angle-differential cross sections are shaped by the coherent superposition of
all possible angular momentum channels of the photoelectron in the final state.
The initial state is He(1s) where ℓ = 0 and the photon spin contributes one unit of
angular momentum. Thus, the distributions have an approximate dipolar shape
as the leading angular momentum in the final state is a dipole (ℓ = 1). However,
this dipolar shape is forward tilted, which becomes more and more apparent
with rising photon energy. The reason for this is the transfer of additional orbital
angular momentum that arises from the linear photon momentum and which
allows for quadrupole transitions where ℓ = 2 in the final state (see p. 21 for
comparison). Classically, this corresponds to an angular momentum of pγ × re

which is directed perpendicularly to the light propagation.
While electric dipole and quadrupole transitions alone are both symmetric in
light propagation direction, the interference between the two the complex-valued
transition amplitudes breaks this symmetry. Hence, what we observe in Fig. 10.4 A-
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D are dipole transitions modified by the interference term that becomes stronger
with rising photon energy.
For a quantitative comparison, the red line represents a fit of Eq. 10.4 to the
experimental data for each photon energy. The fit yields β ≈ 2 for all measured
photon energies, as expected for a final state dominated by ℓ = 1. The nondipole
parameters γ—as obtained from the fitted functions—are shown in Fig. 10.4 E and
agree with published theory (green solid line) from Ref. [40].
As indicated by a postive and growing nondipole parameter, an increase of photon
energy and photon momentum improves the chance to transfer an additional unit
of angular momentum. Consequently, the interference term becomes stronger,
increasing the forward tilt of the dipolar-shaped distribution.
A positive value for the nondipole parameter γ entails that the average photo-
electron momentum is shifted forward in the direction of light propagation. It is
curious that this interference-induced forward shift of the average photoelectron
momentum equals 8/5 times the photon momentum and is consequently larger
than the photon momentum itself.
In conclusion, the presented results underline that the linear photon momentum
is imparted onto the center of mass of the photoionization reaction, which is
essentially the photoion. The interference between the ℓ = 1 and ℓ = 2 angular
momentum channels shifts the average photoelectron momentum forward. As
this shift is larger than the linear photon momentum itself, the recoil onto the
photoion overcompensates the forward momentum of the photon. Eventually a
single photoion is on average attracted towards the light source.
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Figure 10.1: Average values of photoelectron (A) and photoion (B) momenta along the
light propagation direction after one-photon single ionization (PSI) of helium
with circularly polarized photons at 300 eV, 500 eV, 600 eV, 945 eV, 1125 eV,
1335 eV, 1545 eV, and 1775 eV photon energy (black circles). Solid red lines:
photon momentum scaling rules (Eqs. 10.1 & 10.2 with Ip = 24.6 eV). Blue
line: magnitude of the photon momentum as function of the photon energy
for comparison. Green squares: average values for photoions after one-photon
double ionization (PDI) of helium with circularly polarized photons at 385 eV,
800 eV, and 1100 eV. Dashed red line: respective scaling rule for helium double
ionization where Ip = 79 eV. Figure adapted from Ref. [146].
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Figure 10.2: He++ ion momentum distributions along the light propagation direction after
one-photon double ionization with circularly polarized photons at 385 eV (A),
800 eV (B), and 1100 eV (C) photon energy. Black circles: measured data. Red
(green) line: two-electron nondipole (dipole) TDSE calculation. Figure adapted
from Ref. [147].
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Figure 10.3: Momentum distributions of photoelectrons (A) and photoions (B) after one-
photon single ionization of helium with circularly polarized photons at 300 eV,
600 eV, 1125 eV, and 1775 eV photon energy. Horizontal (vertical) axis: momen-
tum component parallel (perpendicular) to the light propagation. In A and B,
the lower halves are mirror images of the upper halves of the figures. The red

circles are centered at the origin with a radii of r[au] =
√

(Eγ − Ip)[eV]× 0.27.
The blue circle is shifted to the right by the corresponding photon momen-
tum of pγ = 0.476 au. The data from the different photon energies are each
normalized to the maximum bin value. Figure adapted from Ref. [146].
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Figure 10.4: (A–D) Photoelectron angular distributions after one-photon single ionization
(PSI) of He at 300 eV (A), 600 eV (B), 1125 eV (C), and 1775 eV (D) photon
energy. Red lines: Fit using Eq. 10.4. (E) Nondipole parameter γ from fit of Eq.
10.4 to the data and theory prediction from Ref. [40] (green solid line). Figure
adapted from Ref. [146].
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10.2 forward momentum sharing among photoelectrons

The one-photon double ionization of helium is primarily facilitated by electron-
electron correlation due to the shake-off and two-step-one processes (see Ch. 5).
Within the electric dipole approximation, these mechanisms have been studied
extensively in the past (e.g., Ref. [54]), but forward/backward asymmetries in the
momentum distributions of the three reaction fragments in the final state have
not been adressed yet. As presented in the last section (Fig. 10.1 B), the He++

average momentum in light propagation direction follows the scaling rule of
Eq. 10.2. Hence, at least for the region of energy sharing which makes the biggest
contribution to the double-ionization cross section, the sum momentum of the
two electrons must comply with the scaling rule of Eq. 10.1. However, momentum
conservation does not dictate how the forward shift of the sum momentum
is partitioned among the two individual electrons. This is the subject that we
investigate in the present section. In the nondipole photon energy regime, the
shake-off dominates helium double ionization and the energy sharing between
the two electrons is extremely unequal (see, e.g., Fig. 11.2 B). The energy sharing
allows to distinguish between the primary (fast) electron and the secondary (slow)
electron (peF > peS) for each photoionization event.
In Fig. 10.5 we show the average momentum in photon propagation direction of
those fast and slow electrons as function of the photon energy. The solid black
triangles represent the experimental results from helium double ionization at
385 eV, 800 eV, and 1100 eV. The blank red triangles show calculations solving
the two-electron nondipole TDSE for photon energies from 99 eV to 1100 eV. The
experimental results are in good agreement with the corresponding theoretical
calculations. The solid black and the blank red squares resemble the measured
and calculated momenta for the two-electron averages 〈peS,x + peF,x〉/2 that agree
nicely with the predictions of the scaling rule (solid green line). These results
show that the total average forward momentum of (8/5)× pγ is shared extremely
unequally between the fast and the slow electron—as well known for the energy
sharing. The fast electron acquires the forward shift almost entirely alone, while
the slow electron receives only a little shift forward. The TDSE calculations allow
to further examine this finding. Figure 10.6 displays the average forward shift of
one electron as function of the energy sharing between the two electrons from
TDSE calculations at 385 eV, 800 eV, and 1100 eV. For each photon energy, the
results roughly follow a straight line similar to the scaling rule of Eq. 10.1 (green),
indicating that the mean value of the forward momentum is roughly 8/5 times the
electron energy divided by the speed of light. Hence, the fraction of the forward
shift of an individual electron is roughly proportional to its fraction of the excess
energy—i.e., ǫ × 8/5 × pγ. Small deviations from this rule appear in the region
of equal energy sharing (ǫ ≈ 0.5) where the green line overestimates the actual
mean value. At equal energy sharing, the quasifree mechanism (QFM) makes a
small contribution to the double-ionization cross section of helium. As further
outlined in Ch. 11, the helium nucleus is only a spectator in QFM and the photon
momentum is not imprinted onto the photoion. The sum momentum of the two
electrons carries the photon momentum but the photoelectron angular distribution
of QFM electrons is characterized by a pure quadrupole transition and is not
further forward-shifted due to interference. However, the interference-induced
forward shift is larger than the photon momentum itself. Consequently, QFM
electrons contribute less to the overall forward momentum shift of electrons in
helium double ionization than electrons originating from SO or TS1 and the slope
of the red lines around ǫ ≈ 0.5 is smaller than that of the green line in Fig. 10.6.
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Figure 10.5: Measured (black) and calculated (red) average values of the fast, the slow,
and the sum electron momenta in the direction of light propagation after
one-photon double ionization of helium as function of the photon energy. The
scaling rule of Eq. 10.1 (green line) has been modified in order to apply for the
two-electron average momentum. Figure adapted from Ref. [147].
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Figure 10.6: Calculated average electron momenta in light propagation direction as function
of the electron energy sharing (solid red lines). The green lines show a modified
version of the scaling rule of Eq. 10.1. Figure adapted from Ref. [147].
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11
T H E Q UA S I F R E E M E C H A N I S M ( Q F M )

The one-photon double ionizations of helium and the hydrogen molecule are
among the most fundamental processes of atomic physics. Those are straightfor-
ward reactions because the final states consist of bare charged particles.
For decades, investigations of the processes have driven advances in theory and
experiment (see, e.g., Refs. [28, 158] for reviews). Until recently, research has
focused mainly on two sequential processes, namely the shake-off (SO) and two-
step-one (TS1) [54, 67, 159, 160]. On the other hand, the quasifree mechanism
(QFM) had been predicted in 1975 already [58], but received little attention until
its experimental confirmation for helium double ionization in 2013 [66].
In double ionization through QFM, the photon is absorped directly by two quasi-
free electrons without involving the nucleus. As shown in Refs. [60, 140, 161],
this concept becomes apparent in the formalism of light-matter interaction if one
converts the two-electron Hamiltonian, truncated after the electric-quadrupole
term,

Ĥint = ǫ̂ · (re1 + re2) +
i

2
[(ǫ̂ · re1)(kγ · re1) + (ǫ̂ · re2)(kγ · re2)] , (11.1)

into the alternative form of

Ĥint = 2ǫ̂ · r+ + i(ǫ̂ · r+)(kγ · r+) +
i

4
(ǫ̂ · r−)(kγ · r−) , (11.2)

by utilizing the Jacobian coordinates:

r− = re1 − re2 and r+ = (re1 + re2)/2 .

Here re1/e2 are the position vectors of the two electrons relative to the nucleus, ǫ̂ is
the polarization vector and kγ is the photon wave vector. The first term in Eq. 11.2
represents the electric-dipole contribution to the transition amplitude while the
second and third term account for the electric quadrupole. The part of the electric
quadrupole that acts directly on the electron-electron separation,

Ĥ− =
i

4
(ǫ · r−)(kγ · r−) , (11.3)

is responsible for QFM [60, 140]. Here, the appearance of kγ highlights that double
ionization through QFM requires a nonzero photon momentum.
The fact that in QFM the photon couples directly to two electrons has extensive
consequences for the momentum distributions in the final state. In the present
chapter, we study in detail this distinctive fingerprint of QFM in double ioniza-
tion of a two-electron target. We first show the experimental confirmation of the
mechanism in H2 and He double ionization and later utilize it to visualize the
photoelectron angular distribution of a pure quadrupole transition. Finally, we
show how the QFM cross section can be used to investigate the structure of the
two-electron ground states of H2 and He.

The experimental results shown in this chapter were obtained in Run 1A, Run 1B,
and Run 2A. Complementing the experiment, we show total integrated and
differential cross sections of H2 and He double ionization at 800 eV photon energy
that are the results of numerical computations using the external complex scaling
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method in the prolate spheroidal coordinates (PSECS) [162]. These computations
were performed by V. Serov, A. Bray, and A. Kheifets in the course of a theory-
experiment collaboration that resulted in Ref. [140]. The TDSE theory results
produced by Chen et al. [147] are also used again. Upon request by the author,
Y. Fang generated the TDSE results shown in Fig. 11.3, utilizing the same code as
Chen et al. [147].

11.1 the qfm’s unique fingerprint

Single ionization is a precursor to double ionization via shake-off or two-step-one
and the photoion momentum spectra from either single or double ionization share
two important similarities: A large recoil momentum and an almost dipolar shape
of the angular distribution. However, for double ionization through the quasifree
mechanism, the photon is absorbed by two free, strongly-correlated electrons
without involvement of the nucleus. Hence, the nucleus is only a spectator that
receives no recoil momentum.
This first aspect of the QFM fingerprint is adressed in Fig. 11.1 where we show the
doubly-charged photoion yield as function of the magnitude of its momentum for
H2 double ionization at 800 eV and for He double ionization at 385 eV, 800 eV, and
1100 eV. Note that for H2 double ionization, the photoion refers to a hypothetical
particle represented by the two-proton center-of-mass momentum—i.e., pi = psum

(see Eq. 9.14).
For He double ionization, the experimental results are compared to dipole and
nondipole TDSE calculations. In each panel, we notice that the nondipole cal-
culations perfectly agree with the results from the experimental measurements,
but large discrepancies exist for the dipole calculations at low momenta. These
discrepancies become more and more noticeable with rising photon energy. The en-
hancements at low momenta can be attributed to the QFM that leaves the photoion
almost at rest. The need to consider nondipole terms in the TDSE calculations to
account for these low photoion momenta emphasizes the nondipole character of
QFM.
The results in Fig. 11.1 suggest that QFM grows relatively stronger with rising
photon energy and by switching the two-electron target fron He to H2 at constant
photon energy. The observed photon-energy dependence can be explained by
the increasing relative strength of the electric quadrupole amplitude compared
to the electic dipole that is also responsible for the growing forward shift of the
dipolar-shaped photoelectron angular distributions in Helium single ionization
(see Fig. 10.4). The increased relative QFM yield of H2 double ionization compared
to He double ionization is due to differences in the structure of the ground states
which will be discussed further in Sec. 11.3.
By means of momentum and energy conservation, a vanishing recoil momentum
requires the ejection of two electrons back-to-back with equal energy, which is
the remaining aspect of the unique QFM fingerprint. For a dipole transition—that
adds one unit of angular momentum—such back-to-back emission with equal
energy sharing among the two electrons is forbidden for double ionization of He
and H2 whose ground-state wave functions both have the same 1S symmetry [62,
90].
Hence, the QFM can be isolated particularly clearly in a differential cross section
that shows the double-ionization yield as function of the electron energy sharing
ǫ = Ee1/(Ee1 + Ee2) and the angle enclosed by the two electron momentum vectors
ϑ12 = cos−1 [pe1 · pe2/ (|pe1| × |pe2|)] (electron mutual angle).
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This is done in Fig. 11.2 where we show such cross sections for double ionization
of H2 (A,C,E) and He (B,D,F) at 800 eV photon energy from the experimetal
measurements (A–D) and from PSECS calculations (E,F).
Note that subfigures A and B show the full range of the two variables, but panels
C–F show only an excerpt as indicated by the dashed black lines in A and B. Note
also the logarithmic scale display in panels D and F.
Comparison between panels A and B points out a strong resemblance in the
electron emission patterns of H2 and He double ionization, as expected from the
similarities in the electronic ground states. A distinctive difference can be seen
around equal energy sharing (ǫ = 0.5) and back-to-back emission (cos ϑ12 = −1)
where there appears to be a noticeable signal in subfigure A, corresponding to
QFM, but a node in subfigure B. The excerpts shown in Fig. 11.2 C and D highlight
this relevant region of the cross section. While the QFM is evident for H2, a
logarithmic scale display is required in subfigure D to unveil the weak relative
contribution of QFM to the total double-ionization cross section of helium.
The PSECS calculations for double ionization of H2 (E) and He (F) support the
measured data. The displayed structures are in excellent agreement with their
experimental counterparts.
As stated above, back-to-back emission of electrons at equal energy and zero recoil
momentum entail each other. The relation between the magnitude of the recoil
momentum pi, the energy sharing ǫ, and the electron mutual angle ϑ12 can be
written as

pi
2

2me
= 2Eexc

√

ǫ − ǫ2 cos ϑ12 − Eexc , (11.4)

where me is the electron mass and Eexc is the available excess energy that is shared
among the electrons.
For illustration, the solid black lines in Fig. 11.2 C and D indicate all the positions
where pi = 2 au. A signal at back-to-back emission and equal energy sharing
corresponds to zero recoil momentum transferred to the photoion. Hence, the
low photoion momenta in Fig. 11.1 and the contributions around back-to-back
emission at equal energy sharing in Fig. 11.2 must stem from the same measured
events.
A remaining open question concerns the transfer of the linear photon momentum
in double ionization through QFM. For single ionization, momentum and energy
conservation entail the transfer to the center of mass, i.e., essentially to the photoion
(see Kinematics of photoionization on p. 6). However, the additional degrees of
freedom make this relation less straightforward for the double-ionization process.
As indicated by the results shown in Fig. 10.1, the scaling rule for the average
momentum in light propagation direction (Eq. 10.2) also applies for photoions
generated in helium double ionization at 385 eV, 800 eV, and 1100 eV photon
energy. In the measured energy range, helium double ionization is dominated by
the sequential processes, shake-off in particular, while the quasifree mechanism is
neglegible in absolute terms. Apparently, SO treats the photon momentum like
single ionization does: The photon momentum is imparted onto the photoion
but the photoelectron recoil momentum overcompensates this forward shift and
pushes the photoion backwards. On the contrary, the quasifree mechanism pro-
ceeds without involvement of the nucleus as the photon couples directly with the
two electrons. Hence, one can expect that the photon momentum is not imprinted
onto the photoion.
In order to test this assumption, we inspect the momentum distributions of
photoions after helium double ionization at 800 eV photon energy in Fig. 11.3 for
SO (A) and QFM (B). Indicating the transfer of the photon momentum onto the
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photoion, the measured SO photoion momenta accumulate on a circle that has a
radius of the maximum electron momentum and that is moved to the right by the
magnitude of the photon momentum. This is the same behavior that we have seen
in Fig. 10.3 for He single ionization. However, the measured average momentum
of QFM photoions in light propagation direction seems to be much closer to zero.
This can best be seen in Fig. 11.3 C where we projected the distribution shown in
panel B onto the x̂ axis (black line) and determined the center through a Gaussian
fit (solid blue line). The experimental results speak in favor of the assumption that
QFM photoions do not receive the photon momentum in the double-ionization
process.
Further proof are the results of TDSE calculations for He double ionization at
800 eV photon energy and linearly polarized light that are shown in Fig. 11.3 D.
The local maximum of the nondipole curve (red line) that corresponds to QFM
is exactly at zero, while the outer local maxima are shifted to the right by the
magnitude of the photon momentum.
In the present section, we have experimentally shown the unique fingerprint of
the quasifree mechanism in one-photon double ionization of helium and the H2
molecule: Two electrons emitted back-to-back at equal energy and a photoion that
receives no recoil momentum. While the experimental confirmation of QFM for He
double ionization is not new, the QFM in H2 double ionization was actually first
observed in the course of the present work. Furthermore, we have found evidence
that the photon momentum is not imprinted onto QFM photoions which is in
contrast to sequential double ionization through shake-off and single ionization in
general. Our experimental observations are in excellent agreement with the results
of two theory approaches.
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Figure 11.1: One-photon double ionization probability as function of the photoion momen-
tum for He double ionization at 385 eV (A), 800 eV (B), 1100 eV (C), and for
H2 double ionization at 800 eV (B). Red (green) lines: two-electron nondipole
(dipole) TDSE calculations for He double ionization. Note that pi = psum for
H2 double ionization. Figure adapted from Ref. [147].
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Figure 11.2: Doubly differential cross sections of H2 double ionization (A,C,E) and He
double ionization (B,D,F) by a single 800 eV circularly polarized photon. (A–E)
Experimental results. (E,F) PSECS calculations. C and D are excerpts from A
and B as indicated by the dashed black lines. The solid black lines in C and D
indicate all the positions where pi = 2 au. Contributions around cos ϑ12 = −1
and ǫ = 0.5 correspond to the QFM. Figure adapted from Ref. [140].

106



11.1 the qfm’s unique fingerprint

−10.0−7.035 0.00 7.465 10.0
pi, x (au)

0

2

4

6

8

10
p
i,

 (a
u)

A

B

0

0.5

1

In
te

ns
ity

 (a
rb

. u
.)

−4.0 0.0 4.0
pi, x (au)

0

1

In
te

ns
ity

 (a
rb

. u
.)

C
µGauss = 0.05 au pγ = 0.215 au

10.00 6.57 0.00 7.02 10.00
pi, x (au)

10-1

100

In
te

ns
ity

 (a
rb

. u
.)

D

Figure 11.3: Momentum distributions of photoions after He double ionization at 800 eV
photon energy. (A) The experimental data shown is limited to ǫ < 0.005 or
ǫ > 0.995 and resembles double ionization via SO. The blue semicircle is shifted
to the right by the photon momentum. The SO photoions accumulate on this
semicircle. (B) The experimental data shown is limited to 0.25 < ǫ < 0.75 and
ϑ12 > 160◦. It resembles double ionization via QFM. (C) Projection of data
from B onto the x̂ axis (black) and Gaussian fit (blue) to obtain the center of
the momentum distribution of QFM photoions along the light propagation
direction (red). The green line indicates the photon momentum for comparison.
(D) Dipole (green) and nondipole (red) TDSE calculations for helium double
ionization with 800 eV linearly polarized photons (pi,y = 0 ± 2 au & pi,z =
0± 2 au, the polarization vector is parallel to the ẑ axis). Experiment and theory
suggest that the photon momentum is not imprinted onto QFM photoions.
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11.2 a pure quadrupole contribution to photoionization

The dominance of the electric-dipole contribution in photoionization makes it
difficult to observe pure electric-quadrupole transitions in an experiment. Arguably,
this is easier to achieve in theory predictions where one can switch off the dipole
amplitude in calculations (see, e.g., Ref. [141]). So far, most nondipole phenomena
observed experimentally are just dipole features slightly modified by the dipole-
quadrupole interference term (see, e.g., Fig. 10.4 or Ref. [3] for a review). The
following approach allows us to visualize a pure quadrupole transition in a subset
of our experimental data.
Based on the conservation of angular momentum and parity, F. Maulbetsch and
J. Briggs demonstrated how certain electron momentum configurations and quan-
tum state combinations cannot be populated in the final state of a process that
leads to the emission of two electrons [62]. One of these forbidden configurations
is pe1 = −pe2 if the parity of the two-electron wave function is ungerade. While
an electric-dipole transition flips the parity of the wave function, it stays constant
in an electric-quadrupole transition (compare to Fig. 4.1). The ground states of
helium and the hydrogen molecule have gerade parity. Consequently, back-to-back
emission at equal energy sharing (pe1 = −pe2) after double ionization of He or H2
is dipole forbidden but quadrupole allowed.
The corresponding region of the final-state momentum space stems from a
quadrupole transition and is, by virtue of the selection rule, free of any oth-
erwise dominating dipole contributions. Hence, by restricting the investigation of
the measured data to electron pairs emitted back-to-back at equal energy, namely
QFM electrons, we have experimental access to a pure quadrupole transition [56,
163].
The important physical difference between dipole and quadrupole transitions is in
the angular momentum transfer (compare to Partial waves and angular momentum
on p. 21). By definition, a dipole transition transfers one unit of angular momentum
to the two-electron final state due to the photon spin, while two units of angular
momentum are available in a quadrupole transition. The angular momentum of
the outgoing electron wave becomes observable in the angular variation of the
electron emission probability, i.e., the photoelectron angular distribution.
In Fig. 11.4 we show the measured angular distribution of electrons from double
ionization of H2 (A) and He (B) at 800 eV photon energy and circularly polarized
light as function of ϑγ, i.e., the polar angle enclosed by the electron momentum
vector and the light propagation direction. To filter out QFM electrons, the shown
data is limited to 0.35 < ǫ < 0.65 & ϑ12 > 160◦.
The red lines in Fig. 11.4 represent the square of the spherical harmonic for ℓ = 2
and m = 1 normalized to the data points,

|Y21(ϑγ, ϕ = 0)|2 ∝ cos2 ϑγ × sin2 ϑγ , (11.5)

which describes the final-state angular distribution of electrons that result from a
pure electric quadrupole transition from any initial s-subshell.
Here, we have chosen the photon propagation direction k̂γ as the quantization
axis. The photon spin vector is (anti-)parallel to k̂γ and we get ∆ℓ = 1 and ∆m = 1
through the transfer of the spin angular momentum. The additional unit of orbital
angular momentum—pγ × re = h̄—is oriented perpendicular to the quantization
axis. It increases the magnitude of the electron angular momentum but has no
effect on its projection m onto k̂γ.
The strong resemblances between the measured angular emission patterns and
|Y21(ϑγ, ϕ = 0)|2, as demonstrated in Fig. 11.4, underline that QFM electrons
originate from a pure quadrupole contribution to photoionization.
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Figure 11.4: Photoelectron angular distribution of QFM electrons from one-photon double
ionization of H2 (A) and He (B) with 800 eV circularly polarized photons as
function of the polar angle enclosed by the electron momentum vector and the
light propagation direction (ϑγ). The shown data is limited to 0.35 < ǫ < 0.65
& ϑ12 > 160◦. For this selection, the dipole contribution to photoionization
vanishes. The red lines represent |Y21(ϑγ, ϕ = 0)|2 normalized to the data
points (see Eq. 11.5). Figure adapted from Ref. [141].

109



11.3 probing the two-electron cusp

11.3 probing the two-electron cusp

By investigating the differential cross section of photoionization, one can draw
conclusions about the properties of the respective initial state of the reaction. For
example, one-photon single ionization of an atom has the potential to probe the
angular and the radial part of a single-electron wave function in the initial state.
On the one hand, from the photoelectron angular distribution one can determine
the angular momentum (see Partial waves and angular momentum p. 21). On the
other hand, the energy dependence of the cross section is related to the spatial
probability density of electrons relative to the nucleus (compare to Transition
amplitude and cross section on p. 13).
In the present section, we compare the differential cross sections from He and H2
one-photon double ionization at 800 eV photon energy to reveal differences in the
correlated structure of the two-electron wave functions in their respective ground
states. Historically, this was the motivation for many theoretical and experimental
studies of one-photon double ionization (see, e.g., Ref. [158] for a review).
Our approach is based on the idea that the absolute QFM cross section is a measure
for the initial spatial probability density at the two-electron cusp, which is the point
where both electrons coalesce [59, 164], i.e., r− = 0. On first sight, this idea seems
plausible because the part of the electric quadrupole responsible for QFM acts
directly on r− = 0 (see Eq. 11.3 and Ref. [60]). However, the rigorous formal
relation between the absolute QFM cross section σQFM and the so-called intracule
h(r−), which describes the initial spatial probability density of electrons relative
to each other [165], is not so straightforward eventually. In the present section,
we limit our thoughts to a mostly qualitative discussion, but an approach to
approximate h(0) from a measured or calculated σQFM can be found in Ref. [140].
A shortcoming of our experimental technique is that absolute cross sections cannot
be retrieved from the experimental data. Accordingly, the results shown previously
in Fig. 11.2 A–D are only differential double-ionization intensities and there is no
possibility to internormalize the experimental results for H2 and He. Hence, from
the experimental data alone, we cannot judge and compare σQFM between the
two targets. To that end, the theoretical results shown in Fig. 11.2 E and F present
differential cross sections in absolute terms that we will use for normalization and
quantitative comparisons.
So far, we have seen in Figs. 11.1 & 11.2 that the QFM contribution to the total
cross section—in relative terms—was stronger for the hydrogen molecule than for
helium.
For a better comparison of the results shown in Fig. 11.2, we integrate over
ϑ12 = 165◦ ± 15◦ (i.e., cos ϑ12 < −0.866) and display the cross sections as function
of the energy sharing in Fig. 11.5. The experimental data sets are normalized to the
PSECS calculations at equal energy sharing (ǫ = 0.5). While agreement between
theory and experiment is excellent for He, the minor discrepancies for H2 are most
likely due to systematic errors in the experiment.1

In the present work, we define the absolute QFM cross sections σQFM for He and
H2 as the shaded areas in Fig. 11.5, i.e., the areas under the curves around equal
energy sharing enclosed by the two minima of the W-shaped distributions. Those
QFM cross sections are presented in Table 11.1 alongside PSECS calculations for
the single and double ionization probabilities of He and H2 at a photon energy of
800 eV. The PSECS calculations considered electric-dipole and electric-quadrupole

1Remember that one electron momentum vector is reconstructed via momentum conservation.
This is less accurate for H2 because the center of mass has to be calculated from two protons instead of
beeing measured via the doubly charged He2+ nucleus. Thus, the systematic errors propagating to the
calculated electron are larger and the noise reduction (exploiting energy consetrvation) is less efficient
in case of H2.
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contributions to the cross section, as shown individually for double ionization.
Remember that the interference term between dipole and quadrupole does not
alter the total integrated cross section (see p. 19).
As discussed in Sec. 5.1, the contributions to the double-ionization cross section
at highly asymmetric energy sharing correspond to the shake-off process. The
strength of the SO cross section σSO is determined by electron-electron correlation
in the initial state, which can be pictured as the overlap of the two individual
electronic wave functions.
In Fig. 11.6 we show the measured probability of creating two electrons emitted
back-to-back in H2 double ionization at 800 eV photon energy as function of
the energy sharing and for different internuclear distances of the two protons.
The internuclear distance is calculated by means of Eq. 9.18 from the kinetic
energy release. We have also included He in the display, which corresponds to
an internuclear distance of R = 0. The four subsets of experimental data shown
in Fig. 11.6 are internormalized at the highly asymmetric energy sharing peaks
to visualize the relative strength of σQFM compared to σSO as function of the
internuclear distance.
What can be learned from the combined results shown in Table 11.1 and Figs. 11.1,
11.2, 11.5 & 11.6?
The findings underline that QFM is a pure quadrupole effect but it does not account
for the whole quadrupole contribution to double ionization of a two-electron target.
Furthermore, the relative contribution of QFM to the whole double-ionization
cross section is stronger for H2 than for He, but in absolute terms σQFM is still
much weaker for H2 than for He at 800 eV photon energy. The latter suggests that
the intracule at r− = 0 is much smaller for H2 than for He, despite the similar
electronic structure of the two systems. In fact, h(0) is roughly six times larger for
He than for H2 [140, 166, 167], which is quite close to the ratio σHe

QFM/σH2
QFM ≈ 5, as

suggested by Table 11.1.
Apparently, through an increase of the internuclear distance R, SO and QFM
cross sections decrease in absolute terms, but SO decreases at a faster rate and
therefore the ratio σQFM/σSO increases. This encourages the following physical
picture about the behavior of the two-electron wave function upon increasing R.
As the internuclear distance grows, the overlapping electronic wave functions
are further separated, resulting in less electron-electron correlation and a strong
suppression of double ionization through SO. For QFM, on the other hand, the
decline of the cross section is less pronounced. A possible intuitive explanation is
that the two-electron cusp is barely affected by a growing R because both electrons
stay close to the center point between the two protons to partake in the bonding.
Accordingly, the QFM cross section remains relatively strong.
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(barn) Single ionization Double ionization

Dipole Quadrupole QFM

He 730 19.5 0.10 0.039

H2 62 0.75 0.015 0.008

Table 11.1: Cross sections obtained from PSECS calculations for one-photon single and
double ionization of He and H2 by a 800 eV circularly polarized photon. The
total integrated cross sections of the QFM correspond to the shaded areas in
Fig. 11.5. Table adapted from Ref. [140].
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Figure 11.5: Singly differential cross sections for double ionization of H2 (A) and He (B)
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represent the QFM cross sections tabulated in Table 11.1. Figure adapted from
Ref. [140].
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Figure 11.6: Measured probability of creating two electrons emitted back-to-back in one-
photon double ionization at 800 eV photon energy as function of the energy
sharing. The shown data is limited to ϑ12 > 150◦ and broken down for different
internuclear distances of the two protons, where the He data set corresponds to
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12
T H E S I M P L E S T D O U B L E S L I T

We choose to examine a phenomenon which is impossible, absolutely impossible,
to explain in any classical way, and which has in it the heart of quantum mechanics.

In reality, it contains the only mystery.

— R. Feynman about double-slit interference in his famous lectures [168].

Photoelectron emission from the H2

molecule at high photon energies
mimics the double-slit experiment be-
cause the two centers of the diatomic
molecule behave like independent pho-
ton absorbers and subsequently as
indistinguishable sources of coherent
photoelectron waves [73]. Despite be-
ing well-established today, this insight
cannot cease to fascinate as it bears
some of the most intriguing concepts
of quantum mechanics. That includes
the wave-particle duality of electrons,
decoherence of a quantum system, and
entanglement among quantum parti-
cles. These concepts have already been
adressed extensively in experimental works (see, e.g., Refs. [33, 89, 93, 95, 98]), but
only at photon energies up to 400 eV. In the first section of this chapter, we will
recapitulate some of these findings with our experimental results at 800 eV photon
energy. In the remaining two sections of the chapter, we show that the double-slit
behavior of H2 photoionization unveils yet another fundamental fact of nature:
the finite speed of light.1

The experimental results shown here were obtained in Run 2A, where we irradiated
H2 by 800 eV circularly polarized photons. Our investigations are limited to the one-
photon double ionization of H2. Here, we achieved full solid-angle coverage in the
laboratory frame of reference for all reaction fragments by means of reconstructing
one electron momentum vector through momentum conservation (see p. 68).2

In Sec. 12.3, our experimental results are compared to calculations that solve
the two-electron Time-Dependend Schrödinger Equation (TDSE) from H. Liang,
Y.-K. Fang, L. Geng, Q. Gong, and L.-Y. Peng [149].

1The figure in the top right corner illustrates the concept of the time measurement. The photon
(yellow) launches electron waves out of the initial-state electron oribital (grey) of the hydrogen molecule
(red: protons). The resulting interference pattern is slightly asymmetric, allowing the calculation of
how long the photon required to travel through the molecule.

2Note that single ionization of H2 creates just one bare proton and one high energetic electron
(≈ 780 eV), for which we achieved only small solid-angle acceptance (see p. 58). The neutral hydrogen
atom cannot be detected. Hence, most events in the corresponding data set lack information of two
reaction fragments and we could not reconstruct their momentum vectors by means of momentum
conservation. This "incomplete" data set is not investigated in the present work.
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The double-slit analogy was established for photoelectron waves born in one-
photon single ionization of H2 [73]. However, for highly asymmetric energy
sharing, the fast electron from double ionization practically behaves like a pho-
toelectron in single ionization [91]. This has been impressively demonstrated
experimentally by Akoury et al. in Ref. [89]. However, as some of our interpreta-
tions heavily depend on this idea, we will first confirm the double-slit nature of
H2 double ionization again at 800 eV photon energy.
To that end, Fig. 12.1 A shows the angular distribution of the fast electron in the
molecular frame of reference as function of the kinetic energy release. These results
demonstrate how the number of interference fringes increases and how the angular
separation of the maxima becomes smaller with a decreasing kinetic energy release,
i.e., with a growing internuclear distance R (see. Eq. 9.18, and see Ref. [98] for
similar experimental results). One would expect the same behavior from the
interference pattern of a classical double-slit experiment when the slit distance d is
increased. Figure 12.1 B shows the distribution of the electron energy sharing and
the fast electrons used in Fig. 12.1 A are limited to εeF = EeF/(EeF + EeF) > 0.96,
which corresponds to the red-shaded region in Fig. 12.1 B.
In Fig. 12.2 we show projections of the data from Fig. 12.1 A onto the horizon-
tal axis for different regions of the KER. The green lines in the right column of
Fig. 12.2 indicate the calculated intensity distributions of a classical double-slit
experiment (Eq. 6.5). Here, we set d = R according to Eq. 9.18 and λe = 0.82 au,
which corresponds to the de Broglie wavelength of an electron of 800 eV kinetic
energy. The agreement between the experimental data and the model predic-
tion substantiate the double-slit analogy for the fast electrons from H2 double
ionization.
Note that these observations also underline the wave-particle duality of electrons.
Our detector registers single electrons and we determine the particle’s emission
direction with respect to the molecular axis. Eventually, the wave behavior appears
as the interference pattern after aggregation of many detected events.

Let us now briefly cover the concepts of decoherence and entanglement, and how
they manifest in our experimental results.
Macroscopic objects are never isolated from their environment and therefore
their wave function is not simply governed by the Schrödinger equation, which
is applicable only to closed systems [169]. Decoherence describes the transition
from quantum to classical behavior caused by the interaction of a system with
its environment. These interactions shift the phases of the wave functions and
potentially destroy the phase integrity—i.e., coherence—which is needed for inter-
ference effects (see, e.g., Refs. [170, 171] for experimental works on decoherence of
molecular matter waves).
In their work on H2 double ionization [89], Akoury et. al addressed the following
significant question. How much interaction is needed to induce the transition from
quantum to classical bahaviour? They found that the interaction among the two
emitted electrons can be enough, if the strength of the interaction is sufficiently
high. This finding is underlined by our results shown in Fig. 12.1 C, where we
depict the angular distribution of the fast electron in the molecular frame of
reference as function of the electron energy sharing for the average internuclear
distance of 1.4 au, i.e., for a kinetic energy release in the range of 19.4 ± 0.5 eV
as indicated by the red-shaded region in Fig. 12.1 D. The more asymmetric the
energy sharing, the smaller is the momentum transfer from the electron emitted
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first to the secondary electron. Hence, the energy sharing serves as a measure of
the strength of the interaction between the two electrons.
A projection of the top row of bins from Fig. 12.1 C onto the horizontal axis exactly
corresponds to the results presented in Fig. 12.2 C & D. Here, the interference
pattern is clearly visible. Starting at ε = 1 and moving to ε = 0, two things
happen in Fig. 12.1 C. (1) The number of interference fringes diminishes because
the de Broglie wavelength of the electron becomes larger as the kinetic energy
decreases. This behavior is most apparent between ε = 1 and ε = 0.75. (2) The
interference pattern gradually disappears until it is gone altogether. Arguably, this
is an evidence of gradual decoherence.
Even for a violent interaction between the two electrons in H2 double ionization—
i.e., more symmetric energy sharing—the coherence is not destroyed, but it is
conserved in the entangled two-electron system. This has been demonstrated by
Akoury et al. in Ref. [89] and also by Waitz et al. in Ref. [95]. Accordingly, the sum
momentum of the electron pair,

peSum = pe1 + pe2 , (12.1)

still continues to exhibit the interference pattern when projected onto the molecular
axis. This holds true for any electron energy sharing, as demonstrated in Fig. 12.3 A,
where we show the interference pattern of the two-electron wave in terms of

cos αeSum = p̂eSum · R̂ (12.2)

as function of the electron energy sharing. Note that each row of bins in Fig. 12.3 A
has been normalized individually to remove the effect of the highly-asymmetric
energy sharing distribution from the display. The correlation between the two
electron emission angles in the molecular reference frame is shown in Fig. 12.3 B–D
for different electron energy sharings. The tilted fringes follow the relationship
peF R cos αeF + peS R cos αeS = const. and their appearance underlines that two
electrons are an entangled pair for any electron energy sharing (see Refs. [95, 149]
for comparison).
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Figure 12.1: Double-slit nature of fast electron emission in one-photon double ionization of
H2 with 800 eV photon energy. (A) Fast electron emission angle in the molecular
reference frame as function of the kinetic energy release. Subfigure adapted
from Ref. [148]. (B) Electron energy sharing. The red-shaded region indicates
ε > 0.96 and represents the gate used for the display of data in subfigure A.
(C) Electron emission angle in the molecular reference frame as function of
the electron energy sharing for the average internuclear distance of R = 1.40 ±
0.04 au, which corresponds to the red-shaded region in subfigure D. Each row
of bins in subfigure C has been normalized individually to remove the effect of
the highly-asymmetric energy sharing distribution from the display. (D) Kinetic
energy release. The red-shaded region indicates KER = 19.4 ± 0.5 eV.
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Figure 12.2: Molecular-frame fast-electron (εeF > 0.96) angular distribution from one-
photon double ionization of H2 at 800 eV photon energy for different conditions
on the KER. The two subfigures in each row are different representations of
the same experimental data (see Appx. A for details). The green lines in
the right subfigures represent double-slit interference (Eq. 6.6) where we set
peF = 7.64 au and R as indicated in the following. (A,B) KER = 23.0 ± 0.5 eV
(R ≈ 1.2 au). (C,D) KER = 19.4± 0.5 eV (R ≈ 1.4 au). (E,F) KER = 16.0± 0.5 eV
(R ≈ 1.7 au).
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Figure 12.3: Correlation between the two electron emission angles in the molecular reference
frame from one-photon double-ionization of H2 at 800 eV photon energy for the
average internuclear distance of 1.4 au (KER = 19.4 ± 0.5 eV). (A) Orientation
of the electron sum momentum vector with respect to the molecule as function
of the electron energy sharing. Each row of bins in subfigure A has been
normalized individually to remove the effect of the highly-asymmetric energy
sharing distribution from the display. (B–D) Correlation between fast and
slow electron emission angle for εeF > 0.96 (B), εeF = 0.25 ± 0.05 (C), and
εeF = 0.4 ± 0.1 (D). The idea for this figure is adapted from Ref. [95], where
equivalent illustrations can be found for Eγ = 400 eV.
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The finite speed of light should affect the photoionization of spatially extended
systems. This hypothesis is based on the idea that the photoelectron wave cannot be
launched at the same time from anywhere of its initial position-space distribution
while the photon arrives at different times. Accordingly, the contributions to the
total photoelectron wave that originate from different positions along the photon
travel path should be subject to birth time delay.
In the formal treatment of light-matter interaction, the assumptions of an infinitely
long wavelength or an infinitely fast speed of light both result in the electric dipole
approximation. Under both assumptions, the target experiences an electric field
which is constant over the whole relevant region of space.
As previously discussed in Sec. 6.2 and illustrated in Fig. 6.7, there are two closely
related physical pictures for nondipolar photoionization: (1) Time independent:
The extended system is exposed to a spatially dependent light phase. The resulting
phase differences are imprinted onto the individual contributions to the total
electron wave. (2) Time dependent: During the process of photoionization, a
wavefront of constant phase sweeps from one end of the system to another. This
results in an inhomogeneous temporal structure of the total electron wave. Hence,
any observable effect resulting from birth time delay qualifies as a nondipole
effect.
In the present section, we test the hypothesis drawn up above and search for the
effect of the finite speed of light on fast electron emission in one-photon double
ionization of H2 at 800 eV photon energy. By stressing the double-slit analogy of
this process, we try to measure the birth time delay between the two waves that
are launched coherently from the two atomic centers. This birth time delay should
simply correspond to the travel time of the photon across the molecule, which
is 247 zeptoseconds (1 zs = 10−21 s) for the average bond length of molecular
hydrogen (R = 1.4 au).
For the time measurement, we employ the approach introduced on p. 44 in Sec. 6.2:
In the molecular double-slit experiment, birth time delay leads to an initial phase
difference ∆ϕ. If the two interfering waves in a double-slit experiment have differ-
ent phases at birth, the symmetry of the interference pattern is broken. Accordingly,
∆ϕ can be determined from a measured angle α0 to which the zeroth-order inter-
ference maximum is shifted. The initial phase shift depends on the angle β which
is enclosed by the molecular axis and the light propagation direction. Hence, to
measure birth time delay, we have investigated the angular distribution in the
molecular frame of reference of fast electrons from one-photon double ionization
of H2 as function of β.

The results of our experimental study are shown in Fig. 12.4. Here, the fast electrons
chosen for the display carry at least 96% of the excess energy (εeF > 0.96) and the
internuclear distance was fixed around the average value, i.e., KER = 19.4± 0.5 eV.
Figure 12.4 A shows the interference pattern of the fast electrons as function of
cos β. Apparently, the position of the central interference maximum is not constant,
which indicates an initial phase difference that varies with the angle enclosed by
molecule and light.
For a more quantitative analysis, we have determined cos α0 by means of a Gaus-
sian fit for each row of bins in the histogram. This procedure is shown exemplarily
in Fig. 12.4 B for the top row of bins. Eventually, the mean values resulting from
the Gaussian fits are displayed as the blue squares in Fig. 12.4 C as function of
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cos β. The errorbars include statistical and systematic errors.3 The dashed blue
line is a linear function fitted to the experimental data points.
The birth time delay τ and the angle α0 are related through Eq. 6.18, i.e.,

τ = cos α0
R

vph
.

The left and the right vertical scales of Fig. 12.4 C are interlinked through this
relation with R = 1.4 au and vph = 0.027 × c, which corresponds to the phase
speed of an electron of 750 eV kinetic energy. The solid black line in Fig. 12.4 C
shows the simple model prediction of Eq. 6.15,

τ =
R

c
cos β ,

where R = 1.4 au and which is simply the photon travel time along the projection
of the internuclear vector R onto the light propagation direction.
Apparently, the experimental results suggest a much larger birth time delay
than the simple model predicts. There are two possible reasons for this deviation:
Incorrect results or a wrong model. The relatively large systematic error is indicated
by the blue-shaded region in Fig. 12.4 C (see footnote on p. 122 for details). Even
within the systematic error range, however, the experimental results and the model
prediction for the birth time delay do not agree.
Hence, we must assume that birth time delay is either not the true cause or not
the only cause of an initial phase shift ∆ϕ. An alternative cause is suggested by
the prevailing interpretation of nondipolar photoionization. The dashed black line
in Fig. 12.4 C shows Eq. 6.13, i.e.,

cos α0 =
kγ

peF
cos β ,

which assumes that the initial phase shift between the two waves is induced by a
spatially dependent light phase.
The small difference between the slopes of the solid and dashed black lines in
Fig. 12.4 C points out that the two physical pictures are closely related but make
slightly different predictions. We have shown on p. 45 that the two pictures are
unanimous, only if the electron energy equals the photon energy. If the electron
energy is smaller than the photon energy, the time-delay model predicts smaller
initial phase differences ∆ϕ than the picture of a spatially dependent light phase.
Eventually, this results in the smaller slope of the solid black line compared to the
dashed one.
The physical reason for the small disagreement between the two models is a phase
difference of (Ipτ)/h̄ that manifests in the bound state already. Accordingly, the
two free electron waves have collected a phase difference prior to their departure
into the continuum [149]. In order to keep it as simple and descriptive as possible,
we have neglected this bound state phase in the time-delay model so far. If the
bound state phase difference were considered in the model, the slopes of the solid
and the dashed black lines in Fig. 12.4 C would be exactly the same. The easiest
way to formally include it is to use the phase speed of a hypothetical electron in
Eq. 6.18 for which the kinetic energy equals the photon energy. This will be done

3The accuracy to which we could specify the zero point of the electron momentum distribution
was approximately ±0.04 au in all three directions in space, i.e., roughly 20% of the magnitude of the
photon momentum. Within this systematic uncertainty, we determined the maximum and minimum
slope of the linear fit function in Fig. 12.4 C and indicated this range by the blue-shaded area. The
statistical errors for each data point are the standard deviations of the mean values from the Gaussian
fits estimated as the square root of the respective diagonal element of the covariance matrix [148].
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12.2 zeptosecond birth time delay

in the next section where we test the time-delay model against the asymmetries
observed in the interference pattern of the two-electron wave.

The two model predictions do not differ substantially and both still underestimate
the experimental results. So far, we have not considered the two-electron nature
of the double ionization process which could provide the missing explanation.
The double-slit analogy is only approximately true for fast electron emission
in one-photon double ionization of H2. Even for the highly asymmetric energy
sharing used in the present section, the two electrons are still not independent and
their phases are correlated (see Fig. 12.3 B for the experimental evidence). Hence,
the additional initial phase shift observed in the experiment could be caused by
the correlation among the fast and slow electrons. The correlated phases of the
slow and fast electron waves and their implications on the initial phase difference
∆ϕ were taken into account in the TDSE calculations from Liang et al. [149]. The
solid red line in Fig. 12.4 C shows the TDSE results for εeF = 0.96 and R = 1.4 au.
The agreement with the experimental results is satisfactory.
On the one hand, this agreement between experiment and TDSE encourages the
validity of the measured results. On the other hand, it suggests that neither model
accurately accounts for the initial phase shift that breaks the symmetry of the
fast-electron interference pattern. In other words, we have found experimental
evidence of the birth time delay in molecular photoionization but the results
remain ambiguous insofar that a birth time delay is not the only cause of the initial
phase shift ∆ϕ in the subset of data inspected here.
The double-slit analogy works best in H2 double ionization for the angular dis-
tribution of the combined electron pair in the molecular frame of reference (see
Fig. 12.3 A for the experimental evidence). Hence, in the next section, we will
test the time-delay model against the results obtained for the interference of a
two-electron wave.

Note that in Ref. [148] we have included a model prediction that combined the
atomic and molecular nondipole effects as discussed in Ch. 7 and as shown in
Fig. 7.2. However, in Ref. [149] (see, e.g., Fig. 1 B therein) we found later that
the TDSE results, that do not distinguish between the two effects, match with
the predictions of Eq. 6.13, i.e., with the assumption of an initial phase shift due
to a spatially dependent light phase alone. Apparently, the modifications of our
observables due to the atomic nondipole effect are too small to play a significant
role and they cannot be the reason for the additional initial phase shift. We have
therefore neglected them here.
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Figure 12.4: Birth time delay measurement for fast electrons from one-photon double
ionization of H2 at 800 eV photon energy. All data shown is limited to εeF > 0.96
& KER = 19.4± 0.5 eV. (A) Angular distribution of the fast electron with respect
to the molecular axis as function of cos β, which measures the angle enclosed by
light and molecule. (B) Angular distribution of the fast electron with respect to
the molecular axis for parallel alignment of light and molecule, i.e., cos β > 0.87
which corresponds to the top row of bins in subfigure A. The red curve is
the Gaussian fit used to determine cos α0. (C) Positions of the zeroth-order
interference maxima cos α0 as function of cos β. All cos α0 were obtained by
means of Gaussian fits, as indicated exemplarily by the red curve in subfigure
B. The error bars include statistical and systematic errors, and the blue-shaded
region indicates the systematical error (see footnote on p. 122 for details). The
vertical scales are related through Eq. 6.18 with R = 1.4 au and vph/c = 0.027.
The solid black line shows the prediction of the time-delay model, i.e., the
result of Eq. 6.15 for R = 1.4 au. The dashed black line resembles Eq. 6.13, i.e.,
an initial phase shift due to a spatially dependent light phase. The solid red
line shows TDSE results from Ref. [149] for εeF = 0.96 and R = 1.4 au. Figure
adapted from Ref. [148].
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12.3 . . .of a two-electron wave

The quantum nature of H2 double ionization should best be imagined as one
two-electron wave originating at either atomic center instead of two single-electron
waves that each launch from one center [93]. Accordingly, a robust double-slit-like
interference pattern can be found in the sum-momentum distribution of the two
electrons in the molecular frame of reference which even survives integration over
the electron energy sharing distribution (see Fig. 12.3 A and Refs. [95, 149]). As the
double-slit behavior is apparently more genuine for the two-electron quasiparticle
than for a single fast electron from H2 double ionization, we will now test the
time-delay model for the electron sum momentum peSum.

Figure 12.5 shows the results of our birth-time-delay study for the collective
electron momentum from one-photon double ionization of H2 at 800 eV photon
energy. The projection of the electron sum momentum onto the direction of the
molecular axis, i.e.,

peSum,R̂ = peSum · R̂ , (12.3)

as function of the angle β enclosed by molecule and light is shown in Fig. 12.5 A
for the experimental results and in Fig. 12.5 B for the TDSE calculations from Liang
et al. [149]. For the TDSE calculations, the internuclear distance was fixed at R =
1.4 au. For the experimental results, we have integrated over KER = 19.4 ± 0.3 eV.
The TDSE predictions and the experimental results show the same distinct features.
In particular, the position of the central interference maximum varies with cos β,
which suggests initial phase shifts due to nondipole effects.
In order to identify the positions of the zeroth-order interference maxima as
function of cos β, the subset of experimental data shown in Fig. 12.5 A underwent
the same procedure as the data presented in Fig. 12.4 A . The result of the
procedure is shown by the blue squares in Fig. 12.5 C (see footnote on p. 122 for
details on the error bars and the blue-shaded systematic error region). The solid
red line in Fig. 12.5 C presents TDSE results for cos α0 as function of cos β [149].
The left and right vertical scales of Fig. 12.5 C are again linked through Eq. 6.18,
but this time we have used vph = 0.028 × c, which corresponds to the phase speed
of an electron of 800 eV kinetic energy. By means of this small modification of
the time-delay model, the right-hand sides of Eqs. 6.13 & 6.19 become equal,
i.e., both models of nondipolar photoionization make the same predictions. The
dashed black line in Fig. 12.5 C shows the birth time delay calculated through
τ = (R/c) cos β (Eq. 6.15). Experimental results, TDSE calculations, and the
predictions of the time-delay model are all in decent agreement with each other.
Our findings support the hypothesis that the finite speed of light affects the
photoionization of spatially extended systems. The two contributions to the total
two-electron wave that originate from the two atomic centers are subject to a birth
time delay. Assuming that the phase speed of the two-electron wave equals that of
a single-particle matter wave which contains the entire photon energy, the simple
time-delay model (Eq. 6.15) complies with TDSE calculations and predicts the
experimental data fairly well. Evidently, the birth time delay simply corresponds
to the travel time of the photon along the projection of the internuclear distance
onto the light propagation direction.

For fast electron emission in H2 double ionization, the effect of birth time delay
on the initial phase shift was likely observed but overshadowed by the impact of
the correlated phases of the two electrons (see Sec. 12.2). For one-photon single
ionization of H2 [149] or H+

2 [172], however, TDSE results comply with the pre-
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12.3 . . .of a two-electron wave

dictions of the modified time-delay model where Ee = Eγ. Although there are no
further studies until now, we have no reason to believe that birth time delay is not
a general phenomenon in the photoionization of extended systems.

I want to conclude this chapter with a personal answer on the following ques-
tion. Did we really conduct a time measurement with zeptosecond resolution? We have
measured the momentum distributions of the reaction fragments from photon
double ionization of molecular hydrogen and found certain asymmetries that can
be explained by means of a zeptosecond birth time delay. I leave it to the reader to
decide whether this qualifies as a time measurement or not. The time-delay model
is just one way to illustrate the physical reality of photoionization at high photon
energies. I personally find this model much more attractive and intuitive than
the prevailing idea of a spatially dependent light phase that drives nondipolar
photoionization.
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Figure 12.5: Birth time delay measurement for the two-electron wave from one-photon
double ionization of H2 at 800 eV photon energy. All experimental data shown is
limited to KER = 19.4± 0.3 eV. (A,B) Projection of the electron sum momentum
onto the direction of the molecular axis, as determined from the experimental
results (A) or predicted by means of solving the TDSE (B) [149]. (C) Positions
of the zeroth-order interference maxima cos α0 as function of cos β. All cos α0
were obtained by means of Gaussian fits like in Fig. 12.4. The error bars include
statistical and systematic errors, and the blue-shaded region indicates the
systematical error (see footnote on p. 122 for details). The vertical scales are
related through Eq. 6.18 with R = 1.4 au and vph/c = 0.028. The dashed black
line shows the prediction of the time-delay model for R = 1.4 au (Eq. 6.15).
The solid red line shows corresponding TDSE results [149].
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13
M O L E C U L A R N I T R O G E N

Predicted by Toffoli and Decleva in 2006, the forward/backward asymmetry of
photoelectron emission in the laboratory frame of reference is modified by molec-
ular nondipole effects if the parity of the photoelectron is resolved [126]. Due to
a similar origin, such modifications should reveal the same oscillating behavior
as function of the photon energy like the Cohen-Fano interferences in the pho-
toionization cross section [73]. The experimental confirmation requires measuring
the angular distribution of an electron from photoionization of a homonuclear
diatomic molecule over a wide photon energy range and also a method to distin-
guish between gerade and ungerade parity of the photoelectron.

The experimental results presented here were obtained in Run 3A, where we used
molecular nitrogen as the target and single circularly polarized photons at energies
between 880 eV and 2160 eV as projectiles. Our subject of investigation was K-shell
photoionization followed by Auger decay and the symmetric fragmentation of
the molecule into N+ + N+. The kinetic energies of the K-shell photoelectrons
are approximately given by EP = Eγ − 410 eV and the K-shell vacancies are filled
under emission of an Auger electron at approximately EA = 370 eV. The average
internuclear distance of N2 is 2.07 au in the neutral ground state and 2.04 au for
N+

2 with a K-shell vacancy [70].

We achieved full solid-angle acceptance in the laboratory frame of reference for the
detection of ionic fragments and the Auger electrons, but the experimental setup
allowed only a small acceptance angle for the considerably faster photoelectrons.
For each data point contributing to the results of the present chapter, we have
measured one electron momentum vector and reconstructed the other one by
means of momentum conservation (see p. 68).
We have collected the highest amount of data at the photon energy of 1330 eV.
Hence, the respective data set is often used exemplarily for the display of results
throughout the present chapter. Compared to the previous results chapters, the
present one has a more explorative character.
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13.1 disentangling gerade and ungerade quantum states

The set goal for the experiment on N2 photoionization was to investigate the for-
ward/backward asymmetries of K-shell photoelectron emission in the laboratory
frame of reference as function of the photoelectron parity. The prerequisite for
achieving this goal is an effective procedure to identify subsets of our experimental
data where the photoelectron has a well-defined parity. There are two concep-
tionally different ways of doing this. (1) Assuming that the double-slit model
(Eqs. 6.6 & 6.7) is valid for fast photoelectron emission from N2, the gerade and
ungerade contributions to the total electron wave can be resolved by restrictions
on the photoelectron emission angle in the molecular reference frame, i.e.,

cos αP = p̂P · R̂ , (13.1)

where pP is the photoelectron momentum vector and R̂ is the orientation of the
molecular axis. In the present section, however, we follow the second way. (2) As
outlined in Refs. [84–86], the parity of the photoelectron is determined if the
parities of the Auger electron and the N2+

2 state are identified.
The mixing of the two Auger electron parity states shapes the angular distribution,
which we investigate in terms of the Auger electron emission angle in the molecular
frame of reference, i.e.,

cos αA = p̂A · R̂ , (13.2)

where pA is the Auger electron momentum vector. As shown in Refs. [99, 173] for
K-shell ionization of N2, the molecular frame Auger electron angular distribution
also carries features of a double-slit-like interference pattern. But even without
validity of the double-slit model for Auger electron emission, the gerade and
ungerade Auger electron waves have opposite phases and it should be possible to
find regions of cos αA where either one dominates (see, e.g., Fig. 3 K in Ref. [84]).
The nature of the N2+

2 state determines the kinetic energy release of the fragmen-
tation. However, the mapping of the overall KER distribution onto the N2+

2 final
states is ambiguous due to the multitude of possible repulsive potential energy
surfaces [174, 175]. In other words, the KER distribution of a certain N2+

2 state
will most likely overlap with the distributions of other states (see, e.g., Fig. 3 B in
Ref. [33] for the easier case of H+

2 dissociation). Fortunately, we only care about
the parity of the dicationic final state and it seems to be possible to find regions in
the overall KER distribution where either parity dominates [71, 85].

Surprisingly, we could not rely on the KER and cos αA regions that were identified
in previous works to determine the parity of the photoelectron [84–86], but we
had to try to identify suitable subsets from our own measured data. Figure 13.1 A1

shows the angular distribution of the Auger electron in the molecular frame of
reference as function of the kinetic energy release. As indicated by the coloured
rectangles, we have identified four KER regions where the distribution of cos αA

is largely isotropic. The projections of the data within the KER regions onto the
horizontal axis are shown in Figs. 13.1 A3–A6, and the projection integrated over
KER = 6 − 12 eV is shown in Fig. 13.1 A2. Figures 13.1 A1–A6 present the same
results for the photoelectron angular distribution.
Electron emission perpendicular to the molecular axis must be a robust indicator
for a gerade parity of the outgoing electron wave. Independent of the wavelength
and the internuclear distance, the superposition of two in-phase waves—that
originate coherently at the two atomic centers—has an interference maximum at
cos α = 0. Vice versa, the superposition of any two coherent waves with opposite
phases has an interference minimum at cos α = 0.
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In Fig. 13.2 we present our experimental data in the same scheme as in Fig. 13.1,
but here we have applied a condition on the coincidently measured other electron
of cos α = ±0.1. The gates are indicated in Figs. 13.1 A2 & B2 by the blue shaded
regions. The condition EP on the photoelectron was applied for the display of
Auger electrons in Figs. 13.2 A1–A6, while EA was applied on the Auger electrons
for the display of photoelectrons in Figs. 13.2 B1–B6.
Disappointingly, there are no substantial differences between the results shown in
Fig. 13.1 and Fig. 13.2. With a condition on Auger electron emission perpendicular
to the molecular axis, we would have expected to reveal the structure of gerade
or ungerade molecular-frame photoelectron angular distributions. Obviously, this
is not the case and we must assume that the parity of the N2+

2 state cannot be
resolved from the KER distribution in the present experiment. Accordingly, the
photoelectron angular distributions shown in Fig. 13.2 still contain the superposi-
tion of gerade and ungerade contributions. As previous works have shown that the
strategy to disentangle the parity states works at lower photon energies [84–86],
we conclude that either the high photon energies and the large electron recoil
momentum alter the fragmentation process or the resolution of the present setup
was not sufficient.
We have tested the procedure that underlies Fig. 13.2 for virtually all reasonable
restrictions on cos α but did not find many substantial deviations compared to
Fig. 13.1 in the structure of photo- or Auger electron angular distributions. One
exception is shown in Fig. 13.3. Here, the restrictions on cos α demand that the
coincidently measured other electron was emitted parallel to the molecular axis.
The changes in the displayed electron angular distributions compared to Fig. 13.1
are clearly noticeable and most significant for the KER gate D (6.85 − 7.2 eV). As
suggested by the appearance of the central fringe at cos αP = 0 in Fig. 13.3 B1, a
gate on Auger electron emission parallel to the molecular axis apparently retrieves
to some extent the gerade contribution to the molecular frame photoelectron
angular distribution without further restrictions on the KER.
In Fig. 13.4 we show the correlation between photo- and Auger electron angular
distributions in the molecular reference frame for the KER gate D (6.85 − 7.2 eV).
By investigating the correlation map in Fig. 13.4 C, we have identified the region
of cos αA where the coincidently detected photoelectron reveals the most distinct
ungerade features. The resulting gerade and ungerade photoelectron angular
distributions are shown in Fig. 13.4 A and compared to the respective double-slit
models (Eqs. 6.6 & 6.7).
For the ungerade case, the overall agreement between model and experimental
results is rather poor, but at least the positions of some interference minima and
maxima coincide.
For the gerade case, the agreement is much better. Apparently, a gate on Auger
electron emission parallel to the molecular axis is an effective way to select a subset
of our experimental data where the photoelectron wave has mainly gerade parity.
Additional confirmation for the validity of this procedure is shown in Fig. 13.5.
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Figure 13.1: Molecular frame photo- and Auger electron angular distributions from K-shell
ionization of N2 at 1330 eV photon energy. (A1–A6) Auger electrons. (B1–

B6) Photoelectrons. (A1,B1) Angular distributions as function of the kinetic
energy release. KER gates: 9.8 − 10.8 eV (A, green), 8.6 − 9.2 eV (B, yellow),
7.4− 8.4 eV (C, purple), 6.85− 7.2 eV (D, orange). (A2,B2) Angular distributions
for KER = 6 − 12 eV. Angle gates: cos α = ±0.1 (E , blue-shaded), | cos α| > 0.9
(F , green-shaded). (A3–A6,B3–B6) Angular distributions for the four KER

gates.
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Figure 13.2: Molecular frame photo- and Auger electron angular distributions from K-shell
ionization of N2 at 1330 eV photon energy under the condition that the other
electron is emitted perpendicular with respect to the molecular axis. (A1–A6)
Distributions of Auger electrons for cos αP = ±0.1 (EP). (B1–B6) Distributions
of photoelectrons for cos αA = ±0.1 (EA). The black lines in subfigures A2–
A6 and B2–B6 show the respective data from Fig. 13.1 A2–A6 and B2–B6 for
comparison. See Fig. 13.1 for all other details.
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Figure 13.3: Molecular frame photo- and Auger electron angular distributions from K-
shell ionization of N2 at 1330 eV photon energy under the condition that the
other electron is emitted parallel with respect to the molecular axis. (A1–A6)
Distributions of Auger electrons for | cos αP| > 0.9 (FP). (B1–B6) Distributions
of photoelectrons for | cos αA| > 0.9 (FA). The black lines in subfigures A2–
A6 and B2–B6 show the respective data from Fig. 13.1 A2–A6 and B2–B6 for
comparison. See Fig. 13.1 for all other details
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Figure 13.4: Interdependence of photo- and Auger electron angular distributions in the
molecular reference frame from K-shell ionization of N2 at 1330 eV photon
energy under the condition of a low kinetic energy release (KER = 6.85 −
7.2 eV, D). (A) Photoelectron angular distributions generated from different
projections of the data in subfigure C onto the horizontal axis. Solid green
line: | cos αA| > 0.9 (FA, green-shaded region in subfigure B). Solid yellow line:
| cos αA| = 0.55 ± 0.07 (HA, yellow-shaded region in subfigure B). Black line:
integrated over the whole range of cos αA (same data as shown in Fig. 13.1 B6).
Dotted green line: Double-slit interference for gerade photoelectrons (Eq. 6.6,
R = 2.07 au, pP = 8.19 au). Dotted yellow line: Double-slit interference for
ungerade photoelectrons (Eq. 6.7). (B) Auger electron angular distribution
generated from the projection of the data in subfigure C onto the vertical axis
(integrated over the whole range of cos αP, same data as shown in Fig. 13.1 A6).
(C) cos αP as function of cos αA.
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Figure 13.5: Molecular-frame photoelectron angular distribution in the polarization plane
after K-shell photoionization of N2 at 1330 eV photon energy (circular po-
larization) and subsequent Auger decay and dissociation into N++ N+ (see
Fig. B.1 for geometry and definition of ϕ). (A) All photoelectrons. The black line
shows the experimental results (Conditions: KER = 6.0− 12.0 eV, photoelectron
measured directly and emitted inside polarization plane, i.e., cos ϑ = 0 ± 0.2)
and the red line presents corresponding theory predictions. (B) Gerade photo-
electrons. The black line shows the experimental results with the additional
condition that the coincidently measured Auger electron was emitted parallel
to the molecular axis (| cos αA| > 0.9). The green line presents corresponding
theory results for a gerade photoelectron parity. Both theory predictions were
taken from Ref. [176] with the permission of P. Demekhin.
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13.2 parity-resolved nondipole effects

We assume that a molecular-frame photoelectron angular distribution that is
asymmetric with respect to the light propagation direction (see, e.g., Fig. 12.4)
influences the forward/backward asymmetry of photoelectron emission in the
laboratory frame of reference (see Ch. 7 for further details). To observe this, the
parity of the photoelectron has to be resolved because otherwise inverse effects
cancel out each other. In the last section, we have identified a procedure that
apparently results in a subset of experimental data which contains a surplus of
gerade photoelectrons. In the present section, we use this procedure to test the
above assumption.
Our experimental results are compared to calculations by D. Toffoli and P. Decleva
[126].

The forward/backward asymmetry of photoelectron emission in the laboratory
frame of reference can be specified in terms of the two nondipole parameters δ
and γ that appear in Eq. 4.25. Here, we do not care about the total photoionization
cross section, but only about the parameters that shape the photoelectron angular
distribution. Accordingly, we rewrite Eq. 4.25 as

dσ

dϑγ
∝ 1 − β

3 cos2 ϑγ − 1
4

+
(γ

2
sin2 ϑγ + δ

)

cos ϑγ (13.3)

for the purpose of the present section. The two nondipole parameters characterize
the interferences between the electric quadrupole (γ) or the magnetic dipole (δ)
with the electric dipole amplitude. Both parameters break the forward/backward
symmetry of the angular distribution if their values are nonzero (see Fig. 4.4 for
exemplary photoelectron angular distributions).
In Ref. [126], the authors calculated the angular distributions of K-shell photo-
electrons from one-photon ionization of N2 and subsequently determined the
three paramaters of Eq. 13.3 from their results. These calculations differentiated
between gerade (g) and ungerade (u) photoelectrons and allowed to determine
the parameters for each case individually. The corresponding results are shown in
Tab. 13.1 for the set of photon energies which we have used in our experiment.
The combined results of our study are presented in Fig. 13.6. Subfigure A shows
the nondipole parameter γ of K-shell photoelectrons from one-photon ionization
of N2 as function of the photon energy. The solid lines represent the results of the
calculation from Ref. [126] for all photoelectrons (red) and the gerade (green) or
ungerade (blue) contribution.
Subfigures B1–D3 exemplarily show how the experimental results for γ were
obtained at the photon energies of 1330 eV, 1510 eV, and 1720 eV. As the procedure
to identify gerade photoelectrons seemed most effective for the two KER gates C
and D (KER = 6.85 − 7.2 eV & KER = 7.4 − 8.4 eV, see Fig. 13.1), we have limited
all the experimental data that contributed to the results shown in Fig. 13.6 to these
two KER regions.1 Subfigures B1–D1 show the photoelectron angular distribution
as function of the angle enclosed by the photoelectron momentum vector and the
light propagation direction for all photo- and Auger electron emission angles in
the molecular frame of reference. The red lines show the measured data and the
black lines represent the fit of Eq. 13.3 to the data. The parameters βav and γav

that resulted from the fit are shown in Tab. 13.1 and γav is plotted in Fig. 13.6 A
(red dots).

1We have identified a small dependence of γ on the KER in the experimental data. This is most
likely due to the correction routine described in Sec. 9.3.2 which is—in the way applied here—most
accurate at low KER. By limiting the KER to the same regions for all results shown in Fig. 13.6, we
prevent that a possible KER-dependence of γ contaminates the results.
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13.2 parity-resolved nondipole effects

Note that the magnetic dipole term of the transition amplitude vanishes for initial
s-states. Accordingly, δ is expected to be zero for photoelectrons that originate
from the K-shell. The calculations of Ref. [126] yielded that δ ≈ 0 for all relevant
photon energies and when we fitted Eq. 13.3 to the experimental results, δ was
always set to zero.
The solid purple lines in Figs. 13.6 B3–D3 show the molecular-frame photoelectron
angular distributions under the condition that the coincidently measured Auger
electron was emitted parallel to the molecular axis (|cos αA| > 0.9). The dotted
lines indicate double-slit interference for gerade (green) and ungerade (yellow)
photoelectrons. The comparison between measured data and model predictions
underlines once more that the photoelectron has apparently gerade parity. To
further remove contributions of ungerade photoelectrons from the subsets of data
shown in subfigures B3–D3, we have applied restrictions on cos αP around the
positions of the zeroth, first, and second order interference maxima—as indicated
by the green-shaded regions. For the resulting subsets, the green lines in subfigures
B2–D2 show the photoelectron angular distribution as function of cos ϑγ and the
black lines represent the fit of Eq. 13.3 to the data. The parameters βg and γg that
resulted from the fit are shown in Tab. 13.1 and γg is plotted in Fig. 13.6 A (green
dots).
According to the qualitative explanation in Ch. 7 and the predictions of Ref. [126],
the measured nondipole parameter γg should oscillate around the average param-
eter γav and follow the solid green line. Apparently, this is not the case. We have
intensively tried to find the reason for this disagreement but have not succeeded
so far.
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13.2 parity-resolved nondipole effects
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Figure 13.6: K-shell photoelectron angular distributions from one-photon ionization of N2.
See text for details.
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Eγ [eV] 880 1330 1510 1720 1930 2160

βav 1.96 1.98 1.99 1.99 1.99 1.99

δav 0.0014 0.0011 0.0009 0.0008 0.0007 0.0006

[126] γav 0.397 0.628 0.698 0.774 0.842 0.912

γg 0.394 0.492 0.694 0.929 0.842 0.754

γu 0.4 0.775 0.702 0.629 0.841 1.076

δ
!
= 0 !

= 0 !
= 0 !

= 0 !
= 0 !

= 0

βav 1.60 ± 0.01 1.81 ± 0.01 1.75 ± 0.01 1.70 ± 0.01 1.67 ± 0.01 1.68 ± 0.01

γav 0.39 ± 0.05 0.55 ± 0.05 0.72 ± 0.05 0.81 ± 0.04 0.86 ± 0.04 0.81 ± 0.04

Exp. βg 1.86 ± 0.02 1.73 ± 0.03 1.65 ± 0.02 1.70 ± 0.02 1.65 ± 0.02

γg 0.56 ± 0.08 0.73 ± 0.13 0.76 ± 0.10 0.97 ± 0.13 0.90 ± 0.13

Table 13.1: Parameters that shape the photoelectron angular distribution in the laboratory frame of reference as used in Eq. 13.3. The experimental values have been
determined by means of a fit of Eq. 13.3 to the data. The errors indicate only the square roots of the respective diagonal elements of the covariance matrix from
the fitting routine.

1
4

0



13.3 discussion

13.3 discussion

Although we had partial success in identifying photoelectrons of mainly gerade
parity, the results shown in the present chapter did not meet our expectations and
raise numerous questions. The following list contains some issues that require
further investigations.

• We cannot explain yet why the procedure used in Refs. [84–86] to disentangle
gerade and ungerade photoelectrons did not work for our experimental data.
A possible reason is that the previous works measured at photon energies
relatively close above the K-shell ionization threshold where the energy
splitting (see p. 30) between the parity states could have caused a different
weighting of the contributions to the total photoelectron wave.

• Electron emission perpendicular to the molecular axis must be an indicator
for a gerade parity of the outgoing electron wave and we do not understand
why there is no substantial difference between the data shown in Figs. 13.1
& 13.2.

• Our measured KER distributions (see Fig. C.17 C) resemble those measured
in the previous works (see, e.g., Fig. 8 in Ref. [86]). With a suitable gate on
the emission angle of the photo- or Auger electron in the molecular frame,
we should see regions in the KER distribution where either parity of the N2+

2
state dominates (see, e.g., Fig. 2 in Ref. [85]). But as shown in Fig. 13.3 B1,
the parity of the N2+

2 state appears to be constant over the whole KER range.

• A condition on Auger electron emission parallel to the molecular axis seems
to produce a subset of data where the contribution of gerade photoelectrons
is enhanced. This works particularly well for low KER regions (see Fig. 13.3
B5 & B6), but also for a KER between 6.0 eV and 12.0 eV (see Fig. 13.5).
According to the qualitative explanation in Ch. 7 and the predictions of
Ref. [126], the nondipole parameter γg for this subset of data should oscillate
around the average parameter γav. This could not yet be observed in our
experimental results.

To resolve these outstanding issues, we propose a joint experimental and theoretical
study of nondipolar photoionization of N2 which has not been initiated in the
course of the present work. A collaboration of this type has been very successful
in the past and produced the results of Refs. [84–86].
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14
S U M M A RY

We have investigated nondipolar photoionization of He, H2, and N2 with a
COLTRIMS reaction microscope and compared the experimental results to various
theoretical predictions. Here, nondipolar photoionization describes photoioniza-
tion at high photon energies where the effects of the linear photon momentum (pγ)
and the spatially-dependent electromagnetic field are not negligible and become
observable in the final-state momentum distributions of the reaction fragments.

In Ch. 10 we focused on the forward/backward asymmetries in light propagation
direction of the momentum distributions from one-photon single and double
ionization of He between 300 eV and 1775 eV photon energy. For double ionization
of He, we showed that the photoelectron receives a large average forward shift of
8/5 × pγ. The corresponding recoil momentum onto the He nucleus overcompen-
sates the linear photon momentum transfer—which is imprinted onto the center
of mass—and the nucleus is attracted towards the light source with an average
momentum of −3/5 × pγ. Our results experimentally confirmed the 90-year-old
counterintuitive prediction by A. Sommerfeld and G. Schur of backward-directed
ions created by light that exerts a forward-directed radiation pressure [151].
Furthermore, we showed for He double ionization that the two electrons share the
forward momentum shift of 8/5 × pγ proportional to their share of the excess en-
ergy. Our experimental results on He single and double ionization are in excellent
agreement with TDSE calculations.

In Ch. 11 we investigated the quasifree mechanism (QFM) of He and H2 double
ionization. The QFM has a distinct fingerprint in the final-state momentum distri-
bution of the reaction fragments. The two electrons are emitted back-to-back with
equal kinetic energy and the recoil momentum vanishes accordingly. This pattern
is forbidden in dipolar photoionzation and the QFM is hence a pure quadrupole
effect. We found the QFM fingerprint for He and H2 double ionization and showed
that in this special case the linear photon momentum is not imprinted onto the
He++ ion or the H++

2 intermediate state. Furthermore, we introduced how the
QFM cross section may be used to probe the correlated structure of a two-electron
wave function.

Chapter 12 dealt with the molecular double-slit experiment, i.e., with photoelectron
emission from H2 viewed within the molecular frame of reference. First, we
recapitulated some findings of previous studies concerning decoherence and
entanglement between the two electrons in double ionization of H2 with our
results at 800 eV photon energy and we reestablished the double-slit analogy for
the emission of a fast electron in double ionization of H2. Then we focused on the
nondipolar corrections to the molecular double-slit experiment that manifest in
an asymmetry of the interference pattern that changes depending on the angle
enclosed by the molecular axis and the light propagation direction. The cause of
this asymmetry is that the two contributions to the total photoelectron wave, that
originate from the two protons, start with different phases. As discussed in Sec. 6.2,
there are several related physical pictures that can explain this phase difference and
for the interpretation of our experimental results we chose the concept of the birth
time delay. In this picture, a wavefront of constant phase sweeps across the molecule
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summary

and releases the two contributions to the total photoelectron wave upon arrival
at each atomic center. We tested the corresponding model predictions against
our experimental results for fast electron emission and found that the model
underestimates the experiment. However, when we used the sum momentum of
the two electrons instead of the momentum of one fast electron for the comparison,
the model predictions and the experimental results agreed eventually.
The travel time of light to cover the average bond length of molecular hydrogen
is 247 zs (1 zeptosecond = 1 × 10−21 s) and by measuring the birth time delay
between the emission of two waves from the two centers of H2 we have (arguably)
conducted a very fast time measurement.

In Ch. 13 we tried to resolve the parity of the photoelectron in K-shell ionization
of N2 to observe modifications of the forward/backward asymmetry of photo-
electron emission in the laboratory frame due to molecular nondipole effects.
While we apparently succeeded in isolating photoelectrons of gerade parity, we
could unfortunately not confirm the predictions of the oscillating behavior of the
nondipole parameter as function of the photon energy. This disagreement between
expectations and experimental results requires further investigations and provides
an opportunity for future studies of this type.
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O U T L O O K

The present thesis constitutes a comprehensive experimental work on nondipolar
photoionization. With our studies on one-photon single and double ionization
of He and H2, we have shown extensively how the photon momentum and the
spatially-dependent light field affect the photoionization process. However, many
interesting parts remain undiscovered or unclear in this area of research. The
following list contains some suggestions for future studies of this type.

• Our studies dealt with K-shell photoionization of atoms and molecules.
Future works could extend the study of nondipole asymmetries to different
atomic and molecular orbitals.

• Our molecular targets, H2 and N2, were rather simple homonuclear diatomic
molecules. In a first step, future experimental nondipole studies with a
reaction microscope could focus on a heteronuclear diatomic molecule like
carbon monoxide [177]. Due to the localization of the electron in its initial
state at the carbon or the oxygen atom, the photoelectron wave emerges
from a well-defined site in the molecule and it is subsequently scattered at
the opposite atomic center. Later, even more complex molecules like sulfur
hexafluoride could be investigated likewise [178]. The interplay of nondipole
effects and the scattering process should yield interesting modifications of
the molecular-frame photoelectron angular distributions.

• The experimental results of our birth time delay measurement suggest a
slightly larger initial phase shift than the simple model and TDSE calcula-
tions predict. While model and calculations are within the systematic error
range of the experimental results, we cannot be ultimately certain that there
is no further additional phase shift in nature that the experiment has un-
covered. Hence, it may be desirable to repeat the experiment with higher
accuracy—e.g., at the newly constructed reaction microscope at PIPE [179].
Furthermore, a new experiment could aim for a higher photoelectron energy
or internuclear distance (see Fig. 6.9 for the motivation).

• Our effort to observe parity-resolved nondipole effects in the laboratory
frame of reference for photoionization of N2 did not succeed and raised
some issues that require further investigations (see Sec. 13.3).

• Photoelectron circular dichroism (PECD) is another cause of a forward/back-
ward asymmetry of electron emission with respect to the light propagation
direction. The effect occurs in photoioinization of randomly oriented chiral
molecules with circularly polarized light (see, e.g., Ref. [180] for a com-
prehensive work on circular dichroism). Here, the chiral structure of the
molecule acts as a gearbox, which translates the rotation of the electric field
vector into a linear forward or backward motion of the emitted electron [79].
As a future research topic, we suggest to study the interplay of PECD and
asymmetries induced by nondipole effects.
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A P P E N D I X



AP O L A R P L O T S A N D T H E P O L E B I A S

Let us assume that the world population is uniformly distributed across the surface
of the earth, i.e., in each square kilometer on the globe live the same amount of
people (and not just on land). This situation is illustrated in Fig. A.1 where each
green dot represents 1 million people.

Figure A.1: Illustration of a uniform population distribution on earth. Each green dot
represents 1 million people. The dots are placed on a spherical fibonacci lattice.

The position of a point on a sphere is commonly specified by two angles within a
spherical coordinate system. Here, the radial coordinate is constant because all
points lie on the surface and the center of the sphere is chosen as the origin of
the coordinate system. To establish the angular references, one needs to specify a
polar axis that passes through the origin. This axis can be chosen freely but it is
helpful to use a meaningful axis (e.g., the axis of rotation). The polar angle ϑ of a
point on the sphere is enclosed by the polar axis and the vector pointing from the
center of the sphere to the point’s position (position vector). The polar angle ranges
from 0◦ to 180◦ and it equals 0◦ for parallel orientation of position vector and
polar axis. Next, the equatorial plane is defined as the plane perpendicular to the
polar axis that contains the center of the sphere. The equatorial plane contains the
azimuthal reference, a vector that points from the origin to a (relevant) position on
the surface. The azimuthal angle ϕ is the angle enclosed by the azimuthal reference
and the projection of the position vector onto the equatorial plane. The azimuthal
angle ranges from 0◦ to 360◦ and the sense of rotation is usually defined by the
right-hand rule with the thumb pointing along the polar axis.
In the geographic coordinate system charted in Fig. A.1, the polar axis points from
the geographic south pole to the geographic north pole and the projection of the
position vector of the Royal Greenwich Observatory in London onto the equatorial
plane serves as the azimuthal reference. Note that lines on a globe where the
polar angle is constant are called parallels (red lines in Fig. A.1) while lines of

147



polar plots and the pole bias

constant azimuthal angle are meridians (blue lines in Fig. A.1). The intersection
of the equatorial plane and the sphere’s surface is the longest parallel and called
equator.
Let us now examine the uniform distribution of people on earth as function of
the polar and azimuthal angles. For that purpose, we divide the range of each
angle into a series of bins and count how many people fall into each bin. The
result is shown in the two histograms in Fig. A.2 where the width of each bin is
10◦ (uniform binning method).
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Figure A.2: Hypothetical world population as function of the polar angle ϑ (A) and the
azimuthal angle ϕ (B).

As one would expect from the uniform distribution of population on the globe,
Fig. A.2 B shows an uniform distribution as function of the azimuthal angle. On
the other hand, Fig. A.2 A may come as a surprise, because it suggests that less
people live at the poles than around the equator despite the uniform population
distribution.
The representation of data as function of a polar angle in a histogram is subject to
the pole bias. The reason for this bias, in technical terms, is that the volume element
in a spherical coordinate system depends on the polar angle, but it is independent
of the azimuthal angle:

d3r = r2 sin ϑ dr dϑ dϕ . (A.1)

A closely related statement, that might be easier to grasp, is that parallels differ
in length but all meridians have the same length. Hence, the area enclosed by
parallels that are uniformly spaced over the polar angle is a function of the polar
angle itself. For example, if one counts people living close to the north pole where
ϑ = 5◦ ± 5◦, the search area is small compared to the area around the equator
enclosed by ϑ = 90◦ ± 5◦.
It is very important to note that Fig. A.2 A is a correct representation of the data.
However, it is sometimes desirable to adjust for the pole bias to obtain a more
intuitive representation. There are two common ways to do this: (1) One can
divide the count of each bin by the sine of each bin’s center sin(ϑc). (2) Instead of
presenting the distribution as function of ϑ, display it as function of cos(ϑ). Both
options are presented in Fig. A.3 and both show a uniform distribution.
The division by sin(ϑc) in Fig. A.3 A corrects for the fact that each bin in Fig. A.2 A
corresponds to a different surface area on the globe. On the other hand, a uniform
distribution of bins over the range of cos(ϑ) instead of ϑ entails that each bin
in Fig. A.3 B corresponds to the same surface area (cosine binning method). The
different angular widths of the two binning methods are compared in Fig. A.4 and
drawn on the globe in Fig. A.5.
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Figure A.3: Adjusting for the pole bias: (A) Each bin count is divided by the sine of the
bin center sin(ϑc). (B) Bins are equally spaced over the range of cos(ϑ). Both
representations suggest a uniform distribution of population over the polar
angle.
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Figure A.4: Comparison of the angular widths of the two binning methods.

Figure A.5: Comparison of the uniform binning method (A) and the cosine binning method
(B) for the range of the polar angle. In B, all areas separated by the parallels
have the same surface area.
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polar plots and the pole bias

The distribution of data as function of an angle is commonly presented in a
polar plot. Accordingly, Fig. A.6 presents the hypothetical world population as
function of the polar angle in a polar plot using the uniform binning method (A)
and the cosine binning method (B). Arguably, Fig. A.6 B is the more appropriate
representation of the data.
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Figure A.6: Polar plots of the hypothetical world population as function of the polar angle
ϑ using the uniform binning method (A) and the cosine binning method (B).

Some common practices are applied in Fig. A.6 concerning the use of polar
plots in general and polar plots as function of a polar angle in particular: The
displayed figures are histograms but the bar-chart design is replaced by data
points indicating the center of each bin where the bin count is mapped onto the
distance between data point and origin. As the polar angle ranges from 0◦ to
180◦ only, the corresponding distribution is mirrored at the axis between 0◦ and
180◦ for aesthetic purposes. Sometimes there is no radial grid indicating the bin
count of a datapoint but the length of each errorbar equals the square root of the
respective bin count. The angular width of each bin can be recognized from the
angular distance between datapoints. A constant angular distance indicates the
uniform binning method (Fig. A.6 A). Without explicit mention, the cosine binning
method is usually used in polar plots that show data as function of a polar angle.
However, this can be easily recognized by the varying angular distance between
the datapoints (Fig. A.6 B).1

The display of experimental data as function of spherical coordinates is subject
to the same distortion as the above example. If you want to plot a histogram of
data as function of an angle, determine first if this angle is a polar or an azimuthal
angle and then choose the appropriate representation. For the present work, I

have always used the cosine binning method when experimental data is shown

as function of a polar angle.

1Failure to comply with the common practices may result in the following response from your
supervisor: "Für alle Polarplots: Kannst du bitte Datenpunkte mit Fehlerbalken verwenden. Die
Fehlerbalken sind wichtig und die Farben finde ich völlig sinnlos. In einer Veröffentlichung geht das
nicht, in einer Masterarbeit sieht es sehr eigenwillig aus, ich würde nachdrücklich davon abraten."
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polar plots and the pole bias

Altough less important for the present work, let us briefly discuss the implications
of the r2-dependence of the volume element in spherical coordinates (Eq. A.1). We
assume a uniform distribution of particles inside the volume of a unit sphere and
show this distribution of particles as function of the radius r as a histogram in
Fig. A.7 A. As bins at smaller r correspond to a smaller volume than bins at higher
r, the representation of the distribution in the histogram is biased accordingly. As
shown in Fig. A.7 B, one can adjust for this bias by dividing the count of each bin
by the value of each bin’s center rc.
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Figure A.7: Hypothetical world population as function of the polar angle ϑ (A) and the
azimuthal angle ϕ (B).
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BM F PA D S O F L I N E A R M O L E C U L E S

A molecular-frame photoelectron angular distribution characterizes the probability
of photoelectron emission as function of angles defined in the body-fixed coor-
dinate system of the molecule. Unfortunately, there is no standardized method
on how to establish the coordinate system and the comparison is not always
straightforward. In each specific case, particular attention must be paid on how
the angles are defined.

For diatomic molecules, the molecular axis provides a natural choice for one
reference axis. However, the diatomic (or any linear) molecule specifies no further
direction in space, which is necessary in order to establish a three-dimensional
coordinate system. One of the axes of the laboratory frame can function as such,
as long as it is linearly independent of the molecular axis.
The spherical coordinates ϑ and ϕ, that are shown in Fig. B.1, are commonly used
to present a MFPAD. Here, the photon propagation direction (x) is chosen as the
polar axis and the projection of the molecular axis (R) onto the equatorial plane
serves as the azimuthal reference. Additionally, in order to establish an explicit
reference of the polar angle ϑ to the molecular axis, the polar angle β, that is
enclosed by R and x̂, has to be fixed. To that end, the molecular axis is often kept
close to the polarization plane (β ≈ 90◦). One example of a MFPAD as function of
ϑ and ϕ is shown in Fig. B.3 A.
For circularly and randomly polarized light, the laboratory-frame photoelectron
angular distribution depends on the angle ϑ alone (see Eq. 4.22, ϑ = ϑγ therein).
Accordingly, a MFPAD as function of ϕ—after integration over a relevant region
of ϑ—does not resolve the anisotropy of the angle-differential cross section in the
lab frame (see Ch. 4) and exhibits mainly molecular effects. An example is shown
in Fig. B.1 B. Note that circularly polarized light encodes its sense of rotation in
the phase of the emerging photoelectron wave, which affects the appearance of
the MFPAD as function of ϕ [79].

Another option to examine the photoelectron angular distribution in the molecular
frame is to analyse the MFPAD as function of the angle enclosed by molecular
axis and photoelectron momentum vector. In the present work, we label this polar
angle as α and it is shown in Fig. B.2.
An example of an MFPAD as function of α is shown in Fig. B.4. Here, the laboratory-
frame photoelectron angular distribution envelopes the molecular contribution.
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mfpads of linear molecules

Figure B.1: Spherical coordinate system defined by the light direction (x, polar axis) and
the projection of the molecular axis (R, green, azimuthal reference) onto the
equatorial plane (blue). To unambiguously identify the orientation of the photo-
electron vector (pe, yellow) relative to the molecular axis through ϑ and ϕ, the
angle β needs to be fixed.

Figure B.2: The orientation of the photoelectron vector (pe, yellow) relative to the molecular
axis (R, green) is unambiguously defined by the polar angle α. R and pe define
a plane (blue). Here, α is defined as the smaller one of the two angles enclosed
by R and pe.
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mfpads of linear molecules
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Figure B.3: Molecular-frame photoelectron angular distribution (MFPAD) after K-shell
photoionization of N2 at 420 eV photon energy (circular polarization) and
subsequent dissociation into N+ + N+. The energy of the photoelectron is
around 10 eV, the kinetic energy release is fixed between 6.5 and 20 eV, and
the molecular axis encloses an angle with the light propagation direction of
90◦ ± 15◦. The presented data was recorded during the comissioning of the new
stationary reaction microscope at beamline P04 (PETRA III, DESY, Hamburg)
in March 2021. (A) The angles ϕ and ϑ are defined as shown in Fig. B.1. The
cosine binning method was used to display the dependence of the MFPAD on
the polar angle ϑ (see App. A). (B) MFPAD as function of the azimuthal angle
ϕ after integration over cos ϑ = 0 ± 0.2 (area enclosed by the dashed white
lines in A). Accordingly, molecular axis and photoelectron vector lie in or close
to the polarization plane. Here, the photoelectron emission probabilty in the
laboratory frame is isotropic and molecular effects become particularly evident.
The physical interpretation of the shown data can be found in Ref. [181].
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mfpads of linear molecules
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Figure B.4: Upper hemicircles: Measured molecular-frame photoelectron angular distribu-
tions of fast electrons (Ee = 735 ± 15 eV) from one-photon double ionization of
H2 by 800 eV circularly polarized photons for the average internuclear distance
of R = 1.4 ± 0.04 au and different orientations between molecular axis and light
propagation direction. (A) Parallel alignment (cos β > 0.87) between light prop-
agation (black arrow) and molecule (red barbell). (B) Perpendicular alignment
between light propagation and molecular axis (cos β = 0 ± 0.065). Lower hemi-
circles, yellow lines: Double-slit interference patterns with nondipole corrections
(Eq. 6.14) for R = 1.4 au and λ = 0.85 au (average de Broglie wavelength of the
fast electron). Blue lines: Laboratory-frame photoelectron angular distributions
transformed into the two-dimensional molecular frame of reference for the
respective orientation of the molecule. Note that in panel B, the light impinges
from any direction perpendicular to the molecule. Purple lines: Superposition
of the double-slit interference pattern and the laboratory-frame envelope. The
differences between the model and the measured data are most likely due to
the integration over cos β that are necessary for the display of the experimental
results. Figure taken from the supplementary material of Ref. [148].
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CS TA N D A R D M O M E N T U M A N D E N E R G Y D I S T R I B U T I O N S

Run 1A (Helium at 800 eV photon energy)

Measured ion momentum
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Figure C.1: Measured photoion (He++) momentum distributions from one-photon double
ionization of helium at 800 eV photon energy. (A) Detector-plane momentum
distribution. The data shown is limited to pi,z = 0 ± 2 au. (B) Polarization-
plane momentum distribution. The data shown is limited to pi,x = 0 ± 2 au.
(C) Magnitude of ρ as function of ϕγ (compare to Fig. 9.4 and see Sec. 9.3.1 for
details). (D) Photoion momentum as function of cos ϑ = pi,z/pi.
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standard momentum and energy distributions

Run 1A (Helium at 800 eV photon energy)

Measured electron momentum and energy
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Figure C.2: Measured electron momentum and energy distributions from one-photon
double ionization of helium at 800 eV photon energy. (A) Detector-plane
momentum distribution. The data shown is limited to pe1,z = 0 ± 2 au.
(B) Polarization-plane momentum distribution. The data shown is limited to
pe1,x = 0 ± 2 au. (C,D) Electron energy as function of the spherical coordinates
ϕ = tan−1 (pe1,x/pe1,y

)

and cos ϑ = pe1,z/pe1 (see Sec. 9.2 for details).
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standard momentum and energy distributions

Run 1A (Helium at 800 eV photon energy)

Reconstructed electron momentum and energy
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Figure C.3: Reconstructed electron momentum and energy distributions from one-photon
double ionization of helium at 800 eV photon energy (see p. 68 and Eq. 9.10 for
details). (A) Detector-plane momentum distribution. The data shown is limited
to pe2,z = 0 ± 2 au. (B) Polarization-plane momentum distribution. The data
shown is limited to pe2,x = 0 ± 2 au. (C,D) Electron energy as function of the
spherical coordinates ϕ = tan−1 (pe2,x/pe2,y

)

and cos ϑ = pe2,z/pe2 (see Sec. 9.2
for details).
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standard momentum and energy distributions

Run 1B (Helium at 1100 eV photon energy)

Measured ion momentum

12 6 0 6 12
pi, x (au)

12

6

0

6

12

p
i,
y
 (a

u)

A

0 0.5 1
Intensity (arb. u.)

12 6 0 6 12
pi, z (au)

12

6

0

6

12

p
i,
y
 (a

u)

B

0 0.5 1
Intensity (arb. u.)

0 π 2π

ϕγ

0

2

4

6

8

10

12

|ρ|
 (a

u)

C

0 0.5 1
Intensity (arb. u.)

1 0 1
cosϑ

0

2

4

6

8

10

12

p
i (

au
)

D

0 0.5 1
Intensity (arb. u.)

Figure C.4: Measured photoion (He++) momentum distributions from one-photon double
ionization of helium at 1100 eV photon energy. (A) Detector-plane momentum
distribution. The data shown is limited to pi,z = 0 ± 2 au. (B) Polarization-
plane momentum distribution. The data shown is limited to pi,x = 0 ± 2 au.
(C) Magnitude of ρ as function of ϕγ (compare to Fig. 9.4 and see Sec. 9.3.1 for
details). (D) Photoion momentum as function of cos ϑ = pi,z/pi.
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standard momentum and energy distributions

Run 1B (Helium at 1100 eV photon energy)

Measured electron momentum and energy
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Figure C.5: Measured electron momentum and energy distributions from one-photon
double ionization of helium at 1100 eV photon energy. (A) Detector-plane
momentum distribution. The data shown is limited to pe1,z = 0 ± 2 au.
(B) Polarization-plane momentum distribution. The data shown is limited to
pe1,x = 0 ± 2 au. (C,D) Electron energy as function of the spherical coordinates
ϕ = tan−1 (pe1,x/pe1,y

)

and cos ϑ = pe1,z/pe1 (see Sec. 9.2 for details).
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standard momentum and energy distributions

Run 1A (Helium at 1100 eV photon energy)

Reconstructed electron momentum and energy

12 6 0 6 12
pe2, x (au)

12

6

0

6

12

p
e2
,y

 (a
u)

A

0 0.5 1
Intensity (arb. u.)

12 6 0 6 12
pe2, z (au)

12

6

0

6

12

p
e2
,y

 (a
u)

B

0 0.5 1
Intensity (arb. u.)

0 π 2π

ϕ

0

250

500

750

1000

1250

E
e2

 (e
V

)

C

0 0.5 1
Intensity (arb. u.)

1 0 1
cosϑ

0

250

500

750

1000

1250

E
e2

 (e
V

)

D

0 0.5 1
Intensity (arb. u.)

Figure C.6: Reconstructed electron momentum and energy distributions from one-photon
double ionization of helium at 800 eV photon energy (see p. 68 and Eq. 9.10 for
details). (A) Detector-plane momentum distribution. The data shown is limited
to pe2,z = 0 ± 2 au. (B) Polarization-plane momentum distribution. The data
shown is limited to pe2,x = 0 ± 2 au. (C,D) Electron energy as function of the
spherical coordinates ϕ = tan−1 (pe2,x/pe2,y

)

and cos ϑ = pe2,z/pe2 (see Sec. 9.2
for details).
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standard momentum and energy distributions

Run 2A (H2 at 800 eV photon energy)

Measured ion momentum
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Figure C.7: Measured ion (H+) momentum distributions from one-photon double ioniza-
tion of H2 at 800 eV photon energy, followed by dissociation into H+ & H+. All
histograms contain the first and second detected ion. (A) Detector-plane momen-
tum distribution. The data shown is limited to pi,z = 0 ± 20 au. (B) Polarization-
plane momentum distribution. The data shown is limited to pi,x = 0 ± 20 au.
(C) Ion momentum as function of ϕ = tan−1(pi,x/pi,y). (D) Ion momentum as
function of cos ϑ = pi,z/pi.
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standard momentum and energy distributions

Run 2A (H2 at 800 eV photon energy)

Measured electron momentum and energy
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Figure C.8: Measured electron momentum and energy distributions from one-photon dou-
ble ionization of H2 at 800 eV photon energy, followed by dissociation into
H+ & H+. (A) Detector-plane momentum distribution. The data shown is lim-
ited to pe1,z = 0 ± 2 au. (B) Polarization-plane momentum distribution. The
data shown is limited to pe1,x = 0 ± 2 au. (C,D) Electron energy as function
of the spherical coordinates ϕ = tan−1 (pe1,x/pe1,y

)

and cos ϑ = pe1,z/pe1 (see
Sec. 9.2 for details).
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standard momentum and energy distributions

Run 2A (H2 at 800 eV photon energy)

Measured ion sum momentum
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Figure C.9: Measured ion sum momentum distributions from one-photon double ionization
of H2 at 800 eV photon energy, followed by dissociation into H+ & H+ (see
p. 70 and Eq. 9.14 for details). A condition of εeF > 0.9 was applied to all data
shown in the present figure. (A) Detector-plane momentum distribution. The
data shown is limited to piSum,z = 0 ± 2 au. (B) Polarization-plane momentum
distribution. The data shown is limited to piSum,x = 0 ± 2 au. (C) Magnitude of
ρ as function of ϕγ (compare to Fig. 9.4 and see Sec. 9.3.1 for details). (D) ion
sum momentum as function of cos ϑ = pi,z/pi.
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standard momentum and energy distributions

Run 2A (H2 at 800 eV photon energy)

Reconstructed electron momentum and energy
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Figure C.10: Reconstructed electron momentum and energy distributions from one-photon
double ionization of H2 at 800 eV photon energy, followed by dissociation into
H+ & H+ (see p. 68 and Eq. 9.10 for details). (A) Detector-plane momentum
distribution. The data shown is limited to pe2,z = 0 ± 2 au. (B) Polarization-
plane momentum distribution. The data shown is limited to pe2,x = 0 ±
2 au. (C,D) Electron energy as function of the spherical coordinates ϕ =
tan−1 (pe2,x/pe2,y

)

and cos ϑ = pe2,z/pe2 (see Sec. 9.2 for details).
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standard momentum and energy distributions

Run 2A (H2 at 800 eV photon energy)

Sum energy and kinetic energy release
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Figure C.11: Measured energies from one-photon double ionization of H2 at 800 eV photon
energy, followed by dissociation into H+ & H+. (A) Sum energy of all reaction
fragments where Ip = 31.03 eV is the adiabatic double ionization energy of
H2. The red shaded region indicates a gate on the sum energy of 800 ± 250 eV
that was applied on all the shown data from Run 2A in the present work.
(B) Kinetic energy release (see p. 70 and Eq. 9.16 for details).
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standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Measured ion momentum
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Figure C.12: Measured ion (N+) momentum distributions from one-photon K-shell ioniza-
tion of N2 at 1330 eV photon energy, followed by Auger decay and dissociation
into N+ & N+. All histograms contain the first and second detected ion.
(A) Detector-plane momentum distribution. The data shown is limited to
pi,z = 0 ± 20 au. (B) Polarization-plane momentum distribution. The data
shown is limited to pi,x = 0 ± 20 au. (C) Ion momentum as function of
ϕ = tan−1(pi,x/pi,y). (D) Ion momentum as function of cos ϑ = pi,z/pi.

168



standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Measured electron momentum and energy
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Figure C.13: Measured electron momentum and energy distributions from one-photon K-
shell ionization of N2 at 1330 eV photon energy, followed by Auger decay and
dissociation into N+ & N+. (A) Detector-plane momentum distribution. The
data shown is limited to pe1,z = 0 ± 2 au. (B) Polarization-plane momentum
distribution. The data shown is limited to pe1,x = 0 ± 2 au. (C,D) Electron
energy as function of the spherical coordinates ϕ = tan−1 (pe1,x/pe1,y

)

and
cos ϑ = pe1,z/pe1 (see Sec. 9.2 for details).
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standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Measured ion sum momentum
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Figure C.14: Measured ion sum momentum distributions from one-photon K-shell ioniza-
tion of N2 at 1330 eV photon energy, followed by Auger decay and dissoci-
ation into N+ & N+ (see p. 70 and Eq. 9.14 for details). (A) Detector-plane
momentum distribution. The data shown is limited to piSum,z = 0 ± 2 au.
(B) Polarization-plane momentum distribution. The data shown is limited
to piSum,x = 0 ± 2 au. (C) Magnitude of ρ as function of ϕγ (compare to
Fig. 9.4 and see Sec. 9.3.1 for details). (D) ion sum momentum as function of
cos ϑ = pi,z/pi.
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standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Reconstructed Auger electron momentum and energy
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Figure C.15: Reconstructed Auger electron momentum and energy distributions from one-
photon K-shell ionization of N2 at 1330 eV photon energy, followed by Auger
decay and dissociation into N+ & N+ (see p. 68 and Eq. 9.10 for details).
(A) Detector-plane momentum distribution. The data shown is limited to
pe2,z = 0 ± 2 au. (B) Polarization-plane momentum distribution. The data
shown is limited to pe2,x = 0 ± 2 au. (C,D) Electron energy as function of
the spherical coordinates ϕ = tan−1 (pe2,x/pe2,y

)

and cos ϑ = pe2,z/pe2 (see
Sec. 9.2 for details).
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standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Reconstructed photoelectron momentum and energy
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Figure C.16: Reconstructed photoelectron momentum and energy distributions from one-
photon K-shell ionization of N2 at 1330 eV photon energy, followed by Auger
decay and dissociation into N+ & N+ (see p. 68 and Eq. 9.10 for details).
(A) Detector-plane momentum distribution. The data shown is limited to
pe2,z = 0 ± 2 au. (B) Polarization-plane momentum distribution. The data
shown is limited to pe2,x = 0 ± 2 au. (C,D) Electron energy as function of
the spherical coordinates ϕ = tan−1 (pe2,x/pe2,y

)

and cos ϑ = pe2,z/pe2 (see
Sec. 9.2 for details).
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standard momentum and energy distributions

Run 3A (N2 photon energy scan), e.g., 1330 eV photon energy

Measured kinetic energy release
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Figure C.17: Measured kinetic energy release distributions from one-photon K-shell ioniza-
tion of N2 at 1330 eV photon energy, followed by Auger decay and dissociation
into N+ & N+. (A,C) Correction routine as described in Sec. 9.3.2 optimized
for 3.9 eV kinetic energy of N+ ions. (B,D) Correction routine optimized for
5.25 eV kinetic energy of N+ ions. (A,B) Kinetic energy release as function
of cos ϑ = prel,z/prel . (C,D) Kinetic energy release distribution (see p. 70 and
Eq. 9.16 for details on the KER calculation).
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D E U T S C H E Z U S A M M E N FA S S U N G

Die vorliegende Arbeit basiert auf sechs Publikationen, zu denen der Autor dieser
Arbeit einen wesentlichen Beitrag geleistet hat [140, 141, 146–149]. Die behandelten
Themen werden in der vorliegenden Arbeit ausführlicher und zusammenhängend
dargestellt. Darüber hinaus werden aber auch einige bislang unveröffentlichte
Ergebnisse präsentiert.
Die Arbeit befasst sich mit Experimenten zur Photoionisation von einzelnen
Atomen und Molekülen bei Photonenenergien zwischen 385 eV und 2160 eV. Pho-
toionisation bezeichnet hier die Emission von einem oder mehreren Elektronen
aus einem Atom oder einem Molekül ausgelöst durch die Absorption eines ein-
zelnen Photons. Der untersuchte Energiebereich lässt sich in der theoretischen
Beschreibung der Photoionisation nicht mehr im Rahmen der elektrischen Dipolnä-
herung beschreiben und wir sprechen hier deshalb von nicht-dipol-Photoionisation.
Die elektrische Dipolnäherung vernachlässigt sowohl die Ortsabhängigkeit des
elektromagnetischen Feldes als auch den Photonenimpuls. Die vorliegende Arbeit
fokussiert sich auf die Untersuchung des Einflusses dieser beiden Eigenschaften
auf den Photoionisationsprozess.
Teil I liefert die physikalischen und mathematischen Grundlagen, die notwendig
sind, um die experimentellen Ergebnisse zu verstehen und einzuordnen. Teil I
umfasst die Kapitel 2 bis 7.
Kapitel 2 beschreibt, wo der Gültigkeitsbereich der elektrischen Dipolnäherung
endet. Das ist der Fall, wenn der Photonenimpuls vergleichbar groß ist wie
die Impulse der Reaktionsfragmente oder wenn die Wellenlänge des Lichts von
vergleichbarer Größe ist wie die räumliche Ausdehnung des Systems, das ionisiert
wird. Letzterer Zusammenhang wird in Abbildung 2.1 illustriert.
Kapitel 3 behandelt den Wirkungsquerschnitt der Photoionisation. Der Wirkungs-
querschnitt liefert ein Maß für die Wahrscheinlichkeit, mit der ein bestimmter
Ausgang einer Reaktion zu erwarten ist. Der Wirkungsquerschnitt lässt sich aus
theoretischen Modellen berechnen und in Experimenten messen. Er eignet sich
daher gut für Vergleiche zwischen Experiment und Theorie. Anhand eines Mini-
malbeispiels wird im Kapitel 3 der Wirkungsquerschnitt für die Photoionisation
eines Elektrons aus einem s-Orbital hergeleitet. Gleichung 3.27 entspricht dem
Ergebnis dieser Herleitung. In Abbildung 3.1 und in Tabelle 3.1 werden einige
Ergebnisse, die sich aus Gleichung 3.27 ergeben, mit ausgefeilteren Berechnungen
des Wirkungsquerschnitts verglichen. Gemessen an der Einfachheit der Herleitung
liefert Gleichung 3.27 erstaunlich gute Ergebnisse.
Kapitel 4 befasst sich mit der Winkelverteilung von Photoelektronen im Laborsys-
tem. Zunächst wird die Winkelverteilung eines Photoelektrons aus einem s-Orbital
diskutiert. Der verwendete nicht-dipol-Wechselwirkungsoperator (Gleichung 4.3)
führt hierbei zu einem reinen Dipolübergang, einem Mischterm und einem reinen
Quadrupolübergang. Der Mischterm beschreibt die Interferenz zwischen dem
Dipol- und dem Quadrupolbeitrag. Wie Abbildung 4.2 veranschaulicht, haben
alle drei Beiträge unterschiedliche Auswirkungen auf die Winkelverteilung der
Photoelektronen. Den stärksten Beitrag zur Photoionisation liefert in der Regel
der Dipolbeitrag. Der Mischterm ist für die vorwärts-rückwärts-Asymmetrie in
Lichtausbreitungsrichtung verantwortlich. Der Quadrupolbeitrag ist schwach ge-
genüber dem Dipolbeitrag und kommt nur selten direkt zum Vorschein. Ein
Beispiel für das Produkt des reinen Quadrupolbeitrags zur Photoionisation ist der
quasifree mechanism, der in Kapitel 5 eingeführt wird.
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Deutsche Zusammenfassung

Schließlich wird im Kapitel 4 noch eine Formel zur Beschreibung von Winkelver-
teilungen anhand verschiedener Parameter hergeleitet. Gleichung 4.25 entspricht
dieser Formel für zirkular polarisiertes Licht. Die Abhängigkeit der Form der
Photoelektronenwinkelverteilung von den verschiedenen Parametern ist in den
Abbildungen 4.3 & 4.4 illustriert.
Für die Beschreibung der Photoionisation wird in den ersten Kapiteln vereinfa-
chend angenommen, dass ein Photon auch nur ein einzelnes Elektron aus dem
System ionisieren kann. Es wird dabei von Einfachionisation gesprochen. In Kapi-
tel 5 werden nun die physikalischen Prozesse beschrieben, die dafür sorgen, dass
mehrere Elektronen als Folge auf die Absorption eines einzelnen Photons emittiert
werden können.
Aufgrund ihrer sehr ähnlichen elektronischen Struktur gelten für He und H2 hier-
bei die gleichen Zusammenhänge. Die Doppelionisation dieser beiden Systeme
geschieht über einen von drei Prozessen: (1) Der Two-step-one (TS1) ist ein zweistufi-
ger Prozess. Zunächst wird ein vergleichsweise niederenergetisches Elektron durch
Einfachionisation erzeugt. Dieses erste Elektron kann nun das zweite durch einen
Stoß aus dem System herausschlagen. (2) Beim shake-off (SO) verlässt zunächst ein
vergleichsweise hochenergetisches Elektron das System. Aufgrund der Verschrän-
kung der elektronischen Anfangszustände kann daraufhin ein weiteres Elektron
aus dem System entkommen. (3) Der letzte der Doppelionisationsprozesse ist der
quasifree mechanism (QFM). Der QFM ist ein reiner quadrupol-Effekt, denn die
Dipolauswahlregeln verbieten das kinematische Profil des QFM im Endzustand:
Zwei Elektronen mit nahezu gleicher Energie, deren Impulsvektoren einen Winkel
von 180◦ einschließen, und damit einen verschwindenden Rückstoßimpuls. Die
Benennung des QFM leitet sich aus der Anschauung ab, dass die Doppelionisation
hier frei von der Beteiligung der Atomkerne geschieht. Abbildung 5.1 zeigt die
Feynman-Diagramme der drei Prozesse.
Abschließend wird in Kapitel 5 kurz die K-Schalen-Ionisation von N2 und der
darauf folgende Zerfall unter Emission eines Auger-Elektrons beschrieben.
Kapitel 6 befasst sich ausführlich mit dem Doppelspaltexperiment an zweiatomigen
Molekülen.1 Wenn kohärente Wellen aus zwei nahe beieinanderliegenden Spalten
emittiert werden, erzeugen sie auf einem Nachweisschirm ein Interferenzmuster
(siehe Abbildung 6.2). Wird ein Elektron aus einem homonuklearen zweiatomigen
Molekül wie H2 oder N2 durch Photoionisation emittiert, passiert etwas ganz
Ähnliches. Entsprechend dem Welle-Teilchen-Dualismus verhält sich das Elektron
wie eine Kugelwelle, welche an beiden Atomen des Moleküls gleichzeitig startet.
Beide Teilwellen interferieren und die Auftreffwahrscheinlichkeit auf einem Detek-
tor hängt vom Winkel ab, unter dem das Elektron in Bezug auf die Molekülachse
emittiert wurde: Es entsteht ebenfalls das charakteristische Interferenzmuster
(siehe Abbildung 6.3).
In Unterkapitel 6.1 werden einige wichtige Einschränkungen der Doppelspaltana-
logie zu den durchgeführten Experimenten diskutiert. So treten bei der Doppel-
ionisation von H2 durch ein Photon die Interferenzeffekte nur auf, wenn das
betrachtete Elektron fast die gesamte verfügbare kinetische Energie trägt und das
zweite Elektron damit sehr langsam ist. Um hingegen das Interferenzmuster in der
Winkelverteilung der Photoelektronen aus der K-Schale des N2 zu sehen, muss
die Parität des Photoelektrons bekannt sein.
Die Auswirkungen von nicht-dipol-Effekten auf das Doppelspaltexperiment an
zweiatomigen Molekülen werden in Unterkapitel 6.2 besprochen und man kann
sich ihnen aus drei verschiedenen Erklärungsperspektiven nähern. Einerseits
kann man sich vorstellen, dass das Molekül zum Zeitpunkt der Photoionisa-
tion das ortsabhängige elektrische Feld des Lichts spürt. Die interferierenden

1Siehe Ref. [182] für eine Publikation des Autors zum Thema in deutscher Sprache.
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Elektronen-Teilwellen starten daher je nach Orientierung des Moleküls relativ
zum Licht mit unterschiedlichen Phasen. Eine weitere Vorstellung ist die einer
Wellenfront mit konstanter Phase, die zu unterschiedlichen Zeitpunkten an den
Atomkernen auftrifft und die Teilwellen zeitverzögert starten lässt. Diese Modell-
vorstellung beschreibt das in dieser Arbeit geprägte Konzept des birth time delays.
Die beiden Perspektiven werden in Abbildung 6.7 grafisch dargestellt. Die dritte
Erklärungsperspektive betrachtet den Übertrag des Photonenimpulses auf den
Grundzustand der Elektronen und sie ist in Abbildung 6.10 illustriert. Alle drei
Perspektiven erklären nahezu gleichermaßen den beobachtbaren nicht-dipol-Effekt
beim Doppelspaltexperiment an zweiatomigen Molekülen: Eine Asymmetrie des
Interferenzmusters, welches in der Elektronenwinkelverteilung im molekülfesten
Koordinatensystem erscheint (siehe Abbildungen 6.6 & 6.8).
In den Kapiteln 5 & 7 wurden die nicht-dipol-Effekte isoliert im labor- bzw.
molekülfesten Koordinatensystem beschrieben. Kapitel 7 bringt diese beiden
Perspektiven nun zusammen und behandelt wie die Effekte sich gegenseitig
beeinflussen. Die Zusammenhänge sind grafisch in den Abbildungen 7.1 & 7.2
dargestellt.
Teil II behandelt die in dieser Arbeit verwendeten Methoden zur Durchführung
und Auswertung der Experimente. Teil II umfasst die Kapitel 8 und 9.
Kapitel 8 beschreibt den Aufbau und die Durchführung der Experimente. Für alle
Experimente dieser Arbeit wurde ein COLTRIMS-Reaktionsmikroskop verwendet.
COLTRIMS steht für Cold Target Recoil Ion Momentum Spectroscopy und bezeichnet
eine Methode der Impulsspektroskopie. In einem COLTRIMS-Experiment wird ein
Projektilstrahl (Photonen, Elektronen oder Ionen) mit einem Strahl des gasförmigen
Targets gekreuzt. Die im Überlappungsbereich der beiden Strahlen entstehenden
Elektronen und Ionen werden mit elektrischen und magnetischen Feldern auf orts-
und zeitauflösende Detektoren geleitet. Das elektrische Feld wird dabei von einem
Spektrometer erzeugt und das magnetische Feld von einem Helmholtz-Spulenpaar.
Das Spektrometer und die Detektoren befinden sich während des Experiments
in einer Vakuumkammer. Das Helmholtz-Spulenpaar befindet sich außerhalb
des Vakuums. Die Funktionsweise eines COLTRIMS-Reaktionsmikroskops ist in
Abbildung 8.1 dargestellt. Abbildung 8.2 zeigt beispielhaft ein Spektrometer und
die Trajektorien von Elektronen und Ionen. Aus den gemessenen Flugzeiten und
Auftrefforten lassen sich schließlich die Impulse berechnen, welche die Elektronen
und Ionen direkt nach der Reaktion getragen haben. Die Stärke der COLTRIMS-
Methode liegt in der Möglichkeit, ein vollständiges Bild des Impulsraums aller in
einer Reaktion entstandenen Teilchen gleichzeitig aufzunehmen.
Für diese Arbeit wurden ausschließlich Photonen als Projektile verwendet. Als
Photonenquelle diente für alle Experimente die Variable Polarization XUV Beamline
P04 des Elektronenspeicherrings PETRA III am DESY in Hamburg.
Als Targets wurden He, H2 und N2 eingesetzt. Die Daten für diese Arbeit wurden
im Rahmen von drei Messzeiten aufgenommen. Während der ersten Messzeit
wurde He bei 800 eV und 1100 eV Photonenenergie gemessen. Während der
zweiten Messzeit wurde H2 einer Photonenenergie von 800 eV ausgesetzt. Im
Rahmen der letzten Messzeit wurde zunächst N2 mit Photonenenergien zwischen
880 eV und 2160 eV und später He mit Energien zwischen 300 eV und 1775 eV
ionisiert. Weitere Details zu den Messzeiten sind im Unterkapitel 8.2 aufgeführt.
Kapitel 9 behandelt die Auswertung der aufgenommenen Rohdaten. Zunächst
wird dargestellt, wie aus den Detektorsignalen die Auftrefforte (Gleichung 9.1) und
die Flugzeiten (Gleichungen 9.2 & 9.3) der Teilchen ermittelt werden. Durch die
Auswahl von physikalisch sinnvollen Flugzeiten und Auftrefforten der Teilchen
können die Rohdaten vorsortiert werden, um den Rechenaufwand der anschlie-
ßenden Impulsberechnung möglichst gering zu halten. Unterkapitel 9.2 stellt dar,
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wie die Elektronenimpulse aus den Flugzeiten und Auftrefforten, unter Berück-
sichtigung der Spektrometergeometrie und den Stärken des elektrischen und des
magnetischen Feldes, berechnet werden (Gleichungen 9.5–9.7). Gleichermaßen
zeigt Unterkapitel 9.3 diesen Prozess für Ionen (Gleichungen 9.11 & 9.12). Bei
der Impulsberechnung der Ionen mussten einige Besonderheiten des experimen-
tellen Aufbaus und der Ionisation bei hohen Photonenenergien berücksichtigt
werden. Einerseits beeinflussten die starken Photonenimpulse die gemessenen Io-
nenimpulse (siehe Unterkapitel 9.3.1). Andererseits machte auch der Einsatz einer
elektrostatischen Linse in der Ionenseite des Spektrometers (siehe Abbildung 8.2)
aufwendige Korrekturen erforderlich (siehe Unterkapitel 9.3.2 & 9.3.3).
Teil III stellt die experimentellen Ergebnisse dieser Arbeit dar und vergleicht sie an
vielen Stellen mit den Ergebnissen theoretischer Vorhersagen, welche im Rahmen
unserer Kollaborationen entstanden sind. Teil III umfasst die Kapitel 10 bis 13.
Kapitel 10 behandelt die vorwärts-rückwärts-Asymmetrien in den Impulsvertei-
lungen der Reaktionsfragmente nach der Photoionisation bei hohen Energien.
In Unterkapitel 10.1 wird gezeigt, wie sich der Photonenimpuls auf die beiden
Reaktionsfragmente der Einfachionisation überträgt. Die experimentellen Ergeb-
nisse zur Einfachionisation von He zwischen 300 eV und 1775 eV Photonenenergie
werden mit theoretischen Vorhersagen (Gleichungen 10.1 & 10.2) verglichen und
stimmen sehr gut mit diesen überein (siehe Abbildung 10.1). Das Überraschende
an den Ergebnissen ist, dass die Impulsverteilung der Elektronen im Mittel um
8/5 des Photonenimpulses in Lichtausbreitungsrichtung nach vorne verschoben
ist. Entsprechend der Impulserhaltung ist der Mittelwert der Ionenverteilung
um −3/5 des Photonenimpulses in die Richtung der Lichtquelle verschoben
(siehe Abbildung 10.2). Der Photonenimpuls muss jedoch auf den Massenschwer-
punkt übertragen werden und das ist hier näherungsweise das He+-Ion. Erwar-
tungsgemäß müsste sich das Ion also von der Lichtquelle wegbewegen. Dieser
Widerspruch wird im weiteren Verlauf des Kapitels untersucht. Es zeigt sich,
dass der Photonenimpuls in der Tat auf das Ion übertragen wird (siehe Abbil-
dung 10.3). Das Photoelektron erfährt durch die Interferenz zwischen Dipol- und
Quadrupolanteilen der möglichen Endzustände einen starken mittleren Impuls
in Vorwärtsrichtung (siehe Abbildung 10.4). Der Rückstoßimpuls auf das Ion
ist danach so stark, dass er den vorwärts gerichteten Photonenimpulsübertrag
überkompensiert.
Schließlich wird in Unterkapitel 10.2 die vorwärts-rückwärts-Asymmetrie der bei-
den Elektronen bei der Doppelionisation von He untersucht. Wie in Abbildung 10.1
zu sehen ist, verhalten sich die He++-Ionen wie die einfach geladenen Ionen und
sie haben im Mittel einen Impuls von −3/5 des Photonenimpulses in Richtung
der Lichtquelle. In Abbildung 10.5 ist der mittlere Impuls der beiden Elektronen
in Lichtausbreitungsrichtung aufgetragen. Es zeigt sich, dass der übertragene
Anteil der 8/5 des Photonenimpulses proportional zum Anteil der Energie eines
Elektrons an der Gesamtenergie der beiden Elektronen ist.
In Kapitel 11 werden die Ergebnisse zum QFM (quasifree mechanism) der Dop-
pelionisation von He und H2 untersucht. In der Einleitung des Kapitels wird
besprochen, wie der QFM dem Teil des Wechselwirkungsoperators zwischen Licht
und zwei Elektronen außerhalb der Dipolnäherung entstammt, der direkt auf die
Relativkoordinaten der Elektronen wirkt (siehe Gleichung 11.3). Das unterstreicht,
dass der QFM keinen Einfluss auf den Massenschwerpunkt ausübt.
In Unterkapitel 11.1 wird das kinematische Profil des QFM im Endzustand der
Doppelionisation gesucht. Der QFM zeichnet sich durch zwei Elektronen mit
nahezu gleicher kinetischer Energie aus, deren Impulsvektoren einen Winkel
von etwa 180◦ einschließen. Der Rückstoßimpuls auf das He++-Ion oder den
H++

2 -Zwischenzustand verschwindet daher. Abbildung 11.1 zeigt die Messung
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dieser Rückstoßimpulse für verschiedene Photonenenergien und vergleicht sie mit
theoretischen Vorhersagen innerhalb und außerhalb der Dipolnäherung. Nur die
nicht-dipol-Berechnungen zeigen einen Beitrag bei niedrigen Rückstoßimpulsen
und können damit den QFM richtig vorhersagen. Abbildung 11.2 trägt für die
Doppelionisation von He und H2 bei 800 eV Photonenenergie den Winkel zwischen
den beiden Elektronenimpulsvektoren als Funktion der Elektronenenergie auf.
Auch in dieser Darstellung erscheint der QFM deutlich. Während die Existenz
des QFM für die Doppelionisation von He schon bekannt war, wurde sie für die
Doppelionisation von H2 durch diese Beobachtungen erst bestätigt. Schließlich
wird in Abbildung 11.3 gezeigt, dass der Photonenimpuls beim QFM nicht auf
das He++-Ion übertragen wird.
Unterkapitel 11.2 geht darauf ein, dass der QFM ein reiner Quadrupoleffekt ist. In
den Elektronenwinkelverteilungen, die in Abbildung 11.4 gezeigt sind, wird das
durch die Vierfachsymmetrie verdeutlicht.
In Unterkapitel 11.3 wird abschließend zum QFM noch gezeigt, wie dessen Wir-
kungsquerschnitt benutzt werden kann, um Aussagen über den relativen Abstand
der Elektronen in einem Zwei-Elektronensystem zu machen.
Kapitel 12 stellt die experimentellen Ergebnisse zum Doppelspaltexperiment am
H2 bei 800 eV Photonenenergie dar und vergleicht diese an einigen Stellen mit
theoretischen Vorhersagen.
In Unterkapitel 12.1 werden zunächst Ergebnisse präsentiert, die auch in der
Vergangenheit schon aus Experimenten bekannt waren. Jedoch wurden diese
Experimente bei niedrigeren Photonenenergien durchgeführt und zeigten daher et-
was andere Strukturen in den beobachteten Interferenzmustern. Abbildungen 12.1
& 12.2 unterstreichen die Analogie zwischen dem klassischen Doppelspaltexperi-
ment und der Emission eines schnellen Elektrons während der Doppelionisation
von H2. Die Anzahl und der Abstand der Interferenzmaxima verhalten sich als
Funktion des internuklearen Abstands der beiden Protonen ebenso wie die Inter-
ferenzstrukturen des klassischen Doppelspalts als Funktion des Spaltabstandes.
Die Energieaufteilung zwischen den Elektronen kann als Maß für die Stärke der
Dekohärenz herangezogen werden, welche die Interferenzmuster verschwinden
lassen kann. Während Abbildung 12.1 C zeigt, wie das Interferenzmuster eines
Elektrons graduell als Funktion der Energieaufteilung verschwindet, offenbart
Abbildung 12.3, dass die Interferenz unabhängig von der Energieaufteilung für
das verschränkte Elektronenpaar erhalten bleibt.
In Unterkapitel 12.2 werden die Auswirkungen der nicht-dipol-Effekte auf das
Doppelspaltexperiment am H2 gezeigt und anhand des birth time delay-Konzepts
interpretiert. Das betrachtete Elektron trägt hier mindestens 96% der verfügbaren
kinetischen Energie.
Die stärkste Verzögerung zwischen der ersten und zweiten Teilwelle ist zu er-
warten, wenn das Molekül parallel oder antiparallel zum Licht ausgerichtet ist.
Die Strecke, die das Licht vom einen Atom des Moleküls zum anderen zurückle-
gen muss, ist dann nämlich am längsten. Trifft das Licht hingegen senkrecht zur
Molekülachse ein, sollte es keine Verzögerung geben.
Abbildung 12.4 B zeigt das gemessene Interferenzmuster für die parallele Ausrich-
tung zwischen Licht und Molekül. Hier ist das zentrale Interferenzmaximum etwas
nach rechts verschoben. Abbildung 12.4 A stellt das Interferenzmuster umfassend
als Funktion des Winkels zwischen Molekülachse und Lichtausbreitungsrichtung
dar. Für jede Spalte dieses Histogramms wurde die Position des zentralen Ma-
ximums ermittelt, in eine Zeitverzögerung umgerechnet (Gleichung 6.18) und
schließlich in Abbildung 12.4 C aufgetragen. Zum Vergleich stellt die blaue Linie
in Abbildung 12.4 C dar, wie lange ein Photon braucht, um die Projektion des
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mittleren Bindungsabstands auf die Lichtachse zu überwinden. Unsere Messung
deutet auf etwas längere Verzögerungen hin, als es das einfache Modell vorhersagt.
Vermutlich kommt diese Abweichung durch einen zusätzlichen Phasenversatz zwi-
schen den beiden Ein-Elektronen-Teilwellen zustande, der durch die Verbindung
zum zweiten Elektron entsteht. Belege für diese Vermutung liefern die Ergebnisse
in Unterkapitel 12.3, in welchem das Interferenzmuster des verschränkten Elektro-
nenpaares der gleichen Analyse unterzogen wird, wie das des einzelnen schnellen
Elektrons im vorigen Unterkapitel. Abbildung 12.5 zeigt das Resultat dieser Ana-
lyse. Hier stimmen die experimentellen Ergebnisse innerhalb des systematischen
Fehlerbereichs mit den Vorhersagen des birth time delay-Modells überein.
Kapitel 13 dokumentiert schließlich den Versuch, die Auswirkungen der nicht-
dipol-Effekte am molekularen Doppelspalt auf die vorwärts-rückwärts-Asymmetrie
im Laborsystem von Photoelektronen aus der K-Schale des N2 zu beobachten.
Voraussetzung hierfür ist ein Verfahren (siehe Unterkapitel 13.1), bei dem durch
die Auswahl bestimmter Emissionswinkel des Auger-Elektrons im Molekül und
bestimmter kinetischer Energien der Ionen eine Teilmenge der experimentellen
Daten isoliert wird, in der eine Parität des Photoelektrons deutlich überwiegt.
Erstaunlicherweise konnten solche Verfahren, die in der Vergangenheit bereits
erfolgreich eingesetzt wurden, um Photoelektronen von gerader und ungerader
Parität zu isolieren, hier nicht verwendet werden (siehe Abbildungen 13.1 & 13.2).
Schließlich wurde jedoch festgestellt, dass die Auswahl von Auger-Elektronen,
die parallel zur Molekülachse emittiert wurden, überwiegend Photoelektronen
gerader Parität isoliert (siehe Abbildungen 13.3, 13.4 & 13.5).
In Unterkapitel 13.2 wird die vorwärts-rückwärts-Asymmetrie dieser geraden
Photoelektronen mit der Asymmetrie aller Photoelektronen verglichen. Abbil-
dung 13.6 zeigt diesen Vergleich für alle gemessenen Photonenenergien zwischen
880 eV und 2160 eV. Zusätzlich werden hier die experimentellen Ergebnisse den
theoretischen Vorhersagen (siehe Abbildung 7.1) gegenübergestellt. Die experimen-
tellen Ergebnisse erfüllten nicht die Erwartungen und die Abweichungen konnten
bislang nicht erklärt werden. Möglicherweise funktionierte hier das Verfahren zum
Isolieren von Photoelektronen gerader Parität nicht oder der Unterschied in der
vorwärts-rückwärts-Asymmetrie ist schlicht zu klein, um in diesem Experiment
entdeckt zu werden. Die Lösung dieser Ungereimtheiten könnte den Gegenstand
nachfolgender Forschungsarbeiten darstellen.
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Figure C.18: Comic from femto, The DESY research magazine – Issue 01/21.

Inspired by our findings, The Sun investigated the following significant questions
in an online article published on October 25, 2020.

"ZEPTOMANIA How many zeptoseconds did Usain Bolt’s 100m World Record & Boris
Becker’s quickie take? BOFFINS have measured the smallest period of time ever recorded.
To do it researchers at the Goethe University, in Germany, used the zeptosecond, a tril-
lionth of billionth of a second. They found that it takes 247 zeptoseconds for a photon — a
type of particle — to cross a hydrogen molecule. Talk about the blink of an eye. The physi-
cists measured the time interval using a technique involving X-rays and a super-powerful
microscope. (...) Sarah Arnold reveals how many zeptoseconds it took Usain Bolt to set
the 100m World Record, how long Boris Becker’s infamous restaurant “quickie” was (...)

• Boris Becker’s five-minute Nobu quickie sex:
300,000,000,000 000,000,000,001 zeptoseconds.

• Usain Bolt’s 100m World Record:
19,190,000,000,000,000, 000,001 zeptoseconds.

(...)"
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