
Algorithms for Bayesian Persuasion and Delegated Search

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12
der Johann Wolfgang Goethe - Universität

in Frankfurt am Main

von
Niklas Hahn

aus Frankfurt am Main

Frankfurt 2021
(D 30)

vom Fachbereich 12 der

Johann Wolfgang Goethe - Universität als Dissertation angenommen.

Dekan: Prof. Dr. Martin Möller

Gutachter: Prof. Dr. Martin Hoefer
Prof. Dr. Ulrich Meyer
Prof. Dr. Inbal Talgam-Cohen

Datum der Disputation: 27.04.2022

I

Deutsche Zusammenfassung

In dieser Dissertation betrachten wir Algorithmen zur Beeinflussung von Handlungen
durch strategisches Teilen sowie Vorenthalten von Informationen in verschiedenen Va-
rianten. Eine wichtige Gemeinsamkeit aller betrachteten Szenarien ist die Existenz von
Commitment Power, der „Fähigkeit, sich glaubhaft festlegen zu können“. Gemeint ist
hiermit, sich im Vorhinein für eine Handlungsstrategie basierend auf allgemein be-
kannten Informationen zu entscheiden, diese öffentlich bekannt zu machen und sich zu
verpflichten, nach dieser Strategie zu handeln.

Das grundlegende Szenario ist das Folgende:
Es gibt zwei rational agierende Parteien mit eigenen Interessen, die jedoch in gewis-
sem Maße aufeinander eingehen müssen. Eine der Parteien besitzt mehr Informationen
über den Zustand der Welt als die andere, benötigt jedoch die zweite Partei, um davon
zu profitieren. Eine gewisse Grundinformation über den Zustand der Welt ist jedoch
beiden Parteien bekannt, zum Beispiel durch eine bekannte Verteilung über mögliche
Zustände. Erstere Partei versucht durch das Senden bestimmter Signale die Handlun-
gen der zweiten zu beeinflussen. Wir bezeichnen die sendende Partei kurz als S, die
zweite Partei, die die Signale empfängt, entsprechend als R (nach dem englischen Be-
griff receiver). Letztendlich muss R nur anhand der Signale von S und der im Vorhinein
bekannten Information eine von n verschiedenen Aktionen auswählen, ohne den genau-
en Typen dieser Aktion zu kennen. Abhängig vom Typ der gewählten Aktion ziehen die
beiden Parteien unterschiedlichen Nutzen aus dieser Wahl. Allerdings gehen wir davon
aus, dass der Nutzen, den eine Aktion mit sich bringt, niemals negativ sein kann. Da
es keinen Nutzen bringt, wenn keine Aktion gewählt wird, ist es nicht von Vorteil für S
oder für R, wenn R letztendlich keine Aktion auswählt. Wir betrachten zwei verschie-
dene Grundszenarien. Im ersten Teil der Arbeit behandeln wir Bayesian Persuasion
mit unterschiedlichen Modellen, der zweite Teil handelt von Delegated Search.

Bayesian Persuasion
In Bayesian Persuasion – grob übersetzt mit „Bayessche1 Überzeungskunst“ – besitzt
S Commitment Power. Das bedeutet, dass S sich auf ein Signalschema φ festlegen und
dieses Schema R kommunizieren muss. Das Schema φ beschreibt, in welcher Situation
welche Signale gesendet werden. Erst danach erhält S Informationen über den wahren
Zustand der Welt. Daraufhin empfängt R die entsprechenden Signale, bestimmt durch
φ, und trifft eine Entscheidung für eine der Aktionen, ohne genau zu wissen, welchen

1Benannt nach dem englischen Mathematiker Thomas Bayes, der als erster den nach ihm benannten
Satz von Bayes über bedingte Wahrscheinlichkeiten beschrieben hat [18].

II

Nutzen die gewählte Aktion für beide Parteien hat. Da die Signale jedoch auf dem
bekannten Schema φ basieren, kann R durch Bedingung auf die empfangenen Signale
eine Aktualisierung der Annahmen über den Zustand der Welt durchführen und diese
zusätzliche Information in die Entscheidung für eine der Aktionen einfließen lassen. Dies
muss S folglich für das Design von φ berücksichtigen. R wird keinen Empfehlungen
für bestimmte Aktionen folgen, wenn diese nur vorteilhaft für S, nicht jedoch für R
selbst sind. Wir betrachten das Problem aus der Sicht von S und versuchen also,
Signalschemata zu entwickeln, die einen möglichst großen Nutzen für S garantieren.

Offline-Fall
Wir behandeln zuerst den Offline-Fall von Bayesian Persuasion in Kapitel 3. Im Offline-
Fall erfährt S den kompletten Zustand der Welt auf einmal und schickt daraufhin ein
Signal an R. Zu diesem Szenario gibt es bereits einige Quellen, die vor allem Här-
teresultate zeigen [36, 34]. Während in [36] gezeigt wird, dass es #P-hart ist, den
optimalen Wert für S zu bestimmen, wenn die Typen der Aktionen unabhängig von-
einander aus bekannten Verteilungen gezogen werden, behandeln die Autoren in [34]
den Fall, dass S maximal k < n mögliche Signale verschicken kann. Das bedeutet, dass
von vornherein nicht alle verschiedenen Aktionen eine Empfehlung erhalten können.
Für diesen Fall wird gezeigt, dass es N P-schwer ist, ein Signalschema zu konstruieren,
das einen konstanten Approximationsfaktor garantiert. Wir setzen daran an und iden-
tifizieren Bedingungen, unter denen wir effiziente Algorithmen beschreiben können, die
das Problem für k ≤ n mögliche Signale optimal oder wenigstens mit einem konstanten
Approximationsfaktor lösen können. Die Hauptresultate sind die folgenden:

1. Wenn die zugrunde liegende Verteilung über die möglichen Zustände der Welt
bestimmte Symmetriebedingungen erfüllt, können wir in Polynomialzeit ein op-
timales Signalschema für S berechnen, selbst, wenn es maximal k Signale gibt.
Unser Algorithmus verwendet geometrische Eigenschaften der Instanzen, um für
jeden möglichen Zustand der Welt ein optimales Signal zu bestimmen.

2. Wenn die Aktionen unabhängig voneinander aus bekannten Verteilungen gezogen
werden und eine weitere Bedingung erfüllen, die wir ϱE-Optimalität nennen, so
existieren Polynomialzeitalgorithmen, die einen konstanten Approximationsfak-
tor garantieren. Dies gilt auch, wenn die Anzahl Signale durch k beschränkt ist.
Unsere Algorithmen bestehen aus zwei Schritten. Im ersten Schritt bestimmen
sie eine möglichst gute Menge S von k Aktionen, die potenziell eine Empfehlung
erhalten werden. Im zweiten Schritt bestimmen sie, basierend auf der Menge S,
ein Signalschema.

Online-Fall
In Kapitel 4 betrachten wir Bayesian Persuasion unter einer Online-Annahme. Das be-
deutet, dass der Zustand der Welt Aktion für Aktion von S beobachtet wird und nur
die jeweils aktuelle Aktion empfohlen werden kann. Wenn R sich dazu entscheidet, sie
nicht auszuwählen, kann sie zukünftig nicht mehr gewählt werden. Zuerst behandeln
wir eine Online-Variante, in der die Typen der Aktionen unabhängig voneinander aus

III

bekannten Verteilungen gezogen werden. Zunächst zeigen wir, dass ein Polynomial-
zeitalgorithmus existiert, der unter Nutzung von n aufeinander aufbauenden linearen
Programmen ein optimales Signalschema für S berechnen kann. Wir messen den Erfolg
für S mit dem Wert, den S im Offline-Fall erreichen könnte, also mit dem Wissen über
die Typen aller Aktionen. Hierbei gibt es Fälle, in denen selbst das optimale Schema
keinen positiven Approximationsfaktor erzielen kann. Darauffolgend identifizieren wir
eine Klasse von Instanzen, in der S einen besseren Faktor im Vergleich zum Offline-
Fall erreichen kann. Auch hier spielt die ϱE-Optimalität eine Rolle, die wir bereits im
Offline-Fall kennen gelernt haben.
Im zweiten Abschnitt zu Online-Persuasion betrachten wir Aktionen, über deren Typen
zuvorderst bekannt ist, dass sie in einer zufälligen Reihenfolge aufgedeckt werden. Wir
behandeln dieses Szenario mit unterschiedlichem Wissen über die möglichen Werte
für S oder R sowie mit unterschiedlichen Zielfunktionen für die beiden Parteien. In
Abschnitt 4.2.1 betrachten wir den Fall, dass R den Erwartungswert der gewählten
Aktion maximieren möchte. Als Richtwert verwenden wir den Fall der kompletten
Information. In diesem Fall kennen sowohl S als auch R alle Typen, wissen jedoch
beide nicht, welcher Typ welcher Aktion zugeordnet wird. Wir verwenden wiederum
die geometrische Interpretation der Instanz, um unser Signalschema aufzustellen.
Weiterhin betrachten wir den Fall, dass die Werte der Typen unbekannt sind. Hier
muss S erst einmal eine gewisse Anzahl von Aktionen beobachten, um eine fundierte
Entscheidung treffen und ein gutes Signal senden zu können. Damit gelingt es, einen
konstanten Approximationsfaktor bezüglich des Richtwerts für S zu garantieren. Zu-
sätzlich betrachten wir die beiden beschriebenen Szenarien in dem Fall, dass R nach
der Ablehnung einer Aktion auch erfährt, welchen Typ diese Aktion hatte. Für den Fall
mit kompletter Information bedeutet dies nur einen Verlust eines konstanten Faktors
für S. Im Fall der unbekannten Typen führt diese zusätzliche Information für R jedoch
dazu, dass keine konstante Approximation im Bezug auf den Richtwert mehr möglich
ist. Stattdessen zeigen wir, dass S nur eine Approximation von Θ (1/n) erreichen kann.
Im folgenden Abschnitt 4.2.2 behandeln wir den Fall, dass R nur Interesse an der besten
Aktion hat und die Erfolgswahrscheinlichkeit, diese Aktion auszuwählen, maximieren
möchte. Wir betrachten wieder dieselben 4 Fälle, also komplette Information bezie-
hungsweise keine Information über die möglichen Typen der Aktionen, jeweils mit und
ohne Aufdeckung der abgelehnten Aktionen. In allen Fällen gelingt es uns, konstante
Approximationsfaktoren zu erzielen.

Delegated Search
In Kapitel 5 betrachten wir Delegated Search, was sich ungefähr mit „Delegierter Su-
che“ übersetzen lässt. Ein grundlegender Unterschied zu Bayesian Persuasion besteht
darin, dass nun R Commitment Power besitzt und nicht mehr S. Wiederum möchte R
eine Aktion aus n möglichen auswählen, möchte aber nicht selbst die Suche nach der
besten Aktion durchführen. Hier kommt die Delegierung an S ins Spiel. Da S jedoch
auch einen Wert von der letztendlich gewählten Aktion erhält und R die Werte der
Aktionen nicht kennt, ist es nicht unbedingt vorteilhaft, S die komplette Entscheidung
zu überlassen.
Formal betrachten wir den folgenden Aufbau: Für jede Aktion existiert eine Verteilung,
aus welcher der Typ unabhängig von den anderen gezogen wird. Diese Verteilung ist so-

IV

wohl S als auch R bekannt. Damit ist R in der Lage, die Menge der akzeptablen Typen
zu beschränken, also bestimmte Typen von vornherein auszuschließen. Aufgrund von
Commitment Power kann sich in diesem Fall R glaubhaft darauf festlegen, bestimmte
Typen (mit gewisser Wahrscheinlichkeit) zu akzeptieren beziehungsweise Typen von
vornherein auszuschließen. Wir bezeichnen das Akzeptanzschema mit φ. Mit dem Wis-
sen um φ kann S nun für sich selbst optimieren – anders als R ist S in der Lage,
die realisierten Typen der Aktionen zu beobachten. Nach der Entscheidung für eine
Aktion wird S diese vorschlagen. Mit einem Vorschlag für eine Aktion erfährt R auch
den Typ dieser Aktion. Abhängig von φ und dem Typen der vorgeschlagenen Aktion
wird S diese akzeptieren oder ablehnen und der Prozess endet. Kleinberg und Klein-
berg [58] betrachteten dieses Szenario aus algorithmischer Sicht und zeigten für den
Fall von identischen Verteilungen für alle Aktionen, dass R in Erwartung nur einen
kleinen konstanten Faktor des optimalen Nutzens verliert – den R durch eine eigene
Suche erreichen könnte. Hierfür verwendeten Kleinberg und Kleinberg Techniken und
Resultate aus der Online-Optimierung.

Wir betrachten das Problem aus der Online-Perspektive und beantworten damit die
folgende Frage: Erhält R immer noch eine gute Approximation, wenn S die Aktio-
nen einzeln nacheinander sieht und jeweils entscheiden muss, diese vorzuschlagen oder
endgültig zu verwerfen?

Als Richtwert für die Approximation im Online-Fall verwenden wir den Wert, den R
durch eine Online-Suche erzielen könnte.

Als Antwort auf diese Frage zeigen wir, dass R im Allgemeinen nur eine Θ (1/n)-
Approximation erreichen kann bezüglich des Wertes, den R durch eine Online-Suche
erzielt. Dies gilt, selbst wenn alle Aktionen aus derselben Verteilung gezogen werden.
Allerdings nutzt unsere Beispielinstanz eine exponentielle Diskrepanz in den Werten
für S. Entsprechend betrachten wir zwei parametrisierte Fälle. Im ersten beschränken
wir den Faktor zwischen dem minimalen und dem maximalen Wert für S mit α ≥ 1.
Für diesen Fall zeigen wir eine Θ

(︂
log log α

log α

)︂
-Approximation. Wenn die Werte für S also

keine exponentielle Diskrepanz haben, ist folglich auch die Approximation für R eine
bessere. Weiterhin betrachten wir einen zweiten Parameter β ≥ 1. Dieser beschränkt
die Verhältnisse zwischen den Werten für S und R von zwei verschiedenen Typen.
Intuitiv bedeutet diese Parametrisierung, dass ein Typ, der besser für S ist als ein
anderer Typ, auch besser für R sein muss (bis auf einen Faktor β). Hierfür erreichen
wir einen Approximationsfaktor von mindestens Ω

(︂
1

log β

)︂
. Analog zur oberen Schranke

für Parameter α gilt auch hier eine obere Schranke von O
(︂

log log β
log β

)︂
.

Zusätzlich betrachten wir noch den Fall, dass R statt des kompletten Typs bei einer
Empfehlung nur den eigenen Wert erfährt. Weil verschiedene Typen denselben Wert
für R haben können, verkompliziert diese Annahme den Aufbau möglicher Akzeptanz-
schemata, sodass auch die erreichbaren Approximationsfaktoren sinken. Wir zeigen
eine Approximationsgarantie von Ω

(︂
1√

α log α

)︂
für Parameter α und einen Approxima-

tionsfaktor von Ω (1/β) für Parameter β. Die oberen Schranken sind jeweils O (1/√
α)

beziehungsweise O (1/
√

β).

V

Fazit

In dieser Dissertation betrachten wir verschiedene Szenarien von strategischer Kom-
munikation zwischen zwei Parteien mit Commitment Power. Im ersten Teil legen wir
den Fokus auf Commitment Power bei der sendenden Partei. Diese besitzt Zugang
zu Informationen über den Zustand der Welt, die der empfangenden Partei nicht zur
Verfügung stehen. Wir beschreiben eine Vielzahl von Signalschemata beziehungsweise
Algorithmen zur Bestimmung derselben, mit denen S die zusätzlichen Informationen
ausnutzen kann, um ein gutes Ergebnis für sich selbst zu garantieren. Insbesondere
bedeutet dies für R, dass das zu erwartende Ergebnis nicht (viel) besser ist als eine
Wahl einer Aktion ohne die Signale von S, falls die Interessen der beiden Parteien nicht
ähnlicher Natur sind. Eine bemerkenswerte Ausnahme existiert allerdings auch hierzu
im Online-Fall mit zufälliger Reihenfolge und a priori unbekannten Werten sowie Auf-
deckung von abgelehnten Typen: Wenn R den Erwartungswert der gewählten Aktion
maximieren möchte, erreicht S im Allgemeinen nur einen Wert von Θ (1/n). Hier kann
S die zusätzliche Information also nicht ausnutzen. Für den Fall, dass R die Wahr-
scheinlichkeit maximieren möchte, den besten Typen auszuwählen, gibt es allerdings
einen komplett symmetrischen Mechanismus. Dieser garantiert sowohl S als auch R
eine Erfolgswahrscheinlichkeit, den jeweiligen besten Aktionstypen zu erhalten von 1/4.
In diesem Fall arbeiten beide Parteien in gewissem Sinne zusammen, um eine gute
Approximation zu erhalten.

Im zweiten Teil betrachten wir umgekehrt den Fall, dass R Commitment Power besitzt.
Dies kann entsprechend S ungemein beschränken, da die Einschränkungen durch das
Akzeptanzschema möglicherweise genau die guten Typen für S aussortieren. Letztend-
lich kann S zwar frei optimieren, allerdings nur im durch R vorgegebenen Rahmen. Wie
wir allerdings zeigen, kann R nicht unbedingt von der Commitment Power profitieren.
Durch die Schranke von Θ (1/n) im Allgemeinen wird klar, dass es sich für R durchaus
lohnen kann, selbst zu suchen. Insbesondere wird auch die untere Schranke von Ω (1/n)
dadurch erreicht, die beste Aktion a priori auszuwählen. Hierzu würde kein „Experte“
mit Information über den Zustand der Welt gebraucht. Allerdings gelingt es uns mit-
hilfe einer natürlichen Parametrisierung, bessere Resultate für R zu erzielen. Wenn die
Werte für S beschränkt sind (Parameter α) oder gute Optionen für S auch nicht sehr
schlecht für R sind (Parameter β), gelingt es, logarithmische Approximationsfaktoren
in Abhängigkeit der jeweiligen Parameter zu erzielen.
Zusätzlich betrachten wir ein Szenario, in dem R weniger Informationen erhält. In
diesem wird nicht der komplette Typ der vorgeschlagenen Aktion offengelegt, sondern
nur der Wert für R. Dies bedeutet, dass in einer Runde alle Typen mit demselben
Wert für R ununterscheidbar sind. Die Schranke von Θ(1/n) gilt weiterhin, für Parame-
ter α und β sind nun jedoch nur noch polynomielle Approximationsfaktoren erreichbar.

Insgesamt gelingt es uns für fast alle Fälle von strategischer Kommunikation, opti-
male oder beinahe optimale Algorithmen zu beschreiben, die die jeweiligen Probleme
effizient lösen können. In den meisten Fällen können wir zusätzlich zeigen, dass diese
Algorithmen gute Approximationsfaktoren bezüglich natürlicher Richtwerte garantie-
ren. In fast allen Fällen gelingt es jedoch nur der Partei mit Commitment Power, ein
gutes Ergebnis zu erzielen. Auch wenn die andere Partei jeweils versucht, das bestmög-

VI

liche für sich selbst zu erreichen, so gibt es keine Garantien, die unabhängig von der
jeweiligen Instanz sind.

VII

Acknowledgments

First and foremost, I want to thank my advisor Martin Hoefer. I would like to thank
him for introducing me to several interesting research problems, e.g., the domain of
Bayesian persuasion, which inspired this thesis. At the same time, he always gave me
the freedom to explore my own interests. All throughout my time as PhD student, I
was able to count on his support and I knew that any questions I might have would
always be answered immediately.

Additionally, I would like to thank him for introducing me to our co-authors Rann
Smorodinsky, and, by extension, Ronen Gradwohl. The research visits both in Frank-
furt as well as Haifa and Tel Aviv always resulted in answers for research questions on
which I had been working and new ideas for questions to pursue. Working with Rann
and Ronen broadened my horizons, both in an academic as well as a personal capacity.
Thank you for the interesting discussions we had and the opportunity to experience
parts of Israel.

I am grateful for everyone that I have met on my journey, not least all the people
in our group. Thank you to Daniel, Giovanna, Jutta, Lisa, Marco, Paresh, Steffen, and
Tim. I truly enjoyed our interesting talks about current research problems or life in
general.

Finally, I want to express my gratitude toward my friends and family for always
being there for me. Most of all, I am deeply grateful to my parents, Andrea and
Matthias, for allowing me to become who I am and always respecting and supporting
my choices.

Contents

1 Introduction 1
1.1 Overview . 3

1.1.1 Bayesian Persuasion . 3
1.1.2 Delegated Search . 5

1.2 Related Work . 6
1.2.1 Bayesian Persuasion . 6
1.2.2 Delegated Search . 8

2 Preliminaries 10
2.1 Model . 10

2.1.1 Bayesian Persuasion . 10
2.1.2 Delegated Search . 11

3 Bayesian Persuasion 13
3.1 Symmetric Instances . 17

3.1.1 Characterization of Optimal Schemes 18
3.1.2 Efficient Computation of Optimal Schemes 24
3.1.3 Efficient Probability Oracles . 27

3.2 Independent Instances . 33
3.2.1 Constant-Factor Approximation 34
3.2.2 Improved Approximation and Tightness 43
3.2.3 Beyond ϱE-Optimality . 50

3.3 Guarantees for Limited Signals . 51
3.3.1 Symmetric Instances . 51
3.3.2 Independent Instances . 52

4 Online Bayesian Persuasion 55
4.1 Prophet Inequalities for Persuasion . 56

4.1.1 A Simple Scheme for the IID-Case 57
4.1.2 Beyond IID . 59
4.1.3 Satisfactory Status Quo . 62

4.2 Secretary Recommendation . 65
4.2.1 Cardinal Utility for R . 69
4.2.2 Ordinal Utility for R . 97

5 Online Delegated Search 118
5.1 General Case . 120
5.2 α-Bounded Sender Utility Values . 123

5.2.1 Sender-Aware Proposals . 123
5.2.2 Sender-Oblivious Proposals . 127

5.3 β-bounded Ratios of Utility Values . 136
5.3.1 Sender-Aware Proposals . 138

6 Conclusion 141
6.1 Bayesian Persuasion . 141

6.1.1 Offline Bayesian Persuasion . 141
6.1.2 Online Bayesian Persuasion . 142

6.2 Online Delegated Search . 144

Bibliography 146

1

Chapter 1

Introduction

In this thesis, we consider algorithmic aspects of strategic communication with com-
mitment power in varying scenarios. The characteristic property of this domain is the
interaction between two selfish, rational agents with individual objectives, where one of
the agents has an informational advantage. However, for the overall outcome, the other
agent plays a key role. We consider efficient algorithms that compute (near-)optimal
schemes of action for one of the agents, where we take the perspective of both agents
in the respective parts of the thesis.

For an example of strategic communication, consider a customer shopping for a
car. Clearly, the employees of the retailer know more about the different cars that are
offered. Hence, a sales representative might try and persuade the customer to pur-
chase a specific car, highlighting some of the qualities of that particular car while at
the same time concealing that a different, cheaper model meets the requirements of the
customer. In the long term, the satisfaction of the customers affects the reputation of
the retailer. Hence, it should be credible that the advice given by the sales represen-
tatives does indeed help potential customers in choosing a car that fits their specific
needs. Otherwise, the retailer would not sell any cars and thus would not be able to
make any profits.

Another example is the delegation of a task to an expert. Consider a client seeking
advice regarding investments. The client consults an expert to give a recommenda-
tion. The expert might receive a provision when selling certain products and will not
(only) have the client’s financial well-being in mind when offering potential investment
opportunities. Still, without the client’s investment, neither the expert nor the client
will receive any profit. Hence, if the client has some reservations towards some specific
financial products, e.g. investments in fossil fuels, and decides not to invest in any of
them, the expert’s search space is somewhat restricted. Oftentimes, investment oppor-
tunities appear on a short notice and require a quick reaction before they are gone for
good. We model this dynamic using an online framework, i.e., actions are observed
sequentially in a round-wise fashion and a decision has to be made immediately and
irrevocably.

The two examples above represent the two main models which we study in this the-
sis, namely Bayesian persuasion (first example) and delegated search (second example).
In both scenarios, there are two agents who interact with each other in order to increase
their respective utility. The final decision which determines the utility for both agents
is made by only one of the agents, who has to take one of n possible actions with a

2 1. Introduction

priori unknown utility values. For simplicity, the utility for each agent is expressed by
a non-negative real number. Clearly, the utility does not have to represent a (solely)
monetary value. In contrast to the agent making the final decision, the other agent is
able to observe information on the state of nature, i.e., the realizations of the actions
and their utility values. Hence, both agents are trying to leverage their own position
in a hope to maximize their individual outcome.

Another important factor in both examples is the existence of commitment power.
In the first example, the sales representatives need to commit to providing helpful
advice in order to keep a good reputation. In the second one, the client commits to
rejecting some investment products, thereby restricting the set of potential investments.
Without the power to commit, the communication problem becomes an instance of
Cheap Talk [30, 45, 46]. Although interesting in its own right, the discussion of cheap
talk is outside the scope of this thesis. Instead, we focus on Bayesian persuasion and
delegated search. In both scenarios, commitment power can strictly increase the utility
for the agent who holds it. It is clear that agents can weakly increase their expected
utility as they could commit not to use their commitment power. The following example
shows a scenario in which a strict increase in utility is possible due to commitment
power. It is adopted from [44].

Consider the following situation. During a pandemic, the government is concerned
with public health and considers shutting down public life. Clearly, this drastic step
should only be taken if it increases public health. An expert who is tasked with eval-
uating the situation is more concerned with the economic impact the pandemic might
have on businesses. If it is profitable for shops to stay open, the expert opposes a
shutdown, regardless of the implications for public health. If, on the other hand, keep-
ing the shops open negatively affects the economy, the expert favors a strict lockdown,
even if the effect of the pandemic on public life in general is negligible. Hence, there are
two different actions, imposing a lockdown (L) or keeping everything open (O). There
are four different states of nature, namely all combinations {H, H̄} × {B, B̄}. Here, H
means that public health is improved if a lockdown is imposed and B represents the
case that keeping businesses open is profitable. H̄ and B̄ represent the opposites of H
and B, respectively. The utilities for government and expert when action L is taken as
well as the probabilities for the states are given in the following table.

State (H,B) (H̄, B) (H, B̄) (H̄, B̄)
Probability 0.2 0.3 0.3 0.2
Utility Gov. 1 0 1 0
Utility Exp. 1 1 0 0

Table 1: Utility values for action L

For action O, the utilities are 1 − u, where u is the corresponding utility for action L.
Without commitment power, the only equilibrium is the so-called babbling equilibrium,
i.e., the expert not revealing any information and the government using only the prior
to come to a conclusion. This gives both an expected utility of 0.5. If, on the other
hand, the expert does have commitment power, the following scheme is strictly more
profitable for the expert while not decreasing the expected utility for the government.
Whenever both expert and government have aligned interests, the expert recommends
the optimal action for both. When interests are misaligned, the expert recommends

1.1. Overview 3

the better option for the government only with probability 1/6. Hence, the state is H
conditional on a recommendation for L with probability 1/2. Analogously, the state is
H̄ conditional on a recommendation for action O with probability 1/2. This implies
that the government wants to follow the recommendation, getting a utility of 0.5. This
leads to a utility of 0.9 for the expert.

For the case of delegated search, if the government has commitment power in the
same example, a restriction to the action that is profitable for the government always
ensures a utility of 1 for the government, thereby increasing the expected utility to 1.

Clearly, in real-world recommendation systems, the recommendations oftentimes
only reflect a small subset of possible actions. For example, recommendation systems
for restaurants often use a fixed number of stars, e.g. 5 stars. Most consumers take
this system as a binary recommendation. If the restaurant has more than x stars, it
is considered good, otherwise, one probably should not eat there. Clearly, this does
not differentiate between individual meals being offered or whether the chefs preparing
lunch are better or worse than those preparing dinner. To model this, we use restricted
signal spaces for some of the Bayesian persuasion instances we study.

Similar to the online model for delegated search, we also study an online version of
Bayesian persuasion to model dynamic recommendations. As an example, one could
think of social media feeds showing users new posts of friends or influencers. Whenever
a new post is published, the system has to decide on the fly whether to show it to a
user, trying to increase the likelihood of engagement to generate ad revenue. If the
user is not interested in the post and “rejects” it, a new piece of content has to be
offered immediately. Otherwise, if the user decides to view the piece, the system will
not recommend new content (at least for a short time).

1.1 Overview
After a review of related literature in the next section, we discuss some general prelim-
inaries in Chapter 2. Here, we define the basic models. In the next chapters we then go
into detail on the main contributions of this thesis. The content is further subdivided
into two main parts. In the first part, we discuss variants of Bayesian persuasion, in the
second part, we study delegated search. The main difference between these two parts
lies in who has the power to commit. In the first part on Bayesian persuasion, the
agent with informational advantage, the sender, commits to a signaling scheme. Such
a scheme specifies which signals can be sent, depending on the observed state of na-
ture as well as (possibly) some internal randomization. In the second part on delegated
search, the other agent, the receiver, is the one to commit to an acceptance scheme. An
acceptance scheme determines the reaction by the receiver upon seeing a proposal, i.e.,
whether to accept or reject the corresponding action. Note that acceptance schemes
can also include randomization. In both settings, we adopt the perspective of the
agent with commitment power and describe mechanisms that optimize their respective
utility.

1.1.1 Bayesian Persuasion
We start by discussing an offline case of Bayesian persuasion in Chapter 3, where we
focus on scenarios with limited signal spaces. Consider a scenario with a noisy com-

4 1. Introduction

munication channel between the two agents. To ensure that messages can still be
understood as intended, this requires some redundant information in the signals, effec-
tively limiting the number of bits that can be transferred without noise. We build on
hardness results by Dughmi, Kempe and Qiang [34] and Dughmi and Xu [36]. In [34],
the authors show that it is N P-hard to determine a signaling scheme which approx-
imates the optimal utility within a constant factor when the signal space is limited.
Even when the signal space is unconstrained, in the case of independently drawn types,
it is #P-hard to compute the optimal expected utility as shown in [36]. For instances
with types drawn IID, i.e., all drawn independently from a single distribution, the
authors provide a positive result and give a polynomially-sized linear program to com-
pute the optimal signaling scheme. We extend these results with our polynomial-time
algorithms which compute (near-)optimal signaling schemes under some conditions.

First, we focus on symmetric instances. We describe a polynomial-time algorithm
which determines an optimal signaling scheme for symmetric instances with a succinct
representation, generalizing the IID scenario. For each individual state of nature, the
algorithm utilizes the geometric interpretation of that state to determine the optimal
signals. This approach works even in the setting of constrained communication.

Secondly, we study independent instances with limited signal spaces of size k and
identify a condition which allows for constant-factor approximation algorithms in poly-
nomial time. We describe two algorithms, both of which consist of two steps. In step
one, a good subset S of k actions is identified and in step two, a good signaling scheme
for S is computed. We describe two different approaches for step one; the second step
remains unchanged for both algorithms. At first, we consider the classic greedy ap-
proach to submodular optimization which guarantees at least a (1−1/e)-approximation.
Secondly, we use a more elaborate knapsack-style FPTAS to compute the set S. This
way, for every constant ε > 0, the resulting set S guarantees a (1 − ε)-approximation
to the optimal set S∗ in polynomial time. In step two, we use a linear program to
determine a signaling scheme for the actions in S. Here, an additional factor of at
most 1 − 1/e is lost. We conclude the chapter on offline persuasion with performance
guarantees for instances with a limited signal space in comparison to their unlimited
counterparts.

In Chapter 4, we study Bayesian persuasion with an online aspect. The setup
in the first section is reminiscent of the classic prophet inequality problem [60, 61],
extended to the two-dimensional setting of persuasion. Types are sequentially drawn
from known distributions in a predetermined order and the problem becomes finding the
optimal stopping time. The first result is a positive one: for every set of distributions,
the optimal signaling scheme can be computed in polynomial time using backwards
induction. Unfortunately, there are instances in which even the optimal online scheme
cannot guarantee a positive approximation to the expected utility obtainable by a
prophet sender, i.e., using a signaling scheme which has access to all realizations. In
contrast to this negative result, we identify a condition which allows a simple constant-
factor approximation in Section 4.1.3.

A different online setting is studied in Section 4.2. Here, we consider a setting
with a random-order assumption similar to the classic secretary problem [38]. We
study this setting in 16 different variants with different levels of knowledge as well
as different objective functions for both agents. We distinguish a cardinal and an
ordinal objective for each agent. In the cardinal setting, the agents want to maximize

1.1. Overview 5

their respective expected utility. In the ordinal case, they only derive utility from
the best possible type and thus want to maximize their respective success probability.
As a basic setting and our benchmark, we assume that all types are known a priori,
and only the order in which they are observed is a priori unknown. Additionally, we
consider our secretary setting without prior knowledge of the types. Finally, we study
both settings in two variants, namely with and without disclosure of rejected actions.
In a scenario with disclosure, the receiver is notified about the type of the action that
was rejected in the previous round. Analogously, without disclosure, the receiver does
not know which types have already been rejected. For the cases in which the receiver
wants to optimize the cardinal utility, we use a geometric interpretation of the types
to describe our mechanisms. For all but the most challenging secretary variant with
disclosure, these mechanisms guarantee the sender a constant-factor approximation of
the utility obtainable in the benchmark setting. In many of the settings, we provide
asymptotically matching upper bounds. In contrast to constant-factor approximations
in all other scenarios, in the secretary setting with disclosure, there are instances in
which no signaling scheme can guarantee more than a Θ (1/n)-approximation.

For ordinal receiver utility, we describe mechanisms that achieve a constant-factor
approximation for all variants, and we are able to provide asymptotically matching up-
per bounds for all scenarios. Additionally, we can show that in the secretary scenario
without disclosure, the sender is able to asymptotically match the optimal utility of
the one-dimensional secretary scenario, i.e., the sender gets the best type with a prob-
ability of 1/e. In contrast to the case of cardinal receiver utility, even in the secretary
scenario with disclosure, the sender can achieve a constant factor of 1/4 using a simple
mechanism. The mechanism simply recommends the first action after a sample phase
which has a type that is better than all previously observed ones, either for the sender
or for the receiver.

1.1.2 Delegated Search

We discuss an extension of the delegated search model studied by Kleinberg and Klein-
berg [58] to online algorithms in Chapter 5. They used tools and results from the
realms of the online stopping problem and prophet inequalities to achieve constant-
factor approximation algorithms for the offline delegated search problem, specifically
for IID instances. The benchmark for these algorithms is the best type for the receiver
in hindsight, or, equivalently, the result of a one-dimensional search performed by the
receiver. We extend this model to online optimization. We study a sender who observes
the actions in an online fashion and has to decide on the spot whether to propose the
current one. Upon a proposal, the receiver learns the type of the proposed action and
accepts or rejects the action based on the pre-determined acceptance scheme.

Our first result is that the constant-factor approximation does not extend to this
online variant. Instead, we show a tight bound of Θ (1/n) using an IID instance. Since
this worst-case instance is using receiver values that are exponential in n, we consider
two different natural parameters for the problem. First, we assume that the sender’s
utility is bounded by α ≥ 1, i.e., the ratio of any pair of values for S is at most α. For
such instances, we describe an algorithm which computes an acceptance scheme that
guarantees the receiver an Ω

(︂
log log α

log α

)︂
-approximation with respect to the best value

in hindsight. Additionally, we study parameter β ≥ 1 which limits the ratios of the

6 1. Introduction

sender-values and the receiver-values of two types. Intuitively, if type θ is better than
another type θ′ for one of the agents, then θ is also better than θ′ for the other agent (up
to a factor β). For instances satisfying the condition for parameter β, our algorithm
determines an acceptance scheme guaranteeing an Ω

(︂
1

log β

)︂
-approximation. For both

settings, the upper bound applies, i.e., if α or β are in the order of nn, no acceptance
scheme can guarantee an approximation better than O

(︂
log log α

log α

)︂
or O

(︂
log log β

log β

)︂
, respec-

tively. Finally, we study both settings with limited informational gain for the receiver.
More formally, we assume that a proposal only reveals the receiver value. This means
that types with the same value for the receiver cannot be distinguished. For this lim-
ited information case, we can show an Ω

(︂
1√

α log α

)︂
-approximation for instances with

parameter α and an Ω (1/β)-approximation for instances with parameter β. In terms
of upper bounds, we give an instance which proves that no better approximation ratio
than O (1/√

α) or O (1/
√

β) exists.

1.2 Related Work
The study of strategic communication and information design has a rich history, espe-
cially in economics. In recent years, research focused on algorithmic aspects of strategic
communication has enjoyed increased attention.

1.2.1 Bayesian Persuasion
The study of Bayesian persuasion has originally been established in 1966 by Aumann
and Maschler [12], where they discussed repeated games with incomplete information
in the context of arms control negotiations during the Cold War. Interest in the topic
experienced a resurgence following the seminal work by Kamenica and Gentzkow [55]
in 2011. Since then, the concept was studied in a plethora of variants and for several
different applications. Overviews are given by [22, 54, 42, 24]. Exemplary applications
include the work on advertisement from the perspective of a seller [9, 27, 62, 32] or an
auctioneer [41, 17] as the sender, trying to maximize their revenue, in various settings.
Bergemann et al. [21] consider a different approach. In their paper, the seller is able
to set discriminatory prices depending on the buyers’ types. A central planner, who
optimizes some weighted sum of the seller’s and the buyers’ surplus, plays the role of
the sender and decides accordingly what information about the buyers to reveal.

Clearly, persuasion is prevalent in settings where no direct monetary consequences
follow. Alonso and Câmara [4] consider politicians trying to influence voters. Alizamir
et al. [3] studied how a public organization with early access to information on recurring
harmful events can efficiently inform members on the severity of upcoming crises in
order to solicit adequate responses. Similarly, in [31], this setting was studied on a
more local level, with a government weighing the implications on the economy as well
as public health when issuing warnings to the citizens.

Stackelberg security games with signaling were studied in [68, 74, 73], showing
that partial information disclosure can be beneficial for the defender, the leader of the
Stackelberg game.

While the previously discussed literature focuses on a static version of Bayesian
persuasion, there are also a lot of dynamic settings in the literature, which are loosely
related to our online Bayesian persuasion models. From the perspective of platforms

1.2. Related Work 7

offering recommendations (e.g., for restaurants), enough consumers need to be incen-
tivized to be in exploration mode, i.e., be willing to try venues that do not have a
sufficient number of evaluations. This scenario was studied as an instance of Bayesian
persuasion by [67]. Hence, this leads to some obfuscation of knowledge by the plat-
form. Similarly, the problem whether to join an unobservable queue for a service was
studied in [64, 8]. In [64], service is offered at a fixed price and potential customers are
sensitive to delays. Yet, the service provider wants to persuade as many customers as
possible to join the queue in order to maximize revenue. In contrast, a social service is
offered in the setting of [8]. Here, social welfare is to be maximized. Due to the limited
capacities, members of society who can afford an external option should sometimes be
discouraged from joining the queue.

Ely [39] studies the case of an evolving state of nature. Similar to our online setting,
the sender gets to observe the current state and signals the receiver afterwards, who
then takes an action according to the updated beliefs. While our model of online
persuasion might be cast in the framework of having a state that evolves over time, the
specific details of our online model would be very different from Ely’s approach using
Poisson transitions over states. In Au [11], the sender tries to convince the receiver
to take some action, which is the same throughout all rounds. Unlike the receiver’s
utility, which depends on the non-changing state of nature, the sender’s utility is only
dependent on the receiver taking the action. Rather than using a single signaling
scheme, the sender designs a signaling policy for each round. Renault et al. [69] study
a Bayesian persuasion instance where a financial advisor tries to persuade an investor to
repeatedly take a short-lived but risky investment. The advisor’s fee when the investor
takes the risky option is state-independent. The receiver’s payoff depends on the state
of nature which evolves according to an irreducible Markov chain. In [40], the notions
of suspense and surprise are studied, where suspense is the variance in the next update
of belief and surprise the distance of two consecutive beliefs. The sender uses signals
designed on these two objectives for a finite number of steps.

More loosely related is the recent work on online learning and Bayesian persuasion.
In the model of [25], the sender is not aware of the receiver’s type. Rather, the sender
uses online learning to dynamically improve the signaling scheme and minimize regret.
The model was subsequently extended to accommodate multiple receivers in [26]. In a
related paper, Zu et al. [76] study a scenario in which neither sender nor receiver know
the prior distribution. In each round, the sender observes the realized type. Using
this information, the sender tries to persuade the receiver and learn the underlying
distribution at the same time. A different perspective of regret minimization was
studied in [16], where the sender does not know the receiver’s utility. Here, the process
is not dynamic. Instead, there is only a single exchange and the regret is measured
against the utility the sender could have achieved with knowledge of the receiver’s
utility.

In the settings described above, the classic setup of a single sender and a single
receiver who interact with each other is not always applicable. An often-used setting
is that of a single sender who interacts with multiple receivers using public or private
signals. Clearly, private signals allow the sender more flexibility. Algorithmic aspects
of private persuasion have been studied in [9, 14]. The implications of public and
private signals in an otherwise unchanged setup were studied by Dughmi and Xu [37].
Recently, Babichenko et al. [15] further diversified this approach and studied multi-

8 1. Introduction

channel signaling, interpolating between entirely public and strictly private signals.
For further work on algorithmic aspects of Bayesian persuasion, the survey by

Dughmi [33] offers a good starting point. Bhaskar et al. [23] and Rubinstein [70] study
scenarios in which the receivers are players in games, proving various hardness results.
These results are complemented by efficient approximation algorithms for some sub-
classes of these scenarios in [72]. Dughmi et al. [35] describe (near-)optimal persuasion
schemes using Lagrangian duality. For some of their scenarios, they assume symmetry
of the actions that is similar to our symmetric instances.

Other important results for algorithmic Bayesian persuasion with strong ties to
this thesis include [36] and [34]. Dughmi and Xu [36] give a linear program that
optimally solves offline Bayesian persuasion. Unfortunately, this linear program has
an exponential size when the distribution over states of nature is not explicitly given,
e.g., when types are drawn independently from different distributions. For the IID
setting, they are able to leverage symmetry and reduce the size of the linear program
to a polynomial one. Further, they show #P-hardness of calculating the optimal
sender utility for independent actions. In the thesis, we broaden the class of symmetric
instances with optimal schemes that can be computed in polynomial time.

Dughmi et al. [34] showed another hardness result for independent instances, namely
N P-hardness to compute a scheme which approximates the optimal sender utility
to within a constant factor if the signal space is limited. Contrasting this negative
result, we identify a condition for independent instances which allows a constant-factor
approximation in polynomial time.

In [13], Aybas and Turkel study a similar setting with a limited signal space. They
show that the sender loses at most a factor 2/k of the expected utility when the number
of signals decreases from k to k − 1. For symmetric instances, we show that using
k instead of n signals, the sender can still extract a utility of at least k/n and this is
tight. Asymptotically, we are also able to show this result for independent instances
satisfying our condition.

Somewhat related is the paper of Le Treust and Tomala [63], who study a repeated
setting with limited communication through a noisy channel.

1.2.2 Delegated Search
The study of delegated search goes back to Holmström’s PhD thesis in 1977 [52] and
subsequent work of his [53]. Holmström studied the bi-level optimization problem
between the receiver (called the principal in Holmström’s model) and the sender (simply
called agent) on an interval. Here, the receiver is able to commit to a subset of the
search space, allowing the sender to freely optimize in this restricted space. Holmström
identified sufficient conditions for an optimal solution to exist. The impact of varying
degrees of (mis-)alignment between the receiver and sender was further studied in [65].
The same objective, i.e., alignment of receiver and sender, was further considered for
more general distributions and utility functions in [5].

Instead of strictly disallowing choices, costs for certain options were considered in
[6, 7]. Note that these costs do not have to be monetary. Instead, the receiver might
impose strict bureaucratic requirements for the choice of some options. Similarly,
Armstrong and Vickers [10] studied a model where the receiver is able to pay the
sender to choose a more receiver-favorable solution. Additionally, they consider a

1.2. Related Work 9

scenario in which the sender has to exert effort to even find an option. They describe
sufficient conditions for optimal solutions to exist in these models. A communication
model with evidence, i.e., verifiable facts intrinsic to the different states of nature, was
recently studied by Hoefer et al. [51]. Here, they compare the setting of delegation
with that of Bayesian persuasion as well as cheap talk, i.e., communication without
commitment power.

Most closely related to our online delegated search model is the paper by Kleinberg
and Kleinberg [58]. They study an offline IID scenario where n types are drawn from a
known distribution. As benchmark, they use the optimal receiver utility, i.e., the best
realization of the n draws for the receiver. Via a reduction of this offline delegation
problem to the online stopping problem of prophet inequalities, they are able to show
constant-factor approximations with respect to this benchmark for the receiver. We
extend this model to the purely online case, i.e., the sender can only react to the current
realization.

Another related paper which was inspired by [58] is the work of Bechtel and
Dughmi [19]. They combined delegated search with stochastic probing, which means
that instead of observing a fixed set of types, the sender needs to actively probe el-
ements to observe their types. The subset of elements that can be probed is subject
to some constraints. Although the sender is able to select multiple elements from the
probed ones, there is a second set of constraints which defines the feasible solutions.
For several downwards-closed constraint systems, they are able to provide constant-
factor approximation algorithms, also using tools and techniques borrowed from the
literature on prophet inequalities.

10

Chapter 2

Preliminaries

In this chapter, we discuss the main underlying models and introduce some general
notation.

2.1 Model
In all variants of strategic communication we consider in this thesis, the following
notations are used. There are two rational agents, the sender S and the receiver R.
Ultimately, R chooses one of n possible actions which we denote by the set [n] =
{1, . . . , n}. Each action i has some type θi. The vector of all n types (θ1, . . . , θn) is
called the state of nature θ. The state of nature is drawn from an abstract state space
Θ according to a distribution q. If action i ∈ [n] is chosen, the corresponding type θi

yields some nonnegative utility ϱ(θi) ≥ 0 to R and ξ(θi) ≥ 0 to S. The sender will have
an informational advantage over R with respect to the state of nature θ, depending
on the setting. S will try to leverage this advantage by sending a signal σ ∈ Σ to R.
We denote the size of the signal space by k = |Σ|.

Clearly, both agents strive to maximize their respective objective in expectation
with respect to the randomization of the input as well as the internal randomization
employed by S and R.

2.1.1 Bayesian Persuasion
Before learning the state of nature, S commits to a signaling scheme φ : Θ×Σ → [0, 1],
where φ(θ, σ) denotes the probability that signal σ is sent when the state of nature
is θ. For a scheme φ, we denote by uS(φ) and uR(φ) the expected utility for S and
R, respectively, when S uses φ to send recommendations and R best responds to
φ. For simplicity, we assume the following. If there are several actions maximizing
the receiver’s conditional expected utility, R will choose an action that maximizes the
sender’s expected utility among these actions. We call a scheme φ direct if each signal
σ ∈ Σ directly corresponds to a distinct action i ∈ [n]. A scheme φ is persuasive if
it is in the receiver’s interest to follow the recommendation, i.e., given a signal σ, the
conditional expected utility for R when following the recommendation is at least as high
as the conditional expected utility for R when deviating from the recommendation and
choosing a different action. A useful quantity when considering persuasiveness will be
the value ϱE := maxi∈[n]

∑︁
θ∈Θ qθ · ϱ(θi), which denotes the highest a priori expectation

2.1. Model 11

of any of the n actions. Obviously, each persuasive scheme needs to guarantee an
expected utility of at least ϱE to R.

We now show that it is without loss to only consider direct and persuasive schemes.

Lemma 2.1
There exists an optimal scheme with k signals that is direct and persuasive and uses
the signals to recommend k distinct actions.

Proof. We assume that both S and R act rationally. Hence, both want to maximize
their respective expected utility. Now, consider an arbitrary signaling scheme φ. Hav-
ing seen the signal σ, R is then able to perform a Bayesian update and choose an
action maximizing the expected utility conditional on having received σ. If there are
two signals σ, σ′ for which R chooses the same action, the sender can simply send σ
instead of σ′ to achieve the same outcome. Hence, we can assume that each of the
signals corresponds to a single distinct action, i.e., one of the actions maximizing the
receiver’s conditional expected utility. This means that S can simply recommend that
action.

Throughout this thesis, when discussing Bayesian persuasion, we adopt the per-
spective of S. Hence, all signaling schemes we describe maximize the sender’s objective
function. To avoid technicalities, we assume that R breaks ties in favor of S. Using
slight perturbations of the signaling probabilities, the sender can always sacrifice a neg-
ligible portion of expected utility to ensure that no ties exist and the better choice for S
is also (slightly) beneficial for R.1 Hence, even a receiver using a different tie-breaking
rule would choose in favor of S.

2.1.2 Delegated Search
In contrast to Bayesian persuasion, in delegated search R is the one with commitment
power. Before S observes the state of nature θ, R commits to a mechanism, consisting
of a set Σ of signals S may send as well as an allocation function specifying which action
R will choose when a certain signal is sent. Clearly, this requires R to know the possible
types a priori. This is the case in the model of delegated search we consider, where n
finite distributions Di = (Θi, qi) for i ∈ [n] are given and known a priori by R and S.
For simplicity, we assume that |Θi| = m and denote the types by {θi1, θi2, . . . , θim} for
all i ∈ n. Note that this assumption is without loss of generality as dummy types with
probability 0 can be added to a distribution with fewer than m types. The state of
nature θ then consists of the types of the n actions, where type θi of action i is drawn
independently from Di. For a shorter notation, we will sometimes write ϱij and ξij

instead of ϱ(θij) and ξ(θij) to denote the utility for R and S of type j from distribution
Di.

For the delegated search model studied by Kleinberg and Kleinberg [58], they show
that it is without loss of generality to consider only single proposal mechanisms, which
is a translation of direct signaling schemes as in Lemma 2.1 to the realm of delegated
search. In a single proposal mechanism, R restricts the set of types to a subset of

1The only special case where this procedure does not work is the case that all types provide no
utility for R. Regardless of the signaling scheme, the receiver’s expected utility will be 0. For this
special case, we assume for simplicity that R still breaks ties in favor of S.

12 2. Preliminaries

acceptable ones. S is then able to propose (only) one of the acceptable types which R
takes.

We extend this model in two ways. First and foremost, we consider an online
version of the delegated search problem. The type of action i is drawn in round i from
distribution Di. S has to decide immediately and irrevocably what kind of signal to
send upon observing the type, i.e., whether to propose the current action or not. To
capture the essence of the online model for the sender, we assume that the process ends
after the first proposal, regardless of the decision by the receiver.

Secondly, we extend the notion of single proposal mechanisms to allow for random-
ized acceptance schemes. Formally, we model this in the following way. R commits
to an acceptance scheme φ, which maps to each possible type a probability that R
accepts an action with that type. Hence, φ = (φij)i∈[n],j∈m with φij ∈ [0, 1]. Upon a
proposal by S, R learns the type of the proposed action and accepts or rejects that
action according to φ. This allows S to maximize the expected utility with respect
to the acceptance scheme. For R, this means that the goal is to restrict the sender’s
search space effectively. The acceptance scheme should be permissive enough such that
S eventually proposes an action but at the same time restrictive enough such that S
cannot propose any action with an arbitrary type which might be bad for R. If no
action is proposed or R rejects the proposed action, both R and S get a utility of 0.

For delegated search, all mechanisms we discuss are constructed with the receiver’s
utility in mind. Since R is the agent with commitment power, this is analogous to
the discussion of Bayesian persuasion. Hence, we further assume that S breaks ties in
favor of R in our delegated search settings. Similar to the Bayesian persuasion setting,
slightly perturbing the acceptance probabilities can always incentivize the sender to
choose in favor of R at a negligible cost to the overall expected utility for R.2

2Similar to the Bayesian persuasion setting, no perturbation of acceptance probabilities can incen-
tivize S to optimize for R when all (acceptable) values for S are 0. Again, we assume for simplicity
that S still breaks ties in favor of R in this special case.

13

Chapter 3

Bayesian Persuasion

This chapter is based mainly on [43]. It focuses on an offline Bayesian persuasion
setting. In such scenarios, the signaling process is the following.

1. Both S and R know the distribution over states of nature.

2. S commits to a signaling scheme φ.

3. R learns the scheme φ.

4. S learns the state of nature θ.

5. S sends a signal σ ∈ Σ according to φ to R.

6. R chooses an action.

As we have seen in Chapter 2, we can assume without loss of generality that the
signaling scheme φ that is used by S is a direct scheme. Hence, n signals suffice to
recommend any of the n actions. Later on in this chapter, we will also consider a more
restrictive signaling space with only k ≤ n possible signals.

Let us start by giving a simple introductory example with |Σ| ≥ n. Assume that
the set C of types of the n actions is known to both S and R but the permutation π
of the types is unknown. Let us further assume that π is drawn uniformly at random
from the set of permutations of [n].

Since each type has attached a nonnegative value for R and a nonnegative value
for S, we can interpret the state of nature as points on the two-dimensional plane as
shown in Figure 1 below. Any point consisting of the expected utility for S and R
is required to be inside the convex hull of the points. Since the values are known in
advance to R, by choosing an action uniformly at random, R can ensure an expected
utility of at least ϱE by ignoring the sender’s signal. Conversely, this means that
the sender’s signaling scheme φ needs to guarantee an expected utility of at least ϱE

for R – otherwise, R would not follow the signal. Hence, when using a persuasive
signaling scheme, the highest expected utility S can hope for lies on the intersection
of the vertical line ϱ = ϱE and the Pareto frontier. Graphically speaking, the Pareto
frontier of an action type set C can be assumed to start from a type with largest sender
utility with a horizontal line (possibly of length 0) with slope 0 and end at a type with
largest receiver utility with a vertical line (again, possibly of length 0) with slope −∞.
Figure 1 shows the Pareto frontier for a small example.

14 3. Bayesian Persuasion

1 2 3 4 5 6 7 8
ϱ 1 3 6 7 12 13 14 16
ξ 11 1 10 4 8 5 6 2

ϱE = 9

ϱ

ξ
×

×

×

×

×

×
×

×

ϱE

Figure 1: Geometric interpretation of the action type set C with the corresponding
Pareto frontier as dashed line. The dotted line at ϱE represents the expected utility
for R when drawing an action uniformly at random.

Our so-called Basic Pareto Mechanism (Algorithm 1) uses this geometric interpre-
tation of the state of nature to achieve the optimal expected utility for S. First, the
mechanism computes ϱE, the a priori expectation for R from any action, and identifies
cS , the type with the highest utility for S. If ϱcS ≥ ϱE, the mechanism will send a
signal for the action with type cS . This means that S gets the highest possible utility
and R enjoys an increased utility compared to the a priori expectation of ϱE. If, on
the other hand, ϱE > ϱcS , the mechanism identifies two types a and b such that both
types are on the line segment which intersects the line ϱ = ϱE. Then, using a convex
combination α · ϱa + (1 − α) · ϱb = ϱE, the mechanism determines the probability α to
send a signal for the action with type a. With probability 1 − α, the action with type
b is recommended.

In Figure 2, we illustrate the mechanism using the same action types as in Figure 1.

Proposition 3.1
The Basic Pareto Mechanism is an optimal persuasive mechanism in the random-order
scenario with known utility values. It can be computed in time polynomial in n.

Proof. We denote by ξ and ϱ the vectors of utilities for S and R, respectively.
Consider the Basic Pareto Mechanism and the event that R gets a signal σ = i to

take action i. Clearly, the distribution x over types of action i is the same regardless
of the value of i. Namely, type a has probability α, type b has probability 1 − α and
all other types have probability 0. Similarly, for each action i′ ̸= i, the distribution y
over types of action i′ is the same, namely probability 1

n−1 for all types k ∈ [n] \ {a, b},
probability 1−α

n−1 for type a, and probability α
n−1 for type b.

15

1 2 3 4 5 6 7 8
ϱ 1 3 6 7 12 13 14 16
ξ 8 1 10 4 8 5 6 2

ϱE = 9

ϱ

ξ
×
cS

×

×
a

×

×
b

×
×

×

ϱE

■
u

Figure 2: Visualization of the Basic Pareto Mechanism. Type 1 = cS has the best
utility for S, but provides less than ϱE to R. Types a = 3 and b = 5 are the types
identified in line 6 of the mechanism. Both a and b are recommended with a proba-
bility of 1/2 each. The point u = (uR, uS) denotes the expected utility for R and S,
respectively.

For R, the expected utility of following a recommendation of action i is xT ϱ ≥
ϱE by construction of the mechanism. By simply taking action 1 deterministically,
R gets an expected utility of ϱE and a signal σ = 1 with probability 1/n. Hence,
(x + (n − 1) · y)T ϱ = n · ϱE. Consequently, the expected utility of R for taking an
action i′ ̸= i when getting a signal σ = i is yT ϱ ≤ ϱE. Thus, the mechanism is
persuasive.

Now, consider any persuasive mechanism φ used by S. Let xt denote the probability
that (over random order and randomization in φ) a signal for type t is sent by S. We
use x = (x1, . . . , xn) to denote the vector. Persuasiveness of φ implies the following
constraints:

1. xT ϱ ≥ ϱE, since this expected utility can be achieved by R simply by taking
action 1 deterministically, and

2. ∥x∥1 = 1, since the mechanism can be considered direct without loss of generality
and will therefore send a single signal for exactly one action.

Hence, the distribution x resulting from the optimal persuasive mechanism is a feasible
solution to the following maximization problem for the expected sender utility

Max. xT ξ
s.t. xT ϱ ≥ ϱE

∥x∥1 = 1
xt ≥ 0 for all t = 1, . . . , n

(3.1)

16 3. Bayesian Persuasion

Algorithm 1: Basic Pareto Mechanism
Input: A set of type value pairs (ϱt, ξt)t∈[n] and the state of nature θ,

revealing permutation π from types to actions
1 Set ϱE = 1/n ·∑︁n

t=1 ϱt and set cS = arg maxt′∈arg maxt∈[n] ξt ϱt′ .
2 Let C = {(ϱt, ξt) | t ∈ [n]} and conv(C) be the convex hull of C.
3 Let PC(C) be the Pareto frontier of conv(C).
4 if ϱcS ≥ ϱE then Set a = b = cS .
5 else
6 Find types a, b ∈ [n] s.t. (θa, θb) is the segment of PC(C) that intersects

with line ϱ = ϱE.
// See Fig. 1 and 2 for an illustration; a = b possible

// Determine probability for type a:
7 if ϱa = ϱb then Set α = 1.
8 else if ϱa ̸= ϱb and ξa = ξb then Set α = 0.
9 else Set α = ϱE−ϱb

ϱa−ϱb
.

10 Draw x ∼ Unif[0, 1].
11 if x ≤ α then Set c = a.
12 else Set c = b.
13 Send signal π(c).

The distribution x computed by the Basic Pareto Mechanism clearly represents an
optimum solution to the above linear program. Hence, the mechanism is an optimal
persuasive mechanism.

To show that the Basic Pareto Mechanism requires a polynomial running time,
consider its individual steps. The first line requires a time linear in n to determine ϱE

and cS . For lines 3-6, observe the following: If the input is sorted by ascending values
of ϱ and secondly by descending values of ξ, the Pareto frontier can be computed in
time linear in n. Hence, the running time is upper bounded by O(n log n) for sorting
the n entries. Finding the types a and b is then a matter of traversing the Pareto
frontier with at most n nodes and determining the probability α. Finally, we assume
that drawing x ∼ Unif[0, 1] can be done in constant time. In total, this gives us a
running time of O(n log n) for the Basic Pareto Mechanism.

Clearly, the optimality of the Basic Pareto Mechanism hinges on the fact that both
S and R a priori know the types of the actions, only the exact order is unknown. In
the following, we want to discuss more general cases of this basic offline persuasion
setting.

Dughmi and Xu [36] gave the following formulation of the Bayesian persuasion
problem as a linear program.

max
∑︂
θ∈Θ

n∑︂
i=1

qθ · φ(θ, i) · ξ(θi)

s.t.
n∑︂

i=1
φ(θ, i) = 1 for θ ∈ Θ∑︂

θ∈Θ
qθ · φ(θ, i) · ϱ(θi) ≥

∑︂
θ∈Θ

qθ · φ(θ, i) · ϱ(θj) for i, j ∈ [n]

3.1. Symmetric Instances 17

φ(θ, i) ≥ 0 for θ ∈ Θ, i ∈ [n]

If all states of nature and the distribution over them are given explicitly, this linear
program has a size linear in terms of the input size. In many interesting scenarios,
this is not the case. Consider an example with n independent distributions with m
types for each action. Even if these distributions individually are given explicitly, this
means that there are mn possible states of nature in total. This results in the linear
program having an exponential size compared to the input, making this linear program
infeasible for solving the general Bayesian persuasion problem. If the action types are
distributed independently and identically, the resulting symmetry can be leveraged to
reduce the linear program to a polynomially sized one. This leads to the following
result.

Theorem 3.2 (Dughmi, Xu [36, Theorem 3.4])
Consider the Bayesian persuasion problem with n independently and identically dis-
tributed actions and m types, with parameters q ∈ ∆m, ξ ∈ Rm and ϱ ∈ Rm given
explicitly. An optimal and persuasive signaling scheme can be implemented in time
polynomial in m and n.

Additionally, in the same paper, they showed that computing the optimal expected
utility for S is #P-hard if action types are independently – but not identically –
distributed.

Theorem 3.3 (Dughmi, Xu [36, Theorem 4.1])
Consider the Bayesian persuasion problem with independent actions, with action-spe-
cific payoff distributions given explicitly. It is #P-hard to compute the optimal expected
sender utility.

These results hold when the signal space is unconstrained. This means that there
are at least n different signals, one for each of the n actions. For constrained signal
spaces, Dughmi et al. [34] gave the following hardness result.

Theorem 3.4 (Dughmi, Kempe, Qiang [34, Theorem 1.5])
For any constant γ > 0, it is N P-hard to construct a signaling scheme approximating
the maximum expected sender utility to within a factor γ, given an explicit representa-
tion of a Bayesian persuasion game and a bound k on the number of signals.

They show this hardness of approximation via a reduction from the gap version
of Independent Set, i.e., given a graph G with n vertices and a constant ε > 0,
deciding whether the largest independent set in G has size less than nε or more than
n1−ε [49].

We study the offline Bayesian persuasion problem further and consider instances
which permit computing (near-)optimal signaling schemes in polynomial time – even
when the communication complexity is limited and there are only k < n signals avail-
able to S, contrasting the result of Theorem 3.4.

3.1 Symmetric Instances
In this section, we discuss symmetric instances, i.e., instances for which the following
holds. For every state of nature θ, each permutation π(θ) has the same probability,

18 3. Bayesian Persuasion

i.e., qθ = qπ(θ). It is straightforward to see that the IID scenario or the random order
example at the beginning of this chapter satisfy this symmetry condition. Hence, for
some types of symmetric instances and with an unlimited signal space, we have already
seen a solution to this problem – namely in Theorem 3.2 as well as the Basic Pareto
Mechanism. In the following, we discuss some other classes of symmetric instances
which have a succinct representation but allow for an optimal scheme in polynomial
time. In particular, we study the prophet-secretary as well as the d-random-order
scenario. The name of the former stems from the literature on online stopping theory.
There are n independent distributions D1, . . . ,Dn which are known a priori, but their
order is drawn uniformly at random. In the latter scenario, there exist d ≥ 1 vectors
with n types each that are explicitly given. Additionally, a distribution D over these
d vectors is known. The state of nature is then drawn as follows. First, one of the
vectors is drawn according to distribution D. Then, the elements of the drawn vector
are permuted uniformly at random. One can easily see that both of these scenarios
satisfy our definition of symmetric instances.

In Section 3.1.1, we discuss a characterization of optimal schemes for symmetric
instances. In Section 3.1.2, we give our algorithm for finding an optimal scheme.
Finally, in Section 3.1.3, we show that our algorithm runs in time polynomial in the
input size for the classes of symmetric instances mentioned above. From the start, we
assume that |Σ| = k ≤ n.

3.1.1 Characterization of Optimal Schemes

In this section, we discuss our approach of finding an optimal scheme for symmetric
instances. Due to Lemma 2.1, we restrict our attention to direct and persuasive schemes
which recommend a set of k distinct actions. Note that this includes the case of k = n,
i.e., the case of unconstrained communication. Using the following lemma, we can
further refine the search space to schemes that recommend actions from the set [k].

Lemma 3.5
In symmetric instances, there is an optimal direct and persuasive scheme in which S
recommends only the actions from [k].

Proof. From Lemma 2.1, we know that it is without loss to only consider direct and
persuasive schemes that recommend k distinct actions. In a symmetric instance, we
now show that it is without loss to only consider the first k actions 1, . . . , k. Consider an
optimal direct and persuasive scheme φ. As it is direct, this scheme only recommends
actions from some set K ⊆ [n] with |K| = k. We can relabel the actions using a
permutation π such that the permutation of the set K under π is [k]. Using the
same permutation inside the scheme φ, we get a new scheme φ′ that only recommends
actions from [k]. Since all permutations of states of nature have the same probability
in symmetric instances, using φ′ yields the same conditional expectations for R. This
implies that, when S signals a recommendation for some i ∈ [k] using φ′, it is – in
expectation – at least as good for R to take action i as it is to take a different action
i′ ̸= i. Hence, φ′ is a direct and persuasive scheme which only recommends actions
from the set [k]. Additionally, the sender’s expectation is the same as in the original
scheme φ, i.e., uS(φ′) = uS(φ).

3.1. Symmetric Instances 19

ϱ

ξ

×

ϱE
ϱ

ξ

×
×

ϱE
ϱ

ξ

×

ϱE

Figure 3: Simple IID-Instance and the geometric interpretation of its possible states
of nature. There are 2 actions. The type of each action is drawn uniformly and
independently from the set {1, 2}, where type i ∈ {1, 2} provides a utility of i to both
R and S. The bold marker denotes both actions having the same type.

For every given realization θ of the state of nature, we encounter a similar situation
as before, when discussing the introductory example and introducing the Basic Pareto
Mechanism. Again, we can interpret the types as points in the two-dimensional plane.
In the introductory example above, the only difference between different states of nature
was in the permutation of the types – the geometric interpretation on the other hand
remained the same for all states of nature. The geometric interpretation only depends
on the utility values of the types and not their ordering. In an enriched instance with
more diverse type spaces, this is not the case, different states of nature will result in
different geometric interpretations. Additionally, while R will obviously still want to
achieve an expectation of at least ϱE, there exist instances with states of nature in
which all drawn types have a value below ϱE for R. Hence, a point-wise guarantee
of an expected utility of at least ϱE for every state of nature is impossible. As an
illustration, consider Figure 3 which shows the geometric interpretation for a very
simple IID-instance. Yet, as it turns out, the complete state of nature is not required
and – similar to the Basic Pareto Mechanism in the introductory example – we will be
able to utilize the graphical interpretation of the types of the first k actions.

The following lemma shows that for a symmetric instance with k signals it suffices
to only consider the types of the first k actions.

Lemma 3.6
In a symmetric instance with n actions and k signals, there is an optimal direct and
persuasive scheme which only considers the action types of the first k actions.

Proof. Consider an optimal scheme φ which considers all n actions but only recom-
mends actions from the set [k]. We can assume that φ exists due to Lemma 3.5. Now,
consider a scheme ψ which only has access to the first k actions. ψ utilizes φ in the
following way. First, ψ draws the types of the remaining actions k+ 1, . . . , n according
to the known distribution. Then, ψ runs φ with all n action types and forwards φ’s
signal to R. This way, ψ is persuasive and achieves the same expected utility using
only the first k action types as φ does using the complete state of nature with n actions.
Hence, there exists an optimal direct and persuasive scheme that only requires the first
k action types to give a recommendation.

Using Lemma 3.6, we concentrate on the actions from [k] and generalize the notation
we used for the Basic Pareto Mechanism. We use C to denote the realized set of action
types of the first k actions. We call such a set C a k-type set. Analogous to the
probability for a state of nature, we denote the probability that a k-type set C is

20 3. Bayesian Persuasion

ϱ

ξ

×

×

×

×

×

×
×

×

p(C)
⊠s

Figure 4: A k-type set C for which the point p(C) corresponds to slope s on the Pareto
frontier of C (dashed line).

realized by qC = Pr
[︂⋃︁

i∈[k]{θi} = C
]︂
. In the following, the schemes will only take the

first k actions as input.
For a k-type set C and a persuasive and direct scheme φ, consider the point

(E [uR(φ) | C] ,E [uS(φ) | C]) composed of the expected utilities for R and S condi-
tioned on the k-type set being C. We call this point the recommendation point for C
of φ.

More generally, we define the notion of a point collection. For each possible k-type
set C, a point collection P contains a point p(C) = (pR(C), pS(C)) inside the convex
hull of C. For a point collection P , we define the utilities of R and S by

uR(P) =
∑︂

C
qC · pR(C) and uS(P) =

∑︂
C
qC · pS(C) ,

respectively.
Consider a direct and persuasive scheme φ. The recommendation points for each

k-type set C of φ form a point collection. Observe that the utility for both S and R of
the point collection equals the respective utility of the scheme. However, it is easy to
imagine a point collection which does not correspond to a persuasive signaling scheme
so the converse does not hold.

Since we are interested in finding an optimal persuasive scheme using point collec-
tions, we consider point collections with the following properties. Firstly, the overall
utility for R should be at least ϱE, since this is a necessary condition for a scheme to
be persuasive. Secondly, the point for each typeset C should be on the Pareto frontier.
Otherwise, the utility for S could easily be improved – while keeping the utility for R
the same. We know from the description of the Pareto frontier at the beginning of this
chapter that for every slope s ∈ [0,−∞], there is a point on the Pareto frontier such
that a line with slope s lies tangent to the Pareto frontier at this point. We say that a
point corresponds to a slope s if a line with slope s lies tangent to the Pareto frontier
in the point. We extend this definition to action types θ. A type θ corresponds to a
slope s if a line with slope s lies tangent to the Pareto frontier in the point (ϱ(θ), ξ(θ)).
In Figure 4, we depict a k-type set C for which the point p(C) corresponds to a slope s
on the Pareto frontier of C. It turns out that a common slope for all points of a point
collection will be useful to identify the optimal persuasive scheme.

We formalize the two properties above using the following definition for point col-
lections.

3.1. Symmetric Instances 21

ϱ

ξ

×

×

×

×

×

×
×

×

p(C)
⊠

p′(C)
⊠

Figure 5: A k-type set C and a direct and persuasive scheme φ with recommendation
point p(C) = (E[uR(φ) | C],E[uS(φ) | C]). The expected utility for S can be improved
by moving p(C) vertically upwards to p′(C) on the Pareto frontier of C.

Definition 3.7
For s ≤ 0, a point collection P is s-Pareto if the following two conditions hold.

1. uR(P) ≥ ϱE.

2. For every k-type set C, p(C) is on the Pareto frontier of C and corresponds to
slope s.

Our first main result is a characterization of an optimal scheme via an s-Pareto
point collection.

Theorem 3.8
For every symmetric instance, there is an optimal scheme whose recommendation points
constitute a sender-optimal s-Pareto point collection, over all s ≤ 0.

We prove the theorem using the following three lemmas. First, we show that for
every persuasive scheme φ, there is an s-Pareto point collection P with uS(P) ≥ uS(φ).

Lemma 3.9
For every direct and persuasive scheme φ, there is an s-Pareto point collection P with
uS(P) ≥ uS(φ).

Proof. Let P(φ) be the point collection of recommendation points of some direct and
persuasive scheme φ. This means that P(φ) satisfies the first condition of being s-
Pareto, namely that the utility for R is at least ϱE.

To show the second condition, we adjust the recommendation points of P(φ) using
two steps that retain the utility for R but can only increase the utility for S.

First, we can increase the utility for S by moving recommendation points vertically
upwards to the Pareto frontier. This does not change the utility for R and thereby does
not affect the first condition, i.e., uR(P) ≥ ϱE, but can only increase the utility for S.
We denote the adjusted point collection by P ′. After this step, we have uS(P ′) ≥ uS(φ).
Figure 5 outlines this improvement for a k-type set C.

If the second condition for Definition 3.7 is not met, there must exist two k-type
sets C1 ̸= C2 such that there exists no common slope s that p(C1) and p(C2) correspond
to. Without loss of generality, we assume that qC1 > 0 and qC2 > 0, otherwise, (at least)
one of the states of nature does not occur and there is nothing to do. For convenience,
we use the short notation p1 = p(C1) = (ϱ1, ξ1) and p2 = p(C2) = (ϱ2, ξ2). For i = 1, 2,

22 3. Bayesian Persuasion

the point pi corresponds to an interval of slopes [s(r)
i , s

(l)
i], where s(r)

i is the slope of
the line segment to the right (i.e., with increasing value ϱ) of pi and s(l)

i is the slope of
the line segment to the left of the slope. If pi is not on an endpoint of a line segment,
s

(r)
i = s

(l)
i . If there is no common slope, we assume without loss of generality that

s
(l)
2 < s

(r)
1 . This means that all line segments adjacent to p2 are steeper than the ones

adjacent to p1 – recall that all slopes are non-positive. In the following, we will use
s1 = s

(r)
1 and s2 = s

(l)
2 .

We construct a new point collection P1 from P which has an increased utility for
S by adjusting only p1 and p2 such that they correspond to a common slope. For all
other k-type sets C ̸= C1, C2, we keep the point p(C). We update p1 and p2 to

p′
1 = (ϱ1 + δ · qC2 , ξ1 + δ · qC2 · s1) and p′

2 = (ϱ2 − δ · qC1 , ξ2 − δ · qC1 · s2)

using a sufficiently small δ > 0. Since s1 > s2 and s1 is the slope of the line segment to
the right of p1 and s2 the slope of the line segment to the left of p2, such a δ necessarily
exists and it is possible to move p1 and p2 along their respective Pareto frontiers on
the line segments with slopes s1 and s2, respectively. Graphically speaking, we move
p1 to the right (i.e., we increase ϱ) by δ · qC2 and move p2 to the left (i.e., we decrease
ϱ) by δ · qC1 .

Hence, the receiver utility does not change as

uR(P1) =
∑︂

C̸=C1,C2

qC · pR(C) + qC1 · (ϱ1 + δ · qC2) + qC2 · (ϱ2 − δ · qC1)

= uR(P) + qC1 · δ · qC2 − qC2 · δ · qC1 = uR(P) .

Since P satisfied uR(P) ≥ ϱE, so does P1 and the first condition of being s-Pareto is
fulfilled. Additionally, the utility for S grows to

uS(P1) =
∑︂

C≠C1,C2

qC · pS(C) + qC1 · (ξ1 + δ · qC2 · s1) + qC2 · (ξ2 − δ · qC1 · s2)

= uS(P) + qC1 · δ · qC2⏞ ⏟⏟ ⏞
>0

·(s1 − s2⏞ ⏟⏟ ⏞
>0

) > uS(P) ≥ uS(φ) ,

since 0 ≥ s1 > s2. Overall, P1 continues to satisfy the first condition of being s-Pareto
and improves the utility for the sender.

The value δ is chosen such that p′
1 and p′

2 both stay on the line segments with
slopes s1 and s2, respectively. Repeated application of this modification yields point
collections P2,P3, . . . until finally points p1 and p2 correspond to at least one common
slope. Whenever an endpoint of a line segment is reached, if this endpoint does not
correspond to a slope of the other point, the process can be continued. Moreover, we
can apply this modification repeatedly as long as there are two k-type sets C1 ̸= C2 with
points that have no common slope. Eventually, we reach an s-Pareto point collection
P with uS(P) ≥ uS(φ). Figure 6 outlines this procedure.

Consider any s-Pareto point collection P . Note that this implies that the point p(C)
for each k-type set C is on the Pareto frontier of C. We define a direct scheme φ∗ as
follows: For any k-type set C and its corresponding point p(C), φ∗ recommends one of
the (at most) two actions whose types compose the corresponding line segment of p(C)
on the Pareto frontier. The probabilities for each of the potential actions are such that

3.1. Symmetric Instances 23

ϱ

ξ

×

×

×
×

×
×

×

×

⊠
1
⊠
2
⊠
3

C1
ϱ

ξ

×
×

×
×

×
×

×

×
⊠
1

⊠
2⊠

3

C2

Figure 6: The Pareto frontiers of two different k-type sets C1 and C2 with qC1 = qC2 and
combined iterative improvement of the overall expected sender utility, such that the
points labeled with 3 in both sides correspond to a common slope. The points with the
same label correspond to a state in the improvement procedure. Whereas the absolute
difference δ in ϱ for both C1 and C2 is the same in every step, the overall change in ξ
is positive.

p(C) corresponds to the expected utilities for S and R, conditioned on the k-type set
being C. This directly implies that uS(φ∗) = uS(P) and uR(φ∗) = uR(P). Crucially,
the types are chosen independently of the actual action to which they are assigned
within the first k actions. We can see that this scheme has a symmetry property for
symmetric instances, i.e., the probability that a recommended action has a certain type
is independent of the number of the action.

We formalize this insight for general schemes.
A symmetric scheme φ (see also [36]) is direct and recommends with each signal a

distinct action in [k]. The conditional distribution over types (resulting from the prior
and φ) is the same for each recommended action, i.e., for every i, i′ ∈ [k] and every
θ ∈ Θi = Θi′

Pr[θi = θ | σ = i] = Pr[θi′ = θ | σ = i′] .

The conditional distribution over types is the same for each non-recommended action
in [k] and the same for each non-recommended action in [n] \ [k], no matter which
(other) action is recommended, i.e., for every ℓ, ℓ′ ∈ [k] and i, i′ ∈ [k] \ {ℓ, ℓ′}, and for
every ℓ, ℓ′ ∈ [k] and i, i′ ∈ [n] \ [k], we have

Pr[θi = θ | σ = ℓ] = Pr[θi′ = θ | σ = ℓ′]

for every θ ∈ Θi = Θi′ . Thus, a symmetric scheme gives rise to three distributions
over types: a distribution Dyes for any recommended action, a distribution Dno for any
non-recommended action in [k], and a distribution Dnever for any non-recommended
action in [n] \ [k]. For a symmetric scheme φ in a symmetric instance, we show that
uR(φ) ≥ ϱE is not only necessary but also sufficient for persuasiveness of φ.

Lemma 3.10
In symmetric instances, a symmetric scheme φ is persuasive if and only if uR(φ) ≥ ϱE.

Proof. We have already seen that a scheme φ which guarantees strictly less utility than
ϱE to R cannot be persuasive.

24 3. Bayesian Persuasion

Consider a symmetric scheme and the three resulting type distributions Dyes, Dno

and Dnever. We denote by ϱyes, ϱno and ϱnever the expectations of the utility of R for
the respective distributions. If φ is persuasive, then ϱyes = uR(φ) ≥ ϱE. Now, for
the reverse direction, assume that ϱyes ≥ ϱE. Clearly, since instance and scheme are
symmetric, it holds that ϱnever = ϱE. Again, due to symmetry, every action i ∈ [k]
gets recommended with probability 1/k. Hence, 1

k
· ϱyes + k−1

k
· ϱno = ϱE, and ϱyes ≥ ϱE

implies ϱno ≤ ϱE. It is not profitable for R to deviate from the recommended action.
Hence, if ϱyes ≥ ϱE, then φ is persuasive.

The symmetric scheme φ∗ based on an s-Pareto point collection satisfies the con-
straint in Lemma 3.10 by definition. As such, we obtain the following result, which
finishes the proof of Theorem 3.8.

Lemma 3.11
For every s-Pareto point collection P, there is a symmetric, direct, and persuasive
signaling scheme φ∗ with uS(φ∗) = uS(P).

Having completed the proof of Theorem 3.8, we know that there exists an optimal
scheme which corresponds to an s-Pareto point collection. As we discussed earlier,
there is a point corresponding to each s ∈ (−∞, 0] on the Pareto frontier of any k-type
set. Hence, we first have to identify a value s which corresponds to an optimal s-Pareto
point collection. We show how we are able to achieve this in the following section.

3.1.2 Efficient Computation of Optimal Schemes
In this section, we describe our Slope-Algorithm (Algorithm 2) for computing an op-
timal s-Pareto point collection. For a succinct description, we first use an assumption
under which the algorithm performs efficiently – in the next section, we describe how
this assumption can be satisfied for some subclasses of symmetric instances.

Our algorithm first restricts the set of possible values for s by identifying a polyno-
mially sized set S of meaningful candidates for slope-values s to enumerate. For every
pair of types a, b the algorithm determines the probability (denoted by pab) that their
line segment (denoted by ab) is contained in the Pareto frontier of the k-type set C.
For every pair with s > 0, one type Pareto dominates the other and the pair can be
discarded. Similarly, if pab = 0, the pair can be discarded. The critical step in the first
part of the algorithm is the computation of pab in line 4. For now, we assume that the
algorithm has oracle access to these quantities via a probability oracle. We will discuss
in Section 3.1.3 how to implement the probability oracle for some classes of symmetric
instances in polynomial time.

At the end of the first for-loop, the algorithm has collected in S = {s1, . . . , sℓ} all
meaningful slopes of non-empty segments that can appear on the Pareto frontier of
the possible k-type sets. In addition to the slopes in S, every Pareto frontier can be
assumed to contain all slopes from (−∞, 0]. An optimal scheme might not necessarily
correspond to a slope s ∈ S. If it does not, it must correspond to some slope r with
si < r < si+1 for some i ∈ [ℓ − 1]. Note that all slopes r ∈ (si, si+1) correspond to
the same point on the Pareto frontier. Hence, ri for i ∈ [ℓ+ 1] in line 8 can be chosen
arbitrarily.

Note that in some degenerate cases, the set S could be empty – i.e., if there is only
a single type on the Pareto frontier for every k-type set C. Then, we add an auxiliary

3.1. Symmetric Instances 25

Algorithm 2: Slope-Algorithm
Input: Symmetric instance with set Θ = Θ1 = . . . = Θn of action types and

distribution q
1 Set S = ∅ and L = ∅.
2 for every pair of types a, b ∈ Θ, a ̸= b do
3 Let s be the slope of ab and set pab = 0.
4 if s ≤ 0 then Determine the probability pab that ab is on the Pareto

frontier of k-type sets.
5 if pab > 0 then Update S = S ∪ {s}.
6 if S ̸= ∅ then
7 Sort the slopes of S such that s1 < s2 < . . . < sℓ.
8 Pick auxiliary slopes r1, . . . , rℓ+1 such that

r1 < s1 < r2 < s2 < . . . < sℓ < rℓ+1.
9 else

10 Set r1 = −1.
11 Update S = S ∪ {r1, . . . , rℓ+1}.
12 for every slope s ∈ S do
13 for every type c ∈ Θ do
14 Determine the probability p(s)

c that c is the unique point corresponding
to s on the Pareto frontier of k-type sets.

15 Solve the following lin. program to determine an s-Pareto point collection:

Max.
∑︂

c,d∈Θ,c̸=d

cd has slope s

pcd ·
(︂
α

(s)
cd · ξc +

(︂
1 − α

(s)
cd

)︂
· ξd

)︂
+
∑︂
c∈Θ

p(s)
c · ξc

s.t.
∑︂

c,d∈Θ,c̸=d

cd has slope s

pcd ·
(︂
α

(s)
cd · ϱc +

(︂
1 − α

(s)
cd

)︂
· ϱd

)︂
+
∑︂
c∈Θ

p(s)
c · ϱc ≥ ϱE

α
(s)
cd ∈ [0, 1] for all c, d ∈ Θ

(3.2)
if Linear program (3.2) has a feasible optimal solution α(s) then

16 Update L = L ∪ {(α(s), s)}.

17 return Best point collection in L with corresponding slope

slope of r1 = −1 so that the for-loop in line 12 does not fail. Again, the actual value
of r1 does not matter. The single type corresponds to all slope-values s ∈ (−∞, 0].

Now even if a slope s is attained by some segment ab in a k-type set C, it might
be that for some other k-type set C ′, slope s only corresponds to a single point on
the Pareto frontier of C ′. As such, the algorithm also determines in line 14 for every
s ∈ S the probability that a single type c ∈ Θ corresponds to s on the Pareto frontier
of C. This is the critical step in the second part of the algorithm. Again, we assume
that the algorithm has oracle access to these quantities via a probability oracle. We
defer the discussion on how to implement the probability oracles in polynomial time
to Section 3.1.3.

Finally, after having computed all probabilities the algorithm solves the linear pro-

26 3. Bayesian Persuasion

gram given in (3.2). For the linear program, we assume that s is the common slope
of the point collection. For all k-type sets C where a single point c corresponds to
slope s, obviously the point c is chosen. For all other k-type sets C, in which some
line segment cd with slope s is on the Pareto frontier, there is a choice to pick a point
from that segment. Using a convex combination of the points c and d, the point from
that segment can be represented by the variable α(s)

cd ∈ [0, 1]. The program optimizes
point locations to maximize the expected utility for S (in the objective function) and
to guarantee at least the average utility of ϱE for R. For a given slope s, (3.2) might be
infeasible. However, by enumerating all relevant common slopes, the algorithm sees at
least one feasible solution. It returns the best feasible solution for the linear program
along with the slope s∗.

Note that the output of the algorithm is sufficient for S to implement an optimal
persuasive scheme. S looks at the realized k-type set C, computes the Pareto frontier,
and looks for slope s∗. If s∗ is realized by a segment ab, S recommends the action
with type a with probability α(s∗)

ab and the action with type b with probability 1−α
(s∗)
ab .

If it is realized through a single type c, S recommends the corresponding action with
probability 1.

Proposition 3.12
Given an efficient algorithm to compute the probability oracle, the Slope-Algorithm com-
putes an optimal direct and persuasive scheme for symmetric instances in polynomial
time.

Proof. Correctness follows from the characterization in the last section and the obser-
vations above. We denote the maximal running time of the probability oracle by To and
the maximal time needed to solve the linear program (3.2) by TLP . Let m = |Θ| denote
the finite number of types. Then, finding the slopes can be done in time O(m2 · To).
Sorting the slopes requires time O(m2 · logm) as O(m2) slopes are identified in the
first for-loop. For the second for-loop, we iterate through the O(m2) slopes, includ-
ing the auxiliary ones. For each slope, we need at most m calls to the probability
oracle and solve a polynomially-sized linear program. Overall, the running time is
O(m3 · To +m2 · TLP +m2 · logm).

Note that the Basic Pareto Mechanism discussed above essentially is a special case
of the Slope-Algorithm for symmetric instances with only a single k-type set and k = n.
There exists only a single k-type set C so the set S will contain only the realized slopes
on the Pareto frontier after the first for-loop. The auxiliary slopes can only correspond
to individual types. Hence, checking the best possible value for S while ensuring that
uR ≥ ϱE is equivalent to finding the intersection of the line ϱ = ϱE and the Pareto
frontier.

Using geometric properties of the utility pairs in prophet-secretary and d-random-
order scenarios, we show how to design polynomial-time probability oracles in these
scenarios. We prove the following result in the next subsection.

Theorem 3.13
An optimal signaling scheme with k signals can be computed in polynomial time for the
prophet-secretary and the d-random-order scenarios.

3.1. Symmetric Instances 27

3.1.3 Efficient Probability Oracles
We subdivide the proof of Theorem 3.13 in the two different classes, namely prophet-
secretary and d-random-order.

Prophet-Secretary

We start with the prophet-secretary scenario in which there are n probability distribu-
tions 1, . . . , n over type spaces Θ1, . . . ,Θn. For distribution i, we denote the probability
that type θ ∈ Θi is drawn by qi

θ. Recall that in the classic prophet-secretary scenario, a
single type is drawn independently from each distribution and the drawn types are per-
muted uniformly at random. Note that it does not make a difference whether we first
draw the types from their respective distributions and then permute the drawn types
or first permute the distributions and then draw a type from each of them. Hence, we
use the latter order of operations, namely we first apply a uniform random permutation
on the distributions and then draw a single type independently from each of them.

For a simpler exposition, we use two assumptions. First, we assume that the n
types spaces are mutually disjoint. This is without loss of generality as different types
can have the same utility values for S and R. Secondly, we assume that types are in
general position, i.e., there are no more than two distinct types on any given straight
line. We discuss in the end of the section how to deal with scenarios which do not
satisfy this second assumption.

As input, there are n type spaces Θ1, . . . ,Θn together with the probabilities qi
θ for

all i ∈ [n] and θ ∈ Θi. Hence, the representation of the input has a size at least linear
in n, maxi∈[n] |Θi|, and maxi∈[n],θ∈Θi(− log qi

θ). In Algorithm 2, we use the following
two queries Q1 and Q2.

Q1 For a pair of types a and b, return the probability pab that ab is in the Pareto-
frontier of a k-type set C. This query is performed in line 4.

Q2 For a type c and a slope s, return the probability p(s)
c that c is the unique point

that corresponds to slope s on the Pareto-frontier of a k-type set C. This query is
performed in line 14.

We show how these two queries can be implemented in polynomial time for the
prophet-secretary scenario.

Query Q1

If a and b are from the same distribution i, we obviously have pab = 0, as they cannot
occur in the same k-type set or even state of nature. Otherwise, denote by ia and ib
the distributions of a and b, respectively. Now, consider all types c ∈ Θi for every
remaining distribution i ̸= ia, ib. If a type c which lies below the line through a and
b is in the same k-type set C, c cannot prevent that a and b form a line segment on
the Pareto frontier of C. Hence, we call c an allowed type. If that is not the case,
i.e., c lies above the line through a and b, the line segment between a and b cannot
be on the Pareto frontier of C. Hence, in this case, c cannot be an allowed type.
Figure 7 illustrates the notion of allowed types. To capture the probability of drawing
an allowed type from distribution i ̸= ia, ib, we denote by Θi

ab the set of all allowed

28 3. Bayesian Persuasion

ϱ

ξ
×
c

×
a ×

b
× d

Figure 7: In order for a and b to be on the Pareto frontier of a k-type set, allowed
types can only be in the gray area. If c is also in the k-type set, a could never be on
the Pareto frontier. Similarly, if d is in the k-type set with a and b, b could not be on
the Pareto frontier.

types of distribution i. Hence, the probability that an allowed type for types a and b
is drawn from distribution i ̸= ia, ib is qi

ab = ∑︁
c∈Θi

ab
qi

c. For each pair of types a, b, the
probabilities qi

ab can be determined in time linear in the total number of types.
The following three conditions have to be satisfied for ab to be on the Pareto frontier

of some k-type space.

1. Distributions ia and ib have to be permuted to the first k actions. This happens
with probability k

n
· k−1

n−1 .

2. Types a and b have to be drawn from their distributions, respectively. The
types are drawn with probability qia

a and qib
b , respectively. Hence, the combined

probability is qia
a · qib

b as these events are independent.

3. An allowed type must be drawn from every other distribution i ̸= ia, ib which is
permuted to the first k actions. For this condition, we consider every (k−2)-sized
subset A ⊆ [n] \ {ia, ib} and compute the probability that only allowed types are
drawn from every distribution in A. Since the types from different distributions
are drawn independently, this probability is

1(︂
n−2
k−2

)︂ ·
∑︂

A⊆[n]\{ia,ib}
|A|=k−2

∏︂
i∈A

qi
ab .

The probabilities for the first two conditions can obviously be computed in time poly-
nomial in the input size. For the third probability, we need to compute the sum of
products of all subsets of size k− 2 of n− 2 numbers. The following lemma shows how
this can done in time O(nk) using a dynamic program.

Lemma 3.14
Given a set A = {a1, . . . , an} of n numbers, the sum of products of all subsets of size
k can be computed in time O(nk).

Proof. We use a dynamic programming approach. Note that all subsets of size k can
be iterated in the following way: For index j = k to n, take the subsets of size k − 1
of {a1, . . . , aj−1} and add aj to these sets. This way, no subset is skipped or iterated
multiple times. Similarly, by multiplying aj with the sum of products of subsets of size

3.1. Symmetric Instances 29

k− 1 of {a1, . . . , aj−1}, we can compute the sum of products of subsets of size k which
have aj as element with the highest index.

We use a table T of size k × n. In T [i][j], we store the sum of products of subsets
of size i whose largest index is j. Clearly, for all j < i, we have T [i][j] = 0 since the set
{a1, . . . , aj} cannot have subsets of size i > j. The first row (i = 1) can easily be filled
out using T [1][j] = aj for j = 1, . . . , n. There is only a single subset of size 1 which
includes as element with largest index element aj. The subsequent rows can then be
filled successively using T [i][j] = aj ·∑︁j−1

ℓ=1 T [i− 1][ℓ] for all j ≥ i. Using an additional
variable to hold the current value of this summation means that this operation only
takes constant time. In total, to fill out each entry of T , a constant number of steps is
required. Hence, completely filling out T takes time O(nk). Finding the overall sum
is the matter of summing up ∑︁n

j=1 T [k][j].

Overall, the probability that ab is on the Pareto frontier of some k-type set is

pab = k

n
· k − 1
n− 1 · qia

a · qib
b · 1(︂

n−2
k−2

)︂ ·
∑︂

A⊆[n]\{ia,ib}
|A|=k−2

∏︂
i∈A

qi
ab

and we have shown how to compute this quantity in time polynomial in the input size
for the prophet-secretary scenario.

Query Q2

For the second query, we consider a single type c which is the unique point correspond-
ing to a slope s in a k-type set. We denote by ic and Θic the corresponding distribution
and type space, respectively. Obviously, no other type c′ ∈ Θic can be drawn into the
same k-type set. For every other distribution i ̸= ic, we again consider every type
d ∈ Θi. Similar to Q1, d is an allowed type if it lies below the line through c with slope
s. We denote by Θi

c the set of allowed types from distribution i and by qi
c = ∑︁

d∈Θi
c
qi

d

the probability to draw an allowed type from that distribution, analogous to the nota-
tion for Q1. Clearly, the set Θi

c as well as the probability qi
c can be determined in time

linear in the number of types.
Now, for c to be the unique point corresponding to a slope s on the Pareto frontier

of some k-type space, the following three conditions have to be satisfied.

1. Distribution ic has to be permuted to the first k actions. This occurs with a
probability of k/n.

2. Type c has to be drawn from distribution ic. This event has probability qi
c.

3. For every other distribution i ̸= ic permuted to the first k actions, an allowed
type must be drawn from that distribution. Again, we consider every (k−1)-sized
subset A ⊆ [n] \ {ic} and compute the probability that only allowed types are
drawn from every distribution in A. Since the types from different distributions
are drawn independently, this probability is

1(︂
n−1
k−1

)︂ ·
∑︂

A⊆{1,...,n}\{ic}
|A|=k−1

∏︂
i∈A

qi
c .

30 3. Bayesian Persuasion

ϱ

ξ

×
a

×
c

×
b

×
d

Figure 8: Illustration of allowed types when types are not in general position. For
segment ab to be on the Pareto frontier of some k-type set C, type c is allowed. If type
d on the other hand is also in C, this would make ad the longest segment on the Pareto
frontier with the corresponding slope in C, hence, type d is not an allowed type.

The computations for the first two conditions can clearly be completed in polynomial
time with respect to the input size. Additionally, using Lemma 3.14, we can compute
the probability for the third condition in time polynomial in the input size. Overall,
the probability that type c is the unique point corresponding to a slope s on the Pareto
frontier of some k-type set is

p(s)
c = k

n
· qic

c · 1(︂
n−1
k−1

)︂ ·
∑︂

A⊆{1,...,n}\{ic}
|A|=k−1

∏︂
i∈A

qi
c

and we have shown that this quantity can be computed in time polynomial in the input
size for the prophet-secretary scenario.

On general position

Throughout this section, we have assumed that types are in general position, i.e., there
are only two types on any straight line. Here, we describe in short how to handle cases
where this assumption is not satisfied. If more than two types are on a single line,
the events for them forming a line segment on the Pareto frontier with slope s are not
disjoint. We can remedy this using the following observation.

A segment is not counted multiple times if we only consider the longest possible line
segment on the Pareto frontier for any given slope. Hence, the following modification
has to be made for query Q1 when determining the set of allowed types Θi

ab: All types
of Θi that are on the segment ab are allowed since this does not prohibit ab to be
the longest possible line segment. All types of Θi that are on the straight line going
through a and b but not on ab must not be allowed. With this modification to compute
the probabilities for pab, general position of types is no longer required. An illustration
of this can be found in Figure 8.

This concludes the discussion of the prophet-secretary scenario. The following
proposition summarizes the result of this section.

Proposition 3.15
For the prophet-secretary scenario we can implement a probability oracle for the Slope-
Algorithm in polynomial time.

Together with Proposition 3.12, we obtain the main result of this section.

3.1. Symmetric Instances 31

Corollary 3.16
An optimal signaling scheme for the prophet-secretary scenario with k signals can be
computed in polynomial time.

d-Random-Order

The input for d-random-order instances consists of d type vectors θ1, . . . ,θd of size n
as well as a distribution D over these vectors. For i ∈ [d], the probability that vector
θi is drawn is denoted by qθi . The state of nature is generated as follows. First, a
vector θ is drawn according to distribution D and then a uniform random permutation
is applied to the elements of θ. Hence, the input size of a d-random-order instance
is at least linear in d · n and maxi∈[n](− log qθi). Again, we will have to show how
to implement queries Q1 and Q2 in time polynomial in these quantities to show that
a polynomial-time probability oracle exists. We use the same assumptions as in the
prophet-secretary scenario, i.e., we assume that all d·n types are distinct and that types
are in general position. As before, the first assumption is without loss of generality
since different types are allowed to have the same utility for S and R. The second
assumption is not without loss but allows for a simpler exposition. We will discuss
at the end of the section how to deal with instances that do not satisfy the second
assumption of types in general position.

Query Q1

Recall that Q1 is the query for the probability pab that ab is on the Pareto frontier of
a k-type set. Obviously, types a and b have to come from the same vector θi to be in
the same k-type set. Otherwise, the probability is pab = 0. The same holds for the
other types in the k-type set – all of them have to come from θi. Hence, we consider
each type c from θi with c ̸= a, b. We call c an allowed type if c lies below the line
going through the types a and b. Otherwise, ab could not be on the Pareto frontier of
a k-type set which includes a, b, and c. Figure 7 illustrates this. We denote the set of
allowed types for types a and b from vector θi by Ai

ab. To compute this set, only the
types in the vector θi have to be considered. Checking whether some type c is allowed
for types a and b can be done in constant time. Hence, the set can be computed in
time linear in n.

We again identify 3 conditions for ab to be on the Pareto frontier.

1. Vector θi has to be drawn from D. This event has probability qθi .

2. Types a and b have to be permuted to the first k actions, which has a probability
of k

n
· k−1

n−1 .

3. Only allowed types can be permuted to the remaining k − 2 slots of the k-type
set. The probability for this is

(︂
|Ai

ab|
k−2

)︂/︃(︂
n−2
k−2

)︂
, where we assume that

(︂
|Ai

ab|
k−2

)︂
= 0

if |Ai
ab| < k − 2.

All these computations can be performed in constant time once Ai
ab is determined –

which can be done in time linear in n. The overall probability that ab is on the Pareto

32 3. Bayesian Persuasion

frontier of a k-type set is

pab = qθi · k
n

· k − 1
n− 1 · 1(︂

n−2
k−2

)︂ ·
(︄

|Ai
ab|

k − 2

)︄
.

This can clearly be computed in time polynomial in the size of the input representation
of a d-random-order instance.

Query Q2

For query Q2, the oracle has to determine the probability that a type c is the unique
point on the Pareto frontier of a k-type set which corresponds to a slope s. Hence, let
c be a type from some vector θi. Again, we use the notion of allowed types where a
type d from θi is allowed if it lies below the line through c with slope s. We denote by
Ai

c the set of allowed types from vector θi for type c. Since only the single vector θi

has to be considered, Ai
c can be computed in time linear in n.

The 3 conditions for c to be the unique point corresponding to a slope s on the
Pareto frontier are the following.

1. Vector θi has to be drawn from D. This event has probability qθi .

2. Type c has to be permuted to the first k actions, which happens with probability
k/n.

3. Only allowed types can be permuted to the remaining k − 1 slots of the k-type
set. The probability for this is

(︂
|Ai

c|
k−1

)︂/︃(︂
n−1
k−1

)︂
, where we assume that

(︂
|Ai

c|
k−1

)︂
= 0 if

|Ai
c| < k − 1.

Again, all quantities can be computed in time polynomial in the representation size of
the input. Overall, the probability that a type c is the unique point corresponding to
a slope s on the Pareto frontier of a k-type set is

p(s)
c = qθi · k

n
· 1(︂

n−1
k−1

)︂ ·
(︄

|Ai
c|

k − 1

)︄
.

On General Position

We can use the same procedure as in the previous section on prophet-secretary instances
to remove the assumption of general position of types, namely, to only consider the
longest line segment with a particular slope s. Hence, we are able to state the following
proposition summarizing the result of this section.

Proposition 3.17
For the d-random-order scenario we can implement a probability oracle for the Slope-
Algorithm in polynomial time.

Together with Proposition 3.12, we obtain the main result of this section.

Corollary 3.18
An optimal signaling scheme for the d-random-order scenario with k signals can be
computed in polynomial time.

3.2. Independent Instances 33

Distribution D1 D2 D3

Type θ11 θ12 θ21 θ22 θ31 θ32 θ33
Value-Pair (ϱ, ξ) (6,5) (4,9) (5,1) (5,6) (7,7) (4,0) (2,5)

Probability 0.3 0.7 0.8 0.2 0.4 0.3 0.3

Table 2: Example of a ϱE-optimal instance. Action 2 has a deterministic utility of 5
for R, which is the highest a priori expected utility for R among the actions.

This concludes the section on symmetric instances. We have shown for two settings,
the prophet-secretary as well as the d-random-order scenarios, how to implement an
optimal signaling scheme in polynomial time. The algorithm we used offers a framework
for other symmetric scenarios which allow for efficient probability oracles.

3.2 Independent Instances
In this section, we focus on actions with independent distributions, i.e., each action
i ∈ [n] has a fixed distribution Di over a type space Θi with corresponding probabilities
qi from which its type is drawn. We again study a general scenario with k ≤ n
signals. Even for the less general case of n signals for n actions, Dughmi and Xu [36]
(cf. Theorem 3.3) showed that computing the optimal expected sender utility is #P-
hard. Another hardness result for general Bayesian persuasion problems with a limited
number of signals was given by Dughmi, Kempe and Qiang [34] (cf. Theorem 3.4).
Contrasting these negative results, we study a subclass of independent instances which
satisfy the following condition we call ϱE-optimality. We describe a persuasive scheme
which extracts a constant-factor approximation for k signals in polynomial time for
ϱE-optimal instances. An instance is ϱE-optimal if there exists an optimal signaling
scheme such that each σ ∈ Σ guarantees R an expected utility of at least ϱE conditional
on the signal being σ. Recall that ϱE denotes the highest a priori expected utility for
R of any of the n actions.

As an example class of ϱE-optimal instances, consider the following. There is an
action i which has a deterministic value of ϱE for R among all types. Note that this
does not mean that only a deterministic type exists for action i, the value for the sender
could very well be randomized. This means that R can always guarantee a value of
ϱE by choosing action i regardless of the signal. Hence, the scheme needs to ensure a
conditional expectation of at least ϱE for R to be persuasive. A short example for an
ϱE-optimal instance is given in Table 2 below.

For a different example, consider symmetric instances. In the previous section,
we have seen that there always exists an optimal symmetric scheme for symmetric
instances. Such a scheme ensures that every signal provides an expected utility for R
of at least ϱE. Hence, all symmetric instances satisfy ϱE-optimality.

Our scheme proceeds as follows. First, an action with the highest a priori expecta-
tion for R is identified which essentially serves as a fallback or an outside option for R.
If there are several such actions, choose the one which has the highest expected utility
for S among those with the highest expectation for R. Without loss of generality, we
relabel the actions such that this is action n. Then, the scheme identifies a set S of
k − 1 other actions and computes the recommendation probabilities for the actions
from S ∪ {n}. These steps are done separately and we discuss them in more detail

34 3. Bayesian Persuasion

below.

1. Choose a set S of k − 1, and

2. compute the recommendation probabilities for the actions from S ∪ {n}.

We give two variants for the first step. We first use a classic greedy approach to find
a suitable set S in Section 3.2.1 in our Independent Scheme φIS. The approximation
guarantee of φIS is given in the following Theorem 3.19.

Theorem 3.19
The Independent Scheme φIS is a direct and persuasive scheme for ϱE-optimal inde-
pendent instances with k signals. It can be implemented in time polynomial in the input
size. For every k ≥ 2,

uS(φIS) ≥
(︄

1 −
(︃

1 − 1
k

)︃k
)︄

·
(︄

1 −
(︃

1 − 1
k

)︃k−1)︄
· uS(φ∗) .

This scheme already achieves a constant approximation ratio of at least 3/8 = 0.375
for k = 2. For k → ∞, the approximation ratio improves to (1 − 1/e)2 ≈ 0.3996. Still,
we can improve this guarantee, especially for large values of k. In Section 3.2.2, we
discuss the Improved Independent Scheme φIIS which utilizes an FPTAS to identify
the set S. The approximation ratio for φIIS is given in Theorem 3.20.

Theorem 3.20
The Improved Independent Scheme φIIS is a direct and persuasive scheme for ϱE-
optimal independent instances with k signals. It can be implemented in time polynomial
in the input size. For every k ≥ 2 and every constant ε > 0

uS(φIIS) ≥
(︄

1 −
(︃

1 − 1
k

)︃k
)︄

· (1 − ε) ·
(︃

1 − 1
k

)︃
· uS(φ∗) .

For k = 2, φIS and φIIS provide (up to the factor (1 − ε)) the same approximation
guarantees. For k → ∞, φIIS achieves an approximation ratio of (1 − 1/e) · (1 − ε)
compared to the ratio of (1−1/e)2 of φIS. Additionally, we show that the approximation
guarantee for this approach is asymptotically tight. Hence, a further improvement of
the approximation ratio requires different techniques.

Finally, in Section 3.2.3, we discuss general independent instances and the limita-
tions of our scheme concerning instances that do not satisfy ϱE-optimality.

3.2.1 Constant-Factor Approximation
In this section, we describe the Independent Scheme φIS and prove Theorem 3.19. Let
m = maxi∈[n] |Θi|. For ease of exposition, we assume that m = |Θi| for all i ∈ [n]. This
assumption is without loss of generality. For each i ∈ [n] with |Θi| < m, we can add
a sufficient number of dummy types θi with qiθi

= 0 to Θi to ensure |Θi| = m. Hence,
we are able to use [m] to enumerate the possible types of each action i. To shorten
notation, we use ϱij and ξij to denote the utility for R and S of action i with type j.

3.2. Independent Instances 35

To identify a good subset S ⊆ [n− 1] for the first step of the scheme, we first consider
the following parameterized linear programs for each individual action.

gi(z) = Max.
m∑︂

j=1
xij · ξij

s.t.
m∑︂

j=1
xij ≤ z

m∑︂
j=1

xij · ϱij ≥ ϱE ·
m∑︂

j=1
xij

xij ∈ [0, qij] ∀j ∈ [m]

(3.3)

These linear programs have the following interpretation: For each action i ∈ [n], the
optimization problem (3.3) maximizes the expected utility for S conditional on the
overall probability mass of (at most) z on action i. For each j ∈ [m], the variable xij

represents the probability mass for type j of action i. Hence, the first constraint limits
the overall probability mass on action i to at most z. The second constraint ensures
that the conditional expectation for R based on a signal for action i is at least ϱE.
Clearly, the probability mass xij should be non-negative and at most the probability
qij that type j is drawn. This is enforced by the last constraint.

We define the following set function f : 2[n−1] → R using these linear programs
(3.3) for i ∈ S ∪ {n}, limiting the probability mass on action i to zi and ∑︁i∈S∪{n} zi to
at most 1.

f(S) = max

⎧⎨⎩ ∑︂
i∈S∪{n}

gi(zi)

⃓⃓⃓⃓
⃓⃓ ∑︂

i∈S∪{n}
zi ≤ 1, zi ≥ 0 ∀i ∈ S ∪ {n}

⎫⎬⎭ (3.4)

Consider a direct and persuasive scheme φS∪{n} for ϱE-optimal instances that recom-
mends only actions from the set S ∪ {n}. We denote the ex-post recommendation
probabilities of φS∪{n} for type j from action i by by xij. Clearly, setting zi = ∑︁m

j=1 xij

for all i ∈ S∪{n} means that all constraints in (3.3) and (3.4) are satisfied for the prob-
abilities xij stemming from φS∪{n}. Hence, the ex-post probabilities x∗

ij of an optimal
scheme φ∗

S∪{n} give rise to a feasible solution for every linear program (3.3). Further,
setting zi = ∑︁m

j=1 x
∗
ij is feasible for (3.4). Hence, for every subset S ⊆ [n − 1], f(S) is

an upper bound on the optimal sender utility of a scheme recommending the actions
from the set S ∪ {n}, i.e.,

f(S) ≥ uS
(︂
φ∗

S∪{n}

)︂
. (3.5)

Using the set function f , we are now able to choose a good set S ⊆ [n− 1] of k− 1
actions to complete the first step of our Independent Scheme φIS using the algorithm
ActionsGreedy (Algorithm 3). It starts out with an empty set S = ∅ and then greedily
adds actions to S, maximizing the utility gain in every individual step, until |S| = k−1.

Having collected k−1 actions in the set S, our scheme φIS then uses ComputeSignal
(Algorithm 4) to compute the signal based on the realized types of the actions in S∪{n}.

We begin the analysis of the scheme’s performance by observing that the procedure
ActionsGreedy employs the classic greedy algorithm for maximization of a submodular
function. The following lemma shows that indeed, f is a submodular function.

Lemma 3.21
The function f is non-negative, non-decreasing, and submodular.

36 3. Bayesian Persuasion

Algorithm 3: ActionsGreedy
Input: Distributions D1 = (Θ1, q1),D2 = (Θ2, q2), . . . ,Dn = (Θn, qn), s.t.∑︁

j qn,j · ϱnj = ϱE and ∑︁j qn,j · ξnj = maxi∈[n] :
∑︁

j
qi,j ·ϱij=ϱE

∑︁
j qi,j · ξij,

parameter 2 ≤ k ≤ n
1 Set S = ∅.
2 for ℓ = 1, . . . , k − 1 do
3 Let i be an action maximizing f(S ∪ {i}) − f(S).
4 Set S = S ∪ {i}.
5 return S

Algorithm 4: ComputeSignal
Input: Distributions D1 = (Θ1, q1),D2 = (Θ2, q2), . . . ,Dn = (Θn, qn), s.t.∑︁

j qn,j · ϱnj = ϱE and ∑︁j qn,j · ξnj = maxi∈[n] :
∑︁

j
qi,j ·ϱij=ϱE

∑︁
j qi,j · ξij,

parameter 2 ≤ k ≤ n, set S ⊆ [n− 1] with |S| = k − 1
1 for i ∈ S ∪ {n}, let z∗

i and x∗
i be the values of the optimal solution in f(S).

2 Order actions in S ∪ {n} s.t. gi1(z∗
i1)

z∗
i1

≥ . . . ≥
gik(z∗

ik
)

z∗
ik

, where we assume 0
0 = 0.

3 for ℓ = 1, . . . , k do
4 Observe type j of action iℓ.
5 Draw x ∼ Unif[0,1].
6 if x ≤

x∗
iℓ,j

qiℓ,j
then return signal for action iℓ

7 return signal for action n

Before we give the proof of Lemma 3.21, we give a short intuition on the functions
gi for i ∈ [n]. We illustrate gi as defined in (3.3) in Figure 9. For each i ∈ [n], gi is
a non-negative, piece-wise linear and concave function. As such, the slopes of the line
segments of gi have a decreasing non-negative value and an increase in zi only yields
diminishing returns for gi. Hence, we employ a waterfilling approach to maximize f(S),
i.e., when increasing the total mass ∑︁i∈S∪{n} zi, we maintain a common slope s of all
functions gi at their respective points zi for all i ∈ S ∪ {n}. Note that, similar to the
discussion of slopes on the Pareto frontier in the previous section, a breakpoint between
different line segments of gi corresponds to all intermediate slopes. Hence, zi will not
be increased evenly among all i ∈ S ∪ {n}. Rather, to guarantee consistent results
without using some arbitrary tie-breaking rule, our approach is to evenly distribute
excess mass among all i ∈ S∪{n} for which zi can be increased while keeping the same
common slope.

Proof of Lemma 3.21. We have already seen that every gi is non-negative. Hence, f
can only be non-negative. Further, f is clearly non-decreasing. For a subset S ⊊ [n−1]
and j /∈ S, consider the optimal allocation z(S)

i for f(S). Note that zj = 0 and zi = z
(S)
i

for all i ∈ S ∪ {n} is a feasible allocation for f(S ∪ {j}) and f(S ∪ {j}) ≥ f(S) follows
directly.

Without loss of generality, an optimal assignment of zi for i ∈ S ∪ {n} distributes

3.2. Independent Instances 37

zi

gi(zi)

Figure 9: Schematic of a function gi (cf. (3.3)) used for submodular function f in (3.4).

a unit of mass to the functions gi. This can be reached using the waterfilling approach
we described above, i.e., always keeping a common slope among all gi for i ∈ S ∪ {n},
increase zi until ∑︁i∈S∪{n} zi = 1. The slopes of the functions gi are decreasing for
increasing values of zi. Hence, when going from S to S ∪ {j}, the value of the common
slope cannot decrease and the zi have to be non-increasing.

To show that f is indeed submodular, consider S ⊆ T ⊊ [n − 1] and j /∈ T ,
j ∈ [n− 1]. Let z(S)

j and z(T)
j denote the optimal choices in f(S ∪ {j}) and f(T ∪ {j}),

respectively. Since zi are non-increasing, we have z(S)
j ≥ z

(T)
j . We use the following

auxiliary function f ′ to bound the marginal increase in f , where f ′ has the additional
constraint that zj ≤ z

(T)
j , i.e.,

f ′(Q) = max

⎧⎨⎩ ∑︂
i∈Q∪{n}

gi(zi)

⃓⃓⃓⃓
⃓⃓ ∑︂

i∈Q∪{n}
zi ≤ 1, zi ≥ 0 ∀i ∈ Q ∪ {n}, and zj ≤ z

(T)
j

⎫⎬⎭ .

This means that f ′(S∪{j}) ≤ f(S∪{j}), since a non-negative mass of z(S)
j −z(T)

j needs
to be redistributed from j to a subset of S ∪ {n} which cannot have higher slopes.

Now, when comparing f(S) to f ′(S ∪ {j}) and f(T) to f(T ∪ {j}), in both cases
a mass of z(T)

j is assigned to gj, leading to contribution of gj

(︂
z

(T)
j

)︂
from j to both

f ′(S ∪ {j}) and f(T ∪ {j}). Since the overall mass is 1, this reassignment of mass
z

(T)
j to gj means that the same mass z(T)

j is removed from the remaining functions.
We denote by f̃(Q) another auxiliary function which only distributes a total mass of
1 − z

(T)
j to Q ∪ {n}, i.e.,

f̃(Q) = max

⎧⎨⎩ ∑︂
i∈Q∪{n}

gi(zi)

⃓⃓⃓⃓
⃓⃓ ∑︂

i∈Q∪{n}
zi ≤ 1 − z

(T)
j , zi ≥ 0 ∀i ∈ Q ∪ {n}

⎫⎬⎭ .

Thus, we have gj

(︂
z

(T)
j

)︂
= f(T ∪ {j}) − f̃(T) and gj

(︂
z

(T)
j

)︂
= f ′(S ∪ {j}) − f̃(S).

Additionally, we have f(S) − f̃(S) ≤ f(T) − f̃(T). This holds because the final mass
of z(T)

j contributes at most as much value to f(S) as it does to f(T) since the common
slope value for the set S cannot be higher than the one for the set T . Combining these
(in)equalities, we get

f(T ∪ {j}) − f(T) ≤ f ′(S ∪ {j}) − f(S) ≤ f(S ∪ {j}) − f(S) ,

where the second inequality comes from the fact that f ′(S ∪ {j}) ≤ f(S ∪ {j}). This
concludes the proof of submodularity for the function f . Lemma 3.21

38 3. Bayesian Persuasion

The following lemma compares the value f(S) for the subset S with size k − 1
computed by ActionsGreedy to the expected utility for the sender from the optimal
scheme φ∗. Due to Lemma 2.1 we can assume that the optimal scheme φ∗ directly
recommends a set of actions of size k. In the following, we denote this set by K.

Lemma 3.22
For every k ≥ 2, ActionsGreedy computes a subset S of k − 1 actions such that

f(S) ≥
(︃

1 −
(︂
1 − 1

k

)︂k−1
)︃

· uS(φ∗) .

For the proof of Lemma 3.22, we use the following result from submodular opti-
mization by Krause and Golovin [59] which itself is based on the analysis of submodular
optimization by Nemhauser, Wolsey, and Fisher [66].

Lemma 3.23 ([59, Theorem 3.5])
Fix a nonnegative monotone submodular function f : 2[n] → R+ and let {Si}i≥0 be the
greedily selected sets defined by

S0 = ∅, Si+1 = Si ∪
{︄

arg max
j∈[n]

f(Si ∪ {j}) − f(Si)
}︄

for i ≥ 0 .

Then for all positive integers t and ℓ,

f(Sℓ) ≥
(︄

1 −
(︃

1 − 1
t

)︃ℓ
)︄

max
S : |S| ≤ t

f(S) .

Proof of Lemma 3.22. ActionsGreedy is a standard greedy algorithm for submodular
maximization. It computes a set S ⊆ [n − 1] of k − 1 actions. Our scheme will then
recommend an action from the action set S ∪ {n}. Note that, in contrast to the set
computed by ActionsGreedy, the set K of actions recommended by φ∗ does not have to
include n. Hence, an optimal scheme φ∗

K∪{n} might be able to recommend k+1 actions
and uS(φ∗

K∪{n}) ≥ uS(φ∗). We denote by S∗
k an optimal set S ⊆ [n− 1] for function f

of size k, i.e., S∗
k ∈ arg max{f(S) | S ⊆ [n− 1], |S| = k}. Then, the following holds.

uS(φ∗) ≤ uS(φ∗
K∪{n}) ≤ f(K) ≤ f(S∗

k) (3.6)

This allows us to overestimate the optimal value uS(φ∗) by f(S∗
k). Note that this does

include k + 1 actions, one of which has to be action n.
Plugging t = k as well as ℓ = k − 1 into Lemma 3.23, and using our notation of

S = Sk−1, we get f(S) ≥ (1−(1−1/k)k−1)·f(S∗
k), and the lemma follows using (3.6).

Now consider the second step of φIS, i.e., the computation of a signal using Com-
puteSignal. The following lemma bounds from below the expected utility our scheme
achieves for any set S ∪ {n} of k actions.

Lemma 3.24
For every k ≥ 2, let S ∪ {n} be any set of k actions. Given the set S ∪ {n} of actions,
ComputeSignal computes a signaling scheme φ such that

uS(φ) ≥
(︃

1 −
(︂
1 − 1

k

)︂k
)︃

· f(S) .

3.2. Independent Instances 39

The algorithm decides for each action i ∈ S∪{n} independently whether to recom-
mend i, stopping the process after the first recommendation. Hence, we can split the
probability that an action is recommended into two parts. The actions are considered
consecutively, ordered by descending order of utility for S per unit of mass. This obvi-
ously means that action i can only be the single recommended action if no other action
has been recommended prior to i. Secondly, the coin flip for action i needs to turn up
as “recommend”. If all coins come up as “don’t recommend”, a recommendation for
action n is given – which is an action with the a priori highest expectation for R and
therefore serves as a “backup”.

For the proof of the lemma, we use the generalized mediant inequality which is
stated in the following Lemma 3.25. The proof of Lemma 3.24 follows below.

Lemma 3.25 (Generalized Mediant Inequality)
Let a1

b1
≥ a2

b2
≥ · · · ≥ aℓ

bℓ
> 0 denote ℓ positive fractions and w1, . . . , wℓ > 0 positive

weights. Then, it holds that

a1

b1
≥
∑︁ℓ

i=1 wi · ai∑︁ℓ
i=1 wi · bi

≥ aℓ

bℓ

. (3.7)

Additionally, if w1 ≥ w2 ≥ · · · ≥ wℓ,∑︁ℓ
i=1 wi · ai∑︁ℓ
i=1 wi · bi

≥
∑︁ℓ

i=1 ai∑︁ℓ
i=1 bi

. (3.8)

Proof of Lemma 3.25. For every i ∈ [ℓ], we have a1
b1

≥ ai

bi
≥ aℓ

bℓ
. Multiplying by wi·bi > 0

gives us a1
b1

· wi · bi ≥ wi · ai ≥ aℓ

bℓ
· wi · bi for every i ∈ [ℓ]. Hence,

a1

b1

ℓ∑︂
i=1

wi · bi ≥
ℓ∑︂

i=1
wi · ai ≥ aℓ

bℓ

·
ℓ∑︂

i=1
wi · bi

and (3.7) follows by dividing every term by ∑︁ℓ
i=1 wi · bi > 0.

For the second statement, we repeatedly apply the result of the first inequality. In
each step j = 1, . . . , ℓ− 1, we replace wj by wj+1 ≤ wj and show that

∑︁j−1
i=1 wj · ai +∑︁ℓ

i=j wi · ai∑︁j−1
i=1 wj · bi +∑︁ℓ

i=j wi · bi

≥
∑︁j

i=1 wj · ai +∑︁ℓ
i=j+1 wi · ai∑︁j

i=1 wj · bi +∑︁ℓ
i=j+1 wi · bi

.

Hence, after all ℓ− 1 steps, we have∑︁ℓ
i=1 wi · ai∑︁ℓ
i=1 wi · bi

≥
∑︁ℓ

i=1 wℓ · ai∑︁ℓ
i=1 wℓ · bi

=
∑︁ℓ

i=1 ai∑︁ℓ
i=1 bi

.

Consider a single step j. We assume that wj > wj+1, otherwise replacing wj by wj+1
does not have any effect.

∑︁j−1
i=1 wj · ai +∑︁ℓ

i=j wi · ai∑︁j−1
i=1 wj · bi +∑︁ℓ

i=j wi · bi

=
wj ·

=:a⏟ ⏞⏞ ⏟∑︁j−1
i=1 ai +

=:c⏟ ⏞⏞ ⏟∑︁ℓ
i=j wi · ai

wj ·∑︁j−1
i=1 bi⏞ ⏟⏟ ⏞
=:b

+∑︁ℓ
i=j wi · bi⏞ ⏟⏟ ⏞

=:d

40 3. Bayesian Persuasion

Using (3.7), we know that wj ·a
wj ·b ≥ aj−1

bj−1
≥ aj

bj
≥ c

d
as ai

bi
≥ ai+1

bi+1
. It remains to show that

wj ·a+c

wj ·b+d
≥ wj+1·a+c

wj+1·b+d
, or equivalently

(wj · a+ c) · (wj+1 · b+ d) ≥ (wj+1 · a+ c) · (wj · b+ d) ,

to complete the proof of (3.8). It holds that

(wj · a+ c) · (wj+1 · b+ d) = wj · wj+1 · a · b+ wj · a · d+ wj+1 · b · c+ c · d
≥ wj · wj+1 · a · b+ wj+1 · a · d+ wj · b · c+ c · d
= (wj+1 · a+ c) · (wj · b+ d) .

The inequality holds as (wj − wj+1)⏞ ⏟⏟ ⏞
>0

·a · d ≥ (wj − wj+1)⏞ ⏟⏟ ⏞
>0

·b · c since a
b

≥ c
d
.

Lemma 3.25

Proof of Lemma 3.24. Given the chosen set S of actions, we consider these actions
one-by-one in non-increasing order of gi(z∗

i)
z∗

i
. We use the for-loop in line 3 to do this.

Note that we assume 0/0 = 0 when sorting the actions in line 2 of ComputeSignal. This
assumption makes sense in this context as no value can be generated from action i if
z∗

i = 0 and hence no mass is put on action i. In iteration ℓ of the loop, the type j of
the action iℓ currently under consideration is observed. A recommendation is issued
independently with a probability of

x∗
iℓj

qiℓj
. Since type j is realized for action iℓ with

probability qiℓj, the combined probability for issuing a recommendation and having
type j is xiℓj. This means that overall, a recommendation in iteration ℓ, conditioned
on reaching this iteration is sent with probability ∑︁m

j=1 xiℓj ≤ z∗
iℓ

due to (3.3). We now
want to argue that we can assume equality ∑︁m

j=1 xiℓj = z∗
iℓ

without loss of generality.
We have already seen that the optimal assignment z∗ can be reached through

a waterfilling approach, where z∗
iℓ

are increased until ∑︁k
ℓ=1 z

∗
iℓ

= 1 while keeping a
common slope for giℓ

. Note that for every zn ∈ [0, 1], we can assume without loss of
generality that the first constraint in (3.3) holds with tightness without violating the
second constraint as the a priori receiver expectation for action n is ϱE. Now, consider
i ∈ [n − 1]. The slopes of gi(z) are non-increasing and there must exist at most one
breakpoint ẑi ∈ [0, 1] such that the slope of gi(z) is 0 for all ẑi ≤ z ≤ 1. Otherwise,
we can set ẑi = 1. Combining these two observations, we can assume without loss of
generality that in an optimal solution z∗ of (3.4), the first constraint of every linear
program (3.3) is tight, i.e., ∑︁m

j=1 x
∗
ij = z∗

i for all i ∈ [n].
The expectation for S from iteration ℓ, conditioned on reaching this iteration, is∑︁m

j=1 x
∗
iℓj · ξiℓj = giℓ

(z∗
iℓ

). Overall, this means that iteration ℓ > 1 of the for-loop is
reached with probability pℓ := ∏︁ℓ−1

ℓ′=1(1−z∗
ℓ′). Note that even in the final iteration ℓ = k,

the recommendation is not sent deterministically. Rather, a coin is flipped whether to
send a recommendation or not. This means that no signal could be sent during the
for-loop. In this case, action n, the a priori best action for R, is recommended. Hence,
we refer to this as the “backup”. To lower bound the performance of the algorithm, we
assume that a backup signal has a value of 0 for S.

3.2. Independent Instances 41

Thus, we can bound the overall performance ratio of our scheme by

uS(φ)
f(S) ≥

k∑︂
ℓ=1

giℓ
(z∗

iℓ
) · pℓ

k∑︂
ℓ=1

giℓ
(z∗

iℓ
)

=

k∑︂
ℓ=1

uiℓ
· z∗

iℓ
· pℓ

k∑︂
ℓ=1

uiℓ
· z∗

iℓ

, (3.9)

where we use the notation uiℓ
=

giℓ
(z∗

iℓ
)

z∗
iℓ

. If giℓ
(z∗

iℓ
) = 0 for some ℓ, no value can be

extracted from the corresponding action. Thus, we can exclude that action and only
consider the remaining k − 1 actions for the ratio in (3.9). Hence, we assume without
loss of generality that giℓ

(z∗
iℓ

) > 0 and therefore uiℓ
> 0 for all ℓ ∈ [k]. Since the actions

are ordered by non-increasing ratio uiℓ
=

giℓ
(z∗

iℓ
)

z∗
iℓ

, we have ui1 ≥ ui2 ≥ · · · ≥ uik
as well

as
z∗

i1p1

z∗
i1

≥
z∗

i2p2

z∗
i2

≥ · · · ≥
z∗

ik
pk

z∗
ik

.

Hence, we can use Lemma 3.25 to see that

uS(φ)
f(S) ≥

k∑︂
ℓ=1

uiℓ
· z∗

iℓ
· pℓ

k∑︂
ℓ=1

uiℓ
· z∗

iℓ

≥

k∑︂
ℓ=1

z∗
iℓ

· pℓ

k∑︂
ℓ=1

z∗
iℓ⏞ ⏟⏟ ⏞

=1

=
k∑︂

ℓ=1
z∗

iℓ
· pℓ

= 1 −
k∏︂

i=1
(1 − z∗

iℓ
)

≥ 1 −
(︃

1 − 1
k

)︃k

.

For the second line, observe that ∑︁k
ℓ=1 z

∗
iℓ

· pℓ is the probability that a recommendation
is sent during the for-loop in line 3 of ComputeSignal and ∏︁k

ℓ=1(1 − z∗
iℓ

) is the comple-
mentary probability, i.e., that no recommendation is given. For the third line, observe
that 1 −∏︁k

ℓ=1(1 − z∗
iℓ

) is symmetric and convex in every variable z∗
iℓ

. As such, it has a
global minimum at z∗

i1 = . . . = z∗
ik

= 1/k. Lemma 3.24

Combining the previous lemmas allows to bound the approximation ratio. To com-
plete the proof of Theorem 3.19, we need to show persuasiveness of φIS and bound the
running time of the scheme. We proceed to show persuasiveness of the scheme.

Lemma 3.26
ComputeSignal returns a direct and persuasive signaling scheme for independent in-
stances with k signals.

To prove persuasiveness of the scheme, we show that for every recommended action,
the expected value for R is at least ϱE and further argue why this is sufficient for
persuasiveness.

42 3. Bayesian Persuasion

Proof. To show persuasiveness, we again use that without loss of generality, we can
assume ∑︁m

j=1 xij = zi for all i ∈ S ∪ {n} as argued in the proof of Lemma 3.24 above.
Using this insight, we prove persuasiveness. In particular, for every choice of the set

S of actions with S ⊆ [n− 1] and |S| = k − 1, we show that ComputeSignal computes
a direct and persuasive signal.

For each action i ∈ S ∪ {n}, ComputeSignal observes the type realization and uses
the optimal solution x∗ for LP (3.3) to flip an independent coin whether or not to
recommend action i. First, condition on the event that the scheme returns the signal
for action iℓ ∈ S in the for-loop in line 3. The probability that the signal is sent in
iteration ℓ is ∑︁m

j=1 qiℓj ·
x∗

iℓj

qiℓj
= z∗

iℓ
. We again use pℓ = ∏︁ℓ−1

ℓ′=1(1 − z∗
iℓ′) to denote the

probability that the scheme arrives in that iteration. A signal for action iℓ ̸= n yields
a conditional expected utility for R of

1
pℓ · z∗

iℓ

· pℓ ·
m∑︂

j=1
qiℓj ·

x∗
iℓj

qiℓj

· ϱiℓj = 1
z∗

iℓ

·
m∑︂

j=1
x∗

iℓj · ϱiℓj ≥ ϱE ,

where the inequality follows from ∑︁m
j=1 x

∗
iℓj = z∗

iℓ
and the second constraint in (3.3).

Now, consider the case that ComputeSignal recommends action n. There are two
scenarios for this to occur. First, during iteration ℓ with iℓ = n, the coin flip for action n
can be to recommend that action, and second, if no recommendation for an action was
sent during the for-loop in line 3, action n is recommended in line 7 of ComputeSignal.

In the first scenario, the expected utility for R is

pℓ ·
m∑︂

j=1
qiℓ,j ·

x∗
iℓ,j

qiℓ,j

· ϱiℓ,j = pℓ ·
m∑︂

j=1
x∗

iℓ,j · ϱiℓ,j .

In the second scenario, no recommendation was sent during the for-loop. Again, we
assume that iℓ = n and denote the probability that no signal was sent in an iteration
ℓ′ ̸= ℓ by p−ℓ = ∏︁

ℓ′ ̸=ℓ(1 − ziℓ′). Additionally, during iteration ℓ, no signal must have
been sent, either. This means that R obtains an expected utility of

p−ℓ ·
m∑︂

j=1
qnj ·

(︄
1 −

x∗
nj

qnj

)︄
· ϱnj = p−ℓ ·

⎛⎝ϱE −
m∑︂

j=1
x∗

njϱnj

⎞⎠
since ∑︁m

j=1 qnj · ϱnj = ϱE. Overall, conditional on a signal for action n, R gets an
expected utility of

pℓ ·
m∑︂

j=1
x∗

nj · ϱnj + p−ℓ

⎛⎝ϱE −
m∑︂

j=1
x∗

nj · ϱnj

⎞⎠
pℓ · z∗

n + p−ℓ · (1 − z∗
n) =

p−ℓ · ϱE + (pℓ − p−ℓ) ·
m∑︂

j=1
x∗

nj · ϱnj

p−ℓ + (pℓ − p−ℓ) · z∗
n

≥ ϱE · (p−ℓ + (pℓ − p−ℓ) · z∗
n)

p−ℓ + (pℓ − p−ℓ) · z∗
n

= ϱE ,

where the inequality follows from the equality z∗
n = ∑︁m

j=1 x
∗
nj and the second constraint

in (3.3).
Hence, for every recommended action i ∈ S ∪ {n}, the expected utility for R is at

least ϱE. Thus, deviating to any action i′ ̸∈ S ∪ {n} is not profitable for R, since the

3.2. Independent Instances 43

type of action i′ is independent of the signal, and every action a priori has an expected
utility of at most ϱE for R. It remains to show that a deviation to a different action
î ∈ S ∪ {n} is also not profitable for R.

Assume that a recommendation is given for action iℓ ̸= n during iteration ℓ of the
for-loop in line 3 of ComputeSignal. We have already seen that conditional on that
signal, the expected utility for R from action iℓ is at least ϱE. Consider an action iℓ′

from an earlier iteration ℓ′ < ℓ. ComputeSignal did not issue a recommendation for
iℓ′ . The a priori expectation of action iℓ′ is at most ϱE by assumption. Further, a
recommendation for action iℓ′ means that the conditional expectation is at least ϱE as
we have seen above. Hence, no recommendation for action iℓ′ cannot mean an expected
utility of more than ϱE. Similarly, a deviation to an action iℓ′ ∈ S ∪ {n} in a later
iteration ℓ′ > ℓ cannot be profitable, either. The scheme has not yet considered the
type of that action, hence, the only information available on that action is the prior
and the action has an expected utility for R of at most ϱE.

Similarly, consider the case that a recommendation for action n is signaled. Obvi-
ously, the receiver cannot know whether it was sent during or after the for-loop. Yet,
we have already seen that a signal for action n gives a conditional expectation of at
least ϱE to the receiver. All other actions iℓ′ ̸= n that have been considered (which
might be all of them) only provide an expected value of at most ϱE to R, just as all
actions that have not yet been considered by the scheme.

Hence, it is not profitable for R to deviate from a recommendation and the scheme
is persuasive.

The final step to proving Theorem 3.19 is the running time of the algorithms.
ActionsGreedy solves (3.4) an O(nk) number of times to compute the set S. Com-
puteSignal has to solve (3.4) only once. Afterwards, at most k independent coin flips
are computed. Clearly, both algorithms can be implemented to run in time polynomial
in the representation size of the input. This concludes the proof of Theorem 3.19.

3.2.2 Improved Approximation and Tightness
In this section, we describe a more elaborate scheme to improve the approximation
ratio of the scheme φIS from the previous section. The scheme will aptly be named
Improved Independent Scheme φIIS. It still uses the same two-step approach of first
identifying a good subset S of size k − 1 and then computing the recommendation
scheme for the subset S ∪ {n}. Note that the second step cannot be improved upon
using our approach, there are instances in which S can recover at most a fraction of
1 − (1 − 1/k)k of f(S).

Consider the following ϱE-optimal instance with IID actions, where every action
i ∈ [n] only has two possible types {θ1, θ2}. θ1 has a probability of 1/k and provides
a utility-pair of (ϱ(θ1), ξ(θ1)) = (1, 1) and θ2 has a probability of 1 − 1/k and gives no
utility to R or S, i.e., (ϱ(θ2), ξ(θ2)) = (0, 0). Observe that any set S ⊆ [n − 1] of
k − 1 actions will have f(S) = 1 with zi = xi1 = 1/k for all i ∈ S ∪ {n}. An optimal
scheme will always recommend an action of type θ1 if such an action exists – but this
will only happen with probability 1 − (1 − 1/k)k. Hence, even an optimal scheme can
only recover a fraction of 1 − (1 − 1/k)k of f(S). Thus, Lemma 3.24 is tight and we will
have to consider the first step of the approach to improve the approximation ratio of
the scheme.

44 3. Bayesian Persuasion

The main insight of this section is summarized in the following proposition.

Proposition 3.27
For every k ≥ 2 and every constant ε > 0, there is a polynomial-time algorithm to
compute a subset S of k − 1 actions such that

f(S) ≥ (1 − ε) ·
(︃

1 − 1
k

)︃
· uS(φ∗) .

Before going into details on the algorithm, we give a short overview of our approach.
Rather than using the standard greedy algorithm for submodular maximization as in
the previous section, we use an FPTAS to compute, for every given constant ε > 0,
a set S ⊆ [n − 1] of k − 1 actions. Compared to the set S∗ ⊆ [n − 1] of size k − 1
which maximizes f , this gives us an approximation ratio of f(S)

f(S∗) ≥ 1 − ε, a notable
improvement to the ratio of (1−(1−1/k)k−1) of Lemma 3.22 achieved by ActionsGreedy.

The Improved Independent Scheme uses a discretized version f̂ of the submodular
function f . For all i ∈ [n], we only allow discretized values for zi, i.e., we use the
additional constraint that zi ∈ {0, τ, 2τ, . . . , (1/τ − 1) · τ, 1}, where τ = 1

⌈k/δ⌉ for δ =
ε/2. This discretization yields a (1 − δ)-approximation to the original function f , i.e.,
f̂(S) ≥ (1 − δ) · f(S) for each subset S ⊆ [n − 1]. We then use a knapsack-style
FPTAS to find a subset S of size k − 1 such that f̂(S) ≥ (1 − δ) · f̂(S∗) for every
constant δ > 0. Here, S∗ is the subset of size k − 1 maximizing f . This means that
f̂(S) ≥ (1 − δ) · f̂(S∗) ≥ (1 − δ)2 · f(S∗) ≥ (1 − ε) · f(S∗) since we chose δ = ε/2. Using
the same notation as in the proof of Lemma 3.22, we denote by K the set of actions of
size k being recommended by the optimal scheme φ∗ as well as by S∗

k ⊆ [n−1] a subset
of size k maximizing function f . By submodularity of f , we have f(S∗) ≥ k−1

k
f(S∗

k).
As we have seen before, it holds that f(S∗

k) ≥ f(K) ≥ uS(φ∗) which concludes the
high level overview of Proposition 3.27.

The second step of our approach, namely computing the final signal using Com-
puteSignal, remains unchanged. Since the analysis of ComputeSignal was done for
every subset S, it carries over. In terms of running time, we need to solve LP (3.3) at
most O

(︂
n·k
ε

)︂
times for the discretization. The FPTAS then requires a time of at most

O
(︂

n2·k6

ε3

)︂
and we get the result of Theorem 3.20 by combining Proposition 3.27 with

Lemmas 3.24 and 3.26.
In the following, we describe and analyze the FPTAS in detail.

Discretization of f

Rather than considering the original submodular function f , we consider a discretized
version f̂ . For a given constant δ > 0, we define τ = 1

⌈k/δ⌉ and add the following
constraint to the definition of f in (3.4). For every action i ∈ [n], the total mass zi can
only take one of 1/τ + 1 values in [0, 1], namely, zi ∈ {0, τ, 2τ, 3τ, . . . , 1−τ

τ
· τ, 1}.

Lemma 3.28
Consider the subset S∗ ⊆ [n− 1] that maximizes f(S∗). It holds that

f̂(S∗) ≥ (1 − δ) · f(S∗) .

3.2. Independent Instances 45

Proof. We can assume without loss of generality that the optimal set S∗ maximizing
f(S) has a size of k − 1. Otherwise, adding additional actions to a set of smaller size
k′ < k and setting their respective masses to 0 does not change the value of f(S).
Let z∗ denote a corresponding optimal assignment of mass to the actions of S∗ for
f(S∗). This implies that ∑︁i∈S∗∪{n} z

∗
i ≤ 1 by the first constraint of (3.4). Now, for

each i ∈ S∗ ∪ {n}, we define z′
i = (1 − δ) · z∗

i . Since the functions gi are monotone and
concave, this means that gi(z′

i) ≥ (1 − δ) · gi(z∗
i) for all i ∈ S∗ ∪ {n}. We round z′

i up
to the next multiple of τ , i.e., ẑi = τ · ⌈z′

i/τ⌉ for all i ∈ S ∪ {n}. Then, ẑ is a feasible
solution for (3.4). Obviously, ẑi ≥ 0 which satisfies the second constraint. For the first
constraint, we have

∑︂
i∈S∗∪{n}

ẑi ≤
∑︂

i∈S∗∪{n}
z′

i + τ =
∑︂

i∈S∗∪{n}
(1 − δ) · z∗

i + τ ≤ (1 − δ) + k · 1
⌈k/δ⌉

≤ 1 .

For the value of f̂(S∗), this means

f̂(S∗) ≥
∑︂

i∈S∗∪{n}
gi(ẑi) ≥

∑︂
i∈S∗∪{n}

gi(z′
i) ≥ (1 − δ) ·

∑︂
i∈S∗∪{n}

gi(z∗
i) = (1 − δ) · f(S∗) ,

which concludes the proof of the lemma.

The discretization of f̂ allows us to rephrase the optimization problem. Instead of
a continuous mass of 1, we want to distribute 1/τ particles to the actions S ∪ {n}. We
denote the marginal profit of the ℓ-th particle assigned to action i by µℓ

i = gi(ℓ · τ) −
gi((ℓ−1) · τ). Since the functions gi are monotone and concave, we observe that µℓ

i ≥ 0
and µℓ

i ≥ µℓ+1
i for all i ∈ [n] and all ℓ ≥ 1. For a given set S, the optimal assignment

of particles can clearly be computed in a greedy fashion: Sort the marginal profits of
all actions i ∈ S ∪ {n} in a non-increasing order and assign them in that order until
1/τ particles have been assigned. In order to find the set Ŝ∗ optimizing f̂(S) among all
subsets S ⊆ [n− 1] of size k− 1, we consider the marginal profit µ∗ of the last particle
assigned to an action i ∈ Ŝ

∗
∪ {n} by the above greedy algorithm. Clearly, we do not

know Ŝ
∗ and hence do not know µ∗ in advance. Our approach will be to guess µ∗ by

considering all possible values µ. Since there are n functions gi, and each function is
allocated at most 1/τ particles, we have to test at most O (n · k/δ) many different values
of marginal profit µ.

For a given marginal profit value µ, we denote by ℓi(µ) the largest number of a
particle with marginal profit strictly larger than µ. This means that if i ∈ Ŝ

∗ and
µ = µ∗, a mass of ẑi ≥ τ · ℓi(µ) will be assigned to action i in an optimal assignment
achieving f̂(Ŝ∗). Depending on the remaining particles for action i and their respective
marginal profit, more than ℓi(µ) particles can be distributed to action i – but a mass of
at least τ · ℓi(µ) is required for µ to be the marginal profit of the final particle assigned
to an action. Hence, we denote this mass by wr

i (µ) = τ · ℓi(µ) and the corresponding
value by pr

i (µ) = gi(τ · ℓi(µ)). This allows us to express f̂(Ŝ∗) by

f̂(Ŝ∗) =
∑︂

i∈Ŝ
∗∪{n}

gi(ẑi)

=
∑︂

i∈Ŝ
∗∪{n}

gi(τ · ℓi(µ∗)) + µ∗ ·
∑︂

i∈Ŝ
∗∪{n}

(ẑi − τ · ℓi(µ∗))

46 3. Bayesian Persuasion

=
∑︂

i∈Ŝ
∗∪{n}

pr
i (µ∗) + µ∗ ·

⎛⎜⎝1 −
∑︂

i∈Ŝ
∗∪{n}

wr
i (µ∗)

⎞⎟⎠ .

In the second and third line, we have split up gi in terms of particles that provide a
marginal profit of strictly more than µ∗ as well as the remaining particles which provide
a marginal profit of exactly µ∗. We now consider these particles more closely.

Suppose there are ti(µ) ≥ 0 particles for action i with marginal profit µ, namely
the particles ℓi(µ) + 1, ℓi(µ) + 2, . . . , ℓi(µ) + ti(µ). Since µ∗ = µ, this means that
ẑi ∈ [τ · ℓi(µ), τ · ℓi(µ) + ti(µ)]. Particles with a marginal profit of µ are somewhat
optional as not necessarily all particles with marginal profit µ will be assigned. Hence,
we denote the maximum additional mass from these particles by wo

i (µ) = τ · ti(µ) and
their maximum additional profit by po

i (µ) = µ · wo
i (µ) = µ · τ · ti(µ). We observe the

following relationship between ∑︁i∈Ŝ
∗∪{n} w

r
i (µ∗) and ∑︁i∈Ŝ

∗∪{n} w
o
i (µ∗).

0 ≤ 1 −
∑︂

i∈Ŝ
∗∪{n}

wr
i (µ∗) ≤

∑︂
i∈Ŝ

∗∪{n}

wo
i (µ∗) . (3.10)

In the following, we state the optimization problem for a given value µ of marginal
profit as parameterized knapsack problem.

Knapsack Problem

We use the following integer optimization problem to find a subset S ⊆ [n − 1] of at
most k − 1 actions such that 1/τ particles with marginal profit at least µ from the set
of actions S ∪ {n} can be assigned and the overall profit from the assigned particles is
maximized.

h(µ) = Max.
n∑︂

i=1
yi · pr

i (µ) + min
(︄
µ− µ ·

n∑︂
i=1

yi · wr
i (µ),

n∑︂
i=1

yi · po
i (µ)

)︄

s.t.
n∑︂

i=1
yi · wr

i (µ) ≤ 1
n−1∑︂
i=1

yi ≤ k − 1

yn = 1
yi ∈ {0, 1} ∀i ∈ [n− 1]

(3.11)

The variable yi ∈ {0, 1} for i ∈ [n] denotes whether action i is included in the set
S ∪ {n}. Hence, the penultimate constraint, yn = 1, is trivial. The second constraint
states that at most k − 1 actions from [n − 1] can be chosen for the set S. The
first constraint bounds the total mass that is distributed to the actions i ∈ S ∪ {n}
through the required particles for a given value µ of marginal profit. The objective
function maximizes the total profit from particles of marginal profit at least µ, where
the first term captures the profit from the required particles. The second term of the
objective function either fills the remaining mass with optional particles of marginal
profit µ or adds all remaining particles with marginal profit µ. For a given value µ,
we denote the optimal solution for h(µ) by y∗ and the action set optimizing h(µ) by
S∗

µ = {i ∈ [n− 1] | y∗
i = 1}.

3.2. Independent Instances 47

Lemma 3.29
For every marginal profit µ, the following holds:

(a) If h(µ) is feasible, then h(µ) ≤ f̂(Ŝ∗).

(b) If µ = µ∗, then h(µ∗) is feasible and h(µ∗) = f̂(Ŝ∗).

(c) If h(µ) is infeasible, then µ ̸= µ∗.

Proof. We start by proving (c). If h(µ) is infeasible then for every subset S ⊆ [n − 1]
with at most k − 1 actions, the first constraint is violated, i.e., ∑︁i∈S∪{n} w

r
i (µ) > 1.

This violates (3.10) which implies µ ̸= µ∗, thereby showing (c).
To show (a) and (b), consider a marginal profit value µ and a feasible solution

y for h(µ) with corresponding action set S = {i ∈ [n − 1] | yi = 1}. If S and µ
satisfy (3.10), i.e., at most 1/τ particles have a marginal profit greater than µ and
a total of 1/τ particles can be assigned using particles with marginal profit at least
µ, then h(µ) = f̂(S). Clearly, the resulting assignment of particles for set S is the
same as in the optimal greedy strategy described above – assigning particles by non-
increasing marginal profit. If a feasible solution y for a marginal profit value µ does
not satisfy (3.10), it holds that∑︂

i∈S∪{n}
wr

i (µ) +
∑︂

i∈S∪{n}
wo

i (µ) < 1 .

This means that in h, the set S only yields a value of

∑︂
i∈S∪{n}

pr
i (µ) + min

⎛⎝µ− µ
∑︂

i∈S∪{n}
wr

i (µ),
∑︂

i∈S∪{n}
po

i (µ)
⎞⎠

=
∑︂

i∈S∪{n}
pr

i (µ) +
∑︂

i∈S∪{n}
po

i (µ) ,

whereas in f̂(S) the remaining mass would be filled using particles that provide a
marginal profit less than µ. This clearly holds for S = S∗

µ as well, which implies
h(µ) ≤ f̂(S∗

µ) ≤ f̂(Ŝ∗), proving (a).
To show (b), it remains to show that Ŝ∗ is indeed feasible for h(µ∗). This is sufficient

since we have already seen above that h(µ) = f̂(S) if S is feasible for h(µ) and µ and S
satisfy (3.10). It is straightforward to see that (3.10) holds for µ∗ and Ŝ∗. Furthermore,
Ŝ

∗ is clearly feasible for h(µ∗) since |Ŝ
∗
| = k − 1 by definition and (3.10) implies the

first constraint of (3.11). This concludes the proof.

Lemma 3.29 allows us to approximate f̂(Ŝ∗) by approximating h(µ) for every pos-
sible marginal profit µ. In the following, we describe an FPTAS which guarantees, for
every given constant δ > 0, an approximation ratio of (1 − δ).

Knapsack Approximation via Dynamic Program

Note that the constraints of (3.11) – except for yn = 1 – exactly represent the con-
straints of the “1.5-dimensional” or “cardinality constrained” knapsack problem [56,

48 3. Bayesian Persuasion

Section 9.7]. To fit the knapsack terminology, we now consider items rather than indi-
vidual particles. For every marginal profit µ and every action i ∈ [n], there is a required
item with weight wr

i (µ) and profit pr
i (µ) as well as an optional item with weight wo

i (µ)
and profit pr

i (µ). The constraints mandate that for all i with yi = 1, required items
are included completely while there is no constraint on the inclusion of optional items.
The objective function limits the profit from optional items of the chosen actions by
the remaining capacity in the knapsack. Hence, arbitrary fractions of optional items
can be included. Note that all optional items provide profit of a rate of µ per unit of
weight by definition. Therefore, it does not make a difference which optional item is
(partially) included for a given marginal profit value µ. Clearly, if the chosen required
items leave enough capacity in the knapsack to include another required item from
some action i /∈ S (and |S| < k − 1), including that item increases the overall profit
since all required items have a profit rate of strictly more than µ.

Our approach resembles the classic dynamic programming approach for the knap-
sack problem. If wr

n(µ) > 1 for some µ, we can immediately move on to the next value
of µ since the constraints of (3.11) cannot be satisfied. Similarly, if wr

i (µ) +wr
n(µ) > 1

for some i ∈ [n− 1], we can drop action i from consideration for that particular value
of µ. Hence, we can assume without loss of generality that wr

i (µ) + wr
n(µ) ≤ 1 for

all i ∈ [n − 1]. For the dynamic program, we scale the profit values. We denote by
pmax(µ) = max{pr

i (µ),min(µ, po
i (µ)) | i ∈ [n]} the maximum profit obtainable from a

single item and use κ = δ·pmax(µ)
2k

to scale the profits of all items, namely p̄r
i =

⌊︂
pr

i (µ)
κ

⌋︂
and p̄o

i =
⌊︂

po
i (µ)
κ

⌋︂
. This means that the maximum scaled profit of a single item – re-

quired or optional – is of size O(k/δ). The dynamic program uses a 4-dimensional table
A which has the following interpretation. In each entry A(i, j, p̄r, p̄o), the minimum
weight of the packed set of required items satisfying the following conditions is stored.

1. All packed required items are from the set [i] ∪ {n},

2. the set of packed required items includes action n and exactly j other actions,

3. the scaled profit of the packed required items is exactly p̄r, and

4. the scaled profit of the optional items corresponding to the packed required items
sums to p̄o.

Now, consider an entry A(i, j, p̄r, p̄o). There might be different sets which allow for j
packed required items from the set [i] with cumulative scaled profit from required items
of p̄r and optional items of p̄o. By taking a set with minimal weight from the packed
required items, the highest possible capacity is left unused to be filled by optional
items, thereby increasing the overall scaled profit.

The table has O
(︂
n · k · k2

δ
· k2

δ

)︂
= O

(︂
n·k5

δ2

)︂
many entries. There are n different

choices for i, namely i ∈ {0, . . . , n − 1}, between 0 and k − 1 actions beside n can be
taken, and the scaled profit from packed items, required as well as optional, cannot
exceed k times the scaled profit of a single item.

We fill in the table starting with scenarios with i = 0 and j = 0, i.e., only considering
action n. Clearly, when only using action n, the only available required item has
weight wr

n and the optional items provide a scaled profit of p̄o
n. Hence, we can initialize

3.2. Independent Instances 49

A(0, 0, p̄r
n, p̄

o
n) = wr

n. The remaining entries with i = 0 and j = 0 are initialized with
∞, i.e., the base of the recursion is

A(0, 0, p̄r
n, p̄

o
n) = wr

n, and
A(0, 0, x , y) = ∞, for every x, y ∈ {0, 1, . . . , k · ⌊k/δ⌋}, (x, y) ̸= (p̄r

n, p̄
o
n) .

Clearly, when considering all subsets of [i] ∪ {n} which use j actions from [i] to achieve
scaled profits p̄r and p̄o, either action i is included in the best subset or not. In the
latter case, the best weight and the achieved profits still are the same as it was for the
entry in A(i− 1, j, p̄r, p̄o), so the entry can just be kept. In the former case, only j − 1
actions from the set [i−1] can be considered and the weight as well as the scaled profits
of action i have to be accounted for. In that case, the new value for A(i, j, p̄r, p̄o) would
be wr

i + A(i − 1, j − 1, p̄r − p̄r
i , p̄

o − p̄o
i). Hence, we can fill in the table in increasing

order of the parameters by setting

A(i, j, p̄r, p̄o) = min
{︄

A(i− 1, j, p̄r, p̄o),
wr

i + A(i− 1, j − 1, p̄r − p̄r
i , p̄

o − p̄o
i)

}︄
,

where we assume the entry is ∞ whenever the arguments become negative. Clearly, no
entry is written multiple times and updating an entry only requires a constant number
of steps, so the overall time to fill the table is linear in its size.

All entries with A(i, j, p̄r, p̄o) ≤ 1 correspond to feasible solutions since the packed
required items do not surpass the weight limitation. From these entries, we pick one
that maximizes κ · p̄r +min(µ−µ ·A(i, j, p̄r, p̄o), κ · p̄o). This way, the total scaled profit
from required items and optional items is maximized while not violating the capacity
constraint of the knapsack.

Finding the best entry in the table can thus be achieved in time linear in its size,
and the overall running time for a single value µ of marginal profit is O

(︂
n·k5

δ2

)︂
. Since

there are at most O(n · k/δ) many values of µ to check, the overall running time can
be bounded by O

(︂
n2·k6

δ3

)︂
, which is polynomial in n and k for every constant δ > 0. It

remains to show that this approach guarantees an approximation ratio of 1 − ε of the
optimum solution. We argue why this holds in the following.

Approximation Ratio of the FPTAS Approach

Recall that S∗
µ is an optimal set of actions for h(µ). For the scaled profit from S∗

µ, it
holds that

∑︂
i∈S∗

µ∪{n}
κ · p̄r

i + min
⎛⎝µ− µ ·

∑︂
i∈S∗

µ∪{n}
wr

i (µ),
∑︂

i∈S∗
µ∪{n}

κ · p̄o
i

⎞⎠
≥

∑︂
i∈S∗

µ∪{n}
(pr

i (µ) − κ) + min
⎛⎝µ− µ ·

∑︂
i∈S∗

µ∪{n}
wr

i (µ),
∑︂

i∈S∗
µ∪{n}

(po
i (µ) − κ)

⎞⎠
≥ h(µ) − 2k · κ = h(µ) − δ · pmax .

Recall that pmax = max{pr
i (µ),min(µ, po

i (µ)) | i ∈ [n]} is the maximum profit obtain-
able from a single item without overfilling the knapsack. We now want to argue that
h(µ) ≥ pmax, thereby finishing the proof that an optimal solution from the dynamic
program guarantees at least a (1 − δ)-approximation of h(µ∗).

50 3. Bayesian Persuasion

If pr
i (µ) = pmax for some i ∈ [n − 1], this clearly means that h(µ) ≥ pmax since

wr
i (µ) + wr

n(µ) ≤ 1. The choice S = {i} provides a feasible solution for (3.11) which
implies h(µ) ≥ pr

i (µ) since pr
n(µ) ≥ 0. Adding parts of the optional items can only

increase the overall value of the objective function. Similarly, if pr
n(µ) = pmax, consider

S = ∅. This is a feasible solution for (3.11). Filling the remaining capacity 1 − wr
n(µ)

of the knapsack with a fraction of the optional item of action n can only increase the
overall value of the objective function. If pmax = min(µ, po

i (µ)) for some i ∈ [n − 1],
then consider the case that the knapsack is filled using only the optional item of action
i. Here, µ is an upper bound to the profit since the knapsack only has a total capacity
of 1 – which might be less than the weight of the optional item of action i. The
following step increases the overall profit without violating the capacity constraint of
the knapsack. Add the required items of actions n and i to the knapsack, replacing
parts of the optional item if necessary. This is clearly possible since wr

i (µ)+wr
n(µ) ≤ 1.

Since the rate of profit per unit of weight for required items is higher than µ, the rate
for optional items, this leads to an improvement of overall profit. Additionally, filling
the remaining capacity in the knapsack using the optional item of action n yields
the objective value for the feasible set S = {i}. Hence, h(µ) ≥ pmax. Similarly, if
pmax = min(µ, po

n(µ)), using the above strategy for the feasible set S = ∅ shows that
h(µ) ≥ pmax.

Overall, the dynamic program computes a solution set S ′ for a marginal profit
value µ which has the highest scaled profit. The unscaled profit of S ′ is at least the
scaled profit of the same set. Since S ′ has the highest scaled profit of any set for
marginal profit µ, its scaled profit is at least that of the set S∗

µ for any marginal profit
µ, including the optimal marginal profit µ∗ and corresponding optimal set S∗. Above,
we have shown that the scaled profit of S∗

µ is at least (1 − δ) · h(µ) for any µ. Hence,
we have shown that the unscaled profit of S ′ is at least (1 − δ) · h(µ∗). In combination
with Lemmas 3.28 and 3.29, we get

f(S ′) ≥ f̂(S ′) ≥ (1 − δ) · h(µ∗) = (1 − δ) · f̂(Ŝ∗) ≥ (1 − δ)2 · f(S∗) ≥ (1 − ε)f(S∗) .

3.2.3 Beyond ϱE-Optimality
In this section, we show that our approach for ϱE-optimal instances does not achieve a
good approximation ratio for general independent instances. Finding a scheme which
guarantees a constant-factor approximation for such instances remains an interesting
open problem for future work.

Consider the following example with n = 2 actions and k = 2 signals, i.e., there
can be a signal for both actions. The state space of action 1 is a singleton, Θ1 = {θ1}
with (ϱ(θ1), ξ(θ1)) = (0, 1). Action 2 has two different types, Θ2 = {θ21, θ22} with
(ϱ(θ21), ξ(θ21)) = (1, 0) and (ϱ(θ22), ξ(θ22)) = (0, 0). Both types have a probability of
q21 = q22 = 1/2. This means that ϱE = 1/2, realized by action 2.

An optimal direct scheme φ∗ has the following form. In the first state of nature
(θ1, θ21), action 2 is recommended. In the second state of nature (θ1, θ22), a signal
for action 1 is sent. This way, R can enjoy full information and in return allow S
to obtain some utility when there is no utility for R to be had. Hence, following the
recommendation is a best response for R and the scheme is persuasive. The expected
utility for S is uS(φ∗) = 1/2.

3.3. Guarantees for Limited Signals 51

Now, consider our approach of solving (3.4). The second constraint of the linear
program (3.3) requires the conditional expectation behind a signal for each action
individually to be at least ϱE. Since the signals for action 1 can never provide a positive
conditional expectation for R, the optimal solution to (3.3) is x∗

1 = 0, x∗
21 = x∗

22 = 1/2.
Thus, z∗

1 = 0, z∗
2 = 1, and g1(z∗

1) = g2(z∗
2) = 0. This implies that the optimal value for

the linear program (3.4) is 0. Clearly, the optimal value of (3.4) is not an upper bound
for the expected sender utility of an optimal scheme.

On a more fundamental level, we can see using the example above that there are
independent instances in which the sender’s ability to extract value from one action
depends on the state of another action. Our approach focuses on the individual states
of the independent actions and does not take the possible correlation between different
actions into account.

3.3 Guarantees for Limited Signals
In this final section of our discussion of offline Bayesian persuasion, we compare the
expected utility S can extract when using a scheme with a restricted signal space with
k signals to the expected utility of a scheme with at least n signals in the same instance.

We denote by OPTk the expected sender utility of an optimal scheme with k signals.
Since more than n signals do not provide additional value for S, we will compare OPTk

to OPTn.
We again discuss symmetric instances and independent, ϱE-optimal instances sep-

arately.

3.3.1 Symmetric Instances
In order to show a tight approximation ratio of k/n for symmetric instances, we define
the following Imitation Scheme φImi for instances with n actions and k signals. First,
it runs an optimal symmetric and persuasive scheme φ∗

n for n signals and considers the
resulting signal i ∈ [n]. If i ∈ [k], φImi forwards the signal to R. Otherwise, φImi draws
i′ ∈ [k] uniformly at random and sends i′ to R. Hence, the scheme φImi is clearly direct
and symmetric – φ∗

n is symmetric and whenever the recommendation is not directly
forwarded, a uniform random action from [k] is recommended.

In the following proposition, we show that φImi is persuasive and guarantees the
approximation ratio of k/n for symmetric instances. The running time for the scheme
depends on the running time of φ∗

n. An obvious candidate for φ∗
n would be the Slope-

Algorithm discussed in Section 3.1.2. Hence, the existence of an efficient probability
oracle for queries Q1 and Q2 (cf. Section 3.1.3) implies a polynomial running time in
the input size of the instance.

Proposition 3.30
The Imitation Scheme is symmetric, direct, and persuasive in symmetric instances.
For every k ≥ 1 it holds that uS(φImi) ≥ k/n · OPTn. There exists a random-order
instance such that OPTk ≤ k/n · OPTn.

Proof. Before showing the upper and lower bounds on the approximation ratio, let us
prove the remaining properties of φImi claimed in the proposition. Clearly, φImi is a
direct and symmetric scheme. Let us now show that φImi is persuasive. Consider a

52 3. Bayesian Persuasion

recommendation for action i ∈ [k]. With probability k/n, i was recommended by φ∗
n and

with probability 1−k/n, a different action i′ /∈ [k] was recommended. Hence, conditional
on a recommendation for i, the type distribution of this action is Dyes with probability
k/n and Dno with probability 1− k/n, where Dyes and Dno are the distributions resulting
from φ∗

n. If action i is not recommended, it was not recommended by φ∗
n, either. Hence,

the underlying type distribution is Dno. Since φImi is a symmetric scheme, each action
is recommended with a probability of 1/k. Additionally, the a priori expectation for R
for any action is ϱE. Hence, the following holds for every action i ∈ [k]

1
k

·
(︄
k

n
· ϱyes +

(︄
1 − k

n

)︄
· ϱno

)︄
+ k − 1

k
· ϱno = 1

n
· ϱyes +

(︃
1 − 1

n

)︃
· ϱno = ϱE ,

where ϱyes and ϱno denote the expected utility for R corresponding to distributions
Dyes and Dno, respectively. Since φ∗

n is symmetric and persuasive, ϱyes ≥ ϱE. This in
turn implies that k/n · ϱyes + (1 − k/n) · ϱno ≥ ϱE. Since φImi is a symmetric scheme,
Lemma 3.10 shows that φImi is a persuasive scheme.

For the approximation guarantee achieved by φImi, we can see that with probability
k/n, φImi recommends the same action as φ∗

n. Since φ∗
n is symmetric, each action is

recommended with equal probability. This means that uS(φImi) ≥ k/n ·OPTn and φImi

guarantees an approximation ratio of k/n.
We finish the proof by showing the upper bound on OPTk. To this end, we use

a random-order instance with n different types (θ1, θ2, . . . , θn), where (ϱ(θ1), ξ(θ1)) =
(1, 1) and (ϱ(θi), ξ(θi)) = (0, 0) for all i > 1. Clearly, both S and R prefer θ1 over all
other states. Hence, if S has access to n signals, the expected utility for S and R is 1.
If there are only k signals, Lemma 3.5 tells us that there exists an optimal signaling
scheme which recommends the actions from [k]. Hence, if θ1 is not among the first k
actions, a type with utility 0 has to be recommended. This means that the probability
that θ1 can be recommended and thus the expected utility for S is only k/n, yielding
the upper bound of OPTk ≤ k/n · OPTn. Together with the lower bound above, this
yields a tight approximation.

3.3.2 Independent Instances
We use an IID instance to show an upper bound of O(k/n) on the approximation ratio for
independent instances. Since IID instances are symmetric, they satisfy ϱE-optimality.
Hence, we are able to show an asymptotically tight approximation ratio of Θ(k/n) for
ϱE-optimal independent instances.

Lemma 3.31
There exists an IID instance such that OPTk ≤ e

e−1 · k
n

· OPTn.

Proof. For every action, there exist only 2 different types in the distribution. A good
type θ1 with qθ1 = 1/n and (ϱ(θ1), ξ(θ1)) = (1, 1) as well as a bad type θ0 with qθ0 = 1−1/n

and (ϱ(θ0), ξ(θ0)) = (0, 0). If there is an action i ∈ [k] with type θ1, it is clearly optimal
for S and R that action i is recommended. To bound the approximation ratio of OPTk

OPTn
,

first observe that
OPTk ≥ k

k + 1 OPTk+1 for all k ≥ 1. (3.12)

3.3. Guarantees for Limited Signals 53

Algorithm 5: ActionsReduce
Input: Distributions D1 = (Θ1, q1),D2 = (Θ2, q2), . . . ,Dn = (Θn, qn), s.t.∑︁

j qn,j · ϱnj = ϱE and ∑︁j qn,j · ξnj = maxi∈[n] :
∑︁

j
qi,j ·ϱij=ϱE

∑︁
j qi,j · ξij,

parameter 2 ≤ k ≤ n
1 Compute f([n− 1]).
2 For every i ∈ [n], let z∗

i be the values of the optimal solution in f([n− 1]).
3 Let S be the set of the k − 1 actions from [n− 1] with largest values gi(z∗

i)
4 return S

This holds because we can use φImi to approximate the expected sender utility for k
signals in the IID instance with k + 1 actions. Since uS(φImi) with k actions clearly is
a lower bound to OPTk, Proposition 3.30 shows (3.12).

It is straightforward to see that OPT1 = 1/n. Clearly, (3.12) implies OPTk

k
≥ OPTk+1

k+1
and repeated application of this inequality shows that 1

n
= OPT1

1 ≥ OPTk

k
for all k ≥ 1.

Hence, we have

OPTk

OPTn

/︃
k

n
= 1

OPTn

· n · OPTk

k
≤ 1

OPTn

= 1
1 −

(︂
1 − 1

n

)︂n .

Observe that 1
1−(1− 1

n)n monotonically increases with n and approaches 1
1− 1

e

= e
e−1 ≈

1.582 for n → ∞. Hence, for every k and n, the approximation ratio of OPTk

OPTn
is at

most k
n

· e
e−1 .

For the lower bound of Ω (k/n) for ϱE-optimal independent instances, we consider
the following Independent-Imitation Scheme φImiIS. Similar to the schemes in Sec-
tions 3.2.1 and 3.2.2, we use a two-step approach of first choosing a subset S ⊆ [n− 1]
of k − 1 actions and then, in the second step, computing the signaling scheme for
S ∪ {n}. For the latter step, we again use ComputeSignal (Algorithm 4). For the
former step, we use the procedure ActionsReduce (Algorithm 5). In this algorithm,
f([n− 1]) (cf. (3.4)) is computed, which distributes a mass of 1 to all n actions. Then,
the k − 1 most profitable actions from [n− 1], i.e., the actions i ∈ [n− 1] with highest
value gi(z∗

i), form the set S. Here, z∗ constitutes the assignment of mass to the actions
in the optimal solution of f([n− 1]).

In both ComputeSignal and ActionsReduce, the running time is dominated by
solving a linear program. Hence, the scheme can be implemented in time polynomial
in the input size.

Theorem 3.32
The Independent-Imitation Scheme is direct and persuasive for ϱE-optimal independent
instances with k signals. It can be implemented in time polynomial in the input size.
For every k ≥ 2,

uS(φImiIS) ≥
(︃

1 −
(︂
1 − 1

k

)︂k
)︃

·
(︂
1 − 1

k

)︂
· k
n

· OPTn .

Proof. Observe that f([n − 1]) ≥ OPTn. This holds due to (3.5), i.e., f(S) ≥
uS
(︂
φ∗

S∪{n}

)︂
. We denote by z∗

i and x∗
i the optimal solutions for action i ∈ [n] in

54 3. Bayesian Persuasion

f([n− 1]). Clearly, considering only the actions i ∈ S, z∗
i and x∗

i constitute a feasible
solution for f([n − 1]), and since the k − 1 most profitable actions have been chosen,
it holds that

∑︂
i∈S∪{n}

gi(z∗
i) ≥ k − 1

n
· f([n− 1]) ≥

(︃
1 − 1

k

)︃
· k
n

· OPTn .

From Lemma 3.24, we know that the scheme resulting from ComputeSignal for a set S
achieves at least a (1 − (1 − 1/k)k)-approximation of f(S). Hence, the overall approxi-
mation follows. By Lemma 3.26, we know that ComputeSignal produces a direct and
persuasive scheme for any set S ⊆ [n− 1], so φImiIS is direct and persuasive.

With this result, we conclude our discussion of offline Bayesian persuasion.

55

Chapter 4

Online Bayesian Persuasion

In this chapter, we discuss the Bayesian persuasion game with a dynamic component,
namely with online arrival. In contrast to the setting in Chapter 3, the types of the
actions will be revealed sequentially in a round-wise fashion and S has to send a signal
in every round. The receiver – only knowing the signal – then has to immediately
decide whether to take the current action or wait for the next one. If R decides to take
the action, the process ends and R and S get their respective utilities. If, on the other
hand, R decides to forego the action, it is lost forever and the next action is revealed
to S.

We discuss this main setting in two variants. In the first section, we consider a
scenario with distributional information on the action types, similar to the independent
setting in the previous chapter. Here, the instances are reminiscent of the classic
prophet inequality problem [60]. In this setting, a gambler sees a sequence of n boxes
which contain some a priori unknown prizes. The gambler is trying to find the best
prize among the sequence. Each prize is drawn according to a known box-specific prior
distribution. When opening a box, the gambler sees the prize inside but then has to
immediately and irrevocably decide whether to take the current prize or forego it and
be allowed to open the next box. The performance of the gambler is measured against
an all-knowing prophet – who always picks the best prize. In the realm of Bayesian
persuasion, we model this as follows. In every round, the sender observes the action
type of the current action and sends a signal to the receiver, who then has to make
a decision. We compare the performance of our online schemes to that of an optimal
persuasive “prophet” sender, i.e., an optimal persuasive offline scheme.

In the second part, we consider instances that are more in line with the classic
secretary problem [38], in which a decision maker tries to find the best candidate for
a position. While the decision maker knows the total number of candidates n, there is
no information on the quality of the candidates. The n candidates arrive one-by-one
in uniform random order. The decision maker performs an interview upon the arrival
of each candidate and uses this information to rank the interviewed candidates. Im-
mediately after seeing a candidate, an irrevocable decision whether to hire the current
candidate, thereby filling the position, or to go on the the next interview has to be
made. The objective of the decision maker is to maximize the probability of hiring the
best of the n candidates.

Similar to the previous setting, the sender again observes the type of the current
action and sends a signal to R who has to decide whether to take the action or wait for

56 4. Online Bayesian Persuasion

the next round. Since the random order of actions provides symmetry for this setting,
it is somewhat reminiscent of the symmetric instances in Chapter 3. While the online
arrival certainly provides a new aspect, the possible types and hence the utility values
of actions are completely unknown – not only drawn from known distributions.

Hence, the key difference between the variants discussed in this chapter lies in the
information available a priori to S and R. In both scenarios n, the total number of
actions, is known. While the first variant offers a fixed order of distributions for the
actions’ types, the second one offers almost no information but the guarantee that
actions are revealed in uniform random order.

4.1 Prophet Inequalities for Persuasion
In this section, we discuss our first variant of online Bayesian persuasion. The con-
tents are based on [47]. The model we consider is somewhat similar to the model of
Section 3.2 on independent instances in the previous chapter. There are n commonly
known distributions D1 = (Θ1, q1), . . . ,Dn = (Θn, qn). In each round i = 1, . . . , n, the
type θi of action i is independently drawn according to Di. Again, we assume that
|Θi| = m for all i ∈ [n], possibly using dummy types j′ with qij′ = 0 to fill up the type
spaces.

The process is the following.

1. Both S and R know the distributions D1, . . . ,Dn of types of the n actions.

2. S commits to a signaling scheme φ.

3. R learns the scheme φ.

4. In each round i = 1, . . . , n:

4.1. S learns the type θi of action i.
4.2. S sends a signal σi ∈ Σ according to φ to R.
4.3. R decides whether to take action i based on signals σ1, . . . , σi. If R takes

action i, the process ends.

Again, we focus on direct and persuasive schemes. Due to the online nature of the
problem, Lemma 2.1 is not directly applicable. Yet, one can see that it is still without
loss of generality to only consider direct and persuasive schemes. A decision has to be
made by R in every round. Either R takes the current action or foregoes it and waits for
the next action. Hence, this can be reflected on the sender’s side by a recommendation
to take or not to take the current action. More intricate messages from S can still
only lead to a decision whether to take the current action or not. Thus, replacing a
message by signal YES whenever R would have taken the action and NO otherwise is
without loss of generality. In combination, this means that σi ∈ {YES,NO} for every
round i ∈ [n]. Additionally, exactly one YES-signal is sent, making the sender’s signal
a direct recommendation for a single action. If R takes the corresponding action, the
process ends. Otherwise, if R deviates, S will only send NO-signals, thereby not giving
R further information. Thus, we can assume that S uses a direct scheme.

4.1. Prophet Inequalities for Persuasion 57

Additionally, if a direct scheme φ is not persuasive, R is not inclined to follow the
recommendation given by φ and rather takes an action i without a recommendation.
Hence, S can adapt φ and give a recommendation for action i such that R does not
want to deviate from the recommendations. This changes neither the sender’s nor the
receiver’s expected utility.

With these preliminaries, we begin our discussion of optimal online signaling. We
start by discussing a simple scheme for IID instances.

4.1.1 A Simple Scheme for the IID-Case

In the previous chapter, we discussed the offline case of Bayesian persuasion and noted
Theorem 3.2, a result by Dughmi and Xu [36]. They solve optimal signaling for IID
actions in polynomial time using a linear program, leveraging the symmetry of the
instances. They additionally give the following simpler linear program (4.1) for IID
instances which uses fewer constraints.

Max. n ·
m∑︂

j=1
xj · ξj

s.t. n ·
m∑︂

j=1
xj = 1

xj + (n− 1) · yj = qj ∀ j ∈ [m]
m∑︂

j=1
xj · ϱj ≥

m∑︂
j=1

yj · ϱj

xj, yj ≥ 0 ∀ j ∈ [m]

(4.1)

The intuition for this program is that xj is the ex-post probability of receiving a
recommendation for type j of action i, where the symmetry of the instance allows us
not to discriminate different actions i ̸= i′ but rather consider a single probability xj

for every type j ∈ [m]. Additionally, this leads to the first constraint of n ·∑︁m
j=1 xj = 1,

since all n actions are recommended with equal probability 1/n. Similar to xj, yj is the
ex-post probability of not getting a recommendation on type j. The third constraint
relaxes the persuasiveness constraints of the original linear program by only requiring
that taking a recommended action is at least as profitable as taking a non-recommended
one for R. Finally, the objective function represents the expected utility for S. Note
that the second constraint implies yj = qj−xj

n−1 with yj ≥ 0 whenever xj ≤ qj. Hence,
the constraints yj ≥ 0, xj + (n − 1) · yj = qj, and ∑︁m

j=1 xj · ϱj ≥ ∑︁m
j=1 yj · ϱj can be

replaced by xj ≤ qj and ∑︁m
j=1 xj · ϱj ≥ ϱE ·∑︁m

j=1 xj. To see this, observe that

m∑︂
j=1

xj · ϱj ≥
m∑︂

j=1
yj · ϱj =

m∑︂
j=1

qj − xj

n− 1 · ϱj =
m∑︂

j=1

qj · ϱj

n− 1 −
m∑︂

j=1

xj · ϱj

n− 1 ,

which implies ∑︁m
j=1 xj · ϱj ≥ 1

n

∑︁m
j=1 qj · ϱj = ϱE · ∑︁m

j=1 xj due to ∑︁m
j=1 xj = 1/n and

ϱE = ∑︁m
j=1 qj · ϱj.

58 4. Online Bayesian Persuasion

This allows us to use the following equivalent formulation of linear program (4.1).

Max. n ·
m∑︂

j=1
xj · ξj

s.t. n ·
m∑︂

j=1
xj = 1

m∑︂
j=1

xj · ϱj ≥ ϱE ·
m∑︂

j=1
xj

xj ∈ [0, qj] ∀ j ∈ [m]

(4.2)

Observe that this linear program is very similar to (3.3) with z = 1/n. Since (4.2)
is not only for independent but also identical distributions, symmetry can be used
here. This allows us to get the overall expected utility from the objective function of
a single linear program rather than having to solve a linear program for every action.
Note that symmetry is enforced by the first constraint ∑︁m

j=1 xj = 1/n as well as the
usage of a single variable xj instead of individual variables xij for the different actions
i = 1, . . . , n.

Consider an optimal persuasive scheme φ∗. In Section 3.1.1, we have seen that φ∗

can be assumed to be symmetric without loss of generality. Consider the corresponding
ex-post distribution xφ∗ . Clearly, it is a feasible solution for (4.2). Hence, an optimal
solution x∗ for (4.2) provides an upper bound on the sender’s expected utility from
a persuasive scheme. Since x∗ only satisfies a relaxed set of constraints, it might not
directly correspond to a persuasive signaling scheme. Dughmi and Xu turn x∗ into
the ex-post distribution of a persuasive scheme by using independent coin flips with
probability

x∗
θi

qθi
for each action i with type θi. Out of all actions whose coins came

up heads, their scheme randomly proposes one of these. If none of the coins came up
heads, the scheme proposes a random action. Recall that Dughmi and Xu discuss the
offline model, which means that the scheme has access to all realizations at the same
time.

We adopt this approach as our Simple Scheme for IID (Algorithm 6) for the online
model. The scheme ensures that exactly one YES-recommendation is sent. In each
round i ∈ [n− 1], if no YES-signal has been sent, such a signal is issued independently
with probability

x∗
θi

qθi
. Otherwise, a NO-signal is sent. Finally, in the last round, the

signal is YES if such a signal has not been sent, and otherwise the signal is NO. Clearly,
the scheme only requires information available in round i to give a recommendation.
Hence, it can be used online. It is persuasive and guarantees a (1 − 1/e)-approximation
of the optimal persuasive scheme for the offline case.

Proposition 4.1
The simple scheme for IID is persuasive in the online setting and yields a (1 − 1/e)-
approximation.

Proof. For persuasiveness, we need to show that it is in the receiver’s interest to take
action i if σi = YES. By definition of the algorithm, σi = YES for exactly one i ∈ [n].
Let us assume that σi = YES for i < n. Then, R gets a conditional expected utility of∑︁m

j=1 qj · xj

qj
· ϱj∑︁m

j=1 qj · xj

qj

=
∑︁m

j=1 xj · ϱj∑︁m
j=1 xj

≥ ϱE

4.1. Prophet Inequalities for Persuasion 59

Algorithm 6: Simple Scheme for IID
Input: Distribution D = (Θ, q), number of rounds n

1 Compute an optimal solution x∗ for (4.2).
2 Set recSent = False.
3 for round i = 1, . . . , n− 1 do
4 Observe type θi of the action in round i.
5 if recSent = True then Signal NO.
6 else
7 Draw x ∼ Unif[0,1].
8 if x ≤

x∗
θi

qθi
then Send signal YES and set recSent = True.

9 else Send signal NO.

10 for round n do
11 if recSent = False then Send signal YES.
12 else Send Signal NO.

by following the recommendation. Not taking action i and waiting for some round
i′ > i only gives R an expected utility of ϱE since S will not provide any information
after the first signal YES. Additionally, each action has an a priori expectation of ϱE

for R. Since the conditional expectation for a YES-signal is at least ϱE, this means
that the conditional expectation for a NO-signal can be at most ϱE. Hence, for rounds
i = 1, . . . , n − 1, the scheme is persuasive. Finally, if round n is reached without
a previous YES-signal, the signal is σn = YES regardless of the type of action n.
This means that the expectation for R is ϱE. Clearly, this shows that the scheme is
persuasive which means that R will follow the recommendations given by S.

To compute the expected utility for S, first consider round n. By construction of
the scheme, the signal is always YES if no previous YES-signal was sent. For the sake
of analysis, let us consider a more elaborate approach. Either, the signal is a “regular”
YES-signal due to (4.2), or, if the mechanism were to decide to signal NO in round n
based on (4.2), an auxiliary signal YES′. We lower bound the expected utility for S by
0 when the signal YES′ is sent. This means that in every round i ∈ [n], the expected
utility for S conditional on a signal YES is n ·∑︁m

j=1 xj · ξj since ∑︁m
j=1 xj = 1/n. This is

exactly the objective function of (4.2), which upper bounds the expected utility of a
persuasive signaling scheme in the offline case. Since ∑︁m

j=1 xj = 1/n, a “regular” signal
YES is sent with probability 1 − (1 − 1/n)n ≥ 1 − 1/e in one of the n rounds.

4.1.2 Beyond IID
In the following, we move away from IID instances and discuss general independent
distributions. Theorem 3.3 tells us that the offline scenario proves to be hard to solve.
Interestingly, an optimal online scheme can be computed in polynomial time, where we
use backwards induction and solve a linear program for each round i = n − 1, . . . , 1.
Clearly, if no previous action has been recommended, a recommendation to take the
action in the final round regardless of the type θn cannot decrease the expected utility
for R. The same holds for S, hence, in an optimal persuasive scheme, the last action will

60 4. Online Bayesian Persuasion

be recommended if no action has previously been recommended. This means that the
expected utility for S and R when reaching round n can be computed directly. Using
the expected utility for round i+1, we can then compute the optimal recommendation
probabilities for round i, for all i = n − 1, . . . , 1. The result is summarized in the
following theorem.

Theorem 4.2
An optimal persuasive signaling scheme in the online setting can be computed in poly-
nomial time.

Proof. We focus on direct signaling schemes. In such a scheme, at most a single signal
YES will be sent in all n rounds. Hence, we can assume that the online process stops
after the first YES signal. Either, R takes the current action, or S does not provide
any additional information in the upcoming rounds.

Consider the case that round i ∈ [n] is reached with σ1, . . . , σi−1 = NO. At the
beginning of round i, some type j is revealed. By xij we denote the probability that
σi = YES conditioned on that particular type. The optimal value for xij can be
computed using the optimal choices for the subsequent rounds. To this end, we denote
the expected utility for R and S from an optimal mechanism in rounds i, i+1, . . . , n by
ϱi and ξi, respectively. Similarly, we use ϱi

E to denote the maximum expected utility
for R from a single round, i.e., ϱi

E = maxℓ∈{i,...,n}
∑︁m

j=1 qℓj · ϱℓj.
Since ϱij, ξij ≥ 0 for all i ∈ [n], j ∈ [m], it is without loss of generality to set xnj = 1

for all j ∈ [m]. Both R and S (weakly) prefer taking any action rather than no action.
Hence, if the last round is reached without a previous recommendation for an action,
a signal σn = YES should be sent. Thus, ϱn = ∑︁m

j=1 qnj · ϱnj and ξn = ∑︁m
j=1 qnj · ξnj.

Now, assume we know the optimal persuasive scheme for rounds i+1, . . . , n. Then,
in round i, some type j is revealed with probability qij. Hence, if the signal is YES,
the expected utility for S is qij · ξij, and if it is NO, the expected utility for S is
qij · ξi+1 – as long as the resulting scheme is persuasive. Hence, S tries to maximize∑︁m

j=1 qij · xij · ξij +∑︁m
j=1 qij · (1 − xij) · ξi+1 under persuasiveness constraints. Note that

this is equal to

ξi+1 +
m∑︂

j=1
qij · xij ·

(︂
ξij − ξi+1

)︂
(4.3)

since ∑︁m
j=1 qij = 1.

The receiver’s expected utility for taking an action after having received a YES
signal is

∑︁m

j=1 qij ·xij ·ϱij∑︁m

j=1 qij ·xij
. If R dismisses the action in round i, S will not send additional

information and hence R can only rely on the information available a priori. Thus, R
would choose a subsequent round providing the a priori best expected utility which is
ϱi+1

E . This means that R would follow a signal YES in round i if ∑︁m
j=1 qij · xij · ϱij ≥∑︁m

j=1 qij · xij · ϱi+1
E , or, equivalently,

m∑︂
j=1

qij · xij ·
(︂
ϱij − ϱi+1

E

)︂
≥ 0 . (4.4)

If, on the other hand, the signal σi = NO, the receiver gets an expected utility
of

∑︁m

j=1 qij ·(1−xij)·ϱij∑︁m

j=1 qij ·(1−xij) when taking the action despite the signal. Otherwise, if follow-

4.1. Prophet Inequalities for Persuasion 61

ing the recommendation, R gets an expected utility of
∑︁m

j=1 qij ·(1−xij)·ϱi+1∑︁m

j=1 qij ·(1−xij) by continu-
ously following the recommendations given by the optimal persuasive mechanism. This
means that R would dismiss the action in round i when receiving a signal σi = NO if∑︁m

j=1 qij · (1 − xij) · ϱi+1 ≥ ∑︁m
j=1 qij · (1 − xij) · ϱij. Since ∑︁m

j=1 qij = 1 for all i ∈ [n], this
can be equivalently expressed as

m∑︂
j=1

qij · xij ·
(︂
ϱij − ϱi+1

)︂
≥

m∑︂
j=1

qij · ϱij − ϱi+1 . (4.5)

Given the values ϱi+1
E , ϱi+1, and ξi+1 for some i ∈ [n− 1], the objective (4.3) as well as

the constraints (4.4) and (4.5) are all linear functions. Hence, the optimal mechanism
for round i can be determined using the following linear program, which, in turn,
produces the values ϱi and ξi.

Max. ξi+1 +
m∑︂

j=1
qij · xij · (ξij − ξi+1)

s.t.
m∑︂

j=1
qij · xij · (ϱij − ϱ̄i+1

E) ≥ 0
m∑︂

j=1
qij · xij · (ϱij − ϱi+1) ≥

∑︂
j

qij · ϱij − ϱi+1

xij ∈ [0, 1] ∀ j ∈ [m] .

(4.6)

Since ϱn and ξn are the a priori expectation for R and S, respectively, and ϱi
E can

be precomputed for any i ∈ [n] just using the known distributions D1, . . . ,Dn, we are
able to find the optimal mechanism using backwards induction and a sequence of n− 1
linear programs.

We have yet to show that the linear programs indeed produce a persuasive mecha-
nism. By the inductive assumption, the mechanism obtained from the linear programs
for rounds i+ 1, . . . , n is persuasive. Hence, ϱi+1 ≥ ϱi+1

E . Otherwise, R would certainly
deviate to the most profitable round. This observation implies that (4.6) is feasible. If
the a priori receiver expectation of round i is higher than the highest receiver expecta-
tion from the remaining rounds, i.e., ∑︁m

j=1 qij · ϱij ≥ ϱi+1
E , then, setting xij = 1 for all

j ∈ [m] satisfies all constraints. This makes sense for R, as this means that R a priori
prefers round i to rounds i+ 1, . . . , n.

Similarly, if the current round is a priori less profitable than a subsequent round,
i.e., ∑︁m

j=1 qij · ϱij < ϱi+1
E , then 0 > ∑︁

j qij · ϱij − ϱi+1
E ≥ ∑︁

j qij · ϱij − ϱi+1, and setting
xij = 0 for all j ∈ [m] satisfies all constraints. Without additional information by S, a
rational R would wait for the a priori more profitable round.

As we will show below, there are instances for which an online sender cannot ob-
tain a positive approximation to an optimal prophet sender. The following theorem
encapsulates this.

Theorem 4.3
There are instances in which no online signaling scheme yields a positive approximation
ratio.

Before we begin with the proof, we give a short intuition why this holds. Since the
sender’s scheme is public knowledge, R knows whether S uses information from future

62 4. Online Bayesian Persuasion

rounds for the signal in the current round i. An offline or prophet S is able to use the
complete state of nature θ1, . . . , θn, whereas an online S is restricted to the first i actions
and their types θ1, . . . , θi. Hence, an offline sender can credibly convince the receiver
to wait for an action with a good type in a round with an a priori low expectation
whereas in the online case, a save option in an early round is always preferred by R.

Proof of Theorem 4.3. Consider the following instance with n = 2 actions. The first
action has a deterministic type θ1 with ϱ1 = 1, ξ1 = 0. The second action has two
types, each is drawn with probability 1/2. Type θ21 has values ϱ21 = 2 − 2ε for some
ε ∈ (0, 1/2) and ξ21 = 1. The other type has values ϱ22 = ξ22 = 0.

Action 1 yields an a priori expectation of 1 for R, whereas action 2 only provides an
a priori expectation of 1−ε < 1. Hence, an online sender cannot persuade R to wait for
the second round. Thus, for any persuasive online scheme φon, we have uS(φon) = 0.

An offline sender on the other hand knows which type the second action has. Since
θ21 provides the highest profit to both S and R, an optimal offline scheme φ∗

off recom-
mends action 2 if and only if θ21 is realized and action 1 otherwise. Thus, R takes the
best action in both cases and the scheme is persuasive. The sender gets an expected
utility of uS(φ∗

off) = 1/2. This shows that no persuasive online scheme can achieve a
positive approximation ratio. Theorem 4.3

To contrast this negative result, we identify instances for which S can extract a
constant approximation of the optimal offline signaling scheme in the following section.

4.1.3 Satisfactory Status Quo
In this section, we describe our assumption which we term “Satisfactory Status Quo”
or SSQ for short. Under this assumption, we are able to design a persuasive online
scheme which guarantees a constant approximation of the optimal offline scheme.

The motivation behind SSQ is that there exists a canonical deviation option for R,
i.e., the status quo which is satisfactory. Consider the example from the introduction
of a customer shopping for a car. Whenever the customer has a vehicle that is still
working, clearly, the new one should be a significant upgrade. Surely, the customer
will only buy a new car if it is an improvement over the old one justifying a substantial
financial investment. More formally, the assumption requires two conditions.

1. There exists an external option X /∈ [n] which has the best expectation for R,
i.e., ϱE = ∑︁m

j=1 qXj · ϱXj ≥ maxi∈[n]
∑︁m

j=1 qij · ϱij that can be chosen by R at any
time in the online process.

2. The instance is ϱE-optimal (cf. Section 3.2).

The first condition can equivalently be replaced by the condition that action n in the
final round has the highest a priori expectation for R. Clearly, if n has the highest
a priori expectation for R, waiting for the final round and dismissing the actions in
other rounds is a viable strategy for R. Similarly, if there exists an external option
X /∈ [n], relabeling it as action n + 1 and thereby making it the final action satisfies
the condition. In the following, we will assume that the there is an external option
X /∈ [n] to simplify the exposition.

We have already seen how to get an upper bound on the sender’s expected util-
ity in the offline case for ϱE-optimal instances with n signals through (3.5), i.e.,

4.1. Prophet Inequalities for Persuasion 63

Algorithm 7: Simple Scheme for SSQ
Input: Distributions (Di)i∈[n], factors d = (di)i∈[n], online sequence of types

θ1, . . . , θn, outside option X
1 Compute an optimal solution x∗ for (4.7).
2 Set recSent = False.
3 for round i = 1, . . . , n do
4 Observe type θi of the action in round i.
5 if recSent = True then Signal NO.
6 else
7 Draw x ∼ Unif[0,1].
8 if x ≤ 1 − di then Signal NO.
9 else

10 Draw x ∼ Unif[0,1].
11 if x ≤

x∗
θi

qθi
then Send signal YES and set recSent = True.

12 else Send signal NO.

f([n− 1]) ≥ uS
(︂
φ∗

[n]

)︂
. The corresponding linear program is a natural extension of

the linear program (4.2) for the IID case and directly corresponds to (3.4) and (3.3)
for S = [n− 1].

Max.
n∑︂

i=1

m∑︂
j=1

xij · ξij

s.t.
n∑︂

i=1

m∑︂
j=1

xij ≤ 1
m∑︂

j=1
xij · ϱij ≥ ϱE ·

m∑︂
j=1

xij ∀ i ∈ [n]

xij ∈ [0, qij] ∀ i ∈ [n], j ∈ [m]

(4.7)

Similar to the simple scheme for IID, we define our simple scheme for SSQ based on
an optimal solution x∗ of linear program (4.7). This allows us to prove the main result
of this section, namely a tight 1/2-approximation for instances satisfying SSQ. In round i
of the mechanism, with probability 1−di, signal σi = NO is sent without considering the
type of action i. This ensures that earlier rounds do not get a disproportionate amount
of recommendations just because they are early. Note that for the similar mechanism
ComputeSignal (Algorithm 4), we were able to choose the order in which actions are
considered. In this online version on the other hand, the order is predetermined. Due
to these damping factors d, it can very well happen that no signal YES is sent during
the online process. This can be interpreted as a recommendation to stick with the
status quo or take the external action.

Theorem 4.4
For a suitable choice of parameters d, the simple scheme for SSQ is persuasive in
the online setting satisfying SSQ and yields a 1/2-approximation. Further, there are
instances satisfying SSQ for which no better approximation is possible.

64 4. Online Bayesian Persuasion

Proof. We begin by showing that for every d ∈ [0, 1]n, the resulting scheme is persua-
sive. Consider some round i ∈ [n]. With probability di · xij

qij
, a signal σi = YES is sent

for type j. First, assume that σk = NO for all rounds k = 1, . . . , i − 1 and σi = YES.
Following that recommendation and taking the action yields an expected utility for R
of

m∑︂
j=1

qij · di · xij

qij

· ϱij

m∑︂
j=1

qij · di · xij

qij

=
di ·

m∑︂
j=1

xij · ϱij

di ·
m∑︂

j=1
xij

≥ ϱE ,

where the inequality follows from the second constraint of (4.7). Not taking the action
in round i means that S will not reveal any more information. Hence, the expectation
for R cannot exceed ϱE, the value which is guaranteed by the outside option, and, by
assumption, upper bounds the expectation of the current action. Thus, it is in the
receiver’s interest to take the action in round i on a YES-signal.

If σk = NO for k = 1, . . . , i, the receiver’s expected utility for taking the action
regardless is

m∑︂
j=1

qij ·
(︄

1 − xij · di

qij

)︄
· ϱij

m∑︂
j=1

qij ·
(︄

1 − xij · di

qij

)︄ =

m∑︂
j=1

(qij − xij · di) · ϱij

m∑︂
j=1

qij − xij · di

=

m∑︂
j=1

qij · ϱij − di ·
m∑︂

j=1
xij · ϱij

1 − di ·
m∑︂

j=1
xij

≤
ϱE − di · ϱE ·

m∑︂
j=1

xij

1 − di ·
m∑︂

j=1
xij

= ϱE .

The inequality comes from the fact that ∑︁m
j=1 qij · ϱij ≤ ϱE due to our assumption SSQ

and the second constraint of (4.7). Since R can guarantee an expected utility of at
least ϱE by following the signal – either because there is a signal YES in a later round
i′ > i or by taking the outside option – it is in the receiver’s interest to follow the
recommendation of the scheme. Combining these two cases shows persuasiveness of
the scheme for any d ∈ [0, 1]n.

To show that the simple scheme for SSQ guarantees an approximation ratio of at
least 1/2 compared to the expected utility of an optimal offline scheme, it suffices to
show that the simple scheme provides an expected utility of at least 1/2 of the optimal
value of the linear program (4.7).

To this end, we define damping factors di such that for each round, the probability
for the scheme to consider sending a signal is exactly 1/2. We follow an approach by
Chawla et al. [28] as well as Alaei [2]. We define ri = Pr[reaching round i]. Clearly,
r1 = 1. For i ≥ 1, the following recursion holds

ri+1 = ri ·

⎛⎝1 − di ·
m∑︂

j=1
xij

⎞⎠ ,

since the probability to reach round i + 1 is exactly the probability to reach round i
and not send a signal σi = YES. Setting di = 1

2·ri
guarantees ri · di = 1/2 as required.

4.2. Secretary Recommendation 65

Note that di is well defined as ri ≥ 1/2 for all i. It holds that

ri+1 = ri · (1 − di ·
m∑︂

j=1
xij) = ri − 1

2 ·
m∑︂

j=1
xij

= ri−1 − 1
2 ·

⎛⎝ m∑︂
j=1

x(i−1)j +
m∑︂

j=1
xij

⎞⎠
= . . .

= r1 − 1
2 ·

i∑︂
ℓ=1

m∑︂
j=1

xℓj

and ∑︁i,j xij ≤ 1 due to the first constraint of (4.7).
This means that the expected utility for S is

n∑︂
i=1

ri · di ·
m∑︂

j=1
qij ·

x∗
ij

qij

· ξij =
n∑︂

i=1

1
2 ·

m∑︂
j=1

x∗
ij · ξij = 1

2

n∑︂
i=1

m∑︂
j=1

x∗
ij · ξij ,

i.e., exactly 1/2 times the optimal value of (4.7).
To complete the proof, we now give a sequence of instances where an online scheme

cannot guarantee more than a factor of 1/2. There are n = 2 rounds, where D1 is a
deterministic distribution with ϱ1 = ξ1 = 1. D2 has two types, θ21 and θ22. Type θ21
is drawn with probability 1/t and provides utility ϱ21 = ξ21 = t. The other type, θ22,
which is drawn with probability 1 − 1/t, does not provide any utility, i.e., ϱ22 = ξ22 = 0.
Additionally, there is an outside option X with utility ϱX = 1 for R and utility ξX = 0
for S.

An optimal offline scheme clearly recommends action 2 with type θ21 if it is realized
and action 1 otherwise. This gives S an expected utility of 2 − 1/t. A persuasive online
scheme can only guarantee an expected utility of 1 to S as there is no information on
the type of action 2 in round 1.

Interestingly, in the classic one-dimensional prophet inequality problem, this bound
of 1/2 is the best possible for general distributions. Note that the above instance
represents a worst-case instance for the one-dimensional problem when disregarding the
outside option – the interests of S and R are perfectly aligned, hence, it is essentially
a one-dimensional instance.

Crucially, the benchmarks for Bayesian persuasion instances and prophet inequal-
ity instances differ. For more general instances satisfying SSQ with misaligned inter-
ests, S will only achieve a 1/2-approximation to the optimal offline S, whereas in the
one-dimensional problem, the gambler achieves a 1/2-approximation to the expected
maximum. These values can be very different.

This observation concludes our discussion of prophet inequalities for Bayesian per-
suasion. In the next section, we continue in the realm of online persuasion but consider
a different model which is more in line with the classic secretary problem.

4.2 Secretary Recommendation
The online model nicely represents dynamic arrival and departure of choice options,
yet it is not always the case that distributional information on the actions’ types is
available.

66 4. Online Bayesian Persuasion

In this section, which is based on [48], we study a variant of online Bayesian persua-
sion where there are no known underlying distributions from which the actions’ types
are drawn. Rather, the only prior knowledge S and R have is that the actions and
their types are revealed in a uniform random order. The process is very similar to the
one in the previous section.

1. S commits to a signaling scheme φ.

2. R learns the scheme φ.

3. In each round i = 1, . . . , n:

3.1. S learns the type θi of action i.
3.2. S sends a signal σi ∈ Σ according to φ to R.
3.3. R decides whether to take action i based on signals σ1, . . . , σi. If R takes

action i, the process ends.

The model setup is reminiscent of the d-random order scenario for d = 1 in the previous
chapter in that there exists a vector θ of types and the types are permuted uniformly
at random. Crucially, that vector is unknown to R and S. This leads to an interesting
question regarding the model:

Without knowing what is to come, how can R evaluate the signaling scheme φ
employed by S when the only information is a YES or a NO in every round? To solve
this, we require the sender’s schemes to be persuasive even if R were to know the type-
vector a priori. Using this approach, we can assume without loss of generality that
φ is a direct and persuasive scheme via the same arguments we used in the previous
Section 4.1.

For a simpler exposition, we denote by ϱ and ξ the utility values corresponding to
a type vector θ. Note that for all t ∈ [n], ϱt and ξt directly correspond to type θt and
a single type is realized for each action. Further, we denote by ϱmax = maxt∈[n] ϱt and
ξmax = maxt∈[n] ξt the respective highest utility values and by cR = arg maxθ∈θ ϱ(θ)
and cS = arg maxθ∈θ ξ(θ) the types corresponding to these values. For simplicity, we
assume without loss of generality that the utility values are mutually distinct, which
means that there is a unique type cR and a potentially different but also unique type cS .
Using a slight perturbation of equal values, this assumption can be satisfied without
(significantly) changing the instances.

To study the effects of informational advantage of S over R, we consider two differ-
ent variants. The first scenario is without disclosure, which means that R only learns
the signals σ1, . . . , σi before making a decision in round i. The second scenario is with
disclosure, where R is informed about the types of dismissed actions. Hence, at the
beginning of round i, the sender’s informational advantage is only the knowledge of θi

as R has learned θ1, . . . , θi−1.
Further, we consider two variants of objectives for both S and R. For the ordinal

objective, S (or R) aims to maximize the success probability, i.e., the probability that
the action which is eventually taken has type cS (or cR, respectively). Not securing
their respective best type is considered as failure and does not provide any utility. For
the second objective, the cardinal objective, the respective agent strives to maximize
the expected utility of the action which is taken. Hence, in this case, not being able

4.2. Secretary Recommendation 67

ϱ

ξ

×

×

×
×

×
ξmax

OPT

×

×

×

ϱE

C1

ϱ

ξ
× ξmax

×
ϱE

C2

OPT

Figure 10: Dependence of OPT on the set of types

to secure the individual best type can still provide a good utility. As a benchmark, we
consider the basic scenario in which θ is known to both S and R, while the order of
the types remains unknown. In the secretary scenario, the types are a priori unknown.

We study all sixteen different combinations of these variants, i.e., cardinal and
ordinal R and S both with and without disclosure for the basic as well as the secretary
scenario. We summarize the approximation guarantees of our signaling schemes in
Tables 3 and 4 below. All results are without lower-order terms and asymptotics are
with respect to n, the number of actions. Results in bold represent matching upper
and lower bounds.

In Table 3, we show the results for the cardinal receiver objective. The entries in the
upper left, i.e., for the basic scenario without disclosure, represent the benchmark for
the remaining entries. We use the so-called Pareto Procedure which uses the geometric
ideas of Algorithm 1 to determine a type to recommend for any set of types. This
allows us to use the idea of our Basic Pareto Mechanism in an online fashion. The
resulting mechanism is optimal for S and persuasive. Hence, we can use its objective
value (expected utility and success probability, respectively) as benchmark for the other
scenarios. We denote the objective value by OPT.

Note that there is no concise closed-form expression for the sender’s expected utility
with respect to ξmax, it depends on the complete set of types C. In Figure 10, we give
a short illustration of this phenomenon. In both type sets, ξmax has the same value.
For C1 on the left side, cS = cR, hence, in an optimal mechanism for the basic scenario,
waiting for and recommending cS is a persuasive strategy. For C2, on the other hand,
every type besides cS is clustered around cR, denoted by the bold marker. Since a
persuasive mechanism must guarantee a utility of at least ϱE to R, OPT cannot be
more than 1/n · ξmax.

In the left column of Table 3, the lower entries represent the secretary scenario
without disclosure. Clearly, this setting represents a generalization of the classic sec-
retary problem and hence, an upper bound of 1/e for perfectly aligned S and R utility
values follows directly. Interestingly, we are able to repeatedly run the Pareto Proce-
dure on the growing set of types revealed up to and including round i to achieve a
constant-factor approximation of the optimal value in the corresponding benchmark
scenario. The lower bounds for ordinal and cardinal sender utility are both obtained
using this mechanism.

For the basic scenario with disclosure, we first describe an optimal mechanism using

68 4. Online Bayesian Persuasion

Cardinal R
without Disclosure with Disclosure

Ordinal S Cardinal S Ordinal S Cardinal S

Basic
Optimal mechanism 1

2
1
3

Cor. 4.5 Thm. 4.16, 4.19 Thm. 4.18

Secretary
1
4

1
3
√

3 Θ
(︂

1
n

)︂
Θ
(︂

1
n

)︂
Thm. 4.11 Thm. 4.8 Thm. 4.20 Cor. 4.21

Table 3: Approximation guarantees of persuasive mechanisms for cardinal receiver
utility. All bounds stated without lower-order terms. Results indicated in bold have
asymptotically matching upper bounds.

an exponentially-sized family of nested linear programs. Additionally, we are able to
repeatedly use the Pareto Procedure on the shrinking set of remaining types. The
resulting mechanism requires only polynomial time and guarantees a constant-factor
approximation regardless of the sender’s objective. For the ordinal sender objective,
we show a matching upper bound of 1/2.

The final setting with cardinal receiver utility, namely the secretary scenario with
disclosure, proves to be the only setting without a constant-factor approximation –
even including the case of ordinal receiver utility described below. While a trivial
mechanism of recommending action 1 deterministically is persuasive and provides a
success probability of 1/n, there are instances for which no persuasive mechanism can
improve upon this trivial lower bound. For cardinal sender utility, the same tight
approximation factor of Θ(1/n) holds.

In Table 4, we summarize the results for the settings with ordinal receiver objective.
Notably, for all scenarios, the approximation guarantees of our mechanisms have small
constant factors and asymptotically matching upper bounds. In the basic scenario, S
leverages the following two facts. First, R only has a success probability of 1/n without
any additional information, and second, R only cares about securing cR in the ordinal
setting. Hence, S is able to secure cS with a probability of 1 − 1/n. This holds even if
the types of dismissed actions are disclosed to R.

In the secretary scenario without disclosure, our mechanism flips a weighted coin
and then runs either the classic secretary algorithm for S, disregarding the types’ values
for R or the other way around, i.e., only considering the values for R and not those
for S. Optimizing the probabilities with which the respective algorithms are run gives
a tight lower bound of 1/e. For the secretary scenario with disclosure, this approach
is not feasible. Assume some action i gets a NO-recommendation and is subsequently
dismissed by R. If round i is after the initial sample phase and action i has a higher
utility for R than the previous actions, it would reveal that the mechanism which is
being used optimizes for S. This in turn might incentivize R to ignore any upcoming
YES-signals. Instead, our mechanism proposes the first action which has a higher
utility for S or for R than all previous ones. This leads to a tight approximation ratio
of 1/4. Interestingly, this scenario allows R to enjoy a success probability of 1/4 as well,
a massive improvement compared to 1/n without the involvement of S.

4.2. Secretary Recommendation 69

Ordinal R
without Disclosure with Disclosure

Ordinal S Cardinal S Ordinal S Cardinal S

Basic
1 1 1 1

Prop. 4.23 Prop. 4.23 Prop. 4.26 Prop. 4.26

Secretary
1
e

1
e

1
4

1
4

Thm. 4.24 Thm. 4.24 Thm. 4.28, 4.29 Thm. 4.28, 4.29

Table 4: Approximation guarantees of persuasive mechanisms for ordinal receiver util-
ity discussed. All bounds stated without lower-order terms. Results indicated in bold
have asymptotically matching upper bounds.

We start our discussion with the case of cardinal receiver utility.

4.2.1 Cardinal Utility for R
Throughout this section, we consider the case of cardinal utility for R as summarized
in Table 3 above. When introducing Bayesian persuasion in Chapter 3, we showed
that the Basic Pareto Mechanism (Algorithm 1) is an optimal persuasive mechanism
for random-order instances in the offline setting. Recall that the algorithm identified
two types a and b on the Pareto frontier of θ and proceeded to send a recommendation
for either a or b with a certain probability, satisfying persuasiveness-constraints.

With this in mind, we start the discussion of our results with the basic scenario
without disclosure of dismissed actions.

Benchmark: Basic Scenario without Disclosure

In the basic scenario without disclosure of dismissed actions, S essentially faces an
offline random order problem. This is due to the following. We assume that the set of
types C is public knowledge, only the order of the types is unknown. Hence, S is able
to determine the type to recommend prior to the start of the process. Then, S only
needs to identify the position of the chosen type. Clearly, this can be done in an online
fashion. Since R does not learn the types of dismissed actions, the distribution behind
a YES-signal is the same no matter in which round i it is sent. The same holds for the
distribution behind the NO-signals in the other rounds. We use our Pareto Procedure
(Algorithm 8) which computes a type to recommend based on the set of valuation pairs
for all our constant-factor approximation algorithms. Hence, it requires a few additions
compared to the Basic Pareto Mechanism in Chapter 3.

As a first step, the Pareto Procedure adjusts the input. For all t ∈ [n], the procedure
scales ξt = ξt

ξmax
such that all values for S are between 0 and 1. Similarly, the new

receiver values are ϱt = ϱt

ϱmax
for all t ∈ [n]. Note that ξmax = 0 or ϱmax = 0 can only

occur if n = 1 since we assumed mutually distinct values. Thus, besides this corner
case, in which the only persuasive mechanism is to signal YES for the single action,
this adjustment step is well-defined.

70 4. Online Bayesian Persuasion

For ordinal sender utility, an additional normalizing step is performed. For every
type t ̸= cS , the procedure sets ξt = 0. This way, the expected utility for S is equal to
the success probability in such settings. This clearly transforms the Pareto frontier –
only cS and cR remain on the Pareto frontier. Since the values for R remain the same,
this does not change the outcome for R from the Pareto Procedure. In any case, a
utility of at least ϱE for R is guaranteed and an expectation strictly higher than ϱE is
achieved if and only if ϱcS > ϱE. Note that we only apply the Pareto Procedure to the
case of cardinal receiver objective and hence such a step for the receiver values is not
performed. The mechanisms for the setting with disclosure or the secretary scenario
utilize the procedure for a shrinking or growing subset of types, respectively. For each
of these calls to the procedure, the adjustments are performed for the current set of
types.

The Pareto Procedure then computes a single type c such that E [ϱ(c)] ≥ ϱE while
maximizing the expectation for S under that constraint as we have seen in the Basic
Pareto Mechanism. The Online Pareto Mechanism (Algorithm 9) considers the input
sequence and sends a recommendation YES exactly when the current type is c, where c
is the type computed by the Pareto Procedure. This way, the Online Pareto Mechanism
functions as an online version of the Basic Pareto Mechanism. Hence, our first result
is a corollary of Proposition 3.1.

Corollary 4.5
For cardinal and ordinal sender and cardinal receiver utility, the Online Pareto Mech-
anism is an optimal persuasive mechanism in the basic scenario without disclosure.

Since both the Basic Pareto Mechanism and the Online Pareto Mechanism essen-
tially function in the same way, i.e., identifying a type c by using the Pareto Procedure
and recommending only this type, we will drop the “Basic” or “Online” and refer to
the mechanism as the Pareto Mechanism.

Hence, using the Pareto Mechanism gives us our benchmark for the remaining
scenarios. We continue with the discussion of the secretary scenario without disclosure,
i.e., the bottom left entry of Table 3.

Secretary Scenario without Disclosure

In this scenario, neither S nor R know the possible types a priori and dismissed types
are not revealed to R. We use the following approach. In rounds 1, . . . , s, our mecha-
nism φ(s) merely observes the types and only sends signals σ1, . . . , σs = NO. We denote
the set of types observed up to round i by Ai. In rounds i = s + 1, . . . , n − 1, φ(s)
updates the set Ai with the current type θi and calls the Pareto Procedure with input
Ai. If the type computed by the Pareto Procedure is equal to θi, a signal σi = YES
is sent, otherwise, σi = NO is issued. Once the first recommendation is given, only
NO-signals will be sent. In the final round n, unless a YES-recommendation has been
sent in a previous round, the current action is recommended regardless of its type θn.
Since a growing set of types is considered in each round, we term our mechanism the
Growing Pareto Mechanism (Algorithm 10).

With Lemma 4.7, we show that the Growing Pareto Mechanism is persuasive before
showing the approximation guarantees of 1

3
√

3 − o(1) and 1/4 − o(1) for cardinal and
ordinal sender utility in Theorem 4.8 and 4.11, respectively.

4.2. Secretary Recommendation 71

Algorithm 8: Pareto Procedure
Input: A set of valuation pairs (ϱt, ξt)t∈[n]
Output: A type c

1 Set cS = arg maxt∈[n] ξt.
2 Scale and normalize the type values, set ϱE = 1/n ·∑︁n

t=1 ϱt.
3 Let C = {(ϱt, ξt) | t ∈ [n]} and conv(C) be the convex hull of C.
4 Let PC(C) be the Pareto frontier of conv(C).
5 if ϱcS ≥ ϱE then Set a = b = cS .
6 else
7 Find types a, b ∈ [n] s.t. (a, b) is the segment of PC(C) that intersects with

line ϱ = ϱE.
8 Determine probability for type a:
9 if ϱa = ϱb then Set α = 1.

10 else if ϱa ̸= ϱb and ξa = ξb then Set α = 0.
11 else Set α = ϱE−ϱb

ϱa−ϱb
.

12 Draw x ∼ Unif[0, 1].
13 if x ≤ α then Set c = a.
14 else Set c = b.
15 return Type c

Algorithm 9: Online Pareto Mechanism
Input: Set of valuation pairs (ϱt, ξt)t∈[n], online sequence of types θ1, . . . , θn

1 Let c denote the output of the Pareto Procedure for (ϱt, ξt)t∈[n].
2 for round i = 1, . . . , n do
3 if θi = c then Send σi = YES.
4 else Send σi = NO.

To show persuasiveness, we consider round i and prove that it is in the interest of
R to follow the signal given by the mechanism. Following the ideas of [57], we adopt
a different perspective on the process of drawing the type in round i. Rather than
iteratively drawing a type uniformly at random from the remaining set of types, we
first draw the set Ai of i types uniformly at random. Then, the type to be observed
in round i is drawn uniformly at random from the set Ai. This allows us to show the
following lemma which we use to prove Lemma 4.7.

Lemma 4.6
Consider a given round i and a given subset of types Ai that arrived up to round i. In
the Growing Pareto Mechanism

Pr
[︄

i−1⋀︂
ℓ=1

σℓ = NO
⃓⃓⃓⃓
⃓ Ai−1

]︄
=

⎧⎨⎩1 i = 2, . . . , s+ 1
s

i−1 i = s+ 2, . . . , n
and

72 4. Online Bayesian Persuasion

Algorithm 10: Growing Pareto Mechanism
Input: Number of rounds n, sample size s, online sequence of types θ1, . . . , θn

1 Set A0 = ∅ and recSent = False.
2 for round i = 1, . . . , n− 1 do
3 Set Ai = Ai−1 ∪ {θi}. // Observe type of action i.
4 if i ≤ s or recSent = True then Signal NO.
5 else
6 Let ci be the type chosen by Pareto Procedure on set Ai.
7 if ci = θi then Signal YES and set recSent = True.
8 else Signal NO.

9 for round n do
10 if recSent = False then Signal YES.
11 else Signal NO.

Pr[σi = YES | Ai] =

⎧⎪⎪⎨⎪⎪⎩
0 i = 1, . . . , s
1
i

· s
i−1 t = s+ 1, . . . , n− 1

s
n−1 i = n

.

Proof. Given a set Ai of types observed in rounds 1, . . . , i, we can draw the order of
the types in a reverse fashion. We denote the type observed in round i by ti. For each
type t ∈ Ai, the probability to be in position i is 1/i. The Pareto Procedure computes
a single type c ∈ Ai for input set Ai. Hence, the probability that c = ti is 1/i. However,
the mechanism never sends more than a single YES-signal. Thus, in all previous rounds
ℓ = 1, . . . , i− 1, the signal σℓ = NO had to be sent for a signal σi = YES.

Hence, consider the signal in round i − 1 for given set Ai with ti ∈ Ai observed
in round i. For the set Ai−1 = Ai \ {ti}, the Pareto Procedure computed some type
c ∈ Ai−1. Again, the type in round i − 1 is chosen uniformly at random from Ai−1,
hence, with probability 1 − 1

i−1 = i−2
i−1 , the signal σi−1 in round i − 1 was NO. We

continue the same argumentation for rounds ℓ ∈ {i− 2, i− 3, . . . , s+ 1}, where in each
round ℓ the probability for a signal NO is ℓ−1

ℓ
. Since the Growing Pareto Mechanism

always sends a signal NO in the first s rounds, we get

Pr
[︄

i−1⋀︂
ℓ=1

σℓ = NO
⃓⃓⃓⃓
⃓ Ai−1

]︄
=

i−1∏︂
ℓ=s+1

ℓ− 1
ℓ

= s

s+ 1 · s+ 1
s+ 2 · · · i− 3

i− 2 · i− 2
i− 1 = s

i− 1

for every round i = s+ 1, . . . , n. Thus, for rounds i = s+ 1, . . . , n− 1, we get

Pr[σi = YES | Ai] =

Eti

[︄
Pr[σi = YES | Ai, ti] · Pr

[︄
i−1⋀︂
ℓ=1

σℓ = NO
⃓⃓⃓⃓
⃓ Ai \ {ti}

]︄]︄
= 1
i

· s

i− 1 .

Since σn = YES with probability 1 whenever σ1, . . . , σn−1 = NO, for round n we get

Pr[σn = YES | An] = Pr[σn = YES] = 1 · s

n− 1
using an analogous argumentation, concluding the proof of the lemma.

4.2. Secretary Recommendation 73

Lemma 4.7
For cardinal receiver utility, the Growing Pareto Mechanism is persuasive in the secre-
tary scenario without disclosure.

Proof. Consider some round i ∈ {s+1, . . . , n} with signal σi = YES. This implies that
σℓ = NO for all previous rounds ℓ ∈ [i− 1]. Observe that Ai, the set of types revealed
up to and including round i is chosen uniformly at random and for every type t ∈ Ai

observed in round i, the probability that the Growing Pareto Mechanism only sends
signals σ1, . . . , σi−1 = NO is the same and does not depend on t.

We denote by ti the random type observed in round i. Then, R gets an expected
utility of

E [ϱti
| σi = YES] ≥ EAi

⎡⎣∑︂
t∈Ai

ϱt

i

⎤⎦ = ϱE

when following the signal and taking action i.
By Lemma 4.6, we know that the signal σi = YES in round i has the same prob-

ability for every subset Ai. Hence, there is no information on the remaining types to
be observed in the upcoming rounds r > i to be gathered. This means that they are
distributed uniformly at random and yield an expected utility of ϱE for R. Hence, dis-
missing the current action and waiting for a future round is not a profitable deviation
for R.

Similarly, assume that σ1, . . . , σi−1 = NO. Clearly, this means that no information
on the type ti of round i can be gathered and the type is distributed uniformly at
random. For the expectation of R, this implies E

[︂
ϱti

| ∧i−1
ℓ=1σℓ = NO

]︂
= ϱE. Since a

YES-signal in round i produces an expectation of at least ϱE for R, a NO-signal can
only yield an expectation of at most ϱE for R as either one or the other is always issued
and the overall expectation is ϱE.

Overall, for every round i ∈ [n], it is profitable for R to follow the signal σi computed
by the Growing Pareto Mechanism.

As the first approximation result, we show the constant-factor approximation to
the optimum in the basic scenario for cardinal sender utility.

Theorem 4.8
For cardinal sender and receiver utility in the secretary scenario without disclosure, the
Growing Pareto Mechanism with s =

⌊︂
n√
3

⌋︂
yields a

(︂
1

3
√

3 − o(1)
)︂
-approximation of the

optimal expected utility in the corresponding basic scenario.

For the proof of the theorem, we use the fact that on average, removing a single type
from the set of types only decreases the value of OPT, the value of the optimal expected
utility for S in the basic scenario, by a small factor. To that end, we subdivide the set
of types into the set L = {t ∈ [n] | ϱt ≤ ϱE} and H = {t ∈ [n] | ϱt > ϱE} = [n] \ L of
low and high receiver utility, respectively. By d = |L|, we denote the number of types
with a low utility for R. Recall that the Pareto Procedure scales all values such that
ϱmax = ξmax = 1. Hence, we will assume that this holds. For any subset M ⊆ [n], we
will use OPT−M to denote the optimal expected utility for S in the basic scenario with
type set [n] \ M . Similar to OPT{−t}, we define ϱE−t = 1

n−1 (∑︁n
ℓ=1 ϱℓ − ϱt) to be the

receiver’s a priori expectation of a random type from type set [n] \ {t}.

74 4. Online Bayesian Persuasion

ϱ

ξ

ϱE

a

b

OPT■

Figure 11: Adaptations as performed in the proof of Lemma 4.9. Dotted: Original
Pareto frontier. Solid: Pareto frontier in the adapted instance with ξt = 0 for t ̸= a, b.
Dashed: Lower bound on the Pareto frontier when a and b remain in the candidate set

Recall that the Pareto Procedure identifies two types a and b on the Pareto frontier
and uses a convex combination of the two to optimize the expectation for S while
satisfying the constraint that R gets an expected utility of at least ϱE. If ϱcS ≥ ϱE, it
holds that a = b, otherwise a ̸= b.

Lemma 4.9
Consider an instance of the basic scenario with type set [n]. Let a and b be the types
as determined in the Pareto Procedure. It holds that∑︂

t̸=a,b

OPT−{t} ≥ (n− 3) · OPT .

Proof. Consider the Pareto Mechanism and the following adjustment to the instance.
For all t ̸= a, b, we set ξt = 0. This does not change the value of OPT, since OPT only
depends on a, b, and the value of ϱE, neither of which was changed in this adjustment.
Additionally, this step cannot increase the values of OPT−{t} of the type set [n] \ {t}.

The adjusted Pareto frontier now only consists of (at most) three types, namely the
types a and b and (ϱcR , 0). Clearly, if a = b or b = cR, fewer types are on the Pareto
frontier and the adjusted Pareto frontier is a lower bound to the original one. In fact,
we use an additional step to lower bound the utility of OPT−{t} and assume that the
Pareto frontier only consists of the points (ϱE,OPT) and (ϱmax, 0). In Figure 11, we
illustrate these adaptations. The dotted line represents the original Pareto frontier,
the solid line the first adjustment and finally, the dashed line is used to represent the
lower bound to the Pareto frontier without using a and b.

Using these steps and the partition of the type set into L and H described above,
we are now able to bound the expected utility of OPT−{t}. If t ∈ H, we get that
ϱE−t ≤ ϱE, hence, there is no loss and OPT−{t} ≥ OPT. Clearly, this implies∑︂

t∈H\{b}
OPT − OPT−{t} ≤ 0. .

If t ∈ L on the other hand, ϱE−t ≥ ϱE and we use the (negative) slope − OPT
ϱmax−ϱE

from
(ϱE,OPT) to (ϱmax, 0) and the change ϱE − ϱE−t in the expected value for R to lower
bound OPT−{t}. This gives us

∑︂
t∈L\{a}

OPT − OPT−{t} ≤ OPT
ϱmax − ϱE

·
∑︂
t∈L

[︂
ϱE−t − ϱE

]︂

4.2. Secretary Recommendation 75

= OPT
ϱmax − ϱE

·
∑︂
t∈L

⎡⎣ ∑︂
ℓ∈[n]\{t}

ϱℓ

n− 1 − ϱE

⎤⎦
= 1
n− 1 · OPT

ϱmax − ϱE

·
∑︂
t∈L

⎡⎣ ∑︂
ℓ∈L\{t}

ϱℓ +
∑︂
ℓ∈H

ϱℓ − (n− 1) · ϱE

⎤⎦
= OPT

(n− 1) · (ϱmax − ϱE) ·

⎡⎣(d− 1) ·
∑︂
ℓ∈L

ϱℓ + d ·
∑︂
ℓ∈H

ϱℓ − d · (n− 1) · ϱE

⎤⎦
= OPT

(n− 1) · (ϱmax − ϱE) ·

⎡⎣(d− 1) ·
(︄

n∑︂
ℓ=1

ϱℓ − n · ϱE

)︄
+
∑︂
ℓ∈H

(ϱℓ − ϱE)
⎤⎦

= OPT
(n− 1) · (ϱmax − ϱE) ·

∑︂
ℓ∈H

(ϱℓ − ϱE)

≤ OPT
(n− 1) · (ϱmax − ϱE) ·

∑︂
ℓ∈H

(ϱmax − ϱE)

= OPT
(n− 1) · (ϱmax − ϱE) · (n− d) · (ϱmax − ϱE)

= n− d

n− 1 · OPT ≤ OPT .

Overall, this gives us∑︂
t∈[n]\{a,b}

OPT − OPT−{t} ≤ (n− 2) · OPT −
∑︂

t∈[n]\{a,b}
OPT−{t} ≤ OPT

which implies the lemma.

By OPTi, we denote the expected value for S achieved by the Pareto Mechanism
when applied to the basic scenario for the random subset of types Ai of size i. Note
that OPTn = OPT, the optimum in the basic scenario.

Corollary 4.10
For i ≥ 3 it holds that

OPTi ≥ OPT ·
n∏︂

ℓ=i+1

(︃
1 − 3

ℓ

)︃
= i · (i− 1) · (i− 2)
n · (n− 1) · (n− 2) · OPT .

Proof. To generate Ai, we use [n], the complete set of types. Then, we iteratively
remove a random type until there are i types left. Note that for i = n− 1 we have by
Lemma 4.9

OPTn−1 = 1
n

∑︂
t∈[n]

OPT−{t} ≥ 1
n

∑︂
t∈[n]\{a,b}

OPT−{t} ≥ n− 3
n

OPT .

For i < n− 1, the result follows by repeated application.

These results allow us to prove the approximation guarantee for cardinal sender
utility, i.e., Theorem 4.8.

76 4. Online Bayesian Persuasion

Proof of Theorem 4.8. In a given round i = s + 1, . . . , n − 1, the Growing Pareto
Mechanism guarantees an expected utility of at least Pr[σi = YES] · OPTi to S. For
a simpler exposition, we underestimate the overall expected utility by assuming that
round i = n does not provide any utility. Note that here, a YES-signal is sent with
probability 1 to satisfy persuasiveness-constraints regardless of the values of the final
action’s type. We optimize for the value s = ⌊γ · n⌋ for a constant γ ∈ [0, 1]. Using
Lemma 4.6 and Corollary 4.10, we get

n−1∑︂
i=s+1

1
i
· s

i− 1 · i · (i− 1) · (i− 2)
n · (n− 1) · (n− 2) · OPT

= OPT · s

n · (n− 1) · (n− 2) ·
n−1∑︂

i=s+1
(i− 2)

= OPT · s

n · (n− 1) · (n− 2) ·
(︄
n · (n− 1)

2 − s · (s+ 1)
2 − 2(n− 1 − s)

)︄

= OPT ·
(︄

s

2(n− 2) − s2 · (s+ 1)
2n · (n− 1) · (n− 2) − 2s · (n− 1 − s)

n · (n− 1) · (n− 2)

)︄

= OPT · 1
2 · (γ − γ3 − o(1)) .

The last expression is maximized at γ = 1/
√

3, so we set the length of the sample phase
s = ⌊n/

√
3⌋. Hence, S gets an expected utility of at least

(︂
1

3
√

3 − o(1)
)︂

·OPT when using
the Growing Pareto Mechanism.

This concludes the first part of the secretary scenario without disclosure for cardinal
receiver utility. We continue with the setting of ordinal utility for S. Compared to the
case of cardinal sender utility, S is able to achieve a better approximation ratio in this
setting while still using the Growing Pareto Mechanism, albeit with a different sample
size.

Theorem 4.11
For ordinal sender and cardinal receiver utility in the secretary scenario without dis-
closure, the Growing Pareto Mechanism with s = ⌊n/2⌋ yields a success probability
of at least

(︂
1
4 − o(1)

)︂
times the optimal success probability in the corresponding basic

scenario.

We prove the theorem basically in the same way we proved the result for the cardinal
sender utility. Crucially, we are able to improve the intermediate steps. The following
Lemma 4.12 is an improved version of Lemma 4.9, the counterpart for the cardinal
case, which makes Corollary 4.13 an improved version of Corollary 4.10.

In addition to the notation established for the cardinal case above, we denote by
ϱ2nd the second highest utility for R among all types. Observe that for Lemma 4.9, we
lower bounded the expected utility for S in the case that b showed up in the current
round by 0, where b is one of the two types a, b identified by the Pareto Procedure. In
the ordinal case below, b = cR and we are able to include the amount of α · OPT−{cR}
for our bound. Here, α is the probability that the Pareto Procedure does not pick b to
be the chosen type. In the ordinal case, it holds that α = OPT, as a = cS is chosen
with probability α and a is the only type that provides any utility. Hence, we can write
this as OPT · OPT−{cR}.

4.2. Secretary Recommendation 77

ϱ

ξ

×× ××

×
cS

××
ϱE ϱcS

Case 1: ϱcS > ϱE

ϱ

ξ

×

×

×××

cS

×
ϱEϱcS

ϱ2nd

Case 2: ϱcS , ϱ2nd ≤ ϱE

ϱ

ξ

××

×

× ×

cS

××
ϱE ϱ2ndϱcS

Case 3: ϱcS ≤ ϱE < ϱ2nd

Figure 12: The three cases considered in the proof of Lemma 4.12

Lemma 4.12
Let OPT and OPT−{t} denote the expected utility in the basic scenario for type sets [n]
and [n] \ {t}, respectively. Then, the following holds:∑︂

t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR} ≥ OPT
(︃
n− 2 − 1

n− 1

)︃
.

Proof. We subdivide the proof into three different cases, depending on the values of
ϱcS , ϱ2nd and ϱE. The first case is ϱcS > ϱE, then ϱcS , ϱ2nd ≤ ϱE, and finally ϱcS ≤ ϱE <
ϱ2nd. An illustration of the three cases is given in Figure 12.
Case 1: ϱcS > ϱE

The Pareto Procedure chooses a = b = cS . Clearly, if cS = cR, it holds that
OPT−{cR} = 0. For all other t ̸= cR, we have OPT−{t} = OPT. Thus, the inequality
in the lemma holds. Hence, we assume that cS ̸= cR. This implies OPT−{cR} = 1 since
ϱcS ≥ ϱE−cR

. For t ∈ L, we use a lower bound on the Pareto frontier as described in
the proof of Lemma 4.9, using the slope from (ϱE,OPT) to (1, 0) and the change in
the average value for R, i.e., ϱE−t − ϱE = n·ϱE−ϱt

n−1 − ϱE = ϱE−ϱt

n−1 . In combination, this
means that OPT−{t} ≥ OPT ·

(︂
1 − ϱE−ϱt

(n−1)·(1−ϱE)

)︂
. Note that OPT = 1, which means

that for t ∈ H, OPT−{t} = OPT. Hence, we get∑︂
t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR} =
∑︂

t̸=cS ,cR

OPT−{t} + OPT

=
∑︂
t∈L

OPT−{t} +
∑︂

t∈H\{cS ,cR}
OPT−{t} + OPT

≥ OPT ·
(︄
d− 1

(n− 1) · (1 − ϱE) ·
∑︂
t∈L

(ϱE − ϱt)
)︄

+
∑︂

t∈H\{cS ,cR}
OPT + OPT

= OPT ·
(︄
d− 1

(n− 1) · (1 − ϱE) ·
∑︂
t∈H

(ϱt − ϱE)
)︄

+ (n− d− 2) · OPT + OPT

≥ OPT ·
(︄
n− 1 − (n− d) · (1 − ϱE)

(n− 1) · (1 − ϱE)

)︄

≥ OPT ·(n− 2) ≥ OPT ·
(︃
n− 2 − 1

n− 1

)︃
.

Note that for the fourth line, we use that cS ̸= cR and ∑︁t∈L(ϱE − ϱt) = ∑︁
t∈H(ϱt − ϱE)

since ∑︁t∈[n] ϱt = ∑︁
t∈L ϱt + ∑︁

t∈H ϱt = n · ϱE. For the fifth line, we use ϱt ≤ 1. This
shows the claim of the lemma for case 1.

78 4. Online Bayesian Persuasion

Case 2: ϱcS , ϱ2nd ≤ ϱE

Clearly, the Pareto Procedure chooses a = cS and b = cR. The Pareto frontier consists
of the line segment between cS and cR and (ϱE,OPT) is somewhere on that line segment
which has a (negative) slope value of − OPT

1−ϱE
. We shortly discuss the implications of

removing a type t ̸= cS . If a type t ∈ L \ {cS} is removed, ϱE−t ≥ ϱE and OPT−{t} =
OPT ·

(︂
1 − ϱE−ϱt

(n−1)·(1−ϱE)

)︂
. Note that in this case, we use the true Pareto frontier and

not only a lower bound. Since ϱ2nd ≤ ϱE, we can see that H = {cR}. Hence, we get∑︂
t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR} =
∑︂

t∈L\{cS}
OPT−{t} + OPT · OPT−{cR}

≥ OPT ·
(︄

(n− 2) − 1
(n− 1) · (1 − ϱE) ·

∑︂
t∈L

(ϱE − ϱt)
)︄

= OPT ·
(︄

(n− 2) − 1
(n− 1) · (1 − ϱE) ·

∑︂
t∈H

(ϱt − ϱE)
)︄

= OPT ·
(︃
n− 2 − 1

n− 1

)︃
.

The first inequality holds due to ϱcS ≤ ϱE and OPT · OPT−{cR} ≥ 0. For the third
line, we again use that ∑︁t∈L(ϱE − ϱt) = ∑︁

t∈H(ϱt − ϱE). For the fourth line, we plug in
H = {cR} with ϱcR = 1 which shows the claim for case 2.
Case 3: ϱcS ≤ ϱE < ϱ2nd

Similar to case 2, the Pareto Procedure chooses a = cS and b = cR. The loss of utility
for S when a type t ∈ L is removed stays the same. When removing a type t ∈ H, this
leads to an improvement in utility for S and OPT−{t} ≥ OPT. For t ∈ H \ {cR}, we
get

OPT−{t} = min
{︄

1,OPT + OPT ·(ϱt − ϱE)
(n− 1) · (1 − ϱE)

}︄

= OPT ·
(︄

1 + min
{︄

ϱt − ϱE

(n− 1) · (1 − ϱE) ,
ϱE − ϱcS

1 − ϱE

}︄)︄
.

When removing type cR, the Pareto frontier shifts. If ϱE−cR
≤ ϱcS , the Pareto

Procedure deterministically chooses c = cS and OPT−{cR} = 1. Otherwise, the new
Pareto frontier consists of the line segment between cS and the type with the second
highest utility for R. The slope of this line segment has (negative) value −1

ϱ2nd−ϱcS
.

This means that OPT−{cR} = ϱ2nd−ϱE−cR
ϱ2nd−ϱcS

. In combination, we have OPT−{cR} =

min
{︃

1, ϱ2nd−ϱE−cR
ϱ2nd−ϱcS

}︃
≥ ϱ2nd−ϱE

ϱ2nd−ϱcS
. This gives us∑︂

t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR}

=
∑︂

t∈L\{cS}
OPT−{t} +

∑︂
t∈H\{cR}

OPT−{t} + OPT · min
{︄

1,
ϱ2nd − ϱE−cR

ϱ2nd − ϱcS

}︄

≥ OPT ·

⎡⎣(d− 1) − 1
(n− 1) · (1 − ϱE) ·

∑︂
t∈L\{cS}

(ϱE − ϱt) + (n− d− 1)

+
∑︂

t∈H\{cR}
min

{︄
ϱt − ϱE

(n− 1) · (1 − ϱE) ,
ϱE − ϱcS

1 − ϱE

}︄
+ ϱ2nd − ϱE

ϱ2nd − ϱcS

⎤⎦

4.2. Secretary Recommendation 79

≥ OPT ·
[︄
(n− 2) − 1

(n− 1) · (1 − ϱE) ·
∑︂
t∈L

(ϱE − ϱt)

+
∑︂

t∈H\{cR}
min

{︄
ϱt − ϱE

(n− 1) · (1 − ϱE) ,
ϱE − ϱcS

1 − ϱE

}︄
+ ϱ2nd − ϱE

ϱ2nd − ϱcS

⎤⎦
= OPT ·

[︄
(n− 2) − 1

(n− 1) · (1 − ϱE) ·
∑︂
t∈H

(ϱt − ϱE)

+
∑︂

t∈H\{cR}
min

{︄
ϱt − ϱE

(n− 1) · (1 − ϱE) ,
ϱE − ϱcS

1 − ϱE

}︄
+ ϱ2nd − ϱE

ϱ2nd − ϱcS

⎤⎦
= OPT ·

⎡⎣(n− 2) − 1
(n− 1) · (1 − ϱE) ·

∑︂
t∈H\{cR}

(ϱt − ϱE) − ϱcR − ϱE

(n− 1) · (1 − ϱE)

−
∑︂

t∈H\{cR}
min

{︄
ϱt − ϱE

(n− 1) · (1 − ϱE) ,
ϱE − ϱcS

1 − ϱE

}︄
+ ϱ2nd − ϱE

ϱ2nd − ϱcS

⎤⎦
= OPT ·

⎡⎣(n− 2) + ϱ2nd − ϱE

ϱ2nd − ϱcS

− 1
n− 1

− 1
n− 1 ·

∑︂
t∈H\{cR}

(︄
ϱt − ϱE

1 − ϱE

− min
{︄
ϱt − ϱE

1 − ϱE

,
(ϱE − ϱcS) · (n− 1)

1 − ϱE

}︄)︄⎤⎦ .

For the final equality, we use that ϱcR = 1. We continue with two different subcases.

Subcase 3.1: ϱE <
ϱ2nd+(n−1)ϱcS

n

Here, we see∑︂
t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR}

≥ OPT ·
[︄
(n− 2) + ϱ2nd − ϱE

ϱ2nd − ϱcS

− 1
n− 1

− 1
n− 1 ·

∑︂
t∈H\{cR}

(︄
ϱt − ϱE

1 − ϱE

− min
{︄
ϱt − ϱE

1 − ϱE

,
(ϱE − ϱcS) · (n− 1)

1 − ϱE

}︄)︄⎤⎦
≥ OPT ·

[︄
(n− 2) + 1 − ϱE − ϱcS

ϱ2nd − ϱcS

− 1
n− 1 − n− 2

n− 1

]︄

≥ OPT ·
[︃
n− 2 − 1

n

]︃
.

For the penultimate line we bound the value of the sum by n−2
n−1 . Towards this end, we

use that the value of the min is at least 0 and ϱt ≤ 1. Hence, for each t ∈ H \ {cR},
we have ϱt−ϱE

1−ϱE
− min

{︂
ϱt−ϱE

1−ϱE
,

(ϱE−ϱcS)·(n−1)
1−ϱE

}︂
≤ 1 and there are at most n − 2 types in

H \ {cR}. In the last inequality, we used the assumption that ϱE <
ϱ2nd+(n−1)·ϱcS

n
and

thus
− ϱE − ϱcS

ϱ2nd − ϱcS

≥ − ϱ2nd − ϱcS

n · (ϱ2nd − ϱcS) = − 1
n
.

80 4. Online Bayesian Persuasion

Subcase 3.2: ϱE ≥ ϱ2nd+(n−1)·ϱcS
n

In this case, we see

∑︂
t∈H\{cR}

(︄
ϱt − ϱE

1 − ϱE

− min
{︄
ϱt − ϱE

1 − ϱE

,
(ϱE − ϱcS) · (n− 1)

1 − ϱE

}︄)︄
= 0

as ϱt ≤ ϱ2nd for all t ∈ H \ {cR} and thus ϱt − ϱE ≤ ϱ2nd − ϱE ≤ (ϱE − ϱcS) · (n − 1)
due to our assumption ϱE ≥ ϱ2nd+(n−1)·ϱcS

n
. This implies∑︂

t̸=cS ,cR

OPT−{t} + OPT · OPT−{cR}

≥ OPT ·
[︄
(n− 2) + ϱ2nd − ϱE

ϱ2nd − ϱcS

− 1
n− 1

− 1
n− 1

∑︂
t∈H\{cR}

(︄
ϱt − ϱE

1 − ϱE

− min
{︄
ϱt − ϱE

1 − ϱE

,
(ϱE − ϱcS)(n− 1)

1 − ϱE

}︄)︄⎤⎦
= OPT ·

[︄
(n− 2) + ϱ2nd − ϱE

ϱ2nd − ϱcS

− 1
n− 1

]︄

≥ OPT ·
[︃
n− 2 − 1

n− 1

]︃
.

This shows case 3 and thus, concludes the proof of the lemma.

Analogous to the cardinal case, by OPTi we denote in the following the success
probability of the Pareto Mechanism when applied to the basic scenario with random
subset Ai. This allows us to prove the following Corollary 4.13, an improved version
of Corollary 4.10, in a similar fashion, i.e., by repeatedly applying Lemma 4.12.

Corollary 4.13
For all i ∈ [n] it holds that OPTi ≥ (i−2)·(i−1)

(n−2)·(n−1) · OPT.

Proof. We generate Ai by iteratively removing a random type, starting with the com-
plete set of types [n]. For the first step, we have

OPTn−1 = 1
n

·
∑︂
t∈[n]

OPT−{t}

= 1
n

·
∑︂

t̸=cS ,cR

OPT−{t} + 1
n

· OPT−{cR}

≥ 1
n

·
∑︂

t̸=cS ,cR

OPT−{t} + 1
n

· OPT · OPT−{cR}

≥
n− 2 − 1

n−1
n

· OPT .

For the second line, we use that OPT−{cS} = 0. The first inequality is due to OPT ≤ 1
and the final line uses Lemma 4.12. For i < n − 1, we repeatedly apply the same
procedure to get

OPTi ≥ OPT ·
n∏︂

ℓ=i+1

ℓ− 2 − 1
ℓ−1

ℓ

4.2. Secretary Recommendation 81

= OPT ·
n∏︂

ℓ=i+1

ℓ · (ℓ− 3) + 1
ℓ · (ℓ− 1)

≥ OPT ·
n∏︂

ℓ=i+1

ℓ− 3
ℓ− 1

= OPT ·i− 2
i

· i− 1
i+ 1 · i

i+ 2 · · · n− 4
n− 2 · n− 3

n− 1

= OPT · (i− 2) · (i− 1)
(n− 2) · (n− 1) .

With Corollary 4.13 and Lemma 4.12, we can now prove Theorem 4.11 in a similar
fashion to the proof of Theorem 4.8.

Proof of Theorem 4.11. Clearly, in rounds i = 1, . . . , s, the success probability of the
Growing Pareto Mechanism is 0. In the following rounds i = s+1, . . . , n−1, the success
probability is at least Pr[σi = YES] · OPTi. By Lemma 4.6, this is 1

i
· s

i−1 · OPTi. If
the final round n is reached, a signal σn = YES is always sent, regardless of the type
observed. Hence, we underestimate the success probability in that round by 0. Using
linearity of expectation and optimizing the sample size s = ⌊γ · n⌋ for a constant
γ ∈ [0, 1], we obtain

n−1∑︂
i=s+1

1
i

· s

i− 1 · (i− 1) · (i− 2)
(n− 1) · (n− 2) · OPT

= OPT · s

(n− 1) · (n− 2) ·
n−1∑︂

i=s+1

i− 2
i

= OPT · s

(n− 1) · (n− 2) ·

⎛⎝(n− 1) − s− 2 ·
n−1∑︂

i=s+1

1
i

⎞⎠
= OPT ·

(︄
s

n− 2 − s2

(n− 1) · (n− 2) − 2s · (Hn−1 −Hs)
(n− 1) · (n− 2)

)︄
= OPT ·

(︂
γ − γ2 − o(1)

)︂
.

In the penultimate line, we use Hℓ = ∑︁ℓ
i=1

1/i, i.e., the ℓ-th harmonic number. Clearly,
γ − γ2 is maximized at γ = 1/2. Thus, we choose a sample size s = ⌊n/2⌋. This implies
the theorem, i.e., a success probability of at least (1/4 − o(1)) · OPT for the Growing
Pareto Mechanism. Theorem 4.11

This concludes the section on the secretary scenario without Disclosure. In the
following, we discuss our results for the scenarios with disclosure. We start with the
basic scenario, i.e., S and R both knowing the complete vector of types.

Basic Scenario with Disclosure

In the setting with disclosure, R learns the types of dismissed actions before receiving
the next signal. For the basic scenario, this implies that R knows exactly what the
remaining set of types C ⊆ [n] looks like. Clearly, S still has the advantage of knowing

82 4. Online Bayesian Persuasion

the realized type of the current action. Only in round n – should the process reach
this round – both S and R know exactly the type of the final action. Since values are
nonnegative, sending σn = YES in the final round and accepting action n are the only
sensible choices for S and R, respectively, regardless of the type of action n. Know-
ing this, S can therefore optimize the expected utility in the penultimate round for
all possible sets of types with cardinality 2 while satisfying persuasiveness constraints.
This allows S to then optimize for round n − 2 and subsets of size 3. Continuing
this train of thought, we get a characterization of the optimal signaling mechanism
using backwards induction. Since this optimal mechanism requires the solution of an
exponential number of linear programs, we also describe another variant of the Pareto
Mechanism which takes the shrinking set of types into account. This mechanism runs
in polynomial time and achieves an approximation ratio of at least 1/2−o(1) for ordinal
sender utility and 1/3 − o(1) for cardinal sender utility, compared to the performance of
the Pareto Mechanism in the corresponding basic scenario without disclosure. We com-
plement these bounds by showing that no mechanism can achieve a better ratio than
1/2, thereby proving that the Shrinking Pareto Mechanism is asymptotically optimal
for the case of ordinal sender utility.

We begin by describing our optimal mechanism using backwards induction. The
mechanism works for both ordinal as well as cardinal utility for S by setting ξmax = 1
and ξt = 0 for all types t ̸= cS in the ordinal case. Then, expected utility for S and
success probability, i.e., the probability of taking an action with type cS , are the same.

Theorem 4.14
For cardinal sender and receiver utility, an optimal persuasive mechanism for the
sender’s expected utility in the basic scenario with disclosure can be computed by solving
2n linear programs.

For completeness, we state the result for ordinal sender utility in the following
corollary.

Corollary 4.15
For ordinal sender and cardinal receiver utility, an optimal persuasive mechanism for
the sender’s success probability in the basic scenario with disclosure can be computed
by solving 2n linear programs.

Proof of Theorem 4.14. Consider the following. At the beginning of round i ∈ [n], the
set C ⊆ [n] remains. Suppose S observes type t in the current round and has already
computed an optimal persuasive signaling scheme φ for rounds i + 1, . . . , n for the
remaining type set C \ {t}. We denote by uS

C\{t} the expected utility from φ for S.
Similarly, we denote by uR

C\{t} the expected utility for R. Note that φ is persuasive,
hence, it is in the receiver’s interest to follow the recommendations given by φ.

Without loss of generality, we assume that maxt∈C ξt > 0, otherwise, the expected
utility of S is 0 and performing an online search for a type with maximum receiver
utility yields an optimal persuasive scheme.

For round n, the optimal persuasive signaling scheme is to send σn = YES with
probability 1. For rounds i < n, we denote by

xC
t = Pr[σi = YES | t ∈ C arrives in round i]

4.2. Secretary Recommendation 83

the probability to send a signal YES in round i conditional on type t being observed
in round i with remaining type set C. Under the assumption that x gives rise to a
persuasive extension of φ to round i and R therefore follows σi, the expected utility
for S is

1
|C|

·
∑︂
t∈C

(︂
xC

t · ξt +
(︂
1 − xC

t

)︂
· uS

C\{t}

)︂
.

Clearly, this is a linear function. For every type set C ⊆ [n] and every type t ∈ C,
xC

t ∈ [0, 1] is a linear constraint. Thus, by expressing the persuasiveness constraints as
linear functions, we are able to state this optimization problem as a linear program.
There are two persuasiveness constraints. Clearly, when receiving a YES-signal, R
should be incentivized to take the current action and when getting a NO-signal, R
should not want to take the current action.

Let us now show that both can be satisfied, i.e., the persuasiveness constraints
can be expressed as linear functions and the resulting x indeed provides a persuasive
extension to φ. Assume that σi = YES. By our definition of x, this happens with a
probability Pr[σi = YES | C] = 1

|C|
∑︁

t∈C x
C
t . Without loss of generality, this probability

can be assumed to be positive, otherwise, there is nothing to prove as R would not
get a YES-signal. By Bayes’ law, the probability that the current action has type t
is pY

t = xC
t∑︁

t′∈C xC
t′

. Hence, by following the recommendation to take the current action,
R obtains a utility of ∑︁t∈C p

Y
t · ϱt. If R deviates and dismisses the action, S will

not reveal any more information to R. Therefore, the expected utility for R becomes∑︁
t∈C p

Y
t · 1

|C|−1
∑︁

t′∈C\{t} ϱt′ . Hence, to be persuasive, the signaling scheme must guarantee
that ∑︂

t∈C
pY

t · ϱt ≥
∑︂
t∈C

pY
t · 1

|C| − 1 ·
∑︂

t′∈C\{t}
ϱt′ .

Clearly, this is not a linear inequality, but multiplying both sides by ∑︁t′∈C x
C
t′ gives us

the equivalent inequality∑︂
t∈C

xC
t · ϱt ≥

∑︂
t∈C

xC
t · 1

|C| − 1 ·
∑︂

t′∈C\{t}
ϱt′ ,

or, equivalently ∑︂
t∈C

xC
t ·

⎛⎝ϱt − 1
|C| − 1 ·

∑︂
t′∈C\{t}

ϱt′

⎞⎠ ≥ 0 . (4.8)

Similarly, R should also want to follow a NO-signal, i.e., dismiss the action in round
i if σi = NO. Again, we assume without loss of generality that the probability for a NO-
signal is positive, otherwise, there is nothing to prove. We denote by pN

t = 1−xC
t∑︁

t′∈C(1−xC
t′)

the probability that the current action has type t if the current signal is σi = NO for
remaining subset C of types. When deviating and therefore taking the current action
against the recommendation, R gets an expected utility of ∑︁t∈C p

N
t ·ϱt. If, on the other

hand, R follows the signal, the expected utility is ∑︁t∈C p
N
t · uR

C\{t}. Thus, the following
constraint arises. ∑︂

t∈C
pN

t · uR
C\{t} ≥

∑︂
t∈C

pN
t · ϱt

Again, this is not a linear inequality but can be equivalently expressed as∑︂
t∈C

(︂
1 − xC

t

)︂
· uR

C\{t} ≥
∑︂
t∈C

(︂
1 − xC

t

)︂
· ϱt

84 4. Online Bayesian Persuasion

or ∑︂
t∈C

(︂
1 − xC

t

)︂
·
(︂
uR

C\{t} − ϱt

)︂
≥ 0 . (4.9)

Hence, we can express the optimization problem for each subset of types C as a lin-
ear program. The following claim states that (4.9) is redundant and thus, the linear
program can be expressed using only a single persuasiveness constraint.

Claim 1
Constraint (4.9) is redundant and implied by (4.8).

We show the claim below. Using the claim, the linear program to determine uS
C is:

max
x

1
|C|

∑︂
t∈C

(︂
xC

t · ξt +
(︂
1 − xC

t

)︂
· uS

C\{t}

)︂
(4.10a)

s.t.
∑︂
t∈C

xC
t

⎡⎣ϱt − 1
|C| − 1

∑︂
t′∈C\{t}

ϱt′

⎤⎦ ≥ 0 (4.10b)

xC
t ∈ [0, 1] for all t ∈ C (4.10c)

Solving the corresponding linear program for every subset C ⊆ [n] yields an optimal
signaling scheme. Theorem 4.14

Proof of Claim 1. The values uR
C\{t} denote the expected utility for R from the optimal

persuasive signaling scheme for the remaining set of types C \ {t}. Since R can always
take a random action, we clearly have that uR

C\{t} ≥ 1
|C|−1 ·∑︁t′∈C\{t} ϱt′ . Using xC

t ∈ [0, 1],
we can directly lower bound the left-hand side of (4.9) by plugging this inequality into
the left-hand side of (4.9). We get
∑︂
t∈C

(︂
1 − xC

t

)︂
·
(︂
uR

C\{t} − ϱt

)︂

≥
∑︂
t∈C

(︂
1 − xC

t

)︂
·

⎛⎝ 1
|C| − 1 ·

∑︂
t′∈C\{t}

ϱt′ − ϱt

⎞⎠
=
∑︂
t∈C

⎛⎝ 1
|C| − 1 ·

∑︂
t′∈C\{t}

ϱt′ − ϱt

⎞⎠−
∑︂
t∈C

xC
t ·

⎛⎝ 1
|C| − 1 ·

∑︂
t′∈C\{t}

ϱt′ − ϱt

⎞⎠
=
∑︂
t∈C

xC
t ·

⎛⎝ϱt − 1
|C| − 1 ·

∑︂
t′∈C\{t}

ϱt′

⎞⎠ .

The final line is the left-hand side of (4.8). Thus, if (4.8) is satisfied, then (4.9) must
be satisfied as well. This proves the claim.

Before we move on to our polynomial time algorithms based on the Pareto Proce-
dure, we show that even with an optimal signaling mechanism, there are cases in which
S cannot achieve more than 1/2 of the optimal utility in the basic scenario without dis-
closure. This result again holds for both cardinal and ordinal utility for S as ξmax = 1
and ξt = 0 for all t ̸= cS .

4.2. Secretary Recommendation 85

ϱ

ξ

×

×

×
ϱE

Figure 13: Instance for the proof of Theorem 4.16

Theorem 4.16
For both cardinal and ordinal sender utility and cardinal receiver utility, for every ε > 0,
there is an instance such that every persuasive mechanism in the basic scenario with
disclosure guarantees at most a fraction of

(︂
1
2 + ε

)︂
of the optimum in the basic scenario

without disclosure.

Proof. We use the following class of instances with n types. Only type 1 provides any
positive utility to S. It has a value-pair (ϱ1, ξ1) = (n−2

n−1 , 1). Type 2 provides no utility
for R, having a value-pair of (ϱ2, ξ2) = (0, 0). The remaining types t = 3, . . . , n are all
great for R with values (ϱt, ξt) = (1, 0).1 For an illustration, see Figure 13.

Clearly, type 1 is the best type for S and further, the only type with positive utility
for S. Hence, the expected utility S obtains is equal to the success probability, i.e.,
the probability that an action with type 1 is taken by R. This allows us to state the
proof for ordinal and cardinal sender utility at the same time. In the following, we will
only use “expected utility”.

The expected utility for R when taking a random action is ϱE = n−2
n−1 , hence, the

Pareto Mechanism would wait for type 1 to be observed and signal YES in that round.
Hence, the expected utility for S in the basic scenario without disclosure is 1.

For the expected utility obtainable by S in the scenario with disclosure, we use
the notation of the linear programs derived in Theorem 4.14, i.e., xC

t is the probability
that S signals YES in a round conditional on the remaining type set C and current
type t ∈ C. Clearly, setting xC

2 = 0, i.e., sending NO when type 2 is observed, for all
C ∋ 2 can only increase the sender’s objective (4.10a) and does not negatively impact
constraint (4.10b). Hence, we can assume without loss that xC

2 = 0 for all C ∋ 2 in an
optimal scheme.

Since type 1 is the only type providing positive value for S, an optimal mechanism
will set xC

1 = 1 without loss of generality for all C ∋ 1. If ϱ1 <
1

|C|−1 · ∑︁t′∈C\{1} ϱt′ , S
cannot achieve a higher expectation than 1

|C| , which can be obtained by setting xC
t = 1

for all t ∈ C. If, on the other hand, ϱ1 ≥ 1
|C|−1 ·∑︁t′∈C\{1} ϱt′ , setting xC

1 = 1 and xC
t = 0

for all t ∈ C \ {1} is optimal. If 1 /∈ C, S cannot get a positive utility. Thus, without
loss of generality, xC

t = 1 for all t ∈ C, t ̸= 2.
Let ℓ =

√
n. We denote by E the event that

1. type 1 or type 2 is among the first n− ℓ actions, and
1For simplicity, we assume that all these values are the same. Using slight perturbations of these

values, our original assumption of distinct values can be guaranteed without requiring substantial
changes to the proof.

86 4. Online Bayesian Persuasion

Algorithm 11: Shrinking Pareto Mechanism
Input: Set of valuation pairs (ϱt, ξt)t∈[n], online sequence of types θ1, . . . , θn

1 Set R1 = [n] and recSent = False.
2 for round i = 1, . . . , n do
3 Set Ri+1 = Ri \ {θi}.
4 if recSent = True then Signal NO.
5 else
6 Let ci be the type chosen by Pareto Procedure on set Ri.
7 if ci = θi then Signal YES and set recSent = True.
8 else Signal NO.

2. type 2 is observed before type 1.

The probability that both types arrive in the final ℓ rounds is ℓ·(ℓ−1)
n·(n−1) . Since the rounds

in which types 1 and 2 arrive are drawn uniformly at random, this means that type
2 is observed prior to type 1 with a probability of 1/2. Combining these probabilities
gives us

Pr[E] = 1
2 ·
(︄

1 − ℓ · (ℓ− 1)
n · (n− 1)

)︄
= 1

2 − ℓ · (ℓ− 1)
2n · (n− 1) .

Now, condition on event E occurring and type 2 being observed in round i ≤ n − ℓ.
Since type 2 does not get a recommendation, in round i + 1 the set C of remaining
types consists only of type 1 and a subset of types 3, . . . , n of size n− i− 1. Clearly,

1
|C| − 1 ·

∑︂
t′∈C\{1}

ϱt′ = 1
n− i− 1 · (n− i− 1) = 1 > n− 2

n− 1 = ϱ1 .

This means that xC
t = 1 for all t ∈ C in an optimal mechanism in round i + 1 directly

after type 2 was observed in round i. Hence, the process ends after round i + 1. This
means that type 1 is taken with probability only 1/|C| ≤ 1/ℓ since E requires i ≤ n− ℓ.
Overall, the expected utility of an optimal mechanism in the setting with disclosure
can be upper bounded by

(1 − Pr[E]) · 1 + Pr[E] · 1
ℓ

≤ 1
2 + ℓ · (ℓ− 1)

n · (n− 1) + 1
2ℓ − ℓ− 1

2n · (n− 1) = 1
2 + o(1)

as ℓ =
√
n.

As our optimal mechanism requires solving an exponential number of linear pro-
grams, we now turn to another variant of the Pareto Mechanism. In every round, it
considers the shrinking set of types and thus is named the Shrinking Pareto Mechanism
(Algorithm 11). If and only if the type of the current action is the one computed by
the Pareto Procedure on the set Ri of types remaining in round i, the mechanism sends
a signal σi = YES. As before, the same mechanism can be used for both cardinal as
well as ordinal sender utility by adjusting the types’ values.

In our analysis of the Shrinking Pareto Mechanism, we first show that it is persuasive
in Lemma 4.17. Then, we show that it yields a (1/3 − o(1))-approximation for the case

4.2. Secretary Recommendation 87

of cardinal sender utility (Theorem 4.18) and a (1/2 − o(1))-approximation for ordinal
sender utility (Theorem 4.19). Hence, for the latter case of ordinal sender utility, the
Shrinking Pareto Mechanism is an asymptotically optimal mechanism by Theorem 4.16.

Lemma 4.17
For cardinal receiver utility, the Shrinking Pareto Mechanism is persuasive in the basic
scenario with disclosure.

Proof. Recall that the Pareto Procedure for a set R of types chooses a type c ∈ R
such that E [ϱ(c)] ≥ ϱE, where ϱE = ∑︁

t∈R ϱt. We condition on the set Ri of types
remaining at the start of round i. If the Shrinking Pareto Mechanism sends σi = YES
in round i, this means that the current action i has type θi = c as identified by the
Pareto Procedure. Thus, we have

E [ϱ(θi) | σi = YES ∧Ri] ≥ 1
|Ri|

∑︂
t∈Ri

ϱt .

We show that the probabilities to send a signal σi = YES for a type t conditioned on
the remaining set of types being Ri and the current type being t satisfy the constraints
of the linear programs identified in the proof of Theorem 4.14 to show persuasiveness.
Hence, we use the following notation. Let xRi

t = Pr[σi = YES | Ri ∧ (θi = t ∈ Ri)].
The Pareto Procedure uses a convex combination of the (up to) two types a and b such
that ∑︁t∈Ri

xRi
t = 1. Hence, we get

∑︂
t∈Ri

xRi
t · ϱt ≥ ϱE

= 1
|Ri|

·
∑︂
t∈Ri

ϱt

= 1
|Ri|

·
∑︂
t∈Ri

xRi
t ·

∑︂
t∈Ri

ϱt

= 1
|Ri|

·
∑︂
t∈Ri

xRi
t ·

∑︂
t′∈Ri\{t}

ϱt′ + 1
|Ri|

·
∑︂
t∈Ri

xRi
t · ϱt

and thus ∑︂
t∈Ri

xRi
t · ϱt ≥ 1

|Ri| − 1 ·
∑︂
t∈Ri

xRi
t ·

∑︂
t′∈Ri\{t}

ϱt′ .

Clearly, xRi
t ∈ [0, 1] for all sets of remaining types Ri and all t ∈ Ri. Hence, xRi ,

which consists of the signaling probabilities of the Shrinking Pareto Mechanism for Ri

represents a feasible solution to the linear program (4.10). Since this is a sufficient
condition for persuasiveness, the Shrinking Pareto Mechanism is persuasive.

We continue with the approximation ratio for cardinal sender utility in the setting
with disclosure.

Theorem 4.18
For cardinal sender and receiver utility in the basic scenario with disclosure, the Shrink-
ing Pareto Mechanism scenario obtains a (1/3 − o(1))-approximation of the optimum in
the corresponding basic scenario.

88 4. Online Bayesian Persuasion

Proof. We use the following notation. Similar to OPT, the optimal expected utility
for S in the basic scenario without disclosure for the complete type set [n], we denote
by SP the expected utility obtained by the Shrinking Pareto Mechanism for set [n].
Since in each round i with σi = NO, some type θi is rejected and removed from the set
of remaining types, we also define OPT−M and SP−M to denote the expected utility
obtained from type set [n] \M by the Pareto Mechanism and by the Shrinking Pareto
Mechanism, respectively.

In the first round, σ1 = YES with probability 1/n and E [ξθ1 | σ1 = YES] = OPT.
Otherwise, if σ1 = NO, type θ1 is rejected and S achieves an expected utility of SP−{θ1}.
Recursively, we can lower bound SP as follows.

SP = 1
n

·
∑︂
t∈[n]

Pr[θ1 = t, σ1 = YES] · ξt + Pr[θ1 = t, σ1 = NO] · SP−{t}

= OPT
n

+ 1
n

⎛⎝(1 − α) · SP−{a} +α · SP−{b} +
∑︂

t̸=a,b

SP−{t}

⎞⎠ ,

where a and b denote the types identified by the Pareto Procedure and α the cor-
responding probability that a is the type chosen by the Pareto Procedure. Clearly,
SP−{a} ≥ 0 and SP−{b} ≥ 0. Hence, we can bound

SP ≥ OPT
n

+ 1
n

·
∑︂

t̸=a,b

SP−{t}

≥ OPT
n

+ 1
n

·
∑︂

t̸=a,b

⎛⎝ 1
n− 1 ·

∑︂
t′∈[n]\{t}

Pr[θ2 = t′, σ2 = YES] · ξt′

+ Pr[θ2 = t′, σ2 = NO] · SP−{t,t′}

⎞⎠
= OPT

n
+ 1
n · (n− 1) ·

∑︂
t̸=a,b

OPT−{t}

+ 1
n · (n− 1) ·

∑︂
t̸=a,b

∑︂
t′∈[n]\{t}

Pr[θ2 = t′, σ2 = NO] · SP−{t,t′}

≥ OPT
n

+
∑︂

t̸=a,b

OPT−{t}

n · (n− 1) +
∑︂

t̸=a,b

∑︂
t′∈[n]\{t}
t′ ̸=a−t,b−t

OPT−{t,t′}

n · (n− 1) · (n− 2) + . . .

where we use a−t and b−t to denote the types identified by the Pareto Procedure for
type set [n] \ {t}. In Lemma 4.9, we showed that ∑︁t̸=a,b OPT−{t} ≥ (n − 3) · OPT.
Using this inequality, we continue bounding

SP ≥ OPT
n

+
∑︂

t̸=a,b

OPT−{t}

n · (n− 1) +
∑︂

t∈[n]\{a,b}

∑︂
t′∈[n]\{t}
t′ ̸=a−t,b−t

OPT−{t,t′}

n · (n− 1) · (n− 2) + . . .

≥ OPT
n

+ n− 3
n · (n− 1) OPT +

∑︂
t∈[n]\{a,b}

n− 4
n · (n− 1) · (n− 2) OPT−{t} + . . .

≥ OPT · 1
n · (n− 1) · (n− 2) ·

(︄
n−3∑︂
ℓ=1

(n− ℓ) · (n− ℓ− 1)
)︄

4.2. Secretary Recommendation 89

= OPT ·13 · n
3 − 3n2 + 2n− 6
n3 − 3n2 + 2n

= OPT ·
(︃1

3 − 2
n3 − 3n2 + 2n

)︃
.

Hence, the Shrinking Pareto Mechanism achieves an expected utility of at least 1/3−o(1)
of the expected utility obtained by the Pareto Mechanism in the corresponding instance
without disclosure.

We can improve this bound for the case of ordinal sender utility to 1/2 −o(1), which
asymptotically matches the upper bound of Theorem 4.16. The proof is similar to the
one for cardinal sender utility. We use Lemma 4.12, which improves the approximation
guarantee of Lemma 4.9 used in the previous proof.

Theorem 4.19
For ordinal sender and cardinal receiver utility in the basic scenario with disclosure, the
Shrinking Pareto Mechanism yields a success probability of at least (1/2 − o(1)) times
the optimal success probability in the corresponding basic scenario.

Proof. Again, we denote by OPT the success probability of S that the action taken
has type cS when using the Pareto Mechanism and similarly, we use SP to denote the
success probability from the Shrinking Pareto Mechanism. By OPT−M and SP−M , we
denote the respective success probabilities for the subset of types [n] \M . Recall that
the Pareto Procedure returns a single type c. To this end, the procedure identifies two
types a and b. For the ordinal sender case, we have a = cS and b = cR. For these
choices, the procedure determines a probability α such that c = a with probability α
and c = b with probability 1 − α.

In the first round, the probability that θ1 = cS is 1/n and conditional on that,
σ1 = YES with probability α = OPT. With probability 1 − OPT, σ1 = NO is sent and
no utility can be extracted any more. Analogously, if θ1 = b, with probability OPT
a signal NO is sent and YES is sent with probability 1 − OPT. For all other types
t ̸= a, b, NO is signaled with probability 1.

We use c′
R and c′′

R to denote the type with the second and third highest utility for
R, respectively. We get

SP = 1
n

· OPT + 1
n

· OPT · SP−{cR} + 1
n

·
∑︂

t̸=cS ,cR

SP−{t}

= OPT
n

+ OPT
n · (n− 1) ·

⎡⎣OPT−{cR} ·
(︂
1 + SP−{cR,c′

R}
)︂

+
∑︂

t̸=cS ,cR,c′
R

SP−{cR,t}

⎤⎦
+ 1
n · (n− 1) ·

∑︂
t̸=cS ,cR

⎡⎣OPT−{t} ·
(︂
1 + SP−{cR,t}

)︂
+

∑︂
t′ ̸=cS ,cR,t

SP−{t,t′}

⎤⎦
= OPT

n
+ OPT · OPT−{cR}

n · (n− 1) +
∑︂

t̸=cS ,cR

OPT−{t}

n · (n− 1)⏞ ⏟⏟ ⏞
≥ 1

n·(n−1) ·OPT ·(n−2− 1
n−1)

+ OPT · OPT−{cR}

n · (n− 1) · SP−{cR,c′
R} + OPT

n · (n− 1) ·
∑︂

t̸=cS ,cR,c′
R

SP−{cR,t}

90 4. Online Bayesian Persuasion

+ 1
n · (n− 1) ·

∑︂
t̸=cS ,cR

⎡⎣OPT−{t} · SP−{cR,t} +
∑︂

t′ ̸=cS ,cR,t

SP−{t,t′}

⎤⎦
≥ OPT

n
+ OPT
n · (n− 1) ·

(︃
n− 2 − 1

n− 1

)︃
+ OPT · OPT−{cR}

n · (n− 1) · SP−{cR,c′
R}

+ OPT
n · (n− 1) ·

∑︂
t̸=cS ,cR,c′

R

SP−{cR,t}

+ 1
n · (n− 1) ·

∑︂
t̸=cS ,cR

⎡⎣OPT−{t} · SP−{cR,t} +
∑︂

t′ ̸=cS ,cR,t

SP−{t,t′}

⎤⎦
= OPT

n
+ OPT
n · (n− 1) ·

(︃
n− 2 − 1

n− 1

)︃

+ OPT · OPT−{cR}

n · (n− 1) · (n− 2) ·

⎡⎣OPT−{cR,c′
R} + OPT−{cR,c′

R} · SP−{cR,c′
R,c′′

R}

+
∑︂

t̸=cS ,cR,c′
R,c′′

R

SP−{cR,c′
R,t}

⎤⎦
+ OPT
n · (n− 1) · (n− 2) ·

∑︂
t̸=cS ,cR,c′

R

⎡⎣OPT−{cR,t}

+ OPT−{cR,t} · SP−{cR,c′
R,t} +

∑︂
t′ ̸=cS ,cR,t,c′

R

SP−{cR,t,t′}

⎤⎦
+

∑︂
t̸=cS ,cR

OPT−{t}

n · (n− 1) · (n− 2) ·

⎡⎣OPT−{cR,t} + OPT−{cR,t} · SP−{cR,c′
R,t}

+
∑︂

t′ ̸=t,cR,cS ,c′
R

SP−{cR,t,t′}

⎤⎦
+ 1
n · (n− 1) · (n− 2) ·

∑︂
t̸=cS ,cR

∑︂
t′ ̸=cS ,cR,t

⎡⎣OPT−{t,t′}

+ OPT−{t,t′} · SP−{cR,t,t′} +
∑︂

t′′ ̸=t,t′,cS ,cR

SP−{t,t′,t′′}

⎤⎦
= OPT

n
+ OPT
n · (n− 1) ·

(︃
n− 2 − 1

n− 1

)︃

+ OPT
n · (n− 1) · (n− 2) ·

⎡⎣OPT−{cR} · OPT−{cR,c′
R} +

∑︂
t̸=cS ,cR,c′

R

OPT−{cR,t}

+ OPT−{cR} · OPT−{cR,c′
R} · SP−{cR,c′

R,c′′
R}

+ OPT−{cR} ·
∑︂

t̸=cS ,cR,c′
R,c′′

R

SP−{cR,c′
R,t}

+
∑︂

t̸=cS ,cR,c′
R

⎛⎝OPT−{cR,t} · SP−{cR,c′
R,t} +

∑︂
t′ ̸=t,cS ,cR,c′

R

SP−{cR,t,t′}

⎞⎠⎤⎦

4.2. Secretary Recommendation 91

+ 1
n · (n− 1) · (n− 2) ·

∑︂
t̸=cS ,cR

⎡⎣OPT−{t} · OPT−{cR,t} +
∑︂

t′ ̸=cS ,cR,t

OPT−{t,t′}

+ OPT−{t} · OPT−{cR,t} · SP−{cR,c′
R,t} + OPT−{t} ·

∑︂
t′ ̸=cS ,cR,c′

R,t

SP−{cR,t,t′}

+
∑︂

t′ ̸=cS ,cR,t

⎛⎝OPT−{t,t′} · SP−{cR,t,t′} +
∑︂

t′′ ̸=t,t′,cS ,cR

SP−{t,t′,t′′}

⎞⎠⎤⎦
≥ OPT

n
+ OPT
n · (n− 1) ·

(︃
n− 2 − 1

n− 1

)︃

+
n− 3 − 1

n−2
n · (n− 1) · (n− 2) ·

⎛⎝OPT · OPT−{cR} +
∑︂

t̸=cS ,cR

OPT−{t}

⎞⎠+ . . .

≥ OPT
n

·

⎡⎣1 +
n− 2 − 1

n−1
n− 1 +

(︂
n− 2 − 1

n−1

)︂
·
(︂
n− 3 − 1

n−2

)︂
(n− 1) · (n− 2) + . . .

⎤⎦
= OPT

n
·

n−2∑︂
ℓ=0

ℓ∏︂
j=1

n− j − 1 − 1
n−j

n− j

≥ OPT
n

·
n−2∑︂
ℓ=0

ℓ∏︂
j=1

n− j − 2
n− j − 1

= OPT
n

·
n−2∑︂
ℓ=0

n− 2 − ℓ

n− 2

= OPT
n

·
[︄
(n− 1) − (n− 1) · (n− 2)

2(n− 2)

]︄

= OPT ·
(︃1

2 − 1
2n

)︃
.

Thus, using the Shrinking Pareto Mechanism, S has a success probability of at least(︂
1
2 − 1

2n

)︂
· OPT. This completes the proof.

As our final setting for cardinal receiver utility, we will consider the secretary sce-
nario with disclosure next.

Secretary Scenario with Disclosure

For the secretary scenario with disclosure of dismissed types, neither S nor R have any
information on the valuation pairs a priori. As in the previous section on the basic
scenario with disclosure, types of dismissed actions are revealed to R before S learns
the type of the next action. Recall that our mechanisms are persuasive even if R were
to know the valuation pairs. Hence, for our analysis of persuasiveness, we assume that
R has information on the types.

We will show that S cannot achieve a success probability of more than 2/n·OPT, i.e.,
only an O(1/n)-approximation of the optimal success probability in the corresponding
basic scenario without disclosure.

Since the following Trivial Mechanism already provides a success probability of 1/n

and an expected utility of 1/n · ξmax ≥ 1/n · OPT, this already shows a matching lower
bound of Ω(1/n) for the approximation ratio. The Trivial Mechanism always sends a

92 4. Online Bayesian Persuasion

ϱ

ξ

×

a

bc

×

×

OPT

ϱE

Instance I

ϱ

ξ
× a

c
×OPT
ϱE

Instance II

Figure 14: Instances I and II for the proof of Theorem 4.20

recommendation in the first round, i.e., σ1 = YES, σi = NO for i = 2, . . . , n. Clearly,
this mechanism is persuasive as R does not get any information. Hence, a deviation to
a different action does not increase the receiver’s expected utility or success probability,
respectively.

We first show the bound for the ordinal sender case in Theorem 4.20.

Theorem 4.20
For ordinal sender and cardinal receiver utility in the secretary scenario with disclosure,
there is no persuasive mechanism that guarantees S a success probability greater than
2/n · OPT, where OPT is the success probability in the corresponding basic instance.

Clearly, interpreting the same instance for a sender with cardinal utility, i.e., setting
ξmax = 1 and ξt = 0 for all t ̸= cS shows the corresponding bound in Corollary 4.21.

Corollary 4.21
For cardinal sender and receiver utility in the secretary scenario with disclosure, there
is no persuasive mechanism that guarantees S an expected utility of more than 2

n
·OPT,

where OPT is the optimal expected utility in the corresponding basic instance.

To prove the theorem, we use two different instances with n types. Clearly, this
already gives S a lot of knowledge about the types. Still, the two different instances
suffice to show the bound on the approximation ratio of O(1/n).

In both instances, there is a type a with value-pair (ϱa, ξa) = (0, 1) and this is the
best type for S and the only one with positive utility for S. The best type for R in
instance I is type b with value-pair (ϱb, ξb) = (1, 0). The remaining n − 2 types in
instance I are all the same. Hence, we refer to them as type c. All have the same value-
pair of (ϱc, ξc) = (1/2, 0). In instance II, there are n− 1 copies of type c instead. Hence,
the instances only differ by a single type. In instance I, there is a type b which does
not exist in instance II. Here, it is replaced by another copy of type c. An illustration
of the instances is given in Figure 14.

Consider an arbitrary direct and persuasive mechanism. Since the mechanism is
required to be persuasive even if R were to know the underlying instance a priori, let
us assume that this is the case. In round i = 1, all types can potentially be revealed
as S does not know whether the instance is I or II. We denote the probabilities for a
signal σ1 = YES by p1

a, p
1
b , and p1

c , depending on the type which was revealed.
Assuming that in the first round, the signal was σ1 = NO and thus R did not take

the action, in the second round i = 2, the set of types that can be revealed depends

4.2. Secretary Recommendation 93

on θ1, the type of the first round. For example, if θ1 = a, then θ2 = a is not possible.
The following table displays the possible scenarios.

θ2 a a b b c c c

θ1 c b c a c a b

Pr[σ2 = YES | θ1, θ2] p2
a,c p2

a,b p2
b,c p2

b,a p2
c,c p2

c,a p2
c,b

Observe that p2
t,t′ is the probability to signal YES in round 2 if θ2 = t and θ1 = t′.

We subsume the rounds i = 3, . . . , n − 1 using variables pi
t,t′ for t, t′ ∈ {a, b, c}.

Again, we assume all previous signals were NO, i.e., σ1, . . . , σi−1 = NO. We denote the
set of types observed in rounds 1, . . . , i − 1 by Ai−1. There are 8 possible cases. For
short, we only write c if type c has been observed multiple times.

θi a a b b c c c c

Ai−1 c b, c c a, c c a, c b, c a, b, c

Pr[σi = YES | Ai−1, θi] pi
a,c pi

a,b pi
b,c pi

b,a pi
c,c pi

c,a pi
c,b 1

Clearly, for i = 3, the final case is only a and b having arrived and having been rejected.
Additionally, in the final case, if a and b have been observed (and have been dismissed),
both S and R know that only actions of type c will be revealed in future rounds. Hence,
without loss of generality, the signal will be σi = YES immediately.

In round i = n, if all previous signals have been NO, a direct mechanism always
signals YES with probability 1.

In the following lemma, we identify properties that every persuasive mechanism has
to satisfy. We will then be able to prove Theorem 4.20 using these insights.

Lemma 4.22
For every mechanism that is persuasive in both instances I and II, it must hold for
round i = 1

p1
b ≥ p1

a and p1
c ≥ p1

a

and for every round i = 2, . . . , n− 1

pi
b,c ≥ pi

a,c , pi
b,a ≥ pi

c,a , pi
c,b ≥ pi

a,b and pi
c,c ≥ pi

a,c .

These conditions imply that a persuasive mechanism cannot be more likely to send a
signal YES for type a rather than type b or c. Note that the lemma only has restrictions
for rounds i = 1, . . . , n− 1. Technically, the statement also holds for round i = n, as in
that round, the probability for a signal σn = YES is 1 for any type, assuming σi = NO
for all previous rounds.

Proof. We condition on a signal σi = YES. Persuasiveness dictates that the expectation
for R in round i is at least the expectation for R in round i+ 1, i.e.,

E [ϱ(θi) | σi = YES] ≥ E [ϱ(θi+1) | σi = YES] . (4.11)

Only if this inequality is satisfied does R have an incentive to follow the signal and
take action i.

We begin with round i = 1:

94 4. Online Bayesian Persuasion

Instance I: Clearly,

E [ϱ(θ1) | σ1 = YES] = p1
a · 0 + p1

b · 1 + (n− 2) · p1
c · 1

2
and

E [ϱ(θ2) | σ1 = YES] = p1
a ·

n−2
2 + 1
n− 1 + p1

b ·
n−2

2
n− 1 + (n− 2) · p1

c ·
n−3

2 + 1
n− 1

= p1
a · n

2(n− 1) + p1
b · n− 2

2(n− 1) + p1
c · n− 2

2 .

Hence, inequality (4.11) implies p1
b ≥ p1

a.

Instance II: In this instance, type b does not exist. Thus, we get

E [ϱ(θ1) | σ1 = YES] = p1
a · 0 + (n− 1) · p1

c · 1
2

and

E [ϱ(θ2) | σ1 = YES] = p1
a ·

(n− 1) · 1
2

n− 1 + (n− 1) · p1
c ·

n−2
2

n− 1
= p1

a · 1
2 + p1

c · n− 2
2 .

Clearly, inequality (4.11) implies p1
c ≥ p1

a.

Now, consider rounds i = 2, . . . , n− 1. We begin with instance I.

Instance I, Ai−1 contains only c: We have

E [ϱ(θi) | σi = YES] = pi
a,c · 0 + pi

b,c + (n− i− 1) · pi
c,c · 1

2
and

E [ϱ(θi+1) | σi = YES]

= pi
a,c ·

n−i−1
2 + 1
n− i

+ pi
b,c ·

n−i−1
2

n− i
+ (n− i− 1) · pi

c,c ·
n−i−2

2 + 1
n− i

= pi
a,c · n− i+ 1

2(n− i) + pi
b,c · n− i− 1

2(n− i) + pi
c,c · n− i− 1

2

Inequality (4.11) implies pi
b,c ≥ pi

a,c.

Instance I, Ai−1 contains a, not b: We have

E [ϱ(θi) | σi = YES] = pi
b,a · 1 + pi

c,a · (n− i) · 1
2

and

E [ϱ(θi+1) | σi = YES] = pi
b,a ·

(n− i) · 1
2

n− i
+ (n− i) · pi

c,a ·
n−i−1

2 + 1
n− i

= pi
b,a · 1

2 + pi
c,a · n− i+ 1

2
Inequality (4.11) implies pi

b,a ≥ pi
c,a.

4.2. Secretary Recommendation 95

Instance I, Ai−1 contains b, not a: We have

E [ϱ(θi) | σi = YES] = pi
a,b · 0 + pi

c,b · (n− i) · 1
2

and

E [ϱ(θi+1) | σi = YES] = pi
a,b ·

(n− i) · 1
2

n− i
+ (n− i) · pi

c,b ·
n−i−1

2
n− i

= pi
a,b · 1

2 + pi
c,b · n− i− 1

2

Inequality (4.11) implies pi
c,b ≥ pi

a,b.

Instance I, Ai−1 contains a and b: For i = 2 this case does not occur. For i ≥ 3, S
and R both know that they are in instance I and only type c is left. Hence, any
scheme that guarantees a signal YES in one of the remaining rounds is persuasive.
Clearly, the expectation for R is 1/2, regardless of the round i′ ≥ i. As stated
in the table above, without loss of generality, sending a YES-recommendation in
round i with probability 1 is persuasive.

These are all possible cases for instance I. We continue with instance II which does not
have a type b.

Instance II, Ai−1 contains only c: We have

E [ϱ(θi) | σi = YES] = pi
a,c · 0 + pi

c,c · (n− i) · 1
2

and

E [ϱ(θi+1) | σi = YES] = pi
a,c ·

(n− i) · 1
2

n− i
+ (n− i) · pi

c,c ·
n−i−1

2
n− i

= pi
a,c · 1

2 + pi
c,c · n− i− 1

2

Inequality (4.11) implies pi
c,c ≥ pi

a,c.

Instance II, Ai−1 contains a: Since the scheme is persuasive even if R were to know
the types a priori, we can assume that R knows that the remaining actions have
type c. As long as R knows that there will be a YES-signal in one of the remaining
rounds, the scheme is persuasive. The expected utility for R is 1

2 , regardless of
the round in which the action is taken.

Overall, we have shown the lemma using the implications of the persuasiveness con-
straints of the different compositions of Ai−1 for instances I and II.

Using these constraints, we are now able to prove Theorem 4.20. We show that any
mechanism that satisfies the constraints of the previous lemma in instance I cannot get
a better success probability than 1/n and OPT = 1/2. Hence, the approximation ratio
is 2/n.

96 4. Online Bayesian Persuasion

Proof of Theorem 4.20. Using the Pareto Mechanism for instance I in the basic scenario
without disclosure, S has a success probability of 1/2. With probability 1/2, type a is
recommended, and with probability 1/2, type b is recommended. Clearly, this gives R
an expected utility of ϱE = 1/2.

For persuasiveness, S must assume that R knows whether it is instance I or II.
Hence, sending a signal YES on types a and b with probability 1/2 each cannot be
persuasive – R would never follow the recommendations in instance II. Clearly, this is
shown by the constraints identified in Lemma 4.22, which state that a signal YES upon
seeing type a cannot be more likely than a signal YES upon seeing b or c, respectively.
We formalize this by showing that there exists an optimal persuasive mechanism which
always sends a YES-recommendation in the first round, i.e., the above Trivial Mecha-
nism which always sends σ1 = YES is optimal. To this end, we will use a backwards
induction showing that when reaching round i ∈ [n] without a previous YES-signal, it
is optimal for S to signal σi = YES.

Clearly, for i = n, an optimal persuasive mechanism sends a signal σn = YES if
σi′ = NO for all i′ < n. Now, suppose the inductive assumption holds for rounds
i + 1, . . . , n. We consider round i ≥ 2 and distinguish the different compositions of
Ai−1.

Ai−1 contains only c: If action i has type a, the success probability is pi
a,c. If type

b is revealed, S has a success probability of (1 − pi
b,c) · 1

n−i
since the inductive

assumption is that σi+1 = YES if σ1, . . . , σi = NO. The probability that θi+1 = a
is 1

n−i
due to the uniform random order. Similarly, if action i has type c, the

success probability is (1 − pi
c,c) · 1

n−i
. This means that S wants to maximize

pi
a,c +

1 − pi
b,c

n− i
+ (n− i− 1) ·

1 − pi
c,c

n− i

subject to the constraints pi
b,c ≥ pi

a,c and pi
c,c ≥ pi

a,c as identified in Lemma 4.22.
Clearly, making these constraints tight by minimizing both pi

b,c and pi
c,c, i.e.,

setting pi
b,c = pi

a,c and pi
c,c = pi

a,c, maximizes the expression. Thus, we can rewrite
it as

pi
a,c +

1 − pi
a,c

n− i
+ (n− i− 1) ·

1 − pi
a,c

n− i
= 1 .

Hence, if pi
a,c = pi

b,c = pi
c,c, the expression simplifies to a constant which is

independent of the probabilities to send a signal YES. Clearly, this means that
pi

a,c = pi
b,c = pi

c,c = 1 is a feasible and optimal choice, which means that σi = YES
if σ1, . . . , σi−1 = NO for the set Ai−1 is optimal and persuasive.

Ai−1 contains a, not b: If S has observed type a and the action was not taken, the
success probability is clearly 0. Hence, setting pb,a = pc,a = 1 is feasible and an
optimal choice for S. This means that σi = YES if σ1, . . . , σi−1 = NO for the set
Ai−1 is optimal and persuasive.

Ai−1 contains b, not a: If action i has type a, the success probability is pi
a,b. Type

b has already been observed and cannot arrive anymore. If type c is revealed
in round i, S has a success probability of (1 − pi

c,b) · 1
n−i

, following the same

4.2. Secretary Recommendation 97

argument as in the first composition of Ai−1. An optimal mechanism thus wants
to maximize

pi
a,b + (n− i) ·

1 − pi
c,b

n− i
= pi

a,b + 1 − pi
c,b

subject to the constraint pi
c,b ≥ pi

a,b as identified in Lemma 4.22. Again, tightening
the constraint by minimizing pi

c,b and thus setting pi
c,b = pi

a,b maximizes the
expression. We can rewrite it as

pi
a,b + 1 − pi

a,b = 1 .

Again, the expression simplifies to a constant independent of the probability
values pi

a,b = pi
c,b. This clearly gives us a feasible and optimal choice of pi

a,b =
pi

c,b = 1, which means that σi = YES if σ1, . . . , σi−1 = NO for the set Ai−1 is
optimal and persuasive.

Ai−1 contains a and b: If a has arrived and been rejected, the success probability is
0. We already observed in the second case above that sending a recommendation
σi = YES if σ1, . . . , σi−1 = NO for the set Ai−1 is persuasive and optimal for S.

This only leaves round i = 1. Clearly, if type a is observed, the success probability
is p1

a and if action 1 has type b or type c, the success probabilities are (1 − p1
b) · 1

n−1
and (1 − p1

c) · 1
n−1 , respectively.

This means that S wants to maximize

p1
a + 1 − p1

b

n− 1 + (n− 2) · 1 − p1
c

n− 1

subject to the constraints p1
b ≥ p1

a and p1
c ≥ p1

a of Lemma 4.22. Again, the expression
is maximized if p1

b = p1
a and p1

c = p1
a. We can rewrite it as

p1
a + 1 − p1

a

n− 1 + (n− 2) · 1 − p1
a

n− 1 = 1 .

Since the expression simplifies to a constant and is therefore independent of the values
p1

a = p1
b = p1

c , we can set p1
a = p1

b = p1
c = 1. This means that setting σ1 = YES gives

an optimal mechanism.
The mechanism provides a success probability of 1/n for S, which is a 2/n-approxi-

mation to the optimal success probability in the corresponding basic scenario without
disclosure. This proves the theorem. Theorem 4.20

This concludes the discussion of cardinal receiver utility. In the next section, we
discuss the results summarized in Table 4 for ordinal receiver utility.

4.2.2 Ordinal Utility for R
In this section, we discuss ordinal utility for R, i.e., R is only interested in taking
the action with type cR. As in the previous section on cardinal utility for R, we
subdivide the section into the 4 different settings. We start by analyzing the basic
scenario without disclosure as our benchmark case. Then, we discuss the secretary
scenario without disclosure and finally the two disclosure scenarios, the basic as well
as the secretary one.

98 4. Online Bayesian Persuasion

Algorithm 12: Elementary Mechanism
Input: Set of valuation pairs (ϱt, ξt)t∈[n], online sequence of types θ1, . . . , θn

1 Draw x ∼ Unif[0, 1].
2 if x ≤ 1/n then Set c = cR.
3 else Set c = cS .
4 for round i = 1, . . . , n do
5 if c = θi then Signal YES.
6 else Signal NO.

Benchmark: Basic Scenario without Disclosure

In the basic scenario without disclosure, which serves as the benchmark for the other
settings, both S and R know the types a priori. As in the corresponding setting for
cardinal receiver utility, this means that S essentially faces an offline problem. Since
R only extracts utility from cR and S knows cS as well as cR, an optimal mechanism
will only send a YES-signal in a round i with θi = cS or θi = cR. The Elementary
Mechanism (Algorithm 12) decides before the actions are revealed whether to send
YES for type cS or cR and then simply waits for the round. The mechanism takes
advantage of the fact that R does not know the order of the types and hence only has
a probability of finding type cR of 1/n.

We show that the Elementary Mechanism is persuasive. Clearly, it also guarantees
a success probability of 1 − o(1) and an expected utility of ξmax · (1 − o(1)) to S.

Proposition 4.23
For both cardinal and ordinal sender utility and ordinal receiver utility, the Elementary
Mechanism is persuasive in the basic scenario without disclosure. It yields a success
probability of (1 − o(1)) and an expected utility of (1 − o(1)) · ξmax for S.

Proof. The mechanism chooses c = cS with a probability of 1 − 1/n = 1 − o(1). If it is
persuasive and R follows the signal, this clearly implies that with probability 1 − o(1),
the action R takes has type cS .

Let us now show that the mechanism is indeed persuasive. Recall that the setting
is without disclosure, which means that in round i, R only knows the signals σ1, . . . , σi.
Clearly, the mechanism only sends a single YES-signal.

Assume that the mechanism has reached round i and σi = YES. Using Bayes’ law,
the success probability for R when taking the action in round i is

Pr[θi = cR | σi = YES] = Pr[σi = YES | θi = cR] · Pr[θi = cR]
Pr[σi = YES]

=
1
n

· 1
n

1
n

·
(︂

1
n

+ n−1
n

)︂ = 1
n
.

If, on the other hand, R decides to deviate and take an action in some later round
i′ > i, the mechanism does not reveal any additional information. This means that

Pr[θi′ = cR | σi = YES] = Pr[σi = YES | θi′ = cR] · Pr[θi′ = cR]
Pr[σi = YES]

4.2. Secretary Recommendation 99

=
n−1

n
· 1

n−1 · 1
n

1
n

·
(︂

n−1
n

+ 1
n

)︂ = 1
n
.

Clearly, this does not give R any incentive to deviate to a later round i′ > i.
Finally, assume that σ1, . . . , σi = NO. Then,

Pr[θi = cR | σi = NO] = Pr[σi = NO | θi = cR] · Pr[θi = cR]
Pr[σi = NO]

=
n−1

n
· 1

n

1
n

·
(︂
n− 2 + 1

n
+ n−1

n

)︂ = 1
n
.

Hence, taking an action without a recommendation to do so does not increase the
success probability for R.

Combining these results, this shows that the Elementary Mechanism is persuasive.

Clearly, the Elementary Mechanism is an optimal persuasive mechanism. Every
persuasive mechanism must guarantee a success probability of at least 1/n to R. Since
the Elementary Mechanism ensures that S gets cS with the remaining probability of
1 − 1/n, no persuasive mechanism can achieve a better utility for S. Finally, observe
that in the case that cS = cR, both S and R always get the action with their respective
best type.

We continue with the secretary scenario without disclosure.

Secretary Scenario without Disclosure

In the secretary scenario, neither S nor R know the valuation-pairs of the types a priori.
Still, for the schemes employed by the sender to be persuasive, they must be persuasive
even if R were to know the types. As in the previous basic setting, our mechanism will
decide before the online process starts whether to optimize for S or for R. Since S
does not know the valuations, the Simple Secretary Mechanism (Algorithm 13) will then
use the classic secretary algorithm due to Dynkin [38] to perform a one-dimensional
optimization for either S or R.

The classic, one-dimensional secretary algorithm works as follows. The first s =
⌊n/e⌋ rounds serve as sample phase in which the options are observed. In rounds
s + 1, . . . , n − 1, the first option which constitutes the best option thus far is chosen.
In case that no option has been taken in a prior round, the final option in round n is
always chosen, regardless of its value. This results in a success probability of at least
1/e, converging to 1/e for large values of n which is optimal for the one-dimensional
problem.

Our mechanism uses the classic secretary algorithm for the values (ϱθi
)i∈[n] with

probability p and for the values (ξθi
)i∈[n] with probability 1 − p. Since the success

probability of the classic secretary algorithm is at least 1/e, a probability p = e/n = o(1)
suffices to guarantee R an overall success probability of 1/n. We will show below
that this indeed results in a persuasive mechanism. This means that the mechanism
optimizes for S with probability 1 − e/n, which yields a success probability of at least
1/e − 1/n = 1/e − o(1) for S. Since 1/e + o(1) is the optimal success probability for S in
the one-dimensional setting, the mechanism is asymptotically optimal.

The result is formalized in the following theorem.

100 4. Online Bayesian Persuasion

Algorithm 13: Simple Secretary Mechanism
Input: Number of rounds n, online sequence of types θ1, . . . , θn

1 Set A0 = ∅ and recSent = False.
2 Draw x ∼ Unif[0, 1]. // Choose whose values to optimize for
3 if x ≤ e/n then Set v = ϱ.
4 else Set v = ξ.
5 for round i = 1, . . . , ⌊n/e⌋ do
6 Set Ai = Ai−1 ∪ {θi} and signal NO.
7 for round i = ⌊n/e⌋, . . . , n− 1 do
8 Set Ai = Ai−1 ∪ {θi}. if recSent = True then Signal NO.
9 else

10 if v(θi) ≥ maxt∈Ai
v(t) then Signal YES and set recSent = True.

11 else Signal NO.

12 for round n do
13 if recSent = True then Signal NO.
14 else Signal YES.

Theorem 4.24
For both cardinal and ordinal sender utility and ordinal receiver utility, the Simple
Secretary Mechanism is persuasive in the secretary scenario without disclosure. It
yields a success probability of 1/e − o(1) and an expected utility of (1/e − o(1)) · ξmax for
S.

Proof. We assume that n ≥ 3 such that s = ⌊n/e⌋ ≥ 1. Otherwise, the first action is
recommended with probability 1. This is the Trivial Mechanism and as such persuasive.
Additionally, it gives S a success probability of at least 1/2 > 1/e.

Clearly, if R follows the recommendations given by the mechanism, with probability
at least (1 − e/n) · 1/e = 1/e − 1/n = 1/e − o(1), type cS is taken. For the cardinal case,
this implies an expected utility of at least (1/e − o(1)) · ξmax for S.

Let us now show persuasiveness.
First, observe that R does not learn which variant is used, i.e., whether the mecha-

nism optimizes for S or for R until an action is taken and utilities are realized. Second,
regardless of the variant of the classic secretary algorithm used, the probability for a
signal σi = YES in round i only depends on the type of action i and the set Ai of
types observed in rounds 1, . . . , i. Clearly, if i ≤ s, the probability is 0 for a signal
σi = YES. For round i ∈ {s + 1, . . . , n − 1}, the probability for σi = YES only de-
pends on whether the best type in Ai is revealed in round i and the second best type
was observed in the sample phase. Regardless of an optimization for S or R, this is
Pr[σi = YES | Ai] = 1

i
· s

i−1 . For round i = n, unless a prior YES-signal has been sent,
the signal is always YES with probability 1.

Note that the mechanism always sends at most a single YES-signal and σi = YES
for some i ∈ [n] means σℓ = NO for all ℓ ∈ [n] \ {i}.

We first show that the Simple Secretary Mechanism is persuasive for the case that
the utility-values are negatively correlated, i.e., good types for R are bad for S and
vice versa. Formally, the type with the ℓ-th best utility for S has the ℓ-th lowest or

4.2. Secretary Recommendation 101

n−ℓ+1-highest utility for R. Following this special case, we argue why persuasiveness
holds for arbitrarily correlated utility pairs.

Consider a round i ∈ [n− 1]. We consider the different cases.

σi = YES: Clearly, if the mechanism optimizes for S, due to the negatively correlated
utility values, σi = YES implies that θi ̸= cR. If the mechanism chose to optimize
for R instead, the type of the current action i has the highest value for R among
the observed types, i.e., ϱ(θi) ≥ ϱ(t) for all t ∈ Ai. Due to the random order of
the types, the best type is in Ai with probability i/n. Overall, this means that
Pr[θi = cR | σi = YES] = e

n
· i

n
= e·i

n2 .
A deviation to a later round i′ > i has a success probability of Pr[θi′ = cR | σi =
YES] = n−i

n
· 1

n−i
= 1

n
. The probability that cR /∈ Ai is n−i

n
. If that is the case,

the probability that action i′ has type cR is 1
n−i

. Hence, a deviation to a later
round does not increase the success probability for R as i > s = ⌊n/e⌋, which
means that i > n/e and thus e·i

n2 >
1
n
.

i > s and σℓ = NO for all ℓ ≤ i: If the mechanism optimizes for R, clearly θi ̸= cR.
If the mechanism chose to optimize for S instead, clearly θi ̸= cS . By our as-
sumption, cR ̸= cS and thus, θi = cR cannot be ruled out. With probability i/n,
cR is among the first i types. The fact that σℓ = NO for all ℓ ≤ i implies that
the best type for S among the types in Ai was observed during the sample phase.
Since we assume negatively correlated utility values, cR cannot be the best type
for S in Ai. This means that the probability that cR is action i’s type is 1

i−1 ,
conditional on cR ∈ Ai and σℓ = NO for all ℓ ≤ i. Overall, the probability is

Pr
[︄
θi = cR |

i⋀︂
ℓ=1

σℓ = NO
]︄

= n− e

n
· i
n

· 1
i− 1 = (n− e) · i

n2 · (i− 1) .

Now, consider a subsequent round i′ > i. The type θi′ of action i′ is the best
type among the type set Ai′ of observed types with probability s

i′·(i′−1) as noted
above, i.e., v(θi′) ≥ v(t) for all t ∈ Ai′ . Since we condition on σ1, . . . , σi = NO,
this means that

Pr
[︄
v(θi′) ≥ max

t∈Ai′
v(t) |

i⋀︂
ℓ=1

σℓ = NO
]︄

= s

i′ · (i′ − 1)
/︂s
i

= i

i′ · (i′ − 1) ,

where v is ξ or ϱ, depending on the choice of the mechanism. As observed for
the previous case, a type which is best so far is cR with probability e·i′

n2 . In total,
we get for all i′ < n that

Pr
[︄
θi′ = cR |

i⋀︂
ℓ=1

σℓ = NO
]︄

= i

i′ · (i′ − 1) · e · i′

n2 = e · i
(i′ − 1) · n2 .

Observe that for round i′ = n, S always sends a signal σn = YES, regardless of
the value. The above paragraph already includes the analysis for the special case
that in round n, the type is best so far. But, if the sender-optimization is run,
a type that is not best so far for S might be cR. The probability that no type
after the sample phase was best so far, conditional on σℓ = NO for ℓ = 1, . . . , i

102 4. Online Bayesian Persuasion

is s
n

/︂
s
i

= i
n
. Additionally, the probability that the S-optimization is run by the

mechanism and a type which is not best so far is cR is n−e
n

· 1
n−1 . Hence, the

overall probability is

Pr
[︄
θn = cR |

i⋀︂
ℓ=1

σℓ = NO
]︄

= e · i
(n− 1) · n2 + i

n
· n− e

n
· 1
n− 1 .

Together, these results imply that by following the mechanism, R has a success
probability of

n∑︂
i′=i+1

e · i
(i′ − 1) · n2 + i · (n− e)

n2 · (n− 1) = i

n2 ·

⎛⎝n− e

n− 1 +
n∑︂

i′=i+1

e

i′ − 1

⎞⎠ (4.12)

conditional on θℓ = NO for ℓ = 1, . . . , i. Thus, R wants to follow the mechanism
if

i

n2 ·

⎛⎝n− e

n− 1 +
n∑︂

i′=i+1

e

i′ − 1

⎞⎠ ≥ i

n2 · n− e

i− 1 ,

or, equivalently

e ·

⎛⎝ 1
i− 1 − 1

n− 1 +
n∑︂

i′=i+1

1
i′ − 1

⎞⎠ ≥ n

i− 1 − n

n− 1 ,

where we canceled the common factor of i
n2 , brought all terms with factor e to

the left-hand side and the remaining terms to the right-hand side. The left-hand
side can further be simplified by including the two fractions in the summation
and shifting the summation index. Together with a common denominator for the
right-hand side, this gives us the equivalent formulation of

e ·

⎛⎝ n−2∑︂
i′=i−1

1
i′

⎞⎠ ≥ n · (n− i)
(n− 1) · (i− 1) .

Purely mathematically, this holds for i = n, but in the context of the mechanism,
this does not occur as σn = YES if σℓ = NO for all ℓ ∈ [n − 1]. This means we
can express the constraint for i < n as

e · (n− 1)
n

≥ n− i

(i− 1) ·∑︁n−2
i′=i−1

1
i′

. (4.13)

Clearly, the left-hand side of (4.13) is fixed for a given value of n. In the following
claim, we show that the right-hand side is monotonically decreasing in i and thus
i = s+ 1 provides the strongest lower bound for (4.13).

Claim 2
The lower bound in equation (4.13) is monotonically decreasing in i.

4.2. Secretary Recommendation 103

n 3 4 5 6 7 8 9 10 11 12 13
s 1 1 1 2 2 2 3 3 4 4 4

LHS 2e
3

3e
4

4e
5

5e
6

6e
7

7e
8

8e
9

9e
10

10e
11

11e
12

12e
13

RHS 1 4
3

18
11

18
13

120
77

50
29

700
459

560
341

3780
2509

4410
2761

55440
32891

Table 5: Inequality (4.14) for 3 ≤ n ≤ 13. LHS > RHS for every entry since e ≥ 5/2.

Proof of Claim 2. For i > s+ 1, we show that the right-hand side of (4.13) does
not decrease when the value of i decreases to i− 1, or

n− i+ 1
(i− 2) ·∑︁n−2

i′=i−2
1
i′

≥ n− i

(i− 1) ·∑︁n−2
i′=i−1

1
i′

.

This holds if and only if
n−2∑︂

i′=i−1

1
i′

≥ (n− i) · (i− 2)
(n− i+ 1) · (i− 1) ·

n−2∑︂
i′=i−2

1
i′

= (n− i) · (i− 2)
(n− i+ 1) · (i− 1) ·

⎛⎝ n−2∑︂
i′=i−1

1
i′

+ 1
i− 2

⎞⎠
= (n− i) · (i− 2)

(n− i+ 1) · (i− 1) ·
n−2∑︂

i′=i−1

1
i′

+ n− i

(n− i+ 1) · (i− 1) .

This inequality is satisfied if and only if

(n− 1) ·
n−2∑︂

i′=i−1

1
i′

≥ n− i .

Clearly, for i = n− 1, the inequality states n−1
n−2 ≥ 1, which is true. The fact that

the inequality holds for some i implies that it also holds for i − 1. This is due
to the fact that the left-hand side increases by n−1

i−2 > 1 but the right-hand side
increases by 1 when the value of i decreases to i− 1. This proves the claim.

Claim 2

Using the claim, we can plug i = s+ 1 into (4.13), which gives us

e · (n− 1)
n

≥ n− s− 1
s ·
(︂∑︁n−2

i′=s
1
i′

)︂ . (4.14)

Recall that s = ⌊n/e⌋. For n ≤ 13, Table 5 shows the left-hand and right-hand
sides of inequality (4.14). Since it holds for all n ≤ 13, we will now assume n ≥ 14
and use the following inequality (cf. [75])

1
2(ℓ+ 1) < Hℓ − ln ℓ− γ <

1
2ℓ .

Here, γ ≈ 0.5772 is the Euler-Mascheroni constant and Hℓ = ∑︁ℓ
i=1

1/i the ℓ-th
harmonic number. This allows us to bound

n−2∑︂
i′=⌊n/e⌋

1
i′

= Hn−2 −H⌊n/e⌋−1

104 4. Online Bayesian Persuasion

≥ 1
2(n− 1) + ln(n− 2) − 1

2(⌊n/e⌋ − 1) − ln (⌊n/e⌋ − 1)

≥ 1 + 1
2(n− 1) − 1

2 (⌊n/e⌋ − 1) (4.15)

since n− 2 ≥ e · (⌊n/e⌋ − 1) and thus ln n−2
⌊n/e⌋−1 ≥ 1.

Recall that we want to show (4.14) for s = ⌊n/e⌋, or equivalently⌊︂
n
e

⌋︂
· e · (n− 1)
n

·
n−2∑︂

i′=⌊n/e⌋

1
i′

≥ n−
⌊︃
n

e

⌋︃
− 1 .

We can lower bound⌊︂
n
e

⌋︂
· e · (n− 1)
n

·
n−2∑︂

i′=⌊n/e⌋

1
i′

≥

(︂
n
e

− 1
)︂

· e · (n− 1)
n

·

⎛⎝1 + 1
2(n− 1) − 1

2
(︂⌊︂

n
e

⌋︂
− 1

)︂
⎞⎠

≥
(︃
n− e− 1 + e

n

)︃
·

⎛⎝1 + 1
2(n− 1) − 1

2
(︂

n
e

− 2
)︂
⎞⎠

= n− 1 − e+ e

n
+
n− 1 − e+ e

n

2(n− 1) −
n− 1 − e+ e

n

2
(︂

n
e

− 2
)︂

≥ n− 1 + 1
2 − e− e

2(n− 1) −
e · (n− 2e+ e− 1 + e

n
)

2(n− 2e)

≥ n− 1 + 1
2 − e− e

2(n− 1) − e

2 − e2

2(n− 2e)

≥ n− 1 + 1
2 − 3 − 3

26 − 3
2 − 8

16
= n− 1 − 120

26
≥ n− 1 − 5

≥ n−
⌊︃
n

e

⌋︃
− 1 ,

showing (4.14). We used that n ≥ 14, thus
⌊︂

n
e

⌋︂
≥ 5, and e ≤

√
8 ≤ 3.

i ≤ s: Finally, consider the case that R wants to blindly take an action during the
sample phase. Since no information is given to R by the mechanism, the proba-
bility of getting an action with type cR is 1/n. This does not depend on the round
i ≤ s in which R takes the action or the variant of the classic secretary algorithm
the mechanism is using.

We can use the bound obtained in equation (4.12) to bound the success prob-
ability for R when following the mechanism. Since i ≤ s, R will always get a
NO-signal until round i from the mechanism, so we can drop the conditioning on

4.2. Secretary Recommendation 105

having only NO up to round i. Since the mechanism starts the phase in which
YES-signals are sent in round s+ 1, this gives R a success probability of

s

n2 ·

⎛⎝n− e

n− 1 +
n∑︂

i′=s+1

e

i′ − 1

⎞⎠ .

Thus, R should wait and not take action i ≤ s if

1
n

≤ s

n2 ·

⎛⎝n− e

n− 1 +
n∑︂

i′=s+1

e

i′ − 1

⎞⎠
= s

n2 ·
(︄

n

n− 1 + e ·
n−2∑︂
i′=s

1
i′

)︄
.

This inequality is equivalent to

1
s

≤ 1
n− 1 + e

n
·

n−2∑︂
i′=s

1
i′
,

or

e · (n− 1)
n

≥ n− 1 − s

s ·∑︁n−2
i′=s

1
i′

which is exactly inequality (4.14) which we proved to hold for the previous case.

This concludes the proof for persuasiveness when the values for S and R are nega-
tively correlated, i.e., the ℓ-th best type for S is the n− ℓ−1-best type for R. If that is
not the case, the success probability for R changes when the mechanism optimizes for
S – if the mechanism looks for cR, this change does not have an impact on receiver’s
success probability. If cR is not the worst type for S, the chances of seeing cR as a type
that is best so far increases. Assume that cR has rank x < n for S, where a rank x
means that there are x− 1 better types in the type set. A signal σi = YES for a type
with rank x in round i > s implies that all x − 1 better types arrive in a later round.
Otherwise, cR cannot be a type that is best so far.

This means that the probability of getting cR upon a signal σi = YES when the
mechanism uses the variant optimizing for S is i

n
·∏︁x−2

ℓ=0
n−i−ℓ
n−ℓ−1 ≥ 0.

Additionally, if action i > s is not recommended, the probability that θi = cR
weakly decreases. In this scenario, the probability is

i

n
· 1
i− 1 ·

(︄
1 −

x−2∏︂
ℓ=0

n− i− ℓ

n− 1 − ℓ

)︄
≤ i

n · (i− 1) ,

where i
n·(i−1) is the probability that θi = cR conditional on the mechanism optimizing

for S and σℓ = NO for all ℓ ∈ [i].
Clearly, during the sample phase, the probability to get cR when taking an action

stays 1/n. The same holds for a deviation to a round after a YES-signal has been
sent. The calculations are similar to the ones done above for the negatively-correlated
scenario.

106 4. Online Bayesian Persuasion

Algorithm 14: Adaptive Elementary Mechanism
Input: Set of valuation pairs (ϱt, ξt)t∈[n], online sequence of types θ1, . . . , θn

1 Set recSent = False.
2 for round i = 1, . . . , n do
3 if recSent = False then
4 if cS = θi then Signal YES and set recSent = True.
5 else if cR = θi then
6 Draw x ∼ Unif[0, 1].
7 if x ≤ 1

n−i
then Signal YES and set recSent = True.

8 else Signal NO.
9 else Signal NO.

10 else Signal NO.

All in all, this means that R weakly increases the success probability by following
the mechanism for a decreasing sender-rank x of cR. This means that the mechanism
is persuasive when cR has rank x < n. Since we showed above that it is persuasive
for a sender-rank x = n of cR, this clearly means that the mechanism is persuasive
regardless of the correlation of the types’ valuations.

This concludes the secretary scenario without disclosure. In the following, we dis-
cuss the disclosure scenarios, starting with the basic scenario with disclosure.

Basic Scenario with Disclosure

In this section, we discuss the basic scenario with disclosure. This means that S and R
both know the set of types a priori and R is informed of the types of rejected actions.
This means that S can no longer use the Elementary Mechanism – after each rejection
of a type t ̸= cR, the set of remaining types shrinks and the probability to find cR by
taking a random action increases. Interestingly, even though the mechanism needs to
be adapted to the new scenario with disclosure, our Adaptive Elementary Mechanism
(Algorithm 14) achieves a success probability of 1 − o(1) for S and thus an expected
utility of (1 − o(1)) · ξmax in the cardinal setting.

The mechanism only sends a YES-signal on cS or cR. In every round i, unless a
YES-signal has been sent in a previous round, the mechanism proceeds as follows. If
θi = cS , the signal is σi = YES with probability 1. If θi = cR, the signal is σi = YES
with probability 1

n−i
. Otherwise, the mechanism signals NO. Clearly, this means that

at most a single YES-signal is sent.
Our first result is that the mechanism is persuasive.

Lemma 4.25
For ordinal receiver utility, the Adaptive Elementary Mechanism is persuasive in the
basic scenario with disclosure.

Proof. The receiver learns the type of dismissed actions. This means that R knows
when cR is no longer among the available options. In this case, a deviation from
the recommendation is not profitable for R. Hence, we assume that cR has not been
observed.

4.2. Secretary Recommendation 107

Consider round i and σi = YES. This means that the current action has type cR
with probability

Pr[θi = cR | σi = YES] =
1

n−i

1 + 1
n−i

= 1
n− i+ 1 .

A deviation to a later round i′ > i means that R does not obtain additional information
from S. The probability that θi ̸= cR conditional on σi = YES is 1 − 1

n−i+1 and the
remaining types are drawn in a uniform random order. If θi ̸= cR, this leaves n − i
types from which to draw the type of action i′. Therefore, R will get cR in round i′ > i
with probability

Pr[θi′ = cR | σi = YES] =
(︃

1 − 1
n− i+ 1

)︃
· 1
n− i

= 1
n− i+ 1 .

Clearly, R does not increase the success probability of finding cR when deviating from
the YES-recommendation in round i.

Now, consider the scenario that σℓ = NO for all ℓ ∈ [i]. R is able to get cR with
probability

Pr
[︄
θi = cR |

i⋀︂
ℓ=1

σℓ = NO
]︄

=
n−i−1

n−i

n− i− 1 + n−i−1
n−i

=
n−i−1

n−i
(n−i−1)(n−i+1)

n−i

= 1
n− i+ 1

by deviating from the recommendation and taking action i.
We know that the mechanism always sends a YES-recommendation. Assume it

comes in round i′ > i. We further know that R has a success probability of 1
n−i′+1

conditional on σi′ = YES and cR not having been dismissed in one of the intermediate
rounds ℓ = i, . . . , i′ −1. The probability that cR is dismissed in round ℓ, conditional on
σℓ = NO is 1

n−ℓ+1 . This means that the overall probability of getting type cR eventually
in the round with a signal YES is

Pr
⎡⎣θi′ = cR |

i′−1⋀︂
ℓ=i

σℓ = NO ∧ σi′ = YES
⎤⎦ =

i′−1∏︂
ℓ=i

(︃
1 − 1

n− ℓ+ 1

)︃
· 1
n− i′ + 1

=
i′−1∏︂
ℓ=i

(︄
n− ℓ

n− ℓ+ 1

)︄
· 1
n− i′ + 1

= 1
n− i+ 1 .

Clearly, R cannot increase the success probability of getting cR by deviating from the
recommendation. Hence, the Adaptive Elementary Mechanism is persuasive.

Our second result is the approximation ratio of the Adaptive Elementary Mecha-
nism.

Proposition 4.26
For ordinal receiver utility in the basic scenario with disclosure, the Adaptive Ele-
mentary Mechanism yields a success probability of 1 − o(1) and an expected utility of
(1 − o(1)) · ξmax for S.

108 4. Online Bayesian Persuasion

Proof. Clearly, if cS = cR, both S and R always get an action with their respective
best type. For the remainder of the proof, we therefore assume that cS ̸= cR.

Conditional on θℓ ̸= cS for ℓ = 1, . . . , i − 1, action i has type cS with probability
1

n−i+1 . We denote by ur the probability that R eventually takes an action with type
cS if r ≥ 2 rounds remain and cS and cR have not yet been observed. Clearly, if cR
has been observed (and the corresponding action was not taken), the probability for
getting cS is 1. If cS is observed, it is taken with probability 1. If some other type
t ̸= cS , cR is observed, r− 1 rounds remain and cS and cR remain in the set of types to
come. Hence, we can express ur recursively, where u2 = 1

2 is the base case. If the set
of remaining types consists of only cS and cR, whichever one of them is observed first
will get a signal YES with probability 1. The recursion for r > 2 is

ur = 1
r

· 1⏞ ⏟⏟ ⏞
cS

+ 1
r

· r − 2
r − 1⏞ ⏟⏟ ⏞
cR

+ r − 2
r

· ur−1⏞ ⏟⏟ ⏞
neither

.

Clearly, the overall success probability for S is un, where

un = 1
n

+ 1
n

· n− 2
n− 1 + n− 2

n
· un−1

= 2n− 3
n · (n− 1) + n− 2

n
·
(︄

2n− 5
(n− 1) · (n− 2) + n− 3

n− 1 · un−2

)︄

= 2n− 3
n · (n− 1) + 2n− 5

n · (n− 1) + n− 2
n

· n− 3
n− 1 · un−2

= 2n− 3
n · (n− 1) + 2n− 5

n · (n− 1) + 2n− 7
n · (n− 1) + (n− 4) · (n− 3)

n · (n− 1) · un−3

= . . .

=
n−2∑︂
ℓ=1

2(n− ℓ) − 1
n · (n− 1) + (n− (n− 1)) · (n− (n− 2))

n · (n− 1) · u2

=
n−1∑︂
ℓ=1

2(n− ℓ) − 1
n · (n− 1)

=
n−1∑︂
ℓ=1

2 · ℓ
n · (n− 1) − 1

n

= 1 − 1
n
.

Hence, the success probability for S is un = 1 − 1/n. In case of cardinal utility for S,
this means that S gets an expected utility of at least (1 − 1/n) · ξmax.

Hence, in contrast to the case of cardinal receiver utility, the additional information
for R does not decrease the success probability or the expected utility of S in the
respective basic scenarios. In the next section, we discuss our final scenario, i.e., the
secretary scenario with disclosure.

Secretary Scenario with Disclosure

In the secretary scenario with disclosure, neither S nor R know the values of the types
a priori. Yet, persuasiveness dictates that even a receiver who does know the valuations

4.2. Secretary Recommendation 109

Algorithm 15: First-Opt Mechanism
Input: Number of rounds n, sample size s, online sequence of types θ1, . . . , θn

1 Set A0 = ∅ and recSent = False.
2 for round i = 1, . . . , s do
3 Set Ai = Ai−1 ∪ {θi} and signal NO.
4 for i = s+ 1 to n− 1 do
5 Set Ai = Ai−1 ∪ {θi}.
6 if recSent = True then Signal NO.
7 else
8 if ϱ(θi) ≥ maxt∈Ai

ϱ(t) or ξ(θi) ≥ maxt∈Ai
ξ(t) then

9 Signal YES, set recSent = True.
10 else Signal NO.

11 for round n do
12 if recSent = True then Signal NO.
13 else Signal YES.

should be interested in following the mechanism’s recommendation. In contrast to the
basic scenario with disclosure, a persuasive mechanism can no longer decide before the
start of the online process whether to optimize for S or R. Whenever it is revealed to
R that the type of the action dismissed in the last round was best so far for either R or
S, the receiver would know which variant is run. To combat this, we use an adaptation
of our Simple Secretary Mechanism called the First-Opt Mechanism (Algorithm 15).
The mechanism recommends the first type which is best so far for either S or R after
a sample phase of length s = ⌊n/2⌋ during which signals are NO. If no YES-signal has
been sent up to round n, σn = YES regardless of the values of θn.

In the following lemma, we show that the First-Opt Mechanism is persuasive. Af-
terwards, in Theorem 4.28, we prove the lower bound on the approximation guarantee
for the mechanism. Finally, Theorem 4.29 shows that the First-Opt Mechanism is op-
timal for negatively correlated utility values for S and R. Hence, no other mechanism
can achieve a better success probability for S in such a setting. As before, we will focus
on the case of ordinal utility for S as the results easily translate to the setting with
cardinal sender utility.
Lemma 4.27
For ordinal receiver utility, the First-Opt Mechanism is persuasive in the secretary
scenario with disclosure.
Proof. Recall that the mechanism should be persuasive even if R were to know the
utility values a priori. R is only interested in type cR. This means that once an action
with type cR is dismissed, R has no incentive to deviate from the recommendations
given by S. Hence, we assume that cR has not been rejected.

Now, consider round i ≤ n− 1 with σi = YES. This means that

Pr[θi = cR | σi = YES] ≥ 1
n− i+ 1 .

This is due to the fact that all n− i+ 1 remaining types in round i might individually
be better for S or R than the previous types which are already revealed, resulting

110 4. Online Bayesian Persuasion

in a signal σi = YES for any of them. The random order implies that cR is drawn
with probability 1

n−i+1 . A deviation by R would mean dismissing action i and taking
another action in a later round i′ > i. S will only signal NO after round i, so R does
not get additional information from the sender’s signals. The success probability for
R is therefore

Pr[θi′ = cR | σi = YES] ≤
(︃

1 − 1
n− i+ 1

)︃
· 1
n− i

= 1
n− i+ 1 ,

since the probability that θi ̸= cR is at most
(︂
1 − 1

n−i+1

)︂
and if that is the case, cR is

drawn in round i′ with probability 1
n−i

. Clearly, it is not profitable for R to dismiss an
action with a YES-signal and wait for a later round.

Now, consider the case that σℓ = NO for all ℓ ∈ [i]. Clearly, if i > s, the type of
the current action is neither best so far for R nor for S. Hence, the probability that
θi = cR is 0. It is optimal to wait for some round i′ > i with σi′ = YES. If i ≤ s,
R does not get any information besides the disclosure of foregone types. This means
that Pr[θi = cR] = 1

n−i+1 , since we assume that cR has not been revealed in a previous
round. If R decides to follow the mechanism, S will eventually send a signal σi′ = YES
in a round i′ > s ≥ i. For θi′ = cR, two events need to occur: First, cR cannot be the
type of one of the actions i, . . . , s. The probability for this is

Pr[θi, θi+1, . . . , θs ̸= cR] =
s∏︂

ℓ=i

(︃
1 − 1

n− ℓ+ 1

)︃
= n− s

n− i+ 1 .

Second, among the remaining types, cR needs to be the first to be revealed among the
set of types which are better than all previous types for S or R. This set clearly has a
size at most n − s. Due to the random order, the probability that cR is the first type
which is best so far for S or R is at least 1

n−s
. Hence, the overall success probability

for R when following the mechanism is at least n−s
n−i+1 · 1

n−s
= 1

n−i+1 . Clearly, this
incentivizes R to follow the mechanism and wait for a YES-signal rather than taking
action i.

Overall, R maximizes the success probability of getting cR by following the mech-
anism. Thus, the mechanism is persuasive.
Theorem 4.28
For ordinal receiver utility in the secretary scenario with disclosure, the First-Opt Mech-
anism with s = ⌊n/2⌋ yields a success probability of at least 1/4 − o(1) and an expected
utility of at least (1/4 − o(1)) · ξmax for S.
Proof. Let Ai denote the random set of types observed in rounds 1, . . . , i. The first s
rounds constitute the sample phase, hence, regardless of the observed values, no type
is taken. After the sample phase, i.e., for i > s, we observe that we can generate the
type in round i by first uniformly at random drawing the set Ai, and then drawing a
type from this set uniformly at random. At most two types in Ai result in σi = YES,
namely the type with the best value for S and the type with the best value for R.
Depending on the instance and the set Ai, it could be that the same type is best for
both S and R. Thus, we can upper bound the probability that σi = YES for a given
set Ai by 2/i. This means that

Pr[σi = NO | Ai] ≥

⎧⎨⎩1 i = 1, . . . , s
i−2

i
i = s+ 1, . . . , n− 1

. (4.16)

4.2. Secretary Recommendation 111

Overall, the success probability for S, i.e., the probability that S gets cS , conditioned
on the set Ai of arrived candidates up to round i is

Pr[θi = cS | Ai] = Pr[cS ∈ Ai] · Pr[θi = cS | cS ∈ Ai] · Pr[σ1, . . . , σi−1 = NO | Ai−1]

= i

n
· 1
i

·
i−1∏︂

ℓ=s+1
Pr[σℓ = NO | Aℓ]

≥ 1
n

·
i−1∏︂

ℓ=s+1

ℓ− 2
ℓ

= (s− 1) · s
n · (i− 2) · (i− 1) .

These probabilities are independent of the sets Ai, which means that the overall success
probability for S is at least

n∑︂
i=s+1

(s− 1) · s
n · (i− 2) · (i− 1) = (s− 1) · s

n
·

n∑︂
i=s+1

(︃ 1
i− 2 − 1

i− 1

)︃

= (s− 1) · s
n

·
(︃ 1
s− 1 − 1

n− 1

)︃
= s

n
·
(︃

1 − s− 1
n− 1

)︃
.

Setting s = ⌊n/2⌋ maximizes the above expression. This gives S a success probability
of 1/4 − o(1). For the cardinal setting, this gives S an expected utility of at least
(1/4 − o(1)) · ξmax.

Note that due to the symmetric structure of the mechanism, the same bound holds
for R, as well. This means that R also has a success probability of 1/4 − o(1) when S
uses the mechanism.

Next, we show that the First-Opt Mechanism is optimal, i.e., there is no persuasive
mechanism which achieves a higher success probability for S. To do this, we use an
instance with negatively correlated utility values for the types. This means that the
ℓ-th best type for S is the (n− ℓ+ 1)-th best type for R, for all ℓ ∈ [n]. Observe that
cardinal utility values clearly define a ranking of the types. Besides this property, the
values themselves are irrelevant for S as there is no bound on the size of the values.
Even if all observed values are in a close range, it could be that the next type has a
utility which is larger by several orders of magnitude. Hence, we assume that S ignores
the cardinal values and focuses only on the rank of the types. Since we are studying
ordinal utility for R, clearly R is only interested in the rank of the types as well.

Theorem 4.29
If utilities of sender and receiver are negatively correlated, the First-Opt Mechanism
maximizes the success probability for S among all persuasive mechanisms in the secre-
tary scenario with disclosure in the case of ordinal receiver utility.

For the proof, we use a class of randomized best-so-far mechanisms. These mecha-
nisms only signal YES in a round i < n if the current type is best so far either for S
or for R. Additionally, we assume that in the final round, a signal YES is always sent
unless there has been a prior signal YES. Intuitively, it makes sense that best-so-far

112 4. Online Bayesian Persuasion

mechanisms are good as sending a signal YES for a type that is not best so far among
the observed types will never satisfy S or R. We formalize this in Lemma 4.30, where
we show that there exists a persuasive best-so-far mechanism φ′ for any persuasive
mechanism φ such that the success probability of φ′ is at least as high as that of φ.
Using this insight and showing some additional properties of best-so-far mechanisms
in Lemmas 4.31 and 4.32, we then show that our First-Opt Mechanism is an optimal
best-so-far mechanism for negatively correlated utility values.

Lemma 4.30
If utilities of sender and receiver are negatively correlated, then for every persuasive
mechanism there is a persuasive best-so-far mechanism with weakly higher success prob-
ability for S.

Proof. From a persuasive mechanism φ, we construct a new persuasive mechanism φ′.
The new mechanism simply simulates the behavior of φ unless φ signals YES on some
action i < n whose type is not best so far for S or for R. Clearly, a recommendation
for such a type means that φ is not a best-so-far mechanism. Rather than sending a
NO-recommendation, assume for now that φ′ sends a third signal NO′. This surely
informs R that the current type is not best so far and thus taking the action in the
current round helps neither S nor R. After the signal NO′ in round i, φ′ then sends
NO signals in every remaining round except for round n, in which the mechanism sends
a signal σn = YES.

This means that whenever R sees a signal YES in some round i = 1, . . . , n − 1,
the type of action i is best so far for S or R. Taking action i weakly increases the
conditional probability that an action with type cR or cS is taken. When φ′ sends
σi = NO′, this means that θi /∈ {cS , cR}. Since φ would have sent a signal YES and φ
is a persuasive mechanism, this means that neither S nor R would have gotten their
respective best type. Thus, deterministically taking the final action cannot decrease
the probability of getting cS or the probability of getting cR. If φ has not sent a
YES recommendation in rounds i = 1, . . . , n − 1, φ′ deterministically sends a signal
σn = YES. This clearly either emulates the behavior of φ or weakly increases the
probability that cS or cR is taken.

Hence, φ′ is persuasive and weakly increases the success probability for S. Finally,
observe that φ′ stays persuasive when instead of sending a signal NO′ a signal NO is
sent. This decreases the amount of information R has when receiving a NO-signal.
Hence, R is further incentivized to follow the mechanism.

The lemma allows us to restrict attention to best-so-far mechanisms. Note that
not all best-so-far mechanisms are persuasive. As an example, consider our Simple
Secretary Mechanism for the secretary scenario without disclosure. The mechanism
reveals which version is run with the first action after the sample phase which has the
highest utility for S or R so far but is not recommended. If R knows that the sender-
optimization is run and cR is not a very good type for S (which R can be assumed to
know for persuasiveness), a signal σi = YES in a round i < n would most certainly
mean that θi ̸= cR.

We denote by Ai−1 the set of types observed in rounds 1, . . . , i− 1. Conditional on
Ai−1 and σℓ = NO for all ℓ ∈ [i− 1], we denote by pX

i the probability that σi = YES if
θi is the best type so far for X ∈ {S,R}. We show a necessary condition for persuasive
mechanisms.

4.2. Secretary Recommendation 113

Lemma 4.31
If a best-so-far mechanism is persuasive for negatively correlated utilities, it satisfies
pR

i ≥ pS
i for all rounds i ∈ [n] and all histories Ai−1.

Proof. We assume that no YES-signal has been sent in a prior round, otherwise, the
mechanism only signals NO, regardless of the current type.

Clearly, for round i = n, pR
i = pS

i = 1 as σn = YES if no previous YES-signal
was sent. Now, consider the beginning of round i ≤ n − 1, before S observes θi. This
means that both S and R know the set Ai−1 of the first i − 1 types which all have
been rejected and thus disclosed. There are n− i+1 types left which S does not know.
Since persuasiveness requires a receiver who knows the complete set of types to follow
the mechanism, we can assume that R is able to partition the set of types that have
not been revealed into three sets. The first set BS includes all types that would be best
so far for S in round i, the second set BR includes the ones that are best so far for R
in round i and the third set includes the rest of the types. Since we assume negatively
correlated utilities, these sets clearly are disjoint.

Now, consider the following scenario. Among the types in Ai−1 is the overall second
best type for R. Hence, a type which is best so far for R must be cR, i.e., BR = {cR}.
All other types are better for S than the types in Ai−1, i.e., the set BS consists of the
top n− i types for S. This means that there are n− i types which would be best so far
for S and only a single type which would be best so far for R if it arrived in round i.

Towards a contradiction, assume that pS
i > pR

i . This means that

Pr[θi = cR | σi = YES] = pR
i

(pR
i + (n− i) · pS

i) <
1

(n− i+ 1) .

Hence, a signal to take action i gives R a smaller probability to get cR than a remaining
random action. On the other hand, a signal not to take action i provides an incentive
to take action i, i.e.,

Pr[θi = cR | σi = NO] = 1 − pR
i

1 − pR
i + (n− i) · (1 − pS

i) >
1

n− i+ 1 .

Clearly, this is a contradiction to the mechanism being persuasive.
Note that S knows nothing about the instance and is therefore unable to see whether

such a situation arises from the set Ai−1 of observed types. Since every set Ai−1 can
easily be extended to an instance such that the above situation arises, every persuasive
mechanism needs to satisfy pR

i ≥ pS
i for every round i ∈ [n] and history Ai−1 of observed

types up to round i− 1.

Let us now consider the class of best-so-far mechanisms with pR
i ≥ pS

i for all i ∈
[n]. Surely, it includes all persuasive best-so-far mechanisms. Additionally, it possibly
contains non-persuasive best-so-far mechanism that satisfy this condition. We optimize
the success probability for S within this class, where we assume that a signal YES
automatically means that the current action is taken. For a given value pS

i , setting
pR

i = pS
i maximizes the conditional success probability upon a signal YES. Clearly, if

the current action has a type that is not best so far for S, the probability that it is cS
is 0. By decreasing pR

i to its lowest viable value, the conditional probability that the
current option is best so far for S is as high as possible. This means that we should set

114 4. Online Bayesian Persuasion

pi = pR
i = pS

i in each round i to maximize the success probability for S. Additionally,
in the following Lemma, we show pi ∈ {0, 1} for all i ∈ [n] in the scenario of negatively
correlated utilities.

Lemma 4.32
There is an optimal persuasive Best-So-Far mechanism for negatively correlated utilities
such that pi ∈ {0, 1} for all i ∈ [n].

Proof. We show the lemma using backwards induction. By definition, in round n, we
have pn = 1. For round i = n− 1, condition on the event no signal YES has been sent
in a prior round and the current action has a type which is best so far for either S
or R. Since pR

i = pS
i = pi for all i, we do not need to consider these cases separately

and will just say that the type is best so far for short. Clearly, this means there are
two options. Either recommend (i.e., take) the current type or wait for round n. Since
S is able to determine the success probability for both choices, S can maximize the
overall success probability by choosing whichever round provides the higher probability
of getting cS . Hence, setting either pn−1 = 0 if the probability to get cS in round n is
higher or pn−1 = 1 if the probability of getting cS in round n− 1 is higher is optimal.
This procedure can be extended to the earlier rounds as well.

In round i < n−1, we condition on no YES-signal in a prior round and θi being best
so far. Then, S is able to determine the probability to get cS when taking the action in
round i as well as the probability to get cS when running the optimal scheme for rounds
i + 1, . . . , n with pi+1, . . . , pn ∈ {0, 1}. Deterministically choosing the option with the
higher probability of getting cS in round i maximizes the overall success probability
for S. Hence, we get pi ∈ {0, 1}.

By induction, this proves that pi = pS
i = pR

i ∈ {0, 1} for all i ∈ [n].

This result allows us to prove Theorem 4.29, where we derive optimal values pi ∈
{0, 1} and show that this optimal best-so-far mechanism is our First-Opt Mechanism.

Proof of Theorem 4.29. In the following, we assume that n ≥ 3 to avoid technicalities.
Clearly, for n = 1, the first action is recommended and taken, and for n = 2, it does
not matter whether action 1 or 2 is taken. Both provide a success probability of 1

2 to
S. Setting p1 = 0 and p2 = 1, i.e., sending σ1 = NO and σ2 = YES is exactly our
First-Opt Mechanism.

Our proof generalizes ideas for the classic secretary problem due to Beckmann [20].
Let us first introduce some notation. We denote by Bi the event that type θi is best so
far (for either S or R). By Di, we denote the event that θi is dismissed and by D−i the
event that all previous types θ1, . . . , θi−1 have been dismissed. Note that we have not
yet shown that our optimal mechanism is persuasive. With foresight, we assume that
R still follows the recommendations given by the sender and thus S can essentially
take or dismiss actions singlehandedly. When signaling, taking an action clearly is
represented by a signal YES and a dismissal means a signal NO. Finally, let

ui = Pr[cS is taken in rounds i, . . . , n | Bi, D−i] and
vi = Pr[cS is taken in rounds i+ 1, . . . , n | Di, D−i] .

Since the online process ends when an action is taken, to reach some round i+1, it must
be the case that D−i and Di occur, or D−i and Bi occur and pi = 0. Let us consider
the conditional probabilities of Bi+1, i.e., Pr[Bi+1 | Di, D−i] and Pr[Bi+1 | Bi, D−i].

4.2. Secretary Recommendation 115

Due to the random order of the types, for each set Ai of types observed in rounds
ℓ = 1, . . . , i, when conditioning on Ai, the same probabilities for Bℓ and Dℓ arise for
every round ℓ. This further implies that for every Ai, conditioned on the set, we
have the same probability that events Bi, D−i and Di occur. Hence, these events are
independent of the set Ai.

Since we focus on negatively correlated utilities, a single type cannot be better for
both S and R than the previously observed types. Hence, in round i+ 1, conditioned
on each set Ai+1, the probability Pr[Bi+1 | Ai+1] = 2

i+1 . Furthermore, since Di and
D−i are independent of Ai, we have Pr[Bi+1 | Ai+1, Di, D−i] = Pr[Bi+1 | Di, D−i] =

2
i+1 . Similarly, Pr[Bi | Ai] is the same regardless of Ai, which gives us Pr[Bi+1 |
Ai+1, Bi, D−i] = Pr[Bi+1 | Bi, D−i] = 2

i+1 .
This means that vi can be expressed using ui+1 and vi+1 as follows.

vi = 2
i+ 1 · ui+1 + i− 1

i+ 1 · vi+1 (4.17)

Let us now condition on event Bi for i > 1, i.e., θi is best so far. Taking action i results
in the sender-optimal type cS with probability i

2n
since cS ∈ Ai with probability i

n
and

with probability 1
2 , θi is best so far for S (and with probability 1

2 , θi is best so far for
R). For i = 1, the probability is clearly 1/n and the first type is always best so far.

Dismissing action i results in eventually taking cS with probability vi. Hence, an
optimal best-so-far mechanism will set

ui = max
{︃ 1
n
,
i

2n, vi

}︃
, (4.18)

where i
2n

≥ 1
n

for all i ≥ 2.
We use backwards induction to solve this recurrence relation. The base cases are

un = 1
2 since the best-so-far type is either the best for S or for R, each with probability

1
2 , and vn = 0 since the process ends after n rounds. We get vn−1 = n−2

n
· vn + 2

n
un = 1

n
,

which implies un−1 = n−1
2n

≥ 1
n
. As long as i

2n
> vi (or 1/n > vi for i = 1), the sender’s

success probability is maximized by setting pi = 1 and recommending action i if it has
a type which is best so far. Otherwise, if vi ≥ i

2n
(vi ≥ 1/n for i = 1), S should wait

and thus set pi = 0. While the current type might be best so far, this is due to the fact
that only a very limited sample has been observed at that point and the probability of
having seen cS already is rather small. Note that the first two types are always best so
far, no matter what their global respective ranks among all n types are. The following
lemma summarizes the values for ui and vi for all i ∈ [n]. We prove the lemma below.

Lemma 4.33
The values of ui and vi are given by

ui =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i

2n
i ≥ n+1

2
n

4(n−1) i < n+1
2 , n even,

n+1
4n

i < n+1
2 , n odd,

vi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i·(n−i)
n·(n−1) i ≥ n+1

2
n

4(n−1) i < n+1
2 , n even,

n+1
4n

i < n+1
2 , n odd.

The lemma shows that it is optimal to set pi = 0 for i ≤ n/2 and pi = 1 for i > n/2.
This means that, when encountering a type that is best so far in rounds i = 1, . . . , ⌊n/2⌋,
it is optimal for S to dismiss the corresponding action, i.e., send a NO-signal. Whenever

116 4. Online Bayesian Persuasion

S observes an action with a type that is best so far in a later round, it is then optimal
to take that action, i.e., send a YES-signal.

Clearly, this is exactly our First-Opt Mechanism. We showed that the mechanism
is persuasive, which means that R is incentivized to follow the sender’s signals. This
proves the theorem. Theorem 4.29

Let us now prove Lemma 4.33.

Proof of Lemma 4.33. First, consider the case i ≥ n+1
2 and start with i = n. The base

cases are vn = 0 = n·(n−n)
n·(n−1) and un = 1

2 = max
{︂

1
n
, n

2n
, 0
}︂
.

Now, assume that the lemma holds for i+ 1 ≥ n+1
2 + 1. We show that it holds for

i as well. Plugging in the definition of vi, we get

vi = i− 1
i+ 1 · vi+1 + 2

i+ 1 · ui+1

= i− 1
i+ 1 · (i+ 1) · (n− (i+ 1))

n · (n− 1) + 2
i+ 1 · i+ 1

2n

= (i− 1) · (n− i− 1) + (n− 1)
n · (n− 1)

= i · (n− i)
n · (n− 1) .

Since i ≥ n+1
2 , we have i

2n
≥ i·(n−i)

n·(n−1) = vi. This means that ui = i
2n

.
Now, consider the second case in which i < n+1

2 . The base case is i = n
2 or i = n−1

2 ,
depending on the parity of n.

Case n even: We have

vn/2 =
n
2 − 1
n
2 + 1 · vn/2+1 + 2

n
2 + 1 · un/2+1

= n− 2
n+ 2 ·

n+2
2 · n−2

2
n · (n− 1) + 2

n
2 + 1 ·

n
2 + 1
2n

= (n− 2)2 + 4(n− 1)
4n · (n− 1)

= n

4(n− 1) .

Since i = n
2 < n+1

2 and thus n/2
2n

= 1
4 <

n
4(n−1) = vi, we now have ui = vi. This

obviously leads to vi = vi+1 and thus ui = vi for all i < n+1
2 .

Case n odd: The case is similar to the previous one. We get

vn−1
2

=
n−1

2 − 1
n+1

2
· vn+1

2
+ 2

n+1
2

· un+1
2

= n− 3
n+ 1 ·

n+1
2 · n−1

2
n · (n− 1) + 2

n+1
2

·
n+1

2
2n

= n− 3 + 4
4n

4.2. Secretary Recommendation 117

= n+ 1
4n .

Again, i = n−1
2 < n+1

2 and thus
n−1

2
2n

= 1
4 − 1

4n
< n+1

4n
= vi. Hence, ui = vi for all

i < n+1
2 .

This concludes the proof of the lemma. Lemma 4.33

With this final result, we conclude our discussion of online Bayesian persuasion.
In the next chapter, we discuss online delegated search. In delegated search, R is

the one with commitment power, unlike the Bayesian persuasion setting, where S has
commitment power.

118

Chapter 5

Online Delegated Search

In this chapter, we discuss an online version of the delegated search problem. The
process is the following.

1. Both R and S know the distributions D1, . . . ,Dn of types of the n actions.

2. R commits to an acceptance scheme φ.

3. S learns the scheme φ.

4. In each round i = 1, . . . , n:

4.1. S learns the type θi of action i.
4.2. S decides whether to propose action i, considering the reaction by R based

on φ.
4.3. If the action is not proposed, round i + 1 begins. Otherwise, R decides

whether to accept the proposal according to the acceptance scheme φ. Re-
gardless of the decision, the process ends after a proposal.

As benchmark, we use the optimal expected utility if R were to perform a one-
dimensional search. Clearly, the one-dimensional online search constitutes a prophet-
inequality stopping problem [60, 50]. For prophet inequalities, an approximation factor
of 1/2 of the expected maximum of the n actions is always possible using a simple
threshold rule [61, 71], and for certain classes of instances like IID instances, even
better approximation ratios were recently shown [1, 29]. Interestingly, when studying
an offline delegation problem with IID actions, Kleinberg and Kleinberg [58] were able
to design constant-factor approximation algorithms using these results for prophet
inequalities. As benchmark, Kleinberg and Kleinberg use the maximum value for R
among the n actions – which is exactly the value R would get when performing a
one-dimensional search offline. Their result is the following.

Theorem 5.1 ([58, Theorem 4])
If types are drawn IID, there always is a threshold τ such that a deterministic scheme
φ with φij = 1 if and only if ϱ(θij) ≥ τ for all i ∈ [n], j ∈ [m] or φij = 1 if and
only if ϱ(θij) > τ for all i ∈ [n], j ∈ [m] guarantees R an expected utility of at least
1/2 · E

[︂
maxi∈[n] θi

]︂
.

119

Additionally, for atomless distributions with independent utilities for R and S, they
are able to further increase the approximation guarantees using the improved results
for prophet inequalities.

In contrast to the constant-factor approximation results for the offline scenario, our
first result is a negative one. In Section 5.1, we use an IID instance to show that in
general, R cannot expect a utility of more than O (1/n) of the utility when performing a
one-dimensional (online) search. Note that the optimal online search always guarantees
a constant-factor approximation to the result of the optimal offline search. Since all our
results will be in asymptotic notation, online vs offline search is a distinction without
a difference. A trivial acceptance scheme, which only allows an action which has the
highest a-priori expected utility for R guarantees an approximation ratio of Ω (1/n),
matching the upper bound of O (1/n).

Since our instance which proves the upper bound of O (1/n) relies on an exponential
ratio between the minimum and maximum value for S in the order of nΘ(n), we study
a parameterized instance in which the multiplicative discrepancy in the positive values
for S is bounded by a factor α ≥ 1 in Section 5.2. We show that an approximation ratio
of Ω

(︂
log log α

log α

)︂
in terms of parameter α is possible. Clearly, setting α = nΘ(n) gives the

matching upper bound using the same instance as above. Additionally, in Section 5.3,
we consider a different parameterized setting with a parameter β ≥ 1 which bounds
the ratios between positive utility values of individual types for S and R. Here, we
show an Ω

(︂
1

log β

)︂
-approximation, where an upper bound of O

(︂
log log β

log β

)︂
holds due to

our original instance above with β = nΘ(n).
Furthermore, we consider a variant of the problem where R only learns ϱ(θ) if a

type θ is proposed. Hence, R is not able to distinguish types with the same value in a
single round. Thus, for all i ∈ [n], it must hold that φij = φij′ for all types j, j′ ∈ [m]
with ϱ(θij) = ϱ(θij′). Since R does not learn the sender’s value, we dub this our sender-
oblivious proposal scenario. Similarly, we call the original scenario the sender-aware
proposal scenario. Clearly, our trivial mechanism does not take the sender’s values
into account, hence, we still get a Θ (1/n)-approximation in the general case. In the
parameterized settings, R is worse off. For parameter α, we describe a mechanism
with an approximation ratio of Ω

(︂
1√

α log α

)︂
and show an upper bound of O (1/√

α). For
parameter β, we show a lower bound of Ω (1/β) and an upper bound of O (1/

√
β). We

summarize the results in Table 6.
Before going into the details of the results, we shortly discuss an introductory

example with deterministic strategies, i.e. φij ∈ {0, 1} for all i, j. There are two
rounds with the actions’ types distributed according to Table 7.

round i 1 2
type θij θ11 θ12 θ21 θ22

value-pair (ϱij, ξij) (1,3) (8,3) (4,2) (4,16)
probability qij 0.75 0.25 0.75 0.25

Table 7: Introductory example for delegated online search

The benchmark consists of R performing a one-dimensional online search. If type
θ12 is drawn in round 1, R would take action 1 with a utility of 8. Otherwise, R waits
for round 2 and receives a utility of 4. In expectation, R gets a utility of 5.

120 5. Online Delegated Search

S-aware proposals S-oblivious proposals

General
Θ
(︂

1
n

)︂
Θ
(︂

1
n

)︂
Prop 5.2 Thm 5.3 Prop 5.2 Thm 5.3

α-bounded S
Θ
(︂

log log α
log α

)︂
Ω
(︂

1√
α log α

)︂
O
(︂

1√
α

)︂
Thm 5.4 Cor 5.7 Thm 5.12 Thm 5.10

β-bounded ratio
Ω
(︂

1
log β

)︂
O
(︂

log log β
log β

)︂
Ω
(︂

1
β

)︂
O
(︃

1√
β

)︃
Thm 5.19 Cor 5.22 Prop 5.16 Cor 5.17

Table 6: Approximation guarantees for delegated online search.

The sender prefers type θ22 with utility 16. Hence, as long as φ22 = 1, S will
never propose action 1, regardless of the type. Thus, if φ22 = 1, R cannot get a
higher expected utility than 4. An acceptance scheme which achieves this utility is
φij = 1 for all i, j ∈ {1, 2}. Note that the actual values φ1j are not important as S
will always wait for round 2. If R does not accept θ22, S is not incentivized to wait
for action 2. Clearly, an optimal acceptance scheme for sender-aware proposals would
be φ11 = 0, φ12 = 1, φ21 = 1, φ22 = 0. This results in an expected utility 4.25 for R.
Recall that for online Bayesian persuasion, it was optimal to accept the last action if no
other action was taken in a prior round. This example shows us that this is clearly not
the case for online delegated search. Overall, the expected utility for R is maximized
even though in some cases, no action is taken.

For sender-oblivious proposals, R cannot distinguish the possible types in round 2.
Hence, φ21 = φ22. As we have seen above, if φ22 = 1, S will always wait for round
2. Otherwise, if φ21 = φ22 = 0, the expected utility for R is upper bounded by 2.75.
Clearly, accepting (only) the proposals in the second round is optimal for R with an
expected utility of 4 in the case of sender-oblivious proposals.

5.1 General Case
For our first result, we show that the following deterministic Trivial Acceptance Scheme
φtriv provides an approximation ratio of at least Ω (1/n). The scheme allows only action
i∗, where i∗ = arg maxi∈[n] E [ϱ(θij)] is the round with the highest a-priori expectation
for R. Hence, φtriv

i∗j = 1 for all j ∈ [m] and φtriv
ij = 0 for all i ̸= i∗ and all j ∈ [m]. Note

that this only requires access to the utility values of R. Thus, the lower bound clearly
holds for sender-oblivious proposals.

Proposition 5.2
For online delegation, the Trivial Acceptance Scheme φtriv guarantees R at least a 1/n-
approximation of the expected utility for optimal (online) search. It can be computed
in time polynomial in the input size.

Proof. Finding the action i∗ with the highest a priori expected utility for R can clearly
be done in time polynomial in the input size. If only action i∗ is allowed, S always

5.1. General Case 121

proposes this action. This means that R gets an expected utility of E [ϱ(θi∗)]. The
optimal search gives an expected utility of

E
[︄
max
i∈[n]

ϱ(θi)
]︄

≤ E
[︄

n∑︂
i=1

ϱ(θi)
]︄

=
n∑︂

i=1
E [ϱ(θi)] ≤ n · E [ϱ(θi∗)] .

This shows the Proposition.

We show a matching upper bound using an IID instance, i.e., all actions’ types
are drawn independently from a single distribution. Additionally, the values for R
and S can be seen as being drawn independently from each other. The bound holds
even when R receives full information on the proposed action’s type. Clearly, with less
information, R cannot achieve a better approximation.

Theorem 5.3
There is a class of instances of online delegation in the IID setting, in which every
acceptance scheme φ obtains at most an O(1/n)-approximation of the expected utility
for optimal (online) search.

Proof. We use the following class of instances with n actions. With probability 1/n, the
drawn type has utility 1 for R. With the remaining utility 1 − 1/n, the utility for R
is 0. Independently from the receiver’s value, S gets one out of n utility values, each
with probability 1/n. The values are n4ℓ for ℓ = 1, . . . , n. In combination, we get the
following distribution with 2n types as shown in Table 8.

Type 1 2 . . . n n+ 1 n+ 2 . . . 2n
R 1 0
S n4 n8 . . . n4n n4 n8 . . . n4n

Probability 1
n2

1
n

− 1
n2

Table 8: Distribution for proof of Theorem 5.3

Without loss of generality, we can assume that φij = 0 for all i and j > n. All such
types provide no utility to R. Instead, if R accepts some type j > n in round i with
positive probability, S might be tempted to wait when a type j′ ≤ n is drawn in an
earlier round i′ < i. Additionally, a proposal of an action in round i < n with utility
0 implies that actions i + 1, . . . , n are not considered – which might have provided
positive utility for R. Hence, R can weakly increase the expected utility by setting
φij = 0 for all i ∈ [n] and j > n.

From the receiver’s side, there are only two different outcomes, either no utility or
utility 1. Hence, both online as well as offline searches will always result in a type
with utility 1 if such a type was drawn at all. The probability for this to occur is
1 − (1 − 1/n)n ≥ 1 − 1/e = Θ(1).

The sender, on the other hand, will never propose an action with type j < n in
round i if there exists a type j′ > j which R would accept in a later round i′ > i. This
is due to the fact that the expected utility from round i′ is higher than the utility S
would get from type j in round i.

More formally, we consider an optimal scheme φ = (φij)i∈[n],j∈[n] – since φij = 0 for
all j > n. We treat φ as a matrix and describe steps to bound the expected utility for
R.

122 5. Online Delegated Search

First of all, we decrease all entries (i, j) with φij ≤ 1/n to 0. Clearly, this cannot
decrease the expected utility by more than n2 · 1

n2 · 1
n

= 1
n

– there are n2 entries, each
representing a type which is drawn with probability 1

n2 and accepted with probability
φij ≤ 1/n. Hence, we now have a matrix φ where each entry is either 0 or at least 1/n.

Now, let us consider entries φij > 1/n. Assume that φi′j′ > 1/n for some i′ < i, j′ < j.
It is clearly beneficial for S to wait for round i and hope that type j is drawn instead
of proposing type j′ in round i′. Since j′ < j, the sender’s expected utility for round i
is at least n4j · 1

n2 · 1
n

= n4j−3 > n4j′ . Thus, waiting and not proposing type j′ in round
i′ can only increase the sender’s expected utility. Hence, we can assume without loss
of generality that φi′j′ = 0 for all i′ < i, j′ < j whenever φij > 1/n.

Similarly, consider φi′j < φij for i′ < i. Setting φi′j = φij cannot decrease the
receiver’s utility and does not change the behavior of S. Consider an earlier round
î < i′. If S encounters a better type ĵ > j which has positive probability to be
accepted in round î, increasing φi′j will not dissuade S from proposing ĵ in round î.
If S encounters a worse type j′ < j in round î, by the previous paragraph we have
φîj′ = 0. Thus, the adjustment does not result in a change in the behavior of S in
rounds prior to i′. If S wanted to propose type j in round i′, the increase in φi′j only
increases the probability that R accepts the proposal. If S did not want to propose
type j in round i′, this means that in a later round, a better type is to come which
has a positive acceptance probability. By our first adjustment, waiting increases the
expected utility of S. Hence, this adjustment does not influence the sender’s behavior.
It can only increase the overall probability of a proposal and thus the expected utility
for R. Similarly, if φij′ < φij for j′ < j, we can set φij′ = φij. This does not change
the sender’s incentives and can only (weakly) increase the receiver’s expected utility.

We apply both sets of adjustments repeatedly, starting with the entry φnn, i.e., the
entry in the last row and last column of the matrix. If φnn > 0, we are done with the
final column, as all entries in the last column (and in the last row) now have the same
value. Otherwise, we consider entry n− 1 in column n and continue in the same way.
Once column n is adjusted, we move to column n− 1, starting with the final entry n.
We repeat this process until column 1 has been adjusted as well.

As a final step, we apply our above assumption, i.e., φi′j′ = 0 for all i′ < i, j′ < j
whenever φij > 1/n.

Note that when increasing the values, we did not require that the acceptance prob-
ability to be increased be greater than 0. This implies that we might increase some
value φij, only to set it to 0 in the final step.

After these adjustments, only 2n−1 non-zero entries remain, forming a “Manhattan
path” of non-zero entries from φ1n to φn1, i.e., if φij > 0, the path continues either
with φ(i+1)j > 0 or φi(j+1) > 0.

We can use this to upper-bound the expected utility for R by assuming that all
φij = 1 if φij > 0 and S always proposes any acceptable action. Then, a union bound
gives us a probability that R gets a proposal of (2n− 1) · 1

n2 = O (1/n). Since proposal
probability and expected utility are the same, R cannot get a higher utility than O (1/n)
in this online delegated search instance. Note that we decreased the expected utility
by at most 1/n when decreasing φij ≤ 1/n to 0 as our first adjustment. Clearly, this does
not change the overall asymptotic value of O (1/n) as an upper bound on the expected
utility for R.

The values for S in the class of instances proving Theorem 5.3 differ by an expo-

5.2. α-Bounded Sender Utility Values 123

nential multiplicative factor of n4n−4, i.e., maxi,j ξij = n4n−4 ·mini,j ξij. In the following
section, we use α ≥ 1 to parameterize the ratio between maximum and minimum value
for S. This allows us to study the effect this ratio has on the approximation guarantee
obtainable for R.

5.2 α-Bounded Sender Utility Values
In this section, we assume that

α = max{ξij | i ∈ [n], j ∈ [m]}
min{ξij | i ∈ [n], j ∈ [m]} .

Clearly, this requires ξij > 0 for all i ∈ [n], j ∈ [m]. For simplicity, we assume that this
holds and will discuss at the end of each subsection what the implications are if there
are types that provide no utility for S.

Without loss of generality, we scale the values for S such that min{ξij | i ∈ [n], j ∈
[m]} = 1 and max{ξij | i ∈ [n], j ∈ [m]} = α. This clearly does not change the
incentives for either S or R. For short, we say that S has α-bounded utilities.

In the first subsection, we consider the case of sender-aware proposals, i.e., R
learns both ξ(θ) and ϱ(θ) when S proposes a type θ. In this setting, we show a tight
approximation factor of Θ

(︂
log log α

log α

)︂
.

In the second subsection, we discuss sender-oblivious proposals. This decreases the
information R learns when a type is proposed as the value for S is not revealed. We
show an upper bound of O (1/√

α) on the approximation factor as well as an acceptance
scheme which gives an approximation guarantee of Ω

(︂
1√

α log α

)︂
.

5.2.1 Sender-Aware Proposals
When S has α-bounded utilities, we can use our Binning Algorithm (Algorithm 16) to
compute an acceptance scheme for R which provides an Ω

(︂
log log α

log α

)︂
-approximation to

the expected utility of an optimal search by R.
The algorithm partitions the types with the highest utility values for R up to a

combined probability mass of just above 1/2 into O
(︂

log α
log log α

)︂
many bins B0, B1, . . .

Each bin B holds as many types as possible such that S still wants to propose the
first action with a type from B, assuming that R only accepts types from that bin.
Determining the bin B which provides the best expected utility for R and setting
φij = 1 for all (i, j) ∈ B and φij = 0 otherwise yields an acceptance scheme with
approximation guarantee Ω

(︂
log log α

log α

)︂
.

More precisely, in lines 2-6, the algorithm considers all types in descending order
of receiver value until a combined mass of at least 1/2 is reached. The first type to
surpass the combined mass of 1/2 is put into a bin B0, the other types are collected in
the set Q = {(i, j) | ϱij ≥ ϱi′j′ ∀(i′, j′) /∈ Q} such that ∑︁(i,j)∈Q qij < 1/2. The set Q
is then divided into z = ⌈log2 α⌉ classes depending on their sender utility in line 7 of
the algorithm. The classes C1, . . . , Cz are constructed such that Cℓ = {(i, j) ∈ Q | ξij ∈
[2ℓ−1, 2ℓ)} for ℓ = 1, . . . , z − 1 and Cz = {(i, j) ∈ Q | ξij ∈ [2z−1, α]}. This implies that
in each class, the lowest and highest sender utilities differ by at most a factor of 2.

In lines 9-13, the classes are combined into bins. Classes are not split up but rather
added completely to a bin such that the following two conditions are satisfied.

124 5. Online Delegated Search

Algorithm 16: Binning Algorithm for α-bounded S
Input: n distributions D1, . . . ,Dn

Output: Acceptance Scheme φ
1 Set U = [n] × [m], Q = B0 = ∅, and q = 0.
2 while q < 1/2 do
3 Pick (i, j) ∈ U s.t. θij has best utility ϱij ≥ ϱi′j′ for all (i′, j′) ∈ U , breaking

ties arbitrarily.
4 if q + qij ≥ 1/2 then Add (i, j) to B0.
5 else Add (i, j) to Q.
6 Remove (i, j) from U , update q = q + qij.
7 Construct z = ⌈log2 α⌉ classes C1, . . . , Cz such that

Cℓ = {(i, j) ∈ Q | ξij ∈ [2ℓ−1, 2ℓ)} for all ℓ = 1, . . . , z − 1 and
Cz = {(i, j) ∈ Q | ξij ∈ [2z−1, α]}.

8 Set b = 1, s = z, and y = 0. Open bin 1 and set B1 = ∅.
9 for ℓ = z, . . . , 1 do

10 if 2ℓ−1 < 2s ·∑︁(i,j)∈Bb∪Cℓ
qij then

11 Set b = b+ 1 and s = ℓ.
//

∑︁
(i,j)∈Q qij < 1/2, so no open bin stays empty

12 Open the new bin b and set Bb = ∅.
13 Add class Cℓ to bin Bb = Bb ∪ Cℓ.
14 Set b∗ = arg maxb=0,1,...

∑︁
(i,j)∈Bb

qij · ϱij, the index of the best bin for R.
15 Set φij = 1 for all (i, j) ∈ Bb∗ and φij = 0 otherwise.
16 return φ

1. Each bin holds as many types as possible.

2. For each bin B, the sender’s expected utility is maximized by proposing the first
type from B rather than waiting for a different type from bin B in a later round.

In Theorem 5.4, we show the main result of this section.

Theorem 5.4
If the sender has α-bounded utilities, there is a deterministic acceptance scheme such
that R obtains an Ω

(︂
log log α

log α

)︂
-approximation of the expected utility for optimal (online)

search. The scheme can be computed in time polynomial in the input size.

The proof follows from two lemmas and the following observation regarding its run-
ning time. For simplicity, let us assume that all numbers have constant size. Otherwise,
the logarithmic size of the numbers needs to be taken into account when considering
the running time. Since these numbers are given as input, this does not change the
polynomial running time. The while-loop in lines 2-6 considers at most all n ·m types.
The construction of the classes uses only those types identified in the while-loop. Thus,
this only requires time at most O(n · m). Finally, the binning of the classes again re-
quires that at most all types identified in the while-loop are considered. Overall, we
get a running time of Algorithm 16 of at most O(n · m). Lemma 5.5 shows that the
approximation guarantee for R is at least 1

4r
if r bins are opened in Algorithm 16.

5.2. α-Bounded Sender Utility Values 125

Then, Lemma 5.6 bounds the number of bins opened by showing that r = O
(︂

log α
log log α

)︂
.

Combining these results shows the theorem.

Lemma 5.5
Let r be the number of bins opened in Algorithm 16. Then the scheme computed by the
algorithm obtains at least an 1

4r
-approximation of the expected utility of the best option

for R in hindsight.

Proof. After the while-loop in lines 2-6, types with a combined mass of q ≥ 1/2 have been
considered by the algorithm, i.e., ∑︁(i,j)∈Q∪B0 qij ≥ 1/2. Hence, 2 · ∑︁(i,j)∈Q∪B0 qij ≥ 1.
Since Q ∪B0 consist of the options with the highest utility for R, we know

2 ·
∑︂

(i,j)∈Q∪B0

qij · ϱij ≥ Eθi∼Di

[︄
max
i∈[n]

ϱ(θi)
]︄

= OPT .

Now consider the construction of the bins in the for-loop in lines 9-13. Suppose we
split Q into r−1 bins B1, B2, . . . , Br−1. In the end, we choose Bb∗ , the best one among
the r bins B0, . . . , Br−1. This implies

∑︂
(i,j)∈Bb∗

qij · ϱij ≥ 1
r

·
∑︂

(i,j)∈Q∪B0

qij · ϱij ≥ 1
2r · OPT . (5.1)

The resulting acceptance scheme φ restricts attention to Bb∗ and accepts each pro-
posed option θij from the bin with probability 1. Clearly, if b∗ = 0, there exists only
a single type from a single round. Hence, S will propose an action with that type.
Thus, we assume b∗ > 0. Let ℓ− = min{ℓ | Cℓ ⊆ Bb∗ , Cℓ ̸= ∅} be the (nonempty) class
of smallest index in Bb∗ , and ℓ+ the one with largest index, respectively. Now suppose
the sender observes θij in round i with (i, j) ∈ Bb∗ . Then, S decides to propose this
option. If S proposes, R will accept and S gets a utility ξij. Otherwise, the sender can
only wait for another type from Bb∗ in a later round. This is not profitable for S since
the expected utility from a later round can be upper bounded by ξij as follows.∑︂

(i′,j′)∈Bb∗ ,i′>i

qi′j′ · ξi′j′ ≤
∑︂

(i′,j′)∈Bb∗ ,i′>i

qi′j′ · 2ℓ+

< 2ℓ+ ·
∑︂

(i′,j′)∈Bb∗

qi′j′

≤ 2ℓ−−1 ≤ ξij

First, we use that in Bb∗ , all types have a utility for S of at most 2ℓ+ . Then, we bound
the combined mass in rounds i′ > i by the total mass of the bin Bb∗ . By the condition
in line 10 on the construction of the bins, we have 2ℓ−−1 ≥ 2ℓ+ · ∑︁(i′,j′)∈Bb∗ qi′j′ and
since ℓ− is the index of the class with the smallest index in Bb∗ , all types have a utility
at least 2ℓ−−1. Hence, the first type from bin Bb∗ that is realized also gets proposed by
S and accepted by R.

For each (i, j) ∈ Bb∗ , the probability that type θij is proposed and accepted requires
the following two events to occur.

1. No type θi′j′ with (i′, j′) ∈ Bb∗ was proposed in a round i′ < i, and

2. θij is realized in round i.

126 5. Online Delegated Search

Clearly, these events are independent and the second event has probability qij. For
the first event, if b∗ = 0, the probability is 1 as B0 only holds a single type. For
b∗ > 0, define µi = ∑︁

(i,j)∈Bb∗ qij, the mass of all types in round i in Bb∗ . Then, with
probability ∏︁i′<i(1 − µi′), no type from bin Bb∗ was realized in an earlier round. Since∑︁n

i=1 µi ≤ ∑︁
(i,j)∈Q qij < 1/2, we can minimize the expression ∏︁i′<i(1 − µi′) for all i > 1

by setting µ1 = 1/2, µi′ = 0 for all i′ < i. Clearly, this means that ∏︁n
i=1(1 − µi) ≥ 1/2

and the first event has a probability at least 1/2.
Combining this with (5.1), φ guarantees R an expected utility of at least

∑︂
(i,j)∈Bb∗

1
2 · qij · ϱij = 1

2r ·
∑︂

(i,j)∈Q∪B0

qij · ϱij ≥ 1
4r · OPT .

This proves the lemma.

Lemma 5.6
Let r be the number of bins opened in the for-loop of Algorithm 16. It holds that
r = O

(︂
log α

log log α

)︂
.

Proof. We use the terminology of the algorithm, i.e., z = ⌈log2 α⌉ is the number of
classes constructed by Algorithm 7. For a bin B, we denote the combined mass of
types in B by qB = ∑︁

(i,j)∈B qij.
We want to show that O

(︂
z

log z

)︂
many bins are opened in the algorithm. We restrict

attention to the number of bins opened during the for-loop in lines 9-13, as the single
additional bin B0 does not have any impact on the asymptotic number of bins opened
in the algorithm. We condition on having opened r bins in the for-loop and then lower
bound the number of classes covered using these r bins.

Now, consider a bin B which starts with class Cs, i.e. s is the highest index of
a class inside B. Classes Cℓ are added to B until 2ℓ−1 < 2s · qB, or, equivalently,
s− ℓ+ 1 > log2 (1/qB). This means that B holds at least log2 (1/qB) many classes.

Now, consider bins Bi and Bi+1 and fix q̂ = qBi
+ qBi+1 . By the previous paragraph,

the bins contain at least − log2 (qBi
) − log2 (q̂ − qBi

) many classes. We can find an
extreme point of this lower bound by taking the derivative with respect to qBi

and
solving for a root. This gives us

− 1
qBi

· ln 2 + 1
q̂ − qBi

· ln 2 = 0 .

Clearly, qBi
= q̂/2 is a solution. Since the second derivative 1

qBi
2 + 1

(q̂−qBi
)2 is positive,

this means that qBi
= qBi+1 = q̂/2 is a minimum. Repeatedly applying this balancing

step, we see that the lower bound on the number of classes is minimized when qBi
= qBi′

for all i, i′ ∈ [r], i.e., qBi
= 1

r
·∑︁(i,j)∈Q qij <

1
2r

. When we have r open bins, the smallest
number of classes inside them is therefore

r · log2

(︃
1
/︂ 1

2r

)︃
= r · log2(2r) = r + r · log2 r .

This implies that z ≥ r · (log2 r + 1), otherwise, opening r bins would not be possible
while satisfying the lower bound. Hence, we have z = Ω(r log2 r) and hence r =
O
(︂

z
log z

)︂
= O

(︂
log α

log log α

)︂
as desired. This proves the Lemma.

5.2. α-Bounded Sender Utility Values 127

Observe that the approximation ratio of this algorithm is tight in general. Consider
the instances in Theorem 5.3 with α = n4n−4. The theorem shows that every scheme
can obtain at most a ratio of O

(︂
1
n

)︂
= O

(︂
log log α

log α

)︂
. We formalize this observation using

the following corollary.

Corollary 5.7
There is a class of instances with α-bounded sender utilities in which every acceptance
scheme φ obtains at most an O

(︂
log log α

log α

)︂
-approximation of the expected utility for op-

timal (online) search.

Let us now discuss how to handle instances which include types with 0 utility for
S.

Remark 5.8
Clearly, our definition of α-bounded utilities for S requires ξij > 0 for all i ∈ [n], j ∈ [m].
Still, we can modify Algorithm 16 to accommodate instances in which all strictly
positive values for S are bounded by parameter α. If there are any types θij with
ξij = 0 in the set Q of best types for R, we construct another bin B−1 which holds
all those types, i.e., B−1 = {(i, j) ∈ Q | ξij = 0}. If B−1 is chosen as the best bin for
R, no option provides any utility for S. Due to the tie-breaking in favor of R, S can
be assumed to perform an online search for R. This guarantees R a 1/2-approximation
with respect to the best option from B−1. The number of bins stays O

(︂
log α

log log α

)︂
. If

B−1 is not chosen as the best bin for R, the original analysis can be applied.

Hence, we get the following corollary.

Corollary 5.9
If the sender has α-bounded utilities for all options with strictly positive utility, there is
a deterministic acceptance scheme such that R obtains an Ω

(︂
log log α

log α

)︂
-approximation

of the expected utility for optimal (online) search.

In the next subsection, we consider α-bounded sender utility with sender-oblivious
proposals. Compared to the current subsection, this means that R learns a decreased
amount of information.

5.2.2 Sender-Oblivious Proposals
Clearly, the upper bound of Corollary 5.7 still holds. In this subsection, we show that
the reduced amount of information for R results in a significant decrease of the upper
bound to O (1/√

α) in Theorem 5.10.
In contrast to the upper bound, our Binning Algorithm cannot be applied directly

to this new instance. There might be types which have the same value for R but very
different values for S. In a sender-oblivious proposal scenario, R cannot distinguish
those types and thus cannot attach different acceptance probabilities to them. We
describe our High-/Low-Algorithm (Algorithm 17) which achieves an approximation
guarantee of Ω

(︂
1√

α·log α

)︂
.

We begin with the upper bound.

128 5. Online Delegated Search

Theorem 5.10
There is a class of instances of online delegation with IID options, α-bounded utilities
for the sender, and sender-oblivious proposals, in which every acceptance scheme φ
obtains at most an O (1/√

α)-approximation of the expected utility for optimal (online)
search.

Proof. We consider the following class of instances in which all n actions have a type
drawn independently from the same distribution D, where α ∈ [2, n2]. There exist only
three types with utility values and probabilities as shown in Table 9.

Type θ1 θ2 θ3

ϱ 0 1 1
ξ 1 2 α

Probability 1 − 1
n

1
n

− 1
n·

√
α

1
n·

√
α

Table 9: Distribution D for the upper bound on α-bounded utilities with sender-
oblivious proposals.

Since ϱ2 = ϱ3, R does not know whether the current type is θ2 or θ3 when one of
them is proposed by S. Hence, we have φi2 = φi3 for all i ∈ [n]. In an optimal scheme,
we can assume that φi1 = 0. Clearly, R gets no utility from actions with type θ1 and
proposing such an action in some round i < n can only decrease the chance of getting
a more profitable action in a later round.

To upper bound the expected utility for R, we assume that S always proposes an
action with type θ3. Note that, depending on the value of the acceptance probability
φi2, it might be profitable for S not to propose action i and instead wait for round
i′ > i with φi′2 > φi2. If the type of action i is θ2, S clearly does not want to propose if
the expected utility from observing and proposing an action of type θ3 in a later round
is higher than 2 ·φi2. Hence, we get the following necessary condition for a proposal of
θ2 in round i:

2 · φi2 ≥ α ·

⎛⎝ n∑︂
ℓ=i+1

(︄
1 − 1

n ·
√
α

)︄ℓ−i−1

· 1
n ·

√
α

· φℓ2

⎞⎠
=

√
α

n
·

n∑︂
ℓ=i+1

(︄
1 − 1

n ·
√
α

)︄ℓ−i−1

· φℓ2 . (5.2)

We use δi to denote whether inequality (5.2) is satisfied, i.e., we set δi = 1 if (5.2) holds
and δi = 0 otherwise. With this notation, we can upper bound the receiver’s utility
when employing acceptance scheme φ by

n∑︂
i=1

φi2 ·
(︄

1
n ·

√
α

+ δi ·
(︄

1
n

− 1
n ·

√
α

)︄)︄
. (5.3)

We denote by i∗ = min{i ∈ [n] | δi = 1} the first round for which (5.2) is satisfied.
Since φi∗2 ≤ 1, we get

2 ≥
√
α

n
·

n∑︂
ℓ=i∗+1

(︄
1 − 1

n ·
√
α

)︄ℓ−i∗−1

· φℓ2

5.2. α-Bounded Sender Utility Values 129

≥
√
α

n
·

n∑︂
ℓ=i∗+1

(︄
1 − 1

n ·
√
α

)︄n

· φℓ2

≥
√
α

n
·
(︄

1 − 1√
α

)︄
·

n∑︂
ℓ=i∗+1

φℓ2 ,

where the last inequality follows from Bernoulli’s inequality, i.e., (1 + x)n ≥ 1 + x · n
for all x ≥ −1 and every n ∈ N. Hence, we have

n∑︂
ℓ=i∗+1

φℓ2 ≤ 2n√
α

·
(︄

1 − 1√
α

)︄−1

≤ 2n√
α

·
(︄

1 − 1√
2

)︄−1

= 2n√
α

·
(︂
2 +

√
2
)︂

≤ 7n√
α
.

For the second inequality, we use that α ∈ [2, n2] and thus (1 − 1/√
α)−1 ≤ (1 − 1/

√
2)−1.

For the equality, observe that (1 − 1/
√

2) · (2 +
√

2) = 1. Plugging this result into the
upper bound (5.3), the utility of R is upper bounded by

1
n

·
n∑︂

i=1
φi2 ·

[︄
1√
α

+ δi ·
(︄

1 − 1√
α

)︄]︄
=

i∗−1∑︂
i=1

φi2

n ·
√
α

+
n∑︂

i=i∗

φi2

n
·
[︄

1√
α

+ δi ·
(︄

1 − 1√
α

)︄]︄

≤
i∗−1∑︂
i=1

φi2

n ·
√
α

+ φi∗2

n
+

n∑︂
i=i∗+1

φi2

n

≤ 1
n

·
[︄
i∗ − 1√

α
+ 1 + 7n√

α

]︄

= O

(︄
1√
α

)︄
,

where we used that δi ≤ 1 and φi2 ≤ 1 for all i ∈ [n].
An online search finds an action with type θ2 or θ3 whenever such a type exists,

i.e., with probability 1 − (1 − 1/n)n ≥ 1 − 1/e. This shows that R cannot get more than
an O (1/√

α)-approximation for this class of instances.

Before discussing our algorithm to compute a good acceptance scheme for the set-
ting of α-bounded sender utilities with sender-oblivious proposals, we remark on types
with sender-utility 0. For this setting, no better approximation ratio than O (1/n) can
be guaranteed, even for α = 1. We discuss this in the following remark.

Remark 5.11
We consider an adaption of the IID instance in the proof of Theorem 5.10. There are
three types, but only a single one provides positive utility to S.

Type θ1 θ2 θ3

ϱ 0 1 1
ξ 0 0 1

Probability 1 − 1
n

1
n

− 1
n2

1
n2

Clearly, only θ3 has positive utility for S and thus α = 1. If R performs a one-
dimensional online search, the expected utility is at least 1 − 1/e. As before, we can
assume that in an optimal scheme φi1 = 0 for all i. Additionally, it holds that φi2 = φi3.

130 5. Online Delegated Search

Algorithm 17: High-/Low-Algorithm for Sender-Oblivious Proposals
Input: n distributions D1, . . . ,Dn

Output: Acceptance Scheme φ
1 Set U = [n] × [m].
2 Partition U into UL =

{︃
(i, j) ∈ U

⃓⃓⃓⃓ ∑︁m
t=1

ϱit=ϱij

qit · ξit <
√
α ·∑︁m

t=1
ϱit=ϱij

qit

}︃
and

UH = U \ UL.
3 for ℓ = 1, . . . , n do
4 Set D(L)

ℓ = Dℓ and D(H)
ℓ = Dℓ

5 In D(L)
ℓ , for every (ℓ, j) ∈ UH , set ϱℓj = 0 and ξℓj = 1.

6 In D(H)
ℓ , for every (ℓ, j) ∈ UL, set ϱℓj = 0 and ξℓj =

√
α.

7 Set φL = AlgoLow(D(L)
1 , . . . ,D(L)

n) and φH = AlgoHigh(D(H)
1 , . . . ,D(H)

n).
8 return φL or φH whichever yields better expected utility for R

S never wants to propose an action with type θ2 if there is still a positive probability
that an action with type θ3 can be proposed and is taken by R. The expected utility
for R from any randomized acceptance scheme can be upper bounded by using the
following deterministic acceptance scheme with φi1 = 0, φi2 = 1 for all i ∈ [n]. This
means that S always proposes the first action with type θ3. Additionally, type θ2 is
proposed in round n. Using a union bound, we can upper bound the expected utility
for R by 1

n2 · n+ 1
n

− 1
n2 = 2

n
− 1

n2 = O
(︂

1
n

)︂
.

Let us shortly argue why this is an upper bound on any randomized acceptance
scheme. Clearly, type θ2 is only proposed in the final round i after which φi′2 = 0 for
i′ > i. Additionally, if φi2 < 1, it might be in the sender’s interest not to propose
θ3 in round i if the expected utility from a later round is better. This is not in the
interest of R who can incentivize S to propose by increasing φi2. Additionally, under
the assumption that a good type for R was proposed, not taking it with a positive
probability can only hurt the overall expected utility.

Hence, we have shown that regardless of α, every acceptance scheme is O (1/n)-
approximate.

For our lower bound, we use our High-/Low-Algorithm (Algorithm 17). The algo-
rithm guarantees an approximation ratio of Ω

(︂
1√

α·log α

)︂
.

Theorem 5.12
If the sender has α-bounded utilities and makes sender-oblivious proposals, there is a
deterministic acceptance scheme such that R obtains an Ω

(︂
1√

α·log α

)︂
-approximation of

the expected utility for optimal (online) search. The scheme can be computed in time
polynomial in the input size.

We shortly describe the algorithm and the subroutines it uses. The proof of Theo-
rem 5.12 then follows from an analysis of the subroutines.

Clearly, the High-/Low-Algorithm needs to take into account that in the scenario
with sender-oblivious proposals, R cannot distinguish different types θij ̸= θij′ if ϱij =
ϱij′ . Hence, for each round we consider the sets of types with the same utility for R.
We consider the sender expectation of such a subset, i.e., the expected utility for S,

5.2. α-Bounded Sender Utility Values 131

Algorithm 18: AlgoLow
Input: n distributions D1, . . . ,Dn, where in every distribution individually,

the set of options with the same value for R has a conditional sender
expectation of less than

√
α

Output: Acceptance Scheme φ
1 Set Q = RestrictTypes(D1, . . . ,Dn, 1/2).
2 Set ℓ = 1, q1 = 0, B1 = ∅.
3 for i = 1, . . . , n do
4 Set q∗ = ∑︁

(i,j)∈Q qij.
5 if qℓ + q∗ > 1/√

α then Set ℓ = ℓ+ 1, Bℓ = {(i, j) ∈ Q}, qℓ = q∗.
6 else Add Bℓ = Bℓ ∪ {(i, j) ∈ Q}.
7 Set ϱℓ′ = ∑︁

(i,j)∈Bℓ′ qijϱij for all 1 ≤ ℓ′ ≤ ℓ.
8 Choose ℓ∗ such that ϱℓ∗ ≥ ϱℓ′ for all 1 ≤ ℓ′ ≤ ℓ.
9 Set φij = 1 for all (i, j) ∈ Bℓ∗ .

10 return φ

conditional on a type from that subset being drawn. We say that a subset has low
sender expectation if the sender expectation is less than

√
α. Otherwise, the subset has

high sender expectation.
Our algorithm partitions the set of types into sets UL and UH , depending on their

sender expectation. Based on these sets, the algorithm creates two modified instances,
namely D(L) =

(︂
D(L)

1 , . . . ,D(L)
n

)︂
and D(H) =

(︂
D(H)

1 , . . . ,D(H)
n

)︂
. In D(L), all subsets of

types with high sender expectation are excluded from consideration. More formally,
they are replaced with types that do not provide any utility for R and only minimal
utility 1 for S. Similarly, in D(H), all subsets of types with low sender expectation are
replaced with types that provide no utility for R and minimal utility

√
α for S. These

modifications ensure that the subsets of types with the same S utility either all have
low or all have high sender expectation.

The algorithm then uses two different subroutines. The first one, AlgoLow (Algo-
rithm 18), is run on the instance D(L). AlgoLow produces an acceptance scheme φL

which achieves an Ω (1/√
α)-approximation in the modified instance D(L).

Lemma 5.13
If the sender has α-bounded utilities, makes sender-oblivious proposals, and all options
have low sender expectation, AlgoLow (Algorithm 18) constructs a deterministic accep-
tance scheme such that R obtains an Ω (1/√

α)-approximation of the expected utility for
optimal (online) search. The algorithm can be implemented to run in a time polynomial
in the input size.

The second subroutine of our High-/Low-Algorithm, AlgoHigh (Algorithm 19), is
given D(H) as input. For this instance, an acceptance scheme φH is computed which
guarantees an Ω

(︂
1√

α·log α

)︂
-approximation in D(H).

Lemma 5.14
If the sender has α-bounded utilities, makes sender-oblivious proposals, and all op-
tions have high sender expectation, AlgoHigh (Algorithm 19) constructs a deterministic
acceptance scheme such that R obtains an Ω

(︂
1√

α·log α

)︂
-approximation of the expected

132 5. Online Delegated Search

Algorithm 19: AlgoHigh
Input: n distributions D1, . . . ,Dn, where in every distribution individually,

the set of options with the same value for R has a conditional sender
expectation of at least

√
α

Output: Acceptance Scheme φ
1 Set Q = RestrictTypes(D1, . . . ,Dn, 1/4) and z = ⌈log2

√
α⌉.

2 for ℓ = 1, . . . , z − 1 do

3 Set Cℓ =
{︄

(i, j) ∈ Q

⃓⃓⃓⃓
⃓
∑︁

(i,j′)∈Q,ϱij =ϱij′
qijξij∑︁

(i,j′)∈Q,ϱij =ϱij′
qij

∈
[︂√
α · 2ℓ−1,

√
α · 2ℓ

)︂}︄
4 Set ϱℓ = ∑︁

(i,j)∈Cℓ
qijϱij.

5 Set Cz =
{︄

(i, j) ∈ Q

⃓⃓⃓⃓
⃓
∑︁

(i,j′)∈Q,ϱij =ϱij′
qijξij∑︁

(i,j′)∈Q,ϱij =ϱij′
qij

∈ [
√
α · 2z−1, α]

}︄
6 Set ϱz = ∑︁

(i,j)∈Cz
qij · ϱij.

7 Choose ℓ∗ = arg maxℓ∈[z] ϱℓ.
8 Set φij = 1 for all (i, j) ∈ Cℓ∗ .
9 return φ

utility for optimal (online) search. The algorithm can be implemented to run in a time
polynomial in the input size.

We prove both Lemma 5.13 and Lemma 5.14 below.

Proof of Theorem 5.12. By Lemma 5.13, φL guarantees an Ω (1/√
α)-approximation in

the sub-instance D(L) in which only types with low sender expectation are considered.
Similarly, by Lemma 5.14, φH guarantees an Ω

(︂
1√

α·log α

)︂
-approximation in the remain-

ing sub-instance of the remaining types with high sender expectation D(H). Clearly,
the sub-instance with the higher expected maximum for R obtains at least 1/2 of the
expected maximum of the original instance.

The High-/Low-Algorithm chooses either φL or φH , depending on which accep-
tance scheme provides the higher expected utility for R. This guarantees R an
Ω
(︂

1√
α·log α

)︂
-approximation of the optimal expected utility when performing an opti-

mal one-dimensional (online) search. Theorem 5.12

Both AlgoLow and AlgoHigh use the procedure RestrictTypes (Algorithm 20). It
is given a parameter µ ≤ 1 and identifies a set Q with the best types for R such that∑︁

(i,j)∈Q qij · ϱij ≥ µ/2 · OPT, where OPT denotes the expected maximum for R among
all n actions. Additionally, the combined probability mass of the types in Q is less
than µ, i.e., ∑︁(i,j)∈Q qij < µ, or all types in Q can only be drawn in a single round.
The algorithm works similar to the start of our Binning Algorithm, where a set of
good types was identified. The main difference to RestrictTypes is that in the Binning
Algorithm, types were considered individually. This is no longer possible, all types
with the same value for R in a single round have to be considered at the same time.

Lemma 5.15
For distributions D1, . . . ,Dn and a parameter 0 < µ ≤ 1, RestrictTypes(D1, . . . ,Dn, µ)

5.2. α-Bounded Sender Utility Values 133

Algorithm 20: RestrictTypes
Input: n distributions D1, . . . ,Dn, value µ restricting the mass
Output: Set Q of good options for R

1 Set Q = ∅, q = q∗ = 0, U = [n] × [m].
2 while q < µ do
3 Set U∗ = ∅, q∗ = 0.
4 for ℓ = 1, . . . , n do
5 Let U∗

ℓ = {(ℓ, j) ∈ U | ϱℓj ≥ ϱi′j′ for all (i′, j′) ∈ U} be the types in
round ℓ from the set of all remaining types in all rounds with the best
utility for R.

6 Set qℓ = ∑︁
(i,j)∈U∗

ℓ
qij.

7 if q∗ + qℓ < µ then Add U∗ = U∗ ∪ U∗
ℓ , update q∗ = q∗ + qℓ.

8 else
9 if qℓ > q∗ then Set U∗ = U∗

ℓ .
10 break for-loop

11 Set q∗ = ∑︁
(i,j)∈U∗ qij and ϱ∗ = ϱij for (i, j) ∈ U∗.

12 if q + q∗ > µ then Set B = U∗.
13 else Add Q = Q ∪ U∗.
14 Remove U = U \ U∗, update q = q + q∗.
15 Set ϱQ = ∑︁

(i,j)∈Q qij · ϱij and ϱB = q∗ · ϱ∗.
16 if ϱQ < ϱB then Set Q = B .
17 return Q

identifies Q, the best set of types for R, such that

∑︂
(i,j)∈Q

qij · ϱij ≥ µ

2 · Eθi∼Di

[︄
max
i∈[n]

ϱ(θi)
]︄

and either (1) the combined mass ∑︁(i,j)∈Q qij < µ or (2) Q contains only types from
a single round. RestrictTypes can be implemented to run in a time polynomial in the
input size.

Proof of Lemma 5.15. Similar to the Binning Algorithm, RestrictTypes considers the
types by descending value for R. Since types with the same value for R in a single
round cannot be distinguished, they are considered together. In the while-loop in
lines 2-14, the procedure identifies two sets Q and B which contain the best types for
R. As long as the combined mass of types considered is less than µ, the types are
added to set Q. Once this threshold is exceeded by a set of types, the types from this
final set are put into set B. Hence, the following holds. The combined utility mass of Q
is less than µ, but the combined mass of Q∪B is at least µ. Note that B only contains
types from a single round, which guarantees that if Q or B are returned, either (1) or
(2) must hold.

Since the set Q ∪B contains the best types for R, by line 15 we have

1
µ

·
∑︂

(i,j)∈Q∪B

qij · ϱij ≥ Eθi∼Di

[︄
max
i∈[n]

ϱ(θi)
]︄
.

134 5. Online Delegated Search

In lines 15 and 16, the individual values obtained by Q and B are compared. If B
guarantees a better expected utility for R, the set Q is overwritten by B. Hence, the
set Q returned by RestrictTypes guarantees

2
µ

·
∑︂

(i,j)∈Q

qij · ϱij ≥ Eθi∼Di

[︄
max
i∈[n]

ϱ(θi)
]︄
.

When determining the set Q, in each round, at least one type is added to Q and
removed from U . Hence, we have at most n · m rounds. In each round, the best
remaining type among all n actions needs to be identified, which can easily be done
in time n when types are sorted by descending receiver utility. Sorting all m types for
each distribution takes time n · m · logm. Clearly, this results in an overall running
time polynomial in the input size. Lemma 5.15

Before showing the proof of Lemma 5.13, we give a short intuitive description of
AlgoLow. The set Q returned by RestrictTypes is split into O(

√
α) many bins. Each

bin consist of consecutive rounds and contains all types from the set Q that are in the
respective rounds. The bins are constructed such that S is incentivized to propose the
first action with a type from a bin instead of waiting for an action with a better type
from the same bin. The resulting scheme φ then deterministically accepts only types
from the best bin.

Proof of Lemma 5.13. By Lemma 5.15, RestrictTypes(D1, . . . ,Dn, 1/2) in line 1 of the
algorithm returns a set Q such that 4 ·∑︁(i,j)∈Q qij ·ϱij ≥ Eθi∼Di

[︂
maxi∈[n] ϱ(θi)

]︂
= OPT,

the expected maximum for R. In the for-loop in lines 3-6, a new bin is opened if the
combined mass of the current bin and the set of types from the currently considered
round i is greater than 1/√

α. Hence, either the previous bin or the new bin have a
probability mass of at least 1

2
√

α
. Since the set Q has a total mass of at most 1 this

means that at most 2
√
α many bins are opened.

Now, assume that AlgoLow chooses bin B, i.e., B provides the highest value for R.
Consider the case that S has not proposed any actions and observes an action i with
type θ ∈ B. We know ξ(θ) ≥ 1 by the assumption that sender-utilities are α-bounded.
Additionally, B either has a combined mass of at most 1√

α
or B only spans a single

round. Hence, the probability that another type from bin B is observed in a future
round is at most 1√

α
. Since all types in B have low sender expectation, the conditional

sender expectation of a type in B is at most
√
α. This implies that S proposes action

i.
Similar to our Binning Algorithm, for each (i, j) ∈ B, the probability that θij in

round i is proposed requires the following two independent events to occur.

1. No type θi′j′ with (i′, j′) ∈ B was proposed in some round i′ < i, and

2. θij is realized in round i.

Using the same arguments as in the proof of Lemma 5.5, we see that round i is reached
without a proposal with probability at least 1/2. Since θij is drawn with probability qij,
this means that R achieves an expected utility of at least 1/2 ·∑︁(i,j)∈B qij · ϱij.

5.2. α-Bounded Sender Utility Values 135

Since the number of bins is at most 2
√
α and the one with the highest value for R

is chosen, this means that 1
2 ·∑︁(i,j)∈B qij · ϱij ≥ 1

4
√

α

∑︁
(i,j)∈Q qij · ϱij. Hence, R gets an

expected utility of at least

1
2 ·

∑︂
(i,j)∈B

qij · ϱij ≥ 1
4
√
α

·
∑︂

(i,j)∈Q

qij · ϱij ≥ 1
16

√
α

· OPT = Ω
(︄

1√
α

)︄
· OPT .

Since RestrictTypes only requires a polynomial running time and the remaining
steps are using only the types in Q a constant number of times, Algorithm 18 can be
run in polynomial time with respect to the input size. Lemma 5.13

In contrast to the grouping of good types by the rounds in which they can be
observed in AlgoLow, AlgoHigh classifies the types by their expected utility for S.
Similar to our Binning Algorithm, in a class of types constructed by AlgoHigh, the
expected utility for S differs by at most a factor 2. This means that there are O(logα)
many classes from which the best one is chosen. A notable difference to the previous
algorithms is that due to the high sender expectation of the types, S cannot be incen-
tivized to propose the first type from the chosen class with probability 1. Rather, we
show that the probability is at least 1

2
√

α
. In combination, this gives the approximation

guarantee of Ω
(︂

1√
α·log α

)︂
of AlgoHigh.

Proof of Lemma 5.14. Again, we use OPT = Eθi∼Di

[︂
maxi∈[n] ϱ(θi)

]︂
to denote the

expected maximum value for R among the n actions. By Lemma 5.15, we know
that for the set Q returned by RestrictTypes(D1, . . . ,Dn, 1/4) in line 1, it holds that
8 ·∑︁(i,j)∈Q qij · ϱij ≥ OPT. The algorithm then partitions the set Q into z = ⌈log2

√
α⌉

classes. The types inside each class differ by at most a factor 2 in their conditional
expectation for S. The best class for R is chosen, i.e., a class C such that∑︂

(i,j)∈C
qij · ϱij = max

ℓ∈[z]

∑︂
(i,j)∈Cℓ

qij · ϱij .

For the receiver expectation, this implies

z ·
∑︂

(i,j)∈C
qij · ϱij ≥

∑︂
(i,j)∈Q

qij · ϱij ≥ 1
8 · OPT .

Let E denote the lower bound on the expected sender utility for C. Recall that we
consider α-bounded sender utilities. As such, all sender values are in the interval [1, α].
Hence, an expected utility of at least E implies that with probability at least E

2α−E
,

a random element from C has a sender utility value of at least E/2. If that were not
the case, the overall expected utility would necessarily be less than E, which is a
contradiction to the definition of C.

We choose parameter µ = 1/4 in the call to RestrictTypes. Hence, the probability
that another type from the same class is observed in a later round is at most 1/4

by similar arguments to those in the proof of Lemma 5.5. In combination with the
conditional expectation of a future type from C being upper bounded by 2E, this
means that S always proposes an action which provides a sender utility of at least E/2.
Therefore, S always proposes the first action with an acceptable type with a probability
of at least E

2α−E
≥ E

2α
. Since we consider only types with high sender expectation, we

136 5. Online Delegated Search

have E ≥
√
α and thus we have a proposal probability of at least 1

2
√

α
for the first type

from class C that is observed.
Hence, by using the acceptance scheme computed by AlgoHigh, R gets an expected

utility of at least

1
2
√
α

·
∑︂

(i,j)∈C
qij · ϱij ≥ 1

2
√
α

· 1
8 · z

· OPT

= 1
16

√
α · ⌈log2

√
α⌉

· OPT

= Ω
(︄

1√
α · logα

)︄
OPT .

We have already seen that the running time of RestrictTypes is polynomial in the
input size. The set Q resulting from the call to the subroutine consists of a subset of
the input. Classifying the types in Q by sender utility and determining the best class
only considers each type in Q a constant number of times. Overall, this means that
AlgoHigh can be implemented to run in a time polynomial in the input size. Lemma 5.14

This concludes the section on α-bounded sender utility values. In the next section,
we consider a different parameter β, which bounds the ratios between utility values of
individual types for S and R.

5.3 β-bounded Ratios of Utility Values
In the previous section, we considered the case that the sender’s values are bounded
by parameter α. The receiver’s utility values on the other hand can be arbitrary. In
this section, we bound the ratios of different types for S and for R. Intuitively, this
means that – up to factor β – a type θij that is better for S than another type θi′j′

is also better for R. Formally, we consider the following. Let β ≥ 1 be the smallest
number such that

1
β

· ξij

ξi′j′
≤ ϱij

ϱi′j′
≤ β · ξij

ξi′j′
for all i, i′ ∈ [n], and all j, j′ ∈ [m]. (5.4)

We say that an instance satisfying (5.4) has β-bounded utility ratios.
Clearly, (5.4) requires the utility values for both S and R to be strictly positive.

As we did in the previous section on α-bounded sender utilities, we will remark on
instances where there exist types which have a sender utility value or a receiver utility
value of 0. For now, we assume that all utility values are positive.

Note that we can normalize the input by choosing an arbitrary type θi′j′ as reference.
Dividing all receiver-values by ϱi′j′ and all sender-values by ξi′j′ , we get

1
β

· ϱij

ξij

≤ 1 ≤ β · ϱij

ξij

,

or, put differently,

1
β

≤ ξij

ϱij

≤ β for all i ∈ [n], and all j ∈ [m] . (5.5)

5.3. β-bounded Ratios of Utility Values 137

Note that (5.5) always holds for an instance with β-bounded utility ratios but it is not
a sufficient condition. To see this, consider the following two types with β > 1. θ1 has
ϱ1 = 1, ξ1 = β and θ2 has ϱ2 = 1, ξ2 = 1/β. Clearly, both θ1 and θ2 satisfy (5.5) but
ϱ1
ϱ2

= 1 < 1
β

· ξ1
ξ2

= 1
β

· β
1/β

= β, which violates (5.4).
As a first acceptance scheme, consider the following Lazy Acceptance Scheme which

does not restrict the sender in any way, i.e., it sets φij = 1 for all i ∈ [n] and all
j ∈ [m]. Clearly, this leads to S performing an optimal one-dimensional online search
with respect to the values ξ(θi).

Proposition 5.16
If the instance has β-bounded utility ratios, the Lazy Acceptance Scheme guarantees R
an Ω (1/β)-approximation of the expected utility for optimal (online) search.

Proof. Consider the following random variables. We denote by θX the type of the action
X ∈ {S,R} chooses in an optimal one-dimensional online search for their respective
best utility. By definition of β-bounded utility ratios, we have

β · ξ(θR)
ξ(θS) ≥ ϱ(θR)

ϱ(θS) .

Since this holds pointwise for every realization, it also holds when going over to the
expectation. Hence, we get

β · E [ξ(θR)]
E [ξ(θS)] ≥ E [ϱ(θR)]

E [ϱ(θS)] .

Clearly E [ξ(θS)] ≥ E [ξ(θR)], which implies

E [ϱ(θS)] ≥ 1
β

· E [ξ(θS)]
E [ξ(θR)] · E [ϱ(θR)] ≥ 1

β
· E [ϱ(θR)] .

Hence, the expected utility for R when S performs a one-dimensional online search is
at least 1/β of the expected utility R would obtain when performing the search.

Clearly, the Lazy Acceptance Scheme does not require any knowledge of the utility
values, its approximation guarantee stems from the β-bounded utility ratios. This
implies that for S-oblivious proposals, the Lazy Acceptance Scheme can be used to
obtain an Ω (1/β)-approximation. Note that the upper bound of Theorem 5.10 can
easily be adapted to β-bounded utility ratios, even for sender-oblivious proposals. We
can set β = α. To ensure that all values are strictly positive, we can also increase ϱ(θ1)
to 1/β. This gives us the following corollary.

Corollary 5.17
There is a class of instances of online delegation with IID options, β-bounded utility
ratios, and sender-oblivious proposals, in which every acceptance scheme φ obtains at
most an O (1/

√
β)-approximation of the expected utility for optimal (online) search.

Proof. The proof uses the same argumentation as the proof of Theorem 5.10. We use
the following adaptation of the distribution D.

138 5. Online Delegated Search

Algorithm 21: β-Classification Algorithm
Input: n distributions D1, . . . ,Dn

Output: Acceptance Scheme φ
1 Set U = [n] × [m] and z = ⌈log2 β⌉.
2 for ℓ = −z + 1 to z − 1 do
3 Set Cℓ =

{︂
(i, j) ∈ U

⃓⃓⃓
ϱij

ξij
∈
[︂
2ℓ−1, 2ℓ

)︂}︂
.

4 Set Cz =
{︂
(i, j) ∈ U

⃓⃓⃓
ϱij

ξij
∈ [2z−1, β]

}︂
.

5 Choose ℓ∗ = arg maxℓ∈{−z+1,...,z} ϱ(S, ℓ), where ϱ(S, ℓ) is the expected utility for
R when S performs an optimal online search on class Cℓ.

6 Set φij = 1 for all (i, j) ∈ Cℓ∗ .
7 return φ

Type θ1 θ2 θ3

ϱ 1/β 1 1
ξ 1 2 β

Probability 1 − 1
n

1
n

− 1
n·

√
β

1
n·

√
β

Table 10: Distribution D for the upper bound on β-bounded utility ratios with sender-
oblivious proposals.

Note that in contrast to the proof of Theorem 5.10, in this adapted instance, θ1
does provide some positive utility to R. Still, by assuming that φi1 = 0 for all i ∈ [n],
R loses at most an additive utility of 1

β
= o (1/

√
β). Hence, the overall upper bound of

O (1/
√

β) still holds.

Remark 5.18
Note that the upper bound of Remark 5.11 can be applied literally by replacing α by
β. Hence, for sender-oblivious proposals and types with utility 0 for S, there is an
upper bound of O (1/n), even for β = 1 as bound on the ratios of types with strictly
positive utility values.

If all types with strictly positive utility values have β-bounded ratios and there are
no types with utility 0 for S, the Lazy Acceptance Scheme can be applied with a slight
modification, i.e., all types θ with ϱ(θ) = 0 are not acceptable.

Finally, let us discuss the case that R learns the values for S when receiving a
proposal.

5.3.1 Sender-Aware Proposals
For the case of sender-aware proposals, we improve the Lazy Acceptance Scheme using
our β-Classification Algorithm (Algorithm 21). The main idea is still to let S perform
an optimal online search. Instead of accepting all types, R first classifies them by
their utility ratios and then accepts only types from the best class. Since there are
2 · ⌈log2 β⌉ = O(log β) many classes, the best one among them guarantees an Ω

(︂
1

log β

)︂
-

approximation. We formalize the result in the following theorem.

5.3. β-bounded Ratios of Utility Values 139

Theorem 5.19
For instances with β-bounded utility ratios, there is a deterministic acceptance scheme
such that R obtains an Ω

(︂
1

log β

)︂
-approximation of the expected utility for optimal (on-

line) search. The scheme can be computed in a time polynomial in the input size.

Proof. Clearly, the algorithm considers every type only a constant number of times.
Hence, it runs in time polynomial in the input size.

For the proof of the approximation ratio, consider the case that only types from
a class Cℓ are accepted by R. We denote by ϱ(S, ℓ) and ξ(S, ℓ) the expected utility
for R and S, respectively. Note that S uses an optimal online search with respect to
the types which R accepts. Similarly, we denote by ϱ(R, ℓ) and ξ(R, ℓ) the expected
utility for R and S of the best type for R from class Cℓ – if such a type exists. Clearly,
ϱ(R, ℓ) is the result for R in an optimal offline search restricted to class Cℓ.

This implies ϱ(R, ℓ) ≥ ϱ(S, ℓ) and ξ(S, ℓ) ≥ ξ(R, ℓ). Furthermore, since ϱij

ξij
∈[︂

2ℓ−1, 2ℓ
]︂

for all (i, j) ∈ Cℓ, we have

ϱ(S, ℓ) ≥ ξ(S, ℓ) · 2ℓ−1 ≥ ξ(R, ℓ) · 2ℓ−1 ≥ ϱ(R, ℓ)
2 .

Now, consider OPT, the best value for R among all n actions, not restricted to a single
class. Clearly, the best type for R from a class Cℓ does not have to be the best type
overall. Thus, we have

OPT ≤
z∑︂

ℓ=−z+1
ϱ(R, ℓ) ≤ 2 ·

z∑︂
ℓ=−z+1

ϱ(S, ℓ) ,

where we used z = ⌈log2 β⌉ as defined in the algorithm. Our algorithm chooses the
class Cℓ∗ that maximizes ϱ(S, ℓ∗). This implies

ϱ(S, ℓ∗) ≥ 1
4 log2 β

= Ω
(︄

1
log β

)︄
,

which concludes the proof of the theorem.

We have already seen that types with utility 0 for S are problematic in the case of
sender-oblivious proposals. Let us now discuss sender-aware proposals and the impli-
cations of types with utility 0 for S (or R).

Remark 5.20
Clearly, each type θ with ϱ(θ) = 0 should be ignored and rejected by R. Hence, they
do not pose a problem.

In the sender-aware setting, R is able to distinguish all individual types. This allows
R to group all types θ with ξ(θ) = 0 in an additional class C⊥. If only that particular
class is accepted, S is indifferent among the possible types. Due to our tie-breaking
assumption, this means that S will perform an optimal online search for R. Similar
to the other classes, this means that R loses at most a factor of 2 with respect to
the optimal utility from C⊥ in hindsight. For the original classes, the analysis remains
unchanged. In total, the number of classes increases by 1, i.e., there are still O (log β)
many classes. Choosing the best one with respect to the utility for R still guarantees
the receiver an Ω

(︂
1

log β

)︂
-approximation.

140 5. Online Delegated Search

Hence, we get the following two corollaries. The first one generalizes the result of
Theorem 5.19 to instances with types that have utility 0 for R, the second one shows
the general upper bound of Theorem 5.3.

Corollary 5.21
If receiver and sender have β-bounded utilities for the set of types with only strictly
positive utilities, there is a deterministic acceptance scheme such that R obtains an
Ω
(︂

1
log β

)︂
-approximation of the expected utility for optimal (online) search.

Corollary 5.22
There is a class of instances with β-bounded utility ratios in which every acceptance
scheme φ obtains at most an O

(︂
log log β

log β

)︂
-approximation of the expected utility for op-

timal (online) search.

This concludes our discussion of online delegated search.

141

Chapter 6

Conclusion

In the thesis, we discuss different settings of strategic communication with commitment
power between two self-interested, rational agents, a sender S and a receiver R. S is
able to observe the state of nature and thus has an informational advantage. R, on the
other hand, only sees the signals sent by S and eventually chooses one out of n actions
without knowing the exact type. The type of the chosen action then determines the
utility for both S and R. The algorithms we discuss are always designed from the
perspective of the agent with commitment power.

6.1 Bayesian Persuasion
In the first part, the sender has the power to commit to a signaling scheme φ. Such a
scheme determines the probability for each signal σ ∈ Σ, depending on the realized state
of nature. More formally, for each state of nature θ, φ(θ, σ) denotes the probability
that σ is sent. This allows R to perform a Bayesian update and infer information on
θ.

6.1.1 Offline Bayesian Persuasion
We start our discussion of Bayesian persuasion with an offline setting, i.e., S can
observe all n actions and their types simultaneously. We describe a polynomial-time
algorithm based on geometric interpretations of the states of nature. The algorithm
computes an optimal scheme for S for some classes of symmetric instances. The result
also holds if the signal space has a limited size of k < n. Our algorithm requires
an efficient probability oracle for the symmetric distribution. We show the existence
of such oracles for two classes of symmetric instances, namely d-random order and
prophet secretary instances. Our results also imply that Dughmi and Xu’s solution for
IID instances translates to the scenario of limited signals. It would be very interesting
to see if there are further classes of symmetric instances for which optimal signaling
schemes can be computed in polynomial time – either by showing that they allow for
an efficient probability oracle or via a new approach.

For independent instances, we identify a condition of ϱE-optimality, where ϱE de-
notes the maximum a priori expectation for R among the n actions. An instance
satisfies ϱE-optimality if there exists an optimal scheme that guarantees R a condi-
tional expectation of at least ϱE for each signal σ ∈ Σ. For ϱE-optimal instances, we

142 6. Conclusion

show a polynomial-time algorithm that computes our Independent Scheme φIS in two
separate steps. The first step consists of identifying a good subset S of k actions to
recommend using the k signals. In the second step, the signaling scheme is computed
for the set S. Using φIS, S can obtain a constant-factor approximation of at least
(1 − 1/e)2 of the optimal utility. We are then further able to improve this approach
using an FPTAS for step 1, which, for every constant ε > 0 is able to compute a
(1−ε) · (1− 1/e)-approximately optimal scheme in polynomial time. The factor (1− 1/e)
is tight using step 2 of our two-step approach. Essentially, this means that the constant
factor achievable for ϱE-optimal independent instances cannot be improved using our
strategy. Unfortunately, our approach cannot be extended to independent instances
which do not satisfy ϱE-optimality. This leaves two interesting questions for further re-
search: Does a different approach allow for a better approximation ratio for ϱE-optimal
instances in polynomial time? For which additional classes of independent instances –
if any – is a constant-factor approximation in polynomial time possible?

We close out the chapter on offline Bayesian persuasion with approximation results
for instances with restricted signal spaces with respect to the unrestricted counterparts.
For symmetric instances, we show a tight k/n-approximation when S has access to only
k instead of n signals. For ϱE-optimal independent instances, we show asymptotically
matching upper and lower bounds of Θ (k/n). Clearly, this means that access to very
few signals can substantially hurt the sender’s expected utility.

Besides open question with respect to constraints on the number of signals, the
model of Bayesian persuasion can be extended in different interesting directions. Es-
pecially the question of tractability of (near-)optimal signaling schemes is yet to be
answered for many settings, including, among others, scenarios with multiple receivers
(with and without externalities) with whom a single sender interacts.

6.1.2 Online Bayesian Persuasion
The next chapter discusses an online variant of Bayesian persuasion. We measure the
performance of the online sender with respect to that of an offline sender. In the first
section, we consider independent actions similar to the offline setting. Although an
optimal signaling scheme can be determined in polynomial time, there are instances in
which such a scheme cannot achieve an approximation ratio greater than 0, i.e., the
optimal offline scheme extracts some positive utility while any online scheme can only
get a utility of 0. Therefore, we consider a restricted class of independent instances.
This class requires two conditions, one of which is ϱE-optimality, the other one the
existence of a canonical deviation option for R. For such instances, we design a simple
scheme that guarantees a 1/2-approximation of the optimal utility. This matches the
best possible bound for the one-dimensional prophet inequality problem for general
independent instances.

The second section on online Bayesian persuasion assumes that types are drawn
in uniform random order. We discuss 16 different variants with varying levels of in-
formation as well as two different objectives for both S and R. In the scenarios with
cardinal receiver utility, we describe the Pareto Mechanism which utilizes a geometric
interpretation of the instance and requires polynomial time for its computation. Using
this mechanism, S achieves the same expected utility as in the corresponding offline
scenario. Hence, this can be used as a benchmark for the remaining scenarios. We de-

6.1. Bayesian Persuasion 143

note the expected utility or the success probability in the basic case with OPT. When
utility values are unknown, we use our Growing Pareto Mechanism with the growing
set of types observed. This gives S an expected utility of at least OPT ·

(︂
1

3
√

3 − o(1)
)︂

in the cardinal utility case and a success probability of OPT · (1/4 − o(1)) in the ordinal
utility case. These bounds are not tight, the one-dimensional secretary problem gives
an asymptotic upper bound of 1/e on the probability that the best type is chosen. In the
basic setting with disclosure, we first show an algorithm to compute an optimal mecha-
nism using an exponential number of linear programs. In terms of efficient algorithms,
we describe another variant of the Pareto Mechanism which uses the shrinking set of
remaining types. Using the Shrinking Pareto Mechanism, an ordinal sender achieves a
success probability of OPT ·(1/2 − o(1)), and we show that this is asymptotically tight.
For a sender with cardinal objective, the upper bound of OPT ·(1/2 + o(1)) still holds.
Our Shrinking Pareto Mechanism achieves an approximation ratio of 1/3 − o(1) with
respect to the utility obtained in the corresponding basic scenario. Unlike all previ-
ously discussed settings with constant approximation factors, in the secretary scenario
with disclosure, we show that there are instances in which S can only achieve an ap-
proximation ratio in O(1/n) with respect to the optimal success probability or expected
utility, respectively. Using our Trivial Mechanism which always recommends the first
action, we show an asymptotically matching lower bound of Ω(1/n).

In the scenarios with ordinal receiver utility, all bounds are asymptotically tight.
In the basic scenario, S can get the best type with probability 1 − o(1), regardless
of whether the instance is with or without disclosure. In the secretary scenarios, the
utility for S decreases. Interestingly, we can describe a mechanism that asymptotically
matches the performance of the one-dimensional secretary algorithm of 1/e, i.e., the
receiver does not substantially decrease the sender’s expected utility or success proba-
bility. In the most challenging setting, namely the secretary scenario with disclosure,
we show a success probability of 1/4 − o(1), drastically increasing the approximation
ratio with respect to the corresponding cardinal receiver setting. Interestingly, this also
guarantees R a success probability of 1/4 − o(1) since the scheme is entirely symmetric
with respect to the agents’ utility values. From the receiver’s side, this is the only sce-
nario in which the scheme actually increases the success probability. All other settings
ensure only a success probability of 1/n, matching the success probability of R blindly
picking one of the actions. Similarly, in the cardinal receiver setting, all schemes only
guarantee that R gets an expected utility of ϱE, i.e., no more than the expected utility
R would get when choosing an action without additional information.

It would be an interesting extension of our research to see whether an optimal
signaling scheme in the basic setting with disclosure and cardinal receiver utility can
be computed efficiently. Clearly, closing the gaps between our lower and upper bounds
would also solve an open question.

Extensions of the model provide another interesting direction for further research.
Studying extensions of the classic secretary problem or the prophet inequality problem
within the domain of Bayesian persuasion opens a plethora of interesting questions to
answer. To give just a few examples, consider a receiver who wants to take multiple
actions with respect to some packing constraint, or an online model with recourse, i.e.,
decisions are not necessarily irrevocable, but it might be costly to retract them. Ad-
ditionally, already the one-dimensional variants without the added separation between
information acquisition and decision-making provide interesting questions for future

144 6. Conclusion

research.

6.2 Online Delegated Search
In the second part of the thesis, the receiver has commitment power and commits to
an acceptance scheme φ. Such a scheme determines for each (i, j) ∈ [n] × [m] the
probability φij that R accepts θij if an action with that type is proposed by S. As
our first result, we show that there are IID instances in which the receiver cannot
hope for more than an O(1/n)-approximation of the utility when performing a one-
dimensional search. This stands in striking contrast to the result of Kleinberg and
Kleinberg [58], who showed a constant-factor approximation for IID instances in offline
delegated search. We further show that this bound is tight, i.e., we give an acceptance
scheme that always guarantees an Ω(1/n)-approximation. The scheme simply accepts
the action with the highest a priori expectation for R.

Since the IID instance which shows the low approximation guarantee requires a
ratio of sender utilities which is exponential in n, we study instances bounded by two
natural parameters. In the first instance, the ratio of sender utility values is bounded
by α. For such instances, we describe our Binning Algorithm which computes an
acceptance scheme that guarantees an approximation ratio of Ω

(︂
log log α

log α

)︂
with respect

to the utility of the best option in hindsight in polynomial time. Since log log α
log α

= Θ
(︂

1
n

)︂
for α = nΘ(n), this bound is tight.

For parameter β, which bounds the ratio of utility values for S in terms of the ratio
of utility values for R, we describe an algorithm that computes an acceptance scheme
guaranteeing an Ω

(︂
1

log β

)︂
-approximation. This matches to upper bound of O

(︂
log log β

log β

)︂
up to a factor of log log β.

Additionally, we study the above settings with less information for R, namely using
sender-oblivious proposals. In such a scenario, R does not learn the sender’s utility
value when an action is proposed. This implies that types in a single round which have
the same value for R cannot be distinguished. Hence, such types are required to have
the same acceptance probability. In this setting, the bound of Θ(1/n) still holds. For
parameter α, we describe an algorithm that achieves an Ω

(︂
1√

α·log α

)︂
-approximation,

matching the upper bound of O (1/√
α) up to a factor of logα. For parameter β, the

discrepancy is greater. The instance showing the upper bound of O (1/√
α) easily trans-

lates, hence, we get an upper bound of O (1/
√

β). For our lower bound, the receiver is
guaranteed an Ω (1/β)-approximation when accepting every single type with probability
1. For both parameters, the loss of information results in an exponential deterioration
of approximation ratios, i.e., from logarithmic guarantees to polynomial ones.

Overall, the results for the parameterized instances provide (near-)optimal approxi-
mation ratios and can be computed in polynomial time. Still, it would be very interest-
ing to close the open gaps, especially for the polynomial gap of

√
β for sender-oblivious

proposals when instances are bounded by parameter β.
A natural extension to our sender-oblivious model is to consider an even stronger

assumption, namely, R not having any information on the values for S. Clearly, for
general instances, our bound of Θ(1/n) holds. Is the receiver still able to obtain a good
approximation with respect to some – possibly new – parameter on the instance?

Clearly, our assumption that the process ends after the first proposal – even if the

6.2. Online Delegated Search 145

action is rejected – is rather strict. It would be interesting to see what R and S can
do in more general models. We leave this question open for future work.

Additionally, although the sender always tries and performs an online search for
the best type, the receiver can drastically reduce the value of this best option for S
via the acceptance scheme and no general guarantees can be made with respect to the
expected utility for S. The sender might not be motivated to work very hard when
the expected utility is very low. This leads to very interesting questions of how to
effectively incentivize S to do work for R. A potential remedy for S and a possible
direction of research is an extension of the model to multiple receivers that all solicit
information from a single sender. This way, the sender only has to gather information
once and can use the information on multiple occasions. This gives rise to a host of
questions regarding possible competition between receivers, i.e., whether the actions
to take are unique, or the possible objective functions of the sender.

In contrast to this, a single receiver might want to introduce competition on the
sender side. It would be interesting to see how much – if at all – R can profit from
consulting several senders with their own individual interests.

Clearly, the open questions discussed above for online Bayesian persuasion with
respect to extensions of classic online problems can also be studied from the perspective
of delegated search, i.e., where the receiver has commitment power.

146

Bibliography

[1] Melika Abolhassani, Soheil Ehsani, Hossein Esfandiari, MohammadTaghi Ha-
jiAghayi, Robert Kleinberg, and Brendan Lucier. Beating 1-1/e for ordered
prophets. In Proc. 49th Symp. Theory Comput. (STOC), STOC 2017, pages 61–71,
New York, NY, USA, 2017. Association for Computing Machinery.

[2] Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mecha-
nisms to many buyers. SIAM J. Comput., 43(2):930–972, 2014.

[3] Saed Alizamir, Francis de Véricourt, and Shouqiang Wang. Warning against re-
curring risks: An information design approach. Manag. Sci., 66(10):4359–4919,
2020.

[4] Ricardo Alonso and Odilon Câmara. Persuading voters. Amer. Econ. Rev.,
106(11):3590–3605, 2016.

[5] Ricardo Alonso and Niko Matouschek. Optimal delegation. Rev. Econ. Stud.,
75(1):259–293, 2008.

[6] Manuel Amador and Kyle Bagwell. The theory of optimal delegation with an
application to tariff caps. Econometrica, 81(4):1541–1599, 2013.

[7] Attila Ambrus and Georgy Egorov. Delegation and nonmonetary incentives. J.
Econ. Theory, 171:101 – 135, 2017.

[8] Jerry Anunrojwong, Krishnamurthy Iyer, and Vahideh Manshadi. Information
design for congested social services: Optimal need-based persuasion. In Proc. 21st
Conf. Econ. Comput. (EC), EC ’20, page 349–350, New York, NY, USA, 2020.
Association for Computing Machinery.

[9] Itai Arieli and Yakov Babichenko. Private Bayesian persuasion. J. Econ. Theory,
182:185–217, 2019.

[10] Mark Armstrong and John Vickers. A model of delegated project choice. Econo-
metrica, 78(1):213–244, 2010.

[11] Pak Hung Au. Dynamic information disclosure. RAND J. Econ., 46(4):791–823,
2015.

[12] Robert Aumann and Michael Maschler. Game theoretic aspects of gradual dis-
armament. Report of the US Arms Control and Disarmament Agency, 80:1–55,
1966.

Bibliography 147

[13] Yunus Aybas and Eray Turkel. Persuasion with coarse communication. arXiv,
abs/1910.13547, 2021.

[14] Yakov Babichenko and Siddharth Barman. Algorithmic aspects of private Bayesian
persuasion. In Proc. 8th Innov. Theoret. Comput. Sci. (ITCS), pages 34:1–34:16,
2017.

[15] Yakov Babichenko, Inbal Talgam-Cohen, Haifeng Xu, and Konstantin Zabarnyi.
Multi-channel Bayesian persuasion. CoRR, abs/2111.09789, 2021.

[16] Yakov Babichenko, Inbal Talgam-Cohen, Haifeng Xu, and Konstantin Zabarnyi.
Regret-minimizing Bayesian persuasion. In Péter Biró, Shuchi Chawla, and Fed-
erico Echenique, editors, Proc. 22nd Conf. Econ. Comput. (EC), page 128. ACM,
2021.

[17] Ashwinkumar Badanidiyuru, Kshipra Bhawalkar, and Haifeng Xu. Targeting and
signaling in ad auctions. In Proc. 29th Symp. Discret. Algorithms (SODA), pages
2545–2563, 2018.

[18] Thomas Bayes and Richard Price. An Essay towards Solving a Problem in the
Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by
Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philosophical Transactions
(1683-1775), 53:370–418, 1763.

[19] Curtis Bechtel and Shaddin Dughmi. Delegated stochastic probing. In James R.
Lee, editor, Proc. 12th Innov. Theoret. Comput. Sci. (ITCS), pages 37:1–37:19,
2021.

[20] Martin Beckmann. Dynamic programming and the secretary problem. Comput.
Math. Appl., 19(11):25–28, 1990.

[21] Dirk Bergemann, Benjamin Brooks, and Stephen Morris. The limits of price
discrimination. Amer. Econ. Rev., 105(3):921–57, March 2015.

[22] Dirk Bergemann and Stephen Morris. Information design: A unified perspective.
J. Econ. Literature, 57(1):44–95, 2019.

[23] Umang Bhaskar, Yu Cheng, Young Kun Ko, and Chaitanya Swamy. Hardness
results for signaling in Bayesian zero-sum and network routing games. In Proc.
17th Conf. Econ. Comput. (EC), pages 479–496, 2016.

[24] Ozan Candogan. Information design in operations. Informs Tutorials, pages 176–
201, 2020.

[25] Matteo Castiglioni, Andrea Celli, Alberto Marchesi, and Nicola Gatti. On-
line Bayesian persuasion. In Proc. 34th Conf. Adv. Neural Inf. Processing Syst.
(NeurIPS), pages 16188–16198, 2020.

[26] Matteo Castiglioni, Alberto Marchesi, Andrea Celli, and Nicola Gatti. Multi-
receiver online Bayesian persuasion. In Proc. 38th Int. Conf. Machine Learning
(ICML), pages 1314–1323, 2021.

148 6. Bibliography

[27] Archishman Chakraborty and Rick Harbaugh. Persuasive puffery. Marketing
Science, 33(3):382–400, 2014.

[28] Shuchi Chawla, Jason Hartline, David Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Proc. 42nd Symp.
Theory Comput. (STOC), pages 311–320, 2010.

[29] José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vre-
develd. Posted price mechanisms for a random stream of customers. In Proc. 18th
Conf. Econ. Comput. (EC), pages 169–186, 2017.

[30] Vincent P. Crawford and Joel Sobel. Strategic information transmission. Econo-
metrica, 50(6), 1982.

[31] Francis de Véricourt, Huseyin Gurkan, and Shouqiang Wang. Informing the public
about a pandemic. Manag. Sci., 67(10):6350–6357, 2021.

[32] Kimon Drakopoulos, Shobhit Jain, and Ramandeep Randhawa. Persuading cus-
tomers to buy early: The value of personalized information provisioning. Manag.
Sci., 67(2):828–853, 2021.

[33] Shaddin Dughmi. Algorithmic information structure design: a survey. SIGecom
Exchanges, 15(2):2–24, 2017.

[34] Shaddin Dughmi, David Kempe, and Ruixin Qiang. Persuasion with limited com-
munication. In Proc. 17th Conf. Econ. Comput. (EC), pages 663–680, 2016.

[35] Shaddin Dughmi, Rad Niazadeh, Alexandros Psomas, and S. Matthew Weinberg.
Persuasion and incentives through the lens of duality. In Proc. 15th Conf. Web
and Internet Econ. (WINE), pages 142–155, 2019.

[36] Shaddin Dughmi and Haifeng Xu. Algorithmic Bayesian persuasion. In Proc. 48th
Symp. Theory Comput. (STOC), pages 412–425, 2016.

[37] Shaddin Dughmi and Haifeng Xu. Algorithmic persuasion with no externalities.
In Proc. 18th Conf. Econ. Comput. (EC), pages 351–368, 2017.

[38] Eugene Dynkin. The optimum choice of the instant for stopping a Markov process.
In Sov. Math. Dokl, volume 4, pages 627–629, 1963.

[39] Jeffrey Ely. Beeps. Amer. Econ. Rev., 107(1):31–53, 2017.

[40] Jeffrey Ely, Alexander Frankel, and Emir Kamenica. Suspense and surprise. J.
Political Econ., 123(1):215–260, 2015.

[41] Yuval Emek, Michal Feldman, Iftah Gamzu, Renato Paes Leme, and Moshe Ten-
nenholtz. Signaling schemes for revenue maximization. ACM Trans. Econ. Com-
put., 2(2):5:1–5:19, 2014.

[42] Françoise Forges. Games with incomplete information: From repetition to cheap
talk and persuasion. Ann. Econ. Stat., 137:3–30, 2020.

Bibliography 149

[43] Ronen Gradwohl, Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Algo-
rithms for persuasion with limited communication. In Proc. 32nd Symp. Discret.
Algorithms (SODA), pages 637–652, 2021.

[44] Ronen Gradwohl, Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Reap-
ing the informational surplus in Bayesian persuasion. Amer. Econ. J. Micro.,
Forthcoming.

[45] Jerry R. Green and Nancy Stokey. A two-person game of information transmission.
Harvard Institute of Economic Research Discussion Paper No. 751, 1980.

[46] Jerry R. Green and Nancy L. Stokey. A two-person game of information trans-
mission. J. Econ. Theory, 135:90–104, 2007.

[47] Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Prophet inequalities for
Bayesian persuasion. In Proc. 29th Int. Joint Conf. Artif. Intell. (IJCAI), pages
175–181, 2020.

[48] Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. The secretary recommen-
dation problem. In Proc. 21st Conf. Econ. Comput. (EC), page 189, 2020.

[49] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999.

[50] Theodore P Hill and Robert P Kertz. A survey of prophet inequalities in optimal
stopping theory. Contemp. Math, 125:191–207, 1992.

[51] Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas. Algorithmic persua-
sion with evidence. In Proc. 12th Innov. Theoret. Comput. Sci. (ITCS), pages
3:1–3:20, 2021.

[52] Bengt Robert Holmström. On Incentives and Control in Organizations. PhD
thesis, Stanford University, 1977.

[53] Bengt Robert Holmström. On the theory of delegation. In Bayesian Models in
Economic Theory, pages 115–141. Elsevier, 1984.

[54] Emir Kamenica. Bayesian persuasion and information design. Ann. Rev. Econ.,
11(1):249–272, 2019.

[55] Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. Amer. Econ. Rev.,
101(6):2590–2615, 2011.

[56] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer,
2013.

[57] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An
optimal online algorithm for weighted bipartite matching and extensions to combi-
natorial auctions. In Proc. 21st European Symp. Algorithms (ESA), pages 589–600,
2013.

[58] Jon Kleinberg and Robert Kleinberg. Delegated search approximates efficient
search. In Proc. 19th Conf. Econ. Comput. (EC), pages 287–302, 2018.

150 6. Bibliography

[59] Andreas Krause and Daniel Golovin. Submodular function maximization. In
Tractability: Practical Approaches to Hard Problems, chapter 3, pages 71–104.
Cambridge University Press, 2014.

[60] Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bull. Amer.
Math. Soc, 83:745–747, 1977.

[61] Ulrich Krengel and Louis Sucheston. On semiamarts, amarts and processes with
finite value. Adv. Prob., 4:197–266, 1978.

[62] Can Küçükgül, Özalp Özer, and Shouqiang Wang. Engineering social learning:
Information design of time-locked sales campaigns for online platforms. Manag.
Sci., Forthcoming.

[63] Maël Le Treust and Tristan Tomala. Persuasion with limited communication
capacity. J. Econ. Theory, 184:104940, 2019.

[64] David Lingenbrink and Krishnamurthy Iyer. Optimal signaling mechanisms in
unobservable queues. Oper. Res., 67(5):1397–1416, 2019.

[65] Nahum D. Melumad and Toshiyuki Shibano. Communication in settings with no
transfers. The RAND Journal of Economics, 22(2):173–198, 1991.

[66] George Nemhauser, Laurence Wolsey, and Marshall Fisher. An analysis of approx-
imations for maximizing submodular set functions - I. Math. Prog., 14:265–294,
1978.

[67] Yiangos papanastasiou, Kostas Bimpikis, and Nicos Savva. Crowdsourcing explo-
ration. Manag. Sci., 64(4):1727–1746, 2018.

[68] Zinovi Rabinovich, Albert Xin Jiang, Manish Jain, and Haifeng Xu. Information
disclosure as a means to security. In Proc. 14th Conf. Auton. Agents and Multi-
Agent Syst. (AAMAS), pages 645–653, 2015.

[69] Jérôme Renault, Eilon Solan, and Nicolas Vieille. Optimal Dynamic Information
Provision. Games Econ. Behav., 104:329–349, 2017.

[70] Aviad Rubinstein. Honest Signaling in Zero-Sum Games Is Hard, and Lying Is
Even Harder. In Proc. 44th Int. Colloq. Autom. Lang. Programming (ICALP),
pages 77:1–77:13, 2017.

[71] Ester Samuel-Cahn. Comparison of Threshold Stop Rules and Maximum for In-
dependent Nonnegative Random Variables. The Annals of Probability, 12(4):1213
– 1216, 1984.

[72] Haifeng Xu. On the tractability of public persuasion with no externalities. In
Proc. 30th Symp. Discret. Algorithms (SODA), pages 2708–2727, 2020.

[73] Haifeng Xu, Rupert Freeman, Vincent Conitzer, Shaddin Dughmi, and Milind
Tambe. Signaling in Bayesian Stackelberg games. In Proc. 15th Conf. Auton.
Agents and Multi-Agent Syst. (AAMAS), pages 150–158, 2016.

BIBLIOGRAPHY 151

[74] Haifeng Xu, Zinovi Rabinovich, Shaddin Dughmi, and Milind Tambe. Exploring
information asymmetry in two-stage security games. In Proc. 29th Conf. Artif.
Intell. (AAAI), pages 1057–1063, 2015.

[75] Robert Young. Euler’s constant. Math. Gaz, pages 187–190, 1991.

[76] You Zu, Krishnamurthy Iyer, and Haifeng Xu. Learning to persuade on the fly:
Robustness against ignorance. In Proc. 22nd Conf. Econ. Comput. (EC), page
927–928, 2021.

	Introduction
	Overview
	Bayesian Persuasion
	Delegated Search

	Related Work
	Bayesian Persuasion
	Delegated Search

	Preliminaries
	Model
	Bayesian Persuasion
	Delegated Search

	Bayesian Persuasion
	Symmetric Instances
	Characterization of Optimal Schemes
	Efficient Computation of Optimal Schemes
	Efficient Probability Oracles

	Independent Instances
	Constant-Factor Approximation
	Improved Approximation and Tightness
	Beyond ρE-Optimality

	Guarantees for Limited Signals
	Symmetric Instances
	Independent Instances

	Online Bayesian Persuasion
	Prophet Inequalities for Persuasion
	A Simple Scheme for the IID-Case
	Beyond IID
	Satisfactory Status Quo

	Secretary Recommendation
	Cardinal Utility for R
	Ordinal Utility for R

	Online Delegated Search
	General Case
	α-Bounded Sender Utility Values
	Sender-Aware Proposals
	Sender-Oblivious Proposals

	β-bounded Ratios of Utility Values
	Sender-Aware Proposals

	Conclusion
	Bayesian Persuasion
	Offline Bayesian Persuasion
	Online Bayesian Persuasion

	Online Delegated Search

	Bibliography

