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1 Overview

The thesis deals with the study of Dirichlet problems driven by nonlocal operators includ-
ing those with small order. The content of the thesis is based on collection of research pa-
pers [39]], [47]], [45]] and [46], that can be found in self-contained Chapters and [5] and
can be read independently. The main goal of the thesis is fourfold. First, we study a connection
between qualitative properties of nodal solutions to a semilinear elliptic problem involving the
fractional Laplacian (—A)*, s € (0,1) and their Morse index. Secondly, we study the small
order asymptotics with respect to the parameter s — 0 of the Dirichlet eigenvalues and corre-
sponding eigenfunctions of the fractional Laplacian. Thirdly, we provide an alternative method
to derive the singular integral corresponding to the operator with Fourier symbol log(1 +|&|?).
In particular, we introduce tools to study variational problems involving this operator. Finally,
we study a general class of nonlocal operators of small order. In particular, we present some
auxiliary results corresponding to function spaces and study interior Sobolev type regularity of
the associated Poisson problems. A short overview of each chapter is given below. In particular,
let us explain the main idea in light of the following semilinear elliptic problem involving the
fractional Laplacian,

(=APu=f(u) in Q@ u=0 in RV\Q, (1.1)
where the nonlinearity f is a real value function of class C' and Q C R an open bounded set.

Firstly, using the spectral theory of the related linearized problem, we present a relationship
between a qualitative properties of nodal solutions of (I.1)) and their Morse index, that is, the
number of the negative Dirichlet eigenvalues of the linearized operator L, := (—A)* — f'(u)
counted with their multiplicity. Our first result is motivated by the seminal work of Aftalion and
Pacella [1]], where the authors studied qualitative properties of radially sign changing solutions
of the local semilinear elliptic problem —Au = f(u) in €, subject to Dirichlet boundary con-
dition on dQ, where Q C R is a ball or an annulus centered at zero and f € C!(R). They have
proved that any radially sign changing solution of the Dirichlet problem —Au = f(u) in €, has
a Morse index greater than or equal to N + 1. In particular, they have deduced the nonradiality
of least energy nodal solutions when f is superlinear with subcritical growth. The nonlocal ver-
sion of this result was still unknown before our work, that is, for s € (0, 1), any bounded radially
symmetric sign changing weak solution of problem has a Morse index bigger or equal to
N + 1. The main goal of Chapter [2]is therefore to show this result by giving a nonlocal counter-
part in the particular case where Q is the unit ball % of RV centered at zero. The general idea of
our proof is inspired by the one in [/1]] for the local problem with s = 1, where partial derivatives
of weak solutions are used to construct suitable test functions which allow to estimate the Morse
index of u. In the nonlocal case, several difficulties arise since local PDEs techniques do not
apply. The most severe difficulty is related to the fact that weak solutions for nonlocal problems
have much less boundary regularity than the classical one. Moreover, even though there exists
a fractional version of the Hopf boundary lemma related to the fractional boundary derivative
5+ [40], it does not apply to sign changing solutions of due to the nonlocality of the prob-
lem. Therefore, it is difficult to deal with possible oscillations of the radial derivative of u close
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to the boundary of #. To overcome these difficulties, we distinguish two cases with regard to
the parameter s € (0, 1). In the case s € (%, 1), we use a regularity result of Grubb given in [53]
to complete the argument when § vanishes on d.%. Note that & (x) := dist(x,R" \ Z). More-
over, in the case s € (0, %], we use an extra assumption to ensure that 5; does not vanish on the
boundary of Z. This assumption arises from the Pohozaev identity for the fractional Laplacian
derived in [83] and leads to the additional condition £(0) = 0. In the case s € (1, 1), no extra
assumption is needed on f(0). Since in particular, the above assumption is satisfied in the linear
case, that is, when f(u) = Au, our result applies to Dirichlet eigenvalue problem for the frac-
tional Laplacian and provides information on the geometric structure of the eigenfunctions u
corresponding to the second eigenvalue A,(%). We indeed deduce that, u is antisymmetric, i.e.
it satisfies u(—x) = —u(x) for x € Z. This was a conjecture due to Bafiuelos and Kulczycki and
partial results towards this conjecture have been proved in the particular cases N < 3, s € (0,1)
and4<N<9, s= % in [7,{36,/44,(68|]. As consequence of our result, we derive the conjec-
ture in full generality: Any eigenfunction u corresponding to the second eigenvalue A,(%) of
the fractional Dirichlet eigenvalue problem in a ball is antisymmetric for all s € (0,1) and N > 1.

Secondly, we are concerned with the study of spectral asymptotics with respect to the parame-
ter s — 0" of the Dirichlet eigenvalue problem for the fractional Laplacian in open bounded set
Q C RY with Lipschitz boundary. That is, we consider (T.I)) with f(u) = Au. Using the log-
arithmic Laplacian L,, which is the pseudo-differential operator with Fourier symbol 2log |- |,
and, belongs to family of operators with close to zero order, H. Chen and T. Weth [29] gave a
description of the small order asymptotics s — 0™ of the principal Dirichlet eigenvalue A, ; and
the corresponding eigenfunction u; ¢ of the fractional Laplacian. In fact, they have shown that
l“—g_l — M ganduy s — upp in L*(Q) as s — 0T, where 4, 1 denotes the principal eigenvalue
of the eigenvalue problem Ly = Au in Q, u = 0in Q°, and u; ; the corresponding (unique)
positive L>-normalized eigenfunction. Motivated by the aforementioned convergence of the
principal Dirichlet eigenvalue and its corresponding eigenfunction, the main goal of Chapter 3]
is twofold. First, we improve the Lz-convergence Ujs—> UL as s — 0" by showing that the set
{urs : s € (0,%]} is relatively compact in C(K) for any compact subset K C Q. Secondly, we
extend the convergence result to higher eigenvalues Ay, and corresponding eigenfunctions uy
for all k € N. New tools are needed in order to overcome the lack of uniform regularity esti-
mates for the fractional Laplacian (—A)* for s close to zero. Moreover, due to the multiplicity
of eigenvalues and eigenfunctions for k > 2, new approaches are also required, including, the
use of Fourier transform in combination with the Courant-Fischer minimax characterization of
eigenvalues. In fact, for s € (0, %] we prove that if A, denote the k-th Dirichlet eigenvalue
of the fractional Laplacian, then it satisfies the expansion Ay, = 1+ sA . + o(s) ass— 0"
and, if (s,), C (0, %] is a sequence with s, — 0 as n — oo, then, after passing to a subse-
quence, we have uy,, — ug asn— oo in LP(Q) for all p < co and locally uniformly in €,
where uy ; is a L?-normalized eigenfunction of the logarithmic Laplacian corresponding to the
eigenvalue A4 ;. Moreover, if Q satisfies an exterior sphere condition, then the above con-
vergence is uniform in Q and the set {ux, : s € (0,1]} is relatively compact in the space
Co(Q) :={uc CRY): u=0 in Q°}. Let us briefly comment on the idea of the proof.

Indeed, to obtain local equicontinuity, the strategy is first to prove locally uniform estimate of
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the difference [L, — “M#]ukg close to the boundary dQ as s — 0" and then apply regularity

estimate from [|63]] for weakly singular integral operators which applies, in particular, to the
logarithmic Laplacian L,. However, since no uniform regularity theory is available for the frac-
tional Laplacian (—A)* in the case where s is close to zero, we are not able to obtain uniform
estimates for the difference. Therefore, we first prove uniform bounds related to an s-dependent
auxiliary integral operator instead and then complete the proof by a direct contradiction argu-
ment. The proof of the relative compactness of the set {ux : s € (0,1]} in the space Cy(Q)
follows from the application of the Arzela—Ascoli theorem. Moreover, a crucial step in the
proof is to obtain a uniform decay property of the set of eigenfunctions, which, also requires
new uniform small volume maximum principle for u; x, a uniform radial barrier function for the

difference quotient operator “Alﬁ and a uniform L*-bound of the set {ux; : s € (0,1]}. To
achive the L*-bound, we use a new technique based on the splitting of the integral over R" on
a small ball of radius 6 (6-decomposition) and apply known results and conditions associated
to the newly obtained quadratic form as in [43,|61]. We emphasize that this technique is much
simpler than the general De Giorgi iteration method in combination with Sobolev embedding
to prove L*-bounds. We also point out that this §-decomposition method is applicable for gen-
eral nonlocal operators and allows to get explicit constants for the boundedness. Combining
the uniform decay property and the equicontinuity of the set {uy : s € (0, i]}, the conclusion
follows. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions
of the logarithmic Laplacian.

Thirdly, in Chapter 4| we are concerned with the logarithmic Schrodinger operator (I — A)°2,
which is a pseudo-differential operator with Fourier symbol log(1+ |- |?). It is known in the
probabilistic literature as the generator of the symmetric variance gamma process in RV, It
belongs to the family of more general operators arising as Lévy generators of geometric stable
processes with associated Fourier symbols & + log(1+|& %), s > 0 [11}/64,/82,/88,91]. These
operators have many applications in mathematical finance and other fields of sciences. There
has not been much attention from the point of view of functional analysis and PDEs in domains
of these processes. The main purpose of Chapter [ is to give an account from a PDE point of
view and present some proofs not relying on probabilistic techniques but instead on purely ana-
lytic methods which are to some extend, simpler and more accessible to PDE oriented readers.
We indeed show that the operator (I — A)!°2 | with symbol log(1 + |- |?), arises as formal deriva-

tive % (I — A)* of the fractional relativistic Schrodinger operator at s = 0. If u € CB(RV)
s=0

. ) . [U—=A)u—u
for some B > 0, it satisfies lim #
s—0t s

the integral representation for (I —A)°¢ is obtained, we introduce tools to study variational
problems involving this operator. Particularly, we characterize, using minimization techniques
and the Lagrange multiplier theorem, the eigenvalues and corresponding eigenfunctions of
(I—A)"2 in an open bounded set Q C RY. We show that the Dirichlet eigenvalue problem
(I— A)IOg @ = U@ inQ, admits an ordered sequence of eigenvalues [ jog < U2 Jog < U3 log <
.oy With L 10g — o0 as k — o and a corresponding L?-orthonormal basis of eigenfunctions ¢ s,
k € N. We establish the Faber-Krahn type inequality, and, using the §-decomposition technique,
we establish the boundedness of the eigenfunctions. While it is easy to see that all eigenvalues

= (I =A%y in LP(RY) for 1 < p < eo. Once
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Ui s, k € N of the problem (I —A)*¢ = u¢ inQ, ¢ =0in Q° converge to 1 as s — 07, we
prove that the rate of convergent is linear in s with speed determined by the eigenvalues i jog
of the operator (I —A)"°¢. In fact, for s € (0,1), we prove that if f ; denote the k-th Dirich-
let eigenvalue of the fractional relativistic Schrodinger operator (I — A)®, then it satisfies the
expansion s = 1+ sl 1og +0(s) ass— 0" and, if (s,), C (0,1) is a sequence with s, — 0
as n — oo, then, @15, — @10 and, after passing to a subsequence, @5, — @k log a8 1 — o in
LZ(Q) for k > 2, where @y o is a L?-normalized eigenfunction of the logarithmic Schrodinger
operator corresponding to the eigenvalue Ly 1os. In addition, using the asymptotics approxima-
tions of the modified Bessel function K, (see (4.23)), we derive asymptotics estimates of the
kernel J associated to the operator (I —A)!°¢ at zero and at infinity. We then close the chapter
with the proof of decay estimates at zero and at infinity of the solutions u = G * f of the Poisson
problem (I —A)°¢y = f in RV, where G is the associated fundamental solution.

Finally in Chapter[5] we deal with a general class of singular integral operators of order strictly
below one. Motivated by some concrete examples of nonlocal operators of small order like the
logarithmic Laplacian L, and the logarithmic Schrodinger operator (I —A)°2, the aim of this
chapter is the study of interior regularity result of Poisson problems involving nonlocal opera-
tors of small order. More precisely, we consider the linear equation Lyu = f in Q, where Q is
an open bounded set of RV, f: Q — R is a given function and L is a singular integral operator
with a weak integrability condition on the associated kernel k. Assuming suitable conditions
on k, we first present some density results corresponding to the associated function spaces and
prove maximum principles for weak solutions. Depending on the regularity of the function f
on the right hand side of the equation, we investigate the regularity of the weak solutions u. In
particular, assuming that the kernel is translation invariant, we provide a local H'-regularity of
weak solutions when the function f is of class C2. The proof exploits the variational structure
of the problem and a local L*- bound of weak solutions obtained by the §-decomposition tech-
nique. The proof also uses an intermediate estimate in Nikol’skii spaces. From this, assuming
furthermore that the kernels satisfy certain regularity properties away from its singularity, we
deduce the interior C*-regularity of weak solutions u if f is of class C*. It is worthy to mention
that using a probabilistic and potential theoretic approach, a local smoothness of bounded har-
monic solutions solving in a certain very weak sense, Lyu = 0 in 2, have been obtained in [|56]
for radial kernel functions. The regularity assumption on the kernel is similar to ours. We point
out that our approach only exploits the variational structure of the problem. Furthermore, we
obtain, using localization and a induction argument, a local H"-regularity for any m > 1, of
bounded weak solutions. We also establish interior regularity for the corresponding Dirichlet
eigenvalue problem, by showing that, every eigenfunction of the problem L,u = Au in &, be-
longs to C*(Q2).



Overview 5

Contribution of the thesis

The thesis consists of four independent chapters. Each chapter presents one of the following
research articles and has the same title. As previously mentioned, they can be read separately.
The beginning of each chapter has a preface providing some information about the structure of
the chapter and changes.

All the works were done under the co-supervision of Prof. Dr. Tobias Weth and Prof. Dr.
Mouhamed Moustapha Fall and some in collaboration with Dr. Sven Jarohs and Remi Yvant
Temgoua.

[P1] M. M. Fall, P. A. Feulefack, R. Y. Temgoua and T. Weth. Morse index versus radial sym-
metry for fractional Dirichlet problems. Advances in Mathematics 384 (2021): 107728.
doi.org/10.1016/j.aim.2021.107728.

[P2] P. A. Feulefack, S. Jarohs and T. Weth. Small order asymptotics of the Dirichlet eigen-
value problem for the fractional Laplacian. Journal of Fourier Analysis and Applications
28, 18 (2022).|doi.org/10.1007/s00041-022-09908-8.

[P3] P. A. Feulefack. The logarithmic Schrodinger operator and associated Dirichlet prob-
lems. (2021) arxiv.org/abs/2112.08783.

[P4] P. A. Feulefack and S. Jarohs. Nonlocal operators of small order (2021), arxiv.org/
abs/2112.09364.


https://www.sciencedirect.com/science/article/abs/pii/S0001870821001663?via3Dihub
https://link.springer.com/article/10.1007/s00041-022-09908-8#citeas
http://arxiv.org/abs/2112.08783
https://arxiv.org/abs/2112.09364
https://arxiv.org/abs/2112.09364
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1.1 Introduction and presentation of the main results

The thesis presents new results on nonlocal Dirichlet problems established by means of suitable
spectral theoretic and variational methods, taking care of the nonlocal feature of the operators.

All chapters of the thesis treat equations driven by nonlocal operators and mainly address the
following:

(1) We estimate the Morse index of radially symmetric sign changing bounded weak solu-
tions to a semilinear Dirichlet problem involving the fractional Laplacian (—A)*.

(ii) We study a small order asymptotics with respect to the parameter s — 0" of the Dirichlet
eigenvalues problem for the fractional Laplacian.

(iii) We deal with the logarithmic Schrodinger operator (I — A)°2 . In particular, we provide
an alternative to derive the singular integral representation corresponding to the symbol
& +— log(1+ |€|?) and introduce tools and functional analytic framework for variational
studies.

(iv) We study nonlocal operators of order strictly below one. In particular, we investigate inte-
rior regularity properties of weak solutions to the associated Poisson problem depending
on the regularity of the right-hand side.

Let us first explain the terms local and nonlocal that recurrently appear in the manuscript.
Formally, an operator L acting on an admissible function u : RV — R is called local if to evaluate
the value Lu(x) at a point x € RY, it suffices to know the values of u in an arbitrary small
neighborhood of x. An example of local operator is the Laplacian Au = leyzl djju. A nonlocal
operator is then an operator which is not local.

The prototype of nonlocal operators we consider in the thesis is given in an abstract form for
smooth function u : RV — R, by the following singular integral

Lyu(x) = lim (u(x) — u(y))k(x,y) dy. (1.2)
RV\Be (x)

Here the function k : RY x RN — R is a measurable kernel. Note that the value L;u(x) depends
of the value of u(x) and u(y) for all y € supp(k(x,-)), which may be R¥. Hence, it depends in a
nonlocal way on u.
These operators naturally arise in the study of Lévy processes, which are stochastic processes
with stationary and independent increments [[12},/63(78]]. They generalize the concept of Brow-
nian motion and may contain discontinuities. Motivated by real-world situations and the ability
to describe large scale behavior with better efficiency, nonlocal operators appear in Mathemat-
ical Finance [10}|78,[93]], in Ecology [21], in Fluid Mechanics, in phase segregation [51], in
Quantum Physics [73]], in Image Processing [23]] and in many other fields of sciences.

Let us also define the order of a nonlocal operator. Suppose that the kernel & in (1.2) satisfies

sup [ min{1,|x—y|° }k(x,y) dy < e for some o € (0,2]. (1.3)

N
xeR RN
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Then the value Liu in x € RV is well-defined for compactly supported functions u : RY — R
of class C°. We now define the order of Lj as the infimum of the value o > 0 for which (1.2)
holds.

The primary well-known and most studied example of nonlocal operator is the fractional Lapla-
cian (—A)* with s € (0, 1), whose the kernel in (1.2) is given by

F(% +5) .

k(x,y) := Cst]x—y]*Nfzs, with  Cy, = s4° Ty

(N4

T

The fractional Laplacian is a nonlocal operator of order 2s with s € (0,1) and satisfies (I.3)
in particular with 6 = 2. The constant Cy s is normalized such that for smooth function u,
equivalently, (—A)* is given

F (= u) = |- *Z (w).

Here and in the following, .# denotes the usual Fourier transform. Formally, for smooth func-
tion u : R¥ — R, the fractional Laplacian satisfies the asymptotics (—A)*u — u as s — 0" and
(=A)*u — Au as s — 17, connecting nonlocal PDEs to classical (local) ones.

We call L a nonlocal operator of small order, if the order of L is less thtan one, i.e., (1.3) is
satifies for o € (0,1). We have as example the logarithmic Schrodinger operator (1 — A)'°¢ [45]
and the logarithmic Laplacian L, [29] which will be defined further below.

In the past years, the interest in nonlocal Dirichlet problems have undergone rapid a growth
attention. Well-known results and properties of solutions to classical Dirichlet problems have
so far been successfully adapted and extended to their nonlocal counterpart. In that direction,
there is an extensive literature devoted to the topic. Various regularity results can be found
in [41)5363,84,89], variational formulations and existence results in [15,43,,87]], the fractional
Pohozaev type identity and nonexistence results in [42,83]], radially symmetry and monotocinity
results via moving plane method in [42}|62], radially sign-changing solutions in [76}95,97],
weak and strong maximum principles in [20/60]. Of course, these references do not exhaust the
rich literature on the subject.

Although remarkable advances have been made in the subject, many results still need to be
established. In particular, as we shall present in the sequel, the result of Chapter [2]extends to its
nonlocal counterpart, an estimate obtained by Aftalion and Pacella [[1], of the Morse index of
radially symmetric sign changing solutions of the following classical semilinear elliptic problem

—Au=f(u) in A
u=0 on Jd%A,

where 4 is the unit ball of RV centred at zero and f : R — R is of class C'.

While the result of Chapter 2] essentially deals with nonlocal operato of order 2s, the rest of
the thesis, namely, Chapter [3] [ and [5| deals more or less with nonlocal operators of small
order. These operators are getting nowadays, increasing interest in the study of linear and
nonlinear nonlocal partial differential equations [/13},[29,[30}/32,/86] and also, are motivated by
some applications to nonlocal models where small order of the operator captures the optimal
accuracy and the efficiency of the model [[4,[81].
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Apart from Chapter[5|where a general class of admissible kernels for nonlocal operators of small
order is considered, many results of the thesis deal with symmetric and translation invariant
kernels, that is, there exists a function J : RV \ {0} — [0,00] with k(x,y) =J(x—y) forx,y € R¥
with J(—z) = J(z) for all z € RV \ {0} and satisfying, for some o € (0,2] the following
properties

/J(z) dz =00 and /min{1,|z|c}J(z) dz < oo.

RV RN
Many techniques used in the thesis to prove our results are purely nonlocal and are applicable for
quite general nonlocal of operators. This is because our arguments do not rely on the extension
method of Caffarelli and Silvestre introduced in [25]], which allows to reformulate nonlocal
problems driven by the fractional Laplacian (—A)*, as local boundary value problems where the
operator (—A)* arises as a Dirichlet-to-Neumann type operator.

1.1.1 Presentation of the main results

In the following, we present the main results of the thesis. These results are from research
papers [39], [47], [45] and [[46]] and will be indicated by their title.

1.1.1.1 Morse index versus radial symmetry for fractional Dirichlet problems

The first result the thesis is contained in Chapter Q] from article [39] and provides an estimate
of the Morse index of radially symmetric sign changing solutions u to the semilinear fractional
Dirichlet problem

1.4)

(—=AY'u=f(u) in A
u=20 on RV\ 2,

where 2 C RY is the unit ball centred at zero and the nonlinearity f : R — R is of class C'.
As already mentioned, the theorem is stated in Chapter [2| and involves the fractional Laplacian
(—A)*. Our approach applies for more general operators of Lévy type of order 2s like (1.2) in
place of the fractional Laplacian.

The result of this chapter is motivated by the seminal work of Aftalion and Pacella [ 1], where the
authors studied qualitative properties of radial sign changing solutions of the local semilinear
elliptic problem

{—Au: f(u) in Q 05

u=0 on JQ,

where Q C RY is a ball or an annulus centered at zero and f € C'(R). They have proved the
following classical result,

Theorem 1.1 ( [1]]). If Q is a ball or an annulus, any radial sign changing solution of (1.5)) has
Morse index greater than or equal to N + 1.
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As consequence of their result, they have deduced in particular the nonradiality of least energy
nodal solution when f is superlinear with subcritical growth.

The nonlocal version of this result was still unknown before our work. The main goal of the
chapter is therefore to extend the result in Theorem [I.1|by giving a nonlocal counterpart in the
particular case where Q is the unit ball 2 C R" centered at zero. Before we state the main
result of the chapter, we fix first some notation. Consider the function space

AP (B):={uc H*RY):u=0 on R\ &} c H(RV).

By definition, a function u € J7;(%) N L* (%) is a weak solution of (1.4) if

&(u,v) = /f(u)vdx for all v € J¢5' (A),
i

where (v,w) — &(v,w) is the bilinear form associated with (—A)*, with

oy i= L3 [ [ OO =VONO) =WO)

’x _y|N+2s

RN RN

The Morse index m(u) of a weak solution u € 7 (%) NL* (%) of (I.4) is the maximal dimen-
sion of a subspace X C J¢’(#) where the quadratic form

(v,w) = & r(v,w) :=&(vw) — /f’(u)vwdx (1.6)
B

associated to the linearized operator L := (—A)* — f’(u) is negative definite. Equivalently, m(u)
can be defined as the number of the negative Dirichlet eigenvalues of L counted with their
multiplicity.

We recall that the n-th Dirichlet eigenvalue A, (%) of the linearized operator L admits the
variational characterization

M1 (B) = vnéi% max &L(v,v) (1.7)

where 7, denotes the family of n-dimensional subspaces of JZ;’ (%) and
Sy:={veV:|vlpg=1} for Ve,
Our first result reads as follows.

Theorem 1.2. Let u be a radially symmetric sign changing solution of problem (1.4), and
suppose that one of the following additional conditions holds.

(Al) s€(3,1).
(A2) s €(0,%], and

2 0/0)  fort €R\{O). (1.8)

/f(r)dr> N

0
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Then u has Morse index greater than or equal to N + 1.

We note that assumption in (1.8) is satisfied for homogeneous nonlinearities with subcritical
growth, i.e., if

2N
N—-2s"

flO)y=Alt|P?  with >0 and 2<p<
On the other hand, in the supercritical case where

/f(’r)dT<N2_N2stf(t) for reR\{0},
0

problem (I.4) does not admit any nontrivial weak solutions u € ¢’ (%) N L* (%) by the frac-
tional Pohozaev identity stated in [[83, Theorem 1.1]. In particular, in the linear case ¢ — At, our
results apply to Dirichlet eigenvalue problem for the fractional Laplacian

(1.9

(=A)’u=Au in A
u=0 on RV\ 4%,

providing thereby a complete positive answer to a conjecture by Bafuelos and Kulczycki [36].

This is the content of the following theorem.

Theorem 1.3. Let N > 1 and 0 < s < 1, and let 2, > 0 be the second eigenvalue of problem ([I.9).
Then every eigenfunction u corresponding to A, is antisymmetric, i.e. it satisfies

u(—x) =—u(x) forxe A.

This was in fact a conjecture due to by Bafiuelos and Kulczycki on the geometric structure of
the eigenfunctions u corresponding to the second eigenvalue A, (%). Partial results towards this
conjecture have been obtained in recent years in [[7,36,44,/68]], covering the special cases N < 3,
s€(0,1)and4 <N <9,s= % As consequence of our results, we derive the conjecture in full

generality s € (0,1) and N > 1.

Let us give some steps of the proof of Theorem[I.2] The strategy of the proof is to use partial
derivatives of u to construct suitable test functions which allow to estimate the Morse index of

uasin [1]. For j € {1,...,N}, we consider the partial derivatives of u given by
du
. . diu(x) = —(x), x € B,
v RV 5 R, v (x) = ju() 9xj() j=1,...,N.
0, x € RV\ 4,

We have the following key lemma.
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Lemma 1.4. For any j € {1,...,N}, we have Lv/ = (—A)*v/ — f'(u)/ = 0 in distributional
sense in B, i.e.

/vj(—A)s(p dx =&V, ) = /f’(u)vj(p dx forall o € €7°(B).
B B

Moreover, if ¢ € A (A) has compact support in B, then we have

éi(vj,(p):/f'(u)vj(p dx. (1.10)
B

Furthermore, if v/ € HF(B), then is true for all ¢ € H(B).

As already mentioned, several difficulties arise since local PDEs techniques do not apply. We
note the following regularity properties for weak solutions of (I.4)). This is related to the fact that
weak solutions of (T.4) have much less boundary regularity. For this we consider the distance
function to the boundary

5:%B—R, O(x) =dist(x,08) =1 — |x].

Proposition 1.5. (cf. [41}531/84,89])
Let u € Ay (PB)NL*(A) be a weak solution of. Thenu € C.*

loc

(#B)NC)(A). Moreover,

y/::%GC“(@) for some o € (0,1), (1.11)
and the following properties hold with some constant ¢ > 0:
(i) |Vu(x)| <81 (x) for all x € B.
(ii) |V (x)| < c8% (x) forall x € B.

(iii) For every xo € 0%, we have lim §'~%(x)d, u(x) = —sy(xo), where du(x) = Vu(x) - i

X—X0 X
denotes the radial derivative of u at x.

(iv) If s € (3,1), then y € C'(2).
We consider the function y defined in (I.T1) which is also radial. We write
y(x) = yy(r) for r = |x| with a function yp : [0,1] — R (1.12)

which is of class C* for some & > 0 by Proposition Moreover, by Proposition[1.5] we have

o uld) e
Vo(1) = lim == s = =5 lim (1= bel) 20 u(x).

By the Pohozaev type identity given in [83, Theorem 1.1], this value also satisfies

w(l) = mgﬂ(zs—zv)uf(u)uw(u) dx.
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Here F : R — Ris given by F(t) = [} f(7) dt.

We now build suitable test functions from partial derivatives which allow to estimate Dirichlet
eigenvalues of the linearized operator L := (—A)* — f’(u) and therefore the Morse index of u.

Definition 1.6. Let y; be the function defined in (1.12). For j =1,...,N, we define the open
half spaces .
H{ :={xeR" : £x; >0} (1.13)

and the functions d; : RY — R by

W) 1 = () 1y if yo(1)>0;
W) 1, = ()" Lyi if wo(1) <O.
We note that, for j = 1,...,N, the function d; is odd with respect to the reflection
Gj:RN—HRN, x= (X1, , X}, ,xn) = Oj(x) = (X1,...,—Xj, ..., XN)

at the hyperplane {x; = 0} since the function v/ is odd. Moreover, in accordance with the
assumptions of Theorem [[.2] u changes sign, which implies that

(vj)ilHi';,—éO and (V)"1,, #0  forj=1,...,N, (1.14)

where the half spaces Hi are defined in li The function Yy (1) used in the definition of d
allows to control the possible oscillations of the radial derivative of the weak solutions u close
to the boundary of %. The next lemma is of key importance for the proof of Theorem |1.2

Lemma 1.7. Let j=1,...,N.
(i) If yo(1) # 0, we have d; € A (A), and dj has compact support in 5.
(ii) If s € (3,1) and wy(1) = 0, then we have v/ € () and d; € H;(B).

Next, using the oddness of the functions v/ and d ;i with respect to the reflection o, we then
show that

gs7L(dj,d./‘)<o, fOI‘jE{l,...,N}.
This allows us to deduce the following lemma

N
Lemma 1.8. Let o = (0q,...,0v) € RN and d = Z a;d;. Then we have
=

N
&old,d) =Y o;é(d;,d;) <0.
Jj=1

Moreover,

&s(d,d) <0 if and only if o #0,

and therefore the functions dy, . .. ,dy are linearly independent.
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Lemma 1.9. The first eigenvalue Ay 1, of the operator L = (—A)* — f'(u) is simple, and the
corresponding eigenspace is spanned by radially symmetric eigenfunction @y 1. Furthermore,

&o(dj, 1) =0 forj=12,--- ;N and A p=&L(Q1L,P1L)<O.
From lemma|[I.8]and[1.9] we consider the subspace

V = span{ @ 1,di,...,dy}.

N
For a € RN\ {0} and d = 01 1+ ¥, @;d; € V, we then have, by Lemmaand
Jj=1

N N
&o(d,d) =03 E (o, o1L) + &Y aid;, Y ajd)) <0.
e B

In particular, it follows that the functions ¢, ;,d,...,dy are linearly independent and therefore
V is N + 1-dimensional. By (1.7) and the compactness of Sy = {v €V : [|[v[|;2(5) = 1}, it then
follows that Ayy1 1 < 0, which means that u has Morse index greater than or equal to N +1 > 2.

1.1.1.2 Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian

We next present our main results of Chapter E] from article [47]], which relatively deal with the
logarithmic Laplacian L,, which, for compactly supported Dini continuous functions u, it is
pointwisely given by

u(x)1p, (x) (v) —u(y)
b —y[¥

Lat(x) = Cy / dy + pyu(x),

RN
where Cy = 71'_%1“(%), and py = 2log2 + y(5) —y. Here, y = 1% denotes the Digamma
function, and y = —I"(1) is the Euler-Mascheroni constant.

It further satisfies the following two key properties: If u € C? (RN) for some 8 > 0, then
F(Lau)(E) =2log|E|.Z (u)(E)  forae. &RV,

and d (=AY u—u

=l lim ——— =Ly in LP(RY) for 1 < p < o

The results of this chapter concern the spectral asymptotics s — 0 of the Dirichlet eigenvalues
problem for the fractional Laplacian
{(_A)S(Ps =g, in Q,

a0  in0F (1.15)

where Q C RY is a bounded open set with Lipschitz boundary and Q¢ := RV \ Q.

In fact, using the logarithmic Laplacan L,, H. Chen and T. Weth [29] gave the following de-
scription of the small order asymptotics s — 0T of the principal Dirichlet eigenvalue A, ; and
the corresponding eigenfunction u; ; of (L.15).
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Theorem 1.10 ( [29])). Let Q be a bounded Lipschitz domain in RY | and let A, 4(Q) denote
the first Dirichlet eigenvalue for (—A)* on Q for s € (0,1) and uy s its unique positive L*-
normalized eigenfunction. Then we have

Ais(Q)—1

—M(Q) and wy—up in [A(Q) as s—0" (1.16)
S :

where Ay 1, denotes the principal eigenvalue of the Dirichlet eigenvalue problem

{LAu =Au in Q
(1.17)

u=0 in RN\ Q¢
and uy 1, denotes the unique positive L?-normalized eigenfunction for Ly corresponding to ML

Note here that we consider both (I.15) and in a suitable weak sense. Motivated by
the above result, the main aim of Chapter is twofold: First, to improve the L2-convergence in
(1.16) and secondly, to extend it to higher eigenvalues A ;(Q) and corresponding eigenfunctions
uy,s for all k € N. For this, new tools are needed in order to overcome the lack of uniform
regularity estimates for the fractional Laplacian (—A)* for s close to zero. Also due to the
multiplicity of eigenvalues and eigenfunctions for k > 2, new approaches are required based
on the use of Fourier transform in combination with the Courant-Fischer characterization of
eigenvalues,

Ms(Q) = inf max  &(v,v) = inf max  &(v,v).
vy () vev\{0} vcei(Q) veV\{0}
dimV=k HVHLZ(Q):l dimV=k HV”Lz(Q):l
Let us point out first that in order to complete the proof of the main result of this chapter, many
new uniform results with respect to the parameter s are needed. As already mentioned some
of them above, for sake of keeping this summary not too long, we gently refer the reader to
Remark [3.5]for more clarifications and only state the main result of the chapter here.

Our result reads as follows.

Theorem 1.11. Let Q@ C RY be a bounded open set with Lipschitz boundary and let k € N.
Moreover, for s € (0, %), let Ay resp. Ay 1, denote the k-th Dirichlet eigenvalue of the fractional
and logarithmic Laplacian, respectively, and let @y s denote an L?-normalized eigenfunction.
Then we have:

(i) The eigenvalue Ay satisfies the expansion

Ms = 1+ sh +o(s) ass— 0", (1.18)

(ii) The set {@y : s € (0, 3]} is bounded in L (Q) and relatively compact in LP(Q) for every
p < oo,

(iii) The set {@s : s € (0,1]} is equicontinuous in every point xo € Q and therefore relative
compact in C(K) for any compact subset K C Q.
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(iv) If Q satisfies an exterior sphere condition, then the set {@y, : s € (0,1]} is relative
compact in the space Co(Q) :={u € CRY) : u=0 inQ°}.

(v) If (sn)n C (0, %] is a sequence with s, — 0 as n — oo, then, after passing to a subsequence,
we have
Ors, — P asn— o (1.19)

in LP(Q) for p < oo and locally uniformly in Q, where @y is an L?-normalized eigen-
function of the logarithmic Laplacian corresponding to the eigenvalue Ay .

If, moreover, Q satisfies an exterior sphere condition, then the convergence in (1.19)) is
uniform in Q.

As direct consequence, Theorem and Theorem give rise to the following corollary.

Corollary 1.12. Let Q C RN be a bounded open set with Lipschitz boundary and let, for s €
(0, %] @1 5 denote the unique positive L*-normalized eigenfunction of (—A)* corresponding to
the principal Dirichlet eigenvalue A, 5. Then we have

P15 @ ass— 07" (1.20)
in LP(Q) for p < o and locally uniformly in Q, where @, 1, is the unique positive L?-normalized
eigenfunction of L, corresponding to the principal Dirichlet eigenvalue A, .

If, moreover, Q satisfies an exterior sphere condition, then the convergence in (1.20) is uniform

in Q.

As a further corollary of Theorem [I.11} we also derive the following regularity properties of
eigenfunctions of the logarithmic Laplacian.

Corollary 1.13. Let Q C RN be a bounded open set with Lipschitz boundary, and let ¢ €
A (Q) be an eigenfunction of (LI7). Then @ € L™(Q) N Cioe(Q). Moreover, if Q satisfies an
exterior sphere condition, then @ € Cy(L2).

1.1.1.3 The logarithmic Schrodinger operator and associated Dirichlet problems

This chapter is based on paper [45]] and it is devoted to the study of the logarithmic Schrédinger
operator (I —A)'°2, which is the singular integral operator with Fourier symbol log(1 + |- |?).

This operator has been studied extensively in the literature from a probabilistic and potential
theoretic point of view [[11,/63,(641|82,/88,,91] and belongs to the family of more general opera-
tors arising as Lévy generators of geometric stable processes with associated Fourier symbols
log(1+1-]*),s>0.

We provide an alternative method to derive the singular integral corresponding to the Fourier
symbol log(1 4| -|?) and introduce tools to study variational problems involving this operator.

The first result of the chapter is the following
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Theorem 1.14. Let u € C*(RN) for some ot > 0 and 1 < p < oo. Then

(- 8)tu) = | [0 ayul()

—ay [ *OEE o) dy = [ o) - e+ )0)
RN

]RN

(1.21)

S

=— lim dN’S, J(y) =dy 2Bl ana

foerRN, where dy:=7n" s
s—0+t S vl

Moreover,
(i) fuc€ LP(RN) for 1< p<oo, then (I—A)°%uc LP(R") and

(I—A)u—u

— (I=A)°%y in LP(RY) as s —0".
s

(ii) F((I—A)°%u)(E) =log(1+|EP).F(u)(E),  foralmostevery & € RV,

Where we recall that for s € (0, 1), the operator (I — A)* is the fractional relativistic Schrodinger
operator. For compactly supported functions u : RV — R of class C2, it is well-defined and
represented via hypersinglar integral (see |85, page 548] and [38]])

‘ . u(x+y) —u(x)
(=) u() = u) s Jim [ TG ) dy
RN\B¢(0)
N
where dy s = ’15(7;4)' is a normalization constant and the function wy is given by

oo

Ni2s, A2 N+2.§ bR
ws(‘y‘) 1 ’y‘ KN+23 ‘y| /t 1+ = “4r dt
0

In the particular case N = 1, the representation in (I.21)) is given by

(I—A)"%u(x) PV/ o y| el ay. (1.22)

We note that (1.22)) appears in [75]] and is identified as symmetrized Gamma process (see also
[66]).

The logarithmic Schrodinger operator (I — A)'°¢ shares the same kernel singularity with the log-
arithmic Laplacian La, but does not have an integrability problem at infinity. Indeed, using the
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asymptotics of the modified Bessel function K, we have the following asymptotics approxima-
tions for the kernel J

)zl as [z =0
as  |z| — eo.

The Green function G of the logarithmic Schrodinger operator (I — A)'°2 is known ( [55]) and it
given by the following expression

21N ’X’
7rN/2/F ( > Kt*

We present the following asymptotics results for G and decay result of the solution for Poisson
problem (I —A)°2y = fin RV,

(lx]) dt. (1.23)

N

Proposition 1.15. The function G in satisfies the asymptotics properties

® cN]x\_N as |x|—0
G(x) ~
2T 1/2|x| e M as x| = e

In addition, for f € L' (RN), the solution u= G f of the equation (I — A)°¢u = f in RV satisfies

O(x|™) as |x] =0
ulx) = b
O(e™™) as |x| = oo
Next, let Q@ C R" be an open set and u,v € C>(RV). In order to settle the corresponding func-

tional analysis framework and energy space related to operator (I —A)!°¢, we introduce the
following bilinear form

()= 3 [ W) =)o)~y y)

RN RN
and define the space H'°¢(RN) = {u € L>(RV): &y (u,u) < oo}. Then H'°¢(R") is a Hilbert
space endowed with the scalar product

(u,v) = () progrvy = (V) 2wy + S (1, 1)

and with the corresponding norm given ||ul| groe vy = (Hu||i2(RN) + & (u,u))%. We denote by

%log(Q), the completion of C”(€2) with respect to the norm || - {| goe ().
Next,we let Q C RY be bounded, f € L*>(Q) and consider the Dirichlet elliptic problem

{a—mmu—f inQ

1.24
u=0 onRV\Q. (129
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We have by the Riesz representation theorem that problem (1.24)) admits a unique weak solution
u € H;°%(Q) with the property

Eol(u,v) = /f(x)v(x) dx forallve %log(Q).
Q

In addition, if f € L*(Q) and Q satisfies a uniform exterior sphere condition, it follows from
the Green function representation and the regularity estimates in [[63,64.79] that u € Cy(Q) with

Co(Q):={ucCRY) : u=00n R¥\Q}.

To avoid a priori regularity assumptions, we consider (I1.24) with f = Au in weak sense. We
call a function u € %log(ﬂ) an eigenfunction of (1.24) corresponding to the eigenvalue A if

Eo(u,@)=A /u(p dx forall ¢ € ,%”Olog(Q). (1.25)
Q

We then have the following
Theorem 1.16. Let Q C RY be an open bounded set. Then

(i) Problem (1.24) admits an eigenvalue Ai(Q) that is positive and characterized by

Colu,u) inf & (u,u), (1.26)

AM(Q)= in —
)= ey Tl wePi0)

with 21(Q) :={u € %log(ﬂ) ull2) = 1} and there exists a positive function ¢ €
%log(ﬂ), which is an eigenfunction corresponding to A;(Q) and that attains the mini-
mum in (L.26), i.e. |@1]|12q) = 1 and 21 (Q) = Eu (@1, ¢1).

(ii) The first eigenvalue A1 () is simple, that is, if u € %log(ﬂ) satisfies (1.23) in weak sense
with A = A1 (Q), then u = oy for some a € R.

(iii) Problem (1.24)) admits a sequence of eigenvalues { A () }ren with
0< /l](Q) < QLQ(Q) <... < /lk(Q) < A/kJrl(Q)"' ,

with corresponding eigenfunctions @, k € N and 1imy_,c A4 (Q) = +o0. Moreover, for
any k € N, the eigenvalue A(Q) can be characterized as A(Q) = inf,c 2, (o) Sw(u,u)
where P (Q) is given by

Q) = {ue H%Q) : /M‘Pj dx=0 for j=1,2,--k—1 and ||@c[ 20 =1}
Q

(iv) The sequence { @y }ren of eigenfunctions corresponding to eigenvalues A () form a com-
plete orthogonal basis of L*(Q) and an orthogonal system of %log(ﬁ).
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Next, using the d-decomposition technique, we provide the following boundedness result of the
eigenfunctions.

Proposition 1.17. Let u € j%log(ﬂ) and A > 0 satisfying (1.25). Then u € L*(Q) and there
exists a constant C := C(N,Q) > 0 such that
lull=(@) < Cllullz2(g)-

Our next result concerns the Faber-Krahn inequality for the logarithmic Schrodinger operator.
We denote by B* the open ball in RY centered at zero with radius determined such that |Q| =
|B*|. We have

Theorem 1.18 (Faber-Krahn type inequality). Let Q C RY be open and bounded, and A 105 ()
be the principal eigenvalue of problem (1.24), then

l] Jlog (-Q) > A1 Jog (B*) :

Moreover, if equality occurs, Q is a ball. Consequently, if Q is a ball in RY, the first eigenfunc-
tion @\ jog corresponding to Ay 1o4(B) is radially symmetric.

Our last result of this chapter is devoted to the small order asymptotic s — 0™ of the fractional
relativistic Schrédinger operator and provide a partial analogue result of Theorem [I.11]

Theorem 1.19. Let Q be a bounded Lipschitz domain in RN, and Aie,s(Q) resp. A 1og () be the
k-th Dirichlet eigenvalue of (I — A)* resp. of (I —A)1°2 on Q. Then for s € (0,1), the eigenvalue
MAi.s(Q) satisfies the expansion

Mes (Q) = 1454k 10g(Q) +0(s) as s —0".

Moreover, if (sy)n C (0,50), S0 > 0 is a sequence with s, — 0 as n — oo, then if Y s is the unique
nonnegative L*>-normalized eigenfunction of (I — A)® corresponding to the principal eigenvalue
A1 5(Q), we have that

Vs = Wilog In LZ(Q) as s—0",

and after passing to a subsequence, we have that
Vies = Wilog  in L*(Q) as  s— 0%,

where Y1 105, T€Sp. Wi log, k > 2 is the unique nonnegative L?-normalized eigenfunction resp. a
L?-normalized eigenfunction corresponding to Allog(2) resp. 10 Ay 10g ().

1.1.1.4 Nonlocal operators of small order

This chapter is based on the paper [46]]. We are concerned with nonlocal operators of order
strictly below one, that is, we consider

Bau(x) = [ () = () (x.y) do.

RN
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with k : RN x RN — [0, o] satisfying

k(x,y) = k(y,x) forall x,y € RY, and there exists ¢ € (0, 1) such that

sup [ min{1,|x—y|° }k(x,y) dy < oo. (1.27)

N
xR RN

The main goal of this chapter is to investigate interior Sobolev type regularity of weak solutions
to the associated Poisson problem depending on the regularity one puts on the source function
on the right-hand side.

Let Q C RN be an open, and u,v € c! (Q) and consider the bilinear form
1
bra(uy) i=5 [ [ @) = u(r)6) ~ v(3)k(x.y) dady. (1.28)
QQ

where we also write by (u,v) := by gy (u,v), bra(u) := byo(u,u) and by(u) = by(u,u). We
denote
Dk(.Q) = {u S LZ(Q.) : ka(u) < 00},

which is a Hilbert space with scalar product
(5 90pr@) = )2 (e) +bra(u,v).
We define also the space
7"(Q) = {u € D(RY) : 1gmqu=0}.
Clearly, 7*(Q) = D*(R") and also the space Z*(Q) is a Hilbert space with scalar product

() ae) = )z +0r(u,v).

We first discuss some properties corresponding to function spaces, starting with the following
density result

Theorem 1.20. Let either Q@ = RN or Q C RN open and bounded with Lipschitz boundary.
In the following, let X(Q) := 2%(Q) or D¥(Q). Then C(Q) is dense in X(Q). Moreover, if
u € X(Q) is nonnegative, then we have:
1. There exists a sequence (uy), C X(Q)NL*(Q) with li_r>n u, = u in X(Q) satisfying that
n—oo
for every n € N there is Q) CC Q with u, =0 on Q\ Q}, and 0 < u, < upyy < u.

2. There exists a sequence (uy), C CZ(Q) with u, > 0 for every n € N and li_{n U, =u in
n—oo
X(Q).
We recall that the first Dirichlet eigenvalue of I; is given by

i (u,u)

e7*(@) [|ull}
! u;é(() ) Q)

A (Q):= € [0,00).
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If the symmetrization function
j(z) :=essinf{k(x,x+z) : z€ RV} (1.29)

of k satisfies [{j > 0}| > 0 and Q is bounded in one direction, then A;(Q) > 0 by [29/43]. In
the following, we assume the stronger assumption

The function j given in (1.29) satisfies / J(z) dz = oo. (1.30)
RN

Corollary 1.21. Let k satisfy additionally (1.29) and (1.30) and let Q@ C R" open and bounded.
Then,
PX(Q) is compactly embedded in L*(Q).

In particular, there is a sequence of eigenvalues (A, (Q)), of Iy with
0<AI(Q) <A(Q) ... <AW(Q) o0 forn— oo,

that is, A1(Q) is simple and the first normalized eigenfunction Q| of Iy can be chosen to be
positive in the sense that
es%inf(pl >0 forall K CC Q.

Moreover, any eigenfunction of I is bounded. To be precise, given A > 0 and u € P*(Q) such
that u = Au, then there is C = C(N,Q,k,A) > 0 such that

[l =) < Cllull2()-

Next, we consider the function space
75Q) = {u :RY - R : u|g € DX(Q) and, for all » > 0, sup / lu(y)|k(x,y) dy < 00}.
xeRN

RN\B,(x)

VE(Q):= {M:RN =R : ulg € V¥Q) forall Q' cC Q}.

loc

Then it follows from the definitions (see also [60, Section 3]) that for U ¢ Q ¢ RV open and
u: RN — R, the following hold:

4U) c 24(Q) c ¥X(Q) c ¥*(U) c ¥F.(U). (1.31)

Given f € L7 .(Q), we then call v € ¥*(Q) a (weak) supersolution of v = f in Q, if

loc

br(v,u) > /f(x)u(x) dx forallu € C7(Q). (1.32)
Q

We emphasize that this definition of supersolution is larger than the one considered in [60].
Using a density result we can then extend the weak and strong maximum principles of [60],
which is of independent interest.
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Proposition 1.22 (Weak maximum principle). Define j: RN — [0,00] as in (I.29) and assume
that
J does not vanish identically on B,(0) for any r > 0. (1.33)

Let Q C RN open, ¢ € L} (Q), and assume either

loc

1. ¢c<O0or
2. Qand c are such that ||c" || [~ (q) < inficq Jemak(x,y) dy.
Ifu € V*(Q) satisfies in weak sense

L > c(x)u  inQ, u>0almost everywhere in RV \ Q, and  liminfu(x) > 0,

x| o0
then u > 0 almost everywhere in RV.

Proposition 1.23 (Strong maximum principle). Assume k satisfies additionally (1.30). Let Q C
RN open and ¢ € Lj;, (Q) with ||c" || ;=) < oo. Moreover, let u € VHQ), u> 0 satisfy in weak

loc
sense Iu > c(x)u in Q.

1. If Qis connected, then either u = 0 in Q or essinfgu > 0 for any K CC Q.

2. j given in (1.29) satisfies essinfp ()j > 0 for any r > 0, then either u =0 in RN or
essinfxu > 0 for any K CC Q.

Clearly, if A;(Q) is positive, then b, denotes an equivalent scalar product on Z¥(Q) and thus
for any f € L>(Q) there is a unique solution u € 2*(Q) with Lu = f in Q.

Before we state the main result of this chapter, we begin with a boundedness result for weak
solutions.

Theorem 1.24. Assume k satisfies (1.30) and is such that

sup k(x,y)>dy < e forall K cC RN and € > 0. (1.34)

XGRNK\BE )

Let Q C RY be an open set. Let f € L*(Q), h € L' RN)NL*(RY), and let u € V;* (Q) satisfy
in weak sense
Lu<Au+hxu+f inQ for some A > 0.

Ifut € L= (RN\ Q') for some Q' CC Q, thenu™ € L*(R") and there is C = C(Q, Q' ,k,h,1) >0
such that
=) < € (1= + il 2y + o ey ).

As a consequence of Theorem for u € 2*(Q), we have the following theorem.
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Theorem 1.25. Assume k satisfies (1.30) and (1.34). Let Q C RN be an open bounded set
with Lipschitz boundary. Let f € L*(Q), h € L'"(RV)NL2(RY), and let u € Z*(Q) satisfy in
weak sense Tu = Au~+h*u+ f in Q for some A > 0. Then u € L™(RY) and there is C =
C(Q,k,A,h) > 0 such that

=gy < € (M=) + 2y )

In the particular case, where the kernel is translation invariant, that is, there is a function
J: RN — [0, 0] with k(x,y) = J(x —y) for x,y € RV, we are also able to recover differentia-
bility of a solution u to the problem [u = f, if f and J satisfy certain regularity properties.

Our main result of the chapter is the following.

Theorem 1.26. Assume k satisfies and let @ C RN open and bounded with Lipschitz
boundary. Then for any f € L*(Q) there is a unique solution u € I*(Q) of u = f. Moreover,
if k satisfies additionally and f € L= (Q), then u € L*(Q) and there is C = C(N,Q,k) >0
such that

ull =) < Cllfll=(0)-

Furthermore, if k satisfies (1.27) with o < % and

there is J :RN — [0, 00| such that k(x,y) = J(x —y), where J satisfies for some m € NU {0}
(A) It holds J € W™ (RN \ B¢(0)) for any € > 0, n < 2m and, for some C; > 0,

IVI(2)| < Cylz) 177 for 0 < |z| < 3 with & as in (T.2]),
(1.35)

then, if m € N and f € C*™(Q), we have 0Pu € L2 (Q) for all B € N,

loc

and for every Q' CC Q there is C = C(N,Q,Q' k., B) > 0 such that

Bl <m, uc Hp.(Q),

10Pull 1200y < Cllfllcan(ey-
In particular, for m = oo, we have u € C*(Q).

We note from (I.3T)) that Theorem [5.6]is a particular case of more general result (see Section
and , for functions which are in a certain sense locally in #*(Q). This general result
also includes the eigenvalue problem and yields the following theorem.

Theorem 1.27. [fin the situation of Corollary the kernel k additionally satisfies (1.35) with
m = oo, then every function u € Z*(Q) satisfying iu = Au in Q for some A € R also belongs to
C*(Q).

The proof of Theorem [I.26]uses Theorem [I.25]and an intermediate estimate in Nikol’skii and

in classical Sobolev spaces.

We point out that using a probabilistic and potential theoretic approach, a local smoothness
of bounded harmonic solutions solving in a certain very weak sense [yu = 0 in Q, have been
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obtained in [56, Theorem 1.7] for radial kernel functions using the same regularity (A),, (I.33)
(see also [58[79]]). See also [54] for related regularity properties of solutions. Our approaches
only exploits the variational structure of the problem and uses purely analytic properties of the
operator.

Let us recall the notation and properties of Sobolev and Nikol’skii spaces as introduced in
[31,96]. For p € [1,00), if k € Ny, we consider the Sobolev space as usual,

WhP(Q) = {u € LP(Q) : d%uexists for all o € Nij, |ot| < k and belongs to L”(Q) }

for the Banach space of k-times (weakly) differentialable functions in L”(Q) and in the partic-
ular case p = 2 the space H*(Q) := W*?(Q) is a Hilbert space. For u: Q — R and & € R let
Q= {xeQ : dist(x,dQ) > h} and, with e € dB;(0), we let

Optt(x) = Speu(x) := u(x+he) —u(x).

Moreover, for € N with > 1, let §/u(x) = 8,(8, 'u)(x). and for s = k+ ¢ > 0 with k € Ny
and o € (0, 1] define the Nikol’skii spaces

NP(Q) = {u € WAP(Q) + [0%u]yop(q) < o= for all & € Nj with |a| = k }

where
[ulyory= sup h °| 5hz,eMHLl’(th)-
¢€dB,(0)
h>0
It follows that N*?(Q) is a Banach space with norm [|ul|ys.r(q) := [[ullwer (@) + Ljaj=k[0 *ulnor(q)-

We then have the following embedding.

Proposition 1.28 (see e.g. Propositions 3 and 4 in [31]). Let Q C RY be an open with C~
boundray. Moreover, lett > s> 0and 1 < p < oo. Then

N'P(Q) C WP(Q) C N*P(Q).

In the following, Q C R" is an open bounded set and k is in particular such that, there is
J : RN — [0,0] such that k(x,y) = J(x —y) for x,y € RN. Moreover, given ¢ from assumption
(1.27) we assume that o < % and fix

1
a::l—ce(i,l).

The following Theorem is the first step towards Nikol’skii spaces, since, the idea is to use
Proposition later.

Theorem 1.29. Let f € C'(Q), A € R and u € ¥;] (Q)NL>(RN) satisfy in weak sense Iiu =

f+Auin Q. Then for any Q' CC Q there is C = C(N,Q,Q',J,A) > 0 such that

=

|8 ettll o) < ho‘c(\|f||§l(g) + ||u\|iw(RN)> forall k>0, e € 3B, (0). (1.36)
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In other to show that solutions belong to Nikol’skii spaces and use Proposition[I.28] we need to
iterate the result in Theorem[I.29] We have the following corollary.

Corollary 1.30. Assume m =1 in (I.33). Let f € C*(Q), A € R, and letu € ¥}/ (Q)NL=(RV)
satisfy in weak sense Iu = Au+f in Q. Then u € H'(Q') and du € D' (Q') for any Q' CC Q.
More precisely, with o as above there is for any Q' CC Q a constant C = C(N,Q,Q',.J,1) >0
such that

1

_ 2
sup h 20‘||5ieu|\L2(Q') SC(Hf||%2(Q)+||”HL2(Q')+H”H%N(RN\Q')) ,
66331(0)
h>0

so that u € N**2(Q) C H'(Q'), that is, there is also C' = C'(n,J,Q,Q',a, 1) > 0 such that
%
19alzq@r) < € (1o + Nl + leli3-qamar)
and, moreover,
by (du,du) <C' fori=1,...,N.
From Corollary [1.30} one iterate further to get the following corollary.

Corollary 1.31. Let f € C*™(Q), A € R, and let u € ¥}/ (Q)NL>(RN) satisfy in weak sense

Liu=Au+ f in Q. Then u € H"(Q') for any ' CC Q and there is C = C(n,J,Q,Q' ;m) >0
such that

1
(@) < C(Hf“%m(g) + [lull 2 ) + H”H]zj"(RN\Q’)) "

In particular, if f € C*(Q), then u € C*(Q).

e

Outline of the thesis: The rest of the thesis is organised as follows.

Chapter [2] contains the results from paper [39] on Morse index versus radial symmetry for
fractional Dirichlet problems. Chapter [3| presents the results on small order asymptotic of the
Dirichlet eigenvalue problem for the fractional Laplacian from paper [47]]. Chapter[]is devoted
to the results on the logarithmic Schrédinger operator and associated Dirichlet prolems from
paper [45] and finally, Chapter [5| presents the results on nonlocal operators of small order from
paper [46[. All chapters are structured and presented in the same structure as the original papers
without major changes.



Overview 26

1.2 Zusammenfassung

Die vorliegende Dissertation ist der Untersuchung nichtlokaler Dirichletprobleme fiir
singuldre Integralgleichungen mit Operatoren niedriger Ordnung gewidmet. Sie bein-
haltet die folgenden Forschungsarbeiten:

[P1] M. M. Fall, P. A. Feulefack, R. Y. Temgoua and T. Weth. Morse index versus
radial symmetry for fractional Dirichlet problems. Advances in Mathematics 384
(2021): 107728. doi.org/10.1016/j.aim.2021.107728.

[P2] P. A. Feulefack, S. Jarohs and T. Weth. Small order asymptotics of the Dirichlet
eigenvalue problem for the fractional Laplacian. (2020) arxiv.org/abs/2010.
10448, Journal of Fourier Analysis and Applications 28, 18 (2022). doi.org/
10.1007/s00041-022-09908-8.

[P3] P. A. Feulefack. The logarithmic Schrodinger operator and associated Dirichlet
problems. (2021) arxiv.org/abs/2112.08783.

[P4] P. A. Feulefack and S. Jarohs. Nonlocal operators of small order (2021), arxiv.
org/abs/2112.09364.

Das Hauptresultat der Arbeit [P1] liefert eine Abschidtzung an den Morse-Index vorze-
ichenwechselnder radialer beschriankter Losungen u des semilinearen Dirichletprob-

lems
(=AY’u= f(u) in 4,
{ u=0 in RV \ 2. (1-37)

in der Einheitskugel 2 C RY mit s € (0,1). Hier und im Folgenden sei (—A)* der

fraktionale Laplace-Operator, welcher, fiir s € (0, 1), als spezieller singuldrer Integral-
operator fiir hinreichend glatte Funktionen durch

u(x) —u(y)
(—A)Su(x) = CN7SP.V. / m dy, X € RN
RN

gegeben ist. Die Normierungskonstante

N+2
7.L.—N/222SF(%)

F2—s) (1.38)

cns =58(1—5)

sei hier wie iiblich so gewihlt, dass das Fouriersymbol von (—A)* durch & s |£|%
gegeben ist. Ferner sei die Nichtlinearitét f in (1.37)) als stetig differenzierbar voraus-
gesetzt.


https://www.sciencedirect.com/science/article/abs/pii/S0001870821001663?via3Dihub
https://arxiv.org/abs/2010.10448
https://arxiv.org/abs/2010.10448
https://link.springer.com/article/10.1007/s00041-022-09908-8#citeas
https://link.springer.com/article/10.1007/s00041-022-09908-8#citeas
http://arxiv.org/abs/2112.08783
https://arxiv.org/abs/2112.09364
https://arxiv.org/abs/2112.09364
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Wir zeigen im Fall s € (%7 1), dass jede solche Losung einen Morse-Index grofer gle-

ich N+ 1 hat. Im Fall s € (0, %] ist die gleiche Abschitzung unter der zusitzlichen
subkritischen Wachstumsbedingung

t

/f(r)dr >

0

2s "
N tf(t) firr € R\ {0}. (1.39)

an f giiltig. Dieses Resultat erweitert eine Abschidtzung von A. Aftalion and F. Pacella
fiir den Fall s = 1, d.h. fiir das zugehorige lokale Problem zweiter Ordnung

—Au = f(u) in A,
u=0 auf d 4.

Dem Beweis der Morse-Index-Abschitzung liegt die gleiche Strategie wie bei Aftal-
ion und Pacella zugrunde. Diese basiert auf der Konstruktion geeigneter Testfunktio-
nen mittels partieller Ableitungen von u zur Abschétzung der zum linearisierten Op-
erator (—A)* — f’(u) gehdrenden quadratischen Form. Im nichtlokalen Fall s € (0,1)
miissen dabei aber erhebliche zusitzliche Schwierigkeiten liberwunden werden, welche
insbesondere mit der geringeren Randregularitdt von Losungen von (1.37) und der
Nichtverfiigbarkeit eines lokalen Hopf-Lemmas fiir vorzeichenwechselnde Losungen
zusammenhingen. Die im Fall s € (0, %] geringere Randregularitit der Losung ist auch
der Grund fiir die Zusatzbedingung[2.6] welche aber zumindest fiir homogene Funktio-
nen der Form

_ p—2 ;

u— f(u) =AlulP"“u m1t7L>0und2§p<N_2S
erfiillt ist.

Durch Anwendung der Morse-Index-Abschitzung auf den linearen Fall f(u) = Au be-
weisen wir, dass unabhéngig von der Ordnung s € (0, 1) jede Eigenfunktion des frak-
tionalen Laplace-Operators (—A)* in % zum zweiten Dirichleteigenwert eine antisym-
metrische Funktion ist, also u(—x) = —u(x) fiir x € A erfiillt. Dies bestitigt eine Ver-
mutung von Baifiuelos and Kulczycki, welche bisher nur in den Fillen

1
N<3, s5€(0,1) sowie 4<N<O9, SZE

nachgewiesen werden konnte.

Die Resultate der Arbeit [P2] beziehen sich auf die spektrale Asymptotik der Dirich-
leteigenwerte und zugehorige Eigenfunktionen zum Problem

(—A)’u=Au in Q,
u=0 in RV\ Q,
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im Limes verschwindender Ordnung s — 0", wobei hier Q C RY eine beschrinkte
offene Menge mit Lipschitzrand sei. Genauer zeigen wir fiir die zugehorigen Dirich-
leteigenwerte Ay (), k € N die Asymptotik

ies(Q) = 14+sA (Q) +o(s)  fiirs— 0",

wobei der erste nichttrivale Term A; £ (Q) in dieser Entwicklung als k-ter Eigenwert
des logarithmischen Laplace-Operators L, gegeben ist. Dieser Operator ist formal als

Ableitung
d
L,=— —A)*
ds s:0( )
und somit als schwach singuldrer Integraloperator mit Fouriersymbol 21log || definiert.

Die Integraldarstellung von L, ist dabei durch

131 —u(y)
—Cy / - y‘N dy + pyu(x),

gegeben. Die hier auftauchenden Konstanten sind dabei durch die Asymptotik der

Normierungskonstante cy s in (1.38) festgelegt; genauer ist Cy = 71:’%1“(%’) und py =
2log2 + w(%) — 7, wobei Yy = FT/ die Digamma-Funktion und y = —I"(1) die Euler-
Mascheroni-Konstante bezeichne.

Unser Resultat verallgemeinert ein fritheres Ergebnis von H. Chen und T. Weth, welches
auf den niedrigsten Eigenwert beschriankt war. Zudem verbessern wir das von Chen und
Weth bewiesene L>-Konvergenzresultat fiir die zugehdrige, geeignet normierte Familie
von Eigenfunktionen u; s, indem wir die relative Kompaktheit der Menge

{ur,: s € (o,%]}

in C(K) fiir jede kompakte Teilmenge K C Q zeigen. Dies liefert die lokal gleichméBige
Konvergenz

Uy —> UL in Q, (1.40)

wobei u; 7 die (bis auf das Vorzeichen und Normierung) eindeutige erste Dirichlet-
Eigenfunktion von L, bezeichne.

Dariiber hinaus verallgemeinern wir die obige Kompaktheitsaussage auf Eigenfunktio-
nen u s zu hoheren Eigenwerten Ay s, k € N. Falls zudem Q eine duflere Sphirenbedin-
gung erfiillt, so ist die Konvergenz sogar uniform und die Menge {u; ; : s € (0, 21;]} fiir
jedes k € N relativ kompakt im Raum

Co(Q) ={ucC®RY): u=0 in Q°}.

Somit erhdlt man auch eine Variante der Konvergenzaussage (1.40) fiir hohere Eigen-
funktionen, wobei man aufgrund der moglichen Vielfachheit der Eigenwerte zu Teil-
folgen iibergehen muss.



Fiir den Beweis dieser spektralen Asymptotik etablieren wir neue s-unabhingige uni-
forme Regularitdtsabschédtzungen und uniforme Schranken fiir das Wachstumsverhalten
der Eigenfunktionen am Gebietsrand. Als Konsequenz dieser uniformen Abschédtzungen
erhalten wir zudem Regularititseigenschaften fiir Eigenfunktionen des logarithmischen
Laplace-Operators.

Die Arbeit [P3] ist der Untersuchung des logarithmischen Schrodingeroperators (1 — A)°2
gewidmet, welcher formal iiber das Fouriersymbol & ~ log(14-|&|?) definiert ist. Wir
prisentieren eine alternative Methode zur Herleitung der Darstellung von (1 — A)log als
singulérer Integraloperator in der Form
u(x) —u(x+
(-8t =ay [ O o) ay
RN

mit dy = 7~ 2 und o(r) = 21-5 5K N (r), wobei Ky die modifizierte Besselfunktion
zweiter Art vom Index v sei. Wir zeigen, dass dieser Operator als Ableitung in s des
fraktionalen relativistischen Schrodingeroperators (I — A)® bei s = 0 auftaucht.

Wir untersuchen variationelle Probleme fiir diesen Operator mit Hilfe nichtprobabilis-
tischer und aus Sicht der partiellen Differentialgleichungen leichter zugéinglicher Meth-
oden. Insbesondere charakterisieren wir die Dirichleteigenwerte und zugehorige Eigen-
funktionen von (I — A)!°¢ in einer offenen beschrinkten Teilmenge Q C RY u.a. mittels
der Asymptotik des Dirichlet-Eigenwertproblems fiir den fraktionalen relativistischen
Operator (I —A)*. Des Weiteren beweisen wir eine Ungleichung vom Faber-Krahn-Typ
fiir den ersten Eigenwert von (I — A)!°g,

Die Arbeit [P4] beschiftigt sich speziell mit singuldren Integraloperatoren der Form

Bau(x) = [ (ux) = uly) k() dy

RN

mit einer symmetrischen Kernfunktion k : RY x RN — [0, ], welche die Bedingung

sup [ min{l,|x—y|? }k(x,y) dy < o

XERNRN
fiir ein o € (0,1) erfiillen moge. Die Operatoren dieser Klasse sind also von einer
Ordnung kleiner als eins.
Unter geeigneten weiteren Voraussetzungen an k leiten wir zundchst Dichtheitsaus-
sagen fiir assoziierte Funktionenriume und Maximumsprinzipien im Zusammenhang
mit dem Operator I her. Darauf aufbauend untersuchen wir Regularititseigenschaften
schwacher Losungen u des zugehorigen Poissonproblems

Iku:f
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in einer offenen Teilmenge  C RY in Abhingigkeit der Regularitit der Funktion f. Fiir
translationsinvariante Kernfunktionen k zeigen wir insbesondere lokale H!-Regularitit
schwacher Losungen, falls f von der Klasse C? in  ist. In einem weiteren Resul-
tat setzen wir zusitzlich ausreichende Regularitdt der Kernfunktion jenseits des Sin-
gulirbereichs auf der Diagonale in RV x R" voraus und zeigen die C*-Regularitt der
Losungen unter der Annahme, dass die Funktion f ebenfalls von der Klasse C* ist. Als
Folgerung erhalten wir, dass jede Eigenfunktion des Dirichlet-Eigenwertproblems zur
Gleichung Liyu = Au in Q eine C*-Funktion in  ist.
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1.3 Notation

The number N € N will denote the dimension of the Euclidean space RY which shall be our
space of reference in the manuscript, and for any x € RY, we put |x|*> = ?’:1 |x;|? the Euclidean
27t¥
r(y)
the notation A CC B means A is compact and contained in the interior of B. For sets A1,A; C RN
we set

norm. We let wy_; = denotes the measure of the unit sphere in RY and for sets A,B C R",

dist(A1,Az) :=inf{|x—y|, x €A|,y € Ay}

If A; = {x} for x € RV, we simply write dist(x,A;), in particular we define
84 (x) := dist(x,A°) with A°=RV\A, the complement of A.
If A is measurable, then |A| denotes its Lebesgue measure. Moreover, for a given r > 0, we let
B,(A) :={x cR" : dist(x,A) < r}

and B,(x) := B,({x}) simply denotes the ball of radius r with x as its center. If x = 0 we also
write B, instead of B,(0). Fora > 0 and b > 0,

[(a) = /t“‘le_’ dt and T'(a,b) = /t“_le_’ dt
0 b

stands for the Gamma and incomplete Gamma function respectively on (0, +eo).

If A is open, we denote by €’(A), the space (class) of function u : RN — R which are continuous
and the subclasses €¥(A), the space of function u : RV — R which are k-times continuously
differentiable and with support compactly contained in A, € (A) the space of function in " (RY)
that vanish in RV \ A i.e.

Go(A) ={ucE®R"): u=0inRV\ A}
If f and g are two functions, then, f ~ g as x — a if %’3 converges to a constant as x converges
to a.
For a function u : RY — R, we denote by u™ := max{u,0} and u~ := —min{u,0} the positive
part of and the negative part of u respectively such that u = u™ — u~. Moreover, we let

oscAl == supu—igfu € [0,00),
A

denote the oscillation of u over A. The notation dA will be the boundary of A and the notation
14 : A — R is the characteristic function of A given by

14(x) 1 for x€A
x) =
A 0 for xeRV\A.



2 Morse index versus radial symmetry for fractional Dirichlet
problems

The results of this chapter is based on the article [39], joint work with Mouhamed Moustapha
Fall, Rémi Yvant Temgoua and Tobias Weth. The chapter is self-contained and can be read
independently. In fact, we provide an estimate of the Morse index of bounded radially sign
changing weak solutions to problem (2.1I). In particular, our result applies to Dirichlet eigen-
value problem for the fractional Laplacian in the unit ball, resolving thereby a conjecture by
Baiiuelos and Kulczycki on the geometry structure of the second Dirichlet eigenfunctions for
the fractional Laplacian. The chapter is organized in the same structure as the published article
and only acknowledgements is removed.

2.1 Introduction and main results

The purpose of this paper is to estimate the Morse index of radial sign changing solutions of the
problem

—A’u=f(u) in B

{( Ju = f(u) o

u=0 in RN\ 4,

where s € (0,1), 2 C RY is the unit ball centred at zero and where the nonlinearity f : R — R
is of class C'. The fractional Laplacian operator (—A)* is defined for all u € C2(R") by

. | u(x) —u(y)
(~Ayux) =e(N.s) lim [ Ty
RN\BE(X)

N T N+2s . . .
where ¢(N,s) =212 l"((lis)) is a normalization constant. The operator (—A)* can be seen
as the infinitesimal generator of an isotropic stable Lévy processes (see [3]]), and it arises in
specific mathematical models within several areas of physics, biology, chemistry and finance

(see [546,[24]). For basic properties of (—A)* and associated function spaces, we refer to [33].

In recent years, the study of linear and nonlinear Dirichlet boundary value problems involving
fractional Laplacian has attracted extensive and steadily growing attention, whereas, in contrast
to the local case s = 1, even basic questions still remain largely unsolved up to now. Even in the
linear case where f(r) := At, the structure of Dirichlet eigenvalues and eigenfunctions of the
fractional Laplacian on the unit ball 4 is not completely understood. In particular, we mention
a conjecture of Bafiuelos and Kulczycki which states that every Dirichlet eigenfunction u of
(—A)* on A corresponding to the second Dirichlet eigenvalue is antisymmetric, i.e., it satisfies
u(—x) = —u(x) for x € A. So far, by the results in [[7, 36,44, 68|, this conjecture has been
verified in the special cases N <3,s€ (0,1) and4 <N <9, s = % In the present paper, we will
derive the full conjecture essentially as a corollary of our main result on the semilinear Dirichlet

problem (2.1)), see Theorem [2.2]below.
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Our main result on sign changing radial solutions of (2.I) is heavily inspired by the seminal
work of Aftalion and Pacella [1]], where the authors studied qualitative properties of sign chang-
ing solutions of the local semilinear elliptic problem

—Au=f(u) inQ, u=0on 0, (2.2)

where Q C R" is a ball or an annulus centered at zero and f € C!(R). Itis proved in [1, Theorem
1.1] that any radial sign changing solution of (2.2) has Morse index greater than or equal to
N+1.

In the following, we present a nonlocal version of this result in the case where € is the unit ball
in RY. We need to fix some notation first. Consider the function space

HE(B) ={ucHRY):u=0 on R¥\ B} c H*R"). (2.3)

By definition, a function u € (%) N L™ (%) is a weak solution of (2.1)) if

Es(u,v) = /f(u)vdx for all v € S5 (A),
%

where

(V,W)%&(V,W) — C(]\;S) // (v(x)—v(y))(w(x)—w(y)) dxdy. (24)

_ y|N+2s
i e =l

is the bilinear form associated with (—A)*. By definition, the Morse index m(u) of a weak
solution u € (%) NL* (%) of (2.1)) is the maximal dimension of a subspace X C J¢ (%)
where the quadratic form

(v,w) = &(v,w) — /f’(u)vwdx (2.5)
B

associated to the linearized operator L := (—A)® — f'(u) is negative definite. Equivalently, m(u)
can be defined as the number of the negative Dirichlet eigenvalues of L counted with their mul-
tiplicity.

Our first main result reads as follows.

Theorem 2.1. Let u be a radially symmetric sign changing solution of problem (2.1), and
suppose that one of the following additional conditions holds.

(Al) s€(3,1).
(A2) s €(0,%], and

N —2s
2N

/tf(r)dr >

0

tf(t)  forte R\ {0} (2.6)

Then u has Morse index greater than or equal to N + 1.
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We briefly comment on the inequality (2.6). In our proof of Theorem [2.1] this assumption
arises when we use the Pohozaev identity for the fractional Laplacian, see |83, Theorem 1.1].
It is satisfied for homogeneous nonlinearities with subcritical growth, i.e., if

_ p—2 ;
f@@)=Alt|P"tr  with A >0 and 2§p<N_2s.
We also note that, in the supercritical case where [j f(7)dt < 221 £(t) fort € R\ {0}, problem
does not admit any nontrivial weak solutions u € J#;’ (%) NL”(%). This is a consequence
of the Pohozaev identity stated in [83, Theorem 1.1].
In particular, assumption is satisfied in the linear case t — Ar with A > 0. In fact, we can
deduce the following result for the Dirichlet eigenvalue problem

{(—A)Su =Au in A
2.7)

u=0 in RN\ £,

from Theorem thereby providing a complete positive answer to a conjecture by Bafiuelos
and Kulczycki (see [36]).

Theorem 2.2. Let N > 1 and 0 < s < 1, and let A, > 0 be the second eigenvalue of problem (2.7).
Then every eigenfunction u corresponding to A, is antisymmetric, L.e. it satisfies

u(—x) = —u(x) forxe A.

In recent years, partial results towards this conjecture have been obtained in [7,/36} 44} 68],
covering the special cases N <3,s€ (0,1) and4 <N <9,s= % More precisely, in [7, Theorem
5.3], Baiiuelos and Kulczycki proved antisymmetry of second eigenfunctions in the special case
N=1,s= % In [68]], this result was extended to N =1, s € [%,1). Recently in [36]], the
conjecture was proved in the cases N <2, s € (0,1) and 3 <N <9, 5= % Moreover, in [44],
the result has been proved for N =3, s € (0,1).

While the proofs in these papers are based on fine eigenvalue estimates, our proof of Theo-
rem is completely different: In addition to Theorem [2.1} we shall only use the following
important alternative which is implicitely stated in 36} p. 503]: Either (2.7) admits a radially
symmetric eigenfunction corresponding to the second eigenvalue Ay, or every eigenfunction cor-
responding to A, is a product of a linear and a radial function. Since every such eigenfunction
u is a sign changing solution of with ¢t — f(t) = At and has Morse index 1 < N + 1, it
cannot be radially symmetric as a consequence of Theorem 2.1 Hence u must be a product
of a linear and a radial function, and therefore u is antisymmetric. This completes the proof
of Theorem [2.2] For a more detailed presentation of this argument and the underlying results
from [36]], see Section [2.5]below.

We briefly comment on the proof of Theorem 2.1] The general strategy, inspired by the pa-
per [1]] of Aftalion and Pacella for the local problem (2.2)), is to use partial derivatives of u to
construct suitable test functions which allow to estimate the Morse index of u. In the nonlo-
cal case, several difficulties arise since local PDEs techniques do not apply. The most severe
difficulty is related to the fact that weak solutions u € J¢’ (%) NL"(A) of have much
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less boundary regularity than solutions of (2.2), see Proposition [2.7] for details. Moreover, even
though there exists a fractional version of the Hopf boundary lemma related to the fractional
boundary derivative 5; (see [40, Proposition 3.3]), it does not apply to sign changing solutions
of due to the non-locality of the problem. We mention at this point that the classical Hopf
boundary lemma is used in [ 1] together with an extra assumption on f(0), but a slight change of
the proof, exploiting the local character of the problem, allows to deal with solutions « having
a vanishing derivative on the boundary; therefore [1, Theorem 1.1] extends to arbitrary nonlin-
earities f € C! (R)ﬂ In the nonlocal case of radial solutions u of , it is more difficult to
deal with possible oscillations of the radial derivative of u close to the boundary. In our proof
of Theorem [2.1} we distinguish two cases. In the case s € (l 1), we use a regularity result
of Grubb glven in [53, Theorem 2.2] to complete the argument in the case where §; vanishes
on d.%. Moreover, in the case s € (0, 3], we use the extra assumption (2.6) to ensure that %
does not vanish on the boundary. Here we point out that implies f(0) = 0, while no extra
assumption on f(0) is needed in the case s € (3,1).

We point out our proof of Theorem [2.1] does not use the extension method of Caffarelli and
Silvestre [25]], which allows to reformulate as a boundary value problem where (—A)*
arises as a Dirichlet-to-Neumann type operator. We therefore expect that our approach applies
to a more general class of nonlocal operators in place of (—A)*.

We wish to add some remarks on the role of Morse index estimates in the variational study of
. In the case where f € C'(IR) has subcritical growth, weak solutions of are precisely
the critical points of the associated energy functional J : 77’ (%) — R defined by

¢(N,s) |ue(x \2
/ / R duay - /

where F(t) = J; f(s) ds. Moreover, J is of class C2, and thus the behaviour of J near a crit-
ical point u is closely related to the Morse index m(u). Typically, critical points detected via
minimax principles lead to bounds on the Morse index. In combination with Theorem [2.1] this
allows to show the non-radiality of certain classes of sign changing critical points. In this spirit,
it is proved in [1]] that, under suitable additional assumptions on f, least energy sign changing
solutions of the local problem are non-radial functions.

With regard to the existence of least energy sign changing solutions of the nonlocal prob-
lem (2.1)), we refer to the recent paper [95]]. For existence results for sign changing solutions to
related nonlocal problems, see e.g. [76L97] and the references therein.

The paper is organized as follows. In Section [3.2 we introduce preliminary notions and collect
preliminary results on function spaces. In Section [2.3] we investigate radial solutions of (2.1)
and properties of their partial derivatives. In Section[2.4|we complete the proof of Theorem [2.1]
Finally, in Section[2.5] we complete the proof of Theorem [2.2]

I'We wish to thank the referee for pointing out this fact.
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2.2 Preliminary definitions and results

In this section, we introduce some notation and state preliminary results to be used throughout
this paper. We first introduce and recall some notation related to sets and functions. If Q;,Q; C
RN are open subsets, we write Q; CC Q, if Q is compact and contained in Q;. We denote
by 1y : RN — R the characteristic function of a subset U C RY. For a function u : RV — R,
we use u' := max{u,0} and ¥~ := —min{u,0} to denote the positive and negative part of u,
respectively.

Next we recall notation related to function spaces associated with the fractional power s € (0,1).
We consider the space

|u(x)]
L= {u eLl (RY): [Jul| 1 < oo}, where [|ul| o1 = [EuFLE dx. (2.8)
RN

If we £}, then (—A)*w is well defined as a distribution on RV by setting
(~aywl(g) = [w(-ayodx  forpe @ (RY)
RN

Here and in the following, for an open subset Q C RY, we denote by 4°(Q) the space of smooth
functions on RY with compact support in . We recall a maximum principle for the fractional
Laplacian in distributional sense due to Silvestre.

Proposition 2.3. [89) Proposition 2.17] Let Q C RN be an open bounded set, and let w € £}
be lower-semicontinuous function in Q such that w > 0 in R¥ \ Q and (—A)’w > 0 in Q in
distributional sense, i.e.,

/ w(—=A)@dx >0  forall nonnegative functions ¢ € 6. (Q).
]RN

Thenw >0 in RV,

For an open subset Q C R", we now consider the fractional Sobolev space

HY(Q) = {u cX(Q / / Julx . y|N+2c " dxdy < oo}. 2.9)

Setting
[u]s.0 = (l/ M dxdy)% foru € H*(Q),

2 ’x_y’N-I-Zs
QQ

we note that H*(Q) is a Hilbert space whose norm can be written as

1
el = (11l gy + ) (2.10)
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We will also use the local fractional Sobolev space H}, (Q) defined as the space of functions
v e L} (Q) with y € H*(Q') for every Q' CC Q.

For a bounded open subset Q C RY, we let 5 (Q) denote the closure of C°(Q) in H*(RM).
Then 77’ (Q) is a Hilbert space with scalar product

RNRN

and corresponding norm

[ull s () = /& (u,u) =+/c(N,s) u Uls Ry -
This is a consequence of the fact that
inf{&(u,u) - ue AG(Q), [lull2) =1} > 0,

which in turn follows from the fractional Sobolev inequality (see e.g. [[33, Theorem 6.5]) and the
boundedness of Q. In particular, 7 (Q) embeds into L(Q). We also note that, by definition,

K (Q) C A (Q) for bounded open sets Q,Q with Q C Q. (2.11)
We also recall the following property, see e.g. [[52, Theorem 1.4.2.2]:

For any bounded domain Q with continuous boundary,

2.12
we have #3(Q) :={uc H*(RY) :u=0 on RV\Q}. (12

Consequently, the definition of .7 (€2) is consistent with (2.3).
For the remainder of this section, we fix a bounded open subset Q C RV, The following lemma
is known, but we include a short proof for the convenience of the reader.

Lemma 2.4. Let ¢ € H} (Q) be compactly supported in Q. Then ¢ € ' (Q).
Here and in the following, we identify ¢ with its trivial extension to RV

Proof. Without loss of generality, we may assume that € has a continuous boundary, since
otherwise we may use after replacing Q by a bounded open subset & with continuous
boundary containing the support of @.

Let Q' CC Q be an open subset of Q which contains the support K of @. Then we have

lo() —o()I?
2/ ]x y’N+2s dxdy = sgl—i_/ / x _y‘N-‘rZs dydx, 2.13)
RN RN Q RV\Q

where [¢]? o < cosince ¢ € Hj, (). Moreover,

loc

dy
// |N+2v dydx = /!(p /|x_y|N+2sdx

Q' RN \Q’ RN\ Q/
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dy
< 2 Su < oo
= ||(P||L2(K)x6113 X — V2
RN\

since dist(K,RY\ ©') > 0. Since Q has a continuous boundary and ¢ = 0 in RV \ Q, we
conclude that ¢ € J7;’(Q) as a consequence of (2.12)). O

We also need the following lemma.

Lemma 2.5. Letv € 31 NHS

(), and let ¢ € H} (Q) be a function with compact support.
Then the integral

(o c(N,s) // ) (9(x) —9(y)) dxdy

N+2s
gy Ix yl

is well defined in Lebesgue sense. More precisely, for any choice of open subsets

QccQ'ccQ

with supp ¢ C ', there exist constants c1,c, — depending only on Q',Q" N and s but not on v
and @ —such that

1 @) —v0)|[ex) — o)
5 / / pmeriaer dxdy (2.14)

RN RN

< serlelsar +allvliae) @l @) +cll@ll@) IvilLg-

Proof. We put k(z) = |z|™V=2%. Since supp ¢ C ', we see that

%//|V(x)—V(Y)H<P(x)—w(y)\k(x—y) dxdy =

RN RN
L[ @ —v0)en) - e0)| V() —v0)|| )|
2/[ |x_y|N+2s dXdy+/ / |x—y|N+25 dydx
QrQ Q RN\Q”

o[l + / o) [ 0 =) k(=) dy,
RN\Q//

where
/ o) [ o)~ () k=) dydx
RN\Q//

/|<p V() e (x dx+/|<p | bO)k(e—y)da

RN \ Qr

<all@llz@)Vlize) +eallele)lvlg
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with
Ko (x) = / k(x—y)dy, xe&
RN\Q//
and
c1 := sup Kor(x), cri= sup  k(x—y)(1+ )"
xeQ’ xeQ! yeRN\ Q"

Note that the values ¢; and c; are finite since Q' CC Q". It thus follows that &(u,v) is well-
defined in Lebesgue sense and that (2.14) holds. O

Corollary 2.6. Let v e L' NH;

loc

supp @, supp @, C Q' for alln € N and ¢, — @ in H;, .(Q), then we have

(Q). If Q' cC Qand (¢,), is a sequence in H

loc

(Q) with

Es(v, @) — E(v, 9) as n — oo,
Proof. By Lemmal[2.5]

&0 @ — )| <
c(N,s)V]s.or [0 — @l + Cillvll 2 100 — @l 2(0) + Call P = @l 1@ V]| 2
where C; and C, are positive constants. Thanks to the embeddings
Hipo(Q) == Lie(Q) = Lip (),

we conclude that &(v, @, — @) — 0 as n — oo. O

2.3 Properties of radial solutions and their partial derivatives

In the following, we restrict our attention to the case Q = 2 and to bounded weak solutions of
equation (2.1). Here and in the following, we fix a nonlinearity f : R — R of class C', and we
call a function u € (%) N L™ () a weak solution of (2.1)) if

5(u.9)= [ fweds  forall g € 5 ()

We note the following regularity properties for weak solutions of (2.1)). For this we consider the
distance function to the boundary

§: B R, 8(x)=dist(x,08) =1 |x|.

Proposition 2.7. (cf. [41}53)/84,89])
Let u € A (B)NL"(A) be a weak solution of. Thenu € C.*

loc

(#B)NC)(A). Moreover,

V= % cC*(B)  forsome a € (0,1), (2.15)

and the following properties hold with some constant ¢ > 0:
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(i) |Vu(x)| < 8 (x) for all x € B.
(ii) |Vy(x)| < c8%(x) for all x € B.
(iii) For every xo € 0%, we have lim §'7%(x)d, u(x) = —sy(xo), where dyu(x) = Vu(x) -

X—X0 I
denotes the radial derivative of u at x.

(iv) If s € (3,1), then y € C' ().

Proof. Since u € L*(%) and f is of class C!, we have f(u(-)) € L(%). Hence the regularity
theory for the fractional Dirichlet-Possion problem developed in [84] shows that u € Cj(4),
and that (i) holds. It is also shown in [84] that y := 4 € C*(#) for some o € (0,1). Moreover,
(i1) and (iii) are proved in [41].

Finally, noting that f(u(-)) € C*(#) since u € C}(#), it follows from interior regularity (see
e.g. [89]) that u € Clzof(,%’) Moreover, if s € (3,1) we have y € C*(%) C C!(#) by [53,

Theorem 2.2]. O

The regularity estimates above allow to apply the following simple integration by parts formula
to weak solutions of (2.1)).

Lemma 2.8. Let u € CO(%)NC}, .(B) be a function satisfying u= 0 on 0% and |Vu| € L'(B).
Then
/(aju)q) dx = —/uaj<p dx  foroeC' (%), j=1,...,N. (2.16)
& #
Proof. Let ¢ € C'(%#), andlet Q,:= B, 1(0) C % forne N. Thenu € C'(Q,) for n € N since
uec Clloc(%). Integrating by parts over anand using a change of variables, we find that

[(@uio+udse) dx= [ugvido=1—1"" [u((1-D)0)e((1 - oW, do,

n
Q, aQ, A

where v; is the j-th component of the unit outward normal to 0% at x. Since u € C°(%), u=0
on 04, Q, 1 % and ¢ € C' (%), we can apply the Lebesgue dominated convergence theorem
to both sides of the equation above to deduce (2.16). O

In the following, we fix a radial solution u € J’(%)NL*(%) of (2.1), and we consider the
function y defined in (2.15]) which is also radial. Hence we write

y(x) = yy(r) for r = |x| with a function yp : [0,1] = R (2.17)
which is of class C* for some a > 0 by Proposition Moreover, by Proposition [2.7] we have
1
e = —— 1im (1—|x])' 9, u(x). 2.18
i G~ s i, (1= ) () 2.18)
By the Pohozaev type identity given in [83, Theorem 1.1], this value also satisfies

1

w(l) = |SN1|F(I+S)2/[(2S—N)uf(u)+2NF(u) dx. (2.19)

B
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Here F : R — Ris given by F(t) = [} f(7) dt.

The aim of this section is to construct test functions, related to partial derivatives of u«, which
allow to estimate Dirichlet eigenvalues of the linearized operator

Li=(—AY — f'(u). (2.20)

For j € {1,...,N}, we consider the partial derivatives of u given by

du
_ . diu(x) = —(x), xXE B,
v RN SR, v (x) = 1) axj() j=1,...,N.
0, x € RV\ 4,
From Proposition it then follows that
vie LYnHS (#)  for je{l,...,N}. (2.21)

Hence &;(v/, @) is well defined for every ¢ € (%) with compact support by Lemma
We have the following key lemma.

Lemma 2.9. For any j € {1,...,N}, we have Lv/ = (—A)*v/ — f'(u)/ = 0 in distributional
sense in B, i.e.
/ V(=AY @ dx =&V, @) = / fluWedx  forall p € €7 (). (2.22)

Moreover, if ¢ € A (A) has compact support in B, then we have

507,0) = [ fupiedx (2.23)
7

Furthermore, if v/ € H#}(B), then is true for all ¢ € ;' (B).

Proof. Since u € C,;*(%) by Proposition we have v/ € C,)} (%) C H .(%). Let ¢ €
€>(B) C € (RY). Then
o€ (#), (-A'eeC”RY), and  9;(-A]¢=(-A)J;¢ onR".

Consequently, since u satisfies the assumptions of Lemma [2.8] (2.16)) implies that

/ V(=AY dx = — / ud;(~AY @ dx = — / u(—A)'d;¢ dx

— ~6(0.059) == [ fWp dx= [f W dx= [ fupipdx
B B B
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Hence v/ solves Lv/ = (—A)*v/ — f'(u)»/ = 0 in distributional sense. Next we show that

&V, @) = / fupipde  forall g € €7(B). (2.24)
B

Since v/ € L NH}

loc

(A), the integral
// [V (x) = ()] |9 (x) — ()]

|x_y|N+2s

dxdy
RN RV

exists by Lemma[2.5] and therefore we have, by Lebesgue’s Theorem,
: N J () — v B
607,9) = Wy [ [ OO0 200
£

’x _ y|N+23
RV |x—y[>€
. : () — ()
- J hANTANR a7
c(N,s) ;1_r>r(1) v (x) Vs dydx
RN RN\ B (x)
=c(N,s) /vj(x) lim P =90 dydx
’ e=0 e — y|N 2
RV RN\ B (x)
= /vj(fA)sq) dx = /vj(fA)s(p dx = /f’(u)vjqo dx.
RN » »

Next, let ¢ € (%) with compact support in %, and choose an open subset Q' CC % such
that supp @ C Q'. By definition of 7}’ (Q'), there exists a sequence (¢, ), in €°(Q') C €°(%)
with @, — @ in J(Q'), hence also ¢, — @ in 7 (%). Then Corollary2.6|and (2.24) imply
that

&, ) = lim &(v/, u) = lim / f () @, dx = / f(u)V ¢ dx, (2.25)

and thus (2.23) holds.

Finally, assume that v/ € (), let ¢ € 5’ (), and let (¢,), be a sequence in €;°(#) with
¢, — @ in H#J(PA). Then holds again by the continuity of the quadratic form &; on
G (A), as claimed. O

We now have all the tools to build suitable test functions from partial derivatives in order to
estimate the Morse index of u as a solution of (2.1). As remarked before, the construction is
inspired by [1]].

Definition 2.10. Let yy be the function defined in (2.17). For j =1,...,N, we define the open
half spaces

H] :={xeRV: +x; > 0} (2.26)
and the functions d; : RV — R by
. W) 1y = () 1 if wo(1) > 0;
TN - () Lyi if yo(1) < 0.
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We note that, for j =1,...,N, the function d; is odd with respect to the reflection
oj:RY - RV, x=(x1,, X, ,xn) = 05(x) = (x1,...,—xj,...,xN)
at the hyperplane {x; = 0} since the function v/ is odd.
Lemma 2.11. d; € H} (%) for j=1,...,N.
Proof. By definition of d;, it suffices to show that
(v)*1

i € Hio(B) (2.27)

We only consider the function (v/)* 1 i » the proof for the other functions is essentially the
. + .
same. As noted in (2.21), we have v/ € H} (), and therefore also (v/)™ € H} (%) by a

loc - loc
standard estimate. To abbreviate, we now put y =1, v:= (1/ )™, and we let Q' CC % be an
+

open subset of 8. Making Q' larger if necessary, we may assume that Q' is symmetric with
respect to the reflection ;. To show that vy € H} (Q'), we write

e =W g+ [ @E [ =yl dydx

QNH. QnH’
<OBat [ WP [ ke P
QNH], {yeRN Jy—x|>|x;[}
“0Pat+ [ WP [ Y Pdza
QNH, {z€RV, [z >|x;[}
2 SV 204 1~2g
= Rt [ e Pl
QnH.

Since v = (v/)* € C3, (%) by Proposition[2.7/and v = 0 on {x; = 0}, we have [v(x)| < Clx;|*

for x € Q' N H. Therefore, the latter integral is finite, and (v/)* ly =vx e H; (#). O
The next lemma is of key importance for the proof of Theorem [2.1]
Lemma 2.12. Let j=1,...,N.

(i) If yo(1) # 0, we have d; € A (A), and dj has compact support in 5.

(ii) If s € (3,1) and (1) = 0, then we have v/ € H#;S(B) and d; € H;(B)

Proof. (1) By Lemma and Lemma [2.11] it suffices to show that d; has compact support in
2. We now distinguish the cases yy(1) > 0 and yp(1) <O0.
If yo(1) > 0, we have d,u(x) <0in A\ By, (0) for some r, € (0,1) by (2.18), and therefore

v (x) = dju(x) = %f'a,u(x) <0  forxe %\B,, (0) withx; > 0.
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Consequently, d;(x) = (v/)(x) = 0 for x € 2\ B,, (0) with x; > 0. Since d; is odd with respect
to the reflection o; it follows that suppd; C B, (0), so d; is compactly supported in 2.

If yo(1) <0, we have d,u(x) > 0in 2\ B, (0) for some r, € (0,1) by (2.18), which in this case,
similarly as above, implies that d;(x) = —(v/) ™ (x) = 0 for x € #\ B, (0) with x; > 0. Again
we conclude that d; is compactly supported in % since it is odd with respect to the reflection
Oj.

(ii) Since s € (3, 1), it follows from Proposition llv) that ¥ € C'(%) and therefore yy €
C'([0,1]), whereas Wy(1) = 0 by assumption. Consequently, y(x)&*~!(x) — 0 as |x| — 1, and
therefore

Vu(x) = 8 (x)Vy(x) + sy (x)8 1 (x)VS(x) = 0 as |x| — 1.
It thus follows that u € C'(RV) with u = 0 on RV \ 4, and therefore v/ € CO(RV) with v/ =0
in RV \ 2. To see that v/ € 7 (%), we shall use Proposmonas follows: Since the function

f'(u)v/ is continuous and therefore bounded in %, there exists a unique weak solution w €
(%) to the Poisson problem

(=AYPw = f'(u)»/ in 2B, w=0 inRV\%# (2.28)

which satisfies w € C}(%) by [84, Proposition 1.1]. By setting V := w — v/, it follows that
V € CO(RN) with V = 0 in RV \ %. Moreover, by Lemma [2.9] the function V satisfies the
equation (—A)*V = 0 in 4 in the sense of distributions. Since V is continuous, Proposition
— applied to £V — implies that V =0 in RV, i.e.,

v =w e HF(B)NCy(B). (2.29)

By a similar argument as in the proof of Lemma 2.11] we will now see that d; € J¢’(#). For
the convenience of the reader, we give the details. It is clearly sufficient to show that

(V)5 1y € H(B), (2.30)

We only consider the function (v/) 1,,;, the proof for the other functions is the same. Since

HJ s

v € A (PB), we also have (v)* € ( ) by a standard estimate. To abbreviate, we now put

xX= lHj and v := (v/)*. To show that vy € 5 (P), we note that vy =0 in RV \ 2, and we
+

estimate

ey =02+ [ P / o=yl ™2 dyd
HIN%
< SRN+/ / |2 V" dzdx
HIN% {ZERNJZ\E\XJ'I}
2 SV 20, |-2s
— Wt [Pl P
HInZ

Since v = (/)" € C*(#) by (2.29) and v =0 on {x; = 0}, we have |v(x)| < Clx;|* for x €
H’. N 2. Therefore, the latter 1ntegral is finite, and (v/)" 1., = vy € J(A). O
T
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Corollary 2.13. If wy(1) # 0 or s € (%, 1), then the values &,(d;,dy) and &(v/,dy) are well-
defined and satisfy

&V, dy) = /f’(u)vjdk dx  forjk=1,...,N.
%
Proof. This follows from Lemma [2.5] Lemma [2.9]and Lemma O

2.4 Proof of Theorem 2.1]

In this section we complete the proof of Theorem As before, we consider a fixed radial
weak solution u € (%) NL™(2) of (2.1), and we will continue using the notation related to
u as introduced in Section [2.3] Moreover, in accordance with the assumptions of Theorem [2.1]
we assume that u changes sign, which implies that

(vj)ilHi-io and  (V)"1,, #0  forj=1,...,N, (2.31)

where the half spaces Hi are defined in (2.26). We first note that, under the assumptions of

Theorem 2.1} we have |
w()#0 or  se(=,1). (2.32)

2
Indeed, if 5 € (0, 1], then yZ(1) > 0 by (2.6) and (2.19).

Next we recall that the n-th Dirichlet eigenvalue A, ; of the linearized operator L defined in
(2.20)) admits the variational characterization

AL = min max &sL(v,v) (2.33)
where
(vw) = & p(vw) == &(v,w) — /f’(u)vw dx (2.34)
gg

is the bilinear form associated to L, ¥, denotes the family of n-dimensional subspaces of
Ky (B) and Sy :={v eV : |v[|j2p) = 1} forV € ¥,
To estimate A, ; from above, we wish to build test function spaces V by using the functions
d; introduced in Definition By Lemma and (2.32), we have d; € 7 (Q) for j =
1,...,N. Moreover, as a consequence of Corollary the values é‘;(vj ,dy) are well-defined
and satisfy

&1V, di)=0  forjk=1,...,N. (2.35)

We need the following key inequality.

Lemma 2.14. For j € {1,...,N} we have &1 (d;,d;) <O.

Proof. To simplify notation, we put k(z) = ¢(N,s)|z| V=2 for z € RN\ {0}. Since v/d; = d7 in
RN by definition of d ; and therefore

/ f(w)vid; dx= / f/(u)d; dx,
B B
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we have, by (2.33),
8,003, d5) = & 1(d;—v1,dy)

2//( —vJ (x) — (dj()’)—vf(y)))(dj(x)—dj(y))>k(x—y)dxdy

RN RN
=5 [ [ (#0500 + V10100~ 20,00,0) s ) sy
RN RN
In the following, we put
gj(xay) :k(x_y)_k(cj(x)_y) fOr)C’yE]RN,X#y.

Using the oddness of the functions v/ and d; with respect to the reflection o, we deduce that

&(d;d;) 2//<vf V)V (30)d;(x) — 2 () (y ))ej(x,y) dxdy

RN H]

-1 / / (Y0000 /00 0) = 20,1050 ) (50) ~ 5(2.30)) iy

-/ / ( )+ I0)0) = 20,00 0) ) 5 ). (2.36)
HJ H/
Here we used in the last step that
k(oj(x)—0oj(y)) =k(x—y)  and  k(0j(x) —y) =k(x—0;(y))
for x,y € RN, x # y and therefore
Ci(x,y) =;(x,0;(y)) = k(x = y) = k(0}(x) =) = (k(x = 0;(y)) —k(0;(x) — 0;()))
= 20;(x.y).
Next, we note that
Ci(x,y) = k(x—y) —k(oj(x) —y) >0  forx,y e H.. (2.37)
Moreover, we claim that the function
(%,y) = by, y) =V (x)d; () + v/ (9)d;(x) —2d(x)d;(y)
= (v (x) = d;(0))d; () + ( (v) = d’ (v))d(x)

satisfies ' 4
hj<0 and h;#0  onH{ xH{. (2.38)

Indeed, if yp(1) > 0, we have d; = (/)™ and therefore v/ —d; = —(v/)~ on H_{. Hence (2.38))
follows from (2.31). Moreover, if (1) <0, we have d; = —(v/)~ and therefore v/ —d; = (v/) "
on Hi. Again 1' follows from lb The claim now follows by combining (2.36)), li
and (2.38). O
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N
Lemma 2.15. Let a = (0,...,ay) € RN and d = Z o;d;. Then we have
j=1

éangd Z(X éaLd],d) 0.
J=

Moreover,

és1(d,d) <0 ifand only if  a#0, (2.39)
and therefore the functions d, . ..,dy are linearly independent.

Proof. We first note that
&(dj,di) =0 for j,ke {1,...,N}, j #k. (2.40)

Indeed, since u is radially symmetric, the function d; is odd with respect to the reflection o and
even with respect to the reflection o} for k # j. Hence, by a change of variable,

c¢(N,s dj(cj(y)) ) ( dk(0j(x)) —di(0j(y))
Bl R{R{ |o,»zx> —>o€<y>rfvj+% )
= [ £l d (o)) de(0)) dx
B
¢(N,s) dic(x) — di(y) ,

) / X >y|<N+2S )dxdy+ / £ () d; (¥)de (x) dlx

RN RN B
= —&s1(dj, dp).

N
Hence (2.40) is true. Now, for & = (aq,...,ay) ERN andd = ¥, ajd;, we have

j=1
N N
&o(d,d) = Z ;& 1(d),d)) +Za,aké‘;Ld],dk Z Ss(dj,dj) <0
j=1 Jk=1 j=1
J#k

by and Lemma Moreover, if a # 0, it follows from Lemma that &, (d,d) <
0, which in particular implies that d # 0. Consequently, the functions dj,...,dy are linearly
independent, as claimed. O

Lemma 2.16. The first eigenvalue 4, 1. of the operator L = (—A)* — f'(u) is simple, and the
corresponding eigenspace is spanned by radially symmetric eigenfunction @y ;. Furthermore,

é‘)&[‘(dj,(pl,[‘) =0 forj=12,--- N and A«I,L = gs,L(‘Pl,L,‘Pl,L) < 0.
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Proof. The simplicity of A, ; and the radial symmetry of ¢; ; are well known, but we recall the
proof for the convenience of the reader. The variational characterization of A; 7 is given by

gY,L(Va V)

= in = inf&(v,v) with M={ve I (B): |Vrww =1},
velg N VD M 0 L)

and the associated minimizers ¢ € M are precisely the L?>-normalized eigenfunctions of L cor-

responding ot A; 7, i.e., the [*-normalized (weak) solutions of

Lo=MX.,0 in%B, o¢=0 inRV\4A. (2.41)
Moreover, if ¢ € M is such a minimizer, then also |@| € M and

Mr=E&(0,0)>&(|0],|0]) > iAI}fgs,L(V, v) =1,

which implies that || is also a minimizer and therefore a weak solution of . By the strong
i inci is strictly posi-
tive in 8. Consequently, every eigenfunction @ of L is either strictly positive or strictly negative
in #. Consequently, A; ; does not admit two Lz—orthogonal eigenfunctions, and therefore A, ;.
is simple.
Next we note that, by a simple change of variable, if ¢ is an eigenfunction of L corresponding
to 7L]7L, then also ¢ o Z is an eigenfunction for every rotation % € O(N). Consequently, the
simplicity of A,z implies that the associated eigenspace is spanned by a radially symmetric
eigenfunction ¢ ;.
Next, using the radially symmetry of u and ¢@;; and the oddness of d; with respect to the
reflection o, we find, by a change of variable, that

RN RN
— [ 1/ (0;:0))di(03(0)91.(0(x)) dn
B
c(NV,s) (1) (@1L(x) —@1L(y) ,
R[Rl !x y[NF2s dXder%/f (u(x))d;(x) 1.1 (x)dx

=—&(dj, 1)

and therefore & (d;, 1) =0 for j=1,...,N. Finally, by Lemma and the variational
characterization of Az, we have A 1, = & 1.(@1 2, @1 1) <0, as claimed. O

Proof of Theorem[2.1{completed). Let @y 1 € (%) be an eigenfunction of L corresponding
to the first eigenvalue A; ;, as given in Lemma We consider the subspace

V = span{ @ 1,di,...,dy}.
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N
For oo € RN\ {0} andd = ap@1 1.+ ¥, @;d; €V, we then have, by Lemma[2.15(and Lemma[2.16
j=1

N N

Euld,d) =05 E (o, o1L) + &Y aid;, Y ajdj) <O0.
j=1 j=1
In particular, it follows that the functions ¢, z,d,...,dy are linearly independent and therefore

V is N + 1-dimensional. By (2.33) and the compactness of Sy = {v €V : [|[|;2(5) = 1}, it then
follows that Ay 1z < 0, which means that « has Morse index greater than or equal to N+ 1> 2,
as claimed. ]

2.5 The linear case

In this section we discuss the linear eigenvalue problem and complete the proof of Theo-
rem[2.2] In particular, we wish to recall a useful characterization of eigenvalues and eigenfunc-
tions of derived in [36]]. For this we need to consider the following radially symmetric
version of in general dimensions d € N:

{(—A)su =Au in BCR?
(2.42)

uc Ay (%), wuradially symmetric.

In the following, we let A;9 < A4 < ... denote the increasing sequence of eigenvalues of this
problem (counted with multiplicity).
The following characterization is essentially a reformulation of [36| Proposition 1.1].

Proposition 2.17. The eigenvalues of (12:71) in 8 C RN are of the form A = AN-200 With integers
£,n > 0. Moreover, if
Zy :={(t;n) : Anyoen =AY,

then the eigenspace corresponding to A is spanned by functions of the form

u(x) = Vio(x)@n+2en([x]),

where ((,n) € Zy, V; is a solid harmonic polynomial of degree { and x — Qni20,(|x|) is a
(radial) eigenfunction of the problem in dimension d = N + 2{ corresponding to the
eigenvalue Ay 2 p.

Here and in the following, a solid harmonic polynomial V of degree ¢ is a function of the
form V (x) = |x|’Y (ﬁ), where Y is a spherical harmonic of degree ¢. Hence V : RY — R is a
homogenous polynomial of degree ¢ satisfying AV = 0.

Regarding the eigenvalues A, of , it is also proved in [36, Section 3] that

the sequence (A,4) is strictly increasing in d > 1. (2.43)

Moreover,
Ain > Ao for every d,n > 1 (2.44)
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by the simplicity of the first eigenvalue of (2.42). Consequently, the first eigenvalue A; of (2.7)
equals Ay o, whereas the second eigenvalue A, of (2.7) is given as the minimum of Ay, and
AN 1.

Theorem is now a direct consequence of the following result, which we will derive from
Theorem 2.1l and from the observations above.

Theorem 2.18. We have Ayi20 < An,1. Consequently, the second eigenvalue Ay of is
given by Ay.20, and every corresponding eigenfunction u is antisymmetric, i.e., it satisfies
u(—x) = —u(x) for every x € A.

Proof. Suppose by contradiction that Ay = Ay1 < Ayi20. Then, noting that the only solid
harmonic polynomials of degree zero are the constants, it follows from Proposition that
admits a radially symmetric eigenfunction corresponding to A,. But then u is a radially
symmetric sign changing solution of with t — f(t) = At, so it must have Morse index
greater than or equal to N + 1. This contradicts the fact that A, is the second eigenvalue.

We thus conclude that A = Ay20 < Ay,1. Combining this inequality with and (2.44), we
then deduce that Z;, = {(1,0)}, and therefore the eigenspace corresponding to A, is spanned by
functions of the form x — V; (x)@n420(]x|), where V; is a solid harmonic polynomial of degree
one, hence a linear function, and x — @u,20(]x|) is an eigenfunction of the problem (2.42)
in dimension d = N + 2 corresponding to the eigenvalue Ay 0. Since every such function is
antisymmetric, the claim follows. O




3 Small order asymptotics of the Dirichlet eigenvalue problem for
the fractional Laplacian

This chapter is devoted to spectral asymptotics with respect to parameter s. We are concerned
with the study of small order limit s — 0" of the eigenvalue problem (3:3)) in a bounded open
set with Lipschitz boundary. while it is easy to see that all eigenvalues of (—A)* converges to 1,
we prove that the rate of convergence is linear in s, with speed determined by the eigenvalues
of the logarithmic Laplacian L,. Moreover, the set of L?-normalized Dirichlet eigenfunctions
of (—A)* corresponding to the k-th eigenvalue are uniformly bounded and converge to the set
of L?-normalized eigenfunctions for L,. The chapter is self-contained and can be read indepen-
dently. The content of the chapter has the same structure as the article [47]] except the missing
of acknowledgements. It is based on joint work done with Sven Jarohs and Tobias Weth.

3.1 Introduction

Fueled by various applications and important links to stochastic processes and partial differ-
ential equations, the interest in nonlocal operators and associated Dirichlet problems has been
growing rapidly in recent years. In this context, the fractional Laplacian has received by far
the most attention, see e.g. [[7,8L{15}/18L19}/24125]/68./84] and the references therein. We recall
that, for compactly supported functions u : RY — R of class C? and s € (0, 1), the fractional
Laplacian (—A)* is well-defined by

: u(x) —u(y) L(5 +5)
—A)’u(x) =Cyy lim / ————=>-dy, where Cy,=s4"—F—"—. 3.1

The normalization constant Cy  is chosen such that (—A)* is equivalently given by
T ((=A)u) = |- [* Zu, (3.2)

where, here and in the following, .% denotes the usual Fourier transform. We emphasize that
the fractional Laplacian is an operator of order 2s and many related regularity properties — in
particular of associated eigenfunctions — rely on this fact.

The present paper is concerned with the small order asymptotics s — 0T of the Dirichlet eigen-
value problem

{(—A) ¢, =A@, in Q, 43

o, =0 in Q°,

where Q C R" is a bounded open set with Lipschitz boundary and Q¢ := RV \ Q. It is well
known (see [87, Proposition 9] or [15, Proposition 3.1]) that, for every s € (0,1), (3.3) admits
an ordered sequence of eigenvalues

7(,1_’3 < kz,s < )G,s <... (3.4)
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with Ay — oo as k — oo and a corresponding L?-orthonormal basis of eigenfunctions Or,so k€ N.
Moreover, @ s is unique up to sign and can be chosen as a positive function.
The starting point of the present work is the basic observation that

(—A)’u—u as s — 0" for every u € C*(RV), (3.5)

which readily follows from (3.2) and standard properties of the Fourier transform (see also [33}
Proposition 4.4]. Similarly, we have

Es(u,u) — H””é(ﬂ@’) as s — 0T for every u € C}(RV), (3.6)

where &; denotes the quadratic form associated with (—A)* given by

(u,v) — &E(u,v) = v // ) () ~v(y)) dxdy.

’X y’N+25

RN RV

We remark that these convergence properties in the limit s — 0 extend to a non-Hilbertian
setting of quasilinear operators where the Fourier transform cannot be employed, see e.g. [2]
and the references therein. It is not difficult to deduce from (3.5]) that

Ms—1  ass— 0" forallk €N, (3.7)

see Section [3.2 below for details. However, there is no straightforward approach to obtain the
asymptotics of associated eigenfunctions as s — 0T since, as a consequence of and ,
no uniform regularity theory is available for the fractional Laplacian (—A)* in the case where s is
close to zero. For general bounded open sets with Lipschitz boundary, the only available result
regarding these asymptotics is contained in [29]], where Chen and the third author introduced the
Dirichlet problem for the logarithmic Laplacian operator L, to give a more detailed description
of the first eigenvalue A; ; and the corresponding eigenfunction @ 5 as s — 07. On compactly
supported Dini continuous functions, the operator L, is pointwisely given by

15 () —
Luu(x) :cN/”(x) ‘T;(i(yy;v uo) dy+ pyu(x), 3.8)
RN

where Cy = n*%l"(%), and py = 2log2 + y(¥) —y. Here, y = FT, denotes the Digamma
function, and y = —I"(1) is the Euler-Mascheroni constant.
We note two key properties of the operator L, shown in [29]]. If u € CE (RN) for some 8 > 0,
then

F (Lau) = 2log |E|.F (u)(E)  forae. & €RY, (3.9)

so the operator L, has the Fourier symbol £ — 2log|£|. Moreover,

I CAyu= fim S U

— =L in L” (RM) for 1 < oo, 3.10
ds 1s=0 s—0t k) alt mn ( ) ort<ps ( )

Hence, L, arises as a formal derivative of fractional Laplacians at s = 0. As a consequence
of (3.9), L, is an operator of logarithmic order, and it belongs to a class of weakly singular
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integral operators having an intrinsic scaling property. Operators of this type have also been
studied e.g. in [30,/561/57,60,|61}63-65.,(79], while the most attention has been given to Lévy
generators of geometric stable processes. These operators have a Fourier symbol of the form
& — log(1+|&|*P) with some B > 0. The particular case § = 1 corresponds to the variance
gamma process, and the kernel of the associated Lévy generator has the same weakly singular
behavior as the one of L,. The operator L, also arises in a geometric context of the O-fractional
perimeter studied recently in [32].

Using and related functional analytic properties, it has been shown in [29, Theorem 1.5]

that
Aisg—1

— My and @ — @ inL*(Q) ass—0T, (3.11)
P :

where A, ; denotes the principal eigenvalue of the Dirichlet eigenvalue problem

3.12
u=0 in Q, (312)

{LAM =Au in Q,
and @; 7 denotes the corresponding (unique) positive L?-normalized eigenfunction. Here we
note that we consider both and in a suitable weak sense which we will make more
precise below.

The main aim of the present paper is twofold. First, we wish to improve the L?-convergence
¢1s — @1 in (3.T1). For this, new tools are needed in order to overcome the lack of uniform
regularity estimates for the fractional Laplacian (—A)* for s close to zero. Secondly, we wish
to extend the convergence result from [29]] to higher eigenvalues and eigenfunctions. Due to
the multiplicity of eigenvalues and eigenfunctions for £ > 2, this also requires a new approach
based on the use of Fourier transform in combination with the Courant-Fischer characterization
of eigenvalues.
In order to state our main results, we need to introduce some notation regarding the weak formu-
lations of (3.3) and (3.12)). For the weak formulation of (3.3)), we consider the standard Sobolev
space

H3(Q) :={ueH*R") : u=00n Q°} (3.13)

and we call ¢ € ;' (Q) an eigenfunction of (3.3)) corresponding to the eigenvalue A if

£(@,v) :l/(pv dx  forallve 7(Q).

For the weak formulation of (3.12)), we follow [29]] and define the space
H2(Q) = {u ELXRY) : u=00nQ°, (u,u) 00 < +oo} (3.14)

where the quadratic form (-, -) 40.q) is given by

(u,v) = (U, V) 000 : // N)) =v() dxdy. (3.15)

!x yv

x,yERN
Pe—y[<1
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A function ¢ € %’60(9) is called an eigenfunction of (3.12) corresponding to the eigenvalue A
if
EL(p,v) = l/(pv dx for all v € 7 (Q),

where

(u,v) = EL(u,v) = (U, V) s000) — Cw //

x,ye€RY
—y[>1

|N dxdy+pN/uv dx (3.16)
RN

is the quadratic form associated with L,. For more details, see Section[3.2]below and [29].

The first main result of this paper now reads as follows.

Theorem 3.1. Let Q C RN be a bounded open set with Lipschitz boundary and let k € N.
Moreover, for s € (0, %) let Ay s resp. Ay 1, denote the k-th Dirichlet eigenvalue of the fractional
and logarithmic Laplacian, respectively, and let @y s denote an L*-normalized eigenfunction.
Then we have:

(i) The eigenvalue Ay satisfies the expansion

Mes =145k r+o(s) ass— 0" (3.17)

(ii) The set {@y : s € (0, 3]} is bounded in L (Q) and relatively compact in LP(Q) for every
p < oo,

(iii) The set {@s : s € (0,1]} is equicontinuous in every point xo € Q and therefore relative
compact in C(K) for any compact subset K C Q.

(iv) If Q satisfies an exterior sphere condition, then the set {@y, : s € (0,1]} is relative
compact in the space Co(Q) :={u € C(RY) : u=0 in Q°}.

(v) If (sx)n C (O, 4] is a sequence with s, — 0 as n — oo, then, after passing to a subsequence,
we have
Ors, — P asn— o (3.18)

in LP(Q) for p < oo and locally uniformly in Q, where @y, is an L*-normalized eigen-
function of the logarithmic Laplacian corresponding to the eigenvalue Ay .

If, moreover, Q satisfies an exterior sphere condition, then the convergence in (3.18) is
uniform in Q.

Here and in the following, we identify the space L (Q) with the space of functions u € L” (RY)
with u = 0 on Q°.

Remark 3.2. (i) Theorem [3.1] complements [29, Theorem 1.5] by emphazising the rele-
vance of higher Dirichlet eigenvalues and eigenfunctions of L, for the spectral asymp-
totics of the fractional Laplacian as s — 0. We note that upper and lower bounds for
the Dirichlet eigenvalues A4 ;. of the logarithmic Laplacian and corresponding Weyl type
asymptotics in the limit k — 4o have been derived in [[72]] and more recently in [28].
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(i) The number i in the above theorem is chosen for technical reasons, as it allows to reduce
the number of case distinctions in the arguments. In the case N > 2, it can be replaced by
any fixed number smaller than 1, and in the case N = 1 it can be replaced by any fixed
number smaller than % Since we are only interested in parameters s close to zero in this
paper, we omit the details of such an extension.

As noted already, the principal eigenvalue A, ((Q) admits, up to sign, a unique L>-normalized
eigenfunction which can be chosen to be positive. Hence Theorem and [29| Theorem 1.5]
give rise to the following corollary.

Corollary 3.3. Let Q C RY be a bounded open set with Lipschitz boundary and let, for s €
(0, i], @1 5 denote the unique positive L*-normalized eigenfunction of (—A)* corresponding to
the principal Dirichlet eigenvalue Ay 5. Then we have

Q15— Q1L ass— 0" (3.19)

in LP(Q) for p < o and locally uniformly in Q, where @, 1 is the unique positive L*-normalized
eigenfunction of L, corresponding to the principal Dirichlet eigenvalue A 1.

If, moreover, Q satisfies an exterior sphere condition, then the convergence in (3.19) is uniform
in Q.

As a further corollary of Theorem we shall derive the following regularity properties of
eigenfunctions of the logarithmic Laplacian.

Corollary 3.4. Let Q C RY be a bounded open set with Lipschitz boundary, and let ¢ € ] (Q)
be an eigenfunction of (3.12). Then ¢ € L= (Q) NCyc(Q). Moreover, if Q satisfies an exterior
sphere condition, then ¢ € Co(Q).

Remark 3.5. We briefly comment on the main steps and difficulties in the proof of Theorem3.1]
The first step is to prove the asymptotic expansion and the L?>-convergence property as-
serted in Theorem [3.1(v). Then, we prove the uniform L*-bound on eigenfunctions as stated
in Theorem [3.1[(ii). For this, we use a new technique based on the splitting of the integral over
RY on a small ball of radius § (8-decomposition) and apply known results and conditions as-
sociated to the newly obtained quadratic form as in [43}/61]]. We emphasize that this technique
strongly simplifies the general De Giorgi iteration method in combination with Sobolev embed-
ding to prove L”-bounds. We also point out that this §-decomposition method is applicable for
general nonlocal operators and allows to get explicit constants for the boundedness.

As a third step, we prove the local equicontinuity result stated in Theorem [3.1{iii). A natural
strategy of proving this result is to first obtain a locally uniform estimate for the difference

) —id]

Pre.s (3.20)
and then to use the local regularity estimates available for the class of weakly singular operators
containing L,, see e.g. [63] and the references therein. However, we are not able to obtain uni-
form estimates for the difference in (3.20). Therefore we first prove uniform bounds related to
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an s-dependent auxiliary integral operator family instead (see Lemma[3.20]below), and then we
complete the proof by a direct contradiction argument. We recall here that regularity estimates
for (—A)* alone, even those with explicit constants, cannot yield sufficient uniform control on
continuity modules of the functions ¢y ; since (—A)* converges to the identity operator, as noted
in (3.5). Once local equicontinuity is established, we then prove, assuming a uniform exterior
sphere condition for €2, a uniform decay property in the sense that there exists, for every fixed
k € N, a function hy € Co(€2) with the property that |@ 5| < i in Q for all s € (0, 1]. This will
be done with the help of a uniform small volume maximum principle and uniform radial bar-
rier function for the difference quotient operator PA)#, see Section below. We point out
that the lack of uniform estimates for the difference in (3.20) prevents us from using directly
the boundary decay estimates in [64] and [29, Section 5]. On the other hand, the estimates
in [64] allow to deduce, together with Corollary that every eigenfunction ¢ € %O(Q) of

L, satisfies
9(x)| = 0((—lndist(x, QC))“/Z) as x — 9Q

at least in the case when the underlying domain Q is of class Cl''. As a consequence, we
conjecture that also the majorizing functions /; above can be chosen with the property that

hi(x) ~ (—Indist(x,Q°)) 2 asx - 9.

The paper is organized as follows. In Section [3.2] we collect preliminary results on the func-
tional analytic setting. Moreover, we prove the asymptotic expansion and the L*- con-
vergence property asserted in Theorem [3.1[(v). In Section [3.3] we prove the uniform L*-bound
on eigenfunctions as stated in Theorem [3.1](ii). In Section [3.4] we then prove the local equicon-
tinuity result stated in Theorem [3.1[(iii). In Section [3.5] we prove, assuming a uniform exterior
sphere condition for Q, a uniform decay property for the set of eigenfunctions {¢y , : s € (0, %] }.
Combining this uniform decay property with the local equicontinuity proved in Section[3.4] the
relative compactness in Co(€) then follows, as claimed in Theorem [3.1{iv). In Section[3.6] we
finally complete the proof of the main results stated here in the introduction.

N
Notation. We let woy_; = 1%@7) = % denote the measure of the unit sphere in RN. For a set
A CRY and x € R, we define &4 (x) := dist(x,A°) with A° = RV \ A and, if A is measurable,
then |A| denotes its Lebesgue measure. Moreover, for given r > 0, let B,(A) := {x € RV :
dist(x,A) < r}, and let B,(x) := B,({x}) denote the ball of radius r with x as its center. If x =0
we also write B, instead of B,(0).
For A C RV and u: A — R we denote u™ := max{u,0} as the positive and u~ = —min{u,0} as
the negative part of u, so that u = u™ — u~. Moreover, we let

oscu:=supu—infu € [0,
s upu —in [0, 0]

denote the oscillation of u over A. If A is open, we denote by C¥(A) the space of function
u: RN — R which are k-times continuously differentiable and with support compactly con-
tained in A.
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3.2 First order expansion of eigenvalues and L*-convergence of eigenfunctions

In this section, we first collect some preliminary notions and observations. After this, we com-
plete the proof Theorem 3.1(i), see Theorem [3.15] below.
For s € (0,1), we use the fractional Sobolev space H*(R") defined as

i 2
H'(RY) = {ueLZ(RN) : / dedy<oo}, (3.21)
RNRN

with corresponding norm given by

=

|u(x)
P W - +// ‘Nm " aay| (3.22)

We recall that this norm is induced by the scalar product
(u,v) = (V) s vy = (V) 2wy + E5(u,v),

where

e // |x yf;g_V(y)) dxdy:/l@lzsﬁ(é)ﬁ(é)dé (3.23)

RN

for u,v € H*(RY) and the constant Cy  is given in (3.I). The following elementary observations
involving the asymptotics of Cy ; are used frequently in the paper.

Lemma 3.6. With Cy =7 :T(}) = ;2
duction, we have

=2log2+ () — y as defined in the intro-

C wy-_1C
Ns - ZVENS — pbspy+o(s)  ass— 0T (3.24)
sCn 2s

Consequently, there exists a constant Dy > 0 with

CNv

‘1 - forse (0, %]. (3.25)

< sDy and therefore ‘CN

Proof. The function
C r N

sCN r(3)r-—s)

is of class C! on [0, 1) and satisfies 7(0) = 1 and 7/(0) = py. Hence (3.24)) follows, and (3.25) is
an immediate consequence of (3.24)) and the fact that the function s — Cy 4 is continuous. [
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In the remainder of this paper, we assume that Q C R¥ is an open bounded subset with Lipschitz
boundary. As noted already in the introduction, we identify, for p € [1, 0], the space L? () with
the space of functions u € LP(RV) satisfying u = 0 on Q.

For s € (0,1), we then consider the subspace () C H*(R") as defined in (3.13). Due to
the boundedness of Q, we have

A15(Q):= inf M>o (3.26)
uei@éQ)HuHLQRN)

so we can equip the Hilbert space .7’ () with the scalar product &; and induced norm
1
u— Hu||%s(g) = & (u,u)2.
Moreover, 5 (Q) is compactly embedded in L?(Q), C2(Q) is dense in S (Q), and we have

Es(u,v) = /u(x)(—A)sv(x) dx for all u € H*(R") and v € C*(R"),
RN

see [33]. We now set up the corresponding framework of problem (3.12) for the logarithmic
Laplacian. We let as in the introduction, see (3.13), (3.14),

H(Q) = {u e L2(RY) : u=0onQ° and // dedy < —i-OO}. (3.27)

vV
xyERN
[r—yl<1
Then the map
C u(x)—u v(x)—v
(u,v) = (U, V) 00(0) = 7N // ((x) |())c})—)(y|1(\’) 0)) dxdy, (3.28)
x,yeRN
Pr—y[<1

is a scalar product on 5%(Q) by [43, Lemma 2.7], and the space .7} () is a Hilbert space.
Here, Cy = n7 V20 (§) = ﬁ is as in the introduction. We denote the induced norm by

| - [|¢0()- Moreover, by [30, Theorem 2.1]),
the embedding 7" (Q) — L*(Q) is compact, (3.29)

and the space C?(Q) is dense in 5%(Q) by [29, Theorem 3.1].

Remark 3.7. We stress that, despite the similarities noted above, #(Q) should not be con-
sidered as a limit of the Hilbert spaces JZ(Q) as s — 0. In particular, it is not the limit
in the sense of [[71]]. Instead, the space %’60(9) arises naturally when considering a first oder
expansion of (-, ) gs(rw), cf. Lemma below.
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Next we note that, setting

ulx)v
éEo(u,v) = (u,v)%o(g) —Cy // \)E—)y(\)’i’) dxdy+pN/uv dx (3.30)
x,yeRN RN
S

with py = 2log2 + y/(%) — v as in the introduction, we have

Eo(u,v) = /u(x)LAv(x) dx foru € /) (Q)andv € CH(Q),
Q

see [29]]. In order to get a convenient parameter-dependent notation for the remainder of this
section, we now put

L’ =(—A) forse (0,1) and L°=L,

Then, for s € [0,1), we call A € R a Dirichlet-eigenvalue of L* in Q with corresponding eigen-
function u € I’ (Q) \ {0} if

(3.31)

L'u=Au inQ
u=0 inQ°,

holds in weak sense, i.e., if

(1, ) = l/mp dx  forall y € Z(Q).
Q

In the following Proposition we collect the known properties on the eigenvalues and eigenfunc-
tions of the fractional Laplacian and the logarithmic Laplacian, see e.g. [|15, Prosition 3.1] and
the references in there for the fractional Laplacian and [29, Theorem 3.4] for the logarithmic
Laplacian.

Proposition 3.8. Let Q C RY be an open bounded set with Lipschitz boundary, and let s € [0,1).
Then the following holds:

(a) The eigenvalues of problem (3.31)) consist of a sequence { Ay s(Q)}ren with
0<A15(Q) <As(Q) <o+ < Ns(Q) < Ayp15(Q) < -+ and ]}im s (Q) = oo
—»00

(b) The sequence { @y s}ren of eigenfunctions corresponding to eigenvalues Ay () forms a
complete orthonormal basis of L*(Q) and an orthogonal system of g (Q).

(c) Foranyk € N, the eigenvalue Ay (Q) is characterized as
T (@) = min { & (1) s w € Pyy(Q) and ulpzy =1},
where Py ((Q) = A (Q) and

Prs(Q) = {u € A5 (Q) : &(u, ;) =0for j=1,--- k—1} for k> 1.
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(d) The first eigenvalue Ay () is simple and the corresponding eigenfunction @y s does not
change its sign in & and can be chosen to be strictly positive in Q.

Remark 3.9. (i) The characterization in Proposition c) implies that A; (), as defined in
(3.26), is indeed the first Dirichlet eigenvalue of (—A)* on Q, so the notation is consistent.

(ii) We emphasize that in the case s = 0 the eigenvalues A ¢ and corresponding eigenfunctions
¢x o for k € N are also denoted by Ay z, and @y 7, resp. as in the introduction for consistency.

(iii) By the Courant-Fischer minimax principle and due to the density of C2(Q) in 7 (Q), the
eigenvalues Ay, s € [0, 1), k € N can be characterized equivalently as

A s(Q) = inf max  &(v,v) = inf max  &s(v,v). (3.32)
’ VCHE(Q) vev\{0} vcei(Q) vev\{0}
dimV=k HVHLZ(Q):l dimV=k HVHL2(Q =1

This fact will be used in the sequel.
Next, we need the following elementary estimates.

Lemma 3.10. For s € (0,1) and r > 0 we have

‘ r2s

2s

1
< 2(J 10, (r) + 110 () (3.33)

and

I
| = 210gr| <45 (102110, + 11y () (3.34)

N

Proof. Fix r > 0 and let h.(s) = r*, r > 0. Then we have h.(t) = 2r*"Inr and /(1) =
472 In%(r) for T > 0. Consequently,

2s_1
S

A
2|1
): |In7] /rzrdT§2]lnr\max{l,r2S} g2(|1nr]1(071](r)+1(17w)(r)r4>,
s

where in the last step we used that r2 < 1forr <1 and, since s < 1,
Plnr <A </ forr> 1.

Hence (3.33)) is true. Moreover, by Taylor expansion,

N
h(s) = 1 +sh.(0) +/h;’(r)(s— T)dt =1 +2s1nr+41n2r/r27(s— 7)dt
0

and therefore

/ (s—1) d’c < 4s1n’(r)max{r*,1}.
0
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Hence (3.34) follows since for r € (0,1] we have > < 1 and, since s < 1,

Pl r <>t <4 forr> 1.

O
Lemma 3.11. For every u € C2(Q) and s € (0,1) we have
s 0) = (a2 gy | < 2S(KNHuIIi1 ')+ IIAulliz(Rw)) (3.35)
and
) — [l 22 g —sé"o(u,u)‘ < 452<KN||M\|§1 — ||Au\|§z(RN)) (3.36)
with Ky = 271) ™ [, ) I0*|§] d&.
Proof. Letu € C3(Q) and s € (0,1). By (3:23) and (3.33), we have
() = ] 22 / [1EP— 1] a(€)[2a
<2s( [ migla@)Pas+ [ 161 1aE)Paz)
BI(O RN\BI
2(A In|€]| d& + || Aul)?
<2s([|all 7@y [ [I0]&][dE + [|Aulf gy,
B1(0)
<25(m) Ml gy [ 10°1E1 8+ 18wl ).
B1(0)
Thus (3.33) follows. Moreover, by @ we have
(u10) = ||| 22 vy — 560, u) /ng G(E) e
<a( [ wigla)Pa+ [ jEfac)rag)
B1(0) RN\B,
<4 (Il [ 102 E1d8 + |aul )
B1(0)
<452 (2m) ™ / In? |&]dE + [ Aulf?s g, )
B1(0)
Hence (3.36)) follows. O
Lemma 3.12. For all k € N we have
k N Q)—1 7L s Q)—1
Aio(Q) < limin s =1 limsupM < ho(Q) (3.37)
s—0t s s—0+ s
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and

Ms(Q) <1+sC  forallse (0,1) (3.38)
with a constant C = C(N,Q, k) > 0.

Proof. We fix a subspace V C C2(Q) of dimension k and let Sy := {u €V : lull20) = 1}
Using (3.32)) and (3.35)), we find that, for s € (0, 1),

Aes(Q) —1 < max Es(uyu) — 1

< <C (3.39)

S ueSy S
with
C=C(N,Q,k) = 2maX(KNHuHi1(RN) + HAM”%Z(RN)>.
ueSy

Hence (3.38) holds. Technically speaking, the constant C depends on the choice of V, but V
can be chosen merely in dependence of Q. Moreover, setting Z;(u) = M — &o(u,u) for
u € C2(Q), we deduce from (3.39) that

(Q)—1
M (@) —1 < max &y (u, u) - max |25 ()]
ucdy

N ueSy

while, by Lemma[3.11]
1%, (u)| < 4s(KN\|u||§, — |yAu||§2(RN)) 50 ass— 0" uniformly in u € Sy.

Consequently,
Ais(Q)—1
limsup s (@) =1 < max &y (u,u).
s—0T S ueSy
Since V was chosen arbitrarily, the characterization of the Dirichlet eigenvalues of the logarith-

mic Laplacian given in (3.32) with s = 0 implies that

Aes(Q)—1
limsupk’s(i) < inf max &7 (u,u) = A o(Q), (3.40)
s—0+ N VcCi(Q) , uEV
dim(V):lc“”HL2(Q):1
In particular, the last inequality in (3.37) holds. Moreover, since A (Q) > A () for every
k € N and

As(Q)—1
lim M1 Mo(Q)
s—0F s i
by [29, Theorem 1.5], the first inequality in (3.37)) also follows. O

Corollary 3.13. For all k € N we have 1i%1+ Aes(Q) = 1.
Ned
Proof. This immediately follows from (3.37). ]

Lemma 3.14. Let k € N, 59 € (0,1), and let, for s € (0,50), @rs € H5(Q) denote an L2
normalized eigenfunction of (—A)* in Q. Then the set

{@rs : s €(0,50)}

is uniformly bounded in 7} (Q) and therefore relatively compact in L*(Q).
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Proof. By (3.38), there exists a constant C = C(N,Q,k) > 0 with the property that

— _ _ 2
c> M@ =1 Gl Prs rs) =1 _ Civs / [Pes ) = Qs O )y L
s s 2s |x — y|N+2s
RN RN

Cn s |5 (%) — @rs () Prs (%) Prs ()
= — : : —— " dxd 341
] e ey ), GAD

i< i1

where, due to the L2-normalization of Ok 55
1 ) 1 1 (CnsOn—1
In(s) = S (CN7S/ | @r s (%) / Wdydx— 1) =3 <2S - 1> . (342
Q R¥\B (x)
Therefore, using the definition of || - || #9(0)» We deduce that

C> CNs

CN,s / |(Pk,s(x)(pk,s(y)|

@ [ —y V2 dxdy+ fi(s), (3.43)

Pe—y[>1

where, by Holder’s inequality,

' s\ X s ' ' s
J[ Pty < [ [ 2L i<l =

[x—y|>1 Q QN{lx—y[>1}

using again the L?-normalization. Combining this with (3.43), we find that

SCN

2
90l < - (€191 = fiu(s)).

Since moreover ZCN — 1 and fy(s) — pny as s — 07 by Lemma we conclude that there

exists a constant K = K(N,k,Q) > 0 and s; € (0, 1) such that

quk_,SH(%o(Q) <K forallse (0,s)).

Consequently, the set {@x : s € (0,s1)} is uniformly bounded in 74°(Q) and thus relatively
compact in L?(Q) by (3.29). Hence the claim follows for s < s1.
If 59 € (51, 1), we can use the fact that by (3.38]) we have, for s € [s1, 0],

14C > My (Q) = E( Qs Prs) = //"”k‘,x y|,‘5_ﬁ;s I ey

CNS /\(pks — Qs ()]

_ Cyy 2
T dxdy = CiNH‘Pk,sH%O(Q)

\x yI<1
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with a constant C = C(N,Q,k) > 0 and hence

sup H‘Pk,s”i%o(Q)SCN(l—FC) sup < oo,

SE[s1,50] S€E[s1,50]

CN K

We thus conclude that the set {@ : s € (0,50)} is uniformly bounded in 7#’(Q) and thus
relatively compact in L2(Q) by (3.29), as claimed. O

We finish this section with the the following theorem which, in particular, completes the proof
of Theorem [3.2(i).

Theorem 3.15. For every k € N we have
= A o(Q). (3.44)

Moreover, if (s,)n C (0,1) is a sequence such that lim s, = 0 and @y, is an L>-normalized
n—oo !

Dirichlet eigenfunction of (—A)* corresponding to the eigenvalue Ay s(Q), then, after passing
to a subsequence,
Pes — Qo inL*(Q) asn— oo,

where @y is an L*-normalized Dirichlet eigenfunction of the logarithmic Laplacian corre-

sponding to A o(Q).

Proof. To establish (3.44)), it suffices, in view of (3.37), to consider an arbitrary sequence
(8n)n C (0,1) with lim s, = 0, and to show that, after passing to a subsequence,
n—oo

m M, () =1 Mio(Q)  forkeN. (3.45)

n—yoo S

Let { ¢y, : k € N} be an orthonormal system of eigenfunctions corresponding to the Dirichlet
eigenvalue A, () of (—A)*. By Lemma it follows that, for every k € N, the sequence
of functions @, n € N is bounded in .7 (Q) and relatively compact in L?(Q). Consequently,
we may pass to a subsequence such that, for every k € N,

Oks, — Qo weakly in ,%’60(52) and @, — @0 strongly in LZ(Q) as n — oo, (3.46)

Here a diagonal argument is used to have convergence for all k € N. Moreover, by (3.37) we
may, after passing again to a subsequence if necessary, assume that, for every k € N,

Ais, () — 1

Sn

LA e ll,o(Q),/lkp(Q)} as n — oo, (3.47)

To prove (3.43), it now suffices to show that

Aeo(Q) = A for every k € N. (3.48)
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It follows from (3.46)) that
||(Pk,0||L2(Q) =1 and <(Pk,07 (PI?,0>L2(Q) =0 fork,0 e N, ¢ # k. (3.49)
Moreover, for w € C2(Q) and n € N we have

(Opsn ((pkysn Y W) = A'k;sn (Q) <(pk7sn ? W)LZ(Q) (3'50)

and therefore, by [29 Theorem 1.1 (i)],

A (Q)— 1 1
tim 22 )iy = Jim L (6900 ) — (9100
) —A)Srw —w
= lim <(Pk,s,17 ()sn>L2(Q) = (@10, Law) 12(0) = EL(Pr 0, W)

Since moreover (@ s,, W) 12(q) — (k0. W)2(q) for n — o, it follows from that
EL(P0sw) = 4 (@0, W) 2y Torallw € C2(Q). (3.51)

Thus ¢y o is a Dirichlet eigenfunction of the logarithmic Laplacian L, corresponding to A"
Next, for fixed k € N, we consider Ej o := span{@; o, 920, , @0}, Which is a k-dimensional
subspace of 7(Q) by (3.49). Since

MM <. <K

as a consequence of and since A; 5, < Aj, for 1 <i < j<k,neN, we have the following

k
estimate for every w = Y o;@;0 € Exo with o,---, 04 € R:
i=1
k k
Eo(w,w) = Y 040 60(9i0,90) = Y, Ci0AT (@10, 9j0)12(q) (3.52)
ij=1 ij=1
S 2 s 2
=Y A N 9iolliag) < A Y & = AWl q)- (3.53)
i=1 i=1

The characterization in (3.32)) now yields that

Aky()(Q) S max go(W,W) < )L,:
WGEk,O

HWHL2<Q):1

Since also A < A40(Q) by (3.47), (3.48) follows. We thus conclude that (3.45) holds. More-
over, the second statement of the theorem also follows a posteriori from the equality A} =
Ao(€), since we have already seen that @ 5, — @ in L%(Q), where ¢y is a Dirichlet eigen-
function of the logarithmic Laplacian L, corresponding to the eigenvalue A;". The proof is thus
finished. O
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3.3 Uniform L”-bounds on eigenfunctions

Through the remainder of this paper, we fix k € N, and we consider, for s € (0, ] eigenfunc-
tions @ := @, of (—A)* in Q corresponding to A, := A4 ;. Furthermore, we assume that ¢
is L>-normalized, that is | @] 12(q) = 1 for all s € (0, 1]. The main result of this section is the
following.

Theorem 3.16. There exists a constant C = C(N,Q, k) with the property that ||¢s|| = (o) < C for
all s € (0, 3.

To prove this result, we use a new approach based on a so-called §-decomposition of nonlocal
quadratic forms.

For § > 0 and u,v € H*(RY), we can write

() = €3 (u,v) + CNs // EE) =v0)

‘X y‘N+2Y

Ix y|>8
= E2(u,v) + K 5 (10, v) 2mm) — (kg % 1, V) 12y

with the 6-dependent quadratic form

) () —v(y)
(u,v) = & (u,v) // |x Js dxdy,
\x y|<8
the function kg s = C s lav 5,0 | | % € L'(RY) and the constant

CnsOn-16%

Kss = 2

In particular, this decomposition is valid if Q C R" is a bounded Lipschitz domain and u,v €
A5 ().

Proof of Theorem[3.16] Let 8 € (0,1), ¢ > 0, and consider the function w, = (¢;—¢)" : Q - R
for s € (0,1). Then w, € 7 (Q) by [60, Lemma 3.2]. Moreover, for x,y € RV we have

(@5(x) = @5 () (we(x) —=we(¥) = ([@5(x) — ] = [@s(y) — c]) (We(x) —we(y))
= [@s(x) = c]we(x) +[@5(¥) — c]we(y) — [@5(x) — c]we(y) — we(x) [@s(y) — €]
w2 (%) +we () = 2we()we () + [95(x) — ] we(y) +we () [@s(y) — ]~
W (x) + w2 (y) = 2we () we(y) = (we(x) —we(y))?,

which implies that

>

g8 CNs ))2d J 3.54
(WL 9 WL - |x y|N+2S X y ( M )
|X y|<é
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Cn.s (@5(x) = @5(y)) (we (x) —we(y))
S 2 ‘ _/|[3 ’x_y’NJrZs dXdy

= Cgoss((PSaWc) = (@5, we) — K6,s<(Ps>WC>L2(Q) + (ks s * @y 7WC>L2(Q)
= (As — K5,5) (@5, We)r2(q) + (ks s % O, We) 12(0) = 85 (5) (@5, We) 12(0) + (ks s % @5, We) 12(q)
with the function

Cysn-—167%

o (3.55)

g5:(071)_>R7 gS(s):/ls_K&s:)vs_

Since Ay = 1+ Azs+o(s) by Theorem|3.15] where A;, = A4 o denotes the k-the eigenvalue of the
logarithmic Laplacian, and

CnsWn-_18%
2s

by Lemma [3.6] we have

=1+ (pv+2In8)s+o(s) ass — 07"

g5(s) = (AL —py+2In8)s+o(s) ass—0".

Here the remainder term o(s) depends on & > 0. Nevertheless, we may first fix o € (0,1)
sufficiently small such that A, — py +2Ind < —1, and then we may fix sy € (0, %] with the
property that

gs(s) < —s<0 foralls e (0,s]. (3.56)

Since also @g(x)we(x) > cw(x) > 0 for x € Q, s € (0, 50], we deduce from (3.54) that

é‘;ﬁ (We,we) < /[k(;_’s * Qg — sclwedx < (||k5js * (pSHLm(Q) — sc) /wc dx. (3.57)
Q Q

Here we note that, by Holder’s (or Young’s) inequality,

k5.5 * @sllz=@) < llks sl v 195l 2 () = ks sl 2

with 5 o
ks sll 2 ) :chx< / [y 2N dy> _ CN’S\a;’i ;
RY\B N +4s
Since l N
d:= sup Hk‘s’suﬂ — sup Cys0F (8272 .

s€(0,s0] s 5€(0,50] sv/ N +4s
we deduce from (3.57) that for ¢ > d and s € (0,50] we have

0< & (weywe) < s(cf—c)/wcdxg 0
Q
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and therefore &% (w,,w.) = 0. Consequently, w, = 0 in Q for s € (0,s0] by the Poincaré type
inequality given in [43, Lemma 2.7] . But then ¢(x) < c a.e. in €, and therefore

sup |9 [|1=(q) < c.
s€(0,50]

Repeating the above argument for —¢ in place of ¢, we also find that sup |[@; [|;=) < ¢

s€(0,50]
and therefore
sup [|@sl[z=(0) < c. (3.58)
s€(0,50]
It remains to prove that
sup | @l =) < o°. (3.59)
se[so,%]

To see this, we argue as above, but with different values of 6 € (0,1) and ¢ > 0. For this we
first note that, by (3.53), we may choose § € (0,1) sufficiently small so that (3.56) holds for
s € [so, 5] With this new value of & and d redefined as

1 N
- k Cys02 672
Ji= sup s sl 2y _ sup NSO o

se[so,ﬂ s Se[m"%] S\/m

we may now fix ¢ > d and complete the argument as above to see that also

sup [|@s||z=() < c
se[so,ﬂ

Hence (3.39) holds. The proof is now finished by combining (3.38) and (3.39). O

3.4 Local equicontinuity

This section is devoted to prove local equicontinuity of the set {¢, : s € (0, %]} in Q. The
first step of the proof consists in deriving s-dependent Holder estimates for the functions with
uniform (i.e., s-independent) constants as s — 0". As a preliminary tool, we need to consider
the Riesz kernel

sT(5 —s)

FRVA{OY = [0,00),  Fy(z) = knsle/™ ™ with Kky,=-— 2 2.
W0} = [0.0), R =Rl Y with k= o

(3.60)

The following two lemmas contain estimates which are essentially standard but hard to find
in the literature in this form with s-independent constants. For closely related estimates, see
e.g. [90, Section 2] and [|69} Section 7].

Lemma 3.17. Let s € (0, 1], r € (0,1) and f € L(B,). Moreover; let

u RY SR, up(x) ::/Fs(x—y)f(y) dy. (3.61)
B,
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Then us € C*(RN)NL>(RY), and there is a constant C = C(N) > 0 such that
Jup(x) —ur ()| < CP| fll=(w,) e =y for all x,y € RY. (3.62)
If, moreover, f € C*(B,) for some a € (0,1 —s), then we also have
Jup(x) —ur () < Cr | fllcax=yI"*  forx,y € Bsya (3.63)
after making C = C(N) larger if necessary.

Proof. For x € B; we have

(rx) /F rx—y)f dy—r /Fx 2)f(rz) dz,

so that we may assume » = 1 in the following. Next, we recall the following standard estimate:

T
/\x—zIT_Ndz < /Iz\T_Ndz = wNTI foreveryr >0, 7€ (O,N) andx e RV, (3.64)

From this we deduce that u; € L*(RY) with

_ Kn,s ON—1
o pll vy < 1fllz=(sy) Kvs sup [ e—y[PNdy < HfHL"“(Bl)‘zi
X€ERN
By
F(ﬁ —S)CON_l
2 1 fllz=(8,) < Cill fllz=(8)) (3.65)

- 225+17IN/2F(1 —i—s)
with a constant C; = C(N) independent of s € (0, ;). Next, by e.g. [42, Eq. (A.3)] we use

N-2
Yla—bl @V +5N) <Ja— b (@ N +5Y) fora,b>0. (3.66)
S

|a2s7N . b2s7N’ <
N —

With this estimate and (3.64)), we deduce that

lu(x+h) —u(x)| = /( WX —z+h)— F(x—2))f(z) dz
B
< |h‘SHfHL°°(Bl)KN,s/(‘x—z—h’S_N_|_ |X—Z’S_N) dz
By
M oy T(Y —s)

) Al = M,V/z—F()HfHLm(BI)\hV for x,h € RV,

Hence there is C; = C(N) independent of s € (0, 1] such that

u(x+h) —u(x)| < G| fll=s|hl*  forallx,h € RY. (3.67)
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We thus deduce (3.62).

Next we assume that f € C%(B;) for some o € (0,1 —s), and we establish (3.:63) in the case
r=1.

We choose a cut-off function n € CZ(RV) with0 <1 <1,n=1onB;/gandn =0onR"\By.
We then define w € C%(RY) by w(x) = n(x) f(x) for x € B; and w(x) = 0 for x € RV \ By. Then
ur(x) = ui(x) 4 up(x) for x € By with

w(@ = [Ra-(1-n@)f@dz= [ RE-20-n@)f() dz
By Bi\Bys
and
up(x) = /Fs(x—z)w(z) dz  forxcRM.
RN

Since |x —z| > g for x € B34 and z € By \ Byg, for all € NZ, |B| < 1 we have

()] = | [PFx=2(1 = (@) de] < 1l |° Fll s,
B

2

2
< ||f||L“(Bl)KN,s(ON71((N—ZS) /125—2 dt+/t2S—1 dt)

1/8 1/8
2

< | fllz=B,) kv s@On—1 (N +2) /th*2 dt <G| f||=(8,)
18

for x € B34, s € (0,1) with a constant C3 = C3(N) > 0. Hence u; € C'(B34), and
ur (x) =1 (V)| < G| fll=(s,) | x—y|  forall x,y € B34. (3.68)
To estimate uy, we first note that, by the same estimate as in (3.63)), we find that
luzll =8,y < Cllwllz=,) < Cll fllz=(8,)- (3.69)

Moreover, we write 8,w(x) = w(x+ h) —w(x) for x,h € RV. Since w has a compact support
contained in By and 1 is smooth, there is C4 = C4(N) such that

|80 (x)| < Call fllcazyyh|*  for allx,h € RY.

For x,h € RV,

h| <1 we now have, by (3.66) and since d,w is supported in By,
|uz (x +2h) —2uz (x +h) +uz (x)|

=|8fuz(x)| =

/@a@—@@w@dz
RN

/&E@—@&w@dz
B>
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< Nl ey [ (== A+ =2 ) dz
B>

Using now (3.64) again, we deduce that
|tz (x +2h) — 2uz (x +h) +uz (x)|

C4(DN_12S+1F(% —S)
4S7TN/2F(1+S) HfHCO‘(Bl)

KN, s s s
< sy 2| e 111 = 1],

Hence there is Cs = Cs(N) such that
|z (x4 2h) — 2u (x +h) + uz (x)| < Cs | fl] co ) |1 * forallx € RY, |h| < 1. (3.70)

By (3.69), we may make Cs > 0 larger if necessary so that (3.70) holds for all x,2 € R". Since
a +s < 1 by assumption, it now follows, by a well known argument, that

|z (x4 ) — ua(x)| < Cél| fl gy B * for all x,h € RY (3.71)

with a constant Cg = Cg(N) > 0. For the convenience of the reader, we recall this argument in
the appendix. The estimate (3.63)) now follows by combining (3.68)) and (3.71). O

Lemma 3.18. Let r > 0, f € L”(B,), and suppose that u € L(RY) is a distributional solution
of the equation (—A)*u = f in B, for some s € (0, %] Moreover, let uy : RN — R be defined as
in (3.61), and let u, := u—uy.

Then we have the estimate

0.8) =100 < ClemyP* (el +r I lrs))  fornyeBy G2
with a constant C = C(N) > 0.

Proof. By scaling invariance, it suffices to consider the case r = 1. In this case, we may follow
the proof of [59, Lemma A.1], using the fact that u. solves the problem

(=AY u, =0 inB, wu.=u—us inRYV\B,.
Using the corresponding Poisson representation of u,, it was shown in [59, Proof of Lemma
A.1] that

u\z
) =0 < etle sl (s [ et liay)  forxy By 37
RV\B,

|
(Iz

with a constant ¢; = ¢;(N) and 1y = W, see [59, P. 48]. From this, we deduce

(3:72) in the case r = 1 since s € (0, 1]. O

Corollary 3.19. Let s € (0,1]. Then ¢, € C* (B,/3(x0)) for all xo € Q and 0 < r <min{1, dq(xo)}.
Moreover, there is C = C(N,Q,k) > 0 such that

|05 (x) — @5 (y)]

1
-3
sup PRED <cr™>  forse(0, Z]'

%.yEB,/3(x0)
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Proof. By translation invariance we may assume xo = 0 € Q. Let r € (0,min{1,3¢(0)}). We
write @5 = ug 1 + us» with

s 1 (x /Fx DA@y(2) dz, forx €RY, gy =@ —uy),

where F; is the Riesz kernel defined in Lemma Moreover, in the following, the letter C > 0
denotes different constants depending only on N, Q and k. By Theorem [3.16|and Lemma 3.17]
we have

lug 1 (x) —us1 (y)| < Crlx—y|*  forallx,ye RN,

Moreover, by Lemma|[3.18| we have
s 2(x) —us2(y)| < Cr ¥ |x—y|¥ <Cr2x—y/* <Cr¥x—y forallx,yc B,j. (3.74)

Hence
|@s(x) —@s(y)| < Cr*|x—y[*  forallx,y € B, .

Applying now the second claim in Lemma with a = s, we deduce that
1 () w51 ()] < Cr =y forallx,y € By,
Combining this estimate with (3.74)), we deduce that
0(x) — @) < Crx—y  forallx,y € Byu.
Finally, applying the second claim in Lemma[3.17] with o¢ = 2s, we deduce that
it (x) =t ()] < Cr e =y forallx,y € Byg.
Combining this estimate with (3.74)), we deduce that
|9(0) =@ ()| SCrPlx—y[*  forallx,y € B g,
as claimed. O

We now state a key local bound related to an auxiliary integral operator.

Lemma 3.20. Let ty,r > 0. Then there exists a constant C = C(N,Q, k,r,ty) > 0 with the prop-
erty that

1
/ 9(x |y‘N+2s ) dy| <C forall s € (0, Z] and all x € Q with 8q(x) > r.

Proof. Without loss of generality, we may assume that » < 1. Moreover, we fix x € Q with

8a(x) > r. In the following, we fix r = min{%, £} < 1, and we write

/<ps — @ +y) /(Pv <pvx+y)dy_/<py( y) R

Vs [V V2 dy+ oy
Blo\Bl



Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian 74

and

@s(x) — @s(x+y Qs(x+y ON-1CNs
(—A =Cy / : ‘|N-i25 )dy_CNaS |S(’N+2s)dy+ o 1 @y (x).
RN\B, Y

Since Cy@y_1 = 2, we can thus write

(x+ Ay -1
Cx / PO gy (PN = hw B0 B0 679
with
CNS @5(x) — @s(x+)
Li(x) == (CN— / |y‘N+2s dy
. Cn s (PS(x+y) Cns (PS(X"")’)
L(x) = ( —CN) / M=z dy + . R dy and
B, \B, RN\B,,
(Ps(x) t_zs_IO_ZS oy-1Cn s 2 (Ps(x) Cys ) )
B =22 (cvoy- 1— ) = B (1= 2B g
3(x) P NON-1 ) + 25 . Crs +
By (3.23) and since
1—1,%,  |Ing Inty 1
™% <72 and ‘ 0| < [In O|max{1,tozs}< | 5 ’ma {12, 2} for s € <O’Z]’
s
it follows that |
nt -1
001 < [Pur+ P max 1,654 sup e (3.76)

5€(0,1]

where the RHS is a finite constant by Theorem To estimate /3, we let R := 1 4 diam(Q)
and note that, by (3.23)), Theorem 3.16] and since ¢, = 0 on Q°,

Bl < (|2 -y + ) [ Ll

|y’N+2s
Br\B
C t72s _R72s
< (17 )wN s vt [ [0
CN s CN s 2s R72s t72s _ R72s
= $Cy —1|+ N) P 05/l =() < (25Dw + 1)f\|‘l’s”m(g)
D R 1
(7N+1)7H‘Ps”m forsE(O,Z].

Since (1% —R™%) =2(InR—Int)s+o(s) as s — 07, it follows that

—2s R72s

t
+1) sup ——— sup [|@y/[z=(q) (3.77)
SE(O,%] § SG(O,%]

e < (2
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where the RHS is a finite constant depending on ¢ but not on s.
Finally, to estimate /{(x), we note that our choice of = min
lary [3.19] which gives that

% £} allows us to apply Corol-

~ ) 1
|os(x+h) — @g(x)] §C|y]3“ forsG(O,Z],yGBt

with a constant C = C(N,Q,k, r,ty) > 0. Using this together with (3.23)) we may estimate

CN,S
N

S

~ ~ t ~ ~ 1
c/ y|" Ndy < wy_1C(sCyDy)— = 2CDyt* <2CDy  for s € (0, Z].
S
B,

Going back to (3.75), we now find that

B < |ov -

se(0,7 BrO
Since also
(—A) —1 A—1
on [(E2 000, = s (=0 ) <=
SE(O.,%] S L=(Q) 36(0‘%] S L=(Q)
by Theorems [3.15]and the claim now follows. O

We now have all tools to complete the proof of Theorem [3.1[(iii) which we restate here for the
reader’s convenience.

Theorem 3.21. The set {@; : s € (0,1]} is equicontinuous in every point xo € Q and therefore
relative compact in C(K) for every compact subset K C Q.

Proof. We only have to prove the equicontinuity of the set M := {¢; : s € (0, %]} in every point
xo € Q. Once this is shown, it follows from Theorem [3.16and the Arzela-Ascoli Theorem that,
for every compact subset K C €, the set M is relative compact when regarded as a subset of
C(K).

Arguing by contradiction, we now assume that there exists a point xo € Q such that M is not
equicontinuous at xp, which means that

lim sup osc ¢;=¢€>0. (3.78)
t—07t ;YG(O‘%] B; (xo)
Here, we note that this limit exists since the function

(0,00) — [0,00), f+ sup 0sc @
sG(O,%]B’(XO)

is nondecreasing. Without loss of generality, to simplify the notation, we may assume that
xo = 0 € Q. We first choose d > 0 sufficiently small so that

e—0
2N+2

—2.3¥6>0 (3.79)
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The relevance of this condition will become clear later. Moreover, we choose fy > 0 sufficiently
small so that
B3, C Q (3.80)

and

€< sup osc; <e+6 for 0 <t < 21. (3.81)
se(0,4] B

By Lemma [3.20]and (3.80), there exists a constant C; > 0 with the property that

1
/‘Ps — Qs x+y>dy <C forallx € B, s € (0,—

S it (3.82)

Next, we choose a sequence of numbers 7, € (0,%2) with , — 07 as n — 0. By (3.81), there
exists a sequence (s,), C (0, ] such that

%sc o, >€—0 foralln € N, (3.83)

whereas, by Lemma [3.19] we have

osc 0, < C2(2tn)3s" for all n € N with a constant C, > 0.

n

Hence,

1 3 L /7E—8\3

S > 9 (—osc (psn) >07 ( ) ' forallneN (3.84)
2 ln C2

which implies, in particular, that

Su—0  asn— oo, (3.85)

To simplify the notation, we now set @, := @, . By (3.83), we may write

_ -0
©n(By,) = [dy — ru,dy + 14 for n € N with some d,, € Rund r,, > (3.86)
Together with (3.81) and the fact that B,, C By, we deduce that
£+30 £+30
@u(Bay) C ldy = =5 dy + =), (3.87)
Indeed,
e+38
sup@, < inf+osc@, <d,—r,+€+06 <d,+ i
By, By, 21
and, similarly, 1nf @ > dy — S50 Next, we let

By

()2 15>

f N,
2, orn e

aim [ I Py = vy

Blo \B3tn
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and we note that
Cp —> 00 asn — oo (3.88)

since ¢, > @y—1 (logty —log(3t,)) for n € N and #, — 0 for n — 0. We also put
AL :={y € By \Bs, : ¢u(y) >dy} and A" :={y€ By \Bz, : ¢u(y) < du}.

Since
e < /\y|_N_2S” dy+ / ly| N2 dy foralln € N,
A An

we may pass to a subsequence such that
/|y]*N*2‘Y”dy2 %n forallne N or /|y]*N*2S”dyZ %" forall n € N.
A A"

Without loss of generality, we may assume that the second case holds (otherwise we may replace
¢, by —¢, and d, by —d,). We then define the Lipschitz function y, € C, (RN ) by

28, x| <ty

0, x| >2t,
V(x) = 25 =

t—(2t,l —|x), tn < |x| <21,

n

We also let 7, := ¢, + y, for all n € N. By (3.87)), we have

36
Tn:(pngdn+8+

Sdn+rn+25 inthO\B2tn.

Moreover, since dy, +r, € @,(B;,) by (3.86), we have
dy+ry+26 € 1,(B;,) C Tu(Ba,)-

Consequently, max T, is attained at a point x,, € By;, with
210

To(xn) > dp+1n+28

which implies that

)
On(xn) > dp+ry Zdn—l—T. (3.89)
By (3.82) and since Bs;, C By, (x,) for n € N by construction, we have that
’y‘N+25n ‘xn ,y|N+2s,,
By, 10 (X

On(Xn) — Qu(y) / On(Xn) — @u(y)
= — 7 ————"d 3.90
|xn 7y|N+2s,, + |xn 7y|N+2s,l ( )

Bsy, By, (%n)\B3t,
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To estimate the first integral, we note that, by definition of the function v,
28 N
¥ () =) < —lx—y forallx,z e R™.
n

Moreover, by the choice of x, we have 7,(x,) > 7,(y) for all y € B3,,. Consequently,

(Pn(xn)_(l)n()’)d Tn(xn)_fn(y)d _ ‘Vn(xn)_ll’n()’)d

‘xn _y|N+25,, - |xn_y’N+25,, |xn_y’N+23,,
3ty 3ty 3ty
- 20 20
> W(xn) N‘lig))dyz Eaad / ‘xn—y|17N72S"dyZ i / |y‘17N72sndy
|xn - y| " Iy In
3tn B31,, B3zn
3172s,, wN7125t;2s"
1-—2s,

with a constant C3 > 0 independent of n. Here we used (3.64) and (3.84).
To estimate the second integral in (3:90) we first note, since x,, € By, we have that

2y > |y — x| > |§| for every n € Nand y € RV \ B, .

Moreover, by (3.81)), (3.87), and (3.89) we have

-0
E+0 > Qu(xn) — Qu(y) > dn+ ST —@u(y) > —20 fory € By, (x,) C Ba,.

Consequently, combining (3.90) and (3.97)), using again (3.89), we may estimate as follows:

[y —x, |N+2S"
Bto (xn)\B3ln
[0n(Xn) — @n] () —N-2s,
By, (%2)\ B3, By, (¥n)\B3s,
1 [@n(Xn) — @]+ () N+2s, —N—2s,
Z Wi, / [V +25 dy—2-3777"6 / vl dy
By, (%) \B3s, By, (xn)\Bs,
1 [0n(Xn) — @n] () [0n(Xn) — @n] ()
T ( / [V +25n dy — / [V +25n dy )
BTO \B3t,1 Bro \Bto (xn)
_9. 3N+2s,,5 ( / ‘y‘fozs,,dy + / ’y’7N72s,1dy>
Bto \B3tn Bto (xn)\BtO
1 —N—-2s, —N-2s,
> s ([ DIV 2dy—(e+8) [ b 2ay)
Ay 310 \310 (%n)

_2'3N+2Sn5(cn+ / |y’7N72Sndy>

Bl() (xn)\Bl()

> — 120y 161, %" > —C3 (3.91)
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Z ( n _2'3N+25,15>Cn

2 .ON+2sy
(e+9) N N
© ON+2s, / 1yl N 2Y”dy — 2.3Vt § / 1yl N z‘v"dy
By, \Brofzm Biy+21, \Bt0

e—90 s -0
> (m—2’3N+2n6>Cn—0(1) = (W—23N6 +0(1)>Cn—0(1) as n — oo,

where we used (3.86). By our choice of 6 > 0 satisfying (3.79), we arrive at a contradiction to
(3.88). The proof is thus finished. O

3.5 Uniform boundary decay

Throughout this section, we assume that Q is a bounded Lipschitz domain satisfying a uni-
form exterior sphere condition. By definition, this means that there exists a radius Ry > 0 such
that for every point x, € dQ there exists a ball B of radius Ry contained in RY \ Q and with
B NQ = {x*}.

We first note the following boundary decay estimate.
Lemma 3.22. There is a constant C = C(N,Q,k) > 0 such that

L (3.92)

|5 (x)] < C8(x) forxeRN, s ¢ (0,4

Proof. We note that ¢, is a weak solution of
(-A)’py=f;, inQ, @;,=0 inQ

where the functions f; := A,¢;, s € (0, 7] are uniformly bounded in L*(Q) by Theorem
Therefore, the decay estimate in (3.92)) essentially follows from [84, Lemma 2.7], although it is
not stated there that the constant C can be chosen independently of s. For an alternative proof
of the latter fact, see [[59, Appendix]. We stress here that the use of radial barrier functions as
in [84] and [59, Appendix] only requires a uniform exterior sphere condition and no further
regularity assumptions on Q. O

For 6 > 0, we now consider the one-sided neighborhood of the boundary
Q% ={xeQ: do(x) <8}

The main result of the present section is the following.

Theorem 3.23. We have

lim sup | @s|l;-qs) = 0.
6_)0+S€(0,%] ( )

In other words, for every € > 0, there exists 8; > 0 with the property that

1
los(x)| <€  forallse (0, Z],xEQ‘SS.
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The remainder of this section is devoted to the proof of this theorem. We need some preliminar-
ies. In the following, for s > 0, we let L! (R") denotes the space of locally integrable functions
u: RN — R such that ()|
u(x
= /(1 e < e
RN

We note that L! (RV) c L (RN) for 0 < s < t. Next, we need the following generalization
of [29, Theorem 1.1].

Lemma 3.24. Let A C RN be a compact set, let U C RN be an open neighborhood of A, and let
u € Ly(RN) be a function with u € C%,(U) for some o > 0. Then

loc

AV ulx) —
i sup| AV )
S—)0+x€A N

—Lyu(x)| =0.

Proof. In the following, we assume o < 1. Moreover, without loss of generality, we may
assume that u € C*(U), otherwise we replace U by a compact neighborhood U’ C U of A. Next,
since A is compact, we may fix € (0,1) such that for all x € A we have dist(x,RY \ U) > r.
For x € A we split the expression of the logarithmic Laplacian as

LAu(x):CN/u() = VSx—i—y dy—Cy / x+y u(x)( / b)(j’lyvdy-l-PN).

B, Bi\B,
With D, y(s) := CN%NI ~25 and since Cyy—1 = 2, this splitting gives rise to the inequality
—A)—1 C
sup LM(X)—LAM <Sup/’u Nx+y)|‘ NS| ’ —2s CN‘dy
x€A xEA |y’
u(x+ C Dyy(s)—1
+ sup Julxty)] Ny)| ‘ NSI | CN‘ dy =+ ||ul|z=(a ‘7’”( ) — pn+2logr
X€EA " |y| S
< lullcoqydi(s) + Su/lzlz(sax) + [ul| = (a) 13 (), (3.93)
xXe
where
~ICNs . u(x+ C _
e L A O B Y N
RN\B,
D —1
L(s) = ‘ nN(::) —pN+2logr).
By Lemma . we have 111‘(1)1 M = py — 2logr and therefore
s
. . DrN(S) —1
lim I3(s) =1 —_ - 21 =0. 3.94
s—1>I(1;Er 3(S) s—1>r(r)14r S py +2logr ( )
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Moreover, by (3.25)), we have the inequality

81
o <[

172+ O |7 = 1] < G (sDab ™ + | >
for y € RV \ {0}. Using that ||y|~*
that

(3.95)
(Iy|72% +1y|?) by [59, Lemma 2.1] it follows
C a a
’ Ns| |72 CN’ <sCy (DN\y| ELANE (|y|*2S*7 + \y\7)> fory e R¥\ {0}. (3.96)
In particular.
CNS 25 —25—
‘ vl CN‘ < sCN(DN+ )|y| $ forO<y<r (3.97)
and c g
‘%\ | ZS—CN) <sCur 2 (Dy+)blE forly| > (3.98)
Therefore, gives
lim I;(s) < hm sCn
s—0F

g —2s
B,

8
(DN+ /|y|2 N2y = hm 2s<DN—|— )

=0 3.99
p (3.99)
It remains to consider /> (s,x) for x € A. For this, let € > 0 and note that there is Ry > 0 such
that for any R > Ry we have

) 4 o

. 3.100
N T Cv2Y ( )
RN\ Bg

Indeed, this is possible since u € L1 and thus hn}) Ik || (lyN) | dy = 0. In the following, we fi

~YRN\ By
R >max{2,Ro} such that Bz (A) C Bg. Note that by this choice we have in particular sup|z| < §
Using (3.98)) we then split for x € A
C
L(s,x) = / 4| ‘ N.s

€A
) |x_ |72

s —CN‘ dy
—25—Q 8
< sCnr (Dy+—)

s / Iu(y)!

e —y|N
RN\B, (x)

‘ CN.S _

g dy+Cy — S—1| dy.
BR\B;(x)

(3.101)

in thi ion, =yl =r>g71+y)
for y € Bg \ B,(x) and therefore

[ MO (o
e —yM 2 R+1
Br\B:

) ey

BR\Br()C)
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r %_N a a_
<(gr7) Q4R uly < 0+ RN uly. G.102)

For the second integral in this decomposition, we note that, since |x —y| > max{l, %} for
y € RN\ Bg, we have for y € RV \ Bg by (3:29)

C , ,
% x—y| % —1’ <1—4y| 2 (1+spy+o(s)) <140(s) fors— 0" (uniform in x and y).
SCN
Combining this with (3.102) in (3.101)) we find
lim sup /> (s,x) < Cy sup ‘“(”‘N dy < Cy2V / ’”(yN)‘ dy <. (3.103)
5=07 xeA veA e =yl 1yl
RN\BR RN\BR
Combining (3.94), (3.99), and (3.103), we get from (3.93)
_A) _
lim sup (=) u(x) = u(x) —LAu(x)‘ <e.
s—0F XEA N
Here, € > 0 is chosen arbitrary and this completes the proof of the lemma. O

Next we state a uniform small volume maximum principle. For this we define, for s € (0,1) and
any open set U C R", the function space

ux)—u 2
VIU) = {u e L2, (RY) : / / wdxdy < oo}

U RN

It is easy to see that the quadratic form

Sl =y, [ [ LTI D 1,

|.X _y|N+2s

RN RN
is well-defined in Lebesgue sense for u € ¥*(U), v € 5 (U), see e.g. [60] and the references
therein. If functions u € #*(U) and g € L*(U) are given, we say that (—A)*u > g in U weak
sense if
é"s(u,v)—/gvdx >0 forallv e ¢ (U), v > 0.
U
Remark 3.25. Let U C RY be an open bounded set. Moreover, let g € L*(U), and let u €
LYRM)NL? (RN) be a function satisfying u € C*(K) for a compact neighborhood K of U and,
for some s € (0, %),
(—AYu>g in U in pointwise sense.
Then u € ¥*(U), and u satisfies (—A)*u > g also in weak sense. This follows since, under the
stated assumptions, we have

/[(—A)su]vdx =&(u,v)  forallve G (U).
U

The latter property follows easily by Fubini’s theorem.
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Our uniform small volume weak maximum principle now reads as follows.
Proposition 3.26. There exists Ly = Uo(N) > O with the property that the operators
(—A)* —id, s€(0,1)
satisfy the following weak maximum principle on every open set U C RN with |U| < po:
For every s € (0,1) and every function u € ¥*(U) satisfying
(=A’u>u inU, u>0 inRN\U
we have u >0 on RN,

Proof. By [60, Prop. 2.3], it suffices to find Ly > 0 with the property that
215(U) > 1 for every open set U C RY with |U| < po and every s € (0,1), (3.104)

where A (U) denotes the first Dirichlet eigenvalue of (—A)* on U.

Let rp = ro(N) := 2e2(W(5)=1)_ 1t then follows from [29, Section 4] that A; .(B,,) > 0, where
A1 L(By,) denotes the first Dirichlet eigenvalue of L, on By, := B,,(0).

Since
2'laS(BrO) - 1

—>117L(Br0) ass—>0+,
N

there exists so € (0, 1) with the property that
Ais(Bry) > 1 for s € (0,s0).
By the scaling properties of the fractional Laplacian, this also implies that

2s
ALS(B,):(LO) As(Bry) > Ms(By) > 1 forse (0,s5), r € (0,r0]. (3.105)

r

To obtain a similar estimate for s € [sg, 1), we use a lower eigenvalue bound given by Baifiuelos
and Kulczycki. In [[7, Corollary 2.2], they proved that

C(1+5)T(5 +5)

M s(By) > 2% fors € (0,1).

—
0
~—

From this we deduce that

2\2T(1+)T(Y + 27\ 250 [y
As(By) > (*) I S)N(2 ) > (*) . mNn >1 forsé€[sp,l)and 0 <r<ry,
’ r (%) r (%)

(3.106)

1
where ry =2 (Fr(mﬁ‘”)) 0 and ['nin > 0 denotes the minimum of the Gamma function on (0, o).
2

Setting r, := min{ro, r; }, we thus find, by combining (3.103)) and (3.106), that

Ais(Br) > 1 fors e (0,1), r € (0,ry]. (3.107)
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Next, let to := |B,,|, and let U C R be a nonempty open set with |U| < py. Moreover, let
r € (0,r,] with |B,| = |U|. Combining and the Faber-Krahn type principle given in [8,
Theorem 5], we deduce that

Ms(U) >N 5(B,)>1  forse(0,1),
as required. O

We recall a result from [[29] regarding a radial barrier type function for the logarithmic Lapla-
cian, see [29, Lemma 5.3, Case T = %].

Lemma 3.27. Let R € (0,%). Then there exists 8 = &(R) > 0 and a continuous function

V € LL(RYN) with the following properties:
(i) V=0inBgandV > 0in RN \ Bg;
(i) V € C} (RN\ Bg);

(iii) L,V (x) — oo as |x| — R,

x| >R.

In fact, in [29, Lemma 5.3] it was only stated that V is locally uniformly Dini continuous on
RN\ Bg since this was sufficent for the considerations in this paper. However, the construction
in the proof of this lemma immediately yields that V € C}, (RV \ Bg).

Proof of Theorem (completed). We need some more notation. For R > 0 and R; > R, we
consider the open annulus

Agp, = {x€RY :R<|x| <R} C RY
and its translations
._ N . N
Arpr,(y) i ={xeR" :R< |x—y| <R}, y e RY,

In the following, we let 9'Q C dQ denote the subset of boundary points x, € dQ for which
there exists an (inner) open ball B,, C Q with x, € JB,..
Since Q satisfies a uniform exterior sphere condition, there exists a radius 0 < Ry < % such that
for every point x, € d'Q there exists a (unique) ball B> of radius Ry contained in RV \ Q and
tangent to dB,, at x,. Let ¢(x.) denote the center of B*.

Applying Lemma with the value R := % now yields a function V & L(l) (RN) such that the
properties (i)-(iii) of Lemma are satisfied.

We now choose & € (0,R) sufficiently small such that

|Ag g8 < Mo,

where iy > 0 is given by Proposition [3.26]
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Next we consider the finite values
As—1
s

my:= sup ||@sl1=(q) and my = sup
sE(O,%] 56(0,%]

Pl

By Lemma iii), we can make &y > 0 smaller if necessary to guarantee that
LV(x)>2m;  inAgg.g. (3.108)
Next, for x, € d'Q and ¢ € [0, R], we consider the point

c(xy) — xi

in RV\ Q.
o) — x|

7(t,x.) =x.+ (t+R)

which lies on the extension of the line segment spanned by the points x, and c¢(x,) beyond c(x.).
By construction, Bg(z(t,x.)) NQ = & for t € (0,R], while, for t € (0, 8), the intersection

Qi x, 1= QNAR s, (2(t,%:)) = QN Apyy s, (2(£,%5))
is nonempty. Since Q is bounded, there exists R; > R such that
Q CAgg, (2(t,x.))  forallx, € d'Q,t € (0,8),

which implies that

Q\ Qi x, CAgisy R, (2(t,x:)) for all x, € 9'Q, 1 € (0,&). (3.109)
Next, we define the translated functions
Vix. € L(l)(RN), Vix, (x) =V (x—2z(t,x")), x. €9Q,t €[0,R].

Since V is positive on the compact set A 5 g, by Lemma 3.27k i), we may choose ¢ > 1 suffi-
ciently large such that V > "L in Ag, 5 g, and thus, by (3.109)), also

m
S m

Vix, 2 -

in Q\ Q, , forall x, € 9'Q, 1 € (0,d). (3.110)
To finish the proof of the theorem, we now let € > 0 be given. Since V is continous and V =0
on Bg by Lemma i), we may fix 6 € (0, %) such that

id
C

Since Agy 5 ris, CC RN\ Bg, we find, as a consequence of Lemma and Lemma , that

0<V< in Bp. 5. (3.111)

(—A)PV -V

— L,V uniformly on Ag 55 as s — 0",
S kX

Hence, by (3.108), we may fix s; € (0, 1] with the property that

—APV -V
EAVZV S s ™ o Arisres for s€(0,s)). (3.112)
S C ’



Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian 86

‘We now claim that
lpy(x)| <e  forse(0,s), xeQd. (3.113)

To show (B.113), we let x € Q%, and we let x, € dQ with g (x) = |x — x.|. By definition, we
then have x, € 9'Q. Moreover, by construction we have

x € QNARysR126(2(8,x:)) C Brios(2(8,x4)). (3.114)
We now define W := ¢V, € L} (R"). By (3.112), we then have that
(=AW > W +smy inAgysris(2(0,x)) fors € (0,s1). (3.115)
Consequently, in weak sense,
(A (W) = (AW £ A0, > (WL @) +s(my £ lss_l(ps)
> W=+ inQs, =QNAg;s5ryis (2(6,x7)) (3.116)
by the definition of m,. Moreover, it follows from @ and the definition of m; that
Wte,>0  inRV\Qs, forse (0,s1). (3.117)

Using Proposition[3.26] (3.116)), and (3.117) together with the fact that |Q5 .. | < |Ag g+s,| < Ho,
we deduce that

W+, >0  inRY,

and thus, in particular,
|| <W <&  inBgyys(z(6,x.)) fors € (0,s1)

by (B-1TT)). Consequently, |@s(x)| < € for s € (0,s1) by (3.114), and this yields (3.113)). Making
0 > 0 smaller if necessary, we may, by Lemma |3.22] also assume that

1
()| <& fors€ sl xeQd. (3.118)

Combining (3.113) and (3.118), we conclude that

1
lps(x)| < e for s € (O’Z]’ xeQd.

The proof of Theorem [3.23]is thus finished. O

3.6 Completion of the proofs

In this section, we complete the proofs of Theorem 3.1} Corollary [3.3]and Corollary [3.4]
We start with the
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Proof of Theorem[3.1] Part (i) is proved in Theorem [3.15] Part (iii) is proved in Theorem [3.21]
Moreover, the first claim in Part (ii), the boundedness of the set M := {¢, : s € (0,5]} in
L>(Q), has been proved in Theorem Combining this fact with the relative compactness
of the set M in C(K) for every compact subset K C Q, it follows from Theorem together
with the Kolmogorov—Riesz compactness theorem that M is relative compact in L” (Q) for every
p € [1,00), this completes the claim in Part (ii).

To prove Part (iv) of Theorem [3.1} we first observe that, since Q satisfies an exterior sphere
condition by assumption, it follows from Lemma that @y s € Co(Q) for any k € N and
s € (0, }]. Furthermore, M is equicontinuous in all points in Q by Theoremand in all points
in dQ by Theorem Since moreover M is uniformly bounded with respect to || - ||z=(q) by
Part (ii), the Arzela-Ascoli Theorem implies that M is relative compact in Cy(Q).

To prove Part (v), let (s,,), C (0, %] be a sequence of numbers with s, — 0. By Theorem
we may pass to a subsequence with the property that

Brs, — P in L*(Q) as n — oo. (3.119)

Due to the relative compactness of the set M in L”(Q) already proved in Part (ii), we also have
LP-convergence in for 1 < p < oo, and the locally uniform convergence follows from
Part (iii). Moreover, in the case where Q satisfies an exterior sphere condition, the convergence
in Cp(Q) follows from the relative compactness in the space Cy(2) stated in Part (iv). O

Next we complete the

Proof of Corollary[3.3] For the particular case 1 < p <2, the convergent in (3.19) follows di-
rectly from [29, Theorem 1.5] combined with the Holder inequality. But using the relative
compactness of the set M in L”(Q) proved in Part (ii) of Theorem and the uniqueness of
@1, the LP-convergence in for 1 < p < = and the locally uniform convergence in Q
also follows by Part (iv) of Theorem [3.1} The additional assertion follows from the additional
assertion in Theorem 3.1|(v). O

Proof of Corollary[3.4} Let (sy), C (0, }L] be a sequence of numbers with s, — 0. Moreover,
for every n € N, let ¢,, k € N denote L*-orthonormal Dirichlet eigenfunctions of (—A)*
on & corresponding to the eigenvalues A ;,. Passing to a subsequence, we may assume, by

Theorem 3.1} that
Ais, — 1
Dhsn — 2, ML and Prs, — G inLP(Q) (3.120)
Sn '

as n — oo, where, for every k € N, ¢  is a Dirichlet eigenfunction of L, on Q corresponding to
the eigenvalue A ;. Parts (iii) and (v) of Theorem [3.1]then imply that

Oz € L7(Q)NCroe(Q) for every k € N.

Moreover, it follows that ¢ ; € Cy(Q) in the case where Q satisfies an exterior sphere condition.
Finally, the L?-convergence in (3.120) implies that the sequence of functions ¢ 1, k € N is L?-
orthonormal. It then follows that every Dirichlet eigenfunction of L, on € can be written as a
finite linear combination of the functions ¢ 7, and therefore it has the same regularity properties
as the functions ¢y, k € N. ]



4 The logarithmic Schrodinger operator and associated Dirichlet
problems

This chapter is devoted to the study of the operator corresponding to the logarithmic symbol
log(1 4| |?) and assiociated Dirichlet problems. We present an alternative method to derive
the corresponding singular inetgral (1 — A)l"g and settle the functional analytic properties that
allow to study equations involving this operator and related variational characterizations. The
structure of the chapter has the same form as paper [45] only acknowledgements is removed.

4.1 Introduction and main results

The present paper is devoted to the study of the integrodifferential operator corresponding to the
logarithmic symbol log(1 + | -|?) and associated Dirichlet problems in domains. This symbol
is known in the probability literature as the characteristic exponent of the symmetric variance
gamma process in RV [9]. As particular case of geometric stable processes log(1+ | -|**) for

€ (0,1), it plays an important role in the study of Markov process [12] and finds applications
to many different fields such as engineering reliability, credit risk theory in structure models,
option pricing in mathematical finance [[10] and it is used to study the heavy-tailed financial
models [67,77,/88]. It was recently used in wave equation to model damping mechanism in RV
(see [26]).

Let us emphasize that the associated operator (I —A)1°2, which we call the logarithmic Schrodinger
operator in the following, has been studied extensively in the literature from a probabilistic and
potential theoretic point of view, see e.g. [[11,/63,/64}82,88,91]] and the references therein. The
main purpose of the present paper is to give an account on functional analytic properties of this
operator from a PDE point of view. So some of the results we present here are not new but are
stated under somewhat different assumptions related to the concept of weak solutions. More-
over, we present proofs not relying on probabilistic techniques but instead on purely analytic
methods which are to some extend simpler and more accessible to PDE oriented readers.

Integrodifferential operators of order close to zero are getting increasing interest in the study
of linear and nonlinear integrodifferential equations, see for e.g. [29,/30,/63.(72,79,86] with
references therein. In particular, the logarithmic Schrodinger operator (I — A)!°2 has the same
singular local behavior as that of the logarithmic Laplacian Lp studied in [29], while it elimi-
nates the integrability problem of L, at infinity. We recall that for compactly supported Dini
continuous functions ¢ : RY — R, the logarithmic Laplacian L, is defined by

(P 131 ) (p(y)
L@(x) = cylim / x—y

£—0
RN\B, (x)

dy+pne(x), 4.1

with the constants ¢y := F;IX{ZZ ) and py :=2In2+ 1//(%) —7, see [29]] for more details. Similarly
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as in [29], the starting point of the present paper is the observation

lim (I —APu=u for ueC*(RV), (4.2)

s—0t

where for s € (0, 1), the operator (I — A)* stands for the relativistic Schrodinger operator which,
for sufficiently regular function u : R¥ — R, is represented via hypersinglar integral (see [85,
page 548] and [38]])

5 . ux+y)—ux
-aru) —ut+ave i [ R oga, @)
RY\Be (0)

N
—5 A5 . . . . . .
where dy s = ’1’_(%;4) is a normalization constant and the function wy is given by

oo

s s M
¥ Kz () / I o (4.4)
0

N+b

ay(y)) =2'

In particular, if u € C>(RYN), then (I — A)*u(x) is well defined by (@3] for every x € RY. Here
the function K, is the modified Bessel function of the second kind with index v > 0 and it is
given by the expression

oo

/e*” V” (1+1/2) "*fdt
0

2)2rVe™"
v(r)—%

The normalization constant dy , in (#.3)) is chosen such that the operator (I —A)* is equivalently
defined via its Fourier representation given by

F((I=8) u) (&) = (1+|EP)F@)(E), forae &eRY, 4.5)

where % denotes the usual Fourier transform. It therefore follows from (4.2) that one may
expect a Taylor expansion with respect to parameter s of the operator (I — A)* near zero for
u € C*(RV) and x € RN as

(I —AYu(x) = u(x) +s(I — A)Cu(x) +o(s) as s— 0",

where, the logarithmic Schrodinger operator (I — A)'°2 appears as the first order term in the
above expansion. Indeed, we have the following.

Theorem 4.1. Let u € C*(RY) for some o0 >0 and 1 < p < oo. Then

(1—8)"8u() = £
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d
for x € RN, where dy := 772 = lim ﬂ J(y) :de(|,yV|), and
s—0t 8 [y
2
() =2 Ry (b)) = [+ Ee W ar @7
0
Moreover,

(i) Ifuc LP(RN) for 1< p<oo, then (I—A)°%uc LP(R) and

(I—A)Yu—u

— (I=A)*%y in LP(RY) as s — 0"
s

(i) F((I—A)°%u)(&) =log(1+ |E)F (u)(€), for almost every & € RN,

We note that in the particular case N = 1, it follows from the definition of @ in (see
also [55, (2.4)] and [88, Remark 4.5]) that o(r) = N2~ and

(I—A)°8u(x) = PV. / “(x)_;‘(y)e—x—yl dy. 4.8)

We note here that the operator in appears in [75] and is identified as symmetrized Gamma
process (see also [66, Example 1]). We stress however that the symbol of this operator is
log(14|&J?) and not log(1+ |&]) as claimed in [75, Page 183]. The representation of J in (#.6)
provides an explicit expression for the kernel of the variance Gamma process in RY and gives
the following asymptotics expansions

2]" —N 0
J(2) ~ - ()IZI as [z = “9)

R |Z_Te_‘ZI as  |z| = oo.

Indeed, these expansions follow directly from and the asymptotics expansions of the mod-
ified Bessel function Ky (see Section[d.2)), (see also [88, Theorem 3.4 and 3.6] for other proof).
The Green function of the operator (I — A)log is given (see [55,64]) by

G(x) :/q,(x) dt  xeRN (4.10)

where for t > 0, ¢; : RY — R is the density of the symmetry variance Gamma process i.e., for
allt > 0and x € RV,

q:(x) > 0, /qt(x)dle and  F(g)(E) = e "loe(1HIEP),
RN
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It follows from (4.7) that for any ¢ > 0,
21N\
= (=2 4.11
ql(x) EN/ZF(I) ( 2 > Kt—%(‘x‘)ﬂ ( )
and the Green function for (I — A)!°¢ then writes

21 N |x|
nN/Z/F Kl_

Using the asymptotics expansions for the modified Bessel function (see (#.23)) Section[4.2)), we
have the following proposition.

(|x]) dt. (4.12)

o=

Proposition 4.2. The function G in satisfies the asymptotics properties
CNM_N as |x|—0
Glx) ~ { CN2¥ 71'1/2])6] e M as |x| — eo. @15
Moreover; for f € L'(RN), the solution u = G * f of the equation (I — A)°¢u = f in RN satisfies

o(|x|™ as |x 0
o) {(H A

4.14
O(e ™) as |x| = co. 19

The next task is the study in weak sense with the source function f € L?(Q), the following
related Dirichlet elliptic problem in open bounded set Q C RV

{(1—A)1°gu =f inQ

4.15
u=0 onRV\Q. (+15)

In order to settle the corresponding functional analytic framework and energy space related to
integro-differential operator (I — A)'°¢, we introduce the following space

H¢(RV) = {u EL2RY):  Euluu) < oo}

where with J as in (4.6), the bilinear form considered here is given by

1
=5 [ [ @) ~u) ) v (x ) dndy.
RN RN
We shall see in Section that H'°2(R") is a Hilbert space endowed with the scalar product
(u,v) = (V) prog vy = (U, V) 2wy + S (1),

where (u,v)2gv) = Jgv u(x)v(x) dx with corresponding norm

1
2

el sy = () + Gl 0)
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Let Q C R" be a bounded open set of RV, Here and the following we identify the space L?(Q)
with the space of functions u € L*(R") with u = 0 on R¥ \ Q. We denote by %log (Q) the
completion of C”(€2) with respect to the norm || - [| e (zv). We have, by the Riesz representation

theorem that problem (@.13) admits a unique weak solution u € 7, °¢(Q) with

Ep(u,v) = /f(x)v(x) dx forallve %log(ﬂ).
Q

Moreover, if f € L”(Q) and Q satisfies a uniform exterior sphere condition, it follows from the
Green function representation and the regularity estimates in [|63,/64,79] that u € Cy(Q) := {u €
C(RY) : u=0o0n RN\ Q}.

We aim next to study the eigenvalue problem in bounded domain Q@ C R" involving the log-
arithmic Schrodinger operator (I — A)!°2, that is, we consider with f = Au. To avoid a
priori regularity assumption, we consider the eigenvalue problem (4.15)) in weak sense. We call
a function u € }{{)log(ﬁ) an eigenfunction of (4.13)) corresponding to the eigenvalue A if

ot ) = A / wpdx  forall g € E7(Q). (4.16)
Q

We then have the following characterisation of the eigenvalues and eigenfunctions for the oper-
ator (I — A)'°2 in an open bounded set Q of RV,

Theorem 4.3. Let Q C RN be an open bounded set. Then
(i) Problem (.15) admits an eigenvalue A,(Q) > 0 characterized by
Eol(u,u)

3 = mn
ueH%5(Q) ||uHL2(Q) ue P (Q)
u#0

M(Q) =

Eolu,u), (4.17)

with 21(Q) :={u € %’gog(ﬁ) :ull 2@y = 1} and there exists a positive function ¢y €
j%log(ﬂ), which is an eigenfunction corresponding to A1(Q) and that attains the mini-
mum in @.17), i.e. @12 =1 and Ai(Q) = Eu(P1,¢1).

(ii) The first eigenvalue A, (Q) is simple, that is, if u € %log(ﬂ) satisfies (@.16) with A =
A1 (Q), then u = a@, for some o € R.
(iii) Problem {@.13) admits a sequence of eigenvalues { A (Q) hren with
0<A(Q) < Q) <+ S A(Q) < 41 (),

with corresponding eigenfunctions @, k € N and 1imy_,co A4 (Q) = +oo.
Moreover, for any k € N, the eigenvalue Ai(Q) can be characterized as

M(Q) = ioan Eo(u,u) (4.18)

u€<}k( )
where Z,(Q) is given by

Pr(Q) = {uG%lOg(Q):/uwjdx:Ofor J=12,k—=1 and ||@l[;2(0) = 1}
Q
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(iv) The sequence { @y }ren of eigenfunctions corresponding to eigenvalues A () form a com-
plete orthonormal basis of L*(Q) and an orthogonal system of %’610‘% (Q).

Using the d-decomposition technique introduced in [47], we provide a boundedness result of
the eigenfunctions introduced in Theorem 4.3

Proposition 4.4. Let u € %log (Q) and A > 0 satisfying @.16). Then u € L*(Q) and there
exists a constant C := C(N,Q) > 0 such that

[l =) < Cllull2()-

Our next result concerns the Faber-Krahn inequality for the logarithmic Schrodinger operator,
which says: Among all open sets in RN with given measure, ball uniquely gives the smallest
first Dirichlet eigenvalue of the logarithmic Schrodinger operator (I —A)'°2. Here and in the
following, we denote by B* the open ball in R" centered at zero with radius determined such
that |Q| = |B*|

Theorem 4.5 (Faber-Krahn inequality). Let Q C RY be open and bounded, and Al log(2) be
the principal eigenvalue of (I — A)'°% in Q. Then

M log () > A1 10g(B"). (4.19)

Moreover, if equality occurs, Q is a ball. Consequently, if Q is a ball in RY, the first eigenfunc-
tion @y oy corresponding to Ay 1og(B) is radially symmetric.

Our last result concerns small order asymptotics s — 0" of eigenvalues and corresponding
eigenfunctions of the relativistic Schrodinger operator (I — A)* on bounded Lipschitz domain
Q C RY, which is an analogue, but a part of the result of the small order asymptotics s — 0T
proved in [47] for the fractional Laplacian.

Theorem 4.6. Let Q be a bounded Lipschitz domain in RN, and Ay s(Q) resp. Ax10o(Q) be the
k-th Dirichlet eigenvalue of (I — A)* resp. of (I —A)1°2 on Q. Then for s € (0,1), the eigenvalue
Ms(Q) satisfies the expansion

Ais(Q) = 1+ 5Ak10g(Q) +o(s) as s—07. (4.20)

Moreover, if (sy)n C (0,50), S0 > 0 is a sequence with s, — 0 as n — oo, then if Y s is the unique
nonnegative L*-normalized eigenfunction of (I — A)® corresponding to the principal eigenvalue
A1 5(Q), we have that

Vs = Wilee in L*(Q) as s—07, (4.21)

and after passing to a subsequence, we have that
Vis — Wilog  in L*(Q) as  s— 07, (4.22)

where Y 105, T€Sp. Wi log, k > 2 is the unique nonnegative L?-normalized eigenfunction resp. a
L?-normalized eigenfunction corresponding to Allog(2) resp. 10 Ay 1og ().
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The paper is organized as follows. In Section [4.2] we provide the proof of Theorem [4.1] and
establish some properties of (I — A)!°2 and functional spaces. In Section we prove Theorem
and, using the d-decomposition tecnique introduced in [47]], we give the proof of Proposi-
tion4.4|on the L”-bound of eigenfunctions and close the section with the proof of Theorem
on Faber-Krahn inequality. Section4.4]is dedicated to the proof of Theorem 4.6]on small order
asymptotics s — 0" of the eigenvalues and corresponding eigenfunctions of (I —A)?*. In section
[4.5] we establish the proof of Proposition .2] concerning the decay of the solution of Poisson
problem in RY. Finally, Section collects some theorems that can be directly deduced from
known results in the literature.

pred
(%)
and x € RV, we define 84 (x) := dist(x,A¢) with A° =RV \ A and, if A is measurable, then |A| de-
notes its Lebesgue measure. Moreover, for given r > 0, let B,(A) := {x € RV : dist(x,A) < r},
and let B,(x) := B,({x}) denote the ball of radius r with x as its center. If x = 0 we also write
B, instead of B,(0). If A is open, we denote by C¥(A) the space of function u : RY — R which
are k-times continuously differentiable and(v;/ith support compactly contained in A. If f and g

X

are two functions, then, f ~ g as x — a if g(y converges to a constant as x converges to a.

Notation: Welet wy_; = denote the measure of the unit sphere in RY and, forasetA c RV

4.2 Properties of the operator and Functional spaces

We commence this section with the establishment of the integral representation of the operator
(I — A2 for a function u € C*(RYN), that is, we provide the proof of Theorem After
that, we also provide some properties of the functional spaces related to (I —A)!°¢, We first
introduce the following asymptotics approximations (see [80]) for the modified Bessel function
K, . It well-known that

VEI(vr M =0, v#£0,
Ky(r) ~ < logi, r—0, v=0, (4.23)
\/E/Zr*%e*’, r‘—>—i—oo,

and the monotonicity (see [80, 10.37.1])

Ky(r)| < |Ku(r)] for 0<v<pu. (4.24)
Consequently,
I N+2s , I"—>0’
ay(r) ~ { EN+22s—1) Nt2sl (4.25)
e r — oo,

Note also that the functions s — @, and s — dy ; defined in (.3) are continuous function of s

and we have that lim+ dy s = 0 and, by dominated convergent theorem,
s—0

. NN [ an P
o)) = lim o) =2 ¥y ERy (b = [ e an @ae)
0
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We now give the

Proof of Theorem@1} Let u € C*(RY) with 0 < s < min{%,1}. Then, from the definition of
(I —A)* in (¢.3), the principal value can be dropped out and we have the different quotient

(I—=A)Yu—u _dvs / u(x+y) —u(x)
s E [y[N+2s
RN

os([y[) dy = Ae(s,x) + De(s,x),

where € > 0, with A¢(s,x) and Dg(s,x) given respectively by

dy, u(x+y)—u(x)
Ag(s,x) 3:TS / Wfﬂs(b’bdy,
lyl<e
dy, u(x+y) —u(y)
D¢ (s,x) 1= ss / W@(M)dy.

ly[>¢

First, from (4.4)) and and the fact that [y| =% < €72 for |y| > € and s € (0, 1), we have by
dominated convergent theorem that

_dy,s / u(x+y) —u(x)

De(s,x) = P |y|N+2s
lyl>e

as(|y|) dy = De(0,x) as s — 0T,

with

Do) =dy [ " oeshdy= [ w0 -uie-y) ay
[x—y[>e x—y|>¢

Since next u € C*(RY), it also follows that

Ag(s,x) os(]y|) dy — A¢(0,x) as s— 0%,

_dns [ ulx+y)—u(x)
- s |y|N+23
lv[<e

with

a0 =dv [ O oy ay= [ ) - u)tx-) ay

lyl<e [x—yl<e

We recall that lim,_,ody s /s = —dy. It is easy to see that A¢(0,x) — 0 as € — 07, and from the
the fact that u € C*(RY), we also infer that

(1 — A)°2u(x) — De(0,)| < C / min{1,|y|%} dy >0 ase—s0".

lvl<e
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Since u € C*(RY), setting Ky, = d’;” (N +25)/2)|ul|ca @y @n-1 it follows from (@.25)
that
dy s [[utl| cor ey a=2s
|A£(S7X)‘ < ‘ < WWS(UD dy < KN7S’”E'
yl<e
Consequently,
Nya—2s
Er
||A€(S, ')HLP(BS) < KN’S’MW for 1 < p < oo,

On the other hand, using again (.25)) with s = 0, we infer that

DeOX)|< [ o) = ulr+ D) dy

|x—y|>€
< ullcan( [ bI*Nay+ [ eay)
B1\Be ly[>1
_ eo
< 2|l o vy (2 o +wN71F(N>1)> = Cn.ellullcogmny-

Therefore,
1D (0, )| = (rv\s,) < o0

Next, by the Minkowski’s integral inequality, we have

1060 usansg < ([ | [ @t —ate ) ar]'a)’

RN\B. |y|>¢
1

< [ (] W) -utery)rdx) s dy

RM\B; RN\B,

p—1
<27 gy [ I0)dy <o
RV\Be

Therefore, we conclude that D¢ (0,-) € LP(R¥\ B;) forall 1< p <o and thus
[De(s,-) = De(0, )] 1orv\5,) — O uniformly in & ass — 07 (4.27)
This allows to conclude for x € RY that

lim De(0,x) = lim [ (u(x) —u(x-+y)J(y) dy = (I - A)¢y(x). (4.28)
yl>€

Taking into account the above facts, we find with 1 < p < oo that

(I—A)°%y = [|Ae(s,-) + Des,-) — (I—A)log“HLP(RN)

(I—A)Yu—u
s

LP(RN)
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< HAE(S7')HLP(RN) + HDS(S7') - (I_A)loguHU’(RN)
8% + o—2s

5 HIPe(s,) = (1= 8)%u| g -

Therefore, using (4.27)) and (4.28) , we have for every 1 < p < oo that

< KN,s7u

N
. € N +o
lim sup

s—0t

—(I—A)%y for every € > 0,

‘(I—A)“u—u

S KN,u
L?(RN)

where Ky, is independent of €. The case p = o follows by the same computation and

I—AYu— e%
w < KN’"E for every € > 0.

—(I—A)2
. (I —A)"u

lim sup
s—0F

L=(RN)
Moreover, it follows from the arbitrary of € that

(I—A)Yu—u
§

lim
s—0F

— (I —A)°2y =0 forevery 1 <p <oo.

LP(RN)

This completes the of item (i). The proof of item (ii) is a particular case with p = 2. Moreover,
using the continuity of the Fourier transform in L?(R"), we have that

F(1- b)) = tim ZUZA =T _ <(1+|’|2)“‘_1>9(u)

s—0t S s—0t

=log(1+|-1»).Z(u) in L*RM).
We therefore infer that
F((I—A)°%u) (&) =Tog(1+]|- )7 (u)(€), for almost every & € RV.
The proof of Theorem [.1]is henceforth completed. O
In the following, we let Lo(R") denotes the space

I

. ulx)e

Lo(RY) := {u: RY 5 R Jul|, @) <oo} with ] o m¥) :/de
FATEYNIE

Let U be a measurable subset and u : U — R be a measurable function. The modulus of conti-
nuity of u at a point x € U is defined by

Ouxu :(0,400) = [0,400),  @uu(r)= sup [u(x)—u(y)l.
yeU, |x—y|<r

The function u is called Dini continuous at x if

1
/wu"x’U(r) dr < o,
,
0
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Moreover, we call u uniformly Dini continuous in U for the uniform modulus of continuity

1
()
ou(r) =swaol) it [ Ouu(r) 4 o,

xeU 0 r

In the following proposition, we list some properties the operator (I —A)!°2,

Proposition 4.7. (i) Letu € Lo(RY)NL*(RN). If u is locally Dini continuous at some point
x € RN, then the operator (I — A)'°%u is well defined by

(1= 8)"8u() = [ (ux) = ()T (x ) do.
RN
(ii) Let ¢ € C*(RYN) for some a > 0, there is C = C(N, @) such that

eflxl

(1= 4)*¢p(x)] < Cll¢]|camy)

N+1 °

(1+[x[) 2
In particular, for u € Ly(RY), (I —A)°¢u defines a distribution via the map
0 (1= 8)u.0) = [ull~8)*%p dx.

RN

(iii) Let u € Lo(RY) and r > 0 such that u € C*(B,(0)) for some o > 0. Then there exists a
constant C := C(N, o) > 0 such that

(= A)°8u(x)| < C(llullca(s, ) + lull @)

(iv) If u € CB(RN) for some B > 0, then (I — A)'°2u € CB~¢(RN) for every € such that 0 <
€ < B and there exists a constant C :== C(N, B, €) > 0 such that

[(7 = 8)"®u] g < Clluellcs (g)-
(v) Let @,y € €°(Q). Then we have the product rule

(1= 8)%(oy) (x) = @(x)(I = A)* Y (x) + Y (x) (I — A) € (x) — A(@, ).

with
Alg.y) == /((P(X) — o) (w(x) —w(y)J(x—y) dy
RN
If pe, € > 0 is a family of mollified, then

[(7 = 8)"% (pe * @) (x) = pe * (I — A)*¢ ] (x).
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Proof. Let x € RV, By splitting the integral and using the asymptotic of J in (#9), we have the
following,

!(I—A)“’gu(X)\S/Iu(X)—u(y)IJ(x—y)dy+ / (luC)| =+ [u()[)J (x = y) dy

B (x) RN\B (x)
1
—Ix—y\
0, (r le
F(N/Z)a)N_l/ ’r()dr—i—CHuHL«»/ M gy+c / jdy
0 RM\B, R
—[x—y]
u(y)le
c+lul-@p+c( [+ )'ﬁ;ﬂpgld
By (0\Bi(x) B\, 420(0) Y
—|x—y]
Ot +C [ umare [ MICIT,
x—y| 2

B 42)x(0) RNM\B45//(0)
Now, since |x —y| > (1 +y|) for [y| > 1 +2[x], it follows that
(7= A) ()| < C(1+ ] =y + [l g vy) < oo

This shows that (I — A)°2u(x) is well-defined.
To prove (ii), for x € RV, we use again{4.9|and the representation

(I_A)log(p(x) — djN 2§D(x) — (p(x’;_‘l\);) — (p(x—y) a)(’y‘) d
RN

Put A := ||@||ce(ry). Note first that, since ¢ € CZ(R"), we have
20(x) — (x+) — p(x—y)| < Amin{1,[y|"}.

Therefore, for any x € RY, we have with 0 < r < 1 that

20(x) —@(x+y)—@(x—y)|

(1= A)g(x)| < B o(|y|) dy
RN Y
min{1,]|y|*

< [L D Gy g

|yl

RN
< CyA /]y\a Ndy+ / v dy+ / e Pl dr)
B\B, RN\B,

< C(N,r,a)A.

\X\

Next, Let R > 0 be such that B; (supp @) C Bg(0). Letx € RV satisfying 3 B> R, then 1+ Iy| <

fory € By (supp @) and |x —y| > |x| —|y| > ‘x‘ +1 > J(|x|+1). Moreover, since ¢(x) =0 for
x € RV \ Bg(0), it follows that

ol e
|(I A)log(p( )’ < 2dyA |N < CyA / | _y|N+1

supp ¢ supp ¢
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x| x|

e 2 e 2
< CyA / ———57 4y < Cysupp Q[A——.
i )™ (1) T

Therefore, combining the above computations, we find that
e_‘xl

W for all x € RV,
1+ |x|) 2

(1= 8)%p(x)| < Cn pA
From the above computations, we have that | (1 — A)1°¢ u, @)| < Cy ¢ @l cammyllull Loy and if
the sequence {u, }, converges to u in Ly(R"Y) as n — o then

(I — A) €, — (I — A)°% u, @)| < Ciy pA||un — UullLgmyy =0 asn— oo
Proof of (iii). This follows from (i) and the inequality
2u(x) — u(x-+v) — u(x— )| < lullca oplsl* o ¥ € Bya(0).
Proof of (iv). Let 0 < r < 1 be small. We have the following estimate of the difference,
(1= A)°%u(x)) — (1 — A)%u(x,)] < dy(h +1)

where /] and I, are given by

I ::/|u(x1)—u(x1+y)\‘):|kjv|u(x2)—u(xz+y)\w(y‘)dy
B,

b= / ’u(x1)—u(x2)|+\|b;(’§1+y)—u(x2+y)|w(|y|)dy
RM\B,

For I;, we use the inequality |u(x;) — u(x; +y)| < ||uHCﬁ(RN)\y|ﬁ to get
_ 2(1)N_1F(N/2)
1 < 2o [ BIP@(ly) e < S e o
B,
For I, we use |u(x1) — u(x2)| + [u(xi +y) —u(xz +y)| < 2|ul|cs @ X1 —x2|P and,

o(ly o\ly
L < 2[x —xz\ﬁHMHcﬁ(RN)( / ’SND dy+ / )()|‘N’) dy)
Bi\B, RY\B,

1 €7|Y|
<2l —ol o (T2 [ vt [ Sy a)
Bl\Br RN\Bl |y|
1
< 201 =P s v -1 (T(N/2)log - +T(N, 1))

<F(N/2)r_£

< 2t =l v Jull o ) +T(V.1)),
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where we have used the inequality log(p) < %S for € > 0 and p > 1 (see [59]]). Therefore,
taking r = |x; — x|, we ends with

(1= A)°%u(x1) — (I = A)*Bu(x2)| < C(N, B, &) |ull vy [x1 —x2|P %,
Proof of (v). This easily follows by integrating the following equality

(@) y(x)—e(w(y) = ((x) =)y (x)+(¥(x) —y()e(x) — (¢(x) — o) (W(x) —y¥(y)),

while the second statement is an application of Fubini’s theorem. This completes the proof of
Proposition O

We next list some properties for functions belonging to the space H'°2(RV).

Lemma 4.8. The following assertions hold true
1. Ifu € H8(RN), then |u|,u™ € H(RN) with ([ 2] ] o vy HuiHHlog(RN) < |l ggros vy
2. The space C%(RN) € HYS(RN) for any o > 0.

3. If ¢ € CO%RN) and u € HE(RY), then ou € HYS(RN) and there a constant C :=
C(N, ) > 0 such that

1@l Fo vy < Clell s vy
Proof. 1t straightforward to see by integrating the inequality
()| = Ju@)]| < Ju(x) —u(y)]
that & (|ul, [u]) < Eu(u,u,) and |[[ul[| e yy < [|ul oz (yy- Using also the inequality
2(u" (x) =t (1) (™ (x) —u™ (v) = =2(u" ()" (y) +u” () (x)) <O for x,y €RY,
it follows that
Ep(uyu) = Ep(uu™) +Ep(uu™) =28 (W u™) > Ep(u,u®) + Ep(u,u),

proving clearly that the first item holds. Now, for the second item, we let u € ‘KCQ"X(RN ) be such
that supp u C B,, r > 0. without loss of generality we may assume that 0 < r < 1 such that we
can directly apply the asymptotics in (£.9). We therefore have

(u,u) 2//\ —u(y)[?J(x,y) dxdy—l—/ / J(x—y) dydx

RN\B,

<C1//\x ¥ Ndxdy+Cz/ / lx—y[ ™ dy

B, B, B1\B;

+/ “Fay)dx <c’ ( ’—2“+c3,
RM\B,
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where the constants C := C(N) > 0, C; := C3(r,N) > 0 and C3 := C3(r,N) > 0. The second
item is proved. We next prove item 3. Let u € H¢(RY) and ¢ € €."*(R") with supp ¢ C B,
for 0 < r < 1. Then using the inequality

|9 ()u(x) = @()u()* < 2(Ju(x) —u) P[0+ [uG) Plox) — o)),

we get
ol) < [ [10(Pulx) ~ ()P (x.y)dxdy
B, B,
+2 / / 9(x) — @) PI(xr—y)dydx
+C/|<P / =y N dy+ / “lay)dx
B1\B, RN\ B,
< 20l g o) + Co [ 1) [ vy Ny Cs < oo
B, B,

Since || @ul|;2my) < Colul|12(my), We have that Qu € H'¢(RN) and item 3 is proved. O

We recall the space %O(Q), corresponding to the analytical framework for the logarithmic
Laplacian L, introduced in [29]], see also [47], given by

HO(Q) = {u € L*(RY): =0 0n Q and / dedy < oo} (4.29)
x,yeRN
[x—y|<1

Here Q¢ = RV \ Q, and the map

(u,v) — (u,v) Q) = // \x ;‘EV)V(}))) dxdy,

xye]RN
[x—y|<1

is a scalar product on 7}’ (Q). The space %}’ (Q) is a Hilbert space with induced norm

(R [PIT

1
0@ = (s >;%0 @) Moreover, The space C2(Q) is dense in 57 (Q) and

the embedding .72 (Q) < L*(Q) is compact.
We have the following Lemma

Lemma 4.9. (i) the space H'¢(RN) is a Hilbert space and, H"(RN) C H'°¢(RN) for all
m > 0.
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(ii) If Q C RY is an open set with finite measure then we have the following Poincaré inequal-

ity with C:=C(N,Q)

oy <C [ [ lue) ) Pae—y)dady.  we A4 (4.30)
RN RN

(iii) If Q C RY is bounded, then there a constant C; := C(N,Q), j = 1,2 such that

C18p(u,u) < |]u||%o(g) < Cr6p(u,u)

(iv) The space €:°() is dense in %log(Q) and
the embedding %%log(ﬂ) < L*(Q) is compact. (4.31)

Proof. Let {u,}, C H¢(RV) be a Cauchy sequence. Then {u,}, is in particular a Cauchy
sequence in L?(R") and hence there exists a u € L>(R") such that u,, — u as n — co. Passing to
a subsequence we get that u,, — u a.e in RV as n — oo and by Fatou Lemma we have

Eo(u,u) < liminf &y (uy,uy) < sup g (uy,uy) < oo,
fi—reo neN

showing that u € H'°¢(RN). Apply once more Fatou Lemma it follows that
Hun - uH%{log(RN) = Hun - ”HiZ(RN) + ga)(“n —U,uy — M) < h};gglfnun - um”?{lug(RN)J

for n,m € N. The claim follows since {u,}, is a Cauchy sequence in H'°¢(R").
By Plancherel thereon the norm in H'°¢(RY) is also given via Fourier representation

D=

gy = () + [ o1+ 1EP)F ) (E)P € )

]RN

Threfore, using the standard inequality logp < %m for p > 1 for m > 0 (see e.g. [59]]) one see
that the space H'°¢(RV) is larger than any Sobolev space H"(RV) := W™2(RV). In fact if
u € H™(RN) then the proof of (i) is completed by the following inequality,

ey = e + [ Tog(1-+ 1€ () §) P
RN

| (4.32)
< ey + - [ 1+ EPYP () (E) PG < ol
RN

The Poincaré inequality in (ii) follows from [43, Lemma 2.9] and [61] if Q is bounded or
bounded in one direction. We provide the proof here for Q@ C RY with |Q| < . Since u = 0 in
RN\ Q, we first have by Holder inequality that

a()” < @m) M|Q|lullfrq)  forevery EeRY.
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Next, by Plancherel theorem and every R > 0, we get

(e / @GP s = [ @@ ag+ [ tog(1+EPNa(E) log(1+IE) " dé

I&<R SI=R
< (2) " RV|2B1 0)] WEJ]}J —uly) () dady.
Therefore, choosing R < 27(|Q||B;(0) |)*% = 271'(#“2') ” we find that
[l g < : [ [ @) a2 y) daay

log(1+R2) (1= (27) VRY||B1(0)]) g

The proof of (ii) follows here by minimizing in R the coefficient in the right hand side.
For item (iii), we use the asymptotics in (4.9) to get

il = 5 [ 2O 'de<c//'“ ol ) dxd
u X — xay.
@)~ 2 o e y|N e

x,yeRN
h—yl<1

Next, using Poincaré inequality for .77 O(Q) again with (4.9) we get that

o) =B [ [ PO U e )y
x — yIN

RNRN

// ) = u)® P ‘N d dy+2/|u / o(|x—y|) dydx
\x y|<1

« [l [ 5, =D v < call o
RV\Q
with
o(lx—yl)
2 g {1}

The proof of (iv) follows from [29, Theorem 3.1] and (iii) since The space C;°(Q) is dense in
H,)(Q) and the embedding 72 (Q) < L*(Q) is compact. The proof ends here. O

As consequence of the Poincaré inequality, we have for bounded Q with continuous boundary
that the space %’{)log(Q) can be identified by

() = {ueHlog(RN); u=0 on ]RN\Q}.

and it is a Hilbert space endowed with the scalar product (v,w) — & (v,w) and the correspond-
ing norm ||M||%log(g) =/ Eo(u,u).
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4.3 Eigenvalue problem

In this section, we provide the proof of Theorem |.3] proposition 4.4]and Theorem §.5|concern-
ing the study of the Dirichlet eigenvalue problem in bounded open set €2,

{(I —A)°y =2y inQ
(4.33)

u=0 onR¥\Q.
We start with the

Proof of Theorem LetW: %log(ﬂ) — R be the functional defined by

() 1= o) = )P e

We use the direct method of minimization. Let {u,},cn be a minimizing sequence for ¥ in

P1(Q) = {u € H;"(Q)  |lull 20y = 1} that is

lim W(u,) = inf W(u) >0 > —oo.
n—oo ue 2 (Q)

Then by the definition of W, the sequence {uy, },en is bounded in %log (Q) and up to subse-
quence, there exists ugp € ,%%log(Q) such that thanks to (.31,

u, —ug weakly in %IOg (Q) (4.34)
u, — up  strongly  in L*(Q). (4.35)

It follows from (4.35) that [[uol|2(q) = 1 and that ug € &7 (€2). Using the lower-semi-continuity
of the norm in %log(Q), we deduce that

inf W(u)=1lim¥(u, >¥ > inf Y(u).
L ) = lim W) > W(w) > il (o)

This yields that W(up) = gf( )‘P(u) and, the first eigenvalue is 4;(Q) = ¥(up), with the
uce 2 (Q

corresponding eigenfunction ¢; = up € &;(Q). By the Lagrange multipliers theorem, there
exists A € R such that

Eo(@1,v) = (¥ (1),v) = l/(plv dx forall ve %’f)log(Q). (4.36)
Q
Taking in particular v = @y, we find that L = 4, (Q) = &, (@1, ¢1). We next show that ¢; does

not change sign in Q. Indeed, since &y(|v],|v]) < &u(v,v) for v € 7°¢(Q), it follows that
|p1| € Z21(Q) and by the definition of A; () we have that

M(Q) = Su(|1],]@1]),
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showing that ¢; does not change sign in Q. We may assume that ¢; is nonnegative. Suppose
then that @; (xo) = 0 for some xp € Q. Then

0=21(Q)p;(x) = —dN/ ‘jfl_();o‘])vwﬂx_ﬂ) dy <0
RN

which yields a contradiction. Therefore ¢; > 0 in Q and (i) is proved.

We prove (ii) via contradiction. Suppose that there exists a function v € Z;(Q) satisfying
(I—A)"°2y = Ayv with v # oy for every o € R. Then w:=v— a @y satisfies also (I —A)%8w =
v(xo)

o1 (x0)
and therefore must change sign. This contradicts (i) and thus the eigenvalue A, (Q) is simple.

We prove (iii) by induction. We first note that, if follows from the simplicity of A;(Q) in (if)
that 4;(Q) < 12(Q). By the same construction as in the case k = 1, we get a sequence of
eigenfunctions @, -+, @ € ,%’f)log(ﬂ) and eigenvalues A,(Q) < --- < (), k € N with the
properties that

Aiw. Butsince ¢ > 0 in Q, by choosing o =

, Xo € Q, it follows that w vanishes at xo € Q

A‘J(Q):uelggjf&g)éo(l)(uau):éo(l)((pp(p})? J:177k and

ol9;,7) = ;Lj(sz)/%v dx forall ve Q).
Q

Next, we define A1 () as in (@.18), that is

A Q)= inf & .
k+1( ) uegégl(g) g)(l/t,lxt)

By the same argument as above, the value A 1(Q) is attained by a function @1 € F11(Q)
and by the Lagrange multipliers theorem, there exists A € R such that

Eo(QPri1,v) = )L/(pk+1v dx forall ve P 1(Q). (4.37)
Q

Taking in particular v = ¢y in (@.37), we get that L = A4,1(Q). Moreover, for j = 1,---k, it
follows from the definition of Z7;1(Q) and taking v = ¢; in (#.37), we find that

gw((karla(Pj) :O:A{j(g)/(pk+l(Pj dx. (438)
Q

In other to conclude that ¢y is an eigenfunction corresponding to eigenvalue A;(Q), we
need to show that holds for all v € ji’f)log(Q). To see this we write
Q) = span{gr.-- . ¢} & P (Q)

such that any v € %’f)log(ﬂ) can be written as v = v| + v, with v; € span{¢;,---, @} and v, €
Pr11(Q). It follows from with v replaced by vo = v —v| € P41(Q) that

0= Eo(Prs1,v2) — g1 () / QOr+1v2 dx
Q
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= Gul@er1.7) = Eo(@r1,11) = At (@) [ @i (v=v1) dx
Q
= Eo(Pr+1,v) —lk+1(Q)/(Pk+1v dx,
Q

where we used equality in (4.38). This shows that holds for all v € %log(ﬂ). We have

just constructed inductively an L?>-normalized sequence { @ }ren in J“i’f)log (Q) and a nondecreas-
ing sequence { A }ren in R such that holds and such that ¢ is an eigenfunction of
corresponding to A = A (Q) for every k € N. Moreover, we have by construction that { @ }ren
form an orthogonal system in L?(Q). To complete the proof of (iii), it remains to show that
limg_, 40 A () = +oo. Suppose by contradiction that

Eo( O, o) = 4(Q) > co R as  k— +oo for every k € N.

Then the sequence { @y }ren is bounded in %log(ﬁ) and, up to subsequence, there is ¢y €
%’f)log(Q) such that
o — @ in L*(Q) ask— +oo.

It follows in particular that { ¢ }en is a Cauchy sequence in L?(Q). But orthogonality in L?(Q)
implies that || @ — @;|;2(q) = 2 for every k and j, which leads to a contradiction.

For the proof of assertion (iv), the orthogonality follows from from (iii). we then need to
show that the sequence of eigenfunctions { ¢y }xcn is a basis for both L?(Q) and %log(ﬂ). Let

suppose by contradiction that there exists a nontrivial u € %log(ﬂ) with

||MHL2(Q) =1 and /(pku dx=0 forany ke N. (4.39)
Q

Since we have that klim Ak () = oo, there exists an integer ko > 0 such that
oo

Y(u) <A, ()= inf W(v).
0 < hy(@) = _inf W)
This implies that u ¢ Z, () and, by the definition of Z7,(Q), we have that [, ¢;u dx # 0 for
some j € {1,---,ko — 1}. This contradicts (4.39). We conclude that %log(g) is contained in

the L?-closure of the span of {¢y : k € N}. Since %log(ﬂ) is dense in L?(Q), we conclude that
the span of { ¢ : k € N} is dense in L?(), and hence, the sequence { @ }tcn is an orthonormal
basis of L?(Q). This complete the proof of Theorem O

We next give the

Proof of Proposition We work here with the §-decomposition of the nonlocal operators as
described in [47, Theorem 3.1]. For this, let Q C RN be open and bounded set of RN. For § >0,
we let J5 := 1p,J and K := J — Js. Note that for u,v € %IOg(Q),

Boly) = E306m) + 2 [ [ ) = u() (03) = v(3) K —) ey
RN RN
= &% (u,v) + Ks (U, V) 2y — (K % U, V) 12wy
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where the §-dependent quadratic form é}g is given by

() = 830 = D [ ) a0 ) = v0) ) iy,

RN RN

the function K5 € L' (R") and the constant ks is
1
s = /Kg(z) dz> / L 2= —ennd e s 50,
Z
RV B1\Bj;

Next, let ¢ > 0 be a constant to be chosen later. Consider the function w, = (u—c¢)™: Q - R

Then w, € %log(ﬂ) by Lemma see also [60, Lemma 3.2]. Moreover, for x,y € RY we have
that (u(x) — u(y)) (we(x) =we(y)) > (we(x) —we(y))?. Indeed,

((x) = u(y)) (we(x) = we(y)) = ([u(x) — ] =

= [u(x) = cJwe(x) + [u(y) — cJwe(y) — [u(x) = c]we(y) —we () [u(y) — ]

= W () + w2 (y) = 2we (0 we(y) + [u(x) = ] “we(y) +we () [u(y) — €]~

> Wz(x) +Wz(y) - ZWC(X)WC()/) = (Wc(x) - Wc(y))2'

This implies that
ES (we,we) = // we(x (y))*Js(x —y) dxdy
RNRN

< B[ ) )00 0) w5 )y
= Ep (U, we) — K5 (U, we) 2 () + (Ks x4, we) 2 (q) (4.40)
<

< (A —x5) (4, we) 12(0) + 1Ks * ul] Loy (1, We) 12(0)-
Note that k5 — +o0 as 6 — 0. Hence, we may fix § > 0 such that A + k5 < —1. Moreover, with
this choice of 8, together with the trivial inequality u(x)w.(x) > cw,(x) for x € Q, we infer that

53 0wewe) < [ (K5l — e d
Q

< / (cnslull 2 v, — )we dix.
Q

(4.41)

The quantity cy 5u|;2(rv) is obtained in the following computation using Hoder’s (or Young’s)
inequality combined with the asymptotics in (4.9),

[k * ul =y < e s llull2mmy-
We then deduce from @.41) with ¢ > cy s[ul|;2(rv) that

0 < &3 (we,we) <0, (4.42)
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which implies that é"a‘? (we,we) = 0. Consequently, w. = 0 in Q by the Poincaré type inequality.
But then u(x) <c¢ a.e. in Q, and therefore

u(x) < ewllul| ey

Repeating the above argument for —u in place of u , we conclude that

Jul| =) < cllull 2@y
This complete the proof of Proposition [4.4] O
For the proof of Theorem we first state a Polya-Szegd type inequality for (1 —A)°2.

Lemma 4.10. Let u* be the symmetric radial decreasing rearrangement of u. Then,
S u*) < Ey(u,u). (4.43)
Moreover, the equality occurs for radial decreasing functions. Here,

Proof. By a changes of variable, we write the kernel J as

oo

J(z) = dN|Z|7Na)(\z]) = 4(%)7% /67;\421‘%7167% ”
0

Then by Fubuni’s theorem, we write the quadratic form as

oo

1
Solw) =5 [ [ ) —u() Py dxdy=25) ¥ [ Gle) 31t a,
RN RN 0

where,

G(t,u) = //\M(X) —u(y)Pe " dxdy.
RN RN
Noticing that
(e—f\z\z) = e—"z‘z, forall >0,

It follows from [3| corollary 2.3 and Theorem 9.2] see also [49, Theorem A ] that
G(t,u") <G(t,u) forall ¢>0.

This gives that
Eo(u u*) < Ep(u,u)  for  uec HO$(RV). (4.44)

The proof of Lemma[4.10]is completed. O



The logarithmic Schrodinger operator and associated Dirichlet problems 110

Proof of Theoremd.5] This is a direct consequence of lemma [4.10] and the characterization of
the first eigenvalue A; jo(Q) of (I —A)°¢ in Q. Since we know by Theorem [4.3| that the first
eigenfunction @ o, corresponding to A4; 1o, (L) is unique and strictly positive in £, we have
thanks to Lemma[4.1Q] that

)“l,log(-Q) _ gw((Pl,log7(Pl,log) > (f’w(qoilog,(pilog) > inf M

> > = A1 jog(B")
”(Pl,logHiz(Q) ||(pilogHi2(B*) ue%k)g(g*) ||u‘|iz(3*) og >

where we have used (see [22, Lemma 3.3]) the fact that

/]u|2 dx:/\u*\2 dx.
Q B*

This gives the proof of (.19). For the equality, if we suppose that A 100 () = A1 10¢(B*) With
|Q| = |B*|, then we must have the following equality

éDL((PLlog? ¢1 ,log) = éDL((pilog (pilog)

and by [49, Lemma A>] we deduce that the first eigenfunction @ jo¢ has to be proportional to a
translate of a radially symmetric decreasing function such that the level set

Qy:={xcR": @1 10g > 0}

is a ball. Since @; 1o > 0 in Q by definition and it is unique, it follows that Q must coincide
with Qg and has to be a ball. The proof of Theorem [4.5]is then completed. O

4.4 Small order Asymptotics

This section is dedicated to the proof of Theorem We first introduce some notions and
preliminary lemmas that shall be used. For 0 < s < 1, we introduce the Sobolev space (see
(85,92])

u(x) —u(y)?
HS(RN):{uELQ(]RN) : / Mws(|x—y|)dxdy<oo}
RN RV

with corresponding norm given by

" ux) —u(y) 2
HuHHS(]RN) = (HMHLZ(RN)—l—/ ng(]x—y])dxdy) .
RN RN Y

Let Q C RY be an open bounded set. We will use the fact that (see [92])
the space C2(Q) is dense in /4 (Q),

where the space 77’ (Q) is the completion of 6°(Q) with respect to the norm || - || s (rwv). We
start with the following Dirichlet eigenvalue problem

{(I—A)Su:lu in Q

4.45
u=0 onR¥\Q, (+:49)
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where Q is a bounded Lipschitz open set of RY. We define the first Dirichlet eigenvalue of
(I—A)* in Q by

Ews(u,u) )
Mo(Q)= inf ZESELLinf (), 4.46
(@) = 0 @)~ g Gaste®) (4:46)
HMHL2(Q):1

where the quadratic form (u,v) — gw‘s(u,v) is defined by

fosti) = [t =32 | [HEOZEE= 00 e sty

RN RN

—/1+\c§| (1)(8).7 () (§) E.

By the Courant-Fischer minimax principle, the eigenvalues A4 (), k € N can be characterized
equivalently as

Aes(Q) = inf max &ps(v,v) = inf max &y s(v,v). (4.47)
’ VCay(Q) vev\{0} vee (@) vev\{o}
dimV=k []v];2q)=1 dimV=k [vll;2(q=1

Remark 4.11. Noticing that (1 + [€]?)* > |€|* for s € (0,1) and & € RY, we have via the

Fourier transform of the functional & (-, ) for (I — A)* and &(-,-) for the fractional Laplacian
(—A)*® that
)Lk,s(.Q,) = (Oga),s(lllk,ﬁ Wk,s) > @@S(Wk,m l//k,s) > ICI%{Q) &(W V) = /"’lljs(Q%
vely
HVHL2(Q):1

where is a L*>-normalized eigenfunction of (I —A)* corresponding to A () and lf L(Q)is
the first Dirichlet eigenvalue of the fractional Laplaman (—A)* in Q with

e | [ g,

RN RN

We need the following elementary estimates and inequalities.

Lemma 4.12. Fors € (0,1) and r > 0 we have

‘7(1“ ‘<2<1+r> (4.48)

and

‘Wzyl—log(l—krz)’ §2s<1+r4). (4.49)

Consequently, for every u € C2(Q) and s € (0,1) we have

s ot 0) ooy | < 25 (o) + 1A (450)

and
st 0) = ooy = 560 (at,0)| <25 (o amy + Al o) (45T)
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Proof. For fix r > 0, let h,(s) = (1+r?)*. Then we have
R(t)=0+r)"In(1+r*) and £A/(t)=(1+r*)"In*(1+7?).

Consequently, since (14 7%)* < (1+72) fors € (0,1) and In(1+r?) < (1+72),

‘(1 +r2)s—1‘ _ In(l +r) /S(l_,_rz)fdfgln(l—i—rz)(l—i-rz)s §2<1+’”4)

0

N N

where in the last step we used that (1+72)? < 2(1+r*) for r > 0. Hence ([#.48)) holds. Moreover,
by Taylor expansion,

ho(s) = 1+ sIn(1+ %) + In3(1 +r2)/(1+r2)f(s—r)dr
0

and therefore

(1+7%) =1

. —1og(1+r2)) < W)/(l+r2)f(s—f)dr‘ < s(1+2) (1 + ).

0

But since In?(1+72) < (1472) and (1 +72)* < (1 +72) for s € (0,1), @349) follows. Next, let
u € C}(Q) and s € (0,1). By (#48) and Fourier transform for &, s, we have

< [la+igpy
RN

<25 [ (1+1E1) a(E)PdE < 25 (g, + 1Aul )

RN

Thus @.50) follows. Moreover, by (#.49) we have

a(&)* dé

[ s at0) = 1 g,

oo t0) = 3o, 60| /mm )= 1= slog(1+ (&) a(8) P

/\ LHEDTL g+ 1)

< 26 (2 o+ 18 )

a(&) P d&

Hence (@.5T)) follows. This completes the proof of Lemma [@.12] O

Lemma 4.13. For all k € N we have

Mes(Q) <1+sC  forallse(0,1) (4.52)
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with a constant C = C(N,Q,k) > 0, and

Ais(Q)—1
limsup M= =1 Mtog(Q)- (4.53)
s—0t S /
Consequently,
lil(l)l+ Mes(Q) =1 for all k € N. (4.54)
s

Proof. We fix a subspace V C C2(Q) of dimension k and let Sy :={u €V : lull20) = 1}
Using (4.47) and @.50), we find that, for s € (0,1),

Aes(Q) —1 < max Eos(u,u)—1
S UeSy S

<C (4.55)

with
C=C(N,Q,k) = 2max(||u||§2<RN) n ||Au||§2(RN)).
ucSy

Hence (4.52) holds. Moreover, setting Z;(u) = M — Ew(u,u) for u € C2(Q), we deduce
from ([@.53) that

(Q)—1
s (@) =1 < max &y (u,u) + max | Z(u)|

S ueSy ueSy

while, by (4.51),
%, (u)| < 2s<||u\|§2(RN) + ||Au\|§2(RN)) 50 ass— 0" uniformly in u € Sy.

Consequently,

Aks(Q2) —1
limsupM < max &g (u,u).
s—0F s uesy
Since V was chosen arbitrarily, the characterization of the Dirichlet eigenvalues of (I — A)'°#
given in (4.47) implies that

Ais(Q)— 1
timsup %71 o e gy o (u,1) = Mg 1og () (4.56)
S0+ 5 VCCi(Q) uE
dim (V)= 4/l 2(0)=1

This shows that the inequality in @.33)) holds. It follows directly from {#.52)) that

limsup Az () <1 for all k € N.

s—0t

From Remark we have that Ay ((Q) > )Lf (). Tt therefore follows from [47, Lemma 2.8]
that
liminf A, ((Q) > 1 for all k € N.

s—0t

This proves [@.54)) and the proof of Lemma[d.13]is completed. O
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Lemma 4.14. Let k € N. If ., € H#(Q) denote an L*-normalized eigenfunction of (I — A,
then the set

{Wis 1 s€(0,1)}
is uniformly bounded in ¢ 1Og( Q) and therefore relatively compact in L*(Q).

Proof. To ease notation, we set Yy := Y ,, the k-th L?-normalized eigenfunction corresponding
to A 5(Q), k € N. By (#.54), there exits a constant C = C(N,Q, k) > 0 such that

— - %) —
L e B A e B (RS B T

S S
]RN

(ﬁ%l+m!%@WOHﬂwﬁwt

o\

1
Efﬂ%IH@N%@F&w %uww>

0 RN

Therefore, there exist a constant M := M(Q,k,N) > 0 such that

sup || Ws || pos() <M (4.57)
s€(0,1)
We conclude from (4.57) that y, remains uniformly bounded in ,%’{)log(ﬂ) for s € (0,1). Con-

sequently {yi s :s € (0, 1)} is uniformly bounded in .77 10g( Q) and relatively compact in L?(Q)
since we have from (4.37)) that %log( ) = L*(Q) is compact. O

We now give the

Proof of Theorem[d.6] The proof follows the idea in article [47, Theorem 2.10] by the author

combined with [29, Theorem 3.5]. It then suffices, in view of Lemma4.13] to consider an arbi-

trary sequence (s,), C (0,1) with lim s, = 0, and to show that, after passing to a subsequence,
n—soo

Aes () —1
lim s, ()

n—soo s

= A‘kJog(.Q) for k € N. (4.58)

Let { Wi, : k € N} be an orthonormal system of eigenfunctions corresponding to the Dirichlet
eigenvalue A ;, (Q) of (I —A)*. By Lemma4.14] it follows that, for every k € N, the sequence

of functions Y ,,, n € N is bounded in J“i’f)log (Q) and relatively compact in L?(Q). Conse-
quently, we may pass to a subsequence such that, for every k € N,

Wi ,s, — ll/l:(,log weakly in ,%%log(ﬂ) and Wi s, — Wi o Strongly in L*(Q) asn—oo. (4.59)

Moreover, by Lemma [#.13] we may, after passing again to a subsequence if necessary, assume
that, for every k € N,

s, () — 1

Sn

= € [~ (@) asne (4.60)
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To prove then (4.58), it now suffices to show that

Meog () = A for every k € N. (4.61)
It follows from (4.59) that
H lI/lz:logHLz(Q) =1 and (ll/l:log) WZlog)LZ(Q) =0 fork,leN, ¢ 7£ k. (4.62)

Moreover, for v € C2(Q) and n € N, we have from Theorem 4.3 that
(oﬁszn (Wkasn ? v) = A/kasn (Q) <Wk~,5n I v)Lz(.Q) (4'63)
and therefore, rearranging (@.63), it follows from (i) in Theorem 4.1 with p = 2 that

. M, () —1 1
tim 2L ey = tim L (G ()~ ()0

n—yoo Sn n—ee Sy
. (I—=A)"v—v (4.64)
=1 < : 7>
s \ Vs Sy 2(Q)

= <w1:10g7 (I - A)log v>L2(Q) = g“(u’l:logﬂ V)'

Since moreover (Wis,,V)12(Q) = (Wi 1og:V)12(q) @88 1 —> oo for any k € N and v € C3(Q), in

particular, for k = 1, we may choose v € C2(Q) such that (W] 1og> V) 12(02) > 0. It follows from
(4.60) and (@.64) that A satisfies —oo < A < A4 10¢(L) and

5@(‘Vf,1og: V) = A’l*<wr,log7 V>L2(Q) forallv e jﬁ)log (Q) (465)

Thus l//ilog is an eigenfunction of (I —A)°¢ corresponding to the eigenvalue Af. Since A] <
Al jog(€2), it follows from the definition of the principal eigenvalue (.17) that A" = A, jog(L2)

Ms(Q)—1

and then A4 j0g () = A < liminfmi)
i s—0t s

we get that W}, = W1 jog is the nonnegative L*-normalized eigenfunction of (I —A)'°¢ corre-

sponding to A 1o (Q). In short, we have just shown that as s — 0,

Al,s(Q) —1

N

This completes the proof for k = 1. Now for k > 2, it still follows from (4.60) and that

. From the uniqueness of the first eigenfunction,

= Aoe(Q) and Yo Y in LA(Q).

G Witogr¥) = A (Wi iy forall v e CX(Q), (4:66)
where v, is a Dirichlet eigenfunction of (1 — A)l°¢ corresponding to A, now with
AL € [ 10g (), Ak tog ()] (4.67)

Next, for fixed k € N we consider E} := span{ l//l*log, 29 log?" "> l//,élog}, which is a k-dimensional
subspace of .7 () by [@#62). Since

M <. <K
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as a consequence of (4.67) and since Ais,(Q) <Ay, (Q) for 1 <i< j<k,neN,wehave the

following estimate for every v = Z o4y, € EF with oy, --- o € R:

Jlog

k
gﬂ) (V, V) = Z aiajéba)(WiTlogv w;,log Z Ol,Olj llll log» l//] 10g>L2(Q) (468)
i,j=1 i,j=1

k
=Y A | Wioellfz ) < A Y. 0 = AL VII72 - (4.69)
i=1

=~

The characterization in now yields that

Mejog () < max  Ep(v,v) < AL
veEy

HVHLZ @~ =1

Since also A} < A 1o (Q) by (4.60), the equality in (4.61]) follows. We thus conclude that (4.58))
holds and also (.20) follows. Moreover, the statement (4.22)) of the theorem follows a posteriori
from the equality A = Ak 10g(2), since we have already seen that W, — Wy, in L*(Q), the
proof is thus finished here. O
4.5 Decay Estimates

This section deals with the proof of Proposition 4.2] concerning the decay estimates at infinity
and at zero of the solution u« corresponding to Poisson problem,

(I-APu=f in RV (4.70)

The fundamental solution of equation (4.70) can be is given in term of the Green function
G :RV\ {0} — R (see(@.10)) defined by

[e] 1 (e}
:/(t/ps e dsd,
0 0

We have in the sense of distributional that .# (G)(&) =
¢ € S, we have by Fubini’s theorem that

[ 617 9)&) a
"

m, & € RV\ {0}. Indeed, for

oo

/w zf //ps 0) (&) dEs' e dsdt
0

RN

1 (oo}
(t)/e_s(“"éz)st_1 dsdt (&) d&
0

I
EAN
S t— 3 3

2\—t _ 1
(1+]E)"dr 9(£) d& —R{ oglT g 98 4

=
=
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and then |

F! (7
log(1+]&[%)
We then define the solution u of equation fora f € €= (RY) by

)(x) =G(x) forx € RV\ {0}.

u(x) = [G* f](x /Gx y)f(y)dy forxeRY. 4.71)

This follows from the property of Fourier transform and convolution since
F(u)y=F(G)Z(f) and log(1+[E)F (u) =log(1+|E[)F(G)F (f) = F(f).
We now give the

Proof of Propositiond.2] For |x| small, We split the integral representation of G in two pieces

as follows
T —N ’x
= / = (5 ) K (el e

2N T (a2
60 =2 [ 15 (5) Kyl ar
%

Since t < %, it follows from the asymptotics property (4.23) for K, (see [50]) that as |x| — O,

and

N N
N 227NN/ 2—1) x| 72 i r< Y
K,g(\x\>~zlf-¥'-lr<v—2\>rxr-f-¥'~{ W/2=0 :

logpy if  r=75.
Plugging the above approximations in G, we end up with
2N , N
Wlogm as ’x‘—>0 if IZE
Gi(x) ~ ¥ (4.72)

2" |N/2F(N/2_’)dz X0 if r<
— —_ - as |x i —
/2 4'T(¢) 2’

|7N+m

where we have used that since N > 2¢, |x ~ |x| ™V as |x| — 0. Since also t < &, we have

N
I r(i\t’lé%t;f) dt < eo. Now, fort > 5, again by using [@23), we have

N
K,y () ~ 22— 5)\x|_t+% as  |x| = 0.

t

Taken the above approximations into account, we get the approximation for G,

2N TT(t—N/2
Galx) ~ 73 / (tm)/ ar as x—0 4.73)

w=



The logarithmic Schrodinger operator and associated Dirichlet problems 118

e T-5) ¥
Since IETOO W Oands > % 7, we infer that sz T ) dt < oo. Therefore, combining the
approximations of Gy in and G in ( we get
AR
2 I'(N/2—t
N
x|V G(x) ~ v / IT0) dt as |x|—0.
0

We next investigate the case with the modulus of |x| large. From the asymptotics property (4.23)
we have for all ¢ > 0 that

2K,y <|x|>~ﬁ|x|-”*“+’ e e

1
T2 N+1

~—lx|" 7 e
2

From this, we infer that

Gx)~ 2~ 5 T e —\x\/ as  |x| = oo,

2[

Noticing that lirrél/(Z’F(t)) 0= lim 1/(2'T(z)), the above integral is finite and
t—

t—+o0

/
0

dr ~ 1.

We therefore infer that

N+1 N-1 N+1 ‘ ‘

Gx)~2 21 2 |x|” 2 e "™ as|x| >eo.

For f € L'(RN), we write

= [Ga=ys0)dy= [ GOIfx-
RN RN

First observe that if f > 0, we have that
/ Gx—y)f(y)dy> Ce™! / fly
(x,1x]) (x,1x])

Since B(x,|x|) — R as |[x| — oo and f € L'(RV), we see that u(x) = O(e M) as |x| — oo.
Moreover, Since G(x) decays as e~ at infinity, there exists a constant M > 0 such that

G| pe@my <€ for  |x| > M,
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where C > 0 is a positive constant. We then write
Mux) =[G £1(x) = [ PIG(3) S (=) dy:
RN
Thus,
)| < | [ PG fx=-y) dy] < Gl [ 1=l dy
RN

RN
<[ £l mny-
This allows to conclude that u(x) decays as e~ "l at infinity, that is
ux)=0(e M)  as x| = oo
As before, there exists 6 > 0 such that
Il - ’NMHLN(RN) <C for x| < 8.
Therefore,
u)| <€ [ 17G=3)ldy < €Ll
RN
This allows to conclude that
u(x) =0(x|™) as |x| —=0.

This completes the proof of Theorem #.2] O

4.6 Additional remarks

We present in this section some results concerning the logarithmic Schrodinger operator (I — A)'°
that can be directly deduced from known results in the literature. For this fact, we introduce the
following space 74, (), being the space of all functions u € L? (R") such that

loc

ux)—u 2
p(1,Q) :://Wa)(|x—y|)dxdy<oo.
Q RN

Then the quantity & (u,v) is well defined for u € 7)°¢(Q) and v € %,(Q) (see [60, Lemma
3.1]). The proof of the following results on the maximum principle for the operator (I — A)'°#
on an open set Q of RV can be deduced from [60)].

Theorem 4.15. (i) (Strong maximum principle) Let @ C RN be a bounded subset and u €
Z(RN) be a continuous function on Q satisfying

I-AN°u>0 in Q  u>0 in RV\Q.

Then u>0 in Q or u=0 a.e. in RV,
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(ii) (Weak maximum principle) Let u € V¢(Q) with (I — A)'°2u > 0 in Q weakly and u > 0 in
RN\ Q. Thenu >0 in RN,

(iii) (Small volume maximum principle)There exists 8 > O such that for every open bounded
set Q of RN with |Q| < & and every function u € V4,(Q) satisfying

I-Au>c(x)u in Q and u>0in RV\Q,
with ¢ € L™(RN), then u > 0 in RV,
We recall that, u € 74,(Q) satisfies (I — A)!°¢u > 0 in Q weakly means,
Eo(u, @) > 0 for all nonnegative ¢ € €.°(Q).

Next, consider the following semilinear elliptic problem involving the operator (I —A)'°2 in a
bounded set Q of RV,

(I—A)°%u=f(x,u) in @ u=00nRV\Q, (4.74)

where f: Q xR — R is continuous. The following result on the radially symmetry of the
solution can deduced from [62]

Theorem 4.16. Assume that f is locally Lipschitz with respect to the second variable and
radially symmetry and strictly decreasing in r = |x|. Then every positive solution of is
radially symmetry and strictly decreasing in |x|.



5 Nonlocal operators of small order

This chapter focus particularly on singular integral operators with order strictly less than one.
Exploiting the variational structure of the associated Poisson problem, we study corresponding
spaces and investigate regularity properties of weak solutions depending on the regularity of the
right-hand side. The content below is in the same form as in the paper [46] except the missing
of acknowledgements. It is based on results from work done in collaboration with Sven Jarohs.

5.1 Introduction and Main results

In the following we let k : RY x RY — [0, 0] be such that

k(x,y) = k(y,x) forall x,y € R, and there exists ¢ € (0, 1) such that

sup [ min{1, x—y[®}k(x,y) dy < oo G.h

N
xeR RN

and we refer to k as a nonlocal kernel (function of small order). Note here, that the integrability
assumption on k is usually done with ¢ = 2. Here, this assumption ensures that k is associated
to an operator of order strictly below one. In particular, we are interested in the study of oper-
tators with order near zero. Motivated by some applications to nonlocal models, where a small
order of the operator captures the optimal efficiency of the model [4}[81]], nonlocal operators
with possibly differential order close to zero have been studied in linear and nonlinear integro-
differential equations, see [[29}/30,143}45./47,86L94] and references in there. From a stochastic
point of view, general classes of nonlocal operators appear as the generator of jump processes,
where the jump behavior is modelled through types of Lévy measures and properties of associ-
ated harmonic functions have been studied, see [56,58,63./79]] and there references in there. In
particular, operators of the form ¢(—A) for certain classes of functions ¢ are of interest from a
stochastic and analytic point of view, see e.g. [[14,|16]] and the references in there.

In the following, we aim at investigating properties of bilinear forms and operators associated to
a kernel k as in (5.1)) from a variational point of view. Suitably, we give additional assumptions
on k focusing, however, on minimizing these and we present certain explicit examples at the
end of this introduction.

To present our results, let Q C RN be an open, and u,v € Cg 1 (Q) and consider the bilinear form

bralin) =5 [ [0 ~u()(v(x) = v()k(x,y) ddy, 52
QQ

where we also write by (u,v) := by gn (u,v) and by o (u) := by o(u,u), bi(u) = by (u,u) resp. We
denote
DMQ) == {uec*(Q) : bra(u) < =}, (5.3)

which is a Hilbert space with scalar product

() pr@) = ()2 g@) +bra(u,v).



Nonlocal operators of small order 122

Associated to by there is a nonlocal self-adjoint operator I; which for u,v € c! () satisfies

by (14, v) = / Lu(x)v(x)dx and is represented by  fu(x) — / (u(x) —u(y)k(x,y) dy, xEQ.
R R
(5.4)
Here, the first equality can be extended, see Section to functions v € 7*(Q), the space of
those functions v : RV — R such that v|q € D¥(Q) and

sup / [v(y)|k(x,y) dy <o forall r> 0. (5.5)

RN
T RNB, (1

Given f € L7 .(Q), we then call v € ¥*(Q) a (weak) supersolution of I,v = f in Q, if

loc

b (v,u) > /f(x)u(x) dx  forallu e CZ(Q). (5.6)
Q

In this situation, we also say that v satisfies in weak sense I;v > f in Q. Similarly, we define
subsolutions and solutions.

We emphasize that this definition of supersolution is larger than the one considered in [60].
Using a density result we then can extend the weak maximum principles presented in [60] as
follows.

Proposition 5.1 (Weak maximum principle). Define j: RN — [0,00] as the symmetric rear-
rangement of k, that is

j(z) :=essinf{k(x,x+z) : xR} forzcR", (5.7)

and assume that
J does not vanish identically on B,(0) for any r > 0. (5.8)

Let Q C RY open, ¢ € L7 (), and assume either

1. ¢c<O0or

2. Qand c are such that ||c" ||~(q) < infreq frm o k(x,¥) dY.
If u € V¥(Q) satisfies in weak sense

Liu>c(x)u  inQ, u> 0 almost everywhere in R¥ \ Q, and  liminfu(x) > 0,

x| o0
then u > 0 almost everywhere in RV,

We note that assumption [5.8]on the function j defined in (5.7) implies the positivity of the first
Dirichlet eigenvalue of I; in bounded (or thin) sets Q C RY: The operator [ on an open set
Q C RY can be associated to a form domain given by the space

7"(Q) = {u € DX(RY) : Igmqu=0}. (5.9)
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Clearly, 2*(Q) = D*(RY) and also the space Z*(Q) is a Hilbert space with scalar product
()@ = )2 (a) +bi(u,v).

Then the first (variational) Dirichlet eigenvalue of I is given for Q C R" open by

by (u)

e @) [lull]
! u;é(() ) (@)

A(Q) = € [0,00). (5.10)

Then, if is satisfied and Q is contained (after a rotation) in a strip (—a,a) x R¥~! for some
a> 0, then A1 (Q) > 0 (see [43L61]).
In the following, we assume the stronger assumption

The function j given in (5.7) satisfies / Jj(z)dz=-00 (5.11)
RN
and conclude the

Proposition 5.2 (Strong maximum principle). Assume k satisfies additionally (3.11)). Let Q C
RN open and c € L}, .(Q) with ||c"||1=(q) < eo. Moreover, let u € ¥*(Q), u > 0 satisfy in weak

sense Iu > c(x)u in Q. If
1. If Q is connected, then either u =0 in Q or essinfxu > 0 for any K CC Q.

2. j given in (5.7) satisfies essinfg (g)j > O for any r > 0, then either u =0 in RN or
essinfxgu > 0 for any K CC Q.

Clearly, if A;(Q) is positive, then b, denotes an equivalent scalar product on Z¥(Q) and thus
for any f € L?(Q) there is a unique solution u € 2*(Q) with Lu = f in Q. The main results of
this article then are concerned with the regularity of , if f has a certain regularity.

We begin with a boundedness result for solutions.

Theorem 5.3. Assume k satisfies (5.11)) and is such that

sup k(x,y)? dy < oo forall K CC RN and & > 0. (5.12)

XE]RNK\BE )

Let Q C RN be an open set and f € L*(Q), h € L'(RY)NL*(RY), and let u € 7V*(Q) satisfy
in weak sense [iu = Au+h*u-+ f in Q for some A > 0. If there is Q' CC Q such that u €
L>(RN\ Q), then u € L*(RY) and there is C = C(Q,Q,k,A,h) > 0 such that

=y < C(If =) + Il + =) )
Remark 5.4.

1. Indeed, Theorem[5.3]is a consequence of a slightly more general result stated in Theorem
m in Section below, which concerns functions u : RN — R, which are in a certain
sense locally in V*(Q).



Nonlocal operators of small order 124

2. Ifu € 2%(Q), where Q C RY is open and bounded with Lipschitz boundary, then in the
above, Q' = Q can be chosen. Indeed, here the regularity assumption on d is only
needed since our definition of weak solutions uses test-function in C;°(Q). Replacing this
directly with Z*(Q), the regularity assumption is not needed.

As shown in [61], under assumption|5.11], it follows also that the embedding Z%(Q) « L*(Q)
is indeed compact, if Q C R" is bounded. Whence, from Theorem we have the following
Corollary.

Theorem 5.5. Let k satisfy additionally (5.11) and (5.12)) and let Q C RY open and bounded.
Then there is a sequence of Dirichlet eigenvalues (A, (Q)), of I, with

0<AI(Q) <A(Q) ... <AW(Q) =00 forn— oo,

that is, A1(Q) is simple and the first normalized eigenfunction Q| of Iy can be chosen to be
positive in the sense that
esg(inf(pl >0 forall K CCQ.

Moreover; any eigenfunction of I is bounded. To be precise, given A > 0 and u € Z*(Q) such
that Iu = Au, then there is C = C(N,Q,k,A) > 0 such that

ull =) < Cllullz2(q)-

In the particular case, where the kernel is translation invariant, that is, there is a function J :
RN — [0,00] with k(x,y) = J(x —y) for x,y € RN, we are also able to recover differentiability of
a solution u to the problem lyu = f, if f and J satisfy certain regularity properties. Our result is
as follows.

Theorem 5.6. Assume k satisfies (5.11) and let Q@ C RN open and bounded with Lipschitz
boundary. Then for any f € L*(Q) there is a unique solution u € 2*(Q) of u = f. Moreover,
if k satisfies additionally (5.12) and f € L*(Q), then u € L*(Q) and there is C = C(N,Q.,k) >0
such that

[ullz=@) < Cllfllz=@)-

. . . 1
Furthermore, if k satisfies (5.1) with 6 < 5 and

there is J :RYN — [0, 00| such that k(x,y) = J(x —y), where J satisfies for some m € NU {oo}:
(A),, It holds J € W™ (RN \ B¢(0)) for any € > 0, n < 2m and, for some C; > 0, it holds

IVI(2)| < Cylz) 77N for 0 < |z| < 3 with & as in (5.1,
(5.13)

then, ifm € Nand f € sz(ﬁ), we have dPu € LIZDC(Q)for all B € Ng’,
and for every Q' CC Q there is C = C(N,Q,Q' k,B) > 0 such that

Bl <m ucHL(Q)

HaﬁMHLz(Q’) < Clfllcomgy-

In particular, for m = e, we have u € C*(Q).
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Remark 5.7. We note that Theorem is a particular case of more general result proved in
Section [5.6] and This general result also includes the eigenvalue problem and yields the
following theorem.

Theorem 5.8. If in the situation of Theorem [5.5]the kernel k additionally satisfies with
m = oo, then every function u € 2*(Q) satisfying Lu = Au in Q for some A € R also belongs fo
C*(Q).

It is worthy to mention our approaches only exploits the variational structure of the problem
and uses purely analytic properties of the operator. Using a probabilistic and potential theoretic
approach, a local smoothness of bounded harmonic solutions solving in a certain very weak
sense Iru = 0 in Q, have been obtained in [56, Theorem 1.7] for radial kernel functions using
the same regularity (A),, (see also [58./79]). See also [54] for related regularity properties of
solutions.

5.2 Examples
We close this introduction with a class of operators covered in the above discussion:

1. As introduced in [29,47.|59]] the logarithmic Laplacian

X+
Lyp(x) = cnPV. / Wd —cn / q)||N)dy+pN(p(x), (5.14)
B1(0) RN\B,(0)

appears as the operator with Fourier-symbol —21In(| - |) and can be seen as the formal
derivative in s of (—A)* at s = 0. Here

N
cN:@:i and  pyi= 21n(2)+q/(%)—}/ (5.15)

aN/2 SN
where y := 1% denotes the digamma function and y:= —y/(1) = —I7(1) is the Euler-
Mascheroni constant. With k(x,y) = enlg,o)(x — y)[x —y|™, h = —cylgmg, o)y ™"
and A = py, can be studied using Theorem Moreover, also the generalizations of
Theorem [5.6] considered in Section[5.6]and the regularity statements in Section [5.7]cover
this operator —where in the latter situation a localization procedure is needed.

2. The logarithmic Schrodinger operator (I — A)'°¢ as in [45] is an integro-differential oper-
ator with Fourier-symbol log(1 + | - |*) and also appears as the formal derivative in s of
the relativistic Schrodinger operator (I —A)* at s =0,

0 u(x+y
(1~ A)*8u(x) = dyPV. / IS o)y

where dy = 12, o(r) = 21*%}’%1(%(;’) and K, is the modified Bessel function of the

second kind with index v. More generally, operators with symbol log(1+ | - |#) for some
B € (0,2] are studied in [64].
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3. Finally, also nonradial kernels of the type considered in [60] satisfy in particular the
assumptions (5.1) and (5.T1). See also also [58}/64L[79] and references in there.

The paper is organized as follows. In Section we collect some general results concerning
the spaces used in this paper and resulting definitions of weak sub- and supersolutions. Section
is devoted to show several density results of C°(Q) in D¥(Q) and in 2*(Q), which then
is used to show the Propositions [5.1]and[5.2] In Section [5.6| we present a general approach to
show boundedness of solutions and in Sectionwe give the proof of an interior H'-regularity
of solutions and from this deduce the interior C*-regularity of solutions to conclude the proof
of Theorem

Notation In the remainder of the paper, we use the following notation. Let U,V C RV
be nonempty measurable sets, x € RY and r > 0. We denote by 1y : R¥ — R the charac-
teristic function, |U| the Lebesgue measure, and diam(U) the diameter of U. The notation
V CC U means that V is compact and contained in the interior of U. The distance between
V and U is given by dist(V,U) := inf{|x—y| : x € V,y € U}. Note that this notation does
not stand for the usual Hausdorff distance. If V = {x} we simply write dist(x,U). We let
B,(U):={x€RN : dist(x,U) < r}, so that B,(x) := B,({x}) is the open ball centered at x with
radius 7. We also put B := B (0) and @y := |B|. Finally, given a function u: U — R, U C RV,
we let u™ := max{u,0} and u~ := —min{u,0} denote the positive and negative part of «, and
we write supp u for the support of u given as the closure in RY of the set {x € U : u(x) # 0}.

5.3 Preliminaries

Recall for Q C R" open, the definitions

bralin) =3 [ @) —ul) ()~ vio)k(x.y) dady,
QQ

Kio(x) == / k(x,y) dy € [0,00] forx € RY, and
RM\Q

Kio(u,v) = /u(x)v(x)l(k,g(x) dx,
Q

where if u = v we put
bro(u) :==brgo(u,u) and Kiq(u):=Kio(u,u).

Note that we have for any fixed x € Q that k; o(x) < e by (5.I). Moreover, we consider the
function spaces

PH@Q) = {ue L2(Q) : bra(u) <},
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Q) =

cRN
ERNB, (1)

Q) = {u RV SR : ulg € DNQ) and, for all » > 0, sup / lu(y)|k(x,y) dy < oo}, and
Lemma 5.9. Let U C Q C RN open and u : RY — R. Then the following hold:

1. ue 2YQ) = ulq € DK(Q) = ulg € Dt (Q).

2. 9KU) c 25Q) c vR(Q) c vRU) c vk (V).
Proof. This follows immediately from the definitions (see also [[60, Section 3]). ]

Lemma 5.10 (see Proposition 3.3 in [60] or Proposition 1.7 in [61]). For Q C RY open let
A1 (Q) be given as in (5.10) and let

A(r) =inf{A;(Q) : QC RN open with Q| =r}.
Then im A(r) > [gy j(2) dz with j(z) := essinf{k(x,x+2) : z € RYY as in (57,

Lemma 5.11. Let Q C RN open and let X be any of the above function spaces. Then the
following holds:

1. bygq is a bilinear form and in particular we have by o(u,v) < b,i/é(u)b,i/é(v) Moreover,

DX(Q) and 2*(Q) are Hilbert spaces with scalar products

(u,v) pr() = (U, v)12(0) + bra(u,v),

(U, v) gr () = (U, V) 12(0) + D v (V).
2. IfueX, thenu™,|u| € X and we have by oy (u*,u™) <0 for all Q' C Q with by o (u) < 0.
3. Ifg € COY(RN), ue X, then gou € X.
4. Q) cx.

5. ¢ C?’I(Q), u € X, then ou € 2*(Q), where if necessary we extend u trivially to a
function on RN. Moreover, there is C = C(N,k, ||@||co1(q)) > O such that

by (@) < C (Il o) + by ()

for any ' C Q with suppp CC Q'
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Proof. Theses statements follow directly from the definition (c.f. [[60, Section 3]). To be precise
in the last part, let ¢ € C'' (Q) and fix L := |@|co1(q)- That is, we have

()| <L and  [o(x) - @(y)] < Llx—y|.
Then using the inequality for x,y € RV
|p()ulx) = @(u()* < 2[@(x) — () Plu(x)” + 2|9 () *|u(x) — u(y)[?
we find by the assumptions (5.1)
b (pu) < bror(ou) + 22 [ Julx) PRy (x) d
supp ¢

<20 [ [ ) Ph—yPr(x,y) dy dx+ 202 () + L sup gy ()l

Q' QY Xesupp @
<212 ( sup [ [x—y%k(x,y) dy+ sup Ko (x)) 1 ][22 g+ 2L g (1) < oo.
xeQ ) xEsupp @

O

Remark 5.12. 1. Note that for u,v € Z*(Q) we have
bk(u, v) = kaRN (u, v) = bhg(u, V) + Kk7g(u, v).

2. It follows in particular that there is a nonnegative self-adjoint operator I associated to
b gy = by as mentioned in the introduction.

Lemma 5.13. Let Q C RY open, u € ¥} (Q). Then by gy (u,9) is well-defined for any ¢ €
Cr(Q).

Proof. Let ¢ € C(Q) and fix U CC Q such that supp ¢ CC U. Then with the symmetry of k

(1, 0)] < b0 (. @)]+ [1o()] [ lu0) = u(r)[k(xy) dyd

U RN\
2 2
<olpwbiie)+ [ leWldrsup [ luly)lkCey) dy
supp R e B, (x)
+ [ louldrsup [ ko) dy <.
N
supp ¢ YR e B, (v)
where € = dist(supp @, RV \ U) > 0. O

Definition 5.14. Let Q C RY open and f € L}, (Q). Then u € ¥* (Q) is called a weak super-
solution of [u = f in Q, if

by gy (u, @) > /f(x)(p(x) dx for all nonnegative ¢ € C;°(Q).
Q

We also say that u satisfies [u > f weakly in Q.
Similarly, we define weak subsolutions and solutions.
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Remark 5.15. 1. We note that by Assumptionit follows that for any function u € ¥*

loc

with u|g € C%1(Q) for Q@ C RN open we have |y € L*(U) for any U CC Q and

(©)

Lu(x) = /(u(x) —u(y))k(x,y)dy forxeQ.
RN

This follows easily similarly to the proof of the statements in Lemma

2. If u € VX(Q), then indeed also by(u,p) is well-defined for all ¢ € 2*(Q). Whence
also by, is well defined on V;* (Q) x Z*(U) for all U CC Q. In some of our results the

loc
statements need a Lipschitz-boundary of Q, which comes into play due to approximation

with C(Q)-functions (see Section below). However, this can be weakened, if u €
V*(Q) and the space of test-functions is adjusted.

Lemma 5.16. Let Q C RN open. Let Q1 CC Qy CC Q3 CC Q. Letn € Cg’l(]RN) such that
0<n<i1 in RN and we have

n=1 inQ and n=0 nRV\Qs.
Let f € L}, .(Q) and let u € ¥} (Q) satisfy in weak sense Iu > f in Q. Then the function
v =nu € I(Q;3) satisfies in weak sense Iv > f + gn 4(x) in Q1, where
gnu= [ (1-nODuOkxy) dy forxe Q.
RM\Q,

Proof. The fact, that v € 2%(Q3) follows from Lemma Let ¢ € C2(Q), then

[rnew) dx= [ r@ew) dc— [ (1=n@)uhe) dx

RV RV RV
Here, since (1 —n)u = 0 on Q,, we have

[ =ne)utnew) dr= [ @)1 —n)ulx) dx

RN

RN
——[ot) [ (1=n0)ut)kCey) dydx.

QI RN\QQ
Thus the claim follows. O

Remark 5.17. The same result as in Lemma also holds if “>” in the solution type is
replaced by “<” or “=".

In the following, it is useful to understand functions u € D*(Q) satisfying by o (u) = 0.

Proposition 5.18. Assume additionally and let @ C RN open and bounded and let u €
DX(Q) such that by o (u) = 0. Then u is constant.



Nonlocal operators of small order 130

Proof. Let xo € Q and fix r > 0 such that By,(xo) C Q. Denote g(z) := min{c, j(z)} 15 (0)(2),
where we may fix ¢ > 0 such that |{g > 0}| > 0 due to Assumption (5.I1T). Then by Lemmal6.1]

we have |

0=2bxqa(u) = 2bg0(u) = 5r——
2llgllrmmy

bq*q,Br(xo) (”)7

where a*b = [pva(- —y)b(y) dy denotes as usual the convolution. Note that since g € L' (RV)N
L>(RN) with ¢ = 0 on RV \ B,(0), it follows that ¢ * g € C(R") with support in B,,(0) and we
have

a%4(0) = [ (P dz>0
by Assumption (5.11). Hence there is R > 0 with g * g > € for some € > 0 and thus we have

S
0= by a0 0) = bgsgioy @0 = 5 [ [ (o)~ uly))? dady.
By (x0) Bp (xo)

for any p € (0,%]. But then u(x) = u(y) for almost every x,y € Bg/2(xo) so that u is constant
a.e. in Bp(xo). Since by o(u) = bro(u—m) for any m € R, we may next assume that u = 0 in
Bg/2(xo) and show that indeed we have u = 0 a.e. in Q. Denote by W the set of points x € Q
such that there is » > 0 with u = 0 a.e. in B,(x). By definition W is open and the above shows
that W is nonempty. Next, let (x,), C W be a sequence with x,, — x € Q for n — oo. Then there
is ry > 0 such that By, (x) C Q and we can find ny € N such that x € B, (x,) C By, (x,) C Q for
n > no. Repeating the above argument, it follows that # must be zero in B, (x,) and thus x € W.
Hence, W is relatively open and closed in Q and since W is nonempty, we have W = Q. That is
u=0in Q. O

5.4 On Sobolev and Nikol’skii spaces
We recall here the notations and properties of Sobolev and Nikol’skii spaces as introduced
in [31,96]. In the following, let p € [1,) and Q C R" open.
5.4.1 Sobolev spaces
If k € Ny, we set as usual
Whr(Q) := {u € LP(Q) : 0% exists for all & € N, |a| < k and belongs to L7 (Q) }

for the Banach space of k-times (weakly) differentialable functions in L”(Q). Moreover, as
usual, for 0 € (0,1), p € [1,0) we set

WOoP(Q) = {u cLP(Q) : M €L’ (Q x Q)}
x—y[7 e
With the norm

1/p
ullwer(@) = llullfsq) + Mlwer),  where [ulyorq (/ T—ylor y|"+<fp dd)
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the space W°P(Q) is a Banach space. For general s = k+ o, k € Ny, o € [0,1) the Sobolev
space is defined as

WP (Q) 1= {u € WRP(Q) 9% € WOP(Q) for all o € NI with |or] = k }
Finally, in the particular case p = 2 the space H*(Q) := W*2(Q) is a Hilbert space.
5.4.2 Nikol’skii spaces
Foru:Q —RandheR,let Q) :={x€ Q : dist(x,dQ) > h} and, with e € dB;(0), we let
Optt(x) = Speu(x) 1= u(x+he) — u(x).

Moreover, for/ € N, [ > 1 let
Slu(x) = 8,(8 " u)(x).

For s =k+ 0 > 0 with k € Ny and 6 € (0,1] define

N*P(Q) 1= {u EWHP(Q) : [0%]yor(q) < o forall & € Nj with || = k }

where
[u]N<’=P(Q) = sup h 5}%,eu||m(92,,)-
e€0dB, (0)
h>0
It follows that N*7(Q) is a Banach space with norm [|ul|ys.»(q) := lullwtr () + X|a)=£[0*tlnor ()

It can be shown that this norm is equivalent to

lullir@)+ Y sup A", ullray,
\a\:keEiBb(O)
>

for any fixed m,! € Ny with m < ¢ and [ > ¢ —m (see [96, Theorem 4.4.2.1]).

Proposition 5.19 (see e.g. Propositions 3 and 4 in [31]]). Let Q C RN open and with C* bound-
ray. Moreover, lett > s> 0and 1 < p < oo, Then

N'P(Q) C WP (Q) C N*P(Q).

5.5 Density results and Maximum principles
The main goal of this section is to show the following.

Theorem 5.20. Let either Q = RN or Q C RN open and bounded with Lipschitz boundary.
In the following, let X(Q) := 2%(Q) or D¥(Q). Then C(Q) is dense in X(Q). Moreover, if
u € X(Q) is nonnegative, then we have
1. There exists a sequence (uy), C X (Q)NL*(Q) with im u, = u in X (Q) satisfying that
n—soo
for every n € N there is Q) CC Q with u, =0 0on Q\ Q}, and 0 < u, < upiq <u.
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2. There exists a sequence (uy), C CZ(Q) with u, > 0 for every n € N and lim u, = u in
n—yoo
X(Q).

Remark 5.21. 7o put Theorem into perspective, we consider the following examples.

1. In the case k(x,y) = |x—y|7>V for some s € (0,3), the above Theorem is well-known
and leads to the interesting property that for any open, bounded Lipschitz set Q C RN we
have

DHQ) = H’(Q) = H(Q).
We emphasize that the above equality also holds for s = % Moreover, if s < % it also

holds H*(Q) = {u € H*(RY) : g qu=0}.

2. If k(x,y) = 1, (0)(x —y)|]x — y|™N, DX(Q) is associated to the function space of the local-
ized logarithmic Laplacian (see [29]).

The proof is split into several smaller steps. Recall that Z*(RV) = D¥(RV) by definition.

Lemma 5.22. Let u € D*(RYN). Then there is a sequence (uy), C D*(RN) with lim u, = u in
n—oo

DX(RN) satisfying that for every n € N there is Q, CC RN with u, = 0 on RN\ Q,.. Moreover,

ifu>0, then (uy,), can be chosen to satisfy in addition 0 < u, < up+ < u.

Proof. Forn € Nlet @, € Co''(RV) be radially symmetric and such that @ = 1 on B,,(0), @, =0
on B,11(0)¢. Clearly, we may assume that [@,]co1(gv) = 1. By Lemmathere is hence some
C = C(N,k) > 0 with by gy (@uu) < Cllu| pr(ryy for all n € N. In the following, let u, := @,u
and without loss of generality we may assume u > 0. Since then 0 < u —u,, < u on RY and
u—u, = 0 on B,, by dominated convergence we have r}l_rg |l — uy||2 = 0. Moreover, by choice

of @, we have for x,y € RV

() (1= @u(x)) = u(¥) (1 = @u(¥))] < [u(x) = u()[(1 = @u(x)) + |(¥) || @n(x) — @a (¥)]
< |u(x) —u(y)| +u(y)| min{1,|x — y|} =: U(x,y).
Here, U(x,y) € L*>(RY x RN k(x,y) d(x,y)), since
J] Uty dxdy = bz o+ [P [min{1,jr—yPhk(r.y) ddy
RN xRN RN RN

< by () + [ (o) dysupp,cgy [ min{1, ey HeCx)dy < .
RN RN

Thus lim by gn (1 — u,) = 0 by the dominated convergence Theorem. 0
n—yeo

Proposition 5.23. We have that C>(RY) is dense in D*(RN). Moreover; if u € D*(RV) is
nonnegative, then there exists (@,), C C=(RN) with ¢, > 0 for every n € N and lim ¢, = u in

n—oo
DX(RM).
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Proof. Let u € DF(RY). Moreover, let @, € C>'' (RY) for n € N be given by Lemma such
that ||u— @ul|s,, < L. Then v, := @,u € D*(R") and there is R, > 0 with v, =0 on RV \ Bg, (0).
Next, let (pe)ec(0,1) by a Dirac sequence and denote vy e := Pg * v,. Then v,e € C2(RN) for all
neN, ee(0,1] and

1
kaRN (u - Vn,g) S bk,]RN (M — Vn) + bk,RN (Vn — Vn_’g) S ; + bk,RN (Vn — Vn_’g).

It is hence enough to show that v, ¢ — v, in D*(RY) for € — 0. In the following, we write v
in place of v, and v¢ = pg * v in place of v, for € € (0, 1]. Moreover, let R = R, > 0 with
v ="y, =0on RV \ Bx(0). Clearly, ve — v in L>(R") for &€ — 0 and this convergence is also
pointwise almost everywhere. Hence it is enough to analyze the convergence of by gy (v — ve)
as € — 0. From here, the proof follows along the lines of [|60, Proposition 4.1] noting that there
it is not used that k only depends on the difference of x and y. Note here, that if u is nonnegative
then the above constructed sequence is also nonnegative. O

Lemma 5.24. Let Q C RY open and such that dQ is bounded. Denote §(x) := dist(x,RV\ Q).
Then the following is true.

1. Thereis C =C(N,Q,k) > 0 such that ki q(x) < CS°(x) forx € Q.
2. If Q is bounded, then 1o € DF(RV).

Proof. LetC=C(N,Q,k) > 0 be constants varying from line to line and denote U := {x € RV :
dist(x,Q) < 1}. To see item 1., let x € Q and fix p € JQ such that 6(x) = |x — p|. Then

Kry) dy < C+8(0)7 [ le—y|7k(x,y) dy < €57 ()

lx—p[°®
|x
v\Q

Kea(x) <C+ / —
v\a

where we have used that |x — p| < [x —y| for y € RV \ Q. Now 2. follows immediately from 1.,
since we have

brsv(la) = / / k(x,y) dydx < c/afﬁ(x) dx < oo.
QRV\Q Q

d

Theorem 5.25 (See Theorem[5.20). Let Q@ C RN be an open bounded set with Lipschitz bound-
ary. Then C=(Q) is dense in 2%(Q). Moreover, if u € 2*(Q) is nonnegative, then we have

1. There exists a sequence (uy,), C 2*(Q) with lgn u, = uin IX(Q) satisfying that for every
n—oo
n € N there is Q), CC Q withu, =0 on RN\ Q) and 0 < u, < upyq < u.

2. There exists a sequence (uy), C CZ(Q) with u, > 0 for every n € N and lg‘n U, = u in
n—soo

DK(Q).
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Proof. Note that the second claim follows immediately from the first one using [60, Proposition
4.1] as in the proof of Proposition Then also the main claim follows by considering u™*
separately. Hence it is enough to show 1. We proceed similar to [29, Theorem 3.1]. Denote
8(x) := dist(x, RV \ Q). For r > 0, define the Lipschitz map

0 o(x) >2r,
RN _ 6 (x)
o :RY =R, @x)=72— r<d8(x)<2n
r
1 o(x)<r
Note that we have ¢; < ¢, for 0 < s < r. We show
ug, € 2%(Q) for r > 0 sufficiently small and by gy (u@,) — 0 forr — 0. (5.16)

Note that once this is shown, we have u(1 — @,) € 2%(Q) for r > 0 sufficiently small and
u(l—¢,) —uforr—0. Since also 0 < u(l —¢,) <u(l—¢,) for0 <s<randu(l—¢@,)=0
for x € RN with §(x) < r, it follows that (5.16)) implies 1.

The remainder of the proof is to show (5.16). For this, let C = C(N,Q,k) > 0 be a constant
which may vary from line to line. Let A; := {x € Q : J(x) <t}. Note that u¢, vanishes on
RV \ Az, we have 0 < ¢, < 1 and, moreover,

-
.

10, (x) — 9, (y)| < min{c‘x , 1} for x,y € RY.

Then proceeding similarly to the proof of Lemma[5.11| we find for » small enough

besug) = 5 [ / —u(y)9,() P(x.y) dady + / 0K, () d
Agr Asgy Az
< [ [ (P () = ) + () — )P @R ()2 )kl y) dixdy
AgrAgr

—l—/ KkA4, dx
< —/ / x — y|%k(x,y) dydx+/ / k(x,y) dydx

RN\B, (x
—I—// (x y) dxdy—l—/ KkA4,( ) dx
AgrAgyr Ay
C
Sfe/ / lx —y|%k(x,y) dydx+C/ 2dx+bkA4, +/ X) KA, (X) dx
A4r Agr Ay,

dx+C/ dx+bkA4, +/ X) KAy, () dx.

Any
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Note here, since u € D¥(RY), we have Jas, u(x)?dx + by a,,(u) — 0 for r — 0. Moreover, we
have by Lebesgue’s differentiation theorem

r% u(x)zdxgci4r|/|31r| / u(x)? dxo(d)
Agr aQ B4, (6)
SCrl_s/ \Bl4,| / u(x)? dxa(d8) =0 for r— 0",
oQ By, (0)
Finally, since
Kio(u) = / 1 (x) K 0 (x) dx < oo (5.17)
Q

and, by Lemma[5.24] we have
Ki g (X) < / k(x,y) dy+ / k(x,y) dy < Cigq(x) +Cr*
RM\Q Q\Ay
for x € Ay, so that also [, u?(x) K ,, (x) dx — 0 for r — 0 with a similar argument. O

Proof of Theorem for X(Q) = 2*(Q). This statement now follows from Theorem [5.25|
Lemma[5.22] and Proposition [5.23] O

Theorem 5.26 (See Theorem [5.20). Let Q@ C RN be an open bounded set with Lipschitz bound-
ary. Then C=(Q) is dense in D*(Q). Moreover, if u € D¥(Q) is nonnegative, then we have

1. There exists a sequence (uy), C D¥(Q)NL>(Q) with r}glclo u, = u in D¥(Q) satisfying that
for every n € N there is Q) CC Q with u, =0 on Q\ Q}, and 0 < u, < upyy < u.
2. There exists a sequence (uy), C C2(Q) with u, > 0 for every n € N and nlglolo U, =u in
DX (Q).
Proof. Consider the Lipschitz map
0 <0
gn:R=R, g(t)=q1t 0<t<n
n t>n.

Then v, := g,(u) € D*(Q)NL*(Q) and we have with ¢, as in the proof of Proposition m
bk,Q(u - (1 - (Pr)vn) < bng(“ - vn) +bk,Q((prvn)-

Clearly, by o(u—v,) — 0 for n — oo by dominated convergence and by o(¢,v,) — 0 for r — 0
analogously to the proof of Proposition [5.23] noting that the term in (5.17) reads in this case

Kia(vn) < n’ / Kio(x) dx < oo forevery n € N.
Q

In particular, 1. follows. Now 2. and the density statement follow analogously, again, to the
proof of Proposition [5.25] O
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Proof of Theorem for X(Q) = D¥(Q). This statement now follows from Theorem
Lemma[5.22] and Proposition [5.23] O

Remark 5.27. It is tempting to conjecture the following type of Hardy inequality: There is
C > 0 such that

Kio(9) < C 11912y + bra(9)) forall ¢ € C7(Q)

if Q is a bounded Lipschitz set and k satisfies addtionally (5.11)). Let us mention that for k(x,y) =
lx—y| 72N this holds for s € (0,1), s # 3, see [27,34]. Moreover, for k(x,y) = Lg, 0y (x—y)|x—
y| 7N, this has been shown in [29)]. In the general framework presented here, however, it is not
clear if this is true.

Remark 5.28. With the above density results, we can now note that our definition of weak
supersolutions (and similarly of weak subsolutions and solutions), see Definition can be
extended slightly:

Letu e V/O‘C(Q) satisfy weakly Lu > f in Q for some f € L}, .(Q) and Q C RN open and bounded
with Lipschitz boundary.

1. If f € I} (Q), then by density it also holds

loc

br(u,v) > /f(x)v(x) dx  for all nonnegative ve 2*(U), U CcC Q. (5.18)
U

2. Ifuc VX(Q)NL*(RN) and f € L*(Q), then by density it also holds

br(u,v) > /f(x)v(x) dx for all nonnegative v € 2*(Q). (5.19)
Q

Finally note that if u : RN — R satisfies uly € D*(U) for some U CC RN and u € L*(RV \ U),
then u € ¥k (U).

loc

Proof of Proposition[5.1] Note that also u~ € #*(Q) and in particular u~ € D*(Q). Hence,
we can find (v,), C C2(Q) with v, — u~ in D¥(Q) for n — o with 0 < v, < v,y <u” by
Proposition[5.26] Then

by gy (1, V) > /c(x)u(x)vn(x) dx > —Hc*HLoo(Q)/u*(x)vn(x) dx.
Q Q
On the other hand, since u™v,, = 0 for all n € N and u > 0 almost everywhere in RN \ Q, we find
by (172) = (i) + [1a(0) [ ()~ u()kCxy) dyds
Q RM\Q

< bl ) —bralu”va) + [va(ux) [ k(w.y) dvds
Q RV\Q
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< —bra(u ,vy) —Kio(u,vn).

Hence

og/f@m@mwwp@fmgw)mfmmww@gfmmfyﬁ
Q

Since v, — u~ in D*(Q), it follows that by o (u~,u~) = 0, but then u~ is constant by Proposition
in Q. Assume by contradiction that u~ = m > 0. Then the above calculation gives

Ogm/w&KWWBQ—QQW)M, (5.20)
Q

which is in both cases a contradiction: If in case 1. ¢ < 0, then by (5.11)) we have K o(x) # 0
and since v, — m in D¥(Q) the right-hand side of (5.20) is negative.
In case 2. this contradiction is immediate in a similar way. O

Remark 5.29. Usually, the weak maximum principle is stated with an assumption on the first
eigenvalue A1 (Q) in place of infycq Ki o (x). This can be done once the Hardy inequality in
Remark[5.27is shown.

Proof of Proposition This statement follows by approximation from [60, Theorem 2.5 and
2.6]. Here, the statement j ¢ L'(R") comes into play since we need

inf K — oo forr—0
XEBr(Xo) kar(XO)(x) r

to conclude the statement for arbitrary c as stated. 0

5.6 On Boundedness

In the following, let A% u(x) = [pvh(x —y)u(y) dy as usual denote the convolution of two
functions.

Theorem 5.30. Assume k satisfies (5.11) and is such that

sup k(x,y)>dy < e forall K CC RN and € > 0. (5.21)

XERNK\BE )

Let Q C RN be an open set. Let f € L™(Q), h € L'(R¥)NL*(RY), and let u € ¥}

loc

(Q) satisfy
in weak sense
Lu<Au+hxu+f inQ for some A > 0.

Ifut € L”(RN\ Q') for some Q' CC Q, thenu™ € L*(RN) and there is C = C(Q, Q' k,h, 1) >0
such that
[ || 2= (o) < C(Hf”L‘”(Q) + [ull 2y + ||”+HL"°(RN\Q’))-
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Proof. Let Q1,Q,,Q3 C RN be with Lipschitz boundary and such that
Q' ccQccQccQcc.

Letn € Cg’l(Q3) suchthat 0 < < land =1 on Q,. Put v="nu and, for 6 > 0, denote

Js(x,y) := lgs(0)(x — y)k(x,y) and ks (x,y) = k(x,y) — J5(x,y). Note that by Assumption (5.1)
it follows that y — ks(x,y) € L' (RY) for all x € RN. Moreover, by Assumption (5.11))

cs = ian/kS(x,y) dy > / j(z) dz — e for 6 — 0.
R
e RN RN\Bs(0)

Hence, we may fix 6 > 0 such that
cs > A

In the following, C; > 0, i = 1,... denote constants depending on &', Q;, fori =1,2,3, A, &,
Q, n, k, and & but may vary from line to line —clearly, by the choices these dependencies are
actually only through A, Q, Q', 1, k, and h. First note that by Lemma we have in weak
sense

v <Au+thxu+f inQp with f(x)=f(x)+ / (1=n())u(y)k(x,y) dy.
RV\Q,

In the following, put
A= fllz=(e) + llull 2@y + [l =@ -

Then note that for x € RY we have
[ ()| < ([ ll 2y lluell 2oy =+ e[| = @) 1 vy < C1A

and, since sup [pw\q, (1 =N (¥))k(x,y) dy < Ca sup [pw o, min{1, [x — [ tk(x,y) dy < oo, it
xeQ xeQ
also holds that

1Fllz=(@) < I li=(@) + 1™ |22 @m 0, C2 < G3A.

Whence, since u = v in Q;, we have in weak sense
Liv < Av+C4A  in Q.

Next, let u € C°(Q") for some Q' CC Q" cC Q;suchthat0<u<Il,u=1onQ,and u=0
on RN\ Q" Let ¢, = u?(v—1t)" € 2¥(Q") for t > 0 and note that

be(v, @) < / (Av(x) +CsA) i (x) dx. (5.22)

Q/I

Fix t > 0 such that

t > ||| =rv@y and  CeA+ (A —cs)t <O, where
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Cs =C4+Cs with Cs=sup kf; (x,y) dy+ sup / ks(x,y) dy.
xeQ/ xeQ/
% RN\Q

That is, we fix

z_A(1+05C_6;L).

Then with (5.22)
ng (V7 (Pt) = bk(v’ (Pt) - bk5 (V7 q)l)
< [0 +Cig ) dr— [ v () [ ks dydx+ [ i) [v()ks(x.v) dy d.

Qr RN RN RN RN
Note here, that for x € RV we have by the integrability assumptions on ks and k
/V(y)ka(xvy) dy < /M(y)ka(xJ) dy < Cs([Jullz2(q) + llu" || 1= @i o)) < CsA
RN RV
so that using that v > ¢ in supp ¢, we have
by, (v, @) < / (CoA+ (A — c5)v(x)@u(x) dx < (CoA + (A —c5)1) / o) dr.  (523)
Q// QH
On the other hand, with v,(x) = v(x) —t, we have
(V) =v ) (@1 (x) = @ (v)) = ()i (x) — )V (7))
=20 ()R (v, ) = v R )y, () — w2 )V (9)ve (x)
(X)vi" ) (R (x) = () v, R () + 12 v vy (x)
(v () () = ().
Whence with Poincaré’s inequality, using that by Assumption [5.11 there is for any K C RV

open and bounded some C > 0 such that by, (u) > CHuHL2 for ue 915( ), we find for some
constant Cy

by (4,90) = bug (w07) % / / v @ () () — ()5 () dxdy

RNRN
> / w2 x5 [ [ o )00 — 1) () iy (5:24)
RN RN
e / R0 () dx—é [ [ w00 — ()5 (x.y) dxdy (525
Qo
_C7/u dx>C7/( F(x))? dx. (5.26)

Q/
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Combining (5.26) and (5.23)) we have
G / (4 () dx < (CoA+ (A —cs)) / ¢,(x) dx < 0.
Q/ Q//
Whence v;" = 0in ' and thus u = v <t = ACjo in &' as claimed. d

Corollary 5.31. Ifin the situation of Theorem we have in weak sense u = Au+h*xu+ f
in Q, then we have u € L*(Q) and there is C = C(Q,Q' k,A,h) > 0 such that

][ =0y < C(Hf”L‘”(Q) + [ull 2y + H”HL‘”(RN\Q’))'

Proof. This follows by replacing u with —u (and f with —f) in the statement of Theorem
5.30) O

Proof of Theorem This follows directly from Corollary [5.31] O

Theorem 5.32. [f in the situation of Theorem we have in weak sense u = Au—+h*xu—+ f
in Q and u € P*(Q), then we have u € L*(Q) and there is C = C(Q,k,A,h) > 0 such that

=ty < € (I flli=(oy + ez )

Proof. Using in the proof of Theoremm the test-function ;" instead of ¢, (and similarly for
Corollary [5.31)), we find

=y < (I flli=(oy + 2oy )
as claimed. ]

Proof of Corollary[5.5] The compact embedding has been shown in [[61]], the fact that the first
eigenfunction can be chosen to be positive follows from [60] and the final statement of the
boundedness follows from Theorem [5.3] (with & = f = 0) if Q has a Lipschitz boundary. If
this is not the case, it can be easily seen that eigenfunctions u corresponding to an eigenvalue
A actually satisfy by (u,v) = A [quv dx for all v € 2*(Q) (see Remark . Whence, as in the
proof of Theorem 5.1 the test-function u;" € 2*(Q) can be used. O

5.7 On differentiability of solutions

In the following, Q C R" is an open bounded set and k satisfies through out the assumptions
(G-11), (5.12), and (5.13) for some m € NU {eo} —in particular, there is J : RY — [0,o0] such
that k(x,y) = J(x —y) for x,y € R¥. We hence also write J in place of k. Moreover, given ¢
from assumption we assume that o < % and fix

1
a::l—ce(i,l).
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Theorem 5.33. Let f € C'(Q), A € Rand u € ¥, (Q)NL=(RN) satisfy in weak sense Iu =

f+Auin Q. Then for any Q' CC Q there is C = C(N,Q,Q',J,A) > 0 such that

1

18nett]l 12y < h“c(ufugl(g) + Huuim(RN)) * forallh >0, e€ dB;(0). (5.27)

Proof. Let Q' CC Q and fix r € (0, ) small such that 8 < dist(Q',RV \ Q). Moreover, fix
xo € Q' and denote B, := B, (xo). Note that by using assumption (5.11)) with Lemma we
achieve, by making r > 0 small enough,

A <Al = min ps(v)

we (By) Wl 2 @vye
w#0

Letn € C?’I(B4) with 0 <7 <1, n =1 on B,. Note that it holds

m(x) =) < 2[1llcor vy min{1, [x = y[},

where we put as usual

nx) —n)l
Nl co. = sup [N(x)|+ sup .
H HCOI(RN) xeRN’ ()‘ cyeR \x—y\
X7y

Note that by choice we have ||1||co1 vy < 1+ 1 <2 50 that for all x,y € RY

4
() - 10| < S min{1, v}, (528)

Fix e € dB(0) and h € (0,r). Let
A= ||l o (mr)-

Let y = n28,u € 2’ (By), where in the following 8,u := &, .u. Note that

(Sne(x) — 8u(y) (W(x) = w(v)) = (M(x)&u(x) =1 () Suue(y))
= Sy (x) Fpue(y) (0 (x) =1 (1))

Hence, we have
1
by (Onu, y) = by(10yu) — > / 8utt () Su(y) (1 (x) — () (x —y) dxdy.
RN xRN

and using the translation invariance, we also have

bi(Gy) = [ (80 () + 28 () dx
Q
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In the following, for simplicity, we put v(x) = 1 (x)8u(x), x € RY. Note that by Definition,
v € 27(B,). Then with the help of Young’s inequality for some i € (0, 1) such that

2 <Ay — A (5.29)
we find
2 1 2
MVl ) < bav) = bt ¥) + 5[] ) 8iu(3) (1 (x) = M (3))2 (= y) ddy
R xRN
2 1 2
— [160£() + A8 (@) Gu(x) dx+ 5[] Sul0)8(x)(n(0) - ()6 3) dxdy
Q" R xRN
2 —12 % 2 1 _ 27(x —
< A Mgy + 1 I By 5[] S080) ()~ (02— ) ddy.
RN xRN
(5.30)

By a rearrangement of the double integral with Young’s inequality for the same u € (0,1) as
above we have

3 [ B8 )~ )2 y) ddy

R xRN
=[] S8 =) x—y) ddy
RN xRN
= [n08ux) [ )8, (() = MGNI =) dyds
RN RN

2
< iRy + 1" ( J 18- (06 = n)Ix-3) )| dy) dx
RN

By

2
< IRy + 1A% [ ( []5-n (@ -n0)I16-9), dy) dx

By RN
2
< ulvlgpy +1 A% [ ( / \6_,1.,Z(<n<x>—n<z+x>>1<z>)\dz) av. 6531
By RN

Here, we indicate with 8_j, , (resp. 6_j, ;) that 0_j acts on the y (resp. z) variable. Note that

8 (M) =N z+x)I(2))
= 8. (N(x) = N+ ) + (M) = N(z+x—he))S 4 (2)
= (M(z+0) —n(ztx—he)J(@) + () = nlz+x—he)) (J(z—he) = J(2))  (5.32)

= (z+0)-1@)J@) + (n) = nlz+x—he) ) Iz~ he). (5.33)
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Note here, that (5.32) satisfies

(n(z+x>—n(z+x—he)>1(z)+(n(x>—n(z+x—he))(1(z—he)—J(z))|

1 (5.34)
4h 4h
< TJ(Z) + Tmm{l, |z—he|}0/|VJ(z— The)| dt
and (5.33) can be written as
‘ (n(z+x)=n@)J@) + () = n(z+x—he) ) (z he)
(5.35)

4 4 .
< ;mm{l,\z\}](z)—i—;mm{l,]z—he[}](z—he).

For h € (0,r), z € RN\ {0} put
1
kn(z) = min{h(](z) +min{1, |z—he\}/|V](z— The)| d‘L’),
0

min{1,|z|}J(z) + min{1, |z—he|}J(z—he)}.

Then, by combining (5.30) and (3.31)), we find

H5hu||i2(32) < ||v||%2(34)
~1
wBs (0 8uf s 16, 2 (5.36)
< M<h \\7\&2(34)+72H”HLM(RN)< {kh(z) dZ) :
R

Next we show that we have [pw kx(z) dz < Ch®* for some C > 0. Clearly, we can bound

kn(z) dz < Cyh (5.37)
RN\B5(0)
for some C; = Cy(n,J) > 0, using that B;(0) UB;(he) C B»(0) and the properties of J. In the

following, by making C; larger if necessary, we may also assume that assumption (3.1)) reads

sup [ min{l,[x—y|°}(x—y)dy= /min{l7 12|°}(z) dz < C;.

xe]RN]RN RV

Then note that By, (he) C B3;,(0) and we have

/ min{1,|z}J(2) + min{1, |z he|}J(z — he) dz
B2,(0)
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<Gy / 12" dz +Cy / |z—he|' =" dz

BSh(O) B3h(he)
_ 2B 0)\CJ/ o 2|B1(0)|Cy n ) 16
———(3h . .
. p°dp= (1= 0) (3h) (5.38)

0

While with bg () = 1179 we have

h / J(z)+min{1,\z—he\}/wf(z—rhe)ydrdz
5:(0)\B2,(0)

hB
AR Oy /pfoldpmcj / [ Rl chel o dzae

0 Bsz(the)\By(the)

h|B1(0)|C
< ’1(’1)’Jb6(2h) +hCJ/ / |2+ the||z| ' " dz dt

0 B3(0)\Bx(0)
boCh)+hCs [ O dzriRe [
B3(0)\B,(0) B3(0)\B,(0)

3
2
< 2h|Bl(0)|Cbe(h)+h |Bl(0)|cl/p26 dp

n n

< h|B1(0)|C;
n

h
2|B1(0 B1(0
JABO)ICs B0

n n(l+o) (5.39)

Combining (5.37) with (5.38) and (5.39) and the choice &« = 1— 0 € (0,1) we find C; =
C>(n,J, o) > 0 such that
/ kn(2) dz < Coh®. (5.40)
RN
Whence, from (5.36) with (3.40) we have

Onf 2

18001225y < V132, < P2 Ca (1 28 12+ ) (5.41)

for a constant C4 = C4(N,J,r,a,A) > 0. By a standard covering argument, we then also find
with a constant Cs = Cs(N,J,Q,Q",a,1) >0and Q" = {x € Q : dist(x,RV\ Q) > 4r}

18320y < 1 (1 2L 122 gy ). (5.42)

The claim (5.27) then follows since f € C!(Q). O
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Remark 5.34. Combining Theorem with Corollary [5.31] it follows that we have in the
situation of Theorem for every Q' CC Q

1

[[6n.eullr2(qy < h“C(HfH%I @ 2o + H”Hiw(RN\Q/)) " forallh>0, e € 9By(0).
(5.43)

Corollary 5.35. Assume m = 1. Let f € C}(Q), 2 € R, and let u € ¥}/ (Q) NL™(RY) satisfy

in weak sense u = Au+ f in Q. Then u € H'(Q') and du € D’ (Q') for any Q' CC Q. More
precisely, with o as above there is for any Q' CC Q a constant C = C(N,Q,Q',J,A) > 0 such
that

1

2
sup 128 oull 2y < C( 1122 + el 2oy + NullZ=@man ) (5.44)
(RM\Q)
e€dB (0)
h>0

so that u € N>**?(Q') c H'(Q'), that is, there is also C' = C'(n,J,Q,Q', &, 1) > 0 such that
%
Vilzar) < € (1 2y + iz + o)) (5.45)

and, moreover,
by (du) <C' fori=1,...,N.

Proof. Let Q; CC Q,i=1,...,7 such that

Q' ccQccQ; forl<i<j<T.
Let 1 € CT(Q7) with p =1 on Q6 and 0 < 1 < 1. Fix e € dB;(0) and h € (0, 3r), where
r = min{dist(Q;,Q\ Q;;1) : i=1,...,6}. Then by Lemma the function v = 1 6,u, where
we write §, instead of &, ., satisfies Iy = Av+ f in Qs, where f = §,f + gn,5u- Following the

proof of Theorem to (5.42) it follows with Theorem that there is C = C(n,J,r,a,A) >
0 (changing from line to line) such that

I8 ) = 10y < (12 2 1R o)
&S 2 ~
hwc(u sy + 17100+ V@ + l——
< h*C S
12 HLz iy + 173+ 18l o,

<2 C(12L 2y g + 171y hz“(\\f\lél(gﬂrHuHim(RN)))v

where we applied once more Theorem[5.33] Here, for x € Q4 using assumption (5.13)) it follows
that there is C = C(J) > 0 such that

[FEO < 18 ()] +

[ (1=n0)8u() ) dy

R¥\ Qs
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— 18 @I+| [ OIS0 -0 )] dy

RN\ Qs

< hC(IV flise) + Il =) )

Moreover, for x € Q in a similar way there is C = C(J) > 0 such that

8701 IGS+| [ (1-10)8u()8 (=) dy

RN\ Qg

<2\ fllez() + luell o)

| 8l =n0)8ux—y)] dy
RM\Qs

< th(Hflch(Q) + ||”HL°°<RN\9’>> :

Thus we have

H@%MH%z(Q/) < Ch** (Hf’é(g) + H“H%z(gf) + HMH%,‘X’(RN\Q’)>'

The proof of the first part then is finished with Proposition since 20t > 1. Next, write
Dyp(x) = w for any function p : RY — R, with e € dB;(0) fixed and h € R\ {0}.
Then with Lemma [5.16]for some n € C°(Q) such that 0 < 1 < 1 and 1 =1 on Q, CC Q with
Q' cc Q; CC Q, we have with v =nu,

W= f+avtgn, nQuwhere gru= [ (1-n0)aOM(x-y)dy
RM\Q,

Next, let 4 € C°(Q;) withO0 < u < 1 and u = 1 on Q'. Then with ¢ = D_,[u’Dyv] € 27 (Q)
for 4 small enough we have for some C > 0 (which may change from line to line independently
of h)

bs(v, )| = <C, (5.46)

/th,u,Zth +A (uth)2 + Dhgn,uuzth dx
Q

since

[ PufePDvl dx <l fleayVully <o [ 1A (uDw)|dx < 221Vl g, <
Q] Q1

and
) 1/2
[sgnawzowtas<c( [ [ 10=n0)ulD)ec—y) dy dx) [Vl ) <o
Q QlRN\Qz
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due to assumption (5.13). Moreover, with a similar calculation as in the proof of Theorem [5.33]
we have

1
b1(v,9) = by (D D) — 5 [ [ DI(ODI() ()~ p(3) 2T (x- ) ddy,
RN RN
where for some Q) CC Q3 CC Q4 CC Q with 4 small enough
[ [ 10Dl (1)~ ()P - 3)] ddy
RN RN

< [ [ i) Dy () s) =512 x—) ddy

Q3 Q3

< [IDsn)@P [ lr=yPIr—y) dvax
Q3 Q3

< Cl|Vat e / min{1, |22}/ (2) dz < oo.

RN
Combining this with we find

by(uDpv,uDyv) < C for all h > 0 small enough.

Since also uD,v € 9’ (Q;,) for all h > 0 small enough (see Lemma5.11)) and since D’ () is a
Hilbert space, we conclude that pd,v € 2’ () with

by(udv) <C
for &7 — 0. This finishes the proof. O

Corollary 5.36. Let f € C*"(Q), A € R, and let u € ¥;! (Q) NL*(RN) satisfy in weak sense
Lu=Au+ fin Q. Then u € H"(Q') for any Q' CC Q and there is C = C(n,J,Q,Q',m) >0

such that 1
2

fillmery < €1 By + iy + ) (547)
In particular, if m = oo, then u € C*(Q).

Proof. By Corollary the claim holds for m = 1 in particular with u| € D’(Q’) for all
Q' CC Q. Assume next, the claim holds for m — 1 with m € N, m > 2 in the following way: We
have u € H"1(Q') and 9Pu|oy € D/ (Q') for any Q' cC Q and B € NY with |B| <m— 1, and
there is C = C(n,J,Q,Q’ ;m) > 0 such that
1
1
([l 10y < C(Hf”%m—l(g) + [lell 2oy + HMH%‘”(RN\Q’)) . (5.48)
Fix Q' cCcQandlet Q; CC Q,i=1,...,7and n € C°(©7) as in the proof of Corollary
Put v = 9P (nu) for some B € N}, |B| =m—1. Then [y = 9P f + Av+9Pg, , in Qs by Lemma
and direct computation using the assumptions on J. From here, proceeding as in the proof
of Corollary [5.35|by applying Theorem [5.33]the claim follows. O
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Proof of Theorem[5.6] The first part follows from the Poincaré inequality Lemma[5.10]and The-
orem[5.3|with 4 = 0 = A. The last assertion follows from Corollary O

Proof of Theorem This statement follows directly from Corollary [5.36] O



6 Appendix

6.1 An inequality
The following is a variant of [35, Lemma 10] (see also [[59, Lemma 5.1]).

Lemma 6.1. Let g € L' (RY) be a nonnegative even function with ¢ =0 on RN \ B,.(0) for some
r>0. Let Q C RN open and xo € Q such that By, (x9) C Q. Then for all measurable functions
u:Q — Rwe have

b, (xo) (1) < 4qll11 m)bg.0(w),
where the bilinear form by 5 for an open A C RN is defined in (5.2)) by

bialiy) = 5 / / (v(x) = v(y) k(x,y) dxdy 6.1)

with bk’A(u,u) = bk7A(u).

Proof. Let u be as stated and we extend u trivially to a function on R". Denote g(x,y) =
(u(x) —u(y))? for x,y € RV, Note that we have

0<g(x,y) =g(yx) <2g(x,z) +2g(y,z)  forallx,yzeR",

By Fubini’s theorem we have

/ / sxy)g*g)x= Y)dx‘ly—/ //g(m)CI(X—z)Q(y—z)dzdxdy

B,(x0) B,(xp) By (x0) By(xo) RN
<2/ // (x,2) +8(3,2)lq(x —2)q(y — z) dzdxdy
X() RN
<4 / /g x,2)q(x—z /q y—2) dydzdx = 4||q|| 1w / /g(x,z)q(x—z) dzdx.
B, (x0) RV B (x0) RV

Note that since ¢ = 0 on RN\ B,(xy), ¢ is even, and B, (x) C By, (xp) C Q for any x € B,(xp), we
have

/ /g(x,z)q(x—z) dzdx = / / (u(x) — u(z))*q(x — 2) dzdx < 2by 0 (u).

B,(xO)RN Br(x(J)Br(x)

6.2 On equivalent Holder estimates

Here we recall that by the notion of Holder-Zygmund spaces we have for 7 € (0,1) and r > 0
that v € C*(RY) N L*(RYN) if and only if
2v(x+h) —v(x+2h) —v(x
- 2v(x+h) —v(x+2h) —v(x)]

x,heRN |A|?
"0
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Indeed, if v € C*(B,(0)) NL™(RY), then clearly (6.2) holds. To see the reverse implication, first
note that we have ||v||;=gw) < vr < oo by (6.2). Next, let x € RY and we claim that there is C,
independent of x such that
h) —
up 1) —v()

yeRN ‘ h ’ ’
h£0

<.

Since v(x+h) —v(x) = (v—c)(x+h) — (v—c)(x) for all constants ¢ € R, we may assume
v(x) = 0. Next, let h € RV, then

12v(x+25h) — v(x + 281 R) | = [2v(x + 2FR) — v(x+ 25 h) —v(x)| < ve2K¥|R|° for k € Ny.

But then, for n € N and since 7 < 1,

n—1
2"+ h) —v(x+2"h)] < Y 2" K 2u(x+ 25h) — v(x+ 25 )|
k=0
n—1 (=)
<Cln|* Y 2Rk <y p T Y o (k=
k=0 k=0

2"
1 —27-1

A"

Hence, for all n € N,

v(x+h)—v(x)|=|vix+h)| <27"2"v(x+h) —v(x+2"h)|+ 27" |v(x+2"h)]

v —
< ﬁ“’l”’:“‘z an

and, for n — oo, we have |v(x+h) —v(x)| < ;=5 |h| so that v € C*(RY) NL™(RY).

6.3 The Arzela-Ascoli and The Riesz-Fréchet-Kolmogorov theorems

We start with some definitions. The space ¢'(K) is equipped with the norm |||« k) : sup,cx |[u(x)|
where K is a compact subset of RV, Let .# C %'(K) be a collection of functions defined on K.

Definition 6.2. i) .Z is said to be bounded (uniformly bounded) on Q C RV if there exists
a constant C > 0 such that

lu(x)| <C forall x€Q andforalluec.#

ii) .7 is said to be equicontinuous in %' (Q) if for all € > 0, there exists a § > 0 such that
|x—y| <& implies that |f(x)—f(y)| < eforx,y e Q and forallu € ¥

‘We now state the Arzela-Ascoli theorem in two version.

Theorem 6.3 (Arzela-Ascoli). [|I7] Let K be a compact subset of RN and let {u,} be a se-
quence of continuous functions from K to RN. If the sequence u,, is uniformly bounded and
equicontinuous, then the sequance {u,} has a subsequence that converges uniformly on K
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Theorem 6.4 (Arzela-Ascoli theorem). Let K be a compact subset of RN a subset M C € (K)
is relatively compact if and only if it is bounded and equicontinuous in € (K).

We will also need a LP-version of the the Arzela-Ascoli theorem

Theorem 6.5 (Riesz-Fréchet-Kolmogorov). Let .# be a bounded subset in LP (Q) with 1 < p <
oo, Assume further that

VlijHu(x%—h) —u(X)||prvy =0 uniformly in f € F (6.3)
.

Then, #|q the restriction to Q of the function in 7, is relatively compact in LP (Q) for any
measurable set Q C RN with finite measure.



7 Summary

The thesis deals with the study of Dirichlet problems driven by nonlocal operators including
those with small order.

The result of paper [P1] provides an estimate of the Morse index of radially symmetric sign
changing bounded weak solutions u to the semilinear fractional Dirichlet problem

(—A)'u= f(u) in 8, u=0 in RN\ %,

where s € (0,1), 2 C RY is the unit ball centred at zero and the nonlinearity f is of class C'.
We prove that for s € (1/2,1), any radially symmetric sign changing solutions of the above
problem has a Morse index greater than or equal to N+ 1. If s € (0,1/2], the same conclusion
holds under additional assumption on f. This extends the estimate proved by A. Aftalion and
F. Pacella for the local problem with s = 1. In particular, our results apply to the Dirichlet
eigenvalue problem for the fractional Laplacian (—A)* in £ for all s € (0, 1), and implies that
eigenfunctions corresponding to the second Dirichlet eigenvalue in 4 are antisymmetric i.e., it
satisfies u(—x) = —u(x) for x € . This resolves a conjecture by Baiiuelos and Kulczycki.

The result of paper [P2] deals with spectral asymptotics in the small order limit s — 0™ of the
Dirichlet eigenvalue problem

(-APu=Au in Q, u=0 in RV\Q,

where Q C RV is a bounded open set with Lipschitz boundary. More precisely, we study the
asymptotics of Dirichlet eigenvalues A (), k € N and corresponding eigenfunctions uy ; of
the fractional Laplacian (—A)*. We show that

Mes(Q) =14+sA (Q)+o(s)  ass— 0T,

where the first order correction in these asymptotics is given by the eigenvalues Ay (Q) of
the logarithmic Laplacian operator L,, i.e., the singular integral operator with Fourier symbol
2log|&|. By this we extend a result of H. Chen and T. Weth which was restricted to the principal
eigenvalue. Moreover, we improve their L>-convergence result of the corresponding first eigen-
function by showing that the set {u; ; : s € (0, 1]} is relatively compact in C(K) for any compact
subset K C ©, and we extend the convergence result to higher eigenfunctions u; ; corresponding
to eigenvalues Ay ; for all k € N. In addition, if Q satisfies an exterior sphere condition, then the
above convergence is uniform in Q and the set {ux : s € (0, 4]} is relatively compact in the
space Co(Q) := {u € CRY): u=0 in Q°}. In order to derive these spectral asymptotics, we
establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for
the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of
eigenfunctions of the logarithmic Laplacian.

The result of paper [P3] is devoted to the study of the logarithmic Schrédinger operator (I —
A2, which is the singular integral operator corresponding to the logarithmic symbol &
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log(1+|&|?). We provide an alternative method to derive the singular integral representation
corresponding to (I — A)'°¢, It is given by

(1= 8)utx) =y [ “OEEE D o)

RN

where dy = 172, o(r) = 21_%1*%[(% (r) and K, is the modified Bessel function of second

kind with index v. We show that (I — A)'°¢ arises as derivative in s of fractional relativistic
Schrodinger operators (I —A)* at s = 0. If u € CB (RV) for some B > 0, we have

I—A)u—
i =B u—u

s—0F S

=(I—A)"y inLP(RY) for 1 <p<oo.

We introduce tools to study variational problems involving this operator and present some
proofs not relying on probabilistic techniques but instead on purely analytic methods which are
to some extend, simpler and more accessible to PDE oriented readers. In particular, we char-
acterize the eigenvalues and corresponding eigenfunctions of (I —A)'°2 in an open bounded set
Q C RY and prove the Faber-Krahn type inequality. We also derive a decay estimate in RY of
the Poisson problem and investigate small order asymptotics s — 0" of the Dirichlet eigenvalue
problem for the fractional relativistic operator (I — A)* in a bounded open set with Lipschitz
boundary.

The result of paper [P4] focuses on nonlocal operators of order strictly below one, that is, we
consider singular integral operators

Bau(x) = [ (u(x) —uly) k() dy

RN

with the kernel k : RY x RY — [0, 0] satisfying k(x,y) = k(y,x) forall x,y € R and

sup [ min{1,|x —y|° }k(x,y) dy <o for some o € (0,1).

xGRNRN

Assuming suitable conditions on the kernel k, we first present some density results correspond-
ing to the associated function spaces and prove maximum principles for weak solutions. We
investigate regularity properties of weak solutions u to the associated Poisson problem [ u = f
in an open bounded set Q C RY, depending on the regularity of the function f. In particular,
assuming that the kernel is translation invariant, we prove local H'-regularity of weak solutions
when the function f is of class C2. Assuming furthermore that the kernels satisfy certain regular-
ity properties away from its singularity, we deduce the interior C*-regularity of weak solutions
u if f is of class C*. We also establish interior regularity for the corresponding Dirichlet eigen-
value problem, by showing that, every eigenfunction of the problem Iyu = Au in Q, belongs to
C(Q).
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