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Abstract

Machine learning (ML) techniques have evolved rapidly in recent years and have
shown impressive capabilities in feature extraction, pattern recognition, and causal
inference. There has been an increasing attention to applying ML to medical ap-
plications, such as medical diagnosis, drug discovery, personalized medicine, and
numerous other medical problems. ML-based methods have the advantage of pro-
cessing vast amounts of data. With an ever increasing amount of medical data
collection and large, inter-subject variability in the medical data, automated data
processing pipelines are very much desirable since it is laborious, expensive, and
error-prone to rely solely on human processing. ML methods have the potential
to uncover interesting patterns, unravel correlations between complex features,
learn patient-speciőc representations, and make accurate predictions. Motivated
by these promising aspects, in this thesis, I present studies where I have imple-
mented deep neural networks for the early diagnosis of epilepsy based on elec-
troencephalography (EEG) data and brain tumor detection based on magnetic
resonance spectroscopy (MRS) data.

In the project for early diagnosis of epilepsy, we are dealing with one of the
most common neurological disorders, epilepsy, which is characterized by recurrent
unprovoked seizures. It can be triggered by a variety of initial brain injuries and
manifests itself after a time window which is called the latent period. During
this period, a cascade of structural and functional brain alterations takes place
leading to an increased seizure susceptibility. The development and extension of
brain tissue capable of generating spontaneous seizures is deőned as epileptogenesis
(EPG) [1]. Detecting the presence of EPG provides a precious opportunity for tar-
geted early medical interventions and, thus, can slow down or even halt the disease
progression. In order to study brain signals in this latent window, animal epilepsy
models are used to provide valuable data as it is extremely difficult to obtain this
data from human patients. The aim of this study is to discover biomarkers of
EPG using animal models and then to őnd the equivalent and counterparts in hu-
man patients’ data. However, the EEG features for EPG are not well-understood
and there is not a sufficiently large amount of annotated data for ML-based algo-
rithms. To approach this problem, őrstly, I utilized the timestamp information of
the recorded EEG from an animal epilepsy model where epilepsy is induced by an
electrical stimulation. The timestamp serves as a form of weak supervision, i.e.,
before and after the stimulation. Secondly, I implemented a deep residual neural
network and trained it with a binary classiőcation task to distinguish the EEG

3



signals from these two phases. After obtaining a high discriminative ability on
the binary classiőcation task, I proposed to divide further the time span after the
stimulation for a three-class classiőcation, aiming to detect possible stages of the
progression of the latent EPG phase. I have shown that the model can distinguish
EEG signals at different stages of EPG with high accuracy and generalization abil-
ity. I have also demonstrated that some of the learned features from the network
are clinically relevant.

In the task of detecting brain tumors based on MRS data, I őrst proposed to
apply a deep neural network on the MRS data collected from over 400 patients for
a binary classiőcation task. To combat the challenge of noisy labeling, I developed
a distillation step to őlter out relatively “cleanlyž labeled samples. A mixing-
based data augmentation method was also implemented to expand the size of the
training set. All the experiments were designed to be conducted with a leave-
patient-out scheme to ensure the generalization ability of the model. Averaged
across all leave-patient-out cross-validation sets, the proposed method performed
on par with human neuroradiologists, while outperforming other baseline methods.
I have demonstrated the distillation effect on the MNIST data set with manually-
introduced label noise as well as providing visualization of the input inŕuences
on the őnal classiőcation through a class activation map method. Moreover, I
have proposed to aggregate information at the subject level, which could provide
more information and insights. This is inspired by the concept of multiple instance
learning, where instance-level labels are not required and which is more tolerant to
noisy labeling. I have proposed to generate data bags consisting of instances from
each patient and also proposed two modules to ensure permutation invariance,
i.e., an attention module and a pooling module. I have compared the performance
of the network in different cases, i.e., with and without permutation-invariant
modules, with and without data augmentation, single-instance-based and multiple-
instance-based learning and have shown that neural networks equipped with the
proposed attention or pooling modules can outperform human experts.
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Chapter 1

Introduction

Machine learning (ML) methods have witnessed a dramatic booming in the past

few years and have demonstrated their great potential in many őelds, such as

learning games [2, 3, 4], generating high ődelity images [5, 6], style transferring [7],

speech recognition and synthesis [8, 9], and natural language processing [10, 11].

They have been further advanced by the increased computational power, the avail-

ability of large and specialized data sets, and deeper theoretical understandings of

numerous learning algorithms.

In recent years, there has been a ŕurry of research efforts addressing the appli-

cation of ML- and deep learning (DL)-based methods in healthcare. There have

been impressive studies undertaken for various medical tasks, such as cardiovascu-

lar disease classiőcation [12], skin cancer detection [13], lung cancer diagnosis [14],

automatic prognosis for diseases [15], COVID-19 treatment and diagnosis [16], and

many other medical tasks.

However, amongst challenges that are ubiquitous across those domains, such as

the lack of large amounts of annotated data, applying ML methods to healthcare

faces unique difficulties. For example, often the medical data is anonymized due

to privacy concerns and, of course, that őlters out unique information that may
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be useful for ML methods. Secondly, the collected data in healthcare is often

limited in quantity, corrupted with missing values, sampled irregularities, and

highly variable sampling qualities across different recording sites. This hinders the

generalization ability of any ML-based methods. Thirdly, given the limited data

from each individual, it is especially difficult to personalize predictions of the ML

algorithms, which is of great importance in healthcare.

Data in healthcare is highly heterogeneous and commonly covers images, time

series data (audio, video, electrocardiography (ECG), electroencephalography (EEG)),

text, etc. This thesis focuses on two medical applications: the early diagnosis of

epilepsy and brain tumor detection. In the epilepsy project, we trained neural

networks to learn based on a large collection of EEG data from a rodent epilepsy

model, with the aim to discover potential EEG signatures that are indicative for

the ongoing epileptogenic process. Here, EEG signals were recorded continuously

from a rodent epilepsy model. In this epilepsy model, rodents were implanted

with a depth electrode and epilepsy was induced by electrical stimulation. How-

ever, except for the time stamps at which the data was collected, we did not have

any other forms of annotation; this poses the major challenge to any supervised

learning tasks.

In the tumor detection project, we learnt to classify tumor and non-tumor tis-

sues with magnetic resonance spectroscopy (MRS) data, which is a sequence data

reŕecting the biochemical composition of the brain tissue. Here, we were con-

fronted with the lack of data, imbalance of classes, and noisy labeling of samples.

Meanwhile, there was a heterogeneous distribution regarding the number of sam-

ples from each patient, which posed difficulties to learning due to large individual

variability. We have presented all the details and results of these two projects in

our publications, listed in Chapter 2.

In this chapter, we would like to start by providing a short summary of recent
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advances in deep neural network (DNN) design since deep learning is the funda-

mental tool used in this thesis. We also describe several techniques developed

in the course of the studies to overcome various problems during the training of

DNNs. Following this, I shall brieŕy introduce the basic concepts and data acqui-

sition methods used in these two projects. To this end, I shall provide some of the

basics of EEG and the EEG signatures of hippocampal rhythms to enable a basic

understanding of the data in the task of epilepsy early diagnosis. Furthermore,

I shall provide some basics of the MRS data and its implications in the tumor

detection task.

1.1 Deep Learning

Deep Learning (DL) is a subőeld of machine learning which is concerned with

neural networks with multiple layers of artiőcial “neuronsž. These networks learn

features from a low and primitive level up to a high and an abstract level from

the input and make use of these learned features to reach the target output. For

example, such a target can be a label in a supervised learning framework, or fu-

ture values of the input in an autoregressive framework, or the input data in an

unsupervised generative model. DL is inspired by considering how information is

processed in a real brain for object detection, language learning, and speech recog-

nition. Taking humans as an example, our central nervous system is an amazing

master piece in the sense that billions of neurons are connected in a certain way,

learning hierarchical representations of the input from primary sensory layers to

higher cortical areas in a very efficient manner. Primary sensory neurons are tuned,

i.e., they respond strongly to basic primitive features from the input, while neurons

further up in the information processing pathway are tuned to more abstract fea-

tures. Olah et al. (2017) elucidated how the network builds up its understanding
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of training data over multiple layers in object detection tasks. They illustrated

that the early layers respond strongly to a variety of edges. The subsequent layers

are mostly active to different textures and these are followed by layers that mostly

respond to different patterns which are diverse and the creative combinations of

all previous features. The layers following are highly sensitive to various parts of

different objects and, őnally, the the layers that are close to the output layer show

various object shapes that reŕect labels [17].

1.1.1 Biological and Artiőcial Neural Networks

The anatomy of a neuron is shown in Fig. 1-1. The neuron collects input from

other neurons through its dendrites which function as antennae. Subsequently, the

collected input accumulates in the cell body. When the signal is above a certain

threshold, the neuron will send out a signal, i.e., an action potential, through its

axon. The neuron sending out the signal is called the pre-synaptic neuron, whilst

the ones receiving this signal are called post-synaptic neurons. This signal is not a

linear combination of all the inputs but is gated by the axon hillock of the neuron

in a non-linear fashion, i.e., a non-linear activation function. The signal completes

its transmission at the synapse where the nerve ending of the presynaptic neuron

almost touches the post-synaptic dendrite. On average, a neuron in the human

brain has several thousand synapses connecting to other neurons [18].

In order to learn effectively, the synaptic connections need to be adjusted in

multiple layers simultaneously, according to various forms of neural modulations

and neural plasticity. Homeostatic plasticity is an important and well-studied con-

cept that refers to the process of neurons auto-regulating the strength of synaptic

connections to prevent neural circuits from being hyper- or hypo-active [19]. One

realization of this mechanism is synaptic scaling which ensures that the strength

of the synaptic connections is up- or down-regulated proportionally to the changes
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Figure 1-1: Anatomy of a neuron.

in the activity. Thus, this mechanism keeps the network’s activity dynamics in a

stable regime [19] and is beneőcial for learning [20, 21].

Some of the key aspects of biological nervous systems are, to some extent, in-

corporated into designing “neuronsž and “layers of neuronsž in artiőcial neural net-

works. One of the straightforward network structures is the multi-layer-perceptron

(MLP) [22]. This is a class of feedforward neural networks, where multiple layers of

neurons are connected sequentially. In an MLP network, the őrst layer is the input

layer, resembling the function of the dendrites of a biological neuron. This receives

the input data, be it images, time series data, audio, or text and then passes on

the information to the neurons in the next layer. The connections are reŕected in

the weights from one neuron to another. In each layer, neurons receive inputs from

the previous layer and take the sum. Subsequently, they transform the sum with

a non-linear activation function, and pass on the signal to the connected neurons

in the next layer. Some forms of regularization are beneőcial for the network to

stabilize its activity, either in a biological neural network or an artiőcial DNN. For

example, the homeostatic plasticity in a biological neural network and the batch

normalization, weight normalization, and many of their variants in a DNN [23].
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In deep neural networks, the weights of neurons can be adjusted efficiently

by an algorithm called backpropagation, in which the error between the output

of the network and the target output is propagated back to the very őrst layer

and the weights between neurons are adjusted in such a way that the error is

minimized throughout training. However, backpropagation has been viewed as

biologically unrealistic; there has been no explicit evidence of such an error being

propagated in a biological system. In addition, there have been studies which have

attempted to link aspects of the DNNs to those of the biological system. Lillicrap

et al. (2020) argue that the difference of the activity in feedback connections

may provide some form of modulation/supervision when it is approximated by the

lower-level circuit [24].

1.1.2 DNN Structures

After building up the correspondence between biological neural networks and arti-

őcial neural networks, in the following, we provide a short review on a few popular

DNN structures. There have been many successful DNN network structures that

have enjoyed great popularity in recent years. One example of the pioneering

works is the LeNet neural network, developed by Yann Le Cunin (1998) [25]. This

was one of the őrst convolutional neural networks to be developed and is applied

to the modiőed NIST dataset. This work laid the the foundations for the essential

roles that convolution networks now play in numerous applications. It empha-

sized that image features are often distributed and locally correlated. Convolution

can extract image features effectively with locally shared parameters and take the

topology of the input into consideration to ensure some extent of shift, distor-

tion, and scale invariance. In 2012, AlexNet was proposed by Alex Kirzhevsky et

al. [26], which caught much attention after its debut at the ImageNet [27] contest.

It extended the idea of LeNet into a larger and deeper structure, which could learn
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much more complex objects and represent the features more efficiently. It utilized

the Rectiőed Linear Unit (ReLU) [28] as the activation function in the neural

network and achieved faster and better performance compared to networks with

𝑡𝑎𝑛ℎ units. The beneőt of ReLU units is that the gradient is constant when the

activation is positive. This is especially important in very deep neural networks

where the gradient might vanish or explode as the training losses propagate back

to the very early layers. In AlexNet, dropout was also applied [29, 30]; this is

a type of regularization in the network, to prevent the co-adaptation of feature

detectors, where a feature detector is only helpful when working together with

several other features detectors, which means it does not detect generally helpful

features independently [29].

To capture multi-scale features from images, the Inception network has been

proposed and it has gone through several modiőcations starting from the őrst ver-

sion developed by Szegedy et al. (2015) [31]. The key design insights are (1) using

multi-scale convolutions in parallel in one block to capture features in different

scales and (2) applying a 1× 1 bottleneck convolution in each convolution branch

within the block to reduce feature maps for the future convolutions. This de-

sign signiőcantly saves the number of computations needed in large convolutional

nets, consequently speeding up the execution time and, thus, achieves efficient

feature extraction and recombination. Later on, in Szegedy et al. (2016) [32],

batch-normalization (BatchNorm) [23] was applied to one variant of the Inception

network, referred to as the Inception-v3 model; this model achieved the state-

of-the-art performance in the ImageNet classiőcation task. BatchNorm normal-

izes the feature maps of each layer by subtracting the mean and dividing by the

standard-deviation of that feature map such that the response of each feature map

is zero-mean and has a variance of one. In this way, the network, without having
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any information about the internal covariate offset during training, can only focus

on learning the true meaningful structures in the data.

At almost the same time as the development of the Inception-v3 model, an-

other revolutionary network architecture, ResNet, was introduced by He et al.

(2016) [33]. The idea of the ResNet design is to add “shortcutsž which by-

pass the input to the output of a multi-layer convolutional block. This makes

training networks with a large number of layers possible. Many of the afore-

mentioned network design components are also used in ResNet, such as batch-

normalization [23], dropout [30], and ReLUs [28], to achieve state-of-the-art per-

formance. The DenseNet model, an extreme application of “shortcutsž, connects

every layer directly with each other [34], thus, learned features in each layer can

be reused multiple times in other layers and hence decrease the redundancy in

the feature maps. A hybrid-inception-ResNet network, Inception-v4, was pro-

posed by Szegedy et al. (2017) [35] which exploits the properties from both incep-

tion networks as well as residual networks; this also yieldes state-of-the-art per-

formance in the ImageNet classiőcation challenge. ResNet-based networks have

demonstrated impressive performances in various tasks including large-scale im-

age recognition [36], medical image segmentation [37], and cardiovascular disease

classiőcation [12].

Admittedly, images are ubiquitous and the majority of network structures are

designed speciőcally to learn from images. However, sequential data such as audio,

video or text, are also important in real-life applications. Here we review a few

successful networks that focus on sequential data. In audio synthesis, WaveNet,

proposed by van den Oord et al. (2016) [38], learns to generate audio waveforms

with a high sampling rate directly from raw audio input in an completely autore-

gressive fashion. It takes advantage of diluted convolutions in sequence to achieve

large receptive őelds and generate audio data points that inŕuenced by all previous
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data points. Recurrent neural networks (RNNs) have been proposed to deal with

sequential data, such as text in [39] and have been successfully applied in numerous

tasks including language modeling [40, 41, 42], image captioning [43, 44], speech

recognition [45, 46], and machine translation [47]. The main difference between

RNN units and convolutional units is that the former receive not only the input

from previous layers but also the states from their past time steps, i.e., they have

memory of what has been shown and learned. In this way, the network can learn

more efficiently with the knowledge unrolled from the past time step, which renders

RNN extremely suitable for sequence data including audio, video, and text. The

well-known long-short-term-memory (LSTM) units [48, 49] have further equipped

the RNN units with several memory gating mechanisms and, as such, the LSTM

units are capable of learning long dependencies compared to normal RNN units

which often suffer the problem of exploding and vanishing gradients [50].

However, as the length of the sequences, as well as the dependencies, become

longer, the RNN-based models become more difficult to train and the performance

is found to deteriorate. To address this issue, Bahdanau et al. (2014) introduced

an attention mechanism which attempts to encode the input sentence into latent

vectors, whilst only choosing a subset of these vectors for decoding the translation

adaptively [51]. The attention mechanism has been also successfully implemented

in various other network structures. The Transformer network, an attention-based

model for a sequence-to-sequence mapping task, was őrst proposed by Vaswani

et al. (2017) [10] for machine translation tasks. In a sequence-to-sequence map-

ping task, instead of encoding the information of the input sequence into one

hidden state for decoding it in the next step, the attention module computes a

mask over all relevant features and hidden states. It then selects the features

that are important and ignores background inessential features by element-wise

multiplication. The attention mechanism has successfully been applied to vari-
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ous tasks including translation [52], building language models [11], and biomedical

language mining [53]. Thus, attention models can not only be applied to RNNs,

but also to other network structures. In our work, we implemented ResNet-based

DNNs, inspired by the work from Hannun et al. [12], for EEG classiőcation in

Study I [O1], II [O2], and III [O3]. Meanwhile, when doing the MRS classiőca-

tion, we implemented several DNN structures including a fully-connected neural

network, a ResNet variant, an Inception net, and a recurrent neural network in

Study IV [O4], V [O5], and VI [O6]. Furthermore, in Study VI, we grouped mul-

tiple samples from the same patient as a data “bagž taking inspiration from the

multiple instance learning framework [54, 55, 56], and an attention module was

proposed to handle the permutation invariance within the data “bagž.

Furthermore, there is a whole őeld, called network architecture search, which

focuses on searching and designing neural networks automatically when given cer-

tain tasks. However, reviewing the current research in this domain is out of the

scope of this thesis. For detailed reviews, we refer the reader to [57, 58, 59]. For

gaining a general understanding of machine learning and in order to become an ex-

pert in this őeld, we highly recommend the book titled Machine Learning Yearning

by Andrew Ng [60].

The success of applying DNNs to a real life task largely relies on the under-

standing of the data at hand. A deeper knowledge of how the data is generated,

collected, processed, and the properties of different data modalities is the őrst

stepping stone. In the following sections, we will give a brief overview of the data

acquisition methods of both projects.
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1.2 Electroencephalography

In this chapter, we provide some basics on electroencephalography (EEG) which

is one of the most common procedures to record ongoing large-scale neuronal pop-

ulation activity. Here, we give a general overview of EEG physiology, ongoing

hippocampal rhythms, and putative EEG biomarkers for epileptogenesis. Epilep-

togenesis is deőned as the the development and extension of brain tissues capable of

generating spontaneous seizures, resulting in either the development of an epileptic

condition and/or the progression of the epilepsy after it has been established [61, 1].

EEG has become an important medical data acquisition tool to capture electri-

cal activities of large neuron populations and, thus, can provide insights on normal

and abnormal brain signals. It has a very high temporal resolution, in the order of

Figure 1-2: Schematic of EEG signal measurements. EEG: electroencephalogra-
phy; LFP: local őeld potential; MUA: multi-unit activity; ECoG: Electrocorticog-
raphy
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milliseconds. When neurons are activated, they generate action potentials which,

thus, generate electrical currents; these currents produce electrical and magnetic

őelds. The őelds may be recorded by a variety of electrodes that are close to

the sources (the local EEG or local őeld potentials, LFPs), or on the surface of

the cortex (the electrocorticogram, ECoG), or on the surface of the scalp (surface

EEG) [62]. Figure 1-2 shows different recording methods. In general, electrodes

can only measure the activity from a large population of neurons and, depending

on where the electrodes are placed, there are more or less distortions of the signals

due to the propagation through other tissues.

The brain activity in the hippocampus is of special interest of us, because

the hippocampus is an essential component involved in many cognitive functions

involving memory formation and consolidation [63, 64, 65] as well as planning and

learning [66].

Closely connected to many other cortical areas, the hippocampus is crucial for

many essential cognitive functions. Damage to the hippocampus can lead to vari-

ous neurological disorders, such as Alzheimer’s disease, and temporal lobe epilepsy

(TLE). Nearly 50% to 75% of epilepsy patients may have hippocampal sclerosis,

which is a condition with severe neuronal cell loss in the hippocampus [67]. In the

project for early diagnosis of epilepsy, an animal model of mesial-TLE [68, 69] is

used and the EEG was recorded from the granule cell layer in the dentate gyrus

with a depth electrode, shown as the black star in Fig. 1-3. For simplicity, we

use the term EEG to refer to local EEG rather than surface EEG, unless speciőed

otherwise.

Moreover, nearly 50% to 75% of epilepsy patients may have hippocampal scle-

rosis, which involves severe neuronal cell loss in the hippocampus [67]. Understand-

ing the structure and activity of the hippocampus is one important aspect in our

research. There are a few normal hippocampal rhythms that are crucial for various
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cognitive functions. When undergoing pathological changes, these rhythms will be

altered. Thus, through investigation of the changes of hippocampal rhythms, we

could learn more about the ongoing disease.

1.2.1 Hippocampal rhythms

In this section, we give an overview of several well-studied brain rhythms that are

present in the hippocampus. The hippocampus is an important component of the

brain of humans and other vertebrates, embedded in the deep temporal lobe [67].

It consists of several import regions, i.e., Cornu ammonis-1 (CA1), CA2, CA3 and

the dentate gyrus, shown in Fig. 1-3. There are mainly two information pathways

in the hippocampus: (1) the perforant pathway: layer-II neurons of entorhinal

cortex (EC) → the granule cells in the dentate gyrus region → the CA3 region

→ the CA1 region → back to the EC, (2) the temporoammonic pathway, which

is the direct projection from layer-III neurons of EC to the CA1 region of the

hippocampus.

Broadly speaking, the neurons in the hippocampus or cortical areas can be

divided into two major groups: principal neurons and non-principal neurons or

interneurons [70]. Principal neurons are excitatory neurons, which constitute the

majority of neurons in the brain. They have long axons, passing information

through to other brain areas and activate the down-stream neurons. For example,

granule cells in CA1, with long mossy őber, and pyramidal cells in CA1 and

CA3 areas are all principal neurons. Non-principal neurons or interneurons are

inhibitory cells. They have dense and local axons, which enables them to moderate,

coordinate, and control a large population of neurons locally [70].

It is conventional to discuss brain rhythms in different frequency bands, since

the time series data is highly dynamic and often with a low signal to noise ratio.

The frequency domain provides a more general and robust overview of the signal.
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Furthermore, the generation mechanism of different rhythms in hippocampus is

well-studied, thus frequency analysis could provide an overview of the activity

from different neuronal assemblies. We approached the data analysis of EEG

from the frequency domain, aiming to őnd frequency features that could be used

for the early diagnosis of epilepsy. In this thesis, we mostly focus on the following

rhythms as stated in [71]: delta rhythms (∼ 0.5ś4 Hz), theta rhythms (∼ 4ś12 Hz),

beta rhythms (∼ 12ś25 Hz), gamma rhythms (∼ 25ś100 Hz), sharp-wave ripple

complexes (∼ 110ś250 Hz ripples superimposed on ∼ 0.01ś3 Hz sharp waves), and

high frequency oscillation (∼ 80ś500 Hz). A few waveform examples from different

frequencies are shown in Fig. 1-4. Buzsáki et al. (2004), provided an overview of

Layer-III
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CA1

Perforant 

pathway

Entorhinal 

cortex

PPS

Recording

Shaffer collaterals

Mossy fibres
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Temporaoammonic

pathway

CA2

Figure 1-3: A simple schematic of the hippocampal circuitry. There are mainly
two pathways in the hippocampal circuit. 1. The axons of layer-II neurons in the
entorhinal cortex (EC) → the dentate gyrus → pyramidal neurons in CA3 through
mossy őbers → CA1 pyramidal neurons through Schaffer collaterals → deep-layer
EC neurons. 2. EC layer-III neurons → CA1 pyramidal neurons through tem-
poroammonic pathway (TA). CA: Cornu ammonis. The black start indicates the
recording site in our experiment. The black lighting symbol indicates the stimu-
lation site. PPS: perforant pathway stimulation.
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the frequency bands of brain rhythms, including a range of frequency bands with

error bars, concluding that the deőnition of the frequency bands is not őxed across

studies [72]. For more details on brain rhythms, we refer the reader to the book

by Buzsáki [66] (2019), where brain rhythms are discussed in great detail within

the context of neural functions.

Sharp-wave Ripples (SWRs, ∼ 0.01ś3 Hz sharp waves superimposed by ∼

110ś250 Hz ripples [71]) are deemed to be associated with the information trans-

fer mechanism from the hippocampus to the neocortex when there is no ex-

trinsic input to the network, for example, in non-REM (rapid eye movement)

sleep [73, 74]. They reŕect the excitation of the CA1, CA3 pyramidal neurons

by the synchronous bursting from CA3 pyramidal cells during awake immobility

and slow-wave sleep [75, 76]. They have been suggested to be associated with

memory consolidation [65, 64], but also in certain aspects during active naviga-

tion [63, 77]. Global interference with SWRs could lead to the memory impairment

and instability in the spatial representation coding [78].

In physiological hippocampal SWRs, CA1 pyramidal cells őre selectively, i.e.,

only triggered by speciőc events or cell-speciőc drives [76]. However, in pathological

SWR generation, pyramidal cells are őring more often and in a nonspeciőc way,

which can be reŕected by disorganized spectral features of these SWRs [76].

The Delta Rhythm (∼ 0.5ś4 Hz) is often associated with sleep and deep anes-

thesia, when the network sustains a slow-patterned network activity, even in the

absence of sensory input [79, 80]. Delta waves are related to locomotive behav-

ior in rodents [81], where the synchronization of the delta-band develops rapidly

during the brief pauses between runs, as well as occurring throughout long sta-

tionary bouts. The phase of Delta oscillations also modulates the amplitude of

gamma-band activity, which allows the information to be processed in an orga-
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nized manner [82, 73]. In the delta oscillation, neurons ŕuctuate between a period

of intense synaptic activity (Up state), and a period of silence (Down state) [80].

The cortical network alone is sufficient to generate and sustain the delta rhythm;

especially the cortical layer 5 pyramidal neurons are considered to play a key role

in the delta rhythm generation [80]. In the hippocampus, the delta rhythm could

come from the direct projections from entorhinal cortex to dentate granule cells,

CA1 pyramidal neurons, and interneurons, shown in Fig. 1-3. During the “Upž

state, CA1 neurons are activated either by direct input from the entorhinal cortex

or by the dentate CA3-CA1 circuit; whereas, during the “Downž state, the self-

organized activity in the CA3 region is the main driving force of CA1 neurons [83].

It is also reported that an increase of the delta rhythm occurs during prolonged

periods of wakefulness, where groups of neurons go brieŕy silent as they do during

sleep [84]. An example of a delta EEG trace is shown in Fig. 1-4.

Costa et al. showed that in epileptic rats, the delta band power increased in

animals with high occurrence of generalized seizure. This delta oscillation con-

tributes to the promotion of a large scale recruitment of neurons and ultimately

seizures [85]. An increase of delta band power has also been reported in human

epilepsy patients [86, 87]. However, the origin of epileptiform delta waves is still

unclear.

The Theta Rhythm (∼ 4ś12 Hz) is a relatively low frequency sinusoidal sig-

nal that is largely involved in spatial navigation and episodic memory [88, 89],

cortical modulation, information processing [90], learning and decision making. It

is also involved in the representations of remembered, ongoing, or imagined fu-

ture experiences [91, 90], active exploration and locomotion [92, 93, 88, 82, 94].

In particularly, the 6ś8 Hz theta rhythm and high gamma oscillations dominate

the dentate region, shown in Fig. 1-3, whereas during waking, there are, predomi-
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Figure 1-4: Examples of EEG traces at different frequency bands in our rodent
epilepsy model. In the last trace, we can see that the gamma rhythm is superim-
posed on a delta rhythm. Reprinted from our rodent epilepsy model.

nately, 8ś10 Hz theta waves and gamma activity in this region [94]. Interneurons

in CA1 area also receive rhythmic input from interneurons in the septum, and this

septal disinhibition promotes the theta generation in CA1 pyramidal cells [95]. An

example EEG trace of the theta rhythm is shown in Fig. 1-4.

It has been accepted for decades that the theta frequency encodes the running

speed and can be used to estimate displacement. However, this has recently been

challenged by Kropff et al. (2021) [96]. By clamping the running speed at a pre-

deőned value, they found that the theta frequency is linearly related to positive

acceleration and not speed, as previously believed.

Compromised theta activity, however, could reŕect cognitive dysfunctions and

pathological alterations of the brain. In animals with epilepsy-induced injuries,

a decreased tendency to perform exploration in the environment is also observed,

which could lead to a decrease of theta activity [97]. For example, in a animal

model of temporal lobe epilepsy with pilocarpine injection (an epilepsy-inducing

drug), the authors suggested that a decreased ability to generate theta activity

may lead to a persistent deőcit of spatial memory [97].
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The Beta Rhythm (∼ 12ś25 Hz) is known to be associated with multiple-

modality-input coordination [98, 99]. In the hippocampus, beta oscillations can

be generated locally when CA1 principal neurons are being recruited in two alter-

nating gamma periods [100]. Interneurons that receive both feedforward excitation

from the CA3 area and feedback excitation from local CA1 neurons can generate

beta rhythms in the CA1 area [100]. It is also suggested that beta oscillations

in the dentate gyrus are driven by the input from the entorhinal cortex, which

modulates functional coupling between hippocampus and other brain areas, thus

contributing to the object-position associative learning [101]. Iwasaki et al. showed

that beta oscillations in the CA1 region were enhanced while the animal was ex-

ploring a novel environment, which suggests that these exploration-induced beta

oscillations might be a result of multiple cognitive processes such as attention,

curiosity, and novelty encoding of the environment [102]. They also found that

the beta band power is positively correlated with the performance of mice in a

memory-retrieval task, which means the beta rhythm generated during novelty

detection also contributes to correct memory acquisition [102]. França et al. also

reported that the beta band power was enhanced during the exploration of a novel

environment and decreased when the animal gets accustomed to the environment

setup [103].

The Gamma Rhythm (∼ 25ś100 Hz) is often subdivided into “low gammaž

(∼ 25ś55 Hz) and “high gammaž (∼ 60ś100 Hz). Inhibitory interneurons con-

tribute to gamma generation in the hippocampus [104]. To be speciőc, the “low

gammaž rhythm is likely to be driven by CA3-activated interneurons and the “high

gammaž is likely to be driven by entorhinal cortex activated interneurons [71].

The “high gammaž has been shown to encode current sensory input and ongoing

trajectories [105, 106]. As for the “low gammaž, it is hypothesized to be asso-
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ciated with memory retrieval through the coupling with the phase of the theta

rhythm [107, 108]. The gamma rhythm could be generated by the self-organized

CA3-CA1 circuitry independent of cortical-entorhinal inputs and it is modulated

by the delta rhythm [83]. The fast-spiking interneurons in the hippocampus can

also generate the gamma rhythm providing a gamma-base membrane potential

change for other principal cells [100, 109]. Often, the gamma amplitude and

gamma phase are coupled to the phase of the theta rhythm [71]. For example,

a signiőcantly stronger gamma rhythm is found during theta-associated behav-

iors, such as rapid-eye-movement sleep, exploring, and navigating than during

other non-theta-associated behaviors, such as immobility, grooming, and slow-

wave sleep [109]. It is observed that the gamma band power in the CA1 pyramidal

layer is phase-locked to the theta band power in this area, and this coherence spans

both hemispheres [109].

High Frequency Oscillations (HFOs) include a wide range of frequency com-

ponents of between 80 and 500 Hz. HFOs between 80ś200 Hz can be recorded from

the normal hippocampus and entorhinal cortex, but are not present in the dentate

gyrus [110]. HFOs reŕect the neuronal activity of interneurons when facilitating

information transfer over multiple areas [111, 112]. Fast ripples (FRs, 250ś600 Hz)

are deemed to be pathological and are generated by abnormally bursting neurons.

They are often detected both in human patients with mesial temporal lobe epilepsy

(TLE) and rodent m-TLE models [112], hence, fast ripples have been proposed as

biomarkers for epileptogenesis [110, 112, 113].

Dentate Spikes (DSs) are large-amplitude, short-duration (< 40 ms) activities

that are distinct from the background of the hilus of the dentate gyrus, shown

in Fig. 1-3. They are associated with the synchronized activity of interneurons

and granule cells in the hippocampus [109]. They serve to decrease the network
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excitability of the CA3 recurrent circuitry in the intact brain [114] and occur

sparsely during behavioural immobility and slow-wave sleep [114]. During DSs,

the őring rate of the granule cells in the dentate gyrus is increased while that of

pyramidal cells in the CA1 area is decreased [115]. Lensu et al. (2019) suggested

that DSs, together with sharp-wave ripples, may be crucial for learning. This

has been demonstrated by the experiments that the DS-contingent stimulation to

the hippocampus improves the performance in a pattern separation task, where

associative learning takes place.

The rhythms mentioned above are commonly observed in the hippocampus,

some of which are present in an intact brain and some of which occur in a patho-

logical brain. Understanding the origin, propagation, and interaction between

different rhythms is of great importance. During the development of epilepsy,

i.e., epileptogenesis, structural alterations could be reŕected in the physiological

signals, and discovering indicative signatures of these changes would provide a pre-

cious window for medical intervention before epilepsy becomes fully-established.

1.2.2 Epileptogenesis

Epilepsy can be triggered by a variety of initial brain insults, while the damage

accumulates over the course of weeks, months or even years until the onset of

the őrst spontaneous seizure [116]. This period between the initial insult and the

onset of the őrst spontaneous seizure is often referred to as the “latentž period.

This period is crucial for the early diagnosis of epilepsy and for initiating medical

intervention. It is safe to say that the earlier some biomarkers can be discovered for

epileptogenesis in interictal spikes, seizure thresholds, high frequency oscillations,

excitability, and behavioral alterations, the more effective treatment and positive

outcome may be [117, 118].

Thus, the possibility of using biomarkers, indicative of the presence of epilepto-
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genesis, would alert physicians to issue early medical interventions. Furthermore,

if biomarkers could be identiőed for different epileptic processes at different stages

of progression, a more personalized and targeted treatment would be possible [119].

However, data from epileptogenesis in human patients is difficult to acquire as the

condition only comes to the attention of medical care after seizures have already

occurred. Thus, animal models are actively developed to facilitate the understand-

ing and identiőcation of biomarkers of epileptogenesis.

1.2.3 Rodent Model of Temporal Lobe Epilepsy

Due to the difficulty of acquiring EEG during epileptogenesis from human pa-

tients, pre-clinical studies to identify potential biomarkers are best conducted us-

ing animal models, in which the timing of the potential epileptic insult can be

controlled and the course of the epileptogenic process be monitored. The an-

imal models should also be able to demonstrate their potential for translation

to humans [119, 120]. There are several well-studied candidate animal models.

Traumatic brain injury (TBI) models with weight-dropping and controlled cor-

tical impact [121, 122] may lead to similar forms of brain damage as found in

post-traumatic epilepsy (PTE) in humans. Animal models with chemical injec-

tions, such as picrotoxin or bicuculline [123], pilocarpine [124], iron [125], and

kainic acid [126, 127] can be easily controlled and regulated regarding the severity

of epilepsy, duration of seizures, types of seizure, and the duration of the latent

epileptogenic phase, while electrical stimulation models that induce status epilep-

ticus may mimic hippocampal sclerosis in humans [68, 128].

The animal model that we have used in our work is a mesial temporal-lobe

epilepsy (m-TLE) rodent model proposed by Norwood et al. (2011) [68]. In the

experimental paradigm, epilepsy is introduced via perforant pathway stimulation

(PPS), shown in Fig. 1-3. For a detailed description and introduction to hip-
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pocampus circuitry we refer the reader to the following literature [129, 130]. PPS

in rodents can evoke excitation or even seizure in the granule cell layer in the

dentate gyrus, shown in Fig. 1-3. When the PPS persists for hours, it can lead

to neuronal loss and damage in the hippocampus, which may introduce epilepsy.

Thus, this model can result in hippocampal sclerosis, which exhibits similar char-

acteristics to those found in human temporal-lobe epilepsy. Therefore, with a

latent phase before the őrst spontaneous seizure, we can have the opportunity to

discover biomarkers for identifying the epileptogenesis phase.

Some structural modiőcations can be observed in a damaged hippocampus,

for example the loss of interneurons and granule cells, mossy őber sprouting, etc.

However, the EEG biomarkers of these alterations are not well-known. It is also

unclear to what extent the structural changes could tip the hippocampal system

to be epileptic and what EEG biomarkers could serve the purpose of identifying

different degrees of progression.

1.2.4 Putative EEG biomarkers for Epileptogenesis

There have been several studies which have sought to őnd EEG biomarkers for

epileptogenesis in different animal epilepsy models.

The theta rhythm is widely involved in multiple cognitive functions and the

changes in this frequency band have been considered as biomarkers for epilepto-

genesis. Milikovsky et al. (2017) showed that a decreased theta power can not

only be a promising diagnostic biomarker for identifying epileptogenesis, but also a

prognostic biomarker for post-injury epilepsy (PIE) as well as a pharmacodynam-

ics biomarker for evaluating the efficacy of anti-epileptic drugs [131]. Chauviere et

al. showed that animals exhibit deőcits in hippocampus-dependent memory tasks,

which could relate to the the neuronal loss in the hippocampus that leads to a

reduced ability to generate theta rhythm [97].
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Delta activities can be frequently observed in focal epilepsy patients during

EEG inspections [132], and an increase of delta power has been observed at the

seizure onset zone [133]. These characteristics of the delta band have been pro-

posed to be a biomarker of the epileptogenic zone and to predict the seizure onset

zone [134]. Huppertz et al. (2001) investigated the localization ability of the delta

activity and interictal epileptiform discharge for the epileptic focus. They found

that the delta activity exhibits high accuracy in localizing the epileptic lesion,

i.e., the delta rhythm occurs more frequently near the lesion [135]. Naftulin et al.

inspected the network activity outside the epileptic focus and found a signiőcant

increase of the delta band power, which might contribute to the seizure generation

and propagation [136].

High frequency oscillations have also been proposed as epileptogenesis biomark-

ers in several studies. Cello-Oderiz et al. (2017) showed that HFOs can better

localize the epileptic focus than sharp waves since the former do not propagate

from the epileptogenic regions score [137]. Li et al. (2018) [138] and Bragin et al.

(2004) [110] found that the animals which later developed epilepsy exhibited sig-

niőcantly higher probabilities of HFO occurrence, both in the ripple (100-200 Hz)

and fast ripple (200-500 Hz) ranges, than those which did not. Meanwhile, they

also found that the sooner HFOs appear after the injection, the higher is the oc-

currence of spontaneous seizures in the chronic phase and the shorter the latent

period becomes.

A few other studies focused on the sleep changes, spikes, and non-linear dy-

namics of EEG signals. Andrade et al. (2017) investigated the role of sleep-wake

disturbances in epileptogenesis and found that there is a decrease in the dominant

frequency and the duration of sleep spindles in a traumatic brain injury epilepsy

model with generalized seizures [139]. Sheybani et al. (2018) found that in a mouse

model of epilepsy via kainate injection, the spatial propagation of a subgroup of
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spikes across the brain can be a reliable indicator of epileptogenesis as well as

epilepsy in the chronic phase [140]. Rizzi et al. (2019) investigated the non-linear

dynamics of EEG signals and found a signiőcant negative correlation of the em-

bedding dimension in the recurrence quantiőcation analysis with the severity of

the ongoing epileptogenesis, i.e., the more severe the epileptogenesis, the smaller

is the embedding dimension [141].

1.2.5 Contributions

The studies mentioned above all focus on one or a few predeőned features of interest

and preprocess the data correspondingly. Current advancements in the DL őeld

raises the question whether DL can be used to automatically detect the process

of epileptogenesis before the őrst spontaneous seizure. Hence, our research aims

to discover EEG biomarkers for identifying epileptogenesis automatically without

handcrafted features either in the frequency domain [O1] or in the time domain [O2,

O3]. There are structural and functional alterations of the brain during the latent

period of epileptogenesis. However, it is still not well-known how these alterations

progress, how we can identify different progression stages, and what EEG features

could be representative of different epileptogenesis stages. In Study I, II, and

III, we investigate the aforementioned aspects and show that it is indeed possible

to detect the presence of epileptogenesis with a DNN. Furthermore, the networks

reveal EEG features that are indicative of a developing epilepsy. Our contributions

can be summarized as follows.

• In Study I [O1], we demonstrate that modern deep learning techniques can

be used to successfully detect epileptogenesis in a rodent epilepsy model

prior to the őrst spontaneous seizure with frequency-domain features of EEG

recordings. We further show that EEG features pooled in a long time window

can better characterize EEG data in different phases.
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• In Study II [O2], we show that training with the time series EEG data

directly with a similar DNN can further improve the performance. It is

also shown that features learned by the DNN for identifying the presence of

epileptogenesis are related to the epilepsy-inducing procedure.

• In Study III [O3], we demonstrate that a similar deep learning approach can

be applied to successfully stage epileptogenesis by classifying early vs. late

epileptogenesis in the same rodent model with high discriminative and gen-

eralization abilities. This could potentially open the door for early diagnosis

and early medical interventions.

1.3 Brain Tumor Detection with Magnetic Reso-

nance Spectroscopy

A brain tumor is the abnormal growth of the brain tissue, which can be benign or

malignant/cancerous. In particular, tumors originating from abnormal growth of

glial cells, i.e., gliomas, account for the majority of malignant brain tumors [142].

In clinical practice, the diagnosis accuracy of brain tumor from MRS data is often

limited due to the noise in the data, large variability among patients, and the

inter-rater bias. ML approaches that are based on DNNs have demonstrated great

potential in a range of tasks, sometimes even outperforming human experts [12, 13].

These successes largely depend on fast and powerful computer hardware, better

learning algorithms, and large amount of training data. DNNs can extract high-

level features and their correlations for the purpose of interest such as classiőcation

of tumor and non-tumor tissue in our case. Taking advantage of this learning

capacity of DNNs, if may be possible to obtain a better and, most importantly, a

faster screening tool to improve clinical practice.
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In a previous study by Hattingen et al. (2008), they found that certain chemi-

cals in the brain could be a reliable predictors for tumor progression in a cohort of

45 patients [143]. With the advances in ML methods for medical applications, we

have collaborated on this project and aim to apply ML-based methods to inves-

tigate the diagnostic properties of MRS data as a whole, instead of only focusing

on a few metabolites.

The data used in this study was collected with proton MRS (1H-MRS) from the

University Hospital Frankfurt. In the following section, we shall introduce some

basics of 1H-MRS and its application to brain tumor detection.

1.3.1 1H-Magnetic Resonance Spectroscopy

MRS detects radio frequency electromagnetic signals produced by nuclei within

molecules. It is widely used to obtain in situ concentrations of certain chemicals,

i.e., metabolites, in brain tissues for tumor detection [144].

The general principle of MRS is that certain atomic nuclei behave as spinning

magnetic bars. When exposed to a strong external magnetic őeld, these nuclei will

interact with the magnetic őeld. In particular, they will absorb energy coming

from the external magnetic őeld and while relaxing back to the resting state,

they will resonate at a certain frequency, often at the scale of a million cycles

per second. Different chemicals resonate at different frequencies and these signals

can only be distinguished from each other by a few cycles per second. To clearly

separate these signals, it is common practice to specify the frequency of a particular

chemical and describe others by stating how much its frequency is shifted from that

of the standard reference compound (tetramethylsilane for 1H-MRS). In this way,

the MRS spectrum is presented by the chemical shift in parts per million (ppm),

shown in Fig. 1-5 [145].

Furthermore, the characteristics of the metabolism of different brain tissue
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Figure 1-5: An example 1H-MRS sequence with commonly known metabolites.
NAA: 𝑁 -acetyl aspartate. Cho: choline; Cr: creatine; PCr: phosphocreatine; mI:
myo-inositol; Glu-Gln: glutamate and glutamine compounds.

types vary depending on their functions in the brain. Energy consumption, mem-

brane synthesis and breakdown, cell proliferation, cell loss, etc, all have their foot-

prints in the metabolism proőle, especially reŕected in some major metabolites

such as creatine, choline, lactate, glutamate, glutamine, and 𝑁 -acetyl aspartate

(NAA). Understanding how the metabolism proőles differ between different brain

tissues is critical in elucidating the underlying pathological conditions [146].

1.3.2 Important Metabolites

As mentioned before, a brain tumor is the abnormal and aggressive growth of

brain tissue. It often exhibits excessive energy consumption, rapid cell prolifera-

tion, increased cell death, the breakdown of membranes, etc. These characteristics

can, thus, be reŕected in the proőle of the metabolite concentrations in the tissue.

Those metabolites that can be detected by a standard 1H-MRS are 𝑁 -acetyl as-

partate (NAA), choline, creatine (Cr), myo-inositol (mI), glutamate and glutamine
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Figure 1-6: An example spectrum from a healthy tissue.

compounds (Glu-n), lipids, and lactate. Figure 1-6 shows an MRS spectrum from

a healthy example while Fig. 1-7 shows an example from tumor tissue.

The peak of mI occurs at 3.56 ppm and it is absent from neurons, since it is

synthesized in glial cells and cannot pass through the blood-brain barrier [147]. It

has been proposed that an increase of the mI level can be indicative of an increase

of glial cell size or glial proliferation, both of which can be present in inŕammatory

processes and some other cerebral diseases [147]. Hattingen et al. investigated the

role of mI in various glial tumors and reported an elevated level of mI in all glial

tumor samples compare to that in non-tumor samples from the same patient [148].

However, due to a heterogeneous distribution of cell composition, cell density, and
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Figure 1-7: An example spectrum from a tumor tissue.

cell proliferation rate, the increase of mI concentration cannot be clearly attributed

to certain histopathological processes [148].

The choline peak is located at 3.22 ppm and it reŕects the metabolism of

the cellular membrane turnover. Hence, it is increased in all processes leading

to hyper-cellularity, including accelerated membrane synthesis, which is found in

brain tumors [147, 149, 150].

The dual peaks of Cr locate at 3.03 ppm and 3.93 ppm resonant frequencies.

It reŕects the underlying energy-dependent processes in the brain cells. Cr is

involved in energy metabolism, diffusing from the energy producing sites (i.e., the

mitochondria) to energy consumption sites (i.e., the nerve terminals) [151, 150].
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Cr is not naturally synthesized in the brain, thus, its concentration should be

stable across different age groups or even various disease conditions. Therefore, it

is convenient to compute the concentration ratios with other metabolites, such as

NAA/Cr and choline/Cr [152, 153, 154]. Decreased levels of Cr have been observed

in brain tumors [155].

NAA is a marker for neuronal density, which will be reduced in all diseases

involving neuron loss or the replacement of neurons by other cells [147]. In healthy

brain tissues, the NAA peak is the most prominent peak and locates at 2.0 ppm. It

exclusively resides in the central and peripheral nervous systems and reŕects the

neuronal density and viability [150, 147]. Interestingly, the NAA concentration

increases as the brain matures and the Cho concentration decreases [147]. The

percentage change in the Cho:NAA ratio has been proposed to be a marker for

predicting tumor progression in young brain tumor patients [153]. The NAA:Cr

ratio is shown to be helpful in differentiating low- and high-grade gliomas [152].

Glutamate and glutamine (Glu-Gln) together make up a complex of peaks be-

tween 2.15ś2.5 ppm. In lower-resolution scanners they are difficult to distinguish;

only at 3T or higher do they begin to be resolved. Glutamate is the major exci-

tatory neurotransmitter; it is released by neurons during normal brain functions

and is then taken up to synthesize glutamine. The glutamine is then transported

to neurons to őnish the glutamine-glutamate cycle [156]. The Glu-Gln peaks are

more detectable and prominent in tumors than in healthy tissues since tumor cells

disrupt the uptake of glutamate and strive for more glutamate and glutamine as

energy sources that beneőt their growth and invasion [156, 157].

The peaks of lactate and lipids resonate at 1.32 ppm and 0.9ś1.3 ppm, respec-

tively. In the normal brain, they should be at the threshold of detectability by
1H-MRS. Thus, any detectable increase in lactate and lipids can be viewed as ab-

normal. Lactate provides an index of metabolic rate and clearance, thus, increased
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lactate levels can be observed in conditions where oxygen supply is restricted such

as in ischemia [158] and tumors [147, 159, 150, 155].

Lipids in the MRS spectrum result from mobile fatty acyl moieties that no

longer bind to the cell membrane during membrane breakdown. An elevated lipid

peak may suggest the presence of cerebral tissue destruction, such as in neuronal

death [150].

Detecting representative spectrum features for brain tumor and healthy brain

tissues forms the focus of this study.

1.3.3 Contributions

Research interest has often focused on several major metabolites, such as NAA,

Cr, lipids, lactate, Cho, and some of their ratios, such as NAA:Cr and Cho:Cr ra-

tios [152, 153, 154, 148]. However, tumor diagnosis based on a full-scale landscape

of the MRS spectra is lacking. Training DNNs with MRS spectra directly pro-

vides the opportunity to extract features across the whole range and capture more

complex correlations between different metabolites that normally are not obvious.

Furthermore, the diversity in factors such as the tissue composition, cell compo-

sition, and cell density leads to diverse appearances of the MRS spectra even for

the same class. This imposes immense difficulty in the binary classiőcation task

with a single MRS spectrum. We need methods that are more tolerant to noisy

labels and form decisions based on the full set of an individual’s samples. It is

still not obvious whether a DNN-based model trained on the whole range of MRS

data could provide a fast and reasonably good screening performance assisting

clinical practice. In Study IV, V and VI below, we investigate this possibility and

show that indeed our proposed methods could perform on par with or even bet-

ter than the human experts. Moreover, the networks have learned the traditional

well-studied features, mostly concerning individual metabolites or ratios between
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two metabolites, as well as discovered new features that prompt further research.

Our contributions can be summarized as follows.

• In Study IV [O4], we propose a broad DNN-based framework for classiőcation

with noisy labels and scarce data, which consists of a noisy data distillation

step and a data augmentation step. When applied to brain MRS data for

tumor detection, our model performs on par with neuroradiologists.

• In Study V [O5], following the line of research from Study IV, we show

an comprehensive exploration of different network settings and hyperpa-

rameters, and provide a rationale for the parameter selection for this task.

Towards an explainable AI, we visualize the decision making of the DNN

through CAM [160], which shows that conventionally concerned metabolites

did show high importance weights.

• In Study VI [O6], we obtain further improvement when applying a multiple

instance learning (MIL)-based [54, 55, 56] approach to combat the challenges

of noisy labels and data scarcity. An attention-module and a pool-based mod-

ule are proposed to enforce the permutation invariance in the MIL pipeline.

We also provide visualizations explaining the network’s learning and decision

making process. The proposed method obtains an above-human-expert level

performance.
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Chapter 2

Publications

This thesis is based on the following papers, which are referred to in the following

text by their Roman numerals:

I Deep Residual Neural Network Based Framework for Epileptogenesis Detec-

tion in a Rodent Model with Single-Channel EEG Recordings [O1]

II Towards Early Diagnosis of Epilepsy from EEG Data [O2]

III Staging Epileptogenesis with Deep Neural Networks [O3]

IV Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data

Distillation and Augmentation [O4]

V Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data

Distillation and Augmentation [O5]

VI Multiple Instance Learning for Brain Tumor Detection from Magnetic Reso-

nance Spectroscopy Data [O6]
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Abstract—Epilepsy is one of the most common neurological
disorders affecting patients across all ages. During the progres-
sion of the disease, termed epileptogenesis (EPG), patients may
not yet show any clinical manifestation. The EPG phase can
range from weeks to years and patients with epilepsy are usually
diagnosed by the occurrence of a spontaneous seizure followed
by electroencephalography (EEG) monitoring in the hospital.
However, the more seizures they have, the less effective the
treatment will be. Detecting the development of epilepsy before
the first spontaneous seizure may allow for earlier intervention
and better treatment outcome. Here we propose a framework
based on deep residual neural networks to identify the EPG phase
based on EEG recordings in a rodent model where the epilepsy
is induced by perforant pathway stimulation (PPS). A deep
convolutional neural network is trained to distinguish EEG data
recorded before (baseline period, BL) and after (epileptogenesis
period, EPG) the EPG is triggered. The proposed model takes
the Fast Fourier Transform (FFT) of the preprocessed five-
second long EEG segments as input. During testing, we apply
a prediction aggregation across multiple consecutive segments
to accumulate information over a longer time period. When
classifying a continuous stretch of one hour of data, our model
achieves 83% sensitivity and 83% specificity. Further analysis
suggests interpretable features in the FFT transformed data that
contribute to the distinction of the two phases.

I. INTRODUCTION

Epilepsy is the fourth most common neurological disorder.

It is usually accompanied by recurrent seizures and affects

more than 65 million people of all ages worldwide [1]. Various

forms of acute brain injury can lead to epilepsy and the

gradual process of underlying brain structural and functional

changes is termed epileptogenesis [2]. Kwan et al. showed that

the number of seizure episodes prior to the clinical visit is

negatively correlated with the effectiveness of the subsequent

treatment [3], suggesting an advantage of earlier intervention.

Currently there is no established method to know when the

brain first becomes epileptic. Nevertheless, interventions to

modulate or even prevent EPG will likely be most successful

if applied early during the process [2]. Clinically, EEG is a

commonly used tool in epilepsy diagnosis. Hence, discovering

EEG-biomarkers to identify patients at high risk of developing

epilepsy could be of great value. Currently, inter-ictal epilep-

Data pre-

processing

Deep 

neural 

network

CA1
RecordingPPS

DGEC

Vivo recording

Prediction 

Fig. 1. Proposed framework for epileptogenesis prediction. . EC: entorhinal
cortex, DG: dentate gyrus, CA: cornu ammonis, PPS: perforant pathway
stimulation.

tiform discharges (IEDs) such as spikes and sharp waves are

the only established EEG patterns to suggest an ongoing EPG

from human scalp recordings. However, it is unknown when

IEDs appear during the course of EPG, and identification of

IEDs by visual inspection is subjective. Therefore, developing

a system that could reliably detect EPG based on EEG signals

would be very useful.

There have been studies on classifying EEG signals au-

tomatically [4], [5]. Conventionally, it is done by extracting

hand-crafted features. The method heavily depends on domain

expertise. However, in a problem such as EPG identification,

little prior knowledge is available on what features to look for

[2]. Pre-defining features may result in discarding valuable

information that has never made itself obvious.

A. Proposed Framework

In recent years, deep learning techniques have brought revo-

lutionary advances in numerous scientific fields such as speech

synthesis, real-time object detection, semantic image synthesis,

pedestrian re-identification, natural language processing, as

well as many health-care related applications such as heart

disease diagnosis, skin disease diagnostic classification and

breast cancer detection and classification. One advantage of

deep learning based methods is that they learn informative

features directly from the data without any human bias.

In many domains, such machine-learning-based systems are

outperforming humans on difficult tasks [6], [7]. Our goal

is to leverage the feature extraction ability of a deep neural

Copyright c© 978-1-7281-4852-6/19/$31.00 c©2019 IEEE.
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Fig. 2. Timeline of the experiments.

network to distinguish EEG signals recorded in the BL and

the EPG periods. The network takes the Fourier transformed

preprocessed EEG segments as input. Previous studies have

shown that during the EPG phase, the power of certain

frequency bands could be enhanced or diminished [8]–[11].

Thus, there might be relevant information in the frequency

spectrum to distinguish the two phases. The output of the

model is a class label indicating in which phase the segments

were recorded. Each segment is rather short (5 seconds) and it

may or may not contain relevant information to distinguish the

two phases. To pool information across a longer period of time,

we propose to aggregate the predictions of multiple segments

to obtain the final classification decision. Specifically, we make

the following contributions:

• We propose a deep neural network framework to classify

FFT transformed EEG data in the context of identifying

EPG, which may facilitate the early diagnosis of epilepsy.

• We propose to combine a prediction aggregation of the

output of the neural network to pool information across

longer time periods.

• We test our approach with EEG data recorded from

a rodent epilepsy model with a single-channel depth

electrode. The method can distinguish the two phases

with a significantly above chance level of performance.

The results suggest that there exists considerable cross-

subject variability.

II. MATERIAL AND METHODS

Figure 1 illustrates the workflow of our proposed frame-

work. The network takes short segments of EEG signals and

outputs a predicted probability over the two possible classes,

i.e., BL (“0”) and EPG (“1”).

A. Data collection and preprocessing

The data we used in this study are collected from a mesial

temporal lobe epilepsy with hippocampal sclerosis (mTLE-

HS) rodent model, where the epilepsy is induced through per-

forant pathway stimulation (PPS). We adopted the stimulation

paradigm described in detail in [12]. Through the continuous

recording in the rodent model we are able to monitor the

whole progression of epilepsy and potentially open the door

to discover early biomarkers of EPG. We included seven rats

undergoing PPS in our analysis. The EPG phase starts with the

PPS and ends with the first spontaneous seizure. On average

the EPG phase lasted 4 weeks (range 1-7 weeks). The time-

line for the PPS-treated rats is shown in Fig. 2. To trade off

the computation cost and accuracy, we take three days of the

EEG recordings in the BL phase and assign to them the label

“0”. Likewise, we take three days of recordings in EPG phase

and assign the label “1”. In total, this gives us more than 980

hours of recordings.

B. Preprocessing

In our setup, the EEG signals are recorded through wireless

transmitters with a sampling rate of 512 Hz. A band-pass filter

between 0.5 - 160 Hz and a notch filter at 50 Hz were applied

to the raw data. Due to electronic interference and unexpected

weak transmission, the recordings are partially corrupted and

there is some signal loss. To deal with these problems, we

first apply an outlier filtering method to filter out unrealistic

extreme values. Then, we take non-overlapping five-second

segments and applied a data loss filtering where we excluded

the ones with over 20% of data loss. At the end we have more

than 740,000 segments in total for the experiment.

In this work, we aim to see whether the EEG recordings

can be distinguished using frequency information. Hence, we

propose to train the network with FFT transformed time series

data. The FFT is computed on each five-second segment

sampled at 512 Hz. For training, we only take the real part of

the FFT, which yields input vectors with 1281 dimensions.

We implement a deep residual neural network with 33

convolutional layers and skip connections [13]. It is inspired

by the network architecture in [6]. The concept of residual

connections was first proposed by He et al. for an image

recognition task [13]. In a deep residual neural network,

there are usually multiple residual blocks. One block usually

consists of multiple computational layers such as convolutional

or dense layers with necessary batch normalization [14], drop-

out [15], and a non-linear activation transformation [16]. The

input to the residual block is split into two branches: the main

branch with all the computations (convolution or dense matrix

multiplication, batch-normalization, drop-out) but before the

non-linear transformation and another branch usually with

identity transformation or max-pooling. The outputs of these

two branches are added together and then passed through a

non-linear activation function as the input of the next block.

In our implementation, there are 15 residual blocks following

the classic structure [13]. Each residual block consists of two

convolutional layers with necessary batch normalization, drop

out and ReLU non-linear activation function in between. The

convolutional layers have a filter width of 3. The number

of filters increases by a factor of 2 in every four blocks

starting from 16. The feature maps were down-sampled in

every other block with a stride of 2. To keep the dimensionality

compatible, the max-pooling branches share the same stride

value as in the second convolutional layer in each block.

We apply a dropout rate of 0.2 in all blocks. A soft-max

output layer is following the last residual block. Empirical

trials showed that with a fully connected layer, the network is

more prone to over-fit, which resulted in worse generalization

ability to unseen data. So in our model, we leave out the fully-

connected layer. The soft-max layer takes the flattened feature

maps as the input directly and outputs a probability distribution



TABLE I
NETWORK STRUCTURE USED IN THIS WORK. 3× 1 IS THE FILTER SHAPE. 16× 2

i IS THE NUMBER OF FILTERS IN EACH BLOCK.

Name Configuration Stride Factor i Output size

Conv
[

3× 1, 16× 2
i
]

1 0 [1281, 1, 16]

ResBlock 0

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

1 0 [1281, 1, 16]

ResBlock 1

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

1 0 [1281, 1, 16]

ResBlock 2

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

2 0 [641, 1, 16]

ResBlock 3

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

1 0 [641, 1, 16]

ResBlock 4

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

2 1 [321, 1, 32]

ResBlock (5,. . . , 8)

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

(1, 2, 1, 2) (1, 1, 1, 2) [81, 1, 64]

ResBlock (9,. . . , 12)

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

(1, 2, 1, 2) (2, 2, 2, 3) [21, 1, 128]

ResBlock (13, 14, 15)

[

3× 1, 16× 2
i

3× 1, 16× 2
i

]

(1, 2, 1) (3, 3, 3) [11, 1, 128]

Dense 2 [2]
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Fig. 3. Test process in our proposed framework with prediction aggregation.
See text for details.

over possible classes. The detailed parameters of the network

structure are shown in Table I.

III. EXPERIMENTS AND RESULTS

A. Training procedure

To test the generalization ability of our approach, we applied

a leave-one-out (LOO) cross validation scheme. We train the

network seven times, always leaving out data from one rat

which we then use for testing. During training and validation,

we uniformly and randomly select 25 hours from each phase

from each rat. We adopted a train-validation-split of 9:1, which

is a common practice when the size of the dataset is large

enough (≥ 100, 000). The choice of 25 hours is a good

trade-off between computation cost and performance from

our experience. After the network is trained, we test it with

previously withheld three days of data.

B. Prediction aggregation

We propose to aggregate the network predictions of the soft-

max output before the categorical predicted label is obtained

(Fig. 3). Our method is inspired by the idea of averaging model

predictions in a multi-model supervised learning scheme [17],

[18]. The intuition is that the magnitude of certainty is

taken into consideration. In contrast, a majority vote method

would predict the label which has the most counts among

the predicted labels. This has the problem of not taking into

account the magnitude of certainty of individual clasifications.

A sample with 60% certainty contributes equally as a sample

with 99.9%.

In our supervised learning scheme the EEG segments from

one hour h are x(h,i) and the associated labels are y(h,i),

where i = 1, . . . , N and N is the total number of the samples

in this hour. The soft-max output of the model is given by

ŷ(h,i) = f(x(h,i)|model) and it is in the shape of [N, 2] where

2 is the number of classes in our supervised task setting. The

aggregated prediction for hour h is given by:

ŷh =

N
∑

i

ŷ(h,i) =

N
∑

i

f(x(h,i)|model) (1)

and in shape [1, 2]. At the last step, we normalize ŷh along the

column axis such that two values sum up to one and can be

interpreted as a probability distribution over the two classes

after aggregation.

C. Experiments

In the experiment, we perform the classification between

signals recorded before and after the PPS, i.e., from BL and

EPG phases. Our aim is to see whether the recordings from

these two phases can be separated and how separable they are.

Clinically, the visual inspection of EEG by experts is often not

successful in the EPG phase identification since IEDs appear

in both BL (result from the electrode implantation) and EPG

phases.
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D. Results

To simplify the notation, the number of true positives, true

negatives, false positives and false negatives are denoted as

TP, TN, FP and FN, respectively. The sensitivity, specificity

and the area under the curve (AUC) are used to evaluate the

classification results.

Sensitivity (SEN) =
TP

TP + FN

Specificity (SPE) =
TN

TN + FP

In Fig. 4, we show the results from the Receiver Operating

Characteristic (ROC) analysis. We computed the area under the

curve (AUC) values in two scenarios: 1) without prediction

aggregation, i.e., all five-second segments are independent

and contribute equally to the final result. 2) with one hour

aggregation where the predictions of all the segments in

one hour are pooled together through our proposed method.
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Fig. 6. Distributions of scores of both classes from all test trials. The first
column is the distribution without aggregation and the second column is with
one hour of aggregation.

The thin light blue lines are from all test trials. Thick lines

are averaged ROC curves of all LOO test trials with (thick

pink) and without (thick blue) aggregation. The discriminative

ability of the network at the five-second segment level is above

chance level. Surprisingly, we noticed an outlier rat (rat #4)

whose ROC curve is smaller than 0.5 which means that the

network completely confused the segments from one phase



Rat #1

Rat #2

Rat #3

Rat #5

Rat #7

Rat #6

frequency  [Hz]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

p
o

w
e

r 
[a

.u
.]

Rat #4

100 101 101

100 101 101

100 101 101

100 101 101

100 101 101

100 101 101

100 101 101

BL

EPG

Fig. 7. Mean signal of the very certain samples of the two classes during
testing from all LOO trials. Dashed lines are at 3 Hz, 7 Hz and 150 Hz. The
shaded areas represent the standard deviation.

with the opposite phase. We refereed back to our recordings

and so far we could not find any explanation why this rat

is an outlier. Figure 5 shows the ROC curves without the

outlier rat. We can see that in most of the cases our proposed

method achieves significantly above-chance-level performance

and the aggregation boosts the discriminative ability showing

TABLE II
PERFORMANCE WITHOUT PREDICTION AGGREGATION. VALUES ARE

GIVEN WITH AND WITHOUT THE OUTLIER RAT #4

Tasks SEN SPE AUC

w/ outlier rat 0.56± 0.2 0.58± 0.2 0.58± 0.2

w/o outlier rat 0.62 ± 0.2 0.62 ± 0.2 0.64 ± 0.1

an increase of 0.26 in the averaged AUC value. The detailed

specificity, sensitivity and AUC values with and without rat #4

in the two scenarios are given in Tab. III-D and Tab. III-D, re-

spectively. The aggregation over one hour boosts performance.

Figure 6 shows the distribution of the scores collected from

all the test trials with and without prediction aggregation. The

score is defined as the probability of being an EPG segment.

Ideally, true EPG segments would be scored close to one,

and BL segments will be scored close to zero. The figure

shows that in both scenarios, the distributions are significantly

different from each other with an average p-value of ≪ 10−50

in a one-way ANOVA test for same population mean and

average p-value of ≪ 10−20 in the Wilcoxon Rank Sum test to

compare the two continuous distributions. Since the number of

samples is sufficiently large, the p-values are driven to a very

small value. To measure the sizes of differences between two

groups, we also computed averaged Cohen’s d effect size [19],

which represents how far away the two population means are

in the unit of standard deviation. An effect size that is smaller

than 0.2 is considered a “small” difference, and a value that

is bigger than 0.8 is considered a “big” difference [20]. In

our experiment, the effect sizes with and without pooling are

0.31 ± 0.51 and 1.12 ± 1.81, respectively. Notably, from the

individual violin plots we can see that there is still a certain

overlap between BL and EPG segments, i.e., in BL period

there are a certain amount of segments classified as EPG

signals and vice versa.

We also plot the average of all the samples that the network

is very sure about (the certainty is over 99.9%) during each

LOO test trial. In Fig. 7 we show the averaged BL samples

as well as the averaged EPG samples in each trial. These

plots suggest that the network has a high confidence of EPG

samples that have a high power around 3 Hz, a low power

around 7 Hz, and slightly increased power around 150 Hz

compare to BL samples. These findings are consistent with

other works, e.g., Milikovsky et al. observed a decreased

theta power in the epileptogeneic zone [8]. Jalilifar et al. [10]

showed an increase of delta and a decrease of theta power in

an epilepsy model based on kindling. Li et al. showed that the

rate of hippocampal high frequency oscillations is increased

in epileptogenesis [11].

IV. DISCUSSION

We explored the possibility to distinguish baseline (BL)

and epileptogenesis (EPG) phases in a rodent epilepsy model

with FFT transformed EEG data. We proposed a deep neural

network framework for classification and a prediction aggre-

gation process. We collected our data from a well established



TABLE III
PERFORMANCE WITH ONE HOUR OF PREDICTION AGGREGATION.

VALUES ARE GIVEN WITH AND WITHOUT THE OUTLIER RAT #4

SEN SPE AUC

w/ outlier rat 0.72± 0.28 0.72± 0.27 0.77± 0.31

w/o outlier rat 0.83 ± 0.1 0.83 ± 0.08 0.90 ± 0.08

rodent model where epilepsy is introduced through perforant

path stimulation (PPS). To test the generalization ability of

our approach to unseen data collected from an unseen rat, we

adopted a leave-one-out (LOO) cross validation scheme. The

LOO test trials showed that our model generalized well to

data from unseen rats with one exception. The reason for this

“outlier rat” are presently unclear. The prediction aggregation

over a longer period of time yielded better results in sensitivity,

specificity and AUC. The inspection of the distribution of

scores assigned to BL and EPG samples showed that there

is a distribution shift in BL and EPG phases, i.e., there were a

large number of BL samples with close-to-zero scores and

a small number with high scores and vice versa. Further

analysis of the samples that the network was very certain about

(the certainty ≥ 0.999), we found that compared to the BL

phase, the EPG phase recordings show a high power around

3 Hz, a substantial decrease of power around 7 Hz, and a

slight increase of power around 150 Hz. These findings are

consistent with the conclusions from other studies [8]–[11].

Overall, the predictions from our proposed network using the

prediction aggregation method for one hour recordings are

quite promising. Future work should address if similar results

can also be obtained in human subjects with non-invasive

recordings.

ACKNOWLEDGMENT

This work is supported by the China Scholarship Council

(No. [2016]3100), the LOEWE Center for Personalized Trans-

lational Epilepsy Research (CePTER), and the Johanna Quandt

Foundation.

REFERENCES
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Abstract

Epilepsy is one of the most common neurological disorders, affecting about 1% of the pop-
ulation at all ages. Detecting the development of epilepsy, i.e., epileptogenesis (EPG),
before any seizures occur could allow for early interventions and potentially more effective
treatments. Here, we investigate if modern machine learning (ML) techniques can detect
EPG from intra-cranial electroencephalography (EEG) recordings prior to the occurrence
of any seizures by a time frame of days or even weeks. We study a common form of epilepsy
called mesial temporal lobe epilepsy (mTLE). Specifically, we use a rodent mTLE model
where EPG is triggered by electrical stimulation of the brain, which induces hippocampal
damages that resemble those in human patients. We propose a ML framework for EPG
identification, which combines a deep convolutional neural network (CNN) with a predic-
tion aggregation method to obtain the final classification decision. Specifically, the neural
network is trained to distinguish five second segments of EEG recordings taken from either
the pre-stimulation period or the post-stimulation period. Due to the gradual development
of epilepsy, there is enormous overlap of the EEG patterns before and after the stimulation.

c© 2020 D. Lu1,2,3, S. Bauer3,4, V. Neubert5, L.S. Costard6, F. Rosenow3,4 & J. Triesch1,2,3.
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Hence, a prediction aggregation process is introduced, which pools predictions over a longer
period. By aggregating predictions over one hour, our approach achieves an area under the
curve (AUC) of 0.99 on the EPG detection task. This demonstrates the potential of ML
for EPG prediction from EEG recordings.

1. Introduction

Identifying patients at high risk of developing epilepsy (epileptogenesis) is of great impor-
tance to allow early medical intervention and improve the effectiveness of anti-epileptogenic
treatments. In many acquired epilepsy cases, there is a latent period between the brain
injury and the onset of spontaneous recurring seizures. During this latent period, affected
brain tissue is thought to transform such that it eventually can generate spontaneous seizures
(Pitkänen and Engel, 2014). Over 30% of the patients will be pharmaco-resistant and con-
tinue to suffer from recurring seizures despite intake of medications (Kwan and Brodie,
2000). The more seizure episodes have occurred before the first clinical visit, the less ef-
fective of the treatment will be (Kwan and Brodie, 2000). Hence, identifying the presence
of EPG before the epilepsy is fully established would be of great importance. However,
the process of EPG is still not fully understood (Pitkänen et al., 2016). The precise time
of onset of the brain being epileptogenic is untraceable (Pitkänen and Engel, 2014). How-
ever, it is safe to say that any anti-epileptogenic or disease-modifying therapies should be
administered as early as possible (Löscher, 2019). Thus, discovering prominent features of
EPG could facilitate early diagnosis and open the door for early interventions (Moshé et al.,
2015).

Electroencephalography (EEG) is a common tool in the clinic due to its non-invasive
and easy-to-deploy properties. However, detecting EPG from EEG data is challenging.
Two reasons are the complexity of the mechanisms of EPG and the immense cross-subject
variability, which result in different phenotypes of EEG signals. This makes reliable inter-
pretation of EEG signals from previously unseen individuals difficult.

Some works have attempted to identify electrophysiological biomarkers of EPG based
on various hand-selected features (Bentes et al., 2018; Rizzi et al., 2019; Milikovsky et al.,
2017; Bragin et al., 2004, 2016). However, a manual selection of features may be biased
and overlook useful information. Recently, fueled by advances in ML, impressive results
have been achieved in a variety of domains by training on raw data and letting the learning
algorithm identify useful features automatically. Such approaches can even outperform
human experts (Hannun et al., 2019; Haenssle et al., 2018; Sarker et al., 2018).

Here, we recorded intracranial EEG signals from a rodent model of mesial temporal
lobe epilepsy with hippocampal sclerosis (mTLE-HS) (Costard et al., 2019). In this model,
epilepsy was induced by electrical perforant pathway stimulation (PPS) through depth
electrodes. Continuous EEG recordings were obtained from the hilus of the dentate gyrus
after the implantation of the electrode until the occurrence of the first spontaneous seizure
(FSS). The EEG recordings were divided into two classes depending on the time of recording
relative to the PPS stimulation. The samples recorded before the epilepsy-triggering PPS
define the baseline (BL) class. The samples recorded after the PPS, but before occurrence of
the FSS form the epileptogenesis (EPG) class. In the following, we propose a deep learning
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(DL) framework to classify EPG vs. BL by training on raw EEG data in an end-to-end
fashion.

To tackle the problem that a large portion of normal brain EEG patterns are also present
in the EPG phase, we propose a prediction aggregation method where predictions from a
longer time interval (e.g. one hour) are pooled together through a linear aggregation. We
assume that the “EPG-typical” signals should be more frequent during the EPG phase
compared to the baseline phase. This difference becomes apparent through the aggregation
method. Specifically, we make the following contributions:

• We present the first attempt to identify the process of EPG with a deep neural net-
work (DNN) trained on EEG time series data. This is a radical departure from the
conventional (and hitherto not very successful) approach of attempting to predict
individual seizures when the disease has already established itself.

• We propose a framework for EPG identification using massive amounts of EEG data
from chronic recordings to maximally exploit the DNN’s learning ability and minimize
human effort in data labeling and feature engineering.

• We use a prediction aggregation method and demonstrate that it achieves high fidelity
EPG detection in a rodent model.

Generalizable Insights about ML in the Context of Healthcare

Massive expert annotations are expensive and therefore often scarce in medical contexts.
This poses tremendous difficulties for the application of ML. When large amounts of data
can be collected but labelling by experts is infeasible, turning to a form of “cheap” labelling
can be a way-out. In our case, detailed expert annotations are absent but the EEG signals
are recorded continuously (24/7), which yields a large quantity of training data. We define
the labels exclusively according to the relative time of the recording with respect to the
PPS. This kind of label is cheap and easy to obtain but less informative, since in the EPG
period large amounts of normal brain activity are still present, i.e., the data from the two
classes are largely overlapping. To deal with this large overlap, we propose a prediction
aggregation process to pool decisions over a long time window. We show here that even
in the complete absence of expert annotations of specific events showing “EPG-typical”
brain activity, the large data set in combination with the “cheap” labels allow us to build
a powerful classification system. We suggest that many other medical problems where the
application of ML is currently infeasible due to lack of detailed expert annotations could
be tackled using similar methods. More generally, our approach of massive data collection
to identify the earliest signatures of a developing disease may enable early diagnosis and
intervention across a wide range of medical contexts.

2. Related Work

EEG Analysis with Deep Learning Modern ML techniques allow an end-to-end learn-
ing approach to the analysis of EEG data rather than relying on specific handcrafted fea-
tures. In particular, DNNs have been applied to either frequency representations (Lu et al.,
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2019; Thodoroff et al., 2016) or directly to raw EEG data in the time domain (Kiral-
Kornek et al., 2018; Biswal et al., 2019; Avcu et al., 2019; Farahat et al., 2019; Bi and
Wang, 2019). They have achieved promising results in seizure detection, seizure prediction,
or even other neurological disorders such as Alzheimer’s disease and Autism classification.
For example, Zhou et al. (2018) compared the performance of a CNN on the EEG signal
classification problem with time-domain and frequency-domain input and concluded that
frequency-domain signals have greater potential for the task. Kiral-Kornek et al. (2018)
demonstrated an accurate, automated patient-specific seizure prediction approach with a
DNN trained on intracranial EEG data. Biswal et al. (2019) applied stacked CNNs and
recurrent neural networks (RNNs) to extract temporal shift invariant features from EEG
data. These features are used to classify multiple key EEG phenotypes. Avcu et al. (2019)
developed an end-to-end solution for seizure onset detection. Bi and Wang (2019) applied
a convolutional deep Boltzmann machine with EEG data in early diagnosis of Alzheimer’s
disease. Thodoroff et al. (2016) applied a deep RNN with a CNN to perform automated
patient specific seizure detection with scalp EEG. A deep CNN was applied for EEG signal
decoding during human decision making and demonstrates promising results (Farahat et al.,
2019). These studies demonstrated the application of DL for EEG analysis.

Here, we want to emphasize the fundamental difference between seizure prediction and
our task. The goal of epileptic seizure prediction is to predict the onset of individual seizures
in an epileptic brain that already generates spontaneous seizures. The goal is typically to
predict individual seizures several minutes before their occurrence, so the patient can be
warned about the imminent seizure and take precautions. In contrast, we aim to detect
if a brain is on its way to develop an epilepsy before the FSS has occurred, i.e. before an
epilepsy is manifest. If this could be done several days or weeks before the FSS, this would
allow for interventions that could slow down or even prevent the development of the disease,
before spontaneous seizures occur.

EPG Biomarkers in EEG There have been several previous studies on biomarker dis-
covery for identifying EPG. Bragin et al. (2004) found that the occurrence of high-frequency-
oscillations (HFOs) is a strong indicator of future recurrent spontaneous seizures and the
sooner HFOs occur, the shorter the EPG period will be. Andrade et al. (2017) found that a
duration reduction of sleep spindles at the transition from stage III to rapid-eye-movement
sleep indicates potential post-traumatic epilepsy in a lateral fluid-percussion rat model. In
humans, it was shown that over 90% of the HFO area overlapped with the seizure onset
zone for six patients (Burnos et al., 2014). Milikovsky et al. (2017) revealed that the dy-
namics of the theta band could predict future post-injury epilepsy and the seizure onset and
thus could serve as a diagnostic biomarker for EPG. Lu et al. (2019) demonstrated that an
increased delta band power, a decrease of theta band power as well as an increase of high
gamma band power were correlated with the presence of EPG in a rat mesial temporal lobe
epilepsy model. Rizzi et al. (2019) recently showed using concepts from nonlinear dynamics,
that a reduction of the dimensionality of EEG/ECoG signals indicates the presence and the
severity of EPG in three different rodent epilepsy models. Finally, Bentes et al. (2018) found
that an asymmetry in background EEG signals and interictal epileptiform discharges can
independently predict post-stroke epilepsy in a clinical study. However, so far a DL-based
approach to EPG biomarker discovery in an end-to-end fashion has not yet been attempted.
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Figure 1: Schematic of the timeline of the experiment. A. time line for PPS-stimulated
rats. B: time line for control rats. PPS: perforant pathway stimulation. FSS:
first spontaneous seizure. The mean and standard deviation of the duration of
EPG in the PPS group is 23.7± 15.5 days (min. 10 days, max. 56 days).

3. Methods

3.1. Dataset

We used intracranial EEG data recorded continuously (24/7) by a depth-electrode from a
rodent mTLE-HS model, where epilepsy is induced by electrical PPS, as described in detail
in Costard et al. (2019). The stimulated rats developed epilepsy after an average EPG
phase of four weeks (range one to eight weeks). The EPG phase ended with the FSS.

The rat model provides an opportunity to study the progression of epilepsy and to
discover potential biomarkers of EPG in the EEG. In this study, we included seven PPS-
treated rats with continuous wireless EEG recordings. We also included three control rats
which had electrodes implanted but did not undergo PPS and did not develop epilepsy by
the end of the recording (limited by the lifetime of battery of the wireless transmitter).
The time-lines for the PPS group and the control group are shown in Fig. 1. We denoted
two phases of interest from the continuous recording, i.e., baseline (BL) and epileptogenesis
(EPG) in the PPS group. In our study, we selected the last three days from the BL phase
and three days from the EPG phase, highlighted in the colored boxes, and assigned them
the labels “0” and “1”, respectively. We selected the 7th, 8th and 9th day of EPG for
training for all rats. Reasons for this choice are 1) to maintain the maximum time distance
to acute symptomatic seizures which can occur within the first 1-3 days after the PPS, and
2) the rat with the shortest EPG duration developed its FSS on the 10th day after PPS
and we wanted to keep the time window from which we get the class “1” signals the same
across all rats.

Preprocessing The sampling rate of the EEG recordings was 512 Hz. A band-pass fil-
ter between 0.5 - 160 Hz and a notch filter at 50 Hz were applied to the raw data. In
our experimental setting, the recorded EEG signals were susceptible to electric interfer-
ence, which resulted in extremely high amplitude outliers. To fix this problem, we applied
a MATLAB function, i.e., filloutliers 1 with the configuration method = ’pchip’;

1. https://www.mathworks.com/help/matlab/ref/filloutliers.html
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Data 
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Figure 2: Workflow of our proposed framework. EC: entorhinal cortex, DG: dentate gyrus,
CA: cornu ammonis, PPS: perforant pathway stimulation.

movmethod = ’movmedian’; window = 50 to filter out these outliers. We obtained non-
overlapping five-second segments from the continuous recordings. To clean up the data for
training, those segments with more than 20% data loss due to weak wireless transmission
were discarded. Then, those five-second segments were normalized via the z-score method
from scipy.stats.zscore before being fed into the neural network. The workflow is shown
in Fig 2.

Our proposed method consists of two parts: (a) a deep residual neural network and (b)
a prediction aggregation process during the testing.

Residual convolutional neural network Our model is a DNN with 33 convolutional
layers with residual connections and it is inspired by the work of Hannun et al. (2019).
The network’s structure is shown in Table 1. The concept of residual connections was first
proposed by He et al. (2016a) for an image recognition task and has been widely used
in a variety of tasks such as image segmentation (Huang et al., 2017; Lei and Todorovic,
2018; Liu et al., 2019), visual object detection (Mordan et al., 2018; Wang et al., 2019),
and healthcare-related applications (Hannun et al., 2019; Sarker et al., 2018). The residual
connection connects the pre-activation from one layer with the input of another previous
layer in an additive fashion skipping several layers in between. Then, the non-linear acti-
vation is applied to the sum to compute the input for the next layer. The collection of the
computations between one residual connection is termed a block (ResBlock). The output
of the network is a softmax layer taking the flattened feature maps as input and outputting
a probability distribution over the two possible classes.

Before we started our official classifier training, we performed a hyper-parameter explo-
ration for our specific task with a small randomly selected data set. A drop-out rate of 0.25
yielded the best performance among the values 0.2, 0.25, 0.3, 0.5, and 0.65. The number
of blocks that performed best was 15 among 5, 7, 11, and 15. A filter size of 32 worked
the best among values of 3, 9, 11, 16, 32, and 64. We tried ReLU and leaky ReLU as the
nonlinear activation function and no significant difference was observed, so we chose the
ReLU activation for this work. A starting number of 16 filters yielded better results than
8 and 32. After the network hyper-parameter exploration, we fixed the choices for further
experiments.
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Table 1: The network structure used in our work. The Config column show the filter size
(always 32) and the number of filters we use in each convolutional layer. The
number of filters is increased every four blocks by a factor of 2. Every other block
sub-samples its input by a factor of 2, indicated by the value of stride. Here, the
batch size at the first dimension is omitted in the output shape column

Name Config Stride Factor i Output shape

Conv layer 0
[

32× 1, 16× 2i
]

1 0 [2560, 1, 16]

ResBlock 0

[

32× 1, 16× 2i

32× 1, 16× 2i

]

1 0 [2560, 1, 16]

ResBlock 1

[

32× 1, 16× 2i

32× 1, 16× 2i

]

2 0 [1280, 1, 16× 2i]

ResBlock 2

[

32× 1, 16× 2i

32× 1, 16× 2i

]

1 0 [1280, 1, 16× 2i]

ResBlock 3

[

32× 1, 16× 2i

32× 1, 16× 2i

]

2 0 [640, 1, 16× 2i]

ResBlock 4

[

32× 1, 16× 2i

32× 1, 16× 2i

]

1 1 [640, 1, 16× 2i]

ResBlock (5,. . . , 8)

[

32× 1, 16× 2i

32× 1, 16× 2i

]

(2, 1, 2, 1) (1, 1, 1, 2) [320, 1, 16× 2i]

ResBlock (9,. . . , 12)

[

32× 1, 16× 2i

32× 1, 16× 2i

]

(2, 1, 2, 1) (2, 2, 2, 3) [80, 1, 16× 2i]

ResBlock (13, 14)

[

32× 1, 16× 2i

32× 1, 16× 2i

]

(2, 1) (3, 3) [20, 1, 16× 2i]

Dense 2 [2]

We adopted the pre-activation design from He et al. (2016b). The convolutional layer
had a filter width of 32. The number of filters increased by a factor of 2 in every four blocks
starting from 16. The feature maps were down-sampled in every other block with a stride of
2. To keep the dimensionality compatible, the max-pooling branch shared the same stride
value as in the second convolutional layer in each block.

Prediction aggregation We hypothesize that the EPG phase may be better character-
ized by a change of distribution of different waveforms rather than a specific waveform that
can be identified in every individual segment. Therefore a reliable classification can only
be achieved by pooling information from many data segments. Our method is inspired by
Smyth and Wolpert (1999). For each segment, the network outputs how likely this segment
is taken from each class. We linearly aggregate the predictions for multiple consecutive
segments to obtain the final classification result.

Considering the data pairs, the EEG segments are x(h,i) and the associated labels are
y(h,i) in one continuous hour h, where i = 1, . . . , N and N is the total number of the samples
in this hour. The softmax output of these samples is given by ŷ(h,i) = f(x(h,i),model) and it
is in shape [N, 2] where 2 is the number of classes in our supervised scheme. The aggregated
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Table 2: Performance without (5 second) and with one hour of aggregation. Data are
presented as mean ± standard deviation. SEN: sensitivity, SPE: specificity, AUC:
area under the curve

Aggregation length Task SEN SPE AUC

Task A 0.73± 0.25 0.77± 0.17 0.86± 0.07
5 second Task B 0.57± 0.42 0.43± 0.42 0.50± 0.08

Task A 0.94± 0.05 0.96± 0.04 0.99± 0.01
1 hour Task B 0.63± 0.45 0.37± 0.45 0.45± 0.06

prediction for hour h is given by ŷh =
∑N

i=1 ŷ(h,i) =
∑N

i=1 f(x(h,i),model), and in shape of
[1, 2]. In a final step, we normalize ŷh along the column axis. The resulting number is
interpreted as a class probability and used to compute corresponding performance metrics.

Training procedure We applied leave-one-out (LOO) cross validation to test the gener-
alization ability of our approach for both the PPS group and the control group. Specifically,
in each fold the data from one rat were completely withheld as the test set, and the data
from the other six rats form the training and the validation sets. For training and vali-
dation, we randomly selected 25 hours from each phase and from each rat and applied a
train-validation-split of 9:1. The choice of 25 hours represents a trade-off between computa-
tion cost and performance, chosen empirically. We tried training with the whole three-day
recordings, and the computation time was increased by a factor of three without obvious
performance improvement. After the network was trained, we tested it with the data from
the previously held-out rat. The procedure was repeated seven times in the PPS group and
three times in the control group and results were averaged for each group.

4. Experiments and Results

4.1. Experiment Design

To evaluate our methods ability to identify EPG, we designed two tasks: Task A is designed
to classify BL vs. EPG signals in PPS rats as shown in Fig 1A. Task B is a control designed
to classify signals recorded in the early and late implantation phases in the set of control
rats as shown in Fig 1B.

Task A: BL vs. EPG classification in PPS rats This is our main task in which
we want to distinguish EEG signals from BL and EPG phases. In this task, we applied
seven-fold LOO cross validation with the data from the seven PPS-stimulated rats.

Task B: early vs. late classification in control rats In this control task we want to
rule out the possibility that differences between BL and EPG in Task A could be simply
due to systematic changes in the tissue after electrode implantation that have nothing to
do with the EPG triggered by PPS. Therefore, we study control rats that do not undergo
PPS (see Fig 1B) and analyze if there are systematic differences between the EEG signals
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recorded from the early and late implantation phases. We applied a three-fold LOO cross
validation scheme with the same network configuration as in Task A.

Control group
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1h aggregation, AUC=0.99
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Figure 3: Receiver operating characteristic (ROC) curves. A: The PPS group (seven
rats). Individual ROC curves from all LOO test trials (thin light blue), the
average ROC curve without prediction aggregation (thick blue) and the average
ROC curve with aggregation in a continuous stretch of one hour (thick pink).
B: The control group. Individual ROC curves (thin light orange), the average
ROC curve without aggregation (thick orange) and the average ROC curve with
aggregation over one hour (thick green) from all LOO test trials in the control
group. AUC: area under the curve. PPS: perforant pathway stimulation. LOO:
leave-one-out

4.2. Results

4.2.1. ROC Analysis

The average ROC curves of all the leave-one-out test trials in each task are shown in Fig 3.
The AUC values are computed in two scenarios: a) each five second segment is viewed
independently and the AUC is calculated based on the prediction of all the five second
segments, b) the predictions of multiple consecutive five second segments are aggregated
together through a linear stacking. In Fig 3A, we show the ROC curves in individual LOO
test trials, and the averaged ROC curves with and without prediction aggregation. Our
method could discern signals from both phases with an average AUC under the ROC curve
of 0.88. It suggests that the neural network has learned features that are informative for the
correct classification. With the proposed prediction aggregation over one hour, the average
AUC achieves 0.99, which shows that the proposed approach can reliably discern EEG
signals from the BL and the EPG phase. In contrast, for the control group, the early vs.
late phase classification, the network does not show clear discriminative ability. The average
AUCs from all the test trials with and without the prediction aggregation are 0.50 and 0.45,
respectively. The detailed performance measurements such as sensitivity (SEN) = TP

TP+FN
,

specificity (SPE) = TN
TN+FP

and the AUC are shown in Table. 2, where TP, TN, FP, FN
denote true positive, true negative, false positive and false negative, respectively.
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length for the two groups. The shaded area represents one standard deviation.
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Figure 5: Example distributions of scores from both classes. A: PPS group. (left) with-
out aggregation. The mean and variance of the two distributions, i.e., from all BL
segments and all EPG segments, are different but overlapping. (right) with one
hour of aggregation. B: Control group. (left) without aggregation. (right)
with one hour of aggregation. BL: baseline. EPG: epileptogenesis

4.2.2. Aggregation Effect

To further investigate the effect of aggregation, we computed the AUC value in each test
trial with various intervals, i.e., five seconds, 30 seconds, one, two, five, ten, 20, 30, 60
minutes. The average AUC across all the test trials in the PPS group as a function of the
aggregation lengths is shown in Fig 4A. It shows a clear trend of an increasing AUC and
a decrease of standard deviation with a longer aggregation length. Thus, the prediction
aggregation from multiple consecutive segments is essential for a strong performance in the
PPS group. In contrast, in the control group, the aggregation not only did not help increase
but reduced the average AUC, as depicted in Fig 4B.

We also tested if the seven neural networks trained on the PPS group would discriminate
the early and late phase EEG patterns from the control animals. If so, this would suggest
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Figure 6: Clustering of high EPG score examples. A: percentage count of each class in
each cluster. B: mean spectra of each cluster. The shaded area represents the
standard deviation.

that these networks learn to discover changes in the EEG patterns across time that are
triggered by the surgical procedure but are independent of the PPS and the ensuing EPG.
However, we found that these networks could not discriminate early and late EEG patterns
from the control group (mean AUC = 0.53, std. dev. = 0.12) and over 82% of all test
samples from both early and late phases are classified as BL. This is additional evidence
that the networks have learned to detect changes in EEG patterns that are induced by the
PPS.

To visualize how exactly the prediction aggregation improves the discriminative ability
of the model, we compute the distribution of scores assigned by the network to all test
segments. Notably, the score is defined as the softmax output of the segment being EPG.
Ideally, scores for BL segments should be close to zero, and EPG segments should have close-
to-one scores. For simplicity, we only show the distributions of one representative LOO test
trial from each group, as presented in Fig 5. The difference of the distributions within the
same aggregation length is evaluated with the ANOVA test and the Wilcoxon rank sum test.
In Fig. 5A, the distributions are significantly different in both cases for this rat (the ANOVA
test, p-value ≤ 10−25, the Wilcoxon rank sum test, p-value ≤ 10−17). Results for other PPS
rats are similar (not shown). To measure the sizes of differences between two distributions
within the same aggregation length, we also computed Cohen’s d effect size (Rice and
Harris, 2005). In the two examples shown, d = 0.94 and 2.91, respectively. Average d
values for the whole PPS-stimulated group with and without aggregation are 0.85 and 1.24,
respectively. Cohen suggested that an effect size absolute value over 0.8 is considered large.
Notably, there is still a considerable overlap between BL and EPG segments, i.e., in the BL
period there are a certain number of segments classified as EPG and vice versa. When we
aggregate over one hour, the effect of the distribution shift is magnified. In contrast, in the
control group, the distributions of scores from one representative test trial with and without
aggregation, are shown in Fig 5B, are not significantly different (the ANOVA test, p-values
≥ 0.5, the Wilcoxon rank sum test, p-values ≥ 0.4) with an effect size d = 0.004 and 0.012,
respectively. The other two LOO test trials in the control group exhibit the same pattern.
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4.2.3. K-Means Clustering Analysis

In order to obtain a better understanding of the characteristics of the learned features, we
conducted k-means clustering analysis on very certain samples collected from LOO test-
trials. Here, a certain sample is defined as one whose softmax probability is larger than a
threshold (set to 0.999). The k-means clustering analysis is based on the Euclidean distance
between two samples power spectra. Specifically, we cluster the log-power spectrum of
examples into four clusters, where the number of four is determined by the elbow-theory
(Kodinariya and Makwana, 2013). From the frequency count plot, see Fig. 6A, we can see
that the majority of the cluster No. 2 stems from the EPG class and that of the cluster
No. 4 is from the BL class. From the mean spectra of each cluster, we can see that the EPG-
dominant cluster has higher power in the frequency range over 20 Hz to 100 Hz. Specially,
in this cluster, there is strong power around 22 Hz and its harmonics. On the other hand,
the mean power spectrum of the BL-dominant cluster, cluster No. 4, has a faster decay
towards higher frequencies.

5. Discussion

In recent years, ML could capitalize on the availability of big medical data sets. However,
acquiring expert annotations for such data is impractical in many applications, representing
a challenge for ML approaches. Here, we have tried to answer the question if an emerging
epilepsy might be detectable from EEG signals even before the first seizure occurs. For this,
we have used a rodent model of epilepsy (Costard et al., 2019), where epileptogenesis (EPG)
is triggered through PPS. While massive amounts of training data are available from the BL
(pre-stimulation) and the EPG (post-stimulation) periods, these data are only labeled by
their time of recording. On the one hand, there might be large amounts of EPG-like signals
present in the BL phase because there is brain injury involved in implanting the electrode.
On the other hand, normal brain activities are still present in the EPG phase. Thus, we
can expect short segments of EEG recordings to be often indistinguishable. A reliable
classification requires pooling data over longer time windows. To achieve this, we have
proposed a DNN approach with a prediction aggregation method. Our method is trained in
an end-to-end fashion on five second segments and we have observed massive performance
gains when aggregating predictions over one hour (improvements of 21%, 19%, and 13% in
SEN, SPE, and AUC, respectively). Therefore, we have demonstrated a viable method for
automatically predicting epilepsy from EEG recordings prior to the first epileptic seizure.
This opens the door for early interventions to modify or even arrest the progression of the
disease (Löscher, 2019). Furthermore, EEG patterns that the network has identified as
being predictive of EPG may point towards new biomarkers of the disease. As a plausible
alternative approach to our network architecture, a recurrent neural network (RNN) could
be considered. However, our preliminary investigations have shown that RNN training
requires more structure exploration and hyper-parameter search and our results leave little
room for improvement on the data set presented here.

Limitations From the perspective of practical utility, a good biomarker for identifying
EPG in a clinical setting should be noninvasive. In contrast, the data in our study were
recorded with a depth electrode, which has a much higher signal-to-noise-ratio compared
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to surface EEG recordings. For training a similar model to predict EPG in humans, the
collection of surface EEG data from human patients would be necessary. As an immediate
next step, we plan to extend our results to a group of human patients, who will undergo EEG
(surface or intracranial) recording in the hospital after suffering a brain injury but before
epilepsy is manifest. With sufficient training data from these and non-epileptic patients,
we could envision a machine-learning-assisted diagnostic tool for the early detection of a
developing epilepsy in human patients.
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Pinho e Melo, et al. Early EEG predicts poststroke epilepsy. Epilepsia open, 3(2):203–212,
2018.

Xiaojun Bi and Haibo Wang. Early Alzheimers disease diagnosis based on EEG spectral
images using deep learning. Neural Networks, 114:119–135, 2019.

Siddharth Biswal, Cao Xiao, M Brandon Westover, and Jimeng Sun. EEGtoText: Learning
to Write Medical Reports from EEG Recordings. In Machine Learning for Healthcare
Conference, pages 513–531, 2019.

Anatol Bragin, Charles L Wilson, Joyel Almajano, Istvan Mody, and Jerome Engel Jr.
High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis.
Epilepsia, 45(9):1017–1023, 2004.

Anatol Bragin, Lin Li, Joyel Almajano, Catalina Alvarado-Rojas, Aylin Y Reid, Richard J
Staba, and Jerome Engel Jr. Pathologic electrographic changes after experimental trau-
matic brain injury. Epilepsia, 57(5):735–745, 2016.

Sergey Burnos, Peter Hilfiker, Oguzkan Sürücü, Felix Scholkmann, Niklaus Krayenbühl,
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ABSTRACT

Epilepsy is a common neurological disorder characterized by recur-

rent seizures accompanied by excessive synchronous brain activity.

The process of structural and functional brain alterations lead-

ing to increased seizure susceptibility and eventually spontaneous

seizures is called epileptogenesis (EPG) and can span months or

even years. Detecting and monitoring the progression of EPG could

allow for targeted early interventions that could slow down disease

progression or even halt its development. Here, we propose an

approach for staging EPG using deep neural networks and identify

potential electroencephalography (EEG) biomarkers to distinguish

different phases of EPG. Specifically, continuous intracranial EEG

recordings were collected from a rodent model where epilepsy is

induced by electrical perforant pathway stimulation (PPS). A deep

neural network (DNN) is trained to distinguish EEG signals from

before stimulation (baseline), shortly after the PPS and long after

the PPS but before the first spontaneous seizure (FSS). Experimental

results show that our proposed method can classify EEG signals

from the three phases with an average area under the curve (AUC)

of 0.93, 0.89, and 0.86. To the best of our knowledge, this represents

the first successful attempt to stage EPG prior to the FSS using

DNNs.

CCS CONCEPTS

· Computing methodologies → Supervised learning by clas-

sification; Cross-validation; Neural networks; · Applied com-

puting→ Bioinformatics; ·Networks→Network performance

analysis.
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1 INTRODUCTION

Epilepsy is one of the most common and disruptive neurological

disorders affecting about 1% of the world’s population. It is charac-

terized by recurrent unprovoked seizures and is accompanied by

various co-morbidities such as migraine, depression, dementia, etc.

[12]. Over 30% of the patients will eventually develop refractory

epilepsy, defined as inadequate control of seizures by any medica-

tion [15]. In acquired epilepsy, an initial precipitating injury (IPI)

such as stroke, traumatic brain injury or encephalitis leads to struc-

tural and functional remodelling of neuronal networks resulting

in the occurrence of spontaneous seizures after a clinically silent

latent period [20]. This remodelling process is termed epileptoge-

nesis (EPG). Traditionally, epilepsy is diagnosed and treated after

at least one unprovoked seizure, which indicates that the EPG has

already progressed to a relatively advanced stage. This latent period

can last months or even years. Treating high-risk patients at the

early stage of EPG, or even customizing the treatment based on the

severity of EPG could result in more effective disease-altering or

even disease-arresting outcomes.

Pathomechnisms of EPG are not fully understood and its de-

tection remains a major challenge. Studying early EPG in human

patients is extremely difficult, simply because the epilepsy is typ-

ically only detected after the FSS. Therefore, work on early EPG

is typically restricted to animal models [2]. Furthermore, early

EPG can comprise a complex cascade of changes to the brain af-

ter the initial brain insult and this cascade may strongly depend

on the type of brain insult. Changes can include, e.g., inflamma-

tory reactions or blood-brain-barrier damage [9]. Some of these

brain changes may be reflected in the EEG in the form of interic-

tal epileptiform discharges (IEDs, including sharp-waves, spikes,

spike-and-waves complex.), high-frequency oscillations, slowing

or alteration of sleep spindles. Correspondingly, there have been

attempts to identify suitable EEG biomarkers for EPG using a wide

range of approaches [1, 3, 6, 17ś19, 21]. However, a reliable staging

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs International 4.0 License.
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Figure 1: Timeline of the experiment. Shaded boxes indi-

cate the different time periods where training and testing

data are extracted. Upper row: PPS group. Lower row: con-

trol group (identical butwithout PPS). FSS: first spontaneous

seizure. PPS: perforant pathway stimulation.

of EPG based on EEG measurements has not been demonstrated

yet to the best of our knowledge.

Here, we use a rat epilepsy model, where EPG is induced by

electrical perforant pathway stimulation (PPS) [8]. In previous work,

we have shown that a DNN can be trained to distinguish EEG signals

from baseline and EPG, i.e., before and after the PPS, with high

specificity and sensitivity. Furthermore, we have demonstrated

generalization to unseen rats [18]. Here we extend these results and

present the first attempt to stage EPG using DNNs. In particular,

we ask whether a DNN can also learn to distinguish early and

late phases of EPG after the PPS but prior to the FSS, thereby

allowing to estimate how łclosež an individual may be to their

FSS. The timeline of the experiment is shown in Fig 1. There are

two groups of rats involved: a PPS group and a control group. The

PPS group undergoes PPS and develops epilepsy before the end

of the recording. The control group is not stimulated and they do

not develop epilepsy before the end of the recording. Data from

the control rats are used as a comparison to the PPS group. We

demonstrate that our approach based on DNNs can successfully

stage the EPG process and distinguish early from late EPG and that

it generalizes to previously unseen rats.

2 RELATEDWORK

2.1 Deep Learning for EEG analysis

Deep Learning (DL) techniques are commonly used in the analysis

of EEG data in medical research. Example applications include the

detection of Alzheimer’s disease [4], autism [5], or Parkinson’s

disease [10]. In the context of epilepsy, DL has been applied for

abnormal brain activity detection [22, 29] as well as seizure detec-

tion and prediction [7, 14, 28, 30, 33]. Roy et al. proposed a hybrid

CNN and gated recurrent units (GRU) in classifying normal and

abnormal brain activity, which takes time series EEG data as input

and outputs the probability of being normal and abnormal, which

is one of the first steps to understand the state of the brain activity

in order to improve the accuracy of the diagnosis and the quality of

patient care [22]. Tjepkema et al. explored different combinations

of CNNs and recurrent neural networks (RNNs) as classifier to iden-

tify IEDs from scalp EEG [29]. Zhou et al. proposed a CNN-based

approach to classify EEG time series data from different states, i.e.,

ictal, preictal, and interictal for the purpose of seizure detection

[33]. They also compared the performance with time series and

frequency-domain as input and found that frequency-domain input

exhibits better potential for this task. Kiral-Kornek et al. proposed

a DL-based approach for patient-specific seizure prediction by clas-

sifying intracranial EEG data in pre-ictal and interictal phases [14].

Thodoroff et al. proposed a neural network combining convolu-

tional layers (conv-layers) with recurrent layers to detect seizure

onset. Their network takes the image-based representation of EEG

signals as input capturing spatial, spectral, and temporal features of

patient-specific seizures [28]. Cho et al. compared the performance

of different input modalities of EEG data with different DNN-based

network architectures for seizure detection [7]. They concluded

that the CNN with time-series EEG data, and the RNN with peri-

odogram data resulted in the best performance. While these works

have demonstrated the utility of DL for EEG analysis in the context

of epilepsy, they have not addressed the challenging detection and

staging of EPG prior to the FSS that we demonstrate here for the

first time.

2.2 Interpretable DNNs

The interpretation of the reasoning of a neural network is crucial in

medical applications, as it allows verification by human users and

provides insights rather than just succumbing to a black box. Many

studies have been done to address the interpretability of DNNs

[13, 23, 25, 27, 31, 32]. Yosinski et al. developed a software tool for

visualizing live feature extraction in the neural network by viewing

the activation maps of different channels in different layers as well

as by regularized optimization to generalize inputs that maximize

the channel activation [31]. Simonyan et al. proposed to generate

an input image that maximizes the output softmax probability of

a given class. Meanwhile, a saliency map can be computed, which

is the ranking of each pixel based on their contribution to the

given class of a given sample [25]. Bach et al. proposed the Layer-

wise Relevance Propagation (LRP), which understands the learning

of the network by decomposing the output in terms of the input

dimensions in a fashion that relates to Taylor decomposition [23].

Sturm et al. applied the LRP technique to visualize the frequency

contribution to the classification result with EEG data [27]. Zhou et

al. proposed the concept of class activation map (CAM), which can

identify important regions in the inputs by propagating back the

weights of the dense softmax layer to the inputs [32]. CAM is easy

to deploy and provides more focused and localized discrimination.

In this work, we also leverage CAM with 1-𝑑 EEG data to better

visualize the network properties and the learned features.

2.3 EEG-based Biomarkers of Epileptogenesis

Over the last decades several studies have attempted to find EPG

biomarkers in EEG signals. Li et al. and Bragin et al. focused on high-

frequency oscillations (HFOs) in a rat epilepsy model with kainic

acid (KA) injection [6, 17]. They found that the sooner HFOs appear

after the injection, the higher the rate of spontaneous seizures in

the chronic phase, and the shorter the latent period is, the more

spontaneous seizures will occur. Milikovsky et al. focused on theta

band activity and showed that a decreased theta power can be a

robust feature in identifying EPG in five animal epilepsy models

[19]. Andrade et al. investigated the role of sleep-wake disturbance
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in EPG and found that there is a decrease of the dominant fre-

quency and the duration of sleep spindles in a traumatic brain

injury epilepsy model with generalized seizures [1]. Bentes et al.

found that in stroke patients, the asymmetry in the background

activity with the occurrence of IEDs are independent indicators of

post-stroke epilepsy in the first year after stroke [3]. Sheybani et al.

found that in a mouse model of epilepsy with kainate injection, the

spatial propagation of a subgroup of spikes across the brain can be

a reliable indicator of EPG as well as epilepsy in the chronic phase

[24]. Lu et al. trained a DNN with the Fourier transformation of

the time-series EEG data from a rat epilepsy model and showed

that a decrease of power in theta band and an increase of power

in frequencies over 100 Hz can be reliable indicators of EPG [18].

Rizzi et al. investigated the nonlinear dynamics of EEG signals and

found a significant decrease of the so-called embedding dimension

in early EPG that correlates with the severity of the ongoing EPG

[21]. Here, we use an unbiased deep learning approach to study

the EPG process to subdivide it into different stages and identify

potential biomarkers to distinguish early and late phases of EPG.

3 METHODS

3.1 Animal Model

We use a mesial temporal lobe epilepsy with hippocampal sclerosis

(mTLE-HS) rodent model, where epilepsy is electrically induced

through PPS. Details have been described in [8]. Continuous single-

channel EEG recordings from a depth electrode implanted in the

dentate gyrus are collected from each rat from the beginning of the

implantation until the FSS, which indicates the manifestation of

epilepsy. The 24/7 recordings enable us to continually monitor the

entire EPG prior to the FSS. There are two groups of rats involved

in this study, 1) seven rats had PPS and developed epilepsy before

the end of recording, which we denote as PPS rats, 2) three rats did

not get PPS stimulation and did not develop epilepsy by the end of

recording, which we denote as control rats. In the PPS group, the

average EPG phase is 4 weeks (range 1 ś 7 weeks). The EPG phase

is terminated by the FSS. The timelines for both group are shown

in Fig. 1. Training data are taken from the three highlighted periods

from PPS rats for the three-class classification task. We define the

three classes to be the Baseline class (BL) ś green, the early EPG

class ś blue, and the late EPG class ś orange. The data from the

control rats are used only for testing the model trained on the PPS

group. The total available number of recordings from each rat is

summarized in Table 1 and Table 2.

3.2 EEG Data Preprocessing

The data acquisition was achieved through wireless EEG trans-

mitters with a sampling rate of 512 Hz and a band-pass filter be-

tween 0.5 - 160 Hz as well as a notch filter at 50 Hz. Occasion-

ally, EEG artifacts can appear as extreme amplitude values and

signal loss due to electronic interference and weak transmission.

To combat this problem, we first applied a MATLAB function,

i.e., filloutliers 1 with the parameters method = ’pchip’;

movmethod = ’movmedian’; window = 50 to filter out unrealistic

extreme values. Then, the continuous recordings are divided into

1https://www.mathworks.com/help/matlab/ref/filloutliers.html

Table 1: Summary of the data collections from PPS rats in

hours (hrs).

rat ID PPS 1 PPS 2 PPS 3 PPS 4 PPS 5 PPS 6 PPS 7

BL (hrs) 162 160 149 82 163 164 157

EPG (hrs) 700 508 400 140 1568 173 648

Table 2: Summary of the data collections from control rats

in hours (hrs).

rat ID Ctr 1 Ctr 2 Ctr 3

in total (hrs) 1536 2140 2248

five-second long non-overlapping segments. To manage data loss,

we discarded any five-second segments with more than 20 % data

loss. As a result, we discarded around 5% of the total recordings.

The remaining segments were eligible for the DNN training.

3.3 DNN Architecture

We use a deep residual neural network with 16 blocks with residual

connections (res-block), as shown in Fig. 2, inspired by [11]. The

model takes five-second long EEG segments as input and outputs

the probability over three classes, i.e., BL, early EPG, and late EPG.

We keep the design of each res-block as in [11], where each res-

block consists of two conv-layers, batch-normalization, dropout,

and ReLU non-linear activation. The number of channels in the

first conv-layer and the first block is 16, and it increases by a factor

of 2 in every four blocks. There are two branches in each block: one

goes through convolution, batch-normalization, ReLU activation

and dropout; the other, called skip connection, simply goes through

max-pooling. They are combined in an additivemanner at the end of

the block before passing through the batch-normalization and ReLU

activation. To reduce the dimensionality of the feature maps, we use

a stride of two in the second conv-layer and the max-pooling layer

in every other block starting from the second block. The output

of the last conv-layer is fed to the global average pooling (GAP)

operation, which is followed by a dense layer with three output

units with softmax non-linear activation. The dropout rate is 0.2

everywhere in the graph.

3.4 Class Activation Map

Proposed by Zhou et al., the class activation map is a method to

visualize the łimportancež of different regions of the input for the

classification decision. It takes advantage of the global average pool-

ing (GAP) after the last conv-layer, and assigns different weights

to each squashed feature map. To be specific, the 𝑘-th feature map

from the last conv-layer, denoted as 𝑓𝑘 , which has shape [ℎ𝑒𝑖𝑔ℎ𝑡 ,

𝑤𝑖𝑑𝑡ℎ]. The GAP layer takes the mean activation of each 𝑓𝑘 , and

the resulting 𝑘-th feature map 𝐹𝑘 is 1
𝑁

∑
𝑖, 𝑗 𝑓𝑘 (𝑖, 𝑗), where 𝑁 is the

total number of elements of 𝑓𝑘 . It reduces the dimension by the

factor of ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ. Then, for a given class 𝑐 , the input to the

softmax layer, 𝑆𝑐 , is a weighted linear combination of all the feature
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Figure 2: The DNN structure used in this study. The network takes a mini-batch of five-second segments as input and outputs

the probability over the three classes. GAP: global average pooling. BL: Baseline

maps, which is computed by

𝑆𝑐 =

∑

𝑘

𝑤𝑐
𝑘

1

𝑁

∑

𝑖, 𝑗

𝑓𝑘 (𝑖, 𝑗) ∝
∑

𝑖, 𝑗

∑

𝑘

𝑤𝑐
𝑘
𝑓𝑘 (𝑖, 𝑗), (1)

where 𝑤𝑐
𝑘
denotes the importance of 𝑓𝑘 for class 𝑐 . Finally, the

softmax probability for class 𝑐 can be computed as
exp𝑆𝑐∑
𝑐
exp𝑆𝑐

. Then,

when the training is finished, the class activation map for class 𝑐 at

position (𝑖, 𝑗 ), CAM𝑐 (𝑖, 𝑗), is given by

CAM𝑐 (𝑖, 𝑗) =
∑

𝑘

𝑤𝑐
𝑘
𝑓𝑘 (𝑖, 𝑗) . (2)

Hence, 𝑆𝑐 =

∑
𝑖, 𝑗 𝑤

𝑐
𝑘
CAM𝑐 (𝑖, 𝑗), and the weights 𝑤𝑐 are fixed af-

ter the training. Then, CAM𝑐 (𝑖, 𝑗) indicates the importance of the

activation at the position (𝑖, 𝑗) contributing to the class 𝑐 .

3.5 DNN Training and Evaluation

We apply a seven-fold leave-one-out cross-validation (LOO-CV)

scheme, where the network is trained with the data from six out of

seven rats in the PPS group. Specifically, in each fold, we withhold

the data from one rat as the test set, and the data from other six rats

form the training and the validation sets with a train-validation-

split of 8:2. This procedure is repeated seven times, and each time

we hold out a different rat for testing. This is highly relevant to

test the generalization ability of the classifier to unseen data from

unseen subjects. We randomly select 25 hours from a three-day

window from each phase for training and validation, shown as the

shaded periods in Fig. 1. The choice of 25 hours is a reasonable

trade-off between computational cost and performance from em-

pirical experience, since we also experiment using all data from

the three day periods and it increases the total training time by a

factor of three and no significant improvement regarding the classi-

fication performance is found. Our DNN model is implemented in

Tensorflow and trained with an NVIDIA GeForce RTX 2080 Ti GPU

and one epoch of training takes 35 minutes on average. After the

network is trained, we test it with all the data from those three-day

periods (shown in Fig. 1) of the previously withheld rat. We report

results as the average across all seven LOO test trials.

To evaluate the performance, we compute the receiver operating

characteristic (ROC) curve in the multi-class scenario, where the

ROC curve is computed for each class in a one-vs-all manner. The

area under the ROC curve is a scalar value indicating the goodness

of the trained classifier. Several other performancemetrics including

precision, recall, and F1-score are also computed. These metrics are

given by:

precision =

TP

TP + FP

recall =

TP

TP + FN

F1-score = 2 ·
precision · recall

precision + recall

accuracy =

TP + TN

TP + TN + FP + FN
,

where TP, TN, FP, and FN are true positive, true negative, false posi-

tive, and false negative numbers, respectively. We also compare our

results with several baseline network structures: a feed-forward neu-

ral network (FNN), a deep convolutional neural network (DCNN)

[26], EEGNet [16], and one variant of our proposed model with

only four blocks, which we denote as Proposed-4block.

The FNN used in this work is a straight forward multi-layer

perceptron with three dense layers equipped with 1024, 256, and

128 units per layer. Each dense layer is regularized with 𝐿2 penalty

with a factor of 0.01 and followed by a batch-normalization layer

and a dropout (rate=0.5) layer. The nonlinear activation is ReLU in

this model.

Sors et al. proposed the DCNN for sleep staging with single-

channel EEG. Compared to the original architecture, we made sev-

eral changes to adapt to the training data format we have in our

experiment. First, due to our input being shorter (five-second seg-

ments under 512 Hz sampling rate, which yields 2560 data points

per sample) than theirs (15 000 data points), we reduced the number

of conv-layer from twelve to nine: five (instead of six) conv-layers

with 128 output channels and four (instead of six) conv-layers with

256 output channels. Each conv-layer has stride 2 to sub-sample the

feature map. The architecture is conv (7 × 1, 128, stride 2) ś conv

(7 × 1, 128, stride 2) ś conv (7 × 1, 128, stride 2) ś conv (7 × 1, 128,

stride 2) ś conv (7 × 1, 128, stride 2) ś conv (5 × 1, 256, stride 2) ś

conv (5×1, 256, stride 2) ś conv (5×1, 256, stride 2) ś conv (3×1, 256,
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stride 2) ś flatten ś fully-connected (units=100) ś fully-connected

(units=3). We kept other training parameters identical to the origi-

nal paper.

Lawhern et al. proposed the original EEGNet for EEG classifi-

cation in multiple brain-computer interfaces. The EEG snippets

used in their evaluation are multi-channel event related poten-

tial (ERPs) recorded from surface EEG setups, band-pass filtered

between 1-40 Hz, downsampled to 128 Hz, and focused on 1 to

2 seconds around the event onset. The original EEGNet demon-

strates good generalization to EEG classification among different

experiment diagrams even though the total number of parame-

ters is two orders of magnitude smaller than the baseline methods

evaluated in their work. To adapt EEGNet to our task, we made

several changes to the architecture while keeping layers such as

batch-normalization, dropout, exponential linear unit (ELU) activa-

tion function, and average pooling unchanged: 1) We expanded the

width of the convolutional filter from 64 to 256, which is half of our

sampling rate as suggested in the original paper. 2) We used three

instead of two layers of convolution while omitting the depth-wise

convolution, since our data is single-channel. Unfortunately, the

classification accuracy of this modified EEGNet (henceforth denoted

EEGNet1) does not exceed chance-level. One contributing factor

might be the low number of trainable parameters. In total, EEGNet1

only has 223 323 learnable parameters, which is considerably fewer

than our proposed model. To make the total number of trainable

comparable to ours, we increased the number of conv-layers and

the number of filters in each layer. This is essentially equivalent

to a relatively shallow CNN (7 conv-layers compared to 33 lay-

ers in our proposed model) with very wide convolutional filters,

which we denote as EEGNet2. The resulting structure of EEGNet2

is conv (256 × 1, 16) ś batch-normalization ś conv (256 × 1, 16) ś

batch-normalization + ELU + average-pooling + dropout ś conv

(256 × 1, 32) ś batch-normalization + ELU + average-pooling +

dropout ś conv (256×1, 32) ś batch-normalization + ELU + average-

pooling + dropout ś conv (256 × 1, 64) ś batch-normalization +

ELU + average-pooling + dropout ś conv (256 × 1, 64) ś batch-

normalization + ELU + average-pooling + dropout ś flatten ś fully-

connected (units=3). As a result, the EEGNet2 has a total number

of 4 195 107 parameters, which is comparable to that of our pro-

posed model (4 200 048). However, the results show that with the

same amount of training data and training time, both versions

of EEGNets, i.e., EEGNet1 and EEGNet2 perform at chance-level.

Thus, their performance measures were omitted in the performance

report.

4 EXPERIMENTS AND RESULTS

Table 3 shows the performance summary of our proposed model

in comparison to the baseline methods. The reported performance

metrics are averaged for each class as well as a macro-average of

all classes across all LOO test trials. Our proposed method obtains

the best performance in almost all evaluated metrics compared

to the baseline methods. Notably our proposed-4block model still

obtains better performance than FNN and DCNN, even though

the number of trainable parameters is more than 20 times smaller.

Compared to the full-size proposed model, the Proposed-4block

model suffers from a slight performance degradation. From the

class-wise performance, we can see that, in general, the BL class is

easier for the networks to classify as shown by the highest average

performance among the three classes in all models.

4.1 Prediction Aggregation and ROC Analysis

To gather statistics of the estimated class membership over a longer

time period, we apply a prediction aggregation technique as pro-

posed in our previous study [18]. Essentially, we apply a linear

average aggregation of the resulting softmax probability across

multiple consecutive five second data segments such that the prob-

abilities of each class are accumulated across a longer period of

time. Figure 3 shows the averaged AUCs of the three classes across

all LOO test trials with and without the prediction aggregation

(Fig. 3A and Fig. 3B) as well as the effect of the pooling length used

in the prediction aggregation (Fig. 3C). In general, the network

can distinguish BL segments better than the other two classes as

shown by the highest average AUC under the ROC curve among

the three classes, with or without the prediction aggregation. Pre-

diction results for the control group are only marginally better than

chance, suggesting that the network really detects changes in brain

activity patterns due to the PPS, rather than any changes triggered

by the initial electrode implantation that are independent of the

PPS. Prediction aggregation over one hour increases the average

AUC of the baseline, early, and late EPG classes by 0.1, 0.12, and

0.11, respectively.

To study the benefits of aggregation in more detail, we compute

the AUCs for various aggregation lengths in each LOO test trial,

i.e., 5 seconds, 30 seconds, one, two, five, ten, 20, 30, and 60 minutes.

The average AUC as a function of the aggregation lengths is de-

picted in Fig 3C. It reflects the inter-rat variability in the three-class

classification with our proposed network, i.e., the AUC starts at

different levels of confidence without prediction aggregation (the

first data points from all rats). The figure shows that with an in-

creasing pooling length, the average AUC increases in all LOO test

trials. To be specific, with one hour of aggregation, the average

AUC improved by 0.12 (a maximum of 0.18 and a minimum of 0.06).

Hence, aggregating the softmax output from the network across

multiple consecutive segments captures trends across a longer pe-

riod, which is essential for distinguishing different classes in our

task. Aggregation over even longer time periods (>1 hour) might

be able to further improve performance.

4.2 Disease Progression

EPG is a gradual process, but above we treated EPG detection and

staging as a discrete classification problem by defining (somewhat

arbitrarily) the first three days after the stimulation as the early EPG

phase, and the last three days before the FSS as the late EPG phase.

The data from the period in between these two phases has not

been considered so far. In the following, we analyze samples from

this intermediate period and study how the network, which has

been trained to distinguish Baseline, early and late EPG phases, will

classify them. Specifically, we consider the estimated probability

for each class, denoted as the class score, throughout the whole

recording period from a randomly picked pre-trained model from

the LOO cross-validation scheme, which we call "Pretrained-1"

model. Here, we are interested in the general trend rather than the
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Table 3: Performance across all leave-one-out test trials with one hour of prediction aggregation. Evaluation metrics are re-

ported in class-wise average and overall average for each model. Numbers are shown in𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 .

Model Class Precision Recall F1-score Accuracy # trainables

FNN 0 0.51 ± 0.08 0.67 ± 0.13 0.57 ± 0.06 0.44 ± 0.06 2 920 963

1 0.49 ± 0.07 0.65 ± 0.07 0.55 ± 0.02 0.43 ± 0.04

2 0.43 ± 0.06 0.63 ± 0.16 0.49 ± 0.04 0.39 ± 0.03

average 0.47 ± 0.03 0.65 ± 0.04 0.53 ± 0.03 0.42 ± 0.03

DCNN 0 0.47 ± 0.13 0.54 ± 0.25 0.46 ± 0.18 0.46 ± 0.13 1 607 187

[26] 1 0.43 ± 0.32 0.40 ± 0.30 0.41 ± 0.31 0.41 ± 0.08

2 0.35 ± 0.23 0.35 ± 0.28 0.33 ± 0.23 0.40 ± 0.07

average 0.42 ± 0.11 0.43 ± 0.22 0.40 ± 0.18 0.42 ± 0.07

Proposed-4block 0 0.70 ± 0.14 0.88 ± 0.04 0.78 ± 0.10 0.66 ± 0.14 82 912

1 0.43 ± 0.06 0.68 ± 0.18 0.53 ± 0.10 0.41 ± 0.05

2 0.51 ± 0.05 0.82 ± 0.13 0.62 ± 0.01 0.47 ± 0.02

average 0.55 ± 0.04 0.79 ± 0.09 0.64 ± 0.05 0.51 ± 0.05

Proposed model 0 0.85 ± 0.17 0.96 ± 0.02 0.90 ± 0.10 0.84 ± 0.17 4 200 048

1 0.69 ± 0.12 0.81 ± 0.17 0.74 ± 0.14 0.64 ± 0.15

2 0.71 ± 0.33 0.74 ± 0.32 0.72 ± 0.31 0.71 ± 0.22

average 0.75 ± 0.15 0.84 ± 0.12 0.78 ± 0.14 0.73 ± 0.14
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Figure 3: Network performance across all test trials within the PPS and the control group. A. Average ROC curves of multiple

classes without aggregation within the PPS group and the control group. The AUC for the three classes of PPS rats are 0.83,

0.77 and 0.75 (solid lines) and those of the control rats are 0.52, 0.51, and 0.50 (dashed lines). B. Average ROC curves of multiple

classes with aggregation over one continuous hour within the PPS and the control group. The AUC of the three classes for the

PPS rats (solid lines) are 0.93, 0.89, and 0.86, and those of the control rats are 0.58, 0.56, and 0.53 (dashed lines). C. The AUC as

a function of the aggregation length in all individual PPS LOO test trials (magenta lines) and the average AUC of all classes

across all trials (purple with diamonds). ROC: receiver operating characteristic. AUC: area under the curve.

classification accuracy, so the training data were also included. The

progression of class scores from two example PPS rats and one

control rat are shown in Fig. 4. One of the PPS rats (PPS 1) has a

relatively long EPG duration (30 days) and the other (PPS 4) has a

short EPG duration (6 days). The control rat (Ctr 1) has 64 days of

recordings in total.

Several findings are evident in the data for the PPS rats in

Fig. 4A,B. First, the Baseline score is high during the entire baseline

period and drops to small values during the EPG phase. Second,

with the beginning of the EPG phase, the early EPG score increases

and then gradually decreases towards the late EPG phase. Third,

conversely, the late EPG score is low during baseline and the be-

ginning of EPG and then gradually increases towards the late EPG

phase. Fourth, in some animals we observe a circadian rhythm in

the early and late EPG scores during the transition period between

early and late EPG (compare Fig. 4A). These findings are in sharp

contrast to those for the control rats. In their case, the late EPG

score remains low throughout the entire recording period, in line

with these animals not developing epilepsy during the experiment

(compare Fig. 4C).
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4.3 Feature Representation

The interpretation of EEG signals is always challenging, since they

are highly variable Ð especially across subjects. Analyzing and

understanding the discriminative features learned by a DNN model

can give valuable insights as to what distinguishes the classes. This

can be particularly helpful in medical applications, where the dif-

ferences between classes many not be easily spotted Ð even by the

expert eye. Here, we present the feature representations learned by

the network. Using the Pretrained-1 model, we passed all the data

from all seven rats through the network and computed the average

activation of the last conv-layer for each class, shown on the top left

of Fig. 5. We can see that there is a group of feature channels that

are very active. Most importantly some of these feature channels

are most active for one class but not the others and some extract

features that contribute to more than one class. Next, we identified

several channels that were highly active for each class and plot-

ted the EEG segments that maximally activate them. Interestingly,

we found several feature channels responding to very distinctive

features such as spikes in channel 3, spike-and-slow-waves in chan-

nel 9, spindles and HFOs in channel 15, theta rhythm in channel

16, delta wave plus low beta in channel 21, etc. From this we can

conclude that before the softmax layer, the network has already

extracted class-specific features that are clinically meaningful.

To further elucidate which parts of the input contribute most to

the classification of the different EPG stages, we leverage the CAM

visualization while manipulating the assigned labels for the EEG

segments. Taking Pretrained-1 model, we freeze the weights and for

a given sample, we assign in turn the three different labels. Then,

by computing the CAM of the given sample under the assigned

label, we trace back which parts of the given five second input seg-

ment most support (> 80-th percentile) the assigned classification.

The results are shown in Fig. 6. Indeed, the CAMs for the sample

vary depending on the given label. There are several interesting

features that the network has discovered. First, the BL class is most

supported by low-amplitude waves, and many downwards deflec-

tions. Second, sharp waves contribute to both EPG classes, but the

difference lies in the width of the wave forms. While an early EPG

classification is supported by narrow spikes, or spike-like waves,

a late EPG classification is supported by somewhat wider sharp

waves.

5 CONCLUSION

Wehave proposed a DNNmodel for single-channel intracranial EEG

classification to better understand the progression of epileptogene-

sis (EPG). Specifically, our aim was to stage the EPG process prior to

the first spontaneous seizure (FSS), which could facilitate early in-

tervention before an epilepsy becomes manifest. In previous work,

we had already shown that a DNN can learn to distinguish EEG

data from before and after the epilepsy-inducing stimulation with

high discrimination and generalization ability [18]. Here, we have

sought to answer a) whether we can further distinguish different

stages of EPG before the FSS, and b) what EEG features would be

representative for each stage. To this end, we have trained a DNN

model with five-second EEG segments recorded from three phases

in a rodent epilepsy model [8]: three days before the PPS (Baseline,

BL), three days shortly after the PPS (early EPG), and three days

immediately before the FSS (late EPG). We have evaluated our ap-

proach in a LOO scheme to test the generalization ability of the

model to data from unseen rats. To pool evidence over larger time

windows, we applied a prediction aggregation method as in previ-

ous work [18]. We also compared the performance of our model

to four other models, specifically an FNN model, a DCNN model

[26], the well-known EEGNet [16], and a reduced version of our

model with 50 times fewer parameters. In an extensive performance

evaluation, we showed that our proposed model yielded the best

results and could distinguish different EPG stages with high accu-

racy. Furthermore, we showed that the network learns to extract

meaningful EEG features to perform the classification.

Various challenges will need to be overcome, in order to translate

our findings to human patients. First, the rodent model we have
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used provides quasi ideal conditions, supplying high quality, 24/7

intracranial recordings directly from the affected brain region. It

is unclear whether similar results could be achieved with surface

EEG recordings from a diverse set of human patients. The second

challenge is that epilepsy is typically diagnosed only after the FSS.

In order to attempt early detection of EPG as we have demonstrated

here in human patients, one would have to obtain recordings from

patients before the FSS. This requires monitoring a population of

patients with a sufficiently high risk of developing epilepsy, which

is challenging. Third, our approach relies on a large data set com-

prising around-the-clock recordings over several weeks for each

individual. Acquiring similar data from a (homogeneous) patient

population would be very difficult. It is an open question, how

much data would be required to allow accurate classification and

good generalization. Fortunately, in our experiments, pooling data

over one hour already provided very good results. Such a time span

appears manageable in clinical practice. Finally, even if EPG could

be detected and staged reliably in human patients at risk of develop-

ing epilepsy, it is far from clear which forms of early intervention

would be effective in modifying or halting the disease development.

In fact, such interventions will likely have to depend on the specific

type of epilepsy and be adapted to individual patients. In the future,

machine learning may also support physicians in this challenging

task.
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ABSTRACT

The application of Deep Learning (DL) for medical diagno-

sis is often hampered by two problems. First, the amount of

training data may be scarce, as it is limited by the number of

patients who have acquired the condition. Second, the train-

ing data may be corrupted by various types of noise. Here,

we study the problem of brain tumor detection from mag-

netic resonance spectroscopy (MRS) data, where both types

of problems are prominent. To overcome these challenges,

we propose a new method for training a deep neural network

that distills particularly representative training examples and

augments the training data by mixing these samples from one

class with those from the same and other classes to create ad-

ditional training samples. We demonstrate that this technique

substantially improves performance, allowing our method to

achieve human-expert-level accuracy with just a few thousand

training examples.

Index Terms— brain tumor, magnetic resonance spec-

troscopy (MRS), noisy labels, deep neural network, data aug-

mentation

1. INTRODUCTION

Modern machine learning (ML) approaches based on deep

neural networks (DNNs) have recently obtained impressive

results in a range of classification tasks, sometimes even out-

performing human experts. These successes are based on,

amongst others, 1) better learning algorithms, 2) fast com-

puting hardware, and 3) large, carefully annotated data sets.

This has motivated a range of applications in the healthcare

domain such as cardiovascular disease classification [1], tu-

mor detection, tumor segmentation, tumor progression esti-

mation [2–6], tumor grade classification [6], etc. However,

acquiring the required large labeled data sets is often hard to

achieve or expensive in certain medical applications where

the numbers of patients may be quite small. Typical data sets

often contain only hundreds or thousands of samples, while

modern ML approaches often require the estimation of many

millions of free parameters. Fitting a model with many free

parameters to a small set of training samples will likely lead

to over-fitting and poor generalization of the learned model.

This problem is aggravated if the training data are corrupted

by different kinds of noise, which is often unavoidable in

biomedical data.

Here, we study the problem of brain tumor detection from

magnetic resonance spectroscopy (MRS) data. In clinical

practice, MRS is a common tool to identify a brain tumor and

distinguish it from other medical conditions. MRS measures

the resonant frequency shift of a chemically bound hydrogen

atom (i.e., a proton), which characterizes different physio-

logical or pathological brain metabolites. There has been

increasing interest in MRS for clinical use because of the

semiautomatic data acquisition, processing and quantifica-

tion [6, 7]. While the interpretation of spectra is traditionally

based on the size and location of certain peaks, we here use a

novel approach by analysing the pattern of the MR spectrum

as a whole in an unbiased fashion with DNNs.

A common problem with MRS data is noise. Noise

sources include head movement during the procedure, or

baseline distortions of the spectrum. Additionally, labels are

only provided per patient and not per voxel, which could

introduce labeling noise as spectra from the tumor-affected

hemisphere can be falsely labeled as “tumor” even though

they contain healthy brain tissue. Given the ubiquity and

importance of coping with noisy labeling, many works on

this topic have been published [8–11]. Starting learning from

a small set of expert validated labels is one promising di-

rection [8, 10]. Another direction is to design models that

learn directly with noisy labels [10, 11]. For example, [10]

uses a co-teaching framework where two DNNs were trained

simultaneously with noisy labeling, or [11] discards samples

that contribute negatively to the training performance.

Scarcity of training data can be another big hurdle when

applying DL methods to medical problems. Data augmenta-

tion is a common approach to alleviate this. The new samples

can be generated by training a generative model as in [12,13],

or by blending two or more of the original training samples

as in [14, 15]. Here, we propose a novel dual-step framework

including: 1) a data distillation step, which determines rep-

resentative training examples, and 2) classifier training with

data augmentation. In a nutshell, our method works by au-

tomatically identifying data points that are “easy” to classify

through a distillation network. Then, these data samples form
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Fig. 1. Overview of the proposed approach. 1. A data distillation network automatically selects representative samples.

2. These distilled samples form the basis of the data augmentation process synthesizing the training samples for the a final

classifier.

the basis of a data augmentation process that generates more

training samples for training the final classifier. Specifically,

new training samples are generated by mixing the distilled

“easy” samples with randomly selected data points from the

same or the other class. The proposed framework is illustrated

in Fig. 1. Notably, it does not require human supervision to

carefully annotate a small data set as prototype samples, but

rather learns directly on the noisy labeled data as in [10, 11].

Note that in this work, the distillation network and the final

classifier have the same structure, but this need not be the

case. Overall, we make the following contributions: 1) We

apply deep learning to MRS data from a cohort of patients

with multiple medical conditions. 2) We propose a frame-

work for tumor classification based on MRS data that com-

bines DNNs with a novel data distillation and augmentation

procedure to combat scarcity of the training data and label

noise. 3) We quantify the classification performance of hu-

man expert neuroradiologists on the same MRS data set and

demonstrate that our approach achieves human-expert-level

performance.

2. DATASET

1H-MR-spectroscopy data from 435 patients recorded in

the Institute for Neuroradiology of the University Hospital,

Frankfurt during the time interval from 01/2009 to 3/2019

were reviewed retrospectively. These patients were suffering

from either glial or glioneuronal first diagnosed tumors (the

tumor group) or other non-neoplastic lesions, e.g., demyelina-

tion, gliosis, focal cortical dysplasia, enlarged Virchow-Robin

spaces or similar (the non-tumor/healthy group). The tumor

group included all spectra from the tumor-affected hemi-

sphere. The non-tumor group consisted of all spectra from

both hemispheres of the patients. As a result, 7442 spectra

(3388 non-tumor and 4054 tumor) were selected for further

analysis. The obtained MR spectra are represented as column

vectors (288 × 1) and reflect the chemical shift positions in

ppm indicating various metabolites.

3. METHODS

Data distillation. To automatically distill the “easy” samples

from the data set with noisy labels, we propose a data dis-

tillation setup, which consists of three steps. First, for each

training set and each network structure, we train the network

100 times with different random initializations for a single

epoch and record the classification results. Second, we cal-

culate the correct classification rate (CCR) for all the samples

among these 100 runs. We found that, for our data set, there

are many samples consistently classified correctly or incor-

rectly. This result is line with the findings from [16] that, for

real life data, some samples are significantly harder or easier

to classify than others. In the last step, we rank the samples

based on their CCR and collect the “easy” samples by tak-

ing the top θ% samples with the highest CCR. These samples

will be used as the basis for the data augmentation. Figure 2

visualizes the result of the data distillation for θ = 20 via T-

SNE. While the two classes strongly overlap in the original

data (Fig. 2A), this overlap is greatly reduced after distilla-

tion (Fig. 2B). To quantify this effect we calculated the frac-

tion of a data point’s k nearest neighbors (according to the

Euclidean distance metric, k = 10) that have the same class

label. This number was significantly higher after distillation

(median fraction 90 % in the distilled set vs. 69 % in the whole

set) and this difference was statistically significant (Wilcoxon

rank sum test, p < 10−94).

Validation on MNIST. To further validate the effective-

ness of the proposed distillation scheme, we also performed

experiments on the well-known MNIST data set. We ran-

domly introduced 20% uniform labeling noise (on a set of

60 000 samples), i.e., we randomly selected 20% of the sam-

ples and randomly reassigned an incorrect label. Then, we

performed our proposed distillation procedure. We ran 100

single-epoch training runs and calculated the CCR of all sam-

ples. The results are shown in Fig. 2C. The black curve shows

the CCRs as a function of the sample ID, where samples have

been sorted by CCR. The green solid line is simply the cu-

mulative count of samples. The green dashed line is the cu-

mulative count of incorrectly labeled samples which saturated

towards the right side. This result confirms that the samples
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Data augmentation. We take the top θ% of the samples

with the highest CCR, which are at the right side of the CCR

curve and denote this set C. This set forms the basis of the data

augmentation. The whole data set before data augmentation

is denoted D and the samples generated during augmentation

form the set A. Specifically, augmented sample i is created

as xA
i = αxC

j + (1 − α)xD
k , where α ∈ [0, 1] is the mixing

weight, xD
k ∈ D is a randomly chosen sample from the origi-

nal data set that will be augmented, and xC
j ∈ C is a randomly

chosen sample from the distilled set that will be used to aug-

ment the sample xD
k . The label of xA

i is the same as that of

xD
k .1 The number of samples in A divided by that of the orig-

inal set D is termed the augmentation factor Φ = |A|/|D|.
The full training data set is the union of the original data set

and the augmentation set: T = D ∪ A. To deal with class

imbalance, we apply a standard method of oversampling the

minority class [17].

Deep Neural Network Structure. In our implementation,

we adopt the residual neural network (ResNet) used in [1]

and optimized parameters for our task. Specifically, we re-

duced the number of residual blocks to 7, which we denote

as ResNet7. We increase the kernel size to 32 for 1-d convo-

lution. The number of filters started with 16 and is increased

every other block by a factor of 2. Every other block sub-

samples its input by a factor of 2. We apply a dropout rate of

0.55 in all blocks. We compare the full system with “ablated”

versions where 1) we omit data distillation and augmentation,

i.e., T = D, Φ = 1, denoted as ResNet7 and 2) perform data

augmentation without prior distillation, denoted as ResNet7

+ DA. In this case, C = D and augmented samples are gener-

1We also briefly experimented with a different data augmentation strat-

egy where we reverse the role of distillation set C and original data set D,

i.e., we use samples from set D to augment samples from the distillation set

C and keep the labels from C for the newly created samples. This lead to

comparable results and we did not pursue the approach further.

ated by simply mixing any of the original samples as in [14].

Human vs. Machine comparison. To test how our pro-

posed method compares to routine clinical diagnostic, a clas-

sification task on the same test set is conducted for both the

network and human neuroradiologists. Eight experts with

different levels of experience in 1H-MR spectroscopy (from

resident to specialist of neuroradiology) were given 844 ran-

domly selected spectra (around 105 per person). They were

asked to classify each spectrum as originating from the tumor

or from non-tumor tissue reviewing only the spectral lines.

They were blinded to any additional information such as T2-

weighted images or similar. Here, the overall performance

of neuroradiologists is regarded as a collective effort. Inter-

rater reliability is not applicable here, since every radiologist

received a different subset of the data for classification.

4. RESULTS

To evaluate performance, we consider classification accuracy

and the receiver operating characteristic (ROC) curve. We

compute specificity ( TN
FP+TN

), sensitivity ( TP
TP+FN

), and the area

under the ROC curve (AUC).

Training procedure. The ability of the classifier to gen-

eralize to new previously unseen patients is of great clinical

importance. Therefore, we apply a 10-fold leave-subjects-out

cross validation scheme. To be specific, we divide the patient

list into 10 sub-lists each with around 40 patients. In each

cross validation set, we withhold the data from the patients

of one sub-list, while we train and validate on the data from

the other sub-lists. The patient-wise accuracy is computed by

averaging the classification probabilities of all voxels of that

patient to obtain the final predicted label. The patient-wise ac-

curacy is defined by the number of correct patient-wise diag-

noses divided by the total number of patients in that set. The

network is trained with randomly initialized weights using

the Adam optimizer with default parameters and a mini-batch

size of 32. The model is trained on a Linux machine with 2



Table 1. Network performance with the default configuration. Neuroradiologist performance was assesed on one randomly

selected cross validation set, denoted as “partial” in Data set, whereas “whole” refers to averaging across all ten cross validation

sets. Results are given as mean ± standard deviation. Accuracy is calculated in a patient-wise manner by averaging the estimated

class probabilities of all voxels of a patient and thresholding (neural network) or taking the majority vote (radiologists). Dist.:

distillation. DA: data augmentation.

Data set Sensitivity Specificity AUC Accuracy

ResNet7 whole 0.65± 0.05 0.66± 0.06 0.71± 0.06 0.67± 0.05
ResNet7 + DA whole 0.66± 0.06 0.67± 0.06 0.71± 0.07 0.69± 0.05
ResNet7 + Dist. + DA whole 0.67 ± 0.06 0.67 ± 0.06 0.72 ± 0.09 0.73 ± 0.08

Neuroradiologists partial 0.54 0.88 – 0.69
ResNet7 partial 0.62± 0.006 0.63± 0.004 0.68± 0.002 0.64± 0.005
ResNet7 + DA partial 0.65± 0.003 0.65± 0.004 0.73± 0.004 0.69± 0.002
ResNet7 + Dist. + DA partial 0.69 ± 0.003 0.69± 0.003 0.78 ± 0.002 0.72 ± 0.003
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Fig. 3. Comparison of the model’s and neuroradiologists’

performance on one randomly selected cross validation set.

The individual and collective performance of neuroradiolo-

gists are shown as red dots and purple star, respectively.

Intel(R) Xeon(R) Gold 5120 CPUs and a GeForce RTX2080ti

GPU. The training requires around 10 GB of RAM and takes

about 20 minutes for 200 training epochs.

We experimented with different parameters for data dis-

tillation and augmentation. Below we report the performance

for the best configuration, using the parameter values high-

lighted in bold: θ = {25, 50, 75}%, samples from the {same

class, both classes, opposite class} in sets C and D are mixed

together with α = {0.05, 0.2, 0.35, 0.5}, the augmentation

factor is Φ = {1, 3, 5, 9}.

The average results across all 10 cross-validation sets

are given in Tab. 1 (upper part). It shows that our proposed

method (ResNet7 + Dist. + DA) outperforms the “ablated”

versions that do not utilize data augmentation (ResNet7) or

use the same level of data augmentation but without prior

distillation (ResNet7 + DA), similar to [14].

The lower part of Tab. 1 and Fig. 3 compare the perfor-

mance of the different versions of the system to the human

neuroradiologists. The standalone ResNet7 without data aug-

mentation has an AUC of 0.68 (dotted blue line). The full

framework ResNet7 + Dist. + DA achieves an AUC of 0.78.

Overall, our proposed method performs on par with the group

of neuroradiologists as a whole (patient-wise accuracy: 0.72

vs. 0.69). The group of radiologists exhibits greater speci-

ficity (0.88 vs. 0.69), but at the cost of lower sensitivity (0.54

vs. 0.69).

5. CONCLUSION

In this paper, we have presented a DNN-based framework

which achieves performance on par with human experts on

a realistic clinical task of classifying tumor and non-tumor

tissues based on MRS data. We have constructed an effec-

tive data distillation and augmentation framework consisting

of two steps: 1) a first neural network distills the data to al-

leviate label noise, 2) a data augmentation process enlarges

the data set for training a second neural network for the fi-

nal classification. Due to its generality, this method could be

used in various other research domains. A limitation of our

method is that it only takes individual spectra of a patient as

input. In the future, we plan to consider patient-wise training

using multiple spectra from a single individual. We hope that

our framework is a step towards improving clinical practice,

ultimately leading to more effective and accurate diagnosis of

brain tumors in patients.
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sions and Marija Radović for her ideas on automating data

export.



7. REFERENCES

[1] Awni Y Hannun, Pranav Rajpurkar, Masoumeh Hagh-

panahi, Geoffrey H Tison, Codie Bourn, Mintu P Tu-

rakhia, and Andrew Y Ng, “Cardiologist-level arrhyth-

mia detection and classification in ambulatory electro-

cardiograms using a deep neural network,” Nature

medicine, vol. 25, no. 1, pp. 65, 2019.

[2] Hui Lin, Wei Zou, Taoran Li, Steven J Feigenberg,

Boon-Keng K Teo, and Lei Dong, “A super-learner

model for tumor motion prediction and management in

radiation therapy: Development and feasibility evalua-

tion,” Scientific reports, vol. 9, no. 1, pp. 1–11, 2019.

[3] David Capper, David TW Jones, Martin Sill, Volker

Hovestadt, Daniel Schrimpf, Dominik Sturm, Christian

Koelsche, Felix Sahm, Lukas Chavez, David E Reuss,

et al., “Dna methylation-based classification of central

nervous system tumours,” Nature, vol. 555, no. 7697,

pp. 469, 2018.

[4] Eun Kyung Park, Kwang-sig Lee, Bo Kyoung Seo,

Kyu Ran Cho, Ok Hee Woo, Gil Soo Son, Hye Yoon

Lee, and Young Woo Chang, “Machine learning ap-

proaches to radiogenomics of breast cancer using low-

dose perfusion computed tomography: Predicting prog-

nostic biomarkers and molecular subtypes,” Scientific

reports, vol. 9, no. 1, pp. 1–11, 2019.

[5] Sérgio Pereira, Adriano Pinto, Victor Alves, and Car-

los A Silva, “Brain tumor segmentation using convo-

lutional neural networks in mri images,” IEEE transac-

tions on medical imaging, vol. 35, no. 5, pp. 1240–1251,

2016.

[6] G Ranjith, R Parvathy, V Vikas, Kesavadas Chan-

drasekharan, and Suresh Nair, “Machine learning meth-

ods for the classification of gliomas: Initial results using

features extracted from mr spectroscopy,” The neurora-

diology journal, vol. 28, no. 2, pp. 106–111, 2015.

[7] Nima Hatami, Michaël Sdika, and Hélène Ratiney,

“Magnetic resonance spectroscopy quantification using

deep learning,” in International Conference on Medical

Image Computing and Computer-Assisted Intervention.

Springer, 2018, pp. 467–475.

[8] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang

Cao, Jiebo Luo, and Li Jia Li, “Learning from Noisy

Labels with Distillation,” Proceedings of the IEEE In-

ternational Conference on Computer Vision, vol. 2017-

October, pp. 1928–1936, 2017.

[9] Kuang Huei Lee, Xiaodong He, Lei Zhang, and Linjun

Yang, “CleanNet: Transfer Learning for Scalable Image

Classifier Training with Label Noise,” in Proceedings

of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2018.

[10] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama,

“Co-teaching: Robust training of deep neural networks

with extremely noisy labels,” in Advances in neural in-

formation processing systems, 2018, pp. 8527–8537.

[11] Luka Smyth, Dmitry Kangin, and Nicolas Pugeault,

“Training-valuenet: Data driven label noise cleaning on

weakly-supervised web images,” in 2019 Joint IEEE 9th

International Conference on Development and Learning

and Epigenetic Robotics (ICDL-EpiRob). IEEE, 2019,

pp. 307–312.

[12] Riccardo Volpi, John Duchi, Hongseok Namkoong, Vit-

torio Murino, Ozan Sener, and Silvio Savarese, “Gen-

eralizing to unseen domains via adversarial data aug-

mentation,” Advances in Neural Information Processing

Systems, pp. 5334–5344, 2018.

[13] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer,

and Ian Reid, “A bayesian data augmentation approach

for learning deep models,” in Advances in neural infor-

mation processing systems, 2017, pp. 2797–2806.

[14] Hiroshi Inoue, “Data augmentation by pairing

samples for images classification,” arXiv preprint

arXiv:1801.02929, 2018.

[15] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz, “mixup: Beyond empirical risk min-

imization,” arXiv preprint arXiv:1710.09412, 2017.

[16] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,
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Human-Expert-Level Brain Tumor Detection Using
Deep Learning with Data Distillation and

Augmentation
Diyuan Lu, Nenad Polomac, Iskra Gacheva, Elke Hattingen, and Jochen Triesch, Member, IEEE

Abstract—The application of Deep Learning (DL) for medical
diagnosis is often hampered by two problems. First, the amount
of training data may be scarce, as it is limited by the number
of patients who have acquired the condition to be diagnosed.
Second, the training data may be corrupted by various types
of noise. Here, we study the problem of brain tumor detection
from magnetic resonance spectroscopy (MRS) data, where both
types of problems are prominent. To overcome these challenges,
we propose a new method for training a deep neural network
that distills particularly representative training examples and
augments the training data by mixing these samples from one
class with those from the same and other classes to create
additional training samples. We demonstrate that this technique
substantially improves performance, allowing our method to
reach human-expert-level accuracy with just a few thousand
training examples. Interestingly, the network learns to rely on
features of the data that are usually ignored by human experts,
suggesting new directions for future research.

Index Terms—brain tumor, magnetic resonance spectroscopy,
noisy labels, deep neural network, data augmentation

I. INTRODUCTION

M
ODERN machine learning (ML) approaches based on
deep neural networks have recently obtained impressive

results in a range of classification tasks, sometimes even out-
performing human experts. These successes are made possible
by the combination of 1) better learning algorithms, 2) fast,
massively parallel computing hardware including graphics pro-
cessing units, and 3) the availability of large training data sets.
However, in many application domains, such large data sets
may simply not exist or be extremely expensive to gather. This
problem is particularly severe in certain medical applications,
where the numbers of patients may be quite small. Typical data
sets may contain only hundreds or thousands of samples, while
modern ML approaches often require the estimation of many
millions of free parameters. Fitting a model with many free
parameters to a small set of training samples will likely lead
to over-fitting and poor generalization of the learned model.
This problem is aggravated if the training data are corrupted
by different kinds of noise, which is often unavoidable in
biomedical data.

Here, we study the problem of brain tumor detection from
magnetic resonance spectroscopy (MRS) data. In clinical prac-
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Fig. 1: Example MRS spectrum from a tumor patient

tice, MRS is a common tool to substantiate the diagnosis of a
brain tumor and distinguish it from other medical conditions.
It measures the resonant frequency shift of a chemically bound
hydrogen atom (i.e., a proton), which characterizes different
physiological or pathological brain metabolites. There has
been increasing interest in MRS for clinical use because of the
semiautomatic data acquisition, processing and quantification
[1]–[3]. An example MRS spectrum from a tumor patient
is shown in Fig. 1. While the interpretation of spectra is
traditionally based on the size and location of certain peaks,
we here use a novel approach by analysing the pattern of the
MR spectrum as a whole in an unbiased fashion with machine
learning.

A common problem with in-vivo MRS data is that they are
quite noisy. Noise sources range from heterogeneous magnetic
susceptibilities of human tissues over baseline distortions of
the spectrum [1] to head movement during the procedure.
Hence, the quality of spectra may be inadequate to determine
precise metabolite concentrations and artefacts may resemble
diagnostic features. As an additional problem, during the tissue
selection process, due to the indefinable borders of gliomas,
spectra from the tumor-affected hemisphere can be falsely
labeled as tumor even though they contain healthy brain
tissue. Furthermore, depending on the size of the selected
region of interest, the number of samples collected from each
patient varies substantially. Such a heterogeneous distribution
of the individual training samples impedes generalization of
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the learned model — especially in a leave-one-out (LOO) cross
validation scheme.

Scarcity of training data can be a big hurdle when applying
DL methods to medical problems. Data augmentation is a
common approach to alleviate this problem. It works by
synthesizing new training data from the existing data via
a variety of methods reviewed below. Here, we propose a
new framework using two separate neural networks: a data
distillation network to select representative training examples
and a final classification network. In a nutshell, our method
works by identifying data points that are “easy” to classify
through the distillation network. Then, these data samples are
used to synthesize a large number of new training data samples
for training the final classifier. The new training samples
are generated by mixing the easy samples with randomly
selected data points from the same or other classes. The
proposed framework is illustrated in Fig. 2. Notably, it does
not require human supervision to carefully label a small data
set as prototype samples [4], [5], but learns directly on the
noisy labeled data. We show the benefits of this approach by
demonstrating that it outperforms state-of-the-art methods and
achieves human-expert-level performance. In sum, we make
the following contributions:

• We propose a framework for tumor classification based
on MRS data that combines deep neural networks with
a novel data distillation and augmentation procedure to
combat scarcity of the training data and labeling noise.

• We quantify the performance of human expert neuro-
radiologists on tumor/healthy classification from MRS
data and demonstrate that our approach achieves human-
expert-level performance.

• We show that the network uses prominent features in
the data that are commonly used in clinical practice,
but also considers features that have not yet received
much attention by medical professionals, pointing out
new directions for future research.

The remainder of the paper is organized as follows. In
Sect. II, we will briefly review state-of-the-art methods for data
augmentation and dealing with noisy labels. In Sect. III, we
present our data set and the data acquisition and preprocessing.
In Sect. IV, we describe the deep neural network architecture
and our new data augmentation technique. Sect. V presents and
discusses our results, showing that our network can achieve
human expert-level performance on this task by using the
proposed data augmentation approach. Section VI concludes
the paper.

II. RELATED WORK

In this section, we provide a brief review of recent research
using deep neural networks in medical applications. We focus
on the field of oncology and the problems of noisy labels and
scarce data.

A. Deep Neural Networks

In recent years, DNN-based methods have gained more
and more popularity in the healthcare domain and achieved
some impressive results [2], [3], [6]–[13]. Among different

network structures, Convolutional Neural Networks (CNNs)
have gained great popularity [14]–[16]. They are inspired by
the information processing mechanism of the visual systems
of mammals where individual neurons respond to inputs in a
restricted region of the visual field known as their receptive
field. In comparison to fully connected neural networks, CNNs
have a weight-sharing feature where neurons in different loca-
tions have identical receptive fields such that their responses
can be calculated via a convolution operation. This design
significantly reduces the number of trainable parameters and
improves the generalization ability of the network. For exam-
ple, Ng et al. [10] applied a Deep CNN to electrocardiogra-
phy (ECG) data in heart disease classification and achieved
better performance than human cardiologists. In [9], a deep
CNN was trained on dermascopic melanoma detection and
achieved above-dermatologist performance. [3] applied DL
in Alzheimer’s disease classification with MRS data. In the
field of oncology, machine learning methods have obtained
promising results on problems such as tumor detection, tumor
segmentation, tumor progression, etc. [2], [3], [6], [7], [11]–
[13]. For example, Pereira et al. [13] applied a deep CNN
for tumor segmentation from MRI data. Podnar et al. [11]
used a machine learning predictive model for the diagnosis of
brain tumors from routine blood test results. Machine learning
methods applied to MRS data, such as in [2], obtained good
results in tumor grade classification according to the World
Health Organization (WHO) tumor grade standard. However,
learning from a larger cohort with multiple medical conditions
only from MRS data has not yet been performed.

B. Learning from Noisy Labels

Noisy labels are ubiquitous in the real world. In this study,
noisy labeling refers to observed labels that are incorrect, i.e.,
due to the labeling procedure the label assigned to the instance
does not represent the class membership. Noisy labels are
posing a non-trivial problem in deep model learning when
an increasing ability to fit noise is accompanied with deeper
layers. Given the ubiquity and importance of coping with noisy
labeling, many works have been devoted to combating this
problem [4], [5], [17]–[19]. One promising direction is to
utilize a small set of clean labeled data [4], [17], [19], but
this may not be easy to obtain. Therefore, another direction
is to design models that can learn directly with noisy labels
[17], [18], [20].

In [4], an auxiliary model is trained with a small but clean
data set, which was manually labeled by human experts. Then
the knowledge obtained by the auxiliary model is guiding the
learning of the primary model in the form of one part of the
primary training loss being the imitation loss of the primary
model to the auxiliary trained model. Lee et al. [5] proposed
a hybrid system, which requires a small set of representative
seed instances with precise labels. Then, the automated noisy
label detection is achieved with a deep CNN. Veit et al. [19]
proposed a semi-supervised learning framework for multilabel
image classification that leverages small sets of clean labels in
conjunction with large amounts of noisy labels. Small sets of
clean labels facilitate the learning of the mapping between
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Fig. 2: Overview of the proposed approach. MRS spectra from both classes are obtained. A data distillation network
automatically selects representative samples that serve as the basis for creating an augmented data set. The augmented data
set is used to train a final network for classification.

noisy and clean labels, which not only reflects the noisy
patterns but also the labeling structure. Han et al. proposed
a co-teaching framework where two DNNs were trained
simultaneously [17] with the whole data set. The networks
train each other using small-loss training instances, since they
are likely to correspond to clean annotations. The intuition is
that since two neural networks are different and are equipped
with different learning capabilities, during learning they may
capture diverse features of the training samples and through
the small-loss instances they are filtering out “clean” samples
for each other. Smyth et al. proposed a DNN-based framework,
Training-ValueNet, which evaluates the contribution of one
sample to the whole learning process and then discards those
that negatively contribute to the learning [18].

C. Data augmentation

A number of techniques have been explored to alleviate the
problem of small training data sets. Data augmentation is a
very effective way to expand the existing training set with
more and diverse data in order to improve the generalization
ability and incorporate invariance. Usually, data augmentation
methods are domain- and dataset-specific. The fundamental
rule of data augmentation is that the meaning of the target
samples should be maintained regardless of the augmenta-
tion methods applied. The trained model should be reliable
enough to predict the same class even when the samples are
perturbed. One common class of data augmentation methods
especially applicable to image data is based on different data
transformations such as cropping, rotating, flipping, shearing,
etc. [14], [21]. Another class of methods is referred to as
adversarial training where models are trained with generated
adversarial samples [22], [23]. In [22], the authors were
concerned with the problem of generalizing learning from only
one single source distribution to the unseen data domain. They
augment the training set with generated adversarial samples.
Tran et al. [23] proposed a joint learning scheme where
a Bayesian data generator is trained with existing training
samples and continuously generates new training samples for
further classification. In [24], images in different styles are
generated through a CycleGAN model and then used for
further image classification.

In another line of thinking, data augmentation is performed
by blending two or more training samples to generate new ones
[25], [26]. Inoue et al. propose a data augmentation method by
mixing randomly selected images from the training set [27].
Jaderberg et al. [28] presented a framework for recognizing
natural scene text. In this work, a larger text corpus is
generated with font rendering, creating and coloring with a
background image-layer, a foreground image-layer, and an
optional shadow image-layer. A natural data blending process
is applied, where a random crop of an image from the training
dataset is blended with each layer of the synthesized image.
The three image layers are also blended together randomly to
give a single output image. Summers et al. [26] investigated
various example-mixing methods in generating new samples
and found that all mixing-based data augmentation methods
resulted in an improvement of baseline performance. In their
work, the algorithm learned that mixing several samples of
certain classes in a nonlinear way results in an improvement
of the generalization ability of the learned model. However,
data blending requires more delicate considerations compared
to traditional data augmentation methods with various image
transformations. Questions such as blending what together,
how much of each component should be used, etc., need to
be carefully addressed.

III. DATASET

1H-MR-spectroscopy data from 435 patients recorded in the
Institute for Neuroradiology of the University Hospital, Frank-
furt during the time interval from 01/2009 to 3/2019 were
reviewed retrospectively. The spectroscopy was performed on
a clinical 3T MR Scanner (Skyra, Siemens Medical Solutions,
Erlangen, Germany) using a phased array head coil with 20
arrays and CSI-sequences with either TE = 30 ms; TR = 1500
ms; flip angle 90◦; scan time of 6:11 min or TE = 135
ms; TR = 1510 ms; flip angle 90◦; scan time of 3:18 min.
These patients were suffering from either glial or glioneu-
ronal first diagnosed tumors (the tumor group) or other non-
neoplastic lesions e.g. demyelination, gliosis, focal cortical
dysplasia, enlarged Virchow-Robin spaces or similar (the non-
tumor/healthy group). The tumor group included all spectra
from the tumor-affected hemisphere. The non-tumor group
consisted of all spectra from both hemispheres of the patients.
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solid line is the cumulative count of all samples and the green dashed line is the cumulative count of incorrectly labeled
samples (right y-axis). CCR: correct classification rate.

As a result, 7442 spectra (3388 non-tumor and 4054 tumor)
were selected for further analysis. The obtained MRS samples
are saved as column vectors (288×1), shown in Fig. 1, where
the y-axis shows signal intensities of different metabolites,
and the x-axis represents the chemical shift positions in ppm
indicating the various metabolites.

IV. METHODS

In this section, we formulate our problem of classifying
MRS data collected from patients with and without brain
tumors into tumor and healthy classes with deep neural
networks. We first outline the challenges we face in this
work and propose solutions. Then, we describe in detail
the network structure and the corresponding parameters. To
evaluate how well our proposed method works, we construct
a performance comparison in a realistic clinical setting with
eight neuroradiologists.

A. Challenges

In our particular problem, we face several challenges re-
garding the dataset, i.e., noisy labeling, data shortage and
imbalanced classes.

Noisy labeling. Infiltrative growth is an important feature of
gliomas, which distinguishes them from expansively growing
tumors, such as metastases. The real borders of gliomas are
indefinable, which can strongly confound the selection and
labeling of the voxels from multivoxel spectroscopy. One
source of labeling noise is introduced when spectra from
the tumor-affected hemisphere are falsely labeled as tumor-
containing voxel although they contain healthy brain tissue.

Data Shortage and Class Imbalance. A large amount of
training data is one of the most essential factors in training
DL models successfully. However, as mentioned before, the
amount of such MRS data is limited by the number of patients
with the medical conditions of interest. Furthermore, as the
size of the selected region of interest varies substantially
for each patient, the number of samples collected from each
patient also varies. Such imbalance can negatively affect the
training of a classifier.

B. Proposed Solutions

Data distillation. To automatically distill the “easy” samples
from the data set with noisy labeling, we propose a data
distillation setup, which consists of three steps. First, for each
training set and each network structure, we train 100 networks
with different random initializations for a single epoch and
record the classification results. Second, we calculate the
correct classification rate (CCR) for all the samples among
these 100 runs. We found that, for our data set, there are many
samples consistently classified correctly or incorrectly. This
result is in line with the findings from [29] showing that, for
real life data, some samples are significantly harder or easier
than others. In the last step, we rank the samples based on
their CCR and select the “easy” samples by taking the top θ
fraction of the samples with the highest CCR. These samples
will be used as the basis for the data augmentation. Figure 3
visualizes the result of the data distillation for θ = 20% via
T-SNE. While the two classes strongly overlap in the original
data (Fig. 3A), this overlap is greatly reduced after distillation
(Fig. 3B). To quantify this effect we calculated the fraction of
a data point’s k nearest neighbors (according to the Euclidean
distance metric, k = 10) that have the same class label.
This number was significantly higher after distillation (median
fraction 90 % in the distilled set vs. 69 % in the whole set)
and this difference was statistically significant (Wilcoxon rank
sum test, p < 10−94).

Validation on MNIST. To further validate the effective-
ness of the proposed distillation scheme, we also performed
experiments on the well-known MNIST data set consisting
of 60 000 hand-written digits. We randomly introduced 20%
uniform labeling noise, i.e., we randomly selected 20% of the
samples and randomly reassigned an incorrect label. Then,
we performed our proposed distillation procedure. We ran
100 single-epoch training runs and calculated the CCR of
all samples. The results are shown in Fig. 3C. The black
curve shows the CCR as a function of the sample ID, where
samples have been sorted by CCR. The green solid line is
the cumulative count of total samples, which is a straight
line that starts from (0, 0) and ends at (60 000, 60 000).
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The green dashed line is the cumulative count of incorrectly
labeled samples. We can see that the samples with incorrect
labels populate the left part of the CCR curve. This result
confirms that the samples with low/high CCR are likely to be
incorrectly/correctly labeled.

To investigate the effect of our data distillation scheme on
training, we performed the following experiment. We first
trained a network on MNIST with clean labels. The test
accuracy of this baseline was 96.1%. Then we trained a
network with 20% noisy labels. The validation accuracy of this
network was 73.2% and when we tested it on a test set with
clean labels, its accuracy was 92.0%, i.e., 4.1% worse than
the baseline without labeling noise. Finally, we used our data
distillation and selected only training samples corresponding
to the top 80% highest CCR from the training set with noisy
labels to train a new network. When we tested this model
on the test set with clean labels it achieved a test accuracy
of 95.6%, i.e., the distillation process had largely reverted
the harmful effect of the noisy labels. This shows that our
data distillation procedure can successfully combat the adverse
effects of labeling noise.

Data augmentation. Returning to the problem of tumor
classification, we take the fraction of θ samples at the right
side of the CCR curve and denote this set C. This set forms
the basis of the data augmentation. The whole data set before
data augmentation is denoted D and the samples generated
during augmentation form the set A. Specifically, augmented
sample i is created as

xA
i = αxC

j + (1− α)xD
k , (1)

where α ∈ [0, 1] is the mixing weight, xC
j ∈ C is a randomly

chosen sample from the distilled set that will be augmented,
and xD

k ∈ D is a randomly chosen sample from the original
data set that is mixed with the distilled sample. The label of xA

i

is the same as that of xD
j . The number of samples in A divided

by that of the original set D is termed the augmentation factor
Φ = |A|/|D|. The full training data set is the union of the
original data set and the augmentation set: T = D ∪ A. We
propose three different augmentation strategies: augment with
the same class (aug-with-same), augment with the opposite
class (aug-with-other) and augment with both classes (aug-
with-both). Based on the choice of the augmentation strategy,
xD
k could be randomly selected from either class groups or

both. To deal with the class imbalance, we apply the method
of oversampling the minority class described in [30].

C. Deep Neural Network Structure

In our implementation, we apply the residual neural network
proposed by He et al. as the backbone [16]. Residual neural
networks feature skip-connections, which connect the input
of one layer and the pre-activation of another layer skipping
multiple layers in between. This structure is usually termed
a residual block. One block usually consists of multiple
computational layers such as convolutional or dense layers
with batch normalization [31], drop-out [32], and a non-linear
activation transformation [33]. The input to the residual block
is split into two branches: the main branch with convolution

TABLE I: Proposed network structure. The Config column
shows the configuration in convolutional and dense layers (fil-
ter size 32×1 and the number of filters, or the number of units
in the dense layer). The number of filters is increased every
other block by a factor of 2. Every other block subsamples its
input by a factor of 2, indicated by the value of Stride. Here,
the batch size at the first dimension is omitted in the output
shape column. GAP: global average pooling.

Name Config Stride Output size

Conv
[

32× 1, 16
]

1 [batch size, 288, 1, 16]

ResBlock 1

[

32× 1, 16

32× 1, 16

]

1 [batch size, 144, 1, 16]

ResBlock 2

[

32× 1, 16

32× 1, 16

]

1 [batch size, 144, 1, 16]

ResBlock 3

[

32× 1, 32

32× 1, 32

]

2 [batch size, 72, 1, 32]

ResBlock 4

[

32× 1, 32

32× 1, 32

]

1 [batch size, 72, 1, 32]

ResBlock 5

[

32× 1, 64

32× 1, 64

]

2 [batch size, 36, 1, 64]

ResBlock 6

[

32× 1, 64

32× 1, 64

]

1 [batch size, 36, 1, 64]

ResBlock 7

[

32× 1, 128

32× 1, 128

]

2 [batch size, 18, 1, 128]

ResBlock 8

[

32× 1, 128

32× 1, 128

]

1 [batch size, 18, 1, 128]

GAP [batch size, 128]

Dense 2 [batch size, 2]

or dense matrix multiplication, batch-normalization, drop-out
and the other branch usually with the identity transformation
or max-pooling. The combination of the outputs of these two
branches is passed through a non-linear activation function as
the input of the next block. We implement a deep residual
neural network with 8 residual blocks following the classic
structure from [16], including 17 convolutional layers and skip
connections. It is inspired by the network architecture in [10].
Each residual block consists of two convolutional layers with
batch normalization, drop out and ReLU non-linear activation
functions. The convolutional layers have a filter width of
32 × 1. Experimenting with different kernel sizes, 32 gives
good performance. The number of filters increases by a factor
of 2 in every other block starting from 16. There is a sub-
sample layer of factor 2 in every other block occurring at the
same time when increasing the number of filters. We apply a
dropout rate of 0.55 in all blocks. A global average pooling
(GAP) layer follows the last convolutional layer to provide
further visualization, which is termed a class activation map
(CAM) [34]. The GAP layer is followed by a soft-max layer,
which outputs a probability distribution over the two possible
classes. The detailed parameters of the network structure are
shown in Table I.
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D. Visualization through Class Activation Maps

Modern DL techniques are often viewed as black-box
methods, where the decision making process is difficult to
understand for humans. It raises worrying questions and hin-
ders the practical deployment of such techniques. Much effort
has been devoted to develop explainable and interpretable DL
approaches [34]–[37].

In our work, we apply a GAP layer to reduce the risk of
over-fitting and provide further visualization of the network
decision making processes. The GAP squashes the output of
each feature map with the shape h×w× d from the previous
layer into one single value with the shape of 1×1×d reducing
the number of features by h×w fold. The output of the GAP
layer is fed directly to the final classification layer. Intuitively,
the GAP operation converts feature maps into weights that
represent the “importance” of all feature maps, namely the
CAMs. An added value of this method is that we can easily
trace back the “importance” to the input space and visualize
how much of each part of the input contributes to the final
classification decision.

E. Quantifying Performance

To illustrate how well our proposed method works in
comparison to routine clinical diagnostic, a classification task
on the same test set is conducted for both the network and
human neuroradiologists. Eight experts with different levels
of experience in the 1H-MR spectroscopy (from resident
to specialist of neuroradiology), were given 844 randomly
selected spectra (around 105 per person). They were asked to
classify each spectrum as originating from the tumor or from
non-tumor tissue reviewing only the spectral lines. They were
blinded to any additional information such as T2-weighted
images or similar. The overall performance of neuroradiolo-
gists is regarded as a collective effort. Inter-rater reliability is
not applicable here, since every radiologist received different
subsets of the data to classify.

To evaluate performance, we use the receiver operating char-
acteristic (ROC) curve, which is a gold standard to evaluate
the discriminative ability of a classifier. It is constructed by
varying the classification threshold and calculating the true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN). We report sensitivity = TP

TP+FN , specificity =
TN

TN+FP , area under the ROC curve (AUC), accuracy, F1-score
= 2TP

2TP+FP+FN , and Matthews correlation coefficient (MCC)
= TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
. The area under the curve

(AUC) is a scalar value between zero and one which charac-
terizes the goodness of the classifier. The MCC is generally
considered as a balanced measure which takes into TN, TN,
TN, and TN, and it can be used even if the classes are not
balanced. We also compare our results with three baseline
methods: a fully-connected network (FNN), a recurrent neural
network (RNN), and an Inception network. To investigate the
effect of our proposed data augmentation and data distillation
methods, we also report the performance with ablation for all
network structures.

V. RESULTS

A. Training procedure

The ability of the classifier to generalize to new previously
unseen patients is of great clinical importance. Therefore, we
apply a 10-fold leave-subjects-out cross validation scheme.
To be specific, we divide the patient list into 10 sub-lists
each with around 40 patients. In each cross validation set,
we withhold the data from the patients of one sub-list, while
we train and validate on the data from the other sub-lists. The
patient-wise accuracy is computed in each leave-out test set.
For each patient, the classification probability of all voxels
are averaged to get the probabilities of each class. Then, the
patient-wise diagnosis is obtained as the class that has the
highest probability. The patient-wise accuracy is defined by the
number of correct patient-wise diagnoses divided by the total
number of patients in that set. We randomly select one cross
validation set which consists of 844 spectra from 40 patients
for the final test against human neuroradiologists. The network
is trained with randomly initialized weights using the Adam
optimizer with default parameters β1 = 0.9 and β2 = 0.999
and a mini-batch size of 32. The model is trained on a Linux
machine with 2 Intel(R) Xeon(R) Gold 5120 CPUs and a
GeForce RTX2080ti GPU. The training does not require more
than 10GB RAM. It takes 20 minutes to finish 200 epochs of
training.

To get an average performance of the effect of the proposed
distillation process, we train the whole framework twice, i.e.,
a distillation network, which collects certain samples and a
primary classifier with proposed data augmentation on all 10
cross-validation sets, with different random seeds. The results
are averaged across the 10 cross-validation sets as well as the
two runs. The overall performance of different baseline models
with and without our proposed distillation and data augmen-
tation is reported in Table. II. It shows that our proposed
method slightly outperforms the human neuroradiologists. The
performance comparison between different baseline models
and neuroradiologists is shown in Table. III

We experimented with different parameters in distilla-
tion and data augmentation, and here we report the per-
formance under the best configuration, highlighted in bold:
θ = {25, 50, 75}%, samples from the {same class, both

classes, opposite class} in sets C and D are mixed together
with α = {0.05, 0.2, 0.35, 0.5}, the augmentation factor is
Φ = {1, 3, 5, 9}.

B. Data Distillation

To further illustrate the effect of the proposed distillation
on our MRS data set, we randomly selected 500 samples that
the network assigns high probability while doing classification
from one training set and obtained expert annotation of them.
The experts were asked to validate whether the samples are
correctly labeled based on the tissue’s location. For example,
a sample, labeled as tumor since it is from a tumor patient,
resides outside the tumor tissue would account for an incorrect
labeling. We expect that the correctly labeled tissue based on
the MRS characteristic and the location would appear towards
the right side of the CCR curve, illustrated in Fig 3C. One
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TABLE II: Performance measures with default configurations (Φ = 3, α = 0.5 and augment with both classes). The performance
is averaged across all ten cross validation sets. Results are given as mean ± standard deviation. The best performance is in
bold. Accuracy is calculated in a patient-wise manner by averaging the estimated class probabilities of all voxels of a patient
and thresholding the result. Dist.: distillation. DA: data augmentation. MCC: Matthews correlation coefficient

Sensitivity Specificity AUC Accuracy F1-score MCC

FNN 0.63± 0.05 0.64± 0.05 0.68± 0.07 0.66± 0.06 0.65± 0.08 0.26± 0.10

FNN + DA 0.66± 0.05 0.66± 0.05 0.71± 0.07 0.69± 0.04 0.65± 0.09 0.31± 0.09

FNN + Dist. + DA 0.67± 0.02 0.66± 0.02 0.72± 0.04 0.71± 0.03 0.68± 0.08 0.32± 0.04

FNN + Dist. + DA (new) 0.66± 0.05 0.66± 0.06 0.72± 0.06 0.69± 0.08 0.66± 0.09 0.30± 0.11

Inception 0.64± 0.04 0.62± 0.07 0.65± 0.06 0.69± 0.06 0.64± 0.08 0.25± 0.10

Inception + DA 0.66± 0.06 0.66± 0.06 0.70± 0.04 0.68± 0.08 0.64± 0.12 0.31± 0.13

Inception + Dist. + DA 0.66± 0.04 0.67± 0.04 0.71± 0.05 0.69± 0.07 0.65± 0.07 0.31± 0.08

Inception + Dist. + DA (new) 0.68± 0.05 0.65± 0.08 0.70± 0.06 0.72± 0.06 0.68± 0.08 0.32± 0.05

RNN 0.64± 0.05 0.65± 0.06 0.69± 0.06 0.66± 0.07 0.65± 0.08 0.28± 0.11

RNN + DA 0.66± 0.04 0.66± 0.04 0.71± 0.07 0.67± 0.07 0.67± 0.08 0.30± 0.08

RNN + Dist. + DA 0.65± 0.04 0.68± 0.08 0.72± 0.07 0.68± 0.07 0.67± 0.07 0.32± 0.11

ResNet7 0.65± 0.05 0.66± 0.06 0.71± 0.06 0.67± 0.05 0.66± 0.08 0.29± 0.05

ResNet7 + DA 0.66± 0.06 0.67± 0.06 0.71± 0.07 0.69± 0.05 0.67± 0.07 0.29± 0.11

ResNet7 + Dist. + DA 0.67 ± 0.06 0.67± 0.06 0.72 ± 0.09 0.73 ± 0.08 0.68 ± 0.07 0.32 ± 0.13

TABLE III: Performance comparison with Neuroradiologists. The performance of the neuroradiologists is computed on one
randomly selected cross validation set. Results are given as mean ± standard deviation. Accuracy is calculated in a patient-wise
manner by averaging the estimated class probabilities of all voxels of a patient and thresholding (neural network) or taking
the majority vote (radiologists). Dist.: distillation. DA: data augmentation. MCC: Matthews correlation coefficient

Sensitivity Specificity AUC Accuracy F1-score MCC

Neuroradiologists 0.54 0.88 – 0.69 0.56 0.58
ResNet7 + Dist. + DA 0.69 ± 0.004 0.69± 0.002 0.75 ± 0.001 0.72 ± 0.001 0.62 ± 0.001 0.37 ± 0.003

simple question we can ask is that based on the CCR we
obtained about those expert-validated samples, what is the
optimal cut-off threshold of CCR such that we can distinguish
the correctly- and wrongly-labeled samples from the original
labeling process. To answer this question, we did a ROC
analysis where the expert-label is 1 when the sample is
correctly labeled and 0, otherwise. The target scores used to
compute the ROC AUC curve are their corresponding CCR.
We found that the optimal cut-off CCR threshold is 0.49,
which is at 55-th percentile. This finding is consist with our
empirical choice that θ = 50% works the best among {25, 50,
75}%.

C. Data Augmentation

In this section, we discuss different effects on learning
resulting from different options including the mixing weight
α, the augmentation factor, the index of the last source epoch
from which we collect the certain samples and the three
augmentation strategies (aug-with-same, aug-with-other and
aug-with-both). We measure the AUC of the ROC curve with
different parameter options for different augmentation strate-
gies. The results are averaged across all 10 cross-validation
sets with two different initial distillation networks.

Adding noise to augment data is a common practice in
image data enrichment. Here, we also report results for the
case when Gaussian noise is added to augment the data (noise
augmentation). We explore different hyper-parameters such
as noise amplitude and augmentation factor, and report the

performance under the parameters that yielded the best result
during the exploration.

In Fig. 4, we show the performance under different con-
figurations under different augmenting methods. We note a
number of observations. First, the aug-with-both method with
mixing weight α = 0.5, augmentation factor Φ = 3 yields
the best performance. Second, in aug-with-same and aug-with-
both cases, with an increasing α, the performance increases
in almost all Φ cases. The However, the aug-with-other show
exactly the opposite trend. Third, with a small α, the aug-with-
other method is very robust and the performance is relatively
insensitive to the change of Φ.

D. Human vs. Machine

To assess how well our proposed method works in a more
realistic clinical setting, we compared it to human neurora-
diologists on one randomly selected test set. The result is
shown in Fig. 5. The test set is divided into eight subsets
and assigned to eight neuroradiologists. The performance of
each individual neuroradiologists is denoted as a red dot, the
collective performance is shown as a purple diamond. The
performance of the model is computed in each corresponding
subset as each individual neuroradiologist and averaged across
all subsets. The model without data augmentation has an AUC
of 0.72 (dashed blue line), a MCC of 0.27, and an F1-score
of 0.56. The model with data distillation and augmentation
achieves an AUC of 0.77 (solid orange), a MCC of 0.37, and
an F1-score of 0.62. It shows that the performance of our
proposed method is on par with the group of neuroradiologists
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Fig. 4: Performance averaged among all test sets with various augmentation parameters (mixing weight α = {0.05, 0.2, 0.35,
0.5}, the augmentation factor Φ = {1, 3, 5, 9}) for the different augmentation methods.
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Fig. 5: Comparison of the proposed model and neuroradi-
ologists on one randomly selected cross validation set. The
individual and collective performance of neuroradiologists are
shown as red dots and purple diamond, respectively. The
average ROC curve of the plain ResCNN model and our
proposed model with default augmentation parameters (aug-
with-both method, augmentation factor Φ = 3 and the mixing
weight is α = 0.5) are depicted in dashed and solid lines,
respectively.)

(sensitivity 0.69 vs. 0.54, specificity 0.69 vs. 0.88, accuracy:
0.72 vs. 0.69, F1-score: 0.62 vs. 0.56, and MCC: 0.37 vs.
0.58).

E. Feature Visualization

As described in section IV, we apply a GAP layer after the
convolutional layers to prevent over-fitting and benefit from the
possibility of visualizing class activation maps. These show
how the network is making the final decision by assigning
different weights, which can be interpreted as “importance”,
to different regions in the input data.

In Fig. 6, we show some examples of CAMs with original
MRS samples from both classes. The results show that the
CAMs vary with regard to specific samples. To interpret these
CAMs, one must not only focus on the highest peak but

NAA (2.0 ppm)

2-hydroxyglutarate (2-HG, 2.2 ~ 2.5 ppm)

Choline (3.2 ppm)

Lipid (Lip, 1.3 and 0.9 ppm) 

Inositol (3.5 ppm)

Cr2 Ins Cho Cr1

NAA

Lip1 Lip2

Example spectrum 

2-HG

Glx

4.0        3.6           3.2           2.8           2.4           2.0           1.6           1.2           0.8   ppm

Healthy

Tumor

Fig. 6: Class activation maps of examples from both classes
during test. At the top is an example where various metabolite
peaks have been marked. Examples from class healthy and
tumor are color coded in green and purple, respectively. Solid
lines are original examples and the dashed line below is the
corresponding CAM. Cr1, Cr2: creatine, Ins: myo-inositol.
Cho: choline. NAA: n-acetylaspartic acid. Glx: glutamine, Lip:
lipid

rather the overall shape together with the original spectra.
Note that the “importance" does not reflect whether the signal
intensity of the corresponding metabolite is high or low. The
co-occurrence of high “importance" regions provides insights
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in the CAM interpretation. We can see that the network con-
siders various common metabolites during the classification.
Interestingly, for the healthy class the network also pays more
attention to the plateau left of the dominant NAA peak. In the
tumor spectra, this part of the spectrum appears as a rising
slope, and represents the oncometabolite 2-hydroxyglutatat
[38], [39] as well as tumor associated metabolites like glu-
tamine [40]. The Ins peak together with Cr2 and Lip regions
are highly interesting. A high Ins peak with above-baseline
Lip peaks highly suggests tumor presence and a low Ins
concentration with almost no free lipids suggests the healthy

class [41]. In cases where a high “importance" is assigned
to the Cho region, the tumor spectra show a high Cho peak
flanked by other tumor-associated metabolite peaks (glycine,
myo-inositol) [42], [43]. On the other hand, the healthy group
shows a similar or smaller Cho peak as the Cr1 peak.

In the Appendix and in Fig. 7, we discuss additional insights
from unsupervised k-means clustering of the tumor spectra.

VI. CONCLUSION

In this paper, we present a DNN-based framework, which
achieves above human-level performance on a realistic clin-
ical task of classifying tumor and non-tumor tissues based
on MRS data. We construct an effective data cleaning and
augmentation framework consisting of two steps: 1) a data
distillation network to clean noisy labeled data, 2) a data
augmentation process, which enlarges the data set acquired
in the first step for training a primary neural network for
the final classification. Due to its generality, this data aug-
mentation method could be used in various other research
domains. By exploring various configurations of the proposed
data augmentation method, we further demonstrate that data
augmentation by mixing samples from both classes is more
stable and yields better results. A deep residual neural network
is used as the primary learning model and a global average
pooling (GAP) layer at the end of all convolutional layers
provides us with a visualization of how much each part
of the input contributes to the final classification decision.
Our proposed framework outperforms neuroradiologists on
sensitivity and patient-wise diagnosis accuracy with an area
under the ROC curves of 0.77. With an improved capability
of coping with noisy labeling and the scarcity of the training
data, we believe that the framework proposed in this work
could improve clinical practice, ultimately leading to more
effective and accurate diagnosis of brain tumors in patients.

ACKNOWLEDGMENT

This work is supported by the China Scholarship Coun-
cil (No. [2016]3100), the LOEWE Center for Personalized
Translational Epilepsy Research (CePTER), and the Johanna
Quandt Foundation. Special thanks to Charles Wilmot for
inspiring discussions. Furthermore a particular appreciation
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APPENDIX

To get an overview of the data we use in this task,
we performed k-means clustering on the whole data set D,
which has 7442 spectra (3388 healthy and 4054 tumor). The
euclidean distance is used as the criterion to cluster the data.
The number of clusters is determined by the elbow point in the
inertia curve [44], where the within cluster distance does not
decrease significantly with an increasing number of clusters (a
number of seven is chosen in this study). We did find a large
overlap between two classes as we expected.

The clustering results are shown in Fig. 7. The cross-tab
relation, which is a frequency count of one variable (healthy

or tumor) in each cluster is shown in Fig. 7. A. For example,
cluster 1 contains 18.5% of the healthy spectra and 8.7% of
the tumor spectra. We can see that 1) there are samples from
healthy and tumor group in every cluster, 2) there are roughly
equal amounts of healthy and tumor samples in clusters 2, 3,
5, 6 and 7, 3) the majority of samples in cluster 1 are showing
typical features of healthy (no Lip1 or Lip2 concentration
[45]) and those of cluster 4 are mainly typical tumor (high
Lip peaks, an elevated Cho peak, high Glx region, etc. [46]),
and 4) the majority of the spectra are neither typical healthy
nor tumor, rather somewhere in between. The positions of
typical metabolites are demonstrated in Fig. 6-A. The mean
spectra of those clusters illustrate commonly applied clinical
assessment criteria: in healthy tissues, there is a dominant peak
at NAA and almost no mobile lipids to be detected since they
are mostly confined to the membrane [46]. In tumor tissues,
there are elevated Cho and Lip peaks [45]. A median to high
Cho peak with easily visible Cr peaks can contribute to the
identification of a tumor [45]. The clustering results support
our argument that the labeling process is noisy, so the spectra
from both classes are largely mixed with each other.
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ABSTRACT

We apply deep learning (DL) on Magnetic resonance spectroscopy (MRS) data for the task of brain
tumor detection. Medical applications often suffer from data scarcity and corruption by noise. Both
of these problems are prominent in our data set. Furthermore, a varying number of spectra are
available for the different patients. We address these issues by considering the task as a multiple
instance learning (MIL) problem. Specifically, we aggregate multiple spectra from the same patient
into a ªbagº for classification and apply data augmentation techniques. To achieve the permutation
invariance during the process of bagging, we proposed two approaches: (1) to apply min-, max-, and
average-pooling on the features of all samples in one bag and (2) to apply an attention mechanism.
We tested these two approaches on multiple neural network architectures. We demonstrate that
classification performance is significantly improved when training on multiple instances rather than
single spectra. We propose a simple oversampling data augmentation method and show that it could
further improve the performance. Finally, we demonstrate that our proposed model outperforms
manual classification by neuroradiologists according to most performance metrics.

Keywords Tumor detection · Multiple instance learning · Machine learning · Magnetic resonance spectroscopy (MRS)

1 Introduction

We study the problem of brain tumor detection from MRS data. A brain tumor is the abnormal growth of the brain
tissue, which can be benign or cancerous. In clinical practice, MRS is a common non-invasive tool used to identify a
brain tumor, because it can be easily acquired alongside commonplace MR imaging procedures and it uniquely reflects
the biochemical composition of the brain tissue in situ. MRS measures the resonant frequency shift of a chemically
bound hydrogen atom (i.e., a proton), which characterizes different physiological or pathological brain metabolites.
There has been increasing interest in MRS for clinical use because of the semiautomatic data acquisition, processing,
and quantification [Ranjith et al., 2015, Hatami et al., 2018, González-Navarro and Belanche-Muñoz, 2009, Olliverre
et al., 2018, Cruz-Barbosa and Vellido, 2011]. However, the interpretation of MRS spectra is traditionally performed
by human radiologists based on the concentration ratios of certain metabolites. In contrast, we train a model to learn
informative features from the spectra as a whole.

A common problem with MRS data is that they are often corrupted by noise from head movements during the procedure
or baseline distortions of the spectrum. This poses difficulties in the MRS data interpretation. Additionally, labels are
only provided per patient and not per voxel, which could introduce labeling noise as spectra from the tumor-affected
hemisphere can be falsely labeled as ªtumorº even though they contain healthy brain tissue.

Our contributions are summarized as follows.
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Figure 1: Overview of the MRS data used in this paper. Each spectrum is a data array with 288 data points with
the x-axis indicating the position of different metabolites and the y-axis indicating the intensity of the corresponding
metabolites. Several spectra may stem from the same patient. A. An example of a tumor MR spectrum. B. An example
of a non-tumor MR spectrum. C. Histogram of the number of spectra per patient (17 ± 15, mean ± standard deviation).

• We present a multiple-instance-learning (MIL)-based framework for MRS-based tumor detection that performs
patient-wise classification.

• We propose two modules to achieve permutation invariance when processing bags of instances simultaneously,
i.e., an attention module and the concatenation of max-, min-, and average-pooling, which we refer to as the
ª3Poolº module.

• We demonstrate that our proposed modules can be easily plugged in any given DNN-based model and improve
the classification performance.

• We evaluate the proposed method with a leave-patient-out cross validation scheme, which carefully tests the
trained model on data from unseen patients. We also show that our method is even able to outperform human
neuroradiologists.

2 Related Work

Modern machine learning approaches based on deep neural networks (DNNs) have recently obtained impressive results
in a range of classification tasks, sometimes even outperforming human experts. These successes are based on, amongst
others, (1) better learning algorithms, 2) fast computing hardware, and 3) large, carefully annotated data sets. This
has motivated a range of applications in oncology such as tumor detection, tumor segmentation, tumor progression
estimationLin et al. [2019], Capper et al. [2018], Park et al. [2019], Pereira et al. [2016], Ranjith et al. [2015], tumor
grade classification [Ranjith et al., 2015], etc. However, acquiring the required labeled data is often hard to achieve or
expensive in certain medical applications where the numbers of patients may be quite small. Multiple instance learning
(MIL) is a framework to handle scenarios where detailed annotations for each individual instance is noisy, laborious to
obtain, or simply not available. It tries to make a decision based on a set of single instances instead of a decision for
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each single instance. MIL has been widely used in medical applications such as breast cancer detection [Sudharshan
et al., 2019, Conjeti et al., 2017, Sadafi et al., 2020] and other forms of computer assisted diagnosis [Fung et al., 2007,
Liu et al., 2018].

Applying machine learning methods to medical applications with MRS data is gaining more and more momentum, for
example in brain tumor detection [González-Navarro and Belanche-Muñoz, 2009, Cruz-Barbosa and Vellido, 2011,
Rao et al., 2015], brain tumor segmentation [Dvořák and Menze, 2015, Pereira et al., 2016], breast tumor detection
[Tavolara et al., 2019, Ren et al., 2015], and tumor motion prediction [Lin et al., 2019]. There is also work to investigate
the effect of the length of the echo time used to perform MR spectroscopy for the tumor detection [González-Navarro
and Belanche-Muñoz, 2009]. Olliverre et al. [2018] proposed to use generative-adversarial-network-based model to
synthesize MRS data with real-world appearance and features for deep model training. Cruz-Barbosa and Vellido
[2011] proposed a variant of generative topographic mapping method for diagnostic discrimination between different
brain tumor pathologies and the outcome prediction.

Noisy labels are ubiquitous in the real world. We use the term noisy labeling to refer to annotations that are incorrect,
i.e., due to the labeling procedure, the label assigned patient-wise, so they reflect the overall diagnosis rather than
properties of a specific spectrum. Noisy labels are posing a non-trivial problem in deep model learning when an
increasing ability to fit noise is accompanied with deeper layers. Given the ubiquity and importance of coping with
noisy labeling, many works have been devoted to combating this problem. Some of them start with a small set of clean
expert-labeled data [Han et al., 2018, Li et al., 2017, Veit et al., 2017, Albarqouni et al., 2016], but this may not be
trivial to obtain. Consequently, models that can learn directly with noisy labels [Han et al., 2018, Smyth et al., 2019,
Rolnick et al., 2017] are highly desirable.

Multiple instance learning (MIL) is a framework to combat the problems, where detailed annotation for each single
instance is noisy, or is laborious to obtain, or simply not available. Single-Instance Learning is a ªnaiveº approach
that assigns all instances in one bag the same label as its bag, which might lead to mislabeling negative instances in
positive bags [Ray and Craven, 2005]. Andrews et al. [2002] proposed to modify the standard SVM so that the MI
assumption that at least one instance in each bag is positive is applicable. The normalized set kernel (NSK) and statistics
kernel methods apply kernels to map the whole bags of instances into features, then use the standard SVM to make the
classification on the bag level Gärtner et al. [2002]. MIL has also been widely used in medical applications such as
breast cancer detection [Sudharshan et al., 2019, Conjeti et al., 2017], computer assist diagnosis [Fung et al., 2007],
brain disease diagnosis [Liu et al., 2018], lung cancer diagnosis [Ozdemir et al., 2019], blood cell disorder analysis
[Sadafi et al., 2020], etc.

3 Methods

3.1 Data

In this study, We use 1H-MR-spectroscopy data collected from 435 patients recorded in the Institute for Neuroradiology
of the University Hospital in Frankfurt between 01/2009 to 3/2019. They were reviewed retrospectively and have been
completely anonymized for this study. The patients were suffering from either glial or glioneuronal first diagnosed
tumors (the tumor group, 266 patients) or other non-neoplastic lesions, e.g., demyelination, gliosis, focal cortical
dysplasia, enlarged Virchow-Robin spaces or similar (the non-tumor group, 156 patients). The tumor group included all
spectra from the tumor-affected hemisphere. The non-tumor group consisted of spectra from both hemispheres of the
patients.

As a result, 7442 spectra (3388 non-tumor and 4054 tumor) were selected for further analysis. The obtained MRS
examples are saved as 1-d arrays with 288 data points, i.e., in shape (288× 1), shown in Fig. 1A, B, where the y-axis
shows signal intensities of different metabolites, and the x-axis represents the chemical shift positions in ppm indicating
various metabolites. The indices correspond to the position of metabolites and the values indicate signal intensities of
corresponding metabolites. We normalize each spectrum to zero mean and unit variance. All spectra from the same
patient are labeled with the patient’s diagnosis, i.e., all spectra from one tumor patient will be labeled as tumor, and all
spectra from one non-tumor patient would be labeled as non-tumor.

There is a huge variance in the number of spectra per patent in our data set - some patients have dozens of spectra and
some have just a few spectra or even just a single one. A histogram of the number of spectra per patient is shown in
Fig. 1C. Due to the fairly limited number of patients, machine learning methods trained on this data set are prone to
overfitting, therefore applying out-of-the-box methods would not yield satisfactory results. Each spectrum describes the
biochemical composition of one voxel of brain tissue. We propose to perform classification not on a single spectrum,
but on a bag of spectra from this patient. Specifically, we create bags of spectra from each patient for training and
validation.
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Figure 2: Overview of the proposed framework with two proposed permutation invariant modules, which can be
plugged in any DNN-based models. A. The proposed ª3Poolº module. B. The proposed attention module.

3.2 Patient-wise Data Preparation

We have MRS spectra from a total number of P patients, the total number of spectra for patient p is Np. We generate bags
of spectra consisting of a fixed number ∈ N of spectra from each patient by sampling from all spectra of the patient with
replacement during training. Each bag is in shape ×288. The bags from patient p are denoted as Xp = {x

p
1, . . . , xp

pb
},

where pb is the total number of bags generated for patient p. Since, this is a combinatorial problem, we could potentially
generate millions of samples. This could be viewed as a data augmentation (DA) process. However, the more bags we
generate from one patient, the less diversity we introduce through the DA and the worse the network is at generalization.
Empirically, we set the number of generated bags of one patient to three times their single spectra count. Of course,
further exploration of the optimum number of spectra to use might be beneficial in the future. Each training bag is
provided a class label yp ∈ {tumor, non-tumor} based on the diagnosis of the patient. More formally, our goal is to
learn a function f, which takes a set of spectra xp = {xp

i , . . . , x
p
N} from patient p, and output the classification decision

ŷp. The function f processes all spectra at the same time and generates a final predicted label ŷ. The training objective
is the classic cross entropy loss:

θmin EP (x,ŷ)[− logPθ(y = ŷ|x)], (1)

where θ refers to the parameters of the function f.

The ability of the classifier to generalize to new previously unseen patients is of great clinical importance. Therefore,
we apply a 5-fold leave-subjects-out cross validation scheme. To be specific, we divide the patient list into 5 sub-lists,
each with around 80 patients. In each cross validation set, we withhold the data from the patients of one sub-list, while
we train and validate on the data from the other sub-lists. During training and validation, we adopt a 4:1 split ratio of all
generated bags. During testing, we switch off the data augmentation strategy and only allow the minimal repetition of
the spectra to fill up the last bag, which may be only partially filled otherwise. This makes sure that the number of bags
to generate for patient p follows

pb = { 1 , ifNp ≤, Np/, ifNp > . (2)

3.3 Network Structure

When working with bags of MRS spectra, we note that the order of the stacked spectra was randomly chosen and should
not affect the result of the network. Being invariant to the order of the spectra can either be achieved by augmenting
with shuffled data, which is an approximation, or by designing the network architecture in such a way that the output
of the network is independent of the order of the spectra in the input. In this work, we compared both approaches.
For the former, we have described the data augmentation that we use to generate bags of training samples in section
3.2. For the latter, we proposed two modules that can be easily plugged in any DNN-based models: (1) to aggregate
the minimum-, maximum- and mean-pooling of the feature maps which yields exact order invariance, (2) to leverage
attention mechanism [Ilse et al., 2018, Sadafi et al., 2020], where different instances in the bag are assigned with
different attention weights, which can be learned by the neural network. The schematic of propose method is shown in
Fig. 2. The final extracted feature is a weighted average of features from all the instances in one bag. Since the attention
weights depend on the instance itself and not the order, we can also achieve exact permutation invariance.

In this work, we test the two proposed modules on several network structures, i.e., a multi-layer perceptron (MLP), an
Inception-variant tailored to MRS data, and a CNN model inspired by Hatami et al. Hatami et al. [2018]. An Inception
model is a successful neural network structure proposed to scale up convolution networks in efficient ways Szegedy
et al. [2016]. In our implementation, we only preserve the first five inception blocks from the original InceptionV3
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model Szegedy et al. [2016] and reduce the number of filters in each block compared to the original configuration due
to a lower complexity of our MRS data compared to the image data. In the MLP model, there are three dense layers
with 128, 32, and 2 dense units, respectively, as shown in Fig. 2B. In the model inspired from Hatami et al., we omit the
last convolutional layer with 512 kernels and the max-pooling layer, since the length of our data is smaller than theirs.
Furthermore, for each model, we consider two variants, i.e., the one with concatenated max-, min-, and average-pooling,
denoted ª3Poolº and the other with an attention module, denoted ªAttº. Note that the feature extraction in each dense
layer is performed on the single instance level, i.e., the convolution is only done horizontally with the kernel height
as one. The feature maps are then either pooled and concatenated in a ª3Poolº branch, or processed by the attention
module.

3.4 Attention Module

In order to weigh the different samples contained in a bag, we make use of the attention mechanism proposed by Ilse
et al. [2018]. The idea is to introduce a layer whose output z is a weighted average z =

∑a

k=1 khk of the inputs hk with

weights ak =
exp(wT tanh(V hT

k
))

∑exp(wT tanh(V hT
k

))
k=1 ,

where w ∈ R
1×Natt and V ∈ R

Natt×Lhk are learned parameters of the layer. Natt

is the number of attention heads and Lhk
is the dimension of the hidden feature hk. As each ak depends on the values

inside hk, the weights are different in each bag and can take the concrete values inside the input bag into account. Note
that the output z is independent of the order of the inputs hk

3.5 Training Procedure

The network is trained with randomly initialized weights using the Adam optimizer with default parameters and a
mini-batch size of 32. The model is trained on a Windows machine with an Intel(R) Core i7-4770 CPU, 16 GB RAM
and a GeForce GTX1060 GPU with 6GB of memory. The training and takes less than 3 minutes for 30 training epochs.

4 Results

4.1 Overall Performance with Ablation

To evaluate performance, we use the area under the receiver operating characteristic (ROC) curve, the F1-Score
and the Matthews correlation coefficient (MCC). The ROC curve is constructed by varying the classification
threshold and calculating the true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
rates. We report classification accuracy, area under the ROC curve (AUC), F1-score = 2TP

2TP+FP+FN
, and MCC =

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

. The MCC is generally considered as a balanced measure which takes into

account TP, TN, FP, and FN, and it can be used even if the classes are not balanced. We also conducted ablation studies
on the effectiveness of data augmentation on different network structures. Moreover, we compared our method to three
other baseline methods, i.e., the support vector machine approaches by Ray-MISVM Ray and Craven [2005], MI-SVM
Andrews et al. [2002], and NSK Gärtner et al. [2002]. For this purpose, we used the implementation from Doran [2019].

Empirically, we found that using 31 spectra per bag yields relatively good results. Therefore, we report the averaged
performance metrics with the default = 31 across all cross validation sets. The results averaged across all leave-
subjects-out cross validation sets are shown in Table 1. In addition to the comparison on multiple instances learning, we
also ran all the models (1) with single instances, denoted with ª(SI)º, (2) with the oversampling data augmentation,
denoted with ª + DAº. From Table 1, we made the following observations and possible explanations. Firstly, the
CNN network inspired from Hatami et al. with the proposed ª3Poolº module achieved the best results: a bag AUC
of 0.82, a patient-wise AUC of 0.82, an F1-score of 0.78 and an MCC of 0.46. Secondly, when grouping multiple
instances into bags for training without any data augmentation, models with low complexity, indicated by the number of
trainable parameters, show a performance deterioration and models with a large number of trainable parameters still
show an improvement in the performance. One contributing factor might be that the number of total training samples
are significantly reduced when changing from the SI learning case to MI learning, thus the generalization ability is not
fully explored. Thirdly, the ª3Poolº module works the best with high complexity models such as Hatami-model and
Inception. Thirdly, data augmentation (ª + DAº) almost always helps improve the performance, except in the case of
MI-SVM. Thirdly, of the two proposed approaches to achieve permutation invariance, i.e., (1) using max-, min-, and
average-pooling of feature maps before the softmax activation, and (2) the attention-weighted average of feature maps
before the softmax activation, we found that the first approach works better when combined with the Inception network,
but the second approach is superior when using the MLP. Thus, neither approach is clearly superior and the choice of
method needs to be made depending on the particular structure of the underlying neural network.
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Table 1: Performance matrices averaged across five-fold cross validation data sets of proposed method compared to
other baseline methods. The results are shown in mean ± standard deviation. MCC: Matthews correlation coefficient,
AUC: area under ROC curve. SI: single instance. Baseline MIL models: MI-SVM [Andrews et al., 2002], Ray-MISVM
[Ray and Craven, 2005], and NSK [Gärtner et al., 2002]. MLP: multi-layer perceptron.

Bag Patient
AUC AUC F1-score MCC # Trainables

Ray-MISVM Ray and Craven [2005] (SI) 0.73± 0.07 0.74± 0.06 0.69± 0.06 0.31± 0.12 ∼600
Ray-MISVM Ray and Craven [2005] 0.63± 0.02 0.59± 0.02 0.54± 0.03 0.19± 0.05 ∼600
Ray-MISVM Ray and Craven [2005] + DA 0.73± 0.09 0.73± 0.08 0.71± 0.10 0.35± 0.18 ∼600

MI-SVM Andrews et al. [2002] (SI) 0.71± 0.04 0.74± 0.06 0.68± 0.04 0.30± 0.09 ∼600
MI-SVMAndrews et al. [2002] 0.69± 0.07 0.69± 0.07 0.69± 0.07 0.30± 0.12 ∼600
MI-SVMAndrews et al. [2002] + DA 0.69± 0.08 0.69± 0.07 0.70± 0.07 0.30± 0.12 ∼600

NSK Gärtner et al. [2002] (SI) 0.72± 0.05 0.72± 0.05 0.71± 0.05 0.34± 0.09 ∼600
NSK Gärtner et al. [2002] 0.70± 0.06 0.69± 0.06 0.69± 0.04 0.30± 0.11 ∼600
NSK Gärtner et al. [2002] + DA 0.74± 0.04 0.74± 0.04 0.72± 0.03 0.35± 0.06 ∼600

MLP (SI) 0.73± 0.04 0.77± 0.05 0.69± 0.05 0.30± 0.08 41,314
MLP-3Pool 0.68± 0.07 0.68± 0.08 0.69± 0.04 0.30± 0.09 41,314
MLP-3Pool + DA 0.72± 0.11 0.72± 0.10 0.70± 0.07 0.33± 0.15 41,314
MLP-Att 0.78± 0.08 0.78± 0.08 0.73± 0.08 0.37± 0.17 41,220
MLP-Att + DA 0.79± 0.06 0.79± 0.05 0.74± 0.05 0.42± 0.11 41,220

Hatami (SI) 0.67± 0.03 0.72± 0.04 0.65± 0.03 0.23± 0.06 488,514
Hatami-3Pool 0.77± 0.07 0.76± 0.06 0.72± 0.05 0.36± 0.11 488,514
Hatami-3Pool + DA 0.82 ± 0.07 0.82 ± 0.06 0.78 ± 0.08 0.46 ± 0.19 488,514
Hatami-Att 0.80± 0.05 0.80± 0.04 0.73± 0.05 0.37± 0.14 507,012
Hatami-Att + DA 0.81± 0.06 0.81± 0.05 0.75± 0.08 0.43± 0.16 507,012

Inception-3Pool (SI) 0.73± 0.07 0.76± 0.07 0.69± 0.07 0.32± 0.14 345,098
Inception-3Pool 0.77± 0.07 0.76± 0.06 0.72± 0.05 0.36± 0.11 345,098
Inception-3Pool + DA 0.79± 0.05 0.79± 0.05 0.74± 0.05 0.39± 0.09 345,098
Inception-Att 0.75± 0.06 0.75± 0.05 0.72± 0.05 0.36± 0.10 345,116
Inception-Att + DA 0.76± 0.07 0.75± 0.07 0.73± 0.05 0.38± 0.11 345,116

4.2 Human vs. Machine

We compared the performance of implemented DNN models to that of human neuroradiologists on one randomly
selected test set, which has 844 spectra from around 42 patients. The result is shown in Tab. 2. For the collection of
the classification results of neuroradiologists, we divided the test set into eight subsets and each subset was assigned
to one of eight neuroradiologists. The neuroradiologists’ performance therefore represents the collective effort of
eight individuals, which is faithfully reflect the clinical practice. The data shows that the performance of our proposed
method is better on almost all performance metrics except the MCC. The reason is that the neuroradiologists achieved
a specificity of 0.88 but at a cost of a low sensitivity of 0.54. This may reflect that neuroradiologists assign different
ªcostsº to false positive vs. false negative classifications.

4.3 Attention Visualization

Further, we show two bags of samples from each class with color-coded attention during testing, shown in Fig 3. We
can see that features of spectra in one bag are very heterogeneous exhibiting different peak ratios, peak positions, etc.
Note that, samples with high attention might be stereotypical of that class or raising a red flag for that class decision.
One benefit of visualizing the attention assignment is that it provides not only a final classification result but also
the contextual information of the same patient’s brain tissue. This could provide more information for the MRS data
interpretation. The common metabolites from left to right in our data are creatine2 (Cr2, 3.9 ppm), myo-inositol and
glycine (MI/Gly, ∼ 3.5 ppm), Myo-inositol (Ins, 3.61 ppm), choline (Cho, 3.19 ppm), creatine (Cr, 3.03 ppm), Glutamin
(Glu, 2.2 ± 2.4 ppm), N-acetyl aspartate (NAA, 2.01 ppm), lactate (Lac, 1.4 ppm), and Lipids (Lip, 0.9 ppm) Faghihi
et al. [2017], Fan et al., Fan [2006], Rae, Hattingen et al. [2009]. There are several indicative features in MRS data that
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Table 2: Performance on withheld neuroradiologist-labeled data set of all models. SIC: single-instance classification.
MCC: Matthews correlation coefficient, AUC: area under ROC curve. SI: single instance. Baseline MIL models:
MI-SVM [Andrews et al., 2002], Ray-MISVM [Ray and Craven, 2005], and NSK [Gärtner et al., 2002]

Bag Patient
AUC AUC F1-score MCC

Neuroradiologists ± ± 0.56 0.58

Ray-MISVM Ray and Craven [2005] (SI) 0.64± 0.04 0.60± 0.03 0.52± 0.03 0.14± 0.06
Ray-MISVM Ray and Craven [2005] 0.62± 0.02 0.59± 0.02 0.55± 0.04 0.12± 0.08
Ray-MISVM Ray and Craven [2005] + DA 0.63± 0.02 0.59± 0.02 0.55± 0.05 0.16± 0.10

MI-SVM Andrews et al. [2002] (SI) 0.67± 0.02 0.65± 0.04 0.58± 0.05 0.29± 0.08
MI-SVM Andrews et al. [2002] 0.63± 0.03 0.59± 0.03 0.60± 0.04 0.26± 0.09
MI-SVM Andrews et al. [2002] + DA 0.65± 0.02 0.60± 0.03 0.62± 0.03 0.26± 0.05

NSK Gärtner et al. [2002] (SI) 0.70± 0.02 0.68± 0.03 0.58± 0.02 0.27± 0.03
NSK Gärtner et al. [2002] 0.69± 0.05 0.65± 0.06 0.60± 0.05 0.23± 0.09
NSKGärtner et al. [2002] + DA 0.73± 0.05 0.69± 0.05 0.66± 0.06 0.35± 0.10

MLP-3Pool (SI) 0.74± 0.06 0.74± 0.06 0.61± 0.07 0.32± 0.12
MLP-3Pool 0.77± 0.04 0.70± 0.05 0.68± 0.05 0.38± 0.11
MLP-3Pool + DA 0.75± 0.05 0.69± 0.06 0.67± 0.03 0.35± 0.08
MLP-Att 0.76± 0.04 0.70± 0.04 0.65± 0.02 0.33± 0.04
MLP-Att + DA 0.78± 0.03 0.72± 0.03 0.65± 0.02 0.33± 0.06

Hatami (SI) 0.66± 0.02 0.69± 0.04 0.53± 0.02 0.22± 0.03
Hatami-3Pool 0.86 ± 0.02 0.80 ± 0.03 0.74± 0.03 0.49± 0.06
Hatami-3Pool + DA 0.84± 0.02 0.78± 0.03 0.70± 0.01 0.43± 0.03
Hatami-Att 0.83± 0.04 0.78± 0.04 0.71± 0.03 0.45± 0.05
Hatami-Att + DA 0.85± 0.02 0.80± 0.03 0.74± 0.02 0.49± 0.03

Inception-3Pool (SI) 0.73± 0.06 0.70± 0.05 0.61± 0.06 0.34± 0.10
Inception-3Pool 0.83± 0.04 0.77± 0.04 0.75 ± 0.02 0.56± 0.05
Inception-3Pool + DA 0.81± 0.04 0.74± 0.04 0.70± 0.05 0.43± 0.10
Inception-Att 0.82± 0.04 0.76± 0.04 0.74± 0.06 0.50± 0.11
Inception-Att + DA 0.79± 0.03 0.74± 0.04 0.70± 0.03 0.43± 0.05

are clinically relevant. For example, in tumor spectra, there are weakened Cr and Ins Faghihi et al. [2017], reduced
NAA concentration Faghihi et al. [2017], elevated Cho, Glu, Lac, Lip peaks Rae, Fan [2006], Faghihi et al. [2017],
elevated MI/Gly Hattingen et al. [2009].

In Fig. 3, we can see that in the non-tumor group, the high attention weights are assigned to samples with flat Lip,
flat Lac Rae, high and narrow NAA (low 2.0 ± 2.5 ppm), clear Cr/Cho ratio > 1, etc. For the tumor group, the high
attention weights are often assigned to instances with low NAA with elevated Glu, high Lac, high Lip, clear Cr/Cho
ratio < 1, as shown in Rae, Fan [2006], Hattingen et al. [2009], Faghihi et al. [2017]

4.4 Varying the Bag Size

To investigate the effect of the number of samples per bag, we vary the value from one (corresponding to single instance
classification) to 51. The AUC as a function of the number is shown in Fig 4. From this experiment, we made the
following observations. Firstly, for all models, learning from the bags of multiple instances is better than learning from a
single instance. The performance is significantly improved when increases from one to six, and then this improvement
attenuated after = 6 in all models. Secondly, the performance with the attention module did not show a deterioration
with an increasing in all models. However, in the MLP model, the performance degraded after = 6 with the ª3Poolº
module.
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Ins

Class Non-tumor Class Tumor

4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 ppm

high
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Cr2 Cho Cr      NAA   Lac  Lip Ins Cho Cr      NAA   Lac  Lip Cr2 Cho Cr     NAA   Lac  Lip Ins   Cho Cr  Glu NAA Lac  Lip

Ins

Figure 3: Exemplar bags (column) of MRS spectra with attention, color-coded with shades in a descending order. Red
arrows in instances with relatively low attention show the features from the opposite class.

5 Conclusion

This paper presents a novel framework for tumor detection based on multiple instance (MI) learning with noisily-labeled
MRS data. We proposed two modules to achieve permutation-invariance within each bag: (1) an attention module and
(2) a ª3Poolº module with max-, min-, and average-pooling. Moreover, we applied data augmentation to generate
bags of instances from each patient, which expanded the total training data size as well as increased the variance in the
training data. We applied these two modules on several popular DNN models, i.e., an MLP, an Inception-variant, and a
CNN-based model inspired by Hatami et al. Hatami et al. [2018]. We conducted a thorough comparison between the
different models as well as three conventional SVM-based MI methods. We also carried out an ablation study regarding
the effect of the data augmentation for all models. We observed the MI SVMs do not perform well on our data set. The
data augmentation almost always improved the performance compared to the counterpart without augmentation, except
in the case of Andrews et al. [2002]. In the Hatami-model and the Inception model, the proposed ª3Poolº module
achieved slightly better performance than the ªAttº module. However, in the MLP model, the proposed ªAttº module
was superior. The best results of all experimented configurations were obtained by the Hatami-model with the proposed
ª3Poolº module and data augmentation: a bag AUC of 0.82, a patient-wise AUC of 0.82, an F1-score of 0.78, and an
MCC of 0.46. We showed that our MI-based approach significantly improved the performance compared to single
instance classification (t-test with a p-value of ≤ 0.004) and that applying data augmentation for generating more
training data is beneficial to obtain good results, however it does not rise to the level of being statistically significant.
We also demonstrate that the proposed method outperforms human radiologists in terms of F1-score while achieving a
similar MCC. The limitation of this work is that the results are obtained from a data set collected from a single site. Due
to the factors such as the variability of data acquisition procedures, the diverse patient populations, the generalization
ability of the proposed method to other MRS data sets is not demonstrated. Furthermore, so far we only experimented
with a very simple data augmentation method. Further exploration of other data augmentation strategies such as mixup,
adding noise, scaling amplitude, etc., might be interesting in the future. A further inspection of the different effects
of ªAttº and ª3Poolº to the learning of different networks is also of interest. So far, we used a stratified sampling
strategy, i.e., the more single spectra one patient has, the more bags we generate. This could potentially introduce
bias. In the future, we could fix the number of bags to generate for all patients to eliminate the bias introduced by the
current method. Furthermore, we could explore other statistics within the bag such as the median and the interquartile
range. Adding explainable machine learning methods is also beneficial for promoting the approach for clinical practice.
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Inception model

MLP model Hatami model

Figure 4: Averaged ROC-AUC as a function of the number of instances per bag across five leave-patients-out cross
validation sets for our proposed methods. The errorbars represent one standard deviation.

Finally, we would like to investigate the behaviour of the proposed approaches on further data sets collected at other
sites.
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Chapter 3

Conclusion and Outlook

In this thesis, I have addressed the problem of applying machine learning methods

to medical applications in the context of epilepsy and brain tumor detection. In

the early diagnosis of epilepsy project, we wished to understand the disease pro-

gression in the latent epileptogenesis phase and to make early predictions regarding

whether the individual has a high risk of developing epilepsy. In the brain tumor

detection project, we aimed to provide a pre-screening tool for tumor detection

from magnetic resonance spectroscopy (MRS) data for clinical practice.

In tackling the aforementioned tasks, we have dealt with different medical data

modalities, facing several ubiquitous problems in ML-based medical applications.

We have also provided some solutions to these problems, which could be applied

to other medical applications. The comparison between the two projects is sum-

marized as follows.

3.1 Commonalities and Differences

Dataset sizes : In the early diagnosis of epilepsy with EEG, we collected a
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vast amount of data from 10 rats. On average, we obtained one month’s recordings,

24/7, from each rat. In contrast, in tumor detection, we collected over 7000 samples

from over 400 patients and, on average, less than 20 samples per patient. Thus,

in the second project, we were confronted with scarcity of data and, thus, had to

employ different strategies of data augmentation, however, this was not required

for the őrst project.

Leave-individual-out Cross-validation : In both projects, we were con-

strained either by the number of individuals in the experiment (in the epilepsy

project), or by the numbers of samples from each individual (in the brain tumor

detection project). Nevertheless, we need to ensure the generalization ability of

the trained model to unseen individuals. This is of great importance especially

in medical applications since DNN-based models have the tendency to overőt on

the training data and struggle to obtain the same-level accuracy during testing as

during the training. Ultimately, we want the pretrained DNN models to general-

ize well to new patients whose data is never accessible by the model. To ensure

this generalization ability, we trained our models in a leave-individual-out cross-

validation scheme, in which we trained the model with the data from a subset of

individuals, and tested the model with unseen data from unseen individuals. To be

speciőc, in the epilepsy project, in each cross-validation fold, we trained the model

while completely withholding the data from one animal, and the őnal performance

was averaged across all cross-validation folds. In the brain tumor detection project,

we divided the total list of the patients into several sublists. For each sublist, we

held out the data from the patients on the list for testing and trained with the

data from other sublists. In this way, we can develop ML methods and assess the

performance properly.

Label qualities : In the epilepsy project, the data was only annotated accord-

ing to the timestamps when each rat underwent the epilepsy-inducing stimulation.
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Based on these timestamps, we could generate “freež, but relatively weak, labels

such as “baselinež and “epileptogenesisž. For tumor detection, the labels were ob-

tained per patient through manual labeling, not per sample, however, since there

may have been healthy tissue in the tumor patients and, likewise, tumor-like sam-

ples in the non-tumor patients. This, in turn, introduced label noise.

Individual variability : In the rodent epilepsy models, different rats re-

sponded differently to the same controlled stimulation and, thus, the damage

induced by the stimulation varied. Therefore, the disease progression and the

duration of epileptogenesis differed in the rodent models. In our preliminary ex-

periment, we were able to train a simple classiőer to identify individual animals

based on the EEG traces. This meant that the identity information could also play

a role in the őnal prediction, which we had ignored so far. However, as we were

working towards personalized prediction and treatment, we would need to take this

information into account, otherwise, we would be at risk of overőtting the data to

the trained individuals and would fail to generalize to unseen individuals. For the

tumor detection, we had a relatively large patient cohort, however, the number of

samples from each patient was small. Interestingly, there was a large overlap in

the characteristics of the MRS spectra between the tumor and non-tumor patients.

Nevertheless, those non-tumor patients were under the suspicion of having a tumor

in the őrst place.

Sharing some similarities and bearing some differences, these two projects focus

on two medical problems that present some commonly present problems when

applying ML methods to medical applications. Here, I will summarize the work

from each project in detail.
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3.2 Early Diagnosis for Epilepsy

In this project, we aimed to gain a better understanding of the mechanism of

epileptogenesis and to discover potential EEG biomarkers for epileptogenesis. We

conducted experiments using a well-studied rodent model for mesial temporal lobe

epilepsy (m-TLE) [68, 69]. From the animal experiments, we collected an enor-

mous amount of longitudinal EEG data from multiple rodents, before and after

the epilepsy-inducing electrical stimulation. We did not have detailed annotations

except for the recording timestamps. Conducting analysis on such a data set us-

ing only human effort is out of the question. DNNs have been demonstrated to

have great potential in learning complex features from various data modalities and

we wished to exploit this ability to learn from our weakly-supervised EEG data.

This was particularly challenging because (1) EEG data is highly non-stationary

with relatively low signal-to-noise ratio, (2) it is impossible to obtain detailed

annotations on longitudinal EEG recordings, and (3) the underlying epileptoge-

nesis processes are not well-known and complicated with immense cross-subject

variability [119].

3.2.1 Summary and Conclusion

In Study I [O1], we explored the possibility of distinguishing EEG signals from

before (baseline, BL) and after (epileptogenesis, EPG) the disease-inducing stim-

ulation. As it is suspected that during epileptogenesis the normal brain rhythms

could be disrupted [119, 120, 117], which can be reŕected in the frequency sig-

nature of the EEG recordings, we extracted the frequency components from the

EEG traces and fed them into a deep residual neural network for classiőcation.

We showed that the network could distinguish between the BL and the EPG
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phases accurately, even when trained in a leave-animal-out scheme. This demon-

strated a high generalization ability for unseen animals, except for one outlier rat;

for this animal, the features learned from other animals indicated the opposite

class. We also showed that, indeed, there are certain frequency components that

were enhanced or suppressed, which could be indicative of ongoing epileptogenesis.

Our őndings are consistent with previous work including an increase of the delta

rhythm [132, 133, 134, 135, 136], a decrease of the theta rhythm [131, 97], more

occurrence of spikes, spike-wave complexes, and sharp waves [76, 75], an increase

of high frequency band power [110, 112, 113] in epileptogenesis. Importantly, we

showed that the distribution of the DNN prediction was signiőcantly different

when pooling over a longer temporal window than just 5 seconds. This indicates

a distributional shift of brain activities rather than sudden abrupt changes dur-

ing epileptogenesis. We showed that one hour of feature aggregation led to very

promising discriminative ability of the classiőer.

In Study II [O2], we investigated the possibility of learning to distinguish BL

and EPG classes with raw EEG data in an end-to-end fashion. We were impressed

by the results from DNNs in many tasks, where a great number of details were cap-

tured in the network, such as generating high ődelity natural images [5] and high

quality human-like voice [38]. We hoped that learning with raw EEG data would

allow the network to capture more detailed features for each class from the wave-

forms directly. In this work, we showed that the DNN can distinguish between the

BL and EPG phases by training on őve-second EEG segments and, consequently,

the problems with the outlier rat in Study I disappeared. This may suggest that

the waveforms are better suited for learning with CNN and that the model could

further exploit learned features to distinguish between the two classes. Impor-

tantly, when the prediction from multiple consecutive segments were aggregated,

the performance was seen to improve further. Overall, we obtained an average
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AUC of 0.99 across all leave-individual-out cross-validation trials, improved by

0.09 compared to our previous work [O1]. The sensitivity was improved from 0.83

to 0.94 and the speciőcity was improved from 0.83 to 0.96.

In Study III [O3], we investigated the question of whether the DNN could dis-

tinguish the EEG signals from different time windows, i.e., the early stage and the

late stage of the epileptogenesis phase. This served as an attempt to stage the pro-

gression of epileptogenesis in the latent period, which has never been done before.

We demonstrated that the neural network could achieve very high discriminative

and generalization abilities in staging epileptogenesis with unseen animals. At the

same time, we illustrated that there were features learned by the network that are

class-speciőc and clinically relevant including spike-wave complexes, sharp waves,

rhythmic delta rhythm [161, 76, 75]. In addition to the results in terms of classiő-

cation performance, we also addressed the challenges related to explaining learned

features from the network. We explored the network activity and investigated the

features that could maximally excite the neurons in the last layer of the network.

We demonstrated that units in the last layer respond to different characteristics

in the input data, such as spikes, spike-and-waves complexes, spindles, and theta

rhythms. Furthermore, there are multiple feature maps are more responsive to

different stages of epileptogenesis, which conőrms the anticipation that a single

biomarker may not be enough to characterize a complex process such as epilepto-

genesis. A better early diagnosis may rely on a proőle of multiple biomarkers [119].

We also explored the class activation map [160] method to visualize the learned

features for different classes. We concluded that, with respect to the study for the

early diagnosis of epilepsy, we have contributed to advance the current understand-

ing of epileptogenesis in the latent period and have provided evidence that DNNs

are capable of learning complex features, without detailed annotations, to detect

the presence of epileptogenesis. We have presented some learned EEG features
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from the network which resemble features from human patients with hippocampal

sclerosis and have paved the way for animal to human translational studies. For

instance, we should be able to detect those early-EPG or late-EPG related features

in patient recordings and investigate whether they displayed similar trends as in

rodent epileptogenesis progression. Furthermore, we could leverage the technique

of transfer learning, that transfers the learned features and knowledge, from the

rodent epilepsy model to human patients.

3.2.2 Generalizable Insights

ML methods strongly depend on extracting information from a huge amount of

data with high quality labels. However, it is often laborious and expensive to

obtain expert annotations on massive amounts of data, especially in the medical

domain. Thus, this lacking of high quality labels for medical data poses tremen-

dous hurdles for ML application for healthcare. Confronted by this challenge, we

utilized a form of “cheapž labelling, i.e., timestamps of the EEG recordings with

the relative time to the epilepsy-inducing stimulation in our case. This form of

label is cheap and easy to obtain but less informative since during epileptogene-

sis the epileptogenic abnormalities only happen sparsely and are superimposed on

normal brain activities. This leads to a large overlapping of EEG features between

both classes. Moreover, to account for the effect of gradual changes of the brain,

we propose a prediction aggregation step to pool DNN’s output over a long time

window. In our work, we show that even in the absence of expert labels of speciőc

EEG waveforms, a large amount of data combined with the “cheapž labels allows

us to build a powerful classiőcation system. This way of circumventing the lack

of large amount of expert annotations could be applied to a wide range of medi-

cal tasks. In other disease staging problems where the progression is gradual and

can be better characterized by a distributional shift, our framework could also be
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applied.

3.2.3 Limitations

Here, we would like to discuss the limitations in our work and provide some

thoughts on several interesting future directions.

In Study I, we could have explored a more speciőc question when dealing

with frequency features, i.e., which frequency band was the most discriminative in

discerning the baseline and epileptogenesis phases. Further analysis on why there

was an outlier animal, for which the model failed to predict correctly, might also

be interesting. When we moved to train the network with the time-series data

in Study II, we saw that the issue with the “oddž animal was gone and that the

overall performance for unseen animals was signiőcantly higher than that from

Study I.

Having being applied to many tasks with sequential data, RNNs may have been

a better tool to deal with our EEG recordings so that longer temporal dependencies

could be captured by the network. However, as we were learning on individual

őve-second long EEG segments, the temporal correlation and evolution of EEG

patterns captured in these relatively short segments were limited. Although we

proposed to use the prediction aggregation method, which seemed to signiőcantly

improve the classiőcation performance, this was a post hoc analysis. The neural

network, itself, remained unaware of the underlying evolution of the signals. We

should be able to perform the information aggregation while training, as in [162],

where the input could consist of much longer EEG segments and the network would

be trained to capture both local features and whole-input level dependencies. The

concept of a long-term feature bank, proposed in [163] while dealing with long range

video, could also be adapted for capturing long-term patterns and discovering their

dependencies.
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From the perspective of practical utility, a good biomarker for identifying

epileptogenesis in a clinical setting should be noninvasive. In contrast, the data in

our study were recorded using a depth electrode, which has a much higher signal-

to-noise-ratio compared to surface EEG recordings. In a potential future step, the

adaptation of the proposed method to use surface EEG would be of great impor-

tance. Furthermore, since in the rodent models the damage to the brain tissue

is carefully designed and controlled, it is yet to be veriőed whether the conclu-

sions still hold for human patients, where the damages are of greater variability.

Research on epileptogenesis detection in human patients, compared to that using

rodent models, is confronted with even more hurdles such as shorter recording

lengths, longer intervals between EEG checkups, and diverse medical conditions.

3.3 Tumor Detection with MRS data

In this project, we tackled the problem of detecting brain tumor samples from

the MRS spectra. We were confronted with the challenges that are common in

the data-driven healthcare domain, such as noisy labels, data scarcity, and class

imbalance.

3.3.1 Summary and Conclusion

In Study IV [O4], we proposed a two-stage framework for tumor detection with

noisy labels: (1) a data distillation step to obtain representative samples from both

classes and (2) a data augmentation step to generate more samples for training

through mixing. We validated the proposed distillation method on the MNIST

data set with manually induced label noise and showed that, indeed, the distillation

could őlter out the samples that were more likely to be cleanly labeled. We also
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compared the DNN performance with that of the human neuroradiologists and

showed that the network performs on par with the human experts.

In Study V [O5], we extended the previous work by comparing the performance

with several other neural network architectures, such as a fully-connected network,

an Inception-based [35] network, and a recurrent neural network. We also explored

the effects of different strategies during the data augmentation when mixing sam-

ples. Furthermore, we explored the method of using a class activation map [160]

to inspect the importance weight of each part of the input contributing to the őnal

classiőcation decisions. The results showed that the DNN captured those tradition-

ally considered tumor-typical features, which are consistent with previous studies,

including high mI peaks [148], high Cho peak and low Cr peak [147, 149, 150, 155],

high Glu-Gln peaks [156, 157], high lactate and lipids peaks [147, 159, 150, 155],

and low NAA peak [152, 153, 154, 152]. We showed that our model performs on

par with the human experts. However, the limitation of Study IV and V is that

each spectrum from each patient was considered as an independent sample during

training. The assumption is that samples from each patient have the same label as

the patient, which is rarely the case in clinical practice and this induces the label

noise. In Study VI [O6], we proposed a framework that uses the multiple instance

learning framework (MIL) [56, 55]. This was inspired by the observation that there

was a wide distribution of the DNN output for the spectra even from the same pa-

tient, which reŕected a large disagreement with single spectrum classiőcation. We

also observed that not all samples from the same patient show typical class-speciőc

features. However, for tumor patients there should be at least one sample that

is tumor-typical. Thus, even with noisy labeling, when more samples from one

individual are grouped together, it may be more representative of the true class

membership of the patient. To this end, we organized samples in such a way that

spectra from each patient were grouped into data bags without the need to label
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every single instance in the bag. During training, we applied random sampling

and reordering of samples to generate a large number of bags for each patient.

However, we still needed to tackle one more problem which was the permutation

invariance within the bag, since we did not desire the mapping learned by the net-

work to depend on the order of samples within the bag. To this end, we proposed

two modules that could be easily plugged into any network structure to ensure

the permutation invariance. We then compared models with and without the per-

mutation invariant modules and showed that our proposed method signiőcantly

improved the performance and explainability compared to baselines. Meanwhile,

the attention module also provide visualization of how important of each sample

in the data bag is to the őnal classiőcation decidion. From the attention weights,

we observed the following: (1) The high attention samples from each class are con-

ventionally considered as representative of that class. For example, in the tumor

class, high attention samples are often with high mI peaks [148], high Cho peak

and low Cr peak [147, 149, 150, 155], high Glu-Gln peaks [156, 157], high lactate

and lipids peaks [147, 159, 150, 155], and low NAA peak [152, 153, 154, 152], all

of which have been reported in tumor tissues. (2) Surprisingly, we noticed that

some non-tumor patients have spectra with typical tumor-like features, and vice

versa, shown in Fig.3 from Study VI. However, with our method, the samples

with features from the opposite class are often with the lowest attention weights.

(3) From the attention weights, we observed that often samples only contained a

subset of the typical metabolic signatures for that class and some features may be

more typical than others.

3.3.2 Generalizable Insights

In this project, we tackled multiple issues that are widespread in machine learning

for healthcare problems. First, it is common that acquired medical data is anno-
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tated at the patient level, e.g., cancer diagnosis [164] or blood cell disorders [54].

However, not all data samples acquired from the patient reŕect the pathological

abnormalities. Moreover, the size of the data set is often limited by the number

of patients and number of samples collected from patients. We proposed a data

distillation step and data augmentation step to combat these problems. Further-

more, to get a overview of the patient’s data, we proposed to take advantage of

the multiple instance learning (MIL) approach [54, 55, 56]. In implementing an

MIL framework, we proposed two plug-and-use modules, i.e., an attention and a

3-pooling module. Thus, our approach can be easily transferred to a wide variety

of other healthcare applications not limited by the data modality.

3.3.3 Limitations

In this project, there are a few limitations which we would like to address here. In

general, we were confronted with two main challenges: (1) a lack of training data

and (2) noisy labeling. The őrst problem was also reŕected by a large variance

during training which is shown by large performance differences in the training

and the validation sets. In this case, the limited size of the training set was a

critical contributing factor. Hence, it is possible that effective data augmentation

approaches could improve the performance. We implemented one of the most

straightforward methods, i.e., mixing samples, in order to increase the number of

training samples. However, the simple mixing did not improve the performance

by a large margin.

In order to tackle the second problem, we proposed the “distillationž step, which

enabled the selection of some stereotypical samples for each class. However, there

exists a trade-off between how typical the selected samples can be and the number

of selected samples. On the one hand, a strict selection in the distillation will

likely yield a small number of samples, which will not be sufficient to represent
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diverse patterns. On the other hand, when the distillation is loose, we would end

up with a big set of data that are similarly noisy. Hence, more explorations to őnd

a way to balance the distillation step would be of interest. In Study IV and V, we

considered each spectrum from the same patient individually, omitting the fact that

they were from the same entity. In Study V, we explored this idea and proposed

the classiőcation based on MIL [56, 55]. However, the generation of the training

data is limited by the simple oversampling and random reordering method. For

patients who have an extremely small number of samples, the generated data bags

will be őlled with too many copies of the same spectrum, which is not ideal. This

could be addressed with a stratiőed oversampling strategy, i.e., the more single

spectra one patient has, the more bags we generate for this patient. On the other

hand, the model will be biased towards patients with many bags of data. Further

experiments implementing other data augmentation strategies are, therefore, very

much desirable.

3.4 Outlook

3.4.1 Early diagnosis of epilepsy

There are numerous interesting directions that we could pursue further for the

ultimate purpose of improving individualised diagnoses and personalized disease

progression trajectory predictions. To this end, we would need to acquire data

from different animal models as well as from human patients. It would be of

great signiőcance to discover robust and reliable biomarkers across different animal

epilepsy models and then to translate these őndings to human patients.

Clinically, we are interested in knowing for how long it is necessary to record

the EEG from patients in order to yield a reliable prediction and, in addition, how
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often the patients need to be EEG monitored in order to track the key points of

the progression of epilepsy and so not to miss the optimal intervention window.

By approaching the early diagnosis of epilepsy from the supervised learning

direction, we are limited, to some extent, by the quality of the labels. However,

addressing this problem in an unsupervised fashion could provide us with more

insights. For example, brain diseases aside, we could train an encoder on an

enormous amount of data from large groups of healthy and non-healthy individuals

such that the model could learn robust and comprehensive representations of EEG

signals in a diverse set of conditions for animals as well as humans. In this way,

we could build an activation atlas for EEG signals similar to the atlas for images

in [165]. We could also extract information that is individual-speciőc, such as

an identity vector in speaker identiőcation in the speech signal processing domain.

This information could then be used to customize the prediction for unseen subjects

in the future. We would expect that there may be a distributional shift of the EEG

representation during the progress of epilepsy for each individual and for different

brain disorders, as they progress differently in the representation space. In this

way, we could not only obtain the disease progression trajectory for epilepsy, but

also other neurological disorders.

Moreover, it would be interesting to combine the őndings from the machine

learning perspective with studies the computational brain circuitry modeling. Con-

cerning EEG signals, we can only record the population activity without anatomi-

cal knowledge, thus, it is difficult to infer the structure and function at the single-

neuron level. Computational modeling provides a őne-grained monitor and un-

derstanding of what is happening with the underlying circuit. Combining both

lines of research could potentially provide us with a better understanding of the

mechanism of epileptogenesis.
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3.4.2 Brain Tumor Detection with MRS data

For future work on brain tumor detection with MRS data, we could address the

noisy labeling from the active learning point of view, which focuses on selecting

“goodž samples for training. Such a line of thinking could be implemented based on

the sample’s contribution to the training gradient [166], or its contribution to the

training loss [167, 168], or through the area under the margin ranking to identify

the mislabeled data [169]. Effective data augmentation methods are also beneőcial

to expand the training data, as well as to cover variability introduced by patients

individual conditions, such as Mixup [170] and creating samples from generative

models [171].

In this thesis, I have shown how ML methods can be successfully applied to

two medical problems. We hope our work will lead to improved clinical practice

and ultimately help patients and inspire new research directions.
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Kapitel 4

Deutsche Zusammenfassung

Die Methoden des maschinellen Lernens (ML) waren in den vergangenen Jah-

ren sehr erfolgreich und haben ihr großes Potential in vielen Forschungsgebieten

gezeigt, z. B. das Lernen von Spielen [2, 3, 4], das Generieren hochwertiger Bil-

der [5, 6], Style Transfer [7], Spracherkennung und Synthese [8, 9] sowie die Verar-

beitung natürlicher Sprache [10, 11]. Das maschinelle Lernen proőtiert stark von

der immer größeren Rechenleistung, der Verfügbarkeit großer und spezialisierter

Datensätze und tieferen theoretischen Einsichten in viele Lernalgorithmen.

In den letzten Jahren gab es eine Vielzahl von Forschungbemühungen, die

sich mit der Anwendung von ML-Methoden im Gesundsheitsbereich befassen.

Es gibt beeindruckende Arbeiten für diverse medizinische Probleme, beispiels-

weise Klassiőkation von Herzkreislauferkrankungen [12], Hautkrebserkennung [13],

Lungenkrebsdiagnose [14], automatische Vorhersage von Erkrankungen [15], sowie

COVID-19 Diagnose und Behandlung [16].

In dieser Dissertation befassen wir uns mit dem Problem, ML-methoden im

Kontext von Epilepsie- und Gehirntumorerkennung anzuwenden. Im ersten Projekt

versuchen wir den Krankheitsverlauf in der latenten Epileptogenesephase (nach

der Gehirnschädigung aber vor dem ersten spontanen epileptischen Anfall) zu ver-
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stehen und frühzeitig Vorhersagen zu treffen, ob ein bestimmtes Individuum ein

hohes Risiko hat, Epilepsie zu entwickeln oder nicht. Im zweiten Projekt zielen wir

darauf ab, ein Pre-Screening-Werkzeug zu entwickeln, welches Gehirntumore ba-

sierend auf Magnetresonanzspektroskopiedaten (MRSśDaten) erkennen kann. Im

Folgenden werden wir unsere Arbeit zu diesen beiden Themen zusammenfassen.

4.1 Frühdiagnose von Epilepsie

Für dieses Projekt haben unsere Kooperationspartner vom Universitätsklikium

Frankfurt Experimente mit einem gut erforschten Nagetiermodell für Epilepsie des

mesialen Temporallappens (mesial temporal lobe epilepsie, m-TLE) durchgeführt

[68]. Von den Tierversuchen haben wir eine große Menge longitudonaler EEGś

Daten von mehreren Nagetieren vor und nach der epilepsieauslösenden elektrischen

Stimulation gesammelt. Wir verfügen dabei nicht über detaillierte Annotationen

außer den Aufnahmezeitstempeln, welche eine Form von schwachen Labels dar-

stellen. Tiefe neuronale Netze (deep neural networks, DNNs) haben ein hervorra-

gendes Potential gezeigt, komplexe Features aus verschiedenen Datenmodalitäten

zu lernen, und wir möchten diese Fähigkeit nutzen, um aus unseren schwach an-

notierten EEGśDaten zu lernen. Dies ist besonders herausfordernd, denn 1. sind

EEGśSignale in hohem Maße nicht stationär mit einem relativ niedrigen Signal-

Rausch-Verhältnis, 2. ist der Epileptogeneseprozess nicht gut verstanden und es

ist nicht möglich, detaillierte Annotationen der logitudonalen EEG Aufnahmen zu

erstellen, und 3. gibt es eine enorme Variablität zwischen den Individuen in den

EEGśAufnahmen.

In Paper I versuchen wir, EEGśSignale aus zwei Phasen zu unterscheiden: vor

(baseline, BL) und nach (Epileptogenese, EPG) der Stimulation, durch welche die

Erkrankung ausgelöst wird. Es wird vermutet, dass während der Epileptogene-
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se der normale Gehirnrhythmus gestört wird, was sich im Frequenzspektrum der

EEGśAufnahmen wiederspiegelt. Wir haben deshalb die Frequenzanteile aus den

EEGśSignalen extrahiert und als Eingabe für ein tiefes neuronales Netzwerk mit

residualen Verbindungen genutzt. So haben wir gezeigt, dass das Netzwerk die BLś

und EPGśPhasen zuverlässig unterscheiden konnte, sogar wenn ein Trainingssche-

ma zum Einsatz kam, bei dem die Daten eines Individuums während des Trainings

komplett vorenthalten wurden. Dies zeigt eine gute Generalisierungsfähigkeit auf

zuvor nicht gesehene Tiere, abgesehen von einer einzelnen unzypischen Ratte. Wir

haben außerdem gezeigt, dass es in der Tat bestimmte Frequenzanteile gibt, die

während der Epileptogenese verstärkt oder unterdrückt werden.

Statt das Frequenzspektrum zu nutzen, untersuchten wir im Paper II die Mög-

lichkeit, mit rohen EEG Daten Ende-zu-Ende zu trainieren, um die BLś und EPGś

Phasen zu unterscheiden. Wir waren von den Ergebnissen von DNNs bei vielen Auf-

gaben beeindruckt, bei denen viele Details vom Netzwerk erfasst werden können,

z. B. beim Erzeugen von realistischen natürlichen Bildern [5] und beim Generieren

von qualitativ hochwertiger menschenähnlicher Stimmen [38]. Daher hofften wir,

dass das Netz beim Lernen auf rohen EEGśDaten detailliertere Features direkt

in den Wellenformen erfassen könnte. In dieser Arbeit zeigten wir, dass ein DNN

die BLś und EPGśPhasen basierend auf fünf Sekunden langen EEG Segmenten

unterscheiden kann, und dass die Probleme mit der untypischen Ratte aus Paper I

nicht mehr auftreten. Diese Ergebnisse könnten nahelegen, dass Wellenformen bes-

ser für das Lernen mit Convolutional Neural Networks (CNNs) geeignet sind und

das Modell weitere gelernte Features nutzen konnte, um die beiden Klassen zu un-

terscheiden. Die Klassiőkationsergebnisse können zudem weiter verbessert werden,

indem die Prädiktionen von mehreren aufeinander folgenden Segmenten aggregiert

werden.

In Paper III untersuchten wir schließlich die Frage, ob ein DNN EEGśSignale
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aus verschiedenen Zeitfenstern unterscheiden kann; konkret betrachteten wir da-

bei die frühe Phase und die späte Phase der Epileptogenese. Dies kann als Versuch

gesehen werden, das Fortschreiten der Epileptogenese in der latenten Periode zu

quantiőzieren. Wir haben gezeigt, dass das so trainierte neuronale Netz über sehr

gute diskriminative Fähigkeiten verfügt und auch auf zuvor nicht gesehene Tiere

generalisieren kann. Außerdem befassten wir uns mit der Frage, wie man die ge-

lernten Features erklären kann. Dazu untersuchten wir die Netzwerkaktivität und

analysierten die Features, welche zu einer maximalen Aktivität der Neuronen in

der letzten Schicht des Netzes führen. Wir zeigten, dass die Neuronen in der letz-

ten Schicht auf bestimmte Charakteristiken in den Eingabedaten reagieren, z. B.

Spikes, Spike-and-waves, Spindeln sowie Thetarhythmen. Die ClassśActivationś

MappingśMethode wurde außerdem eingesetzt, um gelernte Features für die ver-

schiedenen Klassen zu visualisieren.

Zusammengefasst lässt sich sagen, dass wir zu einem tieferen Verständnis der

Epileptogenese in der latenten Phase beigetragen haben und gezeigt haben, dass

tiefe neuronale Netze, mit denen das Auftreten der Epileptogenese erkannt werden

kann, in der Lage sind, komplexe Features auch ohne detaillierte Annotationen zu

lernen. Wir haben einige vom Netz gelernte Features präsentiert, welche Features

der Hippocampussklerose beim Menschen ähneln, und damit den Weg für Studien

zur Übertragung vom Tier auf den Menschen geebnet. Zum Beispiel könnte man die

Features der frühen oder späten EPGśPhase in Patientenaufnahmen erkennen und

untersuchen, ob sich ähnliche Trends wie in der Entwicklung der Epileptogenese

bei Nagetieren zeigen. Des Weiteren könnte man Methoden des Tranfer Lernings

nutzen, um gelerntes Wissens aus dem Nagetierepilepsiemodell auf menschliche

Patienten zu übertragen.
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Einschränkungen und Erweiterungsmöglichkeiten

In Paper I könnten wir weiter untersuchen, welche Frequenzbänder die beste Unter-

scheidung von der BLś und EPGśPhasen erlauben. Außerdem wäre eine genauere

Untersuchung unteressant, wieso es ein untypisches Tier gibt, bei dem das Model

nicht in der Lage ist, die Phase korrekt zu prädizieren. Als wir in Paper II da-

zu übergingen, das Netz basierend auf Zeitreihendaten zu trainieren, sahen wir,

dass Probleme mit diesem untypischen Tier verschwanden und auch die generelle

Genauigkeit bei zuvor nicht gesehenen Tieren deutlich höher lag als in Paper I.

Da rekurrente neuronale Netze (RNNs) häuőg für Aufgaben mit sequentiel-

len Daten eingesetzt werden, könnten sie ein besseres Werkzeug sein, um EEGś

Aufnahmen zu verarbeiten, so dass längere zeitliche Abhängigkeiten vom Netz

erfasst werden könnten. Da wir bisher mit einzelnen EEGśSegmenten mit einer

Länge von fünf Sekunden trainieren, kann nur eine stark begrenzte zeitliche Kor-

relation betrachtet werden. Auch wenn wir eine Aggregationsmethode für Prädik-

tionen vorgeschlagen haben, welche die Klassiőkationsgenauigkeit deutlich verbes-

sert, handelt es sich dabei nur um eine post-hoc Analyse. Das neuronale Netzwerk

selbst ist sich der zugrunde liegenden Entwicklung der Signale nicht bewusst. Wir

könnten die Informationsaggregation bereits während des Trainings durchführen

wie in [162], wo die Eingabe aus viel längeren Segmenten besteht und das Netz-

werk sowohl lokale Features als auch Zusammenhänge über die gesamte Eingabe

hinweg erfassen kann. Das Konzept einer langfristigen FeatureśBank, das in [163]

vorgeschlagen wurde, um lange Videosequenzen zu verarbeiten, könnte ebenfalls

adaptiert werden, um langfristige Muster zu erfassen und deren Abhängigkeiten

zu entdecken.

Als nächsten Schritt wäre es wichtig, die vorgestellten Methoden auf Oberŕächenś

EEG zu übertragen. Da in den Nagetiermodellen die Schädigung des Gehirns sorg-

sam geplant und kontrolliert wurde, muss zudem noch überprüft werden, ob die
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Schlussfolderungen auch für menschliche Patienten gelten, wo die Schädigungen

stärker variieren. Bei der Erfoschung der EPG bei menschlichen Patienten gibt es

mehr Hürden als bei Nagetiermodellen, z. B. eine kürzere Aufnahmedauer, längere

Intervalle zwischen EEGśUntersuchungen, und vielfältige Krankheitsbilder.

4.2 Tumorerkennung mit MRSśDaten

In diesem Abschnitt werden wir unsere Arbeiten zum Thema der Tumorerkennung

basierend auf MRSśDaten zusammenfassen. In diesen Projekt befassen wir uns mit

typischen Herausforderungen datengetriebener medizinischer Anwendungen so wie

verrauschten Labels, Datenknappheit und Klassenungleichgewicht.

In Paper IV [O4] schlugen wir ein Framwork zur Tumordetektion mit verrausch-

ten Labels vor, welches aus zwei Schritten besteht, 1) ein Datendestillationsschritt,

um repräsentative Samples von beiden Klassen zu erhalten, und 2) ein Daten-

augmentierungsschritt, um durch Mischen zusätzliche Samples zu generieren. Wir

haben die vorgeschlagene Destillationsmethode mit dem MNISTśDatensatz mit

manuell induziertem Rauschen in den Labels validiert und gezeigt, dass die Destil-

lation tatsächlich Samples herausőltern konnte, die eine höhere Wahrscheinlichkeit

haben, korrekte gelabelt zu sein. Die vorgestellte Methode erzielte vergleichbar gu-

te Ergebnisse wie menschliche Experten.

In Paper V [O5] erweiterten wir unsere vorherige Arbeit, indem wir mehre-

re Achitekturen für das neuronale Netz hinsichtlich ihrer Klassiőkationsgenauig-

keit verglichen. Dabei betrachteten wir ein vollständig verbundenes neuronales

Netz, ein Inception-basiertes Netz und ein rekurrentes neuronales Netz. Außerdem

erforschten wir den Einŕuss verschiedener Datenaugmentierungsstrategien beim

Mischen von Samples. Zudem untersuchten wir mit der ClassśActivationśMapś
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Methode [160], wie stark unterschiedliche Teile der Eingabe zum Klassiőkations-

ergebnis beitragen.

Um einen größeren Überblick über die Daten jedes Patienten zu erlangen, schlu-

gen wir anschließend in Paper VI [O6] ein Framework vor, das auf Multiple Instan-

ce Learning (MIL) basiert. Dieser Ansatz ist von der Beobachtung inspiriert, dass

nicht alle Samples eines Patienten zwangsläuőg klassentypische Features zeigen.

Allerdings sollte es bei Patienten mit Tumoren mindestens ein Sample geben, wel-

ches typisch für einen Tumor ist. Daher könnten mehrere gruppierte Samples eines

Patienten trotz der verrauschten Labels repräsentativer für die tatäschliche Klasse

des Patienten sein. Darum gruppierten wir Samples von jedem Patienten in so-

genante Bags, wofür wir keine Labels für jedes einzelne Sample innerhalb der Bag

mehr benötigen. Wir schlugen zwei Module vor, die leicht in beliebige Netzstruk-

turen integriert werden können, um Permutationsinvarianz innerhalb der Bags zu

erzielen. Anschließend führten wir eine Ablationsstudie unserer vorgeschlagenen

Methode durch und zeigten, dass das vorgestellte Verfahren signiőkant bessere

Ergebnisse als voherige Verfahren erzielt und zudem besser erklärbar ist.

Einschränkungen und Erweiterungsmöglichkeiten

In diesem Projekt gibt es einige Einschränkungen, die wir hier diskutieren möch-

ten. Generell stehen wir primär zwei Herausforderungen gegenüber, 1) dem Mangel

an Trainingsdaten, und 2) verrauschten Labels. Das erste Problem führt zu einer

größen Varianz während des Trainings, was sich darin äußert, dass es einen großen

Unterschied zwischen der Klassiőkationsgenauigkeit auf dem Trainings- und dem

Validierungsdatensatz gibt. In diesem Fall ist die beschränkte größe des Trainings-

datensatzes ein kritischer Faktor. Deshalb könnten effektive Datenaugmentierungs-

verfahren die Ergebnisse weiter verbessern. Wir haben eine der einfachsten Metho-

den, das Mischen von Samples, implementiert, um die Anzahl der Trainingsbeispie-
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le zu erhöhen. Allerdings hat das einfache Mischen nicht zu einer großen Verbesse-

rung geführt. Um das zweite Problem zu lösen, haben wir einen Destillationsschritt

vorgeschlagen, der typische Samples für jede Klasse auswählt. Allerdings gibt es

einen Trade-Off zwischen der Anzahl der gewählten Samples und darin, wie typisch

sie für die betrachtete Klasse sind. Einerseits liefert eine strenge Auswahl in der

Destillation nur eine geringe Menge an Daten, die nicht ausreicht, um vielfältige

Muster zu repräsentieren. Andererseits führt eine zu zu großzügige Destillation zu

einen großen Datensatz, der genauso verrauscht ist wie die ursprünglichen Daten.

Deshalb ist es von Interesse, genauer zu untersuchen, wie man für die Destillati-

on eine gute Balance zwischen beiden Extremem őnden kann. In Paper IV und

Paper V haven die Spektra eines Patienten einzeln betrachtet, ohne zu berück-

sichtigen, dass sie vom gleichen Patienten stammen. In Paper V haven wir dies

genauer Untersucht und Klassiőkation mittels MIL vorgeschlagen. Allerdings wer-

den die Trainingsdaten nur mit einer einfachen Oversampling-Methode generiert.

Für Patienten mit sehr wenigen Samples enthalten die Bags viele Kopien des selben

Spektrums, was nicht ideal ist. Mit einer stratiőzierten Oversampling-Strategie, bei

der umso mehr Bags erzeugt werden je mehr Spektra von dem jeweiligen Patienten

vorliegen, würde das Modell allerdings einen Bias für Patienten mit vielen Daten

erhalten. Weitere Experimente mit anderen Augmentierungsstrategien sind darum

wünschenswert.

4.3 Ausblick

4.3.1 Frühdiagnose von Epilepsie

Es gibt viele interessante Forschungsrichtungen, die wir in der Zukunft verfolgen

könnten, um den langfristigen Ziel näherzukommen, individaulisierte Diagonosen

zu erstellen und die persönliche Entwicklung der Erkankung vorherzusagen. Um
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dieses Ziel zu erreichen, müssten wir Daten von verschiedenen Tiermodellen und

menschlichen Patienten erfassen. Es wäre von großer Bedeutung, robuste und zu-

verlässige Biomarker zu őnden, die sich über mehrere verschiedene Tieremodelle

für Epilepsie verallgemeinern lasssen, und diese dann auf den Menschen zu über-

tragen.

Aus klinischer Sicht interessiert uns die Frage, wie lange einzelne EEGśAufnahmen

sein müssen, um eine zuverlässige Vorhersage zu erlauben, und wie häuőg EEGs der

Patienten aufgezeichnet werden müssen, um die Schlüsselpunkte der Entwicklung

der Epilepsie zu verfolgen und das optimale Interventionsfenster nicht zu verpas-

sen. Wenn man die Frühdiagnose aus der Perspektive des überwachten Lernens

betrachtet, ergeben sich Einschränkungen durch die Qualität der Labels. Daher

könnte es neue Einsichten liefern, das Problem aus der Sicht des unüberwachten

Lernens zu betrachten. Lässt man Erkrankungen des Gehirns einmal außen vor,

könnte man beispielsweise einen Encoder basierend auf riesigen Datenmengen von

großen Gruppen gesunder und kranker Individuen trainieren, so dass das Modell

eine robuste und umfassende Repräsentation von EEGśSignalen unter vielfältigen

Bedingungen für Tiere wie auch für Menschen lernnen könnte. Auf diesem Weg

könnten wir einen Aktivierungsatlas wie in [165] aufbauen, aber nicht für Bilder

sondern für EEGśSignale. Zudem könnten wir Informationen extrahieren, die spe-

ziősch für ein bestimmtes Individuum sind. Dies ist ähnlich zum Identitätsvektor

aus dem Bereich der Sprecheridentiőkation in der Sprachsignalverarbeitung. Auf

Grundlage dieser Information könnten wir dann die Prädiktion für zuvor nicht

gesehene Individuen anpassen. Man würde annehmen, dass es in jedem Individu-

um verschiedene Verteilungsverschiebungen der EEGśRepräsentation während der

Entwicklung der Epilepsie gibt und dass sich verschiedene Störungen im Gehirn

im Raum der Repräsentationen unterschiedlich entwickeln. Auf diesem Weg könn-

te man nicht nur die Krankheitsentwicklung für Epilepsie erfassen sondern auch
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die anderer neurologischer Störungen.

Außerdem wäre es interessant, die Erkenntnisse aus der Perspektive des ma-

schinellen Lernens mit Arbeiten zu kombinieren, welche die Berechnungen der

neuronalen Schaltkreise modellieren. Mit EEGśSignalen können wir nur die Ak-

tivität einer ganzen Population aufnehmen und es ist schwierig Aussagen auf der

Stufe eines einzelnen Neurons zu treffen. Berechnungsmodelle bieten ein feingra-

nulareres Verständnis, was in den zugrunde liegenden Schaltkreisen vor sich geht.

Eine Kombination dieser beiden Forschungsrichtungen könnte uns potenziell ein

besseres Verständnis der Mechanismen der Epileptogenese erlauben.

4.3.2 Gehirntumordetektion mit MRS-Daten

In zukünftigen Arbeiten zur Gehirntumordetektion mit MRSśDaten könnten wir

die verrauschten Labels aus der Perspektive des aktiven Lernens betrachten. Dies

ist darauf fokussiert, gute Samples für das Training auszuwählen. Man könnte so

ein Verfahren implementieren, indem man den Beitrag jedes Samples zum Gradien-

ten während des Trainings [166] oder der Loss-Funktion [167, 168] betrachtet. Al-

ternativ ließe sich auch das sogenannte area under the margin ranking verwenden,

um falsch gelabelte Daten zu identiőzieren [169]. Effektive Datenaugmentierungs-

methoden wären ebenfalls vorteilhaft, um die Trainingsdaten zu erweitern und die

Variabilität der verschiedenen Patienten mit unterschiedlichen Krankheitsbildern

abzudecken. Konkret wäre es denkbar, Mixup [170] zu nutzen oder Samples mit

Hilfe von generativen Modellen zu erzeugen [171].
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