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Zusammenfassung

Sowohl auf kosmologischen als auf galaktischen Skalen gibt es Phänomene, die
üblicherweise durch kalte dunkle Materie (CDM) erklärt werden. Das sind zum
Beispiel die Anisotropien der kosmischen Hintergrundstrahlung und galakti-
sche Rotationskurven. Ein alternativer Erklärungsansatz ist die sogenannte
modifizierte Gravitation, welche diese Phänomene durch ein modifiziertes Gra-
vitationsgesetz erklärt. Insbesondere die sogenannte modifizierte Newtonsche
Dynamik (MOND) ist auf galaktischen Skalen sehr erfolgreich.

Tatsächlich sind sowohl dunkle Materie (DM) als auch MOND für sich ge-
sehen nicht zufriedenstellend. Unter anderem gibt es in MOND bisher keine
gute Erklärung für die Anisotropien der kosmischen Hintergrundstrahlung.
Zumindest nicht, ohne doch eine Form von dunkler Materie zu postulieren.
DM dagegen hat unter anderem keine gute Erklärung für beobachtete Regel-
mäßigkeiten in Galaxien wie zum Beispiel die sogenannte Radial Acceleration
Relation (RAR).

Ein möglicher Ausweg sind sogenannte hybride MOND-DM-Modelle. Das
sind Modelle, die sowohl ein MOND-artiges Gravitationsgesetz in Galaxien
als auch eine DM-Komponente auf kosmologischen Skalen postulieren. Ein
Beispiel eines solchen Modells ist die sogenannte superfluide dunkle Materie
(SFDM). SFDM postuliert eine spezielle Art von Teilchen, die um Galaxien
herum zu einem Superfluid kondensieren. Die Phononen dieses Superfluids
können dann eine MOND-artige Kraft vermitteln. Auf größeren Skalen dage-
gen sind diese Teilchen in einer nicht-superfluiden Phase und verhalten sich
wie normale DM-Teilchen. Damit vereint das Modell die Vorteile von MOND
auf Galaxienskalen mit denen von DM auf kosmologischen Skalen.

Wir diskutieren SFDM und andere Hybridmodelle wie zum Beispiel ein
Modell, das Skordis und Złośnik vor kurzem vorgestellt haben (SZ-Modell), das
sowohl auf Bekensteins TeVeS-Modell als auch auf Einstein-Äther-Modellen
basiert. Zum einen testen wir diese Modelle mit Daten aus Beobachtungen.
Zum anderen verbessern wir das theoretische Verständnis dieser Modelle und
entwickeln sie weiter. Wir beginnen mit zwei Tests des SFDM-Modells mit
Beobachtungsdaten.

Der erste Test ist, ob SFDM beobachtete starke Gravitationslinseneffekte
erklären kann. Das ist nicht-trivial, weil die MOND-artige Phononkraft nicht
auf Photonen wirken kann. Denn aus der Beobachtung von GW170817 und
des zugehörigen elektromagnetischen Gegenstücks wissen wir, dass die gravita-
tive Tensormode und Licht sich mit der gleichen Geschwindigkeit ausbreiten.
Eine MOND-Kraft, die auf Photonen wirkt, führt oft zu einer signifikanten
Shapiro-Zeitverzögerung für Photonen. Deshalb kann die MOND-artige Pho-
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Zusammenfassung

nonkraft in SFDM nicht zu Gravitationslinseneffekten beitragen. Wir zeigen,
dass SFDM trotzdem die beobachteten Gravitationslinsendaten erklären kann.
Der Superfluid-Halo um Galaxien hat genügend zusätzliche Masse, um die be-
obachteten Gravitationslinseneffekte zu erklären.

Dafür muss die gravitative Anziehungskraft des Halos bei großen galaktozen-
trischen Radien groß sein, denn dort wird ein großer Teil des Gravitationslinsen-
Signals erzeugt. Bei kleineren Radien, wo Rotationskurven gemessen wer-
den, muss seine gravitative Anziehungskraft dagegen relativ klein sind. An-
sonsten wären die Rotationsgeschwindigkeiten zu groß, weil auf Sterne so-
wohl die MOND-artige Phononkraft als auch die normale Newtonsche Gra-
vitationskraft des Halos wirkt. Das ist in SFDM prinzipiell möglich, weil
der Superfluid-Halo ein sehr flaches Dichteprofil hat. Wir verifizieren, dass
SFDM gleichzeitig die Einstein-Radien und die Geschwindigkeitsdispersionen
der Gravitationslinsen-Galaxien erklären kann.

Der zweite Test ist die Rotationskurve der Milchstraße. Wir zeigen, dass
SFDM die beobachtete Rotationskurve akzeptabel fitten kann, dafür aber ca.
20% weniger baryonische Masse benötigt als Standard-MOND-Modelle. Der
Grund dafür ist, dass in SFDM der Übergang zwischen dem Newtonschen
und dem MOND-Regime gradueller verläuft, sodass die Gesamtkraft bei nicht
sehr großen oder sehr kleinen Newtonschen Beschleunigungen größer ist als in
MOND.

Wir schätzen außerdem die Größe des superfluiden Kerns der Milchstraße so-
wie deren Dunkle-Materie-Gesamtmasse ab. Dazu verallgemeinern wir zuerst
die gängigen Methoden, wie man die Größe des superfluiden Kerns abschätzen
kann, von sphärischer zu zylindrischer Symmetrie. Das ist relativ unkompli-
ziert, weil wir bei großen Radien sphärisch-symmetrische Randbedingungen
annehmen. Diese Randbedingungen haben einen freien Parameter, µ∞, der
die Größe des superfluiden Kerns und die Dunkle-Materie-Gesamtmasse be-
stimmt. Für viriale Dunkle-Materie-Massen MDM

200 im Bereich 0.5−3.0·1012M�
variiert der sogenannte NFW-Radius zwischen 65 kpc und 73 kpc, während der
sogenannte thermische Radius zwischen 67 kpc und 105 kpc variiert.

Als nächstes betrachten wir SFDM genauer aus einer theoretischen Perspek-
tive. Wir identifizieren drei Probleme, die innerhalb SFDM nicht einfach ver-
mieden werden können. Das erste Problem ist, dass der Gleichgewichtszustand
instabil ist. Diese Instabilität wird normalerweise durch Korrektur-Terme für
endliche Temperaturen, parametrisiert durch einen Parameter β̄, vermieden.
Allerdings sind sowohl der numerische Werte von β̄ als auch die Form dieser
Korrektur-Terme ad-hoc und könnten sich leicht als unphysikalisch erweisen.

Das zweite Problem ist, dass viele Galaxien nicht das MOND-Limit von
SFDM erreichen können, obwohl dieses MOND-Limit eine der Haupt-Motiva-
tionen von SFDM ist. Die Größe ε∗ kontrolliert das MOND-Limit. Die Pho-
nonkraft erfüllt nur im MOND-Limit ε∗ � 1 eine MOND-artige Gleichung.
Allerdings haben isolierte Galaxien, zumindest für β̄ ≈ 2, sogar für ε∗ = O(1)
MOND-artige Rotationskurve, obwohl die Phononkraft dann keine MOND-
artige Gleichung erfüllt. Wir bezeichnen diesen Fall als Pseudo-MOND-Limit.
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Dieses Pseudo-MOND-Limit ist aber kein zufriedenstellender Ersatz für das
echte MOND-Limit ε∗ � 1. Denn das Pseudo-MOND-Limit hängt sensitiv
von den Details der oben genannten Korrekturen für endliche Temperaturen
ab. Zum Beispiel funktioniert das Pseudo-MOND-Limit nur für β̄ ≈ 2. Wie
die Korrekturen für endliche Temperaturen könnte sich also auch das Pseudo-
MOND-Limit leicht als unphysikalisch erweisen.

Das dritte Problem ist, dass es in SFDM in Galaxien möglicherweise kei-
nen Superfluid-Gleichgewichtszustand gibt, der deutlich länger als galaktische
Zeitskalen existiert. Der Grund ist, dass die MOND-artige Phononkraft eine
direkte Kopplung der Baryonen zum Phonon-Feld θ ohne Ableitungen be-
nötigt. Das bricht explizit die U(1)-Symmetrie von θ, die sonst typisch für
Superfluide ist. Heuristisch gesprochen entspricht ein chemisches Potential µ
einer Lösung θ = µ · t. Für solche Lösungen hat die Baryon-Phonon-Kopplung
eine explizite Zeitabhängigkeit, weil θ dort ohne Ableitungen auftritt. Wir kön-
nen diese Zeitabhängigkeit nur dann ignorieren und einen zeitunabhängigen
Gleichgewichtszustand in Galaxien annehmen, wenn wir uns auf Zeiten kürzer
als eine Zeitskala tQ beschränken. Wir schätzen diese Zeitskala ab und finden,
dass sie vergleichbar mit galaktischen Zeitskalen sein kann. Daher könnten sich
Galaxien in SFDM entgegen den üblichen Annahmen nicht in einem Gleich-
gewichtszustand befinden.

Diese drei Probleme haben alle die gleiche Grundursache, nämlich dass dem
Phonon-Feld θ eine Doppelrolle zukommt. Es liefert sowohl die Masse des
Superfluids als auch die MOND-artige Phononkraft. Daher schlagen wir ein
verbessertes Modell vor, das diese Probleme vermeidet. Dieses verbesserte Mo-
dell funktioniert, indem es die zwei Rollen des Phonon-Feldes zwischen zwei
Feldern aufteilt. Ein Feld liefert das Superfluid, das andere überträgt eine
MOND-artige Kraft. Daher nennen wir dieses Modell Zwei-Felder-SFDM. Wir
zeigen, dass die Phänomenologie dieses Modells auf galaktischen Skalen ähn-
lich ist wie im originalen SFDM-Modell.

Genauer gesagt ist die Phänomenologie des Zwei-Felder-Modells auf galak-
tischen Skalen bezüglich des superfluiden Kerns ähnlich der des Standard-
SFDM-Modells. Außerhalb dieses superfluiden Kerns stimmt das nur, wenn
wir den sogenannten NFW-Radius als den Radius annehmen, an dem der
superfluide Kern endet. In Standard-SFDM stimmt dieser NFW-Radius eini-
germaßen mit dem sogenannten thermischen Radius überein. Im Zwei-Felder-
Modell dagegen können die beiden Radien weit voneinander abweichen. Das
wirft die Frage auf, ob der NFW-Radius oder der thermische Radius im Zwei-
Felder-Modell korrekt ist oder ob der Übergang von der superfluiden zur nicht-
superfluiden Phase vielleicht ganz anders behandelt werden muss.

Zumindest prinzipiell gibt es dieses Problem auch schon im originalen SFDM-
Modell. Der NFW- und der thermische Radius sind nämlich nur dann ähnlich,
wenn die Parameter-Kombination σ/m5 nah an dem Wert ist, der üblicher-
weise angenommen wird. Im Allgemeinen liegen diese zwei Radien aber auch
in Standard-SFDM weit auseinander. Das ist relevant, weil der Selbstwech-
selwirkungs-Wirkungsquerschnitt σ in Standard-SFDM normalerweise ad-hoc
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Zusammenfassung

gewählt und nicht von einem Lagrangian ausgerechnet wird. Das heißt, es ist
nicht klar, ob der üblicherweise verwendet Wert realistisch ist. In jedem Fall
muss der Übergang von der superfluiden zu der nicht-superfluiden Phase in
Galaxien sowohl in Standard-SFDM als auch in Zwei-Felder-SFDM genauer
untersucht werden.

Schließlich schlagen wir einen neuartigen Test von hybriden MOND-DM-
Modellen bezüglich Cherenkov-Strahlung vor. Dieser Test betrifft nicht nur
SFDM sondern eine Vielzahl von hybriden MOND-DM-Modellen. Genauer
gesagt betrifft er Hybrid-Modelle mit einem gemeinsamen Ursprung von galak-
tischen und kosmologischen Phänomenen. Cherenkov-Strahlung ist ein wohl-
bekanntes Phänomen in Modellen modifizierter Gravitation. Wenn normale
Materie an eine masslose Mode gekoppelt ist, die mit einer Geschwindigkeit cs
propagiert, und ein Objekt aus normaler Materie sich schneller als cs bewegt,
strahlt dieses Objekt Energie in Form der masselosen Mode ab. Normalerweise
geben nur relativistische Objekte Cherenkov-Strahlung ab, weil cs normaler-
weise relativistisch ist. In Hybrid-Modellen mit einem gemeinsamen Ursprung
von galaktischen und kosmologischen Phänomenen ist dies aber nicht so. Auch
nicht-relativistische Objekte wie Sterne können Cherenkov-Strahlung abgeben.
Der Grund ist folgendermaßen. Für die MOND-Phänomenologie auf galakti-
schen Skalen gibt es eine masselose Mode, die direkt an normale Materie ge-
koppelt ist. Für die CDM-Phänomenologie auf kosmologischen Skalen gibt es
ein kollisionsloses Fluid mit nicht-relativistischer Schallgeschwindigkeit. Wenn
diese Phänomene einen gemeinsamen Ursprung haben, hat die masselose Mo-
de, die direkt an Materie gekoppelt ist, typischerweise ein nicht-relativistisches
cs, da sie in Zusammenhang mit der nicht-relativistischen Schallgeschwindig-
keit des kollisionslosen Fluids steht. Daher können in hybriden MOND-DM-
Modellen sogar nicht-relativistische Objekte wie Sterne Cherenkov-Strahlung
abgeben.

Diese Cherenkov-Strahlung ähnelt auf der einen Seite normaler gravitativer
Cherenkov-Strahlung in dem Sinne, dass sie durch eine direkte Kopplung zu
normaler Materie zustande kommt. Auf der anderen Seite ähnelt sie norma-
ler dynamischer Reibung in dem Sinne, dass sie es sogar nicht-relativistischen
Objekten erlaubt, Energie zu verlieren. In der speziellen Näherung, die wir ma-
chen, ähnelt diese Cherenkov-Strahlung dynamischer Reibung noch in einem
anderen Punkt. Nämlich gibt es keinen signifikanten Rückstoß. Denn jede ein-
zelne Emission von Cherenkov-Strahlung ist niederenergetisch. Ein Überschall-
Objekt verliert nur durch eine große Zahl dieser niederenergetischen Emissio-
nen einen signifikanten Anteil seiner Energie. Das ist eine Folge der strikten
Cutoffs, die wir in unserer Rechnung für die Phasenraum-Integrale verwenden.
Diese Cutoffs haben einen doppelten Zweck. Zum einen vermeiden sie Kom-
plikationen mit der jedem MOND-Modell inhärenten Nicht-Linearität. Zum
anderen stellen sie sicher, das wir im MOND-Regime eines gegebenen Modells
bleiben. Außerhalb dieses MOND-Regimes verhalten Modelle sich unter Um-
ständen ganz anders als im MOND-Regime. Als Folge dieser Cutoffs ist der
Energie-Verlust, den wir berechnen, eine untere Schranke. Der tatsächliche
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Energieverlust kann größer sein, ist aber auch schwerer zu berechnen.
Wir betrachten zuerst ein Prototyp-Modell mit einem für hybride MOND-

DM-Modelle typischen Lagrangian. Damit berechnen wir die Zeitskala τE , auf
der nicht-relativistische Überschall-Objekte mit Geschwindigkeit V einen si-
gnifikanten Anteil ihrer Energie durch Cherenkov-Strahlung verlieren. Wir fin-
den, dass τE proportional zu V 3/(g2m c2s a

gal
b ) ist. Dabei ist cs die Propagations-

Geschwindigkeit der masselosen Mode, die mit einer Kopplungskonstante pro-
portional zu gm direkt an normale Materie gekoppelt ist, und agalb ist die
baryonische Newtonsche Beschleunigung der Host-Galaxie an der Position
des Überschall-Objektes. Diese Zeitskala ist unabhängig von der Masse des
Überschall-Objektes.

Um nicht ausgeschlossen zu sein, müssen Hybrid-Modelle mindestens eine
von zwei Bedingungen erfüllen. Entweder muss die Schallgeschwindigkeit cs
hinreichend groß sein, sodass die meisten nicht-relativistischen Objekte wie
Sterne sich langsamer als cs bewegen. In dem Fall ist Cherenkov-Strahlung ki-
nematisch verboten. Oder die Zeitskala τE muss hinreichend groß sein, sodass
Überschall-Objekte, die Cherenkov-Strahlung abgeben, dadurch auf galakti-
schen Zeitskalen nicht viel Energie verlieren. Letzteres kann durch eine kleine
Kopplungskonstante gm oder durch eine kleine Schallgeschwindigkeit cs er-
reicht werden.

Wir wenden diese allgemeinen Ergebnisse auf drei konkrete Modelle an: Auf
Standard-SFDM, auf Zwei-Felder-SFDM und auf das SZ-Modell. In Standard-
SFDM liefert das Phonon-Feld θ eine masselose Mode, die direkt an Ma-
terie gekoppelt ist (für die MOND-artige Phononkraft) und die eine nicht-
relativistische Schallgeschwindigkeit hat (weil diese Mode im Zusammenhang
mit dem nicht-relativistischen Superfluid steht). Damit ist die oben genann-
te Art von Cherenkov-Strahlung in Standard-SFDM möglich und wir können
Standard-SFDM mit der beobachteten Rotationskurve der Milchstraße testen.
Wir schließen ein MOND-Limit in der Milchstraße für bestimmte Parameter-
Werte aus. Für β̄ = 2 schließen wir zum Beispiel das MOND-Limit von SFDM
aus für Werte der Parameter-Kombination

√
ᾱ/m im Intervall 0.34 eV−1 .√

ᾱ/m . 3.29 eV−1. Das schließt insbesondere die üblicherweise verwende-
ten Werte β̄ = 2 und

√
ᾱ/m = 2.4 eV−1 aus. Kugelsternhaufen oder einzelne

Sterne mit besonders großer Geschwindigkeit könnten SFDM noch weiter ein-
schränken, was in künftigen Arbeiten genauer untersucht werden kann.

Zwei-Felder-SFDM beinhaltet zwei masselose Moden, die ungefähr den zwei
Feldern entsprechen, die die MOND-artige Kraft und das Superfluid liefern.
Nur die Mode, die das Superfluid liefert, lässt Cherenkov-Strahlung zu, weil
nur diese Mode langsamer als Licht in Vakuum propagiert. Diese Mode ist
allerdings nur indirekt durch eine Vermischung mit der anderen Mode an nor-
male Materie gekoppelt. Denn sie ist nicht direkt für die MOND-artige Kraft
verantwortlich. Daher können in Zwei-Felder-SFDM zwar nicht-relativistische
Objekte wie Sterne Energie in Form von Cherenkov-Strahlung verlieren, ge-
nauso wie in Standard-SFDM. Der Energieverlust ist aber viel kleiner, da die
Kopplung an Materie unterdrückt ist, sodass die Zeitskala τE typischerwei-
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Zusammenfassung

se viel größer als galaktische Zeitskalen ist. Dieses Modell entgeht möglichen
Einschränkungen also dadurch, dass die Verbindung zwischen galaktischen und
kosmologischen Phänomenen geschwächt ist.

Auch im SZ-Modell gibt es eine masselose Mode, durch die Cherenkov-
Strahlung möglich ist. Dieses Modell entgeht möglichen Einschränkungen durch
einen neuen Mechanismus: Die Kopplung an Materie ist im statischen Limit
eine normale gravitative Kopplung. In dynamischen Situationen ist die Kopp-
lung aber unterdrückt. Nicht-relativistische Objekte wie Sterne geben also
Cherenkov-Strahlung ab, verlieren aber nur auf Zeitskalen, die länger sind als
das Alter des Universums, einen signifikanten Anteil ihrer Energie.

Zusammengefasst kann diese neue Art Cherenkov-Strahlung hybride MOND-
DM-Modelle massiv einschränken (wie zum Beispiel Standard-SFDM), es gibt
aber auch Mechanismen, um dies zu verhindern (wie zum Beispiel für Zwei-
Felder-SFDM oder das SZ-Modell). Alle zukünftigen Hybrid-Modelle werden
solche Tests bestehen müssen.

x



1. Introduction

Traditionally, various observations on cosmological and galactic scales are at-
tributed to dark matter particles. Most notably, the anisotropies in the cosmic
microwave background (CMB) and the rotation curves of galaxies. An alter-
native paradigm is modified gravity which aims to explain these phenomena
in terms of a modified gravitational force law. In this section, we will explain
why both dark matter and modified gravity on their own are not fully satisfac-
tory. We argue that a combination of both paradigms is needed, specifically
what we will refer to as hybrid MOND dark matter models.

The leading dark matter paradigm is called ΛCDM, where Λ denotes the
cosmological constant and CDM denotes cold dark matter. It postulates the
existence of dark matter particles that are non-relativistic throughout most
of the history of the universe. These dark matter particles must interact
sufficiently weakly with normal matter to evade direct detection constraints.
On cosmological scales, they form a collisionless perfect fluid which gravita-
tionally collapses to Navarro-Frenk-White (NFW) halos around galaxies. The
CMB anisotropies are explained by the fluctuations of both the CDM fluid
and normal matter. Galactic rotation curves are explained by the gravita-
tional mass of the NFW halos and normal matter. Gravity is assumed to be
that of General Relativity (GR). In practice, full GR is needed mainly for the
homogeneous background cosmology, i.e. the Friedmann equations. Much of
the phenomenology of NFW halos and CMB anisotropies can be derived from
purely Newtonian gravity.

This is where an alternative paradigm comes into play. Namely Modified
Newtonian Dynamics (MOND), a specific type of modified gravity model [1–
4]. Consider a galaxy without dark matter particles. The acceleration due
to Newtonian gravity ~aN is usually dominated by the mass of the stars and
the gas in the galaxy, i.e. by the baryonic mass, ~aN = ~ab. With spherical
symmetry, aN = GMb(r)/r

2 where G is Newton’s gravitational constant and
Mb(r) is the baryonic mass inside a sphere with radius r. The idea behind
MOND is to modify the gravitational acceleration that objects in a galaxy feel,
depending on whether ab is larger or smaller than a critical acceleration scale
a0 ≈ 10−10m/s2. In the high-acceleration regime, ab � a0, the gravitational
acceleration ~atot is simply the Newtonian one,

~atot = ~ab . (1.1)

But in the low-acceleration regime, ab � a0, the gravitational acceleration is
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enhanced,

~atot = ~ab

√
a0
|~ab|

. (1.2)

That is,

atot =
√
a0ab , (1.3)

so that the force scales as
√
Mb rather than Mb and falls off as 1/r rather than

1/r2. In spherical symmetry,

atot =

√
a0GMb(r)

r
. (1.4)

This simple prescription captures many phenomena on galactic scales re-
markably well, as we will discuss in more detail later. For example, it predicts
that rotation curves will be asymptotically flat and that the asymptotic ro-
tation velocity will be v∞ = (a0GMb)

1/4. In particular, all galaxies with the
same total baryonic mass have the same asymptotic rotation velocity. This is
different from ΛCDM where, in principle, various dark matter halo masses are
possible for a given Mb. That is, galaxies with the same Mb can have different
asymptotic rotation velocities in ΛCDM but not in MOND.

In fact, a similar statement is true at all radii, not only asymptotically. The
total gravitational acceleration ~atot in MOND is a function of the baryonic
Newtonian acceleration ~ab, at least approximately. An interpolation function
ν interpolates between the high-acceleration (Newtonian) regime and the low-
acceleration (MOND) regime,

atot = ab ν

(
ab
a0

)
, (1.5)

where ν(y) → 1 for y → ∞ and ν(y) → 1/
√
y for y → 0. As a consequence,

galaxies with the same baryonic mass distribution have the same rotation curve
at all radii. Again, this is different from ΛCDM where dark matter halos may
differ between galaxies that have the same baryonic mass distribution. We
will discuss this in more detail later.

This basic MOND phenomenology pertains to the gravitational force in
the non-relativistic, weak-field limit. It is an alternative to the Newtonian
limit of GR. As mentioned above, this suffices for many phenomenological
purposes. But a complete model also needs to specify what happens in rel-
ativistic situations. A significant part of the theoretical work on MOND is
about finding viable relativistic completions that give the above-mentioned
MOND phenomenology in the non-relativistic limit.

In the following, we employ units with c = ~ = 1 and the metric signature
(+,−,−,−), unless otherwise stated. Small Greek indices run from 0 to 3 and
denote spacetime dimensions.
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1.1. Why MOND is wrong

As mentioned above, MOND works remarkably well in galaxies. But this is not
the case for groups of galaxies and galaxy clusters. This is shown in Fig. 1.1.
Galaxies follow the MOND relation v4c = a0GMb for the asymptotic circular
velocity vc. But groups and clusters of galaxies do not. More precisely, clusters
and groups of galaxies still roughly satisfy the scaling relation v4c ∝ Mb. But
the prefactor in this relation is different for galaxies and clusters of galaxies.
In a logarithmic plot like Fig. 1.1, this means that clusters and galaxies lie
on lines with the same slope but different intercept. This is a problem for
MOND. It could mean that a0 must depend on the scale of the system under
consideration. It could mean that there are additional undetected baryons
around galaxy clusters. But it could also mean that there is a deeper problem
for the concept of MOND.

Another issue on cluster scales is the famous Bullet cluster [7–9]. The Bullet
cluster consists of two galaxy clusters that have collided in the past. The
visible gas from the two clusters is located relatively close to the collision
point. In contrast, gravitational lensing reveals most of the gravitational mass
to be located much further away from the collision point. This has a natural
explanation in ΛCDM but not in MOND.

In ΛCDM, most of the gravitational mass comes from the dark matter parti-
cles. If the dark matter particles have weaker self-interactions than the cluster
gas, the dark matter can easily be offset from the gas. This can explain the
different locations of the visible gas and the gravitational mass. In contrast,
the idea behind MOND is that the gravitational force is produced only by the
baryons. So, naively, the lensing signal should come from the same location
as the visible gas. This contradicts the Bullet cluster observations.

One loop-hole in this argument is that the inherent non-linearity of MOND
may allow the inferred gravitational mass to not be located strictly at the
position of the baryonic mass, at least for non-symmetric baryonic mass dis-
tributions. Indeed, MOND models can easily produce lensing peaks that are
displaced from the peaks of the baryonic mass distribution. However, peaks
outside rather than in between the baryonic peaks, as required for the Bullet
cluster, were so far not shown to be possible. Of course, gravitational lensing
is a relativistic phenomenon, while MOND is concerned only with the non-
relativistic limit. Thus, in principle, the Bullet cluster must be considered
separately in each fully-relativistic model that reduces to MOND in the non-
relativistic limit. For example, such relativistic models often contain multiple
fields. Possibly, some of these fields play a non-trivial role in non-equilibrium
situations like colliding clusters. Still, the Bullet cluster is potentially a serious
challenge to the MOND paradigm [10].

But even in galaxies, there are problems for MOND. One such problem is
that dwarf spheroidals with Newtonian baryonic accelerations below about
10−12m/s2 do not seem to follow the MOND acceleration √

a0ab. The mea-
sured accelerations seem to be significantly larger [11]. Another problem is
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Figure 1.1.: The baryonic mass Mb as a function of the asymptotic circular
velocity vc. The solid black line shows the MOND prediction
v4c = a0GMb. The dashed black line shows an a priori ΛCDM
prediction from Ref. [5]. Measurements are included for dwarf
spheroidals (squares), gas rich spiral galaxies (light gray circles),
star-dominated spiral galaxies (dark gray circles), galaxy groups
(light gray triangles), and galaxy clusters (dark gray triangles).
Adapted from Ref. [6].
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that the predicted vertical acceleration above the Milky Way disk may be too
large in MOND [12, 13]. However, contrary to assumptions in these analyses,
the Milky Way disc is not in equilibrium [14]. So this measurement should be
taken with a grain of salt.

Another issue are the CMB anisotropies. Predicting the CMB temperature
fluctuations again requires a relativistic completion of MOND. But so far no
relativistic completion of MOND has achieved a completely satisfactory fit of
the angular power spectrum of temperature fluctuations. At least not without
introducing some kind of dark matter after all (see Sec. 1.3). The main problem
is getting the relative amplitudes of the second and third peaks correct. The
basic reason behind this can be understood as follows. If a0 is constant in
time, one may expect that MOND dynamics becomes important only at a
redshift of order one [15]. At earlier times, relevant for the CMB, things may
be quite similar to standard GR. That is, the CMB can be calculated as in GR
but without any DM component. The angular power spectrum of the CMB
temperature anisotropies for such a no-CDM model is shown in Fig. 1.2 [16].
The first two observed peaks are straightforward to fit in such a model, but
not the third peak. This is because, without DM, baryon damping forces the
third peak to be smaller than the second peak. But the measured third peak
has about the same amplitude as the second peak. This is why the CMB is
hard to get right in relativistic completions of MOND.

It is possible to avoid this argument in specific models. For example, it
was shown that Bekenstein’s TeVeS model from Ref. [17] can overcome this
problem, but only at the cost of too large anisotropies on large angular scales
[10, 18, 19].

More recently, gravitational wave events with optical counterparts have
proven problematic for MOND. Specifically, GW170817 [21]. In this event,
the gravitational tensor mode and its electromagnetic counterpart were de-
tected roughly at the same time on Earth. In contrast, in many relativistic
completions of MOND the photons experience a Shapiro time delay due to
the MOND force. That is, photons are slowed down significantly compared
to the tensor mode. This rules out many relativistic completions of MOND,
especially those with a so-called disformal coupling of ordinary matter to the
gravitational degrees of freedom [22, 23].

Another constraint for MOND comes from precision tests of the gravita-
tional force in the solar system [10]. The non-relativistic limit of GR, in-
cluding its post-Newtonian corrections, has so far passed all tests. Deviations
from this are well-constrained. The post-Newtonian corrections in relativistic
completions of MOND can be different in different models. So, in principle,
the solar system constraints need to be checked separately for each relativistic
completion. One approach to avoid constraints that is applicable in many
relativistic completions of MOND is to introduce specific higher-derivative
terms, see Ref. [24]. Another approach is called tracking, see for example
Ref. [25]. The sun produces a Newtonian gravitational acceleration ab that
is many orders of magnitude larger than the MOND acceleration scale a0.
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Figure 1.2.: Planck 2013 [20] measurements of the CMB temperature
anisotropies (black points) and the no-CDM model from Ref. [16]
normalized to fit the first peak (blue line). The no-CDM model
serves as a naive toy model of what to expect in a relativistic
completion of MOND. Adapted from Ref. [6].

Thus, one usually expects that solar system constraints require at least that
the interpolation function ν approaches 1 quite rapidly for large accelerations
ab � a0. Otherwise, already the leading-order non-relativistic limit of MOND
gives too large deviations from Newtonian gravity in the solar system, even
before taking into account post-Newtonian corrections.

1.2. Why ΛCDM is wrong
But not only MOND has problems. As mentioned above, a priori, galaxies
with the same baryonic mass distribution can have different dark matter halos
in ΛCDM. So one would expect a lot of scatter in any relation between the
baryonic and dark matter mass distributions. For example, galaxies with the
same baryonic mass distribution may have different rotation curves in ΛCDM,
especially since the dark matter halo often dominates compared to the baryonic
mass.

This expectation goes well with the visual impression one gets from a plot
like Fig. 1.3, namely that rotation curves come in various shapes and sizes.
However, it turns out that there is a very tight relation hidden in observed
rotation curves. This can be seen if one plots the rotation curve data in the
right way, namely not in terms of velocities and radii but in terms of accel-
erations. This is shown in Fig. 1.4, which shows a tight relation between the
Newtonian baryonic acceleration ab (or gbar) and the observed total acceler-
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Figure 1.3.: Various observed rotation curves. Color encodes the character-
istic baryonic surface density, i.e. Σb = 0.75Mb/R

2
b where Rb is

the radius where the contribution of the baryons to the rotation
curve peaks [10]. Adapted from Ref. [10].

ation atot (or gobs). This is the Radial Acceleration Relation (RAR) [11]. In
ΛCDM and with spherical symmetry, this is G(Mb(r) + MDM(r))/r2 plot-
ted against GMb(r)/r

2. The scatter in this relation is compatible with zero
intrinsic scatter, i.e. only scatter from imperfect measurements [11].

This is exactly what one expects in MOND. But not, a priori, what one
expects in ΛCDM. Why should it be possible to know the amount of dark
matter at each radius just by knowing the baryonic mass distribution? Why
should there be such a tight relation between the two? This is an unsolved
question in ΛCDM.

In principle, it is possible that complicated baryonic processes during galaxy
formation adjust the baryonic and dark matter in precisely the right way.
Modern galaxy formation simulations include a host of empirical mechanisms
which try to do this. These are often surprisingly successful. But often at the
expense of other related relations, e.g. the so-called central density relation
(see also below) [26–28]. One consequence of this is called the diversity problem
[29, 30]: Rotation curves at a fixed small radius vary much more between
different observed galaxies than between different simulated galaxies. Another
concern is that empirical sub-grid models come with a lot of parameters that
can be tuned to give various results and it’s not clear whether they are actually
physical.

Besides the RAR, there are various other scaling relations that are easily un-
derstood in MOND but not in ΛCDM. For example, the baryonic Tully-Fisher
relation (BTFR) [32] which is the observed relation between the asymptotic
rotation velocity and the total baryonic mass from Fig. 1.1. Another exam-
ple is the central surface density relation (CSDR) mentioned in the previous
paragraph. This is a relation between the baryonic central surface density
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Figure 1.4.: The Radial Acceleration Relation. That is, the Newtonian bary-
onic acceleration gbar versus the total acceleration inferred from
observed rotation curves gobs for SPARC [31] galaxies. This as-
sumes the same stellar mass-to-light ratios for all galaxies. Specif-
ically, Υdisk = 0.5 and Υbulge = 0.7 as suggested by stellar popu-
lation synthesis models. Adapted from Ref. [11].

Σb(R = 0) and the total central surface density Σdyn(R = 0), including dark
matter. This is shown in Fig. 1.5.

More qualitatively, Renzo’s rule is difficult to understand in ΛCDM [33].
Renzo’s rule corresponds to the observation that features in the rotation curve
at a certain radius correspond to features in the baryonic mass distribution at
the same radius. As long as the baryons’ gravitational pull dominates, this is
natural in ΛCDM. But, observationally, Renzo’s rule holds even where dark
matter dominates over the baryons. This is why Renzo’s rule is surprising in
ΛCDM.

Another surprising phenomenon are spiral galaxies with fast-rotating bars.
Bars are a certain type of non-axisymmetric feature at the centers of galaxies.
In ΛCDM, the dark matter halo slows down these bars due to a process called
dynamical friction [34] (see also Chapter 4). As a result, bars in ΛCDM tend
to rotate slower than in observed galaxies [35–37]. It may be possible to avoid
this problem by having a larger stellar-to-dark matter ratio. But only at the
cost of violating the widely-used abundance matching relations [38]. Fast bars
are more natural in modified gravity models since the dark matter halo is
absent [36].

Then there is the plane-of-satellites problem: Satellites of various galaxies,
including the Milky Way and Andromeda, co-orbit in thin, planar structures.
The problem is that such satellite planes are rare in ΛCDM [39, 40]. Note that
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Figure 1.5.: The central surface density relation between the stellar central
surface density Σ∗(0) and the total central surface density Σdyn(0)
for a subset of the SPARC galaxies [27, 31]. The baryonic central
surface density Σb(0) is expected to be close to Σ∗(0) [27]. Σdyn(0)
is inferred from the rotation curve of each galaxy. Color encodes
the numerical Hubble type. Adapted from Ref. [27].

the problem is not just that satellites are spatially aggregated in a flattened
structure, but also that they are kinematically correlated [41]. One possible
explanation for the planes of satellites is that the satellites in these planes are
tidal dwarfs that are correlated because they were created from the tidal tails
of interacting galaxies. In this case, these satellite galaxies would not have
their own dark matter halo due to their tidal nature. But, in ΛCDM, this
contradicts the observed high internal velocity dispersions which imply that
these satellites must be dark matter dominated. In contrast, tidal dwarfs can
easily have high internal velocity dispersions in MOND, so it may be easier to
explain the planes of satellites in MOND [39, 42].

There are also issues regarding structure formation at relatively high red-
shift, i.e. at relatively early times in the universe. In ΛCDM, structure forms
hierarchically. Smaller objects form first. These smaller objects then combine
to form bigger objects. There is a limit to how fast this process can form
massive clusters. That is, a limit to how massive a cluster observed at high
redshift can be in ΛCDM. Observations indicate that massive clusters form
faster than what ΛCDM predicts, see e.g. Refs. [43–46]. A striking example is
the El Gordo cluster [44]. This is a cluster with a mass of about 3 ·1015M� at
redshift z = 0.87. This is a problem for ΛCDM because such massive clusters
do not form so early in ΛCDM [47], see also Fig. 1.6.1 In contrast, structure

1Recently, Ref. [48] disputed this tension with ΛCDM. The most important difference
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Figure 1.6.: The number density of clusters with a given mass and at a given
redshift in a ΛCDM simulation. The mass is shown as the loga-
rithm of the mass in solar units M̃ . The redshift is shown as the
cosmic scale factor a = 1/(1+z). Contour lines indicate the prob-
ability to observe a cluster with given mass and redshift. The red
cross shows the observed El Gordo cluster, which is very unlikely
in ΛCDM. El Gordo lies on the solid red contour corresponding
to 6.16σ. Most of the probability of observing El Gordo comes
from between the solid and dashed red contours. Adapted from
Ref. [47].

is expected to form more rapidly in relativistic completions of MOND [15].
Regarding clusters, it should also be noted that the Bullet cluster cited in

Sec. 1.1 as potential evidence against MOND is at best marginally consistent
with ΛCDM. This is because the colliding subclusters have a high relative
velocity that is rare in ΛCDM [50, 51]. For example, Ref. [51] estimates that,
assuming ΛCDM, there is an about 1 in 10 chance to observe a Bullet-like
cluster in a redshift-limited survey up to z = 0.3.

In ΛCDM, the Strong Equivalence Principle (SEP) holds. This is not true
in MOND due to its non-linearity, which gives rise to the so-called external
field effect (EFE) [4]. Recently, statistical evidence for an EFE-like violation

compared to Ref. [47] is that Ref. [48] adopts a much smaller value for the pre-merger
infall velocity for the two subclusters of El Gordo. Running the code of Ref. [47] with
such a small infall velocity makes the tension go away. But, as discussed in Ref. [49], this
small infall velocity is derived without taking into account dynamical friction, although
dynamical friction is likely to be important for El Gordo. Another issue is that Ref. [48]
adopts a scenario where the subclusters are observed when coming into contact a second
time. In this case, the pre-merger configuration in question has to be present even earlier
than is assumed in Ref. [47], making the scenario more unlikely in ΛCDM.
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Figure 1.7.: The sky-averaged 21 cm absorption in terms of the bright-
ness temperature T21 as a function of redshift. Shown are the
ΛCDM prediction (dash-dotted red line), the no-CDM model from
Ref. [16] (solid blue line), and the EDGES measurement (solid
gray line). ΛCDM underpredicts the signal by roughly a factor of
two. Adapted from Ref. [56].

of the SEP was found [52, 53]: There is a correlation between the asymptotic
rotation curves in galaxies and the gravitational acceleration of their environ-
ment. A larger external acceleration tends to come with a (slightly) declining
rotation curve. This is natural in MOND due to the EFE, but it is difficult to
understand in ΛCDM (but see Ref. [54] which claims that so far ΛCDM and
MOND cannot be observationally differentiated in this way).

Another unexpected result for ΛCDM is the recent measurement of the
21 cm absorption signal from redshift z ≈ 20 by the EDGES experiment
[55]. After recombination, but before most stars form, the universe consists
mostly of neutral hydrogen and helium. During this time, CMB photons can
be absorbed by the 21 cm spin-flip transition of the neutral hydrogen. The
expected absorption signal in ΛCDM is only about half as strong as the signal
measured by EDGES. In contrast to ΛCDM, a simple no-CDM model agrees
with the measured absorption signal [56]. This is shown in Fig. 1.7.

At even earlier times, there is the Lithium problem, related to Big Bang
Nucleosynthesis (BBN) [57]. BBN calculations depend sensitively on the cos-
mological baryon density parameter Ωbh

2, where h = H0/(100 km s−1Mpc−1)
with the Hubble constant H0. The Lithium problem occurs when one imposes
the CMB result for Ωbh

2 in BBN calculations. Then, BBN calculations predict
about three times more primordial 7Li than observed. Even without impos-
ing the CMB value of Ωb, there may be an internal discrepancy within BBN.
Measured Lithium and Deuterium abundances require different values of Ωb

in BBN calculations. Deuterium requires the same value as the CMB, while
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Lithium needs a lower value. Although it is curious that, before the CMB was
measured, Deuterium measurements were in agreement with Lithium. Only
after the CMB value of Ωb became known did Lithium and Deuterium mea-
surements diverge, see Ref. [58]. This issue around 7Li is still unresolved.

Recently, the Hubble tension became pressing. Measurements of the Hubble
constant H0 at low redshifts systematically prefer a larger value than mea-
surements at high redshifts. Most prominently, type-Ia supernovae with a
Cepheid-calibrated distance ladder give H0 = (73.2± 1.3) km s−1Mpc−1 [59],
while the CMB gives H0 = (67.4±0.5) km s−1Mpc−1 [60]. This result has been
confirmed by various other methods of measuring H0. As just one example,
the BTFR mentioned above can be used to independently measure H0 [61].
Different measurements are quite consistent with each other at both high and
low redshifts. This makes it challenging to build theoretical models explaining
this tension within the ΛCDM paradigm, see for example Refs. [62, 63]. Thus,
the Hubble tension is a major open problem in ΛCDM.

One possible explanation for the H0 tension is that we live in a giant local
void. This explanation is usually discarded because sufficiently large voids are
unlikely to form in ΛCDM and because, assuming ΛCDM, supernova data is
inconsistent with such a void [64]. This is despite various observational hints
that such a local underdensity exists [65–70]. If this evidence does not go
away, this may be another problem for ΛCDM. In contrast, both over- and
underdensities are expected to grow quicker in MOND compared to ΛCDM.

1.3. Hybrid models
Above, we have seen that both MOND and ΛCDM have genuine successes
and genuine problems. MOND is successful mostly on galactic scales, while
ΛCDM is successful mostly on cosmological scales. A natural idea is then to
combine these successes in a single model. We will refer to such models as
hybrid MOND dark matter models, or just hybrid models for brevity.

Like ΛCDM, most hybrid models predict a collisionless fluid on cosmological
scales, whose perturbations grow gravitationally. Like MOND, most hybrid
models predict a gravitational acceleration √

a0ab at small Newtonian accel-
erations ab in galaxies. This is how hybrid models explain both the CMB and
the rotation curves of galaxies, including scaling relations like the BTFR and
the RAR.

The collisionless fluid usually forms some type of dark matter halo around
galaxies. But this dark matter halo must provide a much smaller gravita-
tional pull than in ΛCDM. Otherwise, rotation curves will be different than in
MOND, contrary to one of the main motivations of hybrid models. Therefore,
the collisionless fluid must grow much less structure on galactic scales than in
ΛCDM. This is one generic feature of hybrid models.

A concrete example of a hybrid model is superfluid dark matter (SFDM)
[71, 72]. This model introduces a new type of particle. On cosmological
scales, particles of this type form a collisionless fluid as in ΛCDM. In the inner
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1.3. Hybrid models

parts of galaxies, in the so-called superfluid core, these particles condense to
a superfluid, whose phonons then mediate a MOND-like force. The superfluid
also acts as a dark matter halo around galaxies. But the halo profile is very
cored, i.e. it is quite flat as a function of galactocentric radius. As a result,
its gravitational pull in the superfluid core is subdominant compared to the
MOND-like phonon force. The superfluid breaks down at larger radii so that
the superfluid’s constituent particles are in their non-condensed, CDM phase
without the phonon force. At these larger radii, the gravitational pull of the
superfluid becomes significant. We will discuss this model in more detail below.
To distinguish the original SFDM model proposed in Ref. [71] from a modified
two-field version of this model proposed in Ref. [73], we will sometimes refer
to this original SFDM model as standard SFDM.

In SFDM, the cosmological and galactic scale phenomena share a common
origin. Both are a consequence of the special type of superfluid. This is not the
case in all hybrid models. In some models, the MOND-like force in galaxies
and the collisionless fluid on cosmological scales are independent of each other.
An example of such a model is the sterile neutrino based model (νHDM) from
Ref. [74].

In νHDM, the collisionless fluid on cosmological scales is provided by an
11 eV sterile neutrino. This is essentially a form of hot dark matter (HDM),
where the dark matter particles stay relativistic much longer than in CDM.
Hot dark matter clusters much less on galactic scales compared to CDM.
Just as needed for hybrid models, where the MOND-like force is supposed
to dominate on galactic scales. On galaxy cluster scales, on the other hand,
the sterile neutrinos do grow structure. This is important since a standard
MOND-like force is not sufficient to account for the apparent missing mass
on galaxy cluster scales. A significant dark matter halo on cluster scales is
another generic feature of hybrid models.

A dark matter halo on cluster scales helps not only with the missing mass
problem in clusters. It also helps with the Bullet cluster. Just as in ΛCDM, the
lensing signal may be offset from the visible baryons due to the gravitational
mass of the dark matter halo.

Hybrid models also have a generic advantage over standard MOND models
regarding gravitational lensing. As discussed above, GW170817 requires the
speed of light to be the same as that of gravitational tensor modes. This is a
problem since photons often experience a Shapiro delay if they are affected by
the field carrying the MOND force. A simple way to avoid this is to just not
couple photons to this field. The most popular way to do this is to couple all
matter to an effective metric geffαβ ,

geffαβ = gαβ · f(φ) , (1.6)

where gαβ is the standard metric and f is a function of a field φ that mediates
a MOND force. This type of coupling is called conformal coupling since the
field φ enters in a conformal factor. Such a coupling does not affect photons
since their equations of motion are conformally invariant.
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Unfortunately, such a coupling is not possible in many MOND models. The
lensing signal is too small if photons are not coupled to the field that mediates
the MOND force. This is different in hybrid models, where there is dark
matter around galaxies. As mentioned above, there must not be much dark
matter in the inner parts of galaxies so that rotation curves are MOND-like.
But the lensing signal comes from relatively large radii, where the dark matter
halo may dominate. We discuss this in more detail in Sec. 2.1.

In addition to SFDM and νHDM, there are various other proposed hybrid
models. Examples are dipolar dark matter [75], the dark fluid approach from
Ref. [76], the two-field model from Ref. [77], and the nonminimal scalar-tensor
model proposed in Ref. [78] (see also Ref. [79]). Verlinde’s Emergent Gravity
[80, 81] is another example, at least according to the interpretation of Ref. [82],
which also provides a covariant version of Verlinde’s model (Covariant Emer-
gent Gravity, CEG).

Most recently, Skordis and Złośnik proposed a hybrid model that is based
on both TeVeS and Einstein-Aether models [25, 83]. We will refer to this
model as the SZ model. One advantage of this model is that it needs no ad-
hoc prescriptions beyond its Lagrangian. This is in contrast to, for example,
νHDM and SFDM which currently need such ad-hoc prescriptions for the
transition from the MOND regime to the CDM regime. The SZ model has a
MOND limit in galaxies, can successfully fit both the CMB and the matter
power spectrum, and has a tensor mode that propagates with the speed of
light. We will discuss this model in more detail in Sec. 4.5.

In the solar system, hybrid models face similar challenges as MOND. The
MOND-like force and any relativistic post-Newtonian corrections are severely
constrained by precision tests in the solar system. As in MOND, possible
remedies include higher-derivative terms as proposed in Ref. [24]. But there
may also be remedies specific to hybrid models. For example, Ref. [71] argues
that the superfluid in SFDM may break down close to stars so that there
would be no MOND-like phonon force around stars and therefore no solar
system constraints on such a force.2

1.4. Superfluid dark matter

In the following chapters, we will often investigate properties of SFDM. To
prepare for this, we will now introduce SFDM in more detail. As discussed
above, the idea of SFDM is that there is a new type of particle which condenses
to a superfluid on galactic scales where this superfluid’s phonons then mediate
a MOND-like force. On cosmological scales, these particles simply behave as
cold dark matter.

2Though it is not clear how the superfluid can break down around stars while still having a
MOND-like force in galaxies. After all, the stars are supposed to source the MOND-like
phonon force and their motion is supposed to follow this MOND-like phonon force. How
can this work if there are no phonons around stars because the superfluid breaks down?
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1.4. Superfluid dark matter

In practice, the two main tools to make predictions in SFDM are a low-
energy effective Lagrangian for the condensed superfluid on galactic scales and
a prescription for the transition of this condensed phase to the non-condensed,
CDM phase on larger scales. We will first introduce the Lagrangian for the
condensed phase and explain its motivation. Then, we will discuss different
prescriptions for the transition to the non-condensed phase.

Ref. [71] proposes the following low-energy non-relativistic effective La-
grangian for the phonon field θ,

L =
2Λ

3
(2m)3/2

√
|X − β̄Y |X − ᾱΛ

MPl
ρb θ , (1.7)

with

X = θ̇ + µ̂− (~∇θ)2/(2m) , Y = θ̇ + µ̂ , µ̂ = µnr −mφN . (1.8)

Here, m is the mass of the superfluid constituent’s particles, µnr is the non-
relativistic chemical potential, Λ is a constant with mass-dimension one re-
lated to self-interactions, ᾱ is a dimensionless constant, β̄ parametrizes finite-
temperature effects, φN is the Newtonian gravitational potential, and ρb is the
baryonic energy density. The non-relativistic chemical potential µnr is related
to the relativistic chemical potential µ by µ = m+ µnr with µnr � m.

We will now explain how this Lagrangian is related to both MOND and
superfluids. For the relation to MOND, the two relevant properties are the
coupling to matter, proportional to θρb, and the fact that spatial derivatives
enter roughly as X3/2. Indeed, the prototypical MOND-type Lagrangian for
a gravitational potential ϕ reads [4, 79]

L =
2M2

Pl

3a0

√
|Kϕ|Kϕ − ρb ϕ , (1.9)

where Kϕ = ∇αϕ∇αϕ is the standard kinetic term of ϕ and a0 is the MOND
acceleration scale. This is the form of the Lagrangian in the deep-MOND
regime Kϕ � a20. In general, the K

3/2
ϕ term is replaced by a function F (Kϕ)

with F (K) ≈ K for K � a20 and F (K) ≈ (2/3a0)K
√
|K| for K � a20.

The form of F determines the form of the interpolation function ν which
interpolates between the MOND and the Newtonian regimes. In the static
limit, the equation of motion of ϕ reads

~∇
(
F ′
(
|~∇ϕ|2

)
~∇ϕ
)
= 4πGρb , (1.10)

where F ′(K) is the derivative of F (K) with respect to K. The acceleration
of matter due to this gravitational potential follows from the coupling term
−ρbϕ and is

~aϕ = −~∇ϕ . (1.11)
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1. Introduction

The right-hand side of Eq. (1.10) can be written in terms of the Newtonian
acceleration ~ab as −~∇~ab. Thus, up to a term that is the curl of a vector field,

F ′ (a2ϕ)~aϕ = ~ab . (1.12)

This is called the no-curl approximation. It is exact in spherical symmetry
and is a good approximation in many other situations [84, 85]. In the MOND
regime ab � a0, this gives the standard MOND result

aϕ =
√
a0ab . (1.13)

It is now straightforward to see that SFDM has a MOND limit with

a0 =
ᾱ3Λ2

MPl
, (1.14)

for3

(~∇θ)2 � 2mµ̂ , (1.15)

i.e. when spatial derivatives dominate in the kinetic term. In this case, SFDM
reproduces the prototypical MOND Lagrangian Eq. (1.9) up to a rescaling. In
SFDM, the phonon force is in addition to that of the Newtonian gravitational
potential. Thus, the total acceleration is

~atot = ~aθ + ~aN , (1.16)

where ~aθ = −(ᾱΛ/MPl)~∇θ is the acceleration due to the phonon force and
~aN is that due to the Newtonian potential. To strictly reproduce MOND, ~aN
should be the same as ~ab. But this is not necessarily true in SFDM since the
superfluid itself contributes to the gravitational mass felt by the Newtonian
potential,

ρSF =
2
√
2

3
m5/2Λ

3(β̄ − 1)µ̂+ (3− β̄) (
~∇θ)2

2m√
(β̄ − 1)µ̂+ (~∇θ)2

2m

. (1.17)

In a useful MOND limit, the Newtonian gravitational pull due to the super-
fluid should be subdominant so that ~aN ≈ ~ab, which is usually the case in the
inner parts of galaxies. This is illustrated in Fig. 1.8, which shows an example
rotation curve and its individual contributions in SFDM. The baryonic Newto-
nian acceleration and the MOND-like phonon force dominate the superfluid’s
Newtonian gravitational pull. The superfluid’s Newtonian gravitational pull
becomes important only at larger radii. At smaller radii, the total acceleration
felt by matter is roughly atot = ab+

√
a0ab which corresponds to MOND with

an interpolation function

ν(y) = 1 +
1
√
y
. (1.18)
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Figure 1.8.: The rotation curve vc (solid blue line) of the Milky Way model
discussed in Sec. 2.2 in SFDM. This rotation curve can be ob-
tained by adding three individual rotation curve components in
quadrature. These three components correspond to the Newto-
nian baryonic acceleration (dotted green line), the MOND-like
phonon force (dashed orange line), and the Newtonian accelera-
tion from the superfluid’s mass (dash-dotted red line). The su-
perfluid’s gravitational pull is subdominant compared to the other
contributions. The MOND-like phonon force is responsible for the
flat rotation curve at large radii.
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This is how SFDM is related to MOND.
The relation of SFDM to superfluids is best illustrated with a toy model.

Consider a complex scalar field φ = ρe−iθ/
√
2 with a standard Lagrangian

with a sextic interaction

L =
1

2
∇αρ∇αρ+

1

2
ρ2∇αθ∇αθ − 1

2
m2ρ2 − 1

6
λ6ρ

6 , (1.19)

with some constant λ6 > 0. For simplicity, we assume a flat Minkowski
background spacetime. This is a standard superfluid-type U(1)-symmetric
Lagrangian [86]. The superfluid phase corresponds to the case where this
U(1) symmetry is spontaneously broken. In this case, the ground state has
non-zero particle number. The Goldstone mode associated with this broken
symmetry corresponds to the superfluid’s phonons. The linear dispersion re-
lation of these phonons is responsible for the frictionless flow that is typical
for superfluids [86].

The U(1) symmetry is associated with a conserved charge Q. Thus, in
statistical physics, we would replace the standard Hamiltonian H with the
shifted Hamiltonian H − µQ with chemical potential µ. On the level of the
Lagrangian, this change of the Hamiltonian corresponds to a shift in time
derivatives of θ, namely θ̇ → θ̇+µ [87–90]. Equivalently, at least in equilibrium
at zero temperature, one can directly consider solutions θ = µ · t. However,
introducing µ as described above makes it clear that µ is a chemical potential
in the statistical physics sense.

Including the chemical potential µ, the effective potential for ρ is

Veff =
1

2
ρ2
(
m2 + (~∇θ)2 − (θ̇ + µ)2

)
+

1

6
λ6ρ

6 . (1.20)

This potential has its minimum at a non-zero value of ρ, if µ > m and if
derivatives of θ are not too large. That is, Veff becomes a Mexican-hat-type
potential for µ > m. Then, the non-zero minimum of Veff(ρ) approximately
solves the ρ equation of motion. At least as long as derivatives of ρ can be
neglected. This solution describes a superfluid condensate that spontaneously
breaks the U(1) symmetry,√

λ6 ρ
2 =

√
(θ̇ + µ)2 − (~∇θ)2 −m2 . (1.21)

If we plug this solution back into the Lagrangian, we get a low-energy effective
Lagrangian for the phonons. Neglecting derivatives of ρ,

Leff,θ =
1

3

1√
λ6

(
(θ̇ + µ)2 − (~∇θ)2 −m2

)3/2
. (1.22)

Up to the baryon coupling, this is very similar to the SFDM Lagrangian from
Eq. (1.7). This shows the connection between SFDM and standard superfluid
models. The Lagrangian Eq. (1.7) should be understood as the low-energy

3This assumes β̄ to be of order 1. Otherwise, the MOND limit is reached for (~∇θ)2 � 2mµ̂β̄.
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1.4. Superfluid dark matter

effective theory for the phonons of a more complete superfluid model that is
valid also at higher energies.

Our toy model with sextic interactions nicely illustrates the ideas behind
SFDM. But it cannot be a realistic SFDM model. The reason is that spatial
derivatives are supposed to dominate in SFDM in order to give a useful MOND
limit, while the solution Eq. (1.21) exists only when spatial derivatives do not
dominate. To fix this, the sign of λ6 could be reversed. But this leads to an
instability, as was first discussed by Bekenstein [91, 92]. Actual relativistic
completions of the Lagrangian Eq. (1.7) must be more complicated [71].

This complication in getting the Lagrangian Eq. (1.7) from a fully relativistic
completion pertains to its kinetic term. But the coupling term −(ᾱΛ/MPl)θρb
also does not immediately follow from any standard superfluid models. This
is because it explicitly breaks the U(1) symmetry that is typical of superfluid
Lagrangians. We will discuss this coupling term in more detail in Sec. 3.3.
For now, we will take the effective low-energy Lagrangian Eq. (1.7) as given.
This is sufficient to make predictions on galactic scales in many situations.

In our toy model, condensation happens when the chemical potential is
sufficiently large, µ > m. In the non-relativistic limit and including the New-
tonian gravitational potential in the standard way, this condition µ > m
becomes µ̂ > 0. Here, we define µ̂ = µnr − mφN as in SFDM, see Eq. (1.8).
What does this condition µ̂ > 0 correspond to for SFDM with the Lagrangian
Eq. (1.7)? The original SFDM proposal Ref. [71] assumes the condition µ̂ > 0
to hold in the superfluid phase. In our toy model, this condition is neces-
sary for equilibrium solutions. Otherwise, the effective Lagrangian Eq. (1.22)
becomes imaginary. But this is not necessarily the case for SFDM with the
Lagrangian Eq. (1.7). So, in principle, one might allow (moderately) negative
values of µ̂. Here, we will not do this and instead follow Ref. [71] in assuming
µ̂ > 0. The effects of allowing negative µ̂ will be explored elsewhere.

As mentioned above, the second important ingredient for predictions in
galaxies in SFDM is a prescription for the transition from the condensed to
the non-condensed phase. Often, predictions at small galactic radii will be
possible from the effective Lagrangian Eq. (1.7) alone. Modeling the transition
to the non-condensed phase is important for predictions at larger radii and for
estimating which radii count as small and which as large in this sense.

Refs. [71, 72] make two specific proposals for this transition. Both postulate
that the superfluid phase is present only in the inner parts of galaxies and ends
at some finite transition radius. The non-condensed phase at radii larger than
this transition radius is described by a standard NFW halo. The transition
radii from the two specific proposals from Refs. [71, 72] are called the thermal
radius RT and the NFW radius RNFW, respectively. Both prescriptions should
be understood as rough estimates. Indeed, we argued in Ref. [73] that these
estimates likely need to be revisited, see also Sec. 3.4. Ref. [93] refines the
arguments of Ref. [72], but in a different context, i.e. a superfluid model
without the MOND-like phonon force. In what follows, we adopt the original
proposals from Ref. [72] for simplicity.
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The thermal radius RT is determined by [72]

Γ = t−1
dyn , (1.23)

where Γ is the local self-interaction rate and tdyn is the galactic dynamical
time. The idea is that the superfluid is in equilibrium at radii smaller than
RT but does not interact sufficiently to reach equilibrium beyond RT . The
interaction rate is given by Γ = (σ/m)N v ρSF with the Bose enhancement
factor N = (ρSF/m)(2π/mv)3, the self-interaction cross-section σ, and the
average velocity v of the superfluid constituent particles. A simple estimate
for the dynamical time is tdyn = r/v with the spherical galactocentric radius r.
A simple estimate for v is the Newtonian circular velocity √

r aN . In practice,
a weakness of the thermal radius is that the cross-section σ has not yet been
calculated from first principles. Instead, Ref. [72] simply assumes a value for
σ. This is one reason why these estimates should be revisited [73].

The NFW radius RNFW is defined as the radius where both the superfluid’s
density and pressure can be matched to that of an NFW halo [72]. These are
two conditions for three variables: The NFW radius RNFW and the two free
parameters ρc and rs of the NFW profile ρNFW,

ρNFW =
ρc

r
rs

(
1 + r

rs

)2 . (1.24)

One approach to fix the remaining free variable is to match only the 1/r3 tail
of the NFW profile which depends only on one parameter. Another approach
is to require the scale radius rs to be close to what it would be in ΛCDM given
the total halo mass [72, 94].

Both the thermal radius and the NFW radius as defined in Ref. [72] as-
sume spherical symmetry. For many real galaxies, assuming axisymmetry is
much more realistic than assuming spherical symmetry. However, we have
shown in Ref. [85] that these estimates can be straightforwardly extended to
axisymmetric situations. The reason is basically that the transition happens
at relatively large radii where the superfluid may be approximately spherically
symmetric even if the baryonic mass distribution is not.
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dark matter

In this chapter, we present two specific observational tests of SFDM. The first
regards strong lensing. Lensing is a challenge for various MOND models be-
cause the detection of GW170817 and its electromagnetic counterpart implies
that photons do not experience a significant Shapiro time delay compared to
gravitational tensor modes. We will demonstrate explicitly that SFDM can si-
multaneously fit Einstein radii and velocity dispersions for a sample of lensing
galaxies. This first test, described in Sec. 2.1, summarizes our work in collab-
oration with Sabine Hossenfelder from Ref. [95]. The second test is the Milky
Way rotation curve. Since this is the first discussion of a rotation curve of an
axisymmetric galaxy in SFDM, we will first discuss how to treat axisymmetric
systems in SFDM. We will then show that SFDM provides a reasonable fit for
the Milky Way rotation curve, requiring about 20% less baryonic mass than
standard MOND models. This second test, described in Sec. 2.2, summarizes
our work in collaboration with Sabine Hossenfelder from Ref. [85].

2.1. Strong lensing
As discussed above, the detection of GW170817 and its electromagnetic coun-
terpart made it more difficult for various MOND models to explain lensing
data. This is because, in many MOND models, photons are affected by the
field carrying the MOND force while the gravitational tensor mode is not. In
such models, the photons of the electromagnetic counterpart of GW170817
experience a large Shapiro time delay, which is ruled out because the gravita-
tional wave and its electromagnetic counterpart were detected almost simul-
taneously on Earth.

One way to avoid this problem is to just not couple photons to the field
carrying the MOND force. But this reduces the lensing signal. In many
models, the lensing signal will then be the same as in GR with just the baryons
and no dark matter. This is in conflict with observations.

Hybrid models like SFDM can avoid this conclusion because they have a
dark matter halo on galactic scales. This dark matter halo may produce
enough lensing to fit observations. One might worry that rotation curve ve-
locities then come out too large since stars feel both the MOND-like phonon
force and the superfluid halo’s Newtonian gravitational pull. But this is not
necessarily a problem since the superfluid halo is very cored. Rotation curves
are measured at relatively small radii where the phonon force dominates, while
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2. Observational tests of superfluid dark matter

much of the lensing signal comes from relatively large radii where the dark
matter halo dominates. In this section, we quantitatively investigate this
mechanism in SFDM.

In ΛCDM, the same gravitational mass M is inferred both from lensing
measurements and from kinematic measurements, like velocity dispersion or
rotation curve measurements. This is different in SFDM. Kinematic measure-
ments inside the superfluid core receive contributions from the MOND-like
phonon force. In contrast, lensing signals are independent of this phonon
force. Thus, if SFDM is true and if we infer M in the same way as in ΛCDM,
we will, in general, get different results from kinematic measurements and
from lensing measurements.

It would be interesting to directly compare the mass M inferred from kine-
matic measurements to that inferred from lensing measurements. But this
is not possible with the data we will be using below. Basically, the reason
is that M is always the mass inside a specific volume, for example the mass
M(r) inside a sphere with radius r. We cannot get masses for the same vol-
ume from both strong lensing and kinematic measurements for two reasons.
First, strong lensing measurements give the mass within a cylinder with a
given radius along the line of sight, while kinematic measurements depend on
the mass within a spherical volume. Second, even if we were to get the mass
within a sphere from lensing, we couldn’t compare it directly to kinematic
measurements. The reason is that, for the galaxies considered here [96, 97],
only averaged velocity dispersions are available. We cannot resolve a radial
dependence.

Still, we can check whether the strong lensing Einstein radii and the velocity
dispersions can be fit at the same time in SFDM. Fitting both ensures that,
for example, we do not fit the strong lensing data at the cost of completely
unrealistic stellar kinematics.

We consider velocity dispersions and Einstein radii of 65 lenses from the
Sloan Lens ACS (SLACS) Survey. These lenses are classified as ellipticals.
They have velocity dispersions from SDSS measurements and complete pho-
tometric data from Hubble Space Telescope (HST) observations. We take
redshifts, Einstein radii, effective radii, and velocity dispersions from Ref. [97]
and the aperture radius and seeing from Ref. [96]. This set of lenses was previ-
ously studied in Ref. [98] in the context of a phenomenological MOND model.
Here, we study these lenses in the context of SFDM.

2.1.1. The model
Following Ref. [98] we assume a spherically symmetric Jaffe mass distribution
for the baryons of the lensing galaxies [99],

ρb(r) =
Mb

4πRJ

1

r2(1 + r/RJ)2
. (2.1)

Here, Mb is the total baryonic mass and RJ = 1.31Reff is derived from the
effective radius Reff = Θeff · Dl with the measured angular effective radius
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2.1. Strong lensing

Θeff and the measured angular distance of the lens Dl [99]. Thus, Mb is the
only free parameter of the baryonic mass distribution. This is one of two free
parameters we will use to fit the data.

To solve for the phonon field θ, we use the no-curl approximation discussed
in Sec. 1.4. Since we assume spherical symmetry, this approximation is exact.
This gives an algebraic expression for ~∇θ in terms of ~ab and µ̂. For the SFDM
model parameters we adopt the fiducial values from Ref. [72]. That is, ᾱ = 5.7,
m = 1 eV, Λ = 0.05meV, and β̄ = 2.

The Poisson equation for the Newtonian gravitational potential φN can be
rewritten as an equation for the quantity µ̂ = µnr −mφN ,

∆

(
− µ̂

m

)
= 4πG

[
ρb + ρSF(~∇θ, µ̂)

]
. (2.2)

Using the no-curl approximation for ~∇θ gives ρSF as a function of ~ab and µ̂. We
numerically solve this equation using Mathematica [100] with values for µ̂(r0)
and µ̂′(r0) at r0 = 0.01 kpc as boundary conditions. The value µ̂(r0) is the
second free parameter in our fit. It determines the size of the superfluid halo.
To avoid numerical issues at r = 0, we do not impose µ̂′(0) = 0 but rather
−µ̂′(r0)/m = 4πGr0(ρb(r0) + ρSF(r0)). This can be obtained by expanding µ̂
for small r using the assumed boundary condition value of µ̂(r0).

Following Refs. [71, 72] we assume that outside the superfluid phase the
dark matter energy density is that of an NFW halo. For simplicity, we adopt
the thermal radius RT for the transition radius and we approximate the NFW
profile as ρNFW ∝ 1/r3. The thermal radius depends on the quantity σ/m. We
adopt the fiducial value σ/m = 0.01 cm2/g from Ref. [72]. We have checked
that our results do not depend strongly on this choice by redoing the calcula-
tion also with the NFW radius RFNW as the transition radius and matching
to a full NFW profile [95].

The angular Einstein radius ΘE can be calculated from [101]

Θ2
E =

Dls

DlDs
4GME(RE) , (2.3a)

RE = DlΘE , (2.3b)

where Dl, Ds, and Dls are the angular distances of the lens, the source, and
the angular distance between the source and the lens, respectively. Further,
ME(RE) denotes the gravitational mass inside the cylinder with radius RE

along the line of sight.
The radial velocity dispersion σr is usually calculated by [101]

σ2
r (r) =

G
∫∞
r dr′ρb(r

′)Mσ(r
′)(r′)2β−2

r2βρb(r)
, (2.4)

with the anisotropy parameter β. Here, GMσ/r
2 is the acceleration felt by

the baryons. In our case, this acceleration includes both the acceleration
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2. Observational tests of superfluid dark matter

from the Newtonian potential and that from the MOND-like phonon force,
GMσ/r

2 = aN + aθ. The measured velocity dispersion σ∗ is then

σ2
∗ =

∫∞
0 dRRw(R)

∫∞
−∞ dz ρb(r)

(
1− βR2

r2

)
σ2
r (r)∫∞

0 dRRw(R)
∫∞
−∞ dz ρb(r)

, (2.5a)

w(R) = e−R2/2R̃2
atm , (2.5b)

R̃atm = σ̃atmDl , (2.5c)

σ̃atm = σatm

√
1 + θ2ap/4 + θ4ap/40 , (2.5d)

where r =
√
R2 + z2, σatm = 1.4′′ is the seeing, and θap = 1.5′′ is the spectro-

metric aperture [96]. For simplicity, we take β = 0.
Angular distances D are calculated from the measured redshifts zl and zs

of the lens and the source, respectively. Specifically, we use

D(z1, z2) =
1

H(1 + z2)

∫ z2

z1

dz′√
Ωm(1 + z′)3 + (1− Ωm)

, (2.6)

where z1 and z2 are the redshifts of the objects whose angular distance is to be
calculated. We adopt H = 70 km s−1Mpc−1 and Ωm = 0.3 following Ref. [97].

Our fitting procedure is a relatively simple parameter scan of µ̂(r0) and
Mb. We force the measured and calculated Einstein radii to agree to at least
0.01 kpc and the measured and calculated velocity dispersions to agree within
the measurement error σerror

∗ .

2.1.2. Results
With this method, we find a successful fit for 64 of the 65 galaxies. That
is, the calculated and measured Einstein radii agree to better than 0.01 kpc
and the calculated and measured velocity dispersions σmeas

∗ and σcalc
∗ agree to

better than the measurement error σerror
∗ . This is shown in Fig. 2.1, left.

Since we adjusted the value of Mb, we must check that our fits do not require
unphysical stellar mass-to-light ratios. We find an averaged M/LV of 3.5±1.1
compared to the 4.2±1.0 obtained in Ref. [98]. This is somewhat lower but not
unphysical, see also Fig. 2.1, right. Indeed, our fit results fall between those
predicted by stellar population synthesis models with Salpeter and Chabrier
initial mass functions (IMF). This is shown in Fig. 2.2. Thus, our fitted stellar
masses are reasonable.

Strong lensing in SFDM can be qualitatively understood from Fig. 2.3. The
left panel shows the baryonic and dark matter mass contained in a sphere as
a function of its radius r using the galaxy J0029-0055 as an example. The
velocity dispersion σ∗ is mainly determined by the baryonic and dark matter
masses within small spherical radii of a few kpc. Baryonic matter dominates
over the superfluid halo at these radii. This is how SFDM can fit rotation
curves and velocity dispersions in a way that is relatively independent of the
superfluid halo.
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Figure 2.1.: Left: Histogram of the best-fit (σcalc
∗ − σmeas

∗ )/σerror
∗ for each

galaxy. We find a successful fit for 64 out of 65 galaxies. Right:
Histogram of the calculated stellar mass-to-light-ratios for Mb and
µ̂(r0) such that |σcalc

∗ −σmeas
∗ | is minimal. This shows that our fits

do not require unphysical M/L.

In contrast, the lensing signal is sensitive to the mass inside a cylinder
with radius of a few kpc, not a sphere. The baryonic mass is still the largest
contribution at relatively small cylindrical radii. But now the contribution of
the superfluid halo is significantly larger than for a sphere with a comparable
radius. This is shown in the right panel of Fig. 2.3. The lensing signal is much
more sensitive to the superfluid’s mass than the velocity dispersion. Thus,
even if we force our parameters to fit the velocity dispersion, there is always
room to significantly adjust the lensing signal by adjusting the superfluid halo’s
mass. This is how SFDM can fit the Einstein radii and velocity dispersions at
the same time.

The one galaxy for which we could not obtain a successful fit is J0737+3216.
Our best-fit for this galaxy satisfies our requirement that the calculated and
measured Einstein radii agree to better than 0.01 kpc. But it does not satisfy
the requirement that the measured and calculated velocity dispersions agree
within the measurement error σerror

∗ . This can be seen in Fig. 2.1, left, where
J0737+3216 is the one outlier at (σcalc

∗ − σmeas
∗ )/σerror

∗ ≈ −1.5. That is, the
calculated and observed velocity dispersions agree within 1.5·σerror

∗ rather than
within 1 ·σerror

∗ . This one outlier is not too interesting. The slight discrepancy
in the velocity dispersion can easily be due to any number of uncertainties in
the astronomical data or our theoretical modelling.

Thus, the strong lensing and velocity dispersion data does not pose a chal-
lenge for SFDM. Both can easily be fit at the same time. A caveat is that

25



2. Observational tests of superfluid dark matter

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

lo
g
1
0
(M

b
(R

E
)/
M

�
)

10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0

log10(MSalp(RE)/M�)

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

lo
g
1
0
(M

b
(R

E
)/
M

�
)

10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0

log10(MChab(RE)/M�)

Figure 2.2.: Left: The best-fit baryonic mass Mb for each galaxy compared
to that inferred from the Salpeter IMF, in terms of the baryonic
mass within a cylinder with radius Rmeas

E . Right: The same as
left, but with the Chabrier IMF instead of the Salpeter IMF.

a fully satisfactory fit in SFDM needs the inner parts of a galaxy to be in
the MOND limit (~∇θ)2 � 2mµ̂ (see Sec. 1.4). Otherwise, rotation curves
and velocity dispersions are not naturally MOND-like, contrary to one of the
main motivations behind SFDM (see also Sec. 3.2). Future work should check
whether or not the above fits satisfy this condition in a reasonable spatial
region of the lensing galaxies, and if not, whether other acceptable fits that
do satisfy it are possible.

2.2. The Milky Way rotation curve

In this section, we will discuss the Milky Way (MW) rotation curve in SFDM.
Our aim is to see whether SFDM can reasonably fit this rotation curve and,
more generally, to develop the tools required to understand axisymmetric
galaxies in SFDM.

2.2.1. The model

Consider the superfluid core of the Milky Way in SFDM. We assume this
superfluid core to be in equilibrium. For a fully axisymmetric treatment, we
cannot use the no-curl approximation. Instead, we have to solve the coupled
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Figure 2.3.: Left: The baryonic and non-baryonic masses Mb(r) and MDM(r)
inside a sphere with radius r for the galaxy J0029-0055. Small
radii in this panel are relevant for the velocity dispersion. Right:
The baryonic and non-baryonic masses ME,b(R) and ME,DM(R)
inside a cylinder with radius R for the same galaxy. Small radii
in this panel are relevant for the strong lensing signal.

differential equations

∆

(
− µ̂

m

)
= 4πG

(
ρb + ρSF

(
~∇θ, µ̂

))
, (2.7a)

~∇

 (~∇θ)2 + 2m(2β̄3 − 1)µ̂√
(~∇θ)2 + 2m(β̄ − 1)µ̂

~∇θ

 =
ᾱ

2MPl
ρb . (2.7b)

In addition to axisymmetry we assume a z → −z symmetry. Then, it suffices to
numerically solve these equations in a region defined by z > 0 and

√
R2 + z2 <

r∞ for some r∞. Here, R and z are the standard cylindrical coordinates. As
boundary conditions, we impose

∂zµ̂|z=0 = 0 , (2.8a)
∂zθ|z=0 = 0 , (2.8b)

and

µ̂|√R2+z2=r∞
= µ∞ , (2.9a)

θ|√R2+z2=r∞
= 0 , (2.9b)

for some µ∞. The value of µ∞ determines the size of the superfluid halo. It
is analogous to µ̂(r0) in our spherically symmetric calculation in the previous
section. The boundary value of θ is inconsequential for us so we just set it
to 0. This form of the boundary conditions enforces spherical symmetry at
r∞. This was shown to be a reasonable approximation in MOND in Ref. [102].
We expect it to be reasonable in SFDM as well. Unless stated otherwise, we
choose r∞ = 100 kpc and µ∞/m = 1.25 · 10−8. As we will see below, the
rotation curve at R < 25 kpc depends only weakly on this choice. For the
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2. Observational tests of superfluid dark matter

SFDM model parameters we again adopt the fiducial values from Ref. [72],
i.e. ᾱ = 5.7, m = 1 eV, Λ = 0.05meV, and β̄ = 2. We numerically solve these
equations using Mathematica [103].

We adopt the baryonic mass distribution of Ref. [104]. This mass distri-
bution consists of a bulge, a gas disk, and a stellar disk. We take the stellar
disk exactly as in Ref. [104]. That is, we take the numerical surface density
from Ref. [104] with a scale height of 300 pc. For the gas disk, we similarly
take the numerical surface density from Ref. [104]. But we adopt a scale
height of 130 pc instead of an infinitely thin disk, following Ref. [105]. A finite
scale height is easier to handle with our numerical code. This choice does not
significantly affect our results.

For the bulge, we use [106]

ρbulge(b) =
ρbulge,0
ηζb3m

exp
[
−(b/bm)2

]
(1 + b/b0)

1.8 , (2.10)

where η = 0.5, ζ = 0.6, bm = 1.9 kpc, b0 = 0.1 kpc, and b = r/(ηζ)1/3 with
the spherical radius r. This is the spherically equivalent version of the triaxial
bulge model used in Ref. [104]. The constant ρbulge,0 controls the total bulge
mass. We choose its value to reproduce the asymptotic Newtonian acceleration
due to the bulge from Ref. [104].

We keep the shape of the baryonic mass distribution fixed. We only use the
overall normalization of the baryonic mass distribution as a free parameter.
Specifically, we introduce a parameter fb that multiplies the baryonic density
ρb(R, z). Below, we will adjust fb to find a reasonable fit to the observed
rotation curve.

We also adopt the observed rotation curve from Ref. [104]. This is based on
the rotation curve data from Ref. [107] for R > 5 kpc and that from Ref. [108]
for R < 2.2 kpc, but adjusted to fit the assumptions about ρb used in Ref. [104].
Simply rescaling ρb(R, z) → fb · ρb(R, z) does not require such adjustments.
Thus, we do not need to do any adjustments to this data when adjusting fb.

The numerical parameters used in this section are summarized in Table 2.1.

2.2.2. Results
We first consider the rotation curve at R < 25 kpc for different baryonic
masses, i.e. different fb, for a fixed boundary condition µ∞. This is shown
in Fig. 2.4. A reasonable fit to the observed rotation curve is achieved for
fb = 0.8. That is, SFDM requires about 20% less baryonic mass compared to
the MOND model discussed in Ref. [104].

Specifically, Ref. [104] considered the no-curl approximation of MOND with
the interpolation function

νe(y) =
1

1− e−
√
y
, (2.11)

where y = ab/a0. This interpolation function is commonly used in the context
of the RAR [11]. In contrast, in the MOND limit (~∇θ)2 � 2mµ̂ and without
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2.2. The Milky Way rotation curve

Table 2.1.: The numerical parameters used in this section.
Model parameters
m 1 eV from Ref. [72]
ᾱ 5.7 from Ref. [72]
Λ 0.05meV from Ref. [72]
β̄ 2 from Ref. [72]
Baryonic mass
Bulge 1.29 · 1010M� × fb see Eq. (2.10)
Stellar disk 4.94 · 1010M� × fb from Ref. [104]
Gas disk 1.22 · 1010M� × fb from Ref. [104]
fb 0.8 unless stated otherwise
Boundary condition
µ∞/m 1.25 · 10−8 unless stated otherwise
r∞ 100 kpc unless stated otherwise
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Figure 2.4.: SFDM MW rotation curve for fb = 0.9 (solid blue line), fb =
0.8 (dashed orange line), and fb = 0.7 (dotted green line). Also
shown are the observed rotation curve data from Ref. [107] (black
dots) and Ref. [108] (black squares), both adjusted to match the
assumptions of Ref. [104].
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2. Observational tests of superfluid dark matter

the superfluid halo’s gravitational pull, SFDM corresponds to the interpolation
function

νθ(y) = 1 +
1
√
y
, (2.12)

as discussed in Sec. 1.4 (see also Ref. [109]). The main difference between
the interpolation functions νe and νθ is that νe approaches its limits, ν → 1
for y → ∞ and ν → 1/

√
y for y → 0, much faster than νθ. At intermediate

accelerations ab, the total acceleration is a bit larger in SFDM compared to
standard MOND models. This is the main reason SFDM requires less baryonic
mass.

At relatively large radii, there is another potential reason why SFDM might
require less baryonic mass. Namely, the superfluid halo’s gravitational pull
contributes to the rotation curve, so that less baryonic mass is needed to fit the
observed rotation curve. However, this is countered by the fact that the value
of a0 is usually chosen a bit smaller in SFDM than in standard MOND models.
Indeed, the fiducial parameters from Ref. [72] give a0 = 0.87 ·10−10m/s2 while
Ref. [104] uses a0 = 1.2 · 10−10m/s2.

This is illustrated in Fig. 2.5. At small radii, SFDM with fb = 0.8 agrees
with the νe-based model from Ref. [104], irrespective of whether or not we
include the superfluid’s gravitational pull. At larger radii, SFDM without the
superfluid’s gravitational pull would require fb larger than 0.8. If we include
the superfluid’s gravitational pull, this gravitational pull and the lower value
of a0 roughly compensate each other. Thus, the main reason why SFDM
requires less baryonic mass than standard MOND models is indeed that the
interpolation function νθ produces more additional acceleration than νe at
intermediate ab.

As mentioned above, Ref. [72] proposes two estimates for the radius where
the superfluid core ends. Both of these implicitly assume spherical symmetry.
Thus, in principle, we cannot use them here. But in practice it turns out to
be straightforward to extend these to axisymmetric situations. The reason is
that the transition usually happens at rather large radii. At these radii, both
µ̂ and θ are approximately spherically symmetric. Indeed, we impose spherical
symmetry as a boundary condition at r∞. This is illustrated in Fig. 2.6. For
R & 20kpc, assuming spherical symmetry for the superfluid’s energy density
is an excellent approximation.

Thus, we can do the following. Consider the two proposals from Ref. [72]
for the thermal radius RT and the NFW radius RNFW. Then simply set
z = 0 and use the cylindrical radius R instead of the spherical radius r when-
ever the original proposal from Ref. [72] uses r. This gives radii RT,R and
RNFW,R. Similarly, we can set R = 0 and use z instead of the spherical
radius r. This gives radii RT,z and RNFW,z. We expect that RT,R ≈ RT,z

and RNFW,R ≈ RNFW,z since we expect approximate spherical symmetry at
the transition radius. Then, we can use either of the two versions of RT and
RNFW as the thermal and NFW radius, respectively. The small difference be-
tween the R = 0 and the z = 0 version will not matter for practical purposes.
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2.2. The Milky Way rotation curve
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Figure 2.5.: The MW rotation curve from the νe-based model from Ref. [104]
(solid blue line), from SFDM with fb = 0.8 (dashed orange line),
and from SFDM with fb = 0.8 with the superfluid’s gravitational
pull removed using three different methods. The first method is to
set ρSF = 0 in SFDM’s equations (dotted green line). The second
method is to keep ρSF, but to use only the baryonic Newtonian ac-
celeration ab instead of the total Newtonian acceleration aN when
calculating the rotation curve (dash-dotted red line). The third
method is to set ρSF = 0 in SFDM’s equations and to determine
the phonon force from the MOND limit relation Eq. (3.7) (see
Sec. 3.2).
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Figure 2.6.: The superfluid’s energy density ρSF within the galactic plane
at z = 0 (solid blue line) and above the galactic plane at R = 0
(dashed orange line). For a spherically symmetric superfluid these
two are exactly equal. In our case, assuming spherical symmetry
is an excellent approximation at R & 20 kpc.

Indeed, for fb = 0.8, we find RT,R = 87.5 kpc and RT,z = 87.6 kpc. Similarly,
RNFW,R = 66.0 kpc and RNFW,z = 65.7 kpc. Thus, our simple procedure seems
reasonable. The difference between the NFW and the thermal radius is about
30%. This is comparable to the differences found in spherically symmetric
situations in Ref. [72].

For a given µ∞ we can now calculate the dark matter profile even beyond
the transition radius by matching an NFW halo to the superfluid core at the
transition radius. For concreteness, we use the NFW radius RNFW,R which,
for brevity, we simply call RNFW in the following. Then, we can calculate the
total dark matter mass MDM

200 within the virial radius r200. Here, r200 is the
spherical radius where the averaged dark matter density drops below 200 times
the cosmological density 3H2

0/(8πG). We adopt H0 = 67.3 km s−1Mpc−1 in
this section. We match the superfluid’s energy density and pressure to that
of a full NFW profile. So we need one more condition to fix all parameters
(the transition radius as well as the two parameters of the NFW profile, as
discussed in Sec. 1.4). Here, we fix the NFW concentration parameter to be
that of ΛCDM abundance matching expectations [72, 85, 94].

In contrast to the rotation curve at R < 25 kpc, the total dark matter mass
depends strongly on the value of the boundary condition µ∞. To illustrate
this, we show the rotation curves for a number of choices of µ∞ and r∞ in
Fig. 2.7, see also Table 2.2. These values are chosen to cover the range of
measured values of MDM

200 given in Ref. [110]. But note that some of these
measurements may not apply directly in SFDM, since they assume ΛCDM.

The rotation curves in Fig. 2.7 are discontinuous at R = RNFW. This is
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2.2. The Milky Way rotation curve

Table 2.2.: The NFW radius RNFW ≡ RNFW,R, the total dark matter mass
MDM

200 , the virial radius r200, and the thermal radius RT ≡ RT,R

for fb = 0.8 and various boundary conditions µ∞ imposed at radii
r∞. Here, MDM

200 and r200 are calculated assuming the NFW radius
as the transition radius.

r∞ µ∞/m RNFW MDM
200 r200 RT

kpc 10−8 kpc 1012M� kpc kpc

110 7.80 73 3.0 306 105
100 6.24 70 2.0 265 97
100 1.25 66 1.2 225 87
90 0.25 65 0.7 189 76
80 0.12 69 0.5 163 67
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Figure 2.7.: MW rotation curves for different boundary conditions µ∞ im-
posed at different radii r∞, corresponding to different total dark
matter masses MDM

200 ≡ M12 · 1012M�. Each rotation curve is
plotted up to the respective virial radius r200, assuming the NFW
radius RNFW as the transition radius. There is a discontinuity at
R = RNFW because we abruptly switch off the phonon force at
this radius for simplicity. In a real galaxy, this transition should
be more gradual. See also Table 2.2.
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because in SFDM the phonon force is assumed to be present only inside the
superfluid core [71, 72]. Thus, we include this force only for R < RNFW. In
a real galaxy, this transition should be gradual and not abrupt. The details
of this transition are unknown and require further theoretical work. Thus,
the rotation curves in Fig. 2.7 should not be taken seriously around the dis-
continuity at R = RNFW. Away from this discontinuity the rotation curves
represent the SFDM expectation.

We also see in Fig. 2.7 that the rotation curves bend upwards around
R = RNFW. This is due to the combination of the phonon force, which gives
flat rotation curves, and the cored superfluid halo which starts to contribute
significantly at these radii. This was already observed in Ref. [72]. This may
rule out larger values of MDM

200 for which this effect is more pronounced.
To summarize, we have first demonstrated how to make predictions in SFDM

in axisymmetric situations. We have then shown that SFDM can reasonably
fit the MW rotation curve and we have explained why SFDM requires less
baryonic mass to fit the MW rotation curve than standard MOND models.
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3. Three problems of superfluid dark
matter and their solution

So far, we have taken the SFDM model as proposed in Refs. [71, 72] as given
and tested its predictions against observations. In this chapter, we take a
closer look at how this model is constructed. We will discuss three problems
regarding its internal consistency: The stability problem, the MOND limit
problem, and the equilibrium problem. All these problems have the same
root cause, namely that the phonon field θ plays a double role. It carries
both the superfluid’s energy density and the MOND-like phonon force. As a
possible solution we propose a model where these two roles are split between
two different fields. This summarizes our work from Refs. [73, 87].

3.1. The stability problem
The stability problem is related to the parameter β̄ in the low-energy effective
Lagrangian Eq. (1.7). As mentioned above, β̄ is supposed to parametrize
finite-temperature corrections. We will now discuss why this parameter was
introduced in Ref. [71] and why it is not a satisfactory solution to the problem
it is supposed to solve.

To this end, consider the Lagrangian

L|β̄=0 = f(Kθ −m2)− ᾱΛ

MPl
θ ρb , (3.1a)

f(Kθ −m2) =
2Λ

3

√
|Kθ −m2|(Kθ −m2) , (3.1b)

Kθ = ∇αθ∇αθ . (3.1c)

This reproduces the Lagrangian Eq. (1.7) with β̄ = 0 after introducing a
chemical potential, θ̇ → θ̇ + µ with a constant µ, and after taking the non-
relativistic limit, µ = m+ µnr with |µnr| � m and |θ̇| � m.

The problem with this β̄ = 0 Lagrangian is that equilibrium solutions in
galaxies are unstable. To see this, consider a static background solution θ0
with a background chemical potential µ0 = m + µnr,0. For simplicity, we
consider a MOND limit solution, i.e. (~∇θ0)

2 � 2mµ̂0 with µ̂0 = µnr,0 −mφN .
The second-order Lagrangian for perturbations δ on top of this background
solution θ0 is

Lpert =
[
f ′
0g

αβ + 2f ′′
0∇αθ0∇βθ0

]
∇αδ∇βδ , (3.2)
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where

f ′
0 = Λ

√
|Kθ0 −m2| > 0 , (3.3a)

f ′′
0 = −Λ

2

1√
|Kθ0 −m2|

< 0 , (3.3b)

and where Kθ0 is the background value of Kθ . Here, we used the fact that
Kθ0 −m2 < 0 for the type of solution under consideration. Namely,

Kθ0 −m2 ≈ 2mµ̂0 − (~∇θ0)
2 , (3.4)

which is negative when spatial derivatives dominate. In the MOND limit
(~∇θ)2 � 2mµ̂, this is the case. In the opposite limit, f ′′

0 becomes positive.
For stability, the prefactor of δ̇2 in Eq. (3.2) should be positive. But this is

not the case. For a galaxy in equilibrium, this prefactor is

f ′
0g

00 + 2
(
g00
)2

f ′′
0 µ

2
0 < 0 . (3.5)

This is negative since f ′′
0 is negative in the MOND limit and since the µ2

0f
′′
0

term dominates compared to the f ′
0 term in the non-relativistic limit [71].

This instability is the reason why Ref. [71] introduced the finite-temperature
corrections parametrized by β̄. These corrections do avoid the instability but
are not entirely satisfactory. Both the functional form of the finite-temperature
corrections and the numerical value of β̄ are chosen ad-hoc. In principle, the
finite-temperature Lagrangian Eq. (1.7) for β̄ 6= 0 should follow from the zero-
temperature Lagrangian with β̄ = 0. So far this has not been established.
For example, it is unclear which value of β̄ corresponds to which temperature.
It is also unclear whether the finite-temperature corrections actually take the
form assumed in Ref. [71]. Thus, the proposed finite-temperature corrections
may easily turn out to be unphysical.

The reason behind the instability at β̄ = 0 is that θ carries both the phonon
force and the superfluid. Specifically, the instability is due to the fact that
the combination f ′′

0 µ
2
0 is negative and dominates in the prefactor of δ̇2. The

fact that this term dominates is due to θ carrying the superfluid’s chemical
potential µ0. The fact that his term is negative is due to the fact that spatial
derivatives dominate in Kθ0 − m2 which is required for a MOND-like force.
Below, we will introduce an improved model that avoids this instability in a
more natural way without ad-hoc finite-temperature corrections.

3.2. The MOND limit problem
One of the main motivations of SFDM is that it has a MOND limit for

(~∇θ)2 � 2mµ̂ . (3.6)

In this limit, the acceleration ~aθ due to the phonons satisfies a MOND-like
equation

~∇ (|~aθ|~aθ) = ~∇ (a0~ab) . (3.7)
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Figure 3.1.: Left: The quantity ε = (2mµ̂)/(~∇θ)2 that controls the MOND
limit of SFDM for the Milky Way model from Sec. 2.2 at z = 0.
The Milky Way is not everywhere in the MOND limit ε � 1.
Right: The phonon acceleration aθ at z = 0 for the full SFDM
model (solid blue line) and assuming the MOND limit relation
Eq. (3.7) (dashed orange line) for the same Milky Way model as
in the left panel. The phonon acceleration is close to its MOND
limit value even when ε is not small.

In this section, we will explain why many galaxies cannot reach this proper
MOND limit in SFDM and why this cannot easily be fixed by changing the
model’s parameters.

Consider the quantity ε ≡ 2mµ̂/(~∇θ)2 that controls the MOND limit. In
the MOND limit ε � 1 and assuming the no-curl approximation, we can
write ε as 2mµ̂/(ᾱMPlab). A rough lower bound on µ̂/m is GMb/r.1 With
ab = GMb/r

2, we then get in the MOND limit ε � 1

ε & 2m2r

ᾱMPl
= 0.11 ·

(
r

5 kpc

)
, (3.8)

where we assumed the fiducial numerical values from Ref. [72] for the equality.
We see that ε cannot be very small for many galaxies. That is, galaxies may
easily fail to reach the MOND limit of SFDM. This is illustrated in Fig. 3.1,
left, for the Milky Way model discussed in Sec. 2.2. The quantity ε is larger
than 1 for R & 20 kpc. Even at smaller radii, ε is at best moderately small.

In principle, the parameter combination m2/ᾱ that determines our lower
bound Eq. (3.8) can be made smaller to avoid this conclusion. But this is
in tension with the other role θ plays in galaxies, namely that θ carries the
superfluid’s energy density. For example, in the MOND limit ε � 1, this
energy density is proportional to m2/ᾱ,

ρSF ∝ m2

ᾱ
MPl|~aθ| . (3.9)

1If we allow for negative µ̂, as briefly discussed in Sec. 1.4, this lower bound becomes
µ̂/m & µ̂min/m +GMb/r, where µ̂min is the minimum allowed value of µ̂. This will not
change our qualitative conclusion.
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3. Three problems of superfluid dark matter and their solution

Thus, significantly decreasing m2/ᾱ to get a small ε also significantly decreases
the superfluid’s energy density. But the superfluid density cannot be too small
because it must produce a sufficient strong lensing signal, see Sec. 2.1. In
general, even when ε is not small, the energy density ρSF becomes larger with
a larger µ̂/m. Thus, the smaller prefactor m2/ᾱ in ρSF can be countered by
making µ̂/m larger. However, a larger µ̂/m also makes ε larger. So this effort
to suppress the lower bound Eq. (3.8) by making m2/ᾱ smaller might not work
after all. Indeed, in the MOND limit, ε grows linearly with µ̂/m while ρSF
grows sublinearly with µ̂/m as can be seen from Eq. (1.17).

Thus, the MOND limit cannot be fixed by simply choosing different numer-
ical parameters. This is what we refer to as the MOND limit problem.

But there is also a puzzle here, which is illustrated in Fig. 3.1, right, for the
MW model from Sec. 2.2. Namely, the phonon acceleration aθ can be close
to its MOND limit value (roughly √

a0ab) even when ε is not small, i.e. even
outside the MOND limit (~∇θ)2 � 2mµ̂. This can happen as long as ε is not
too large, at least for β̄ ≈ 2. That is, galaxies may still have a MOND-like
rotation curve even if ε is not small. We will refer to this as the pseudo-MOND
limit of SFDM. We will now explain where this pseudo-MOND limit comes
from and why it is not satisfactory to rely on this pseudo-MOND limit for
MOND-like rotation curves.

Consider the no-curl approximation for the phonon acceleration ~aθ. This
gives aθ as an algebraic function of ab and µ̂. Specifically,

aθ =
√
a0ab ·

√
x , (3.10)

where x = x(ε∗, β̄) is determined by the cubic equation

0 = x3 + 2

(
2β̄

3
− 1

)
ε∗ · x2 +

((
2β̄

3
− 1

)2

(ε∗)
2 − 1

)
x−

(
β̄ − 1

)
ε∗ ,

(3.11)

with

ε∗ ≡
2m2

ᾱMPl ab

µ̂

m
= ε ·

a2θ
a0ab

= ε · x . (3.12)

The acceleration aθ is MOND-like whenever
√
x is close to 1. This depends

on the values of ε∗ and β̄. The quantity ε∗ is the same as ε whenever the
phonon acceleration aθ is close to its MOND limit value √

a0ab. This is the
case both in the proper MOND limit ε � 1 and in the pseudo-MOND limit
where ε is not small. When the phonon acceleration is not close to its MOND
limit value, ε and ε∗ differ.

The quantity
√
x = aθ/

√
a0ab as a function of ε∗ and β̄ is illustrated in

Fig. 3.2, left. The phonon force aθ is close to its MOND limit value √
a0ab

for ε∗ � 1, independently of the value of β̄. This is the proper MOND limit
ε � 1 already discussed above. Indeed, for small ε∗, Eq. (3.11) gives

√
x ≈ 1

which also implies ε � 1 according to Eq. (3.12).
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Figure 3.2.: Left: The quantity
√
x = |~aθ|/

√
a0|~ab| in the no-curl-

approximation of standard SFDM as a function of ε∗ =
(2mµ̂)/(ᾱMPl|~ab|). For

√
x = 1, the phonon force has a MOND-

like form. Right: The phonon acceleration aθ at z = 0 for the
Milky Way model from Sec. 2.2 in the full standard SFDM model
with β̄ = 2.5 (dash-dotted red line), β̄ = 1.55 (dashed orange
line), the fiducial value β̄ = 2 from Ref. [72] (dotted green line),
and assuming the MOND limit relation Eq. (3.7) (solid blue line).
The baryonic mass distribution and the boundary condition for
µ̂/m are as described in Sec. 2.2.

But aθ can be close to √
a0ab even when ε∗ is not small. This is the pseudo-

MOND limit, where rotation curves of galaxies may be MOND-like although
aθ does not satisfy a MOND-like equation. From Fig. 3.2, left, we see that
this happens for β̄ = 2 and ε∗ = O(1). It does not work anymore for ε∗ � 1.
This can also be seen by expanding Eq. (3.11) for large ε∗. Numerically, the
conditions ε∗ = O(1) and ε = O(1) are roughly equivalent. Thus, the pseudo-
MOND limit roughly requires β̄ = 2 and ε = O(1).

This explains the puzzle described above: The MW model from Sec. 2.2
has a MOND-like phonon acceleration aθ although ε is not small because it is
in the pseudo-MOND limit with β̄ = 2 and ε = O(1). This is illustrated in
Fig. 3.2, right.

Thus, in principle, standard SFDM can produce MOND-like rotation curves
despite the MOND limit problem. While many galaxies may not be in the
proper MOND limit ε∗ � 1, many more galaxies could be in the pseudo-
MOND limit with β̄ = 2 and ε∗ = O(1). An interesting consequence of this
would be that only isolated galaxies would have MOND-like rotation curves.
Other MOND phenomenology like the external field effect would be different.
This is in contrast to what is usually expected in SFDM and may change the
predictions for satellite galaxies and globular clusters [71].

But relying on the pseudo-MOND limit is not a satisfactory solution. At
ε∗ = O(1), the phonon force depends sensitively on the details of the ad-
hoc finite temperature corrections such as the value of β̄ (see Fig. 3.2, left).
Thus, just as these finite-temperature corrections, the pseudo-MOND limit
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3. Three problems of superfluid dark matter and their solution

may easily be unphysical.
The improved model we introduce below allows for a proper MOND limit

more generally and without relying on the details of ad-hoc finite-temperature
corrections.

3.3. The equilibrium problem
In SFDM, it is usually assumed that the superfluid core of galaxies is in an
equilibrium with a chemical potential µ = O(m). The chemical potential
is important, for example, to cancel the m2 in Kθ −m2 (see the Lagrangian
Eq. (3.1) and Sec. 3.4 below). This allows spatial derivative terms to dominate
in the non-relativistic limit as required for a MOND-like phonon force. This
chemical potential corresponds to the U(1) shift symmetry of the phonon field
θ. But, in SFDM, this symmetry is explicitly broken by the coupling of θ to
baryons, (ᾱΛ/MPl)θρb. Here, we will explain how this restricts the standard
SFDM phenomenology to relatively short timescales.

To see why there might be a problem consider first a heuristic argument.
In field-theoretical contexts, a chemical potential µ is sometimes introduced
by shifting θ → µ · t+ θ in the Lagrangian (see e.g. Sec. 1.4). In SFDM, this
introduces an explicit time-dependence in the baryon-phonon coupling,

(ᾱΛ/MPl)(µt)ρb . (3.13)

This is because θ occurs without derivatives in this coupling. Usually, one
assumes a time-independent equilibrium in SFDM. So the question is how
long one can ignore this time-dependence from the coupling to matter.

A somewhat less heuristic argument can be made based on statistical physics.
In statistical physics, a chemical potential µ corresponds to a conserved quan-
tity Q. In SFDM, the U(1) symmetry is explicitly broken. So at most there is
an approximately conserved quantity Q associated with this U(1) symmetry,
if the symmetry-breaking terms are sufficiently small. Applying the statistical
physics formalism to this approximately conserved quantity Q, in equilibrium,
one uses a shifted Hamiltonian H → H−µQ for calculations. On a Lagrangian
level, this corresponds to a shift θ̇ → θ̇ + µ without shifting occurrences of θ
without derivatives. This does not generate an explicit time dependence in
the baryon-phonon coupling. But since θ does occur without derivatives in
this coupling, such a shift is not just a change of variables. For example,
it leads to a violation of energy conservation when applied to the continuity
equation. Framed in this way, the question is how long one can ignore this
energy non-conservation.

In any case, we are interested in the timescale tQ that tells us how long
one can ignore the explicit U(1) symmetry breaking and assume a standard
time-independent superfluid equilibrium in galaxies. It is not consistent to
just ignore this symmetry breaking, as argued above. But it may be possible
to assume a standard equilibrium for sufficiently short timescales.
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3.3. The equilibrium problem

Specifically, without the baryon coupling, ᾱ = 0, the Lagrangian has a shift
symmetry of θ which implies that the current jα = ∂L/∂(∇αθ) is conserved.
The associated conserved charge is Q =

∫
dV j0. This is not the case if we

include the baryon coupling, ᾱ 6= 0, as required for the MOND-like phonon
force. Then, we have ∇αj

α = −(ᾱΛ/MPl)ρb. This allows to estimate how long
it takes for the charge Q around a galaxy as a whole to change significantly,∣∣∣∣∣Q̇Q

∣∣∣∣∣ ≈ m
ᾱΛ

MPl

Mb

MDM
=

1

tQ
≈ 1

108 yr

Mb

MDM
. (3.14)

Here, we defined t−1
Q ≡ m(ᾱΛ/MPl)(Mb/MDM). For the numerical estimate

we used the fiducial parameter values from Ref. [72].
The timescale tQ is not necessarily much larger than galactic timescales of

about 108 yr. Thus, this may be relevant for SFDM. Indeed, the quantity tQ
concerns a galaxy is a whole and may be too optimistic. In Ref. [87], we also
estimated a local timescale tloc separately for each point in space. The local
equilibrium is valid only on timescales shorter than t−1

loc = m(ᾱΛ/MPl)(ρb/ρSF).
In the inner parts of galaxies, ρSF is typically smaller than ρb so that tloc is
much shorter than tQ.

Thus, the standard SFDM phenomenology on galactic scales cannot be valid
on timescales much longer than galactic timescales. This may be a problem for
SFDM. In principle, this can be avoided by adjusting the model’s parameters
so that the combination m(ᾱΛ/MPl)/ρSF that determines t−1

Q and t−1
loc is much

smaller. However, this is not easily possible. We have

(
mᾱΛ

MPlρSF

)2

∝ 1

m2/ᾱ
·
(
ρMOND
SF

ρSF

)2

, (3.15)

where ρMOND
SF is the MOND-limit expression for ρSF. We don’t show factors

involving ab and a0 since these cannot be adjusted much, at least not without
giving up on MOND-like rotation curves. One way to make this quantity
smaller is to make m2/ᾱ larger. But then fewer galaxies can reach the MOND
limit, see our lower bound on ε from Eq. (3.8). Alternatively, Q̇/Q becomes
small when ρSF is much larger than its MOND limit value. But then, by
definition, the galaxy is not in the MOND limit either. In any case, a large
ρSF may make the superfluid’s contribution to the rotation curve significant.
Then rotation curves depend significantly on the boundary condition of the
superfluid and will not be automatically MOND-like contrary to one of the
main motivations behind SFDM.

This equilibrium problem is again due to the double role of θ. That θ
mediates a MOND-like force requires the coupling to baryons. That θ also
carries the superfluid’s chemical potential is in tension with this. The improved
model we introduce below has an equilibrium that is valid on much larger
timescales.
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3. Three problems of superfluid dark matter and their solution

3.4. A solution: Two-field SFDM
The three problems discussed above have a common root cause which is that
the phonon field θ plays a double role. That θ carries a MOND-like force is in
tension with the fact that θ also carries the superfluid. A natural way to avoid
these problems is to split these two roles between two different fields. Here,
we will introduce a model that does this, but still has phenomenology close
to the original SFDM model. We will refer to this improved SFDM model
as two-field SFDM and to the original SFDM model as standard SFDM. In
two-field SFDM, one field carries the MOND-like force on galactic scales. The
other field carries the superfluid.

The Lagrangian of two-field SFDM has two parts,

L = L− + L+ . (3.16)

The first part, L−, is a standard superfluid Lagrangian for a complex scalar
field φ− = ρ−e

−iθ−/
√
2 with quartic interactions,

L− = (∇αφ−)
∗(∇αφ−)−m2|φ−|2 − λ4|φ−|4

=
1

2

(
Kρ− + ρ2−(K− −m2)

)
− λ4

4
ρ4− ,

(3.17)

where m is the mass, λ4 is a coupling constant, and we have

Kρ− = ∇αρ−∇αρ− , (3.18a)
K− = ∇αθ−∇αθ− . (3.18b)

This part of the Lagrangian is responsible for the superfluid. We chose a
quartic coupling for simplicity but a sextic interaction, for example, would
also work. The superfluid phase has a chemical potential µ = µnr + m > m
which we can introduce in the standard way by shifting θ̇− → θ̇− → µ. If we
neglect derivatives of ρ−, this gives in the non-relativistic limit

ρ2− =
g00µ2 −m2

λ4
≈ 2m2

λ4

µ̂

m
, (3.19)

where, as in standard SFDM, µ̂ = µnr −mφN . The dominant contribution to
the energy density is

ρDM− = m2ρ2− =
2m4

λ4

µ̂

m
. (3.20)

The second part of the Lagrangian, L+, is responsible for the MOND-like
force. It is similar to the standard SFDM Lagrangian from Eq. (3.1) with
β̄ = 0. Before taking the non-relativistic limit and before introducing the
chemical potential, this standard SFDM Lagrangian reads

L|β̄=0 = f(Kθ −m2)− ᾱΛ

MPl
θρb . (3.21)
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Figure 3.3.: Left: Milky Way rotation curve in two-field SFDM (solid blue
line) and standard SFDM (dashed orange line) for the baryonic
mass distribution from Sec. 2.2. For standard SFDM, we use the
parameters and boundary conditions from Sec. 2.2. For two-field
SFDM, we use those from Ref. [73]. Also shown are the mea-
sured rotation curves from Ref. [108] (black squares) and Ref. [107]
(black dots), both adjusted to match the assumptions of Ref. [104],
see also Sec. 2.2. Right: The superfluid’s energy density for two-
field SFDM (solid blue line) and standard SFDM (dashed orange
line) at z = 0 for the same Milky Way models as in the left panel.

In L+, instead we have

L+ = f(K+ +K− −m2)− ᾱΛ

MPl
θ+ρb , (3.22)

where K+ = ∇αθ+∇αθ+. This is just the standard SFDM Lagrangian for
β̄ = 0 with Kθ replaced by K++K− and with θ replaced by θ+ in the baryon
coupling. We couple only θ+, but not θ−, to the baryons because only θ+
carries the MOND-like force.

We will now discuss this two-field model in more detail. As an illustra-
tive example, we consider the Milky Way model from Sec. 2.2. In particular,
we numerically solve the two-field SFDM equations of motion for a galaxy
in equilibrium with the baryonic mass distribution ρb from Sec. 2.2, as dis-
cussed in detail in Ref. [73]. This calculation depends on a boundary condition
analogous to the boundary condition µ∞ in standard SFDM. We choose this
boundary condition so that the dark matter density of two-field SFDM is
roughly comparable to that of standard SFDM with the choice of boundary
condition from Sec. 2.2 [73]. The choice of the model parameters ᾱ, m, λ4,
and Λ is described in more detail below. The resulting MW rotation curve for
R < 25 kpc is shown in Fig. 3.3, left. It is quite close to the rotation curve
of standard SFDM discussed in Sec. 2.2. The shape of the superfluid’s energy
density differs between the two models, but its magnitude is comparable. This
is illustrated in Fig. 3.3, right.

In two-field SFDM, the role of φ− is to provide the superfluid. This has two
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3. Three problems of superfluid dark matter and their solution

main effects. First, φ− carries the superfluid’s energy density which provides
the dark matter halo around galaxies. This superfluid can be in an equilibrium
with a chemical potential µ = O(m) for a much longer time than in standard
SFDM. The reason is that only θ+ is coupled to the baryons such that the
U(1) shift symmetry of θ− is not explicitly broken. This is how this model
avoids the equilibrium problem discussed in Sec. 3.3.

The second effect of φ− is that it induces the MOND regime for the field θ+,
which then carries the MOND-like force. To see this, consider the equation of
motion for a static θ+ in the equilibrium superfluid provided by φ−,

~∇
[
2f ′
(
K− − (~∇θ+)

2 −m2
)
~∇θ+

]
=

ᾱΛ

MPl
ρb . (3.23)

This is a MOND-like equation for θ+ if the argument of f ′ is dominated by
the (~∇θ+)

2 term. In the non-relativistic case, we have (~∇θ+)
2 � m2. Thus,

we get a MOND-like equation only if K− cancels most of the m2 term. This is
exactly what happens for a non-relativistic superfluid with chemical potential
µ = O(m). The chemical potential is introduced by shifting θ̇− → θ̇− + µ. In
the non-relativistic case, we have µ = m+ µnr with |µnr| � m, so that

K− −m2 ≈ g00µ2 −m2 ≈ 2mµ̂ . (3.24)

Thus, the chemical potential µ in K− indeed cancels most of the m2. The
argument of f ′ becomes 2mµ̂ − (~∇θ+)

2. As a result, two-field SFDM has a
MOND limit for

(~∇θ+)
2 � 2mµ̂ . (3.25)

This is analogous to the standard SFDM MOND limit (~∇θ)2 � 2mµ̂.
As discussed above, many galaxies are not in this MOND limit in standard

SFDM. Basically, the condition (~∇θ)2 � 2mµ̂ requires m2/ᾱ to be sufficiently
small. But a small m2/ᾱ implies a small superfluid energy density, which is,
for example, in tension with strong lensing observations. In two-field SFDM,
the MOND limit still requires a small m2/ᾱ. But this does not imply a small
superfluid energy density. A small m2/ᾱ still implies a small energy density
ρDM+ associated with L+. But this is not a problem since we can indepen-
dently choose the model parameters to give a sufficiently large energy density
ρDM− associated with L−. Then, the superfluid’s energy density is mainly due
to ρDM− rather than due to ρDM+. This is illustrated in Fig. 3.5, left. As
a consequence, the quantity (2mµ̂)/(~∇θ+)

2 that controls the MOND limit in
two-field SFDM can easily be small. This is illustrated in Fig. 3.4. This is
how two-field SFDM avoids the MOND limit problem discussed in Sec. 3.2.

This leaves the stability problem discussed in Sec. 3.1. If we consider only
L+ but not L−, two-field SFDM has exactly the same problem as standard
SFDM. To see this, consider the second-order Lagrangian for perturbations δ±
around background solutions θ0± for the non-relativistic equilibrium discussed
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limit in two-field SFDM at z = 0 for the same Milky Way model as
in Fig. 3.3. Note the different scale of the vertical axis compared to
Fig. 3.1, left. The MOND limit is much easier to reach in two-field
SFDM compared to standard SFDM. Right: The acceleration a+
due to the field θ+ in two-field SFDM at z = 0 for the same Milky
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above,

L+,pert =f ′
0g

00δ̇2+ −
(
f ′
0(~∇δ+)

2 − 2f ′′
0 (~∇θ0+~∇δ+)

2
)

+
(
f ′
0g

00 + 2f ′′
0 µ

2
0

)
δ̇2− − f ′

0(
~∇δ−)

2

− 4f ′′
0 µ0δ̇−(~∇θ0+

~∇δ+) .

(3.26)

In the MOND limit on galactic scales, spatial derivatives dominate in the
argument of f so that K0

+ +K0
− −m2 < 0. Thus,

f ′
0 = Λ

√
|K0

+ +K0
− −m2| > 0 , (3.27a)

f ′′
0 = −Λ

2

1√
|K0

+ +K0
− −m2|

< 0 , (3.27b)

where K0
± are K± evaluated at the background solutions θ0±. The third line of

Eq. (3.26) does not enter the Hamiltonian since it is linear in time derivatives.
Thus, it does not affect our stability analysis. The remaining terms all have
the correct signs except for the δ̇2− term. The prefactor of δ̇2− can be negative
since the µ2

0f
′′
0 term dominates and f ′′

0 < 0, which leads to an instability. This
is analogous to the stability problem from standard SFDM.

But in two-field SFDM, there is also L−. This part of the Lagrangian
contains a term ρ2−θ̇

2
−. This contributes a term of order (2mµ̂0/λ4)δ̇

2
− to the

perturbations’ Lagrangian. Here, µ̂0 is the background value of µ̂. This fixes
the instability if 2mµ̂0/λ4 is sufficiently large. Specifically, the condition to
avoid the instability is

a+ > a0
λ4

ᾱ2

m

µ̂
≡ a+min , (3.28)

where ~a+ = −(ᾱΛ/MPl)~∇θ+ is the acceleration due to θ+. In the MOND limit
and using the no-curl approximation, we have a+ =

√
a0ab and this becomes

ab

(
107

µ̂

m

)2

> a0

(
107

λ4

ᾱ2

)2

≡ ā . (3.29)

We have introduced the factor of 107 since 10−7 is a typical value of µ̂/m. Thus,
typically, the instability is avoided for baryonic accelerations larger than ā,

ab & ā . (3.30)

That is, the stability problem does not occur in the superfluid cores of galaxies
if we choose λ4/ᾱ

2 sufficiently small. For our example Milky Way model, the
stability is easily avoided for R . 25 kpc as illustrated in Fig. 3.5, right. This
is how two-field SFDM avoids the stability problem.

To summarize, two-field SFDM can avoid the problems from standard SFDM
discussed above, if we choose m2/ᾱ sufficiently small (to avoid the MOND limit
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problem) and λ4/ᾱ
2 sufficiently small (to avoid the stability problem). In ad-

dition, we must choose m4/λ4 sufficiently large to produce a sufficiently large
dark matter halo and a0 = ᾱ3Λ2/MPl on the order of 10−10m/s2 for standard
MOND phenomenology. It is possible to choose the four parameters ᾱ, m, λ4,
and Λ to satisfy these conditions.

These four parameters can be expressed through four other parameters that
are more closely related to phenomenology,

r0 =
√
λ4

MPl

m2
,

σ

m
=

1

8π

λ2
4

m3
,

a0 =
ᾱ3Λ2

MPl
, ā = a0

(
107

λ4

ᾱ2

)2

.

(3.31)

Here, r0 is the typical length scale of the dark matter halo, σ is the self-
interaction cross-section calculated from L−, a0 is the MOND acceleration
scale, and ā is the acceleration scale below which equilibrium solutions typi-
cally become unstable. One possible choice, discussed in Ref. [73], is

a0 = 0.87 · 10−10 m

s2
,

σ

m
= 0.01

cm2

g
,

r0 = 50 kpc , ā = 10−12 m

s2
.

(3.32)

Two-field SFDM contains two low-energy massless modes, roughly corre-
sponding to the two fields θ+ and θ−. The θ− mode corresponds to the stan-
dard superfluid phonons with sound speed

c2s− =
µ̂

m
, (3.33)

up to small corrections from the f(K+ + K− − m2) term. The θ+ mode
corresponds to the standard superluminal mode of RAQUAL models [4, 79],

c2s+ = 1 + γ2 , (3.34)

where γ is the cosine of the angle between the background MOND force and
the wavevector of the perturbation. This is up to small corrections due to the
mixing with θ−. This superluminality does not necessarily imply problems
with causality, as discussed in Refs. [79, 111, 112].2 Still, we can make cs+
subluminal by replacing f(K+ +K− −m2) in our Lagrangian with

f
(
K+ +K− −m2 + C(∇αθ+∇αθ−)

2
)
, (3.35)

with a constant C & 1/m2. This does not change the equilibrium equations
of motion, because all additional terms are proportional to ∇αθ+∇αθ− which

2It could, however, indicate the lack of a conventional Wilsonian UV completion [113, 114].
In this case, a non-Wilsonian UV completion like classicalization may be possible [115–
118].
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vanishes in equilibrium. But perturbations around equilibrium do change and
cs+ becomes subluminal, c2s+ = (1 + γ2)/(1 + Cµ2) up to small corrections.

So far, we have discussed two-field SFDM only inside the superfluid cores
of galaxies. In principle, the matching to an NFW halo outside the superfluid
core can be done as in standard SFDM. But the specific choice of parameters
Eq. (3.32) raises questions regarding this procedure. Specifically, the NFW
radius RNFW and the thermal radius RT are wildly different for this choice of
parameters. The NFW radius is qualitatively the same as in standard SFDM,
but the thermal radius is many orders of magnitude larger.

The reason for this discrepancy between RT and RNFW is as follows. The
energy density and pressure of the superfluid halo are comparable in standard
SFDM and two-field SFDM. This is all that is needed to calculate the NFW
radius. Therefore, the NFW radius is similar in both models. But the thermal
radius is calculated from the self-interaction rate Γ which depends also on a
different combination of parameters. Specifically, the combination (σ/m)/m4

is much smaller in standard SFDM with the fiducial parameters from Ref. [72]
than in two-field SFDM with the choice of parameters from Eq. (3.32). This
makes Γ and therefore also the thermal radius much larger.

This could be avoided by choosing the parameters of two-field SFDM such
that (σ/m)/m4 is closer to its value in standard SFDM. Still, the conceptual
question remains whether the NFW radius, the thermal radius, or a completely
different radius determines the size of a galaxy’s superfluid core. Indeed, this
same problem is already present in standard SFDM, at least in principle. It
was not noticed so far because RT and RNFW agree reasonably well with
each other for the standard parameter choice from Ref. [72]. But there the
self-interaction cross-section σ/m that enters Γ was chosen ad-hoc and not
calculated from a Lagrangian, so it may easily be unphysical. For different
choices of parameters, these two radii differ wildly also in standard SFDM.
Thus, the transition of the condensed to the not-condensed phase should be
revisited, both in two-field SFDM and in standard SFDM.

At face value, a large thermal radius implies that there is no transition to an
NFW halo on galactic scales. This is in contrast to what is usually expected
in SFDM. One possibility is that the superfluid phase extends to cosmological
scales. Another possibility is that the superfluid ends at a finite radius where
its density and pressure reach zero, i.e. µ̂/m = 0. In this case, the superfluid
would resemble a giant non-relativistic boson star [119–122]3.

To sum up, we have identified three problems in the original SFDM model
which share the same root cause. Namely that the phonon field θ plays a
double role, carrying both the MOND-like force and the superfluid. To avoid
these problem we have proposed a two-field model of superfluid dark matter.

3Strictly speaking, ρDM− does not reach zero. Boson stars don’t have a surface [120].
This is because derivatives of ρ− become important before ρDM− reaches zero. Above,
we neglected these derivatives. They become important when ρDM− drops to about
(m3/λ4MPl)

2. This is much smaller than the cosmological dark matter density in our
case. Thus, for practical purposes, ρDM− does reach zero on galactic scales.

48



3.4. A solution: Two-field SFDM

This model works by having one field for the MOND-like force and another field
for the superfluid. The galactic scale phenomenology is similar as in standard
SFDM. But the transition from the condensed phase to the not-condensed
phase must be reconsidered in both two-field SFDM and in standard SFDM.
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4. Cherenkov radiation from stars in
hybrid models

In this chapter, we will introduce a novel method to constrain hybrid MOND
dark matter models with observations. In particular, hybrid models in which
CDM phenomena on cosmological scales and MOND phenomena on galactic
scales share a common origin, such as SFDM. As we will explain, such mod-
els often allow even non-relativistic objects like stars to lose energy through
Cherenkov radiation. This is unusual. In standard modified gravity models,
only high-energy cosmic rays emit Cherenkov radiation. This allows to con-
strain such hybrid models in a novel way. Below, we explain the general idea
behind these constraints and apply our results to three specific models. For
standard SFDM, we can rule out a MOND limit in the Milky Way for part of
the parameter space, including the fiducial parameter values from Ref. [72].
Two-field SFDM and the SZ model avoid such constraints using two specific
mechanisms that we will discuss. A short summary of these results is available
in Ref. [123].

4.1. Introduction
All hybrid MOND-dark-matter models produce both MOND-like and CDM-
like phenomena, as discussed in Sec. 1.3. Some hybrid models simply introduce
two independent sectors, one of which provides a collisionless fluid on cosmo-
logical scales, while the other provides a MOND-like force on galactic scales.
Examples are the νHDM model [68, 74] or the two-field model from Ref. [77].
In such models, the MOND and CDM phenomena exist independently of each
other. In contrast, other models seek a common origin for the cosmological
and galactic phenomena. Examples are the original SFDM model [71, 72] and
the recently-proposed SZ model [25].

Such models with a common origin for the cosmological and galactic phe-
nomena typically contain a component that plays a double role. That is,
a component that is involved both in providing a significant energy density
(for the CDM phenomenology) and in providing a modified force law (for the
MOND phenomenology). Such a double role may lead to tensions between
these two different roles. This happens for example in SFDM, as discussed
in Chapter 3. This is why we proposed two-field SFDM, which weakens the
link between the cosmological and galactic phenomena. Similarly, for the SZ
model, a MOND-like force on galactic scales tends to induce a too large pres-
sure of the DM-like fluid in the early universe if one is not careful [25]. Here,
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P−K

P

K

Figure 4.1.: The Feynman diagram for Cherenkov radiation. The straight
lines denote matter, the wiggly line denotes the radiation mode,
e.g. a massless modified gravity mode. The incoming matter par-
ticle has four-momentum P and radiates away energy and momen-
tum K. This process is kinematically allowed only if the matter
particle moves faster than the massless mode propagates. Adapted
from Ref. [124].

we will discuss another consequence of components that play such a double
role, namely a novel type of Cherenkov radiation.

Modified gravity theories often contain a massless mode that is directly
coupled to matter in order to provide a modified force law. If this massless
mode propagates with a speed cs that is smaller than the speed of light, matter
can have a velocity V that is larger than cs. In this case, matter loses energy
by emitting radiation in the form of the massless modified gravity mode. This
radiation is called Cherenkov radiation. In general, Cherenkov radiation is
emitted whenever a massless mode is directly coupled to matter and the matter
velocity V is larger than cs. For brevity, we will refer to the speed cs as the
speed of sound, but it is not in general necessary that there is a hydrodynamical
description. In particle physics language, Cherenkov radiation corresponds to
the Feynman diagram shown in Fig. 4.1. A direct coupling to matter implies
that the vertex in this Feynman diagram exists. When V is larger than cs,
the external legs can go on-shell. For smaller V , this process is kinematically
forbidden by energy-momentum conservation.

Usually, gravitational Cherenkov radiation is studied for highly relativistic
matter [79, 124–128]. Indeed, if the sound speed is close to the speed of light,
cs ≈ 1, only relativistic objects can emit Cherenkov radiation, because only
relativistic objects can satisfy V > cs. But if cs is much smaller than the speed
of light, cs � 1, even non-relativistic matter can emit Cherenkov radiation.
An example of this phenomenon is dynamical friction in collisional fluids [129–
131]: If such a fluid constitutes dark matter in galaxies, then stars or globular
clusters may experience dynamical friction. That is, if normal matter moves
faster than the dark matter sound speed, it loses energy through Cherenkov
radiation, i.e. it radiates away sound waves.1

1The standard Chandrasekhar dynamical friction for collisionless fluids [34] is related but
different. E.g. no sound waves are emitted and the friction is due to the (instantaneous)
Newtonian gravitational force. Also, this friction force does not drop off sharply below
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The timescale on which a non-relativistic object loses a significant fraction
of its energy due to this dynamical friction is [129]

τdf = |Ė|/Ekin =
V 3

MG2ρDM
, (4.1)

where we neglected O(1) factors, Ekin is the object’s kinetic energy, M is
its mass, and ρDM is the dark matter density. This timescale is dynamically
relevant for heavy objects since τdf ∝ 1/M . For example, globular clusters in
the Fornax dwarf spheroidal may have a timescale τdf smaller than the age
of the Universe [132, 133]. In comparison, individual stars have much smaller
masses so that the timescale τdf is much larger and not phenomenologically
relevant. For example, τdf ∼ 1020 yr for the Sun in a dark matter fluid with
ρDM = 0.3GeV/cm3.

A standard dark matter fluid is not directly coupled to matter, only indi-
rectly through Newtonian gravity. This is why τdf scales as 1/G2. If, instead,
matter were directly gravitationally coupled to the dark matter fluid, this
timescale would scale as 1/G. This is typical for gravitational Cherenkov ra-
diation in modified gravity models. In this case, the relevant timescale may
be much shorter so that even comparably light objects can lose energy on a
dynamically relevant timescale.

Hybrid MOND-dark-matter models with a common origin for MOND and
CDM phenomena typically allow for Cherenkov radiation. The reason is as
follows. These models have a massless mode that couples to normal matter,
namely the mode that carries the MOND-like force. If there is a common ori-
gin of this MOND-like force and the cosmological DM-like fluid, this massless
mode naturally propagates with a non-relativistic speed. A non-relativistic
propagation speed is natural because the dark matter fluid must be pressure-
less on cosmological scales.

For example, in SFDM, the collisionless fluid on cosmological scales is a non-
relativistic superfluid, which also forms a cored halo on galactic scales. The
MOND-like force is carried by the phonons of this superfluid. Thus, these
phonons are non-relativistic and directly coupled to normal matter. This
allows for Cherenkov radiation. Since the sound speed is non-relativistic, this
allows Cherenkov radiation even from non-relativistic objects. That is, even
stars may lose energy through Cherenkov radiation, i.e. to phonons.

This is a novel type of Cherenkov radiation. It comes from a direct coupling
to matter as in standard modified gravity models. But it also allows for
non-relativistic objects to emit Cherenkov radiation like dynamical friction in
collisional fluids.

We can constrain models allowing for this type of Cherenkov radiation by
requiring that stars do not lose a significant amount of their energy on galactic
timescales. Specifically, either the sound speed cs must be large enough so that
most stars are subsonic and Cherenkov radiation is avoided kinematically. Or

a critical velocity. Still, the order of magnitude of the friction force can be the same in
the collisional and the collisionless case [129].
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the timescale τE on which stars lose a significant amount of energy due to
Cherenkov radiation must be much larger than galactic timescales. We will
show that the timescale τE scales as

τE ∝ 1

c2s g
2
mG

, (4.2)

where cs is the non-relativistic sound speed of the massless mode and gm
√
G

its coupling to matter. Thus, to avoid Cherenkov radiation by having a large
energy loss timescale τE one can make either cs or gm small. This is dif-
ferent from the relativistic limit considered in standard Cherenkov radiation
constraints, where τE cannot be made large by making cs small.

Our results for τE will be a conservative lower bound, because we assume
strict cuts in the phase space integrals in our calculation. We do this for
two reasons. First, to avoid technical difficulties due to the non-linearities
inherent in any MOND model. Second, to rely only on the MOND regime
of each model, i.e. to be independent of the behavior for accelerations larger
than the MOND acceleration scale a0. This makes our calculation simple and
robust. For example, we do not need to consider potential higher-derivative
terms [24] which may become important in the solar system, as has been
considered in both SFDM and the SZ model [25, 72].

These strict cuts also imply that there is no significant recoil. In a quasi-
particle picture: Any single emission carries very little energy and momen-
tum. A macroscopic change happens only after a large number of these soft
emissions. In contrast, for standard gravitational Cherenkov radiation, the
emissions are not soft. Supersonic objects lose a significant amount of energy
and momentum with each emission, i.e. recoil is important [128].

We first demonstrate the general idea and calculations behind our Cheren-
kov constraints for a simple prototype model in Sec. 4.2. In Secs. 4.3, 4.4,
and 4.5 we apply these results, with appropriate modifications, to the origi-
nal SFDM model, two-field SFDM, and the SZ model, respectively. For the
original SFDM model, we can rule out a MOND limit in the Milky Way for a
certain part of the parameter space. In contrast, two-field SFDM and the SZ
model evade our constraints due to two different mechanisms that we explain
in detail. After a short discussion in Sec. 4.6, we summarize in Sec. 4.7.

4.2. Cherenkov radiation in a prototype hybrid model
In this section, we will introduce the general idea behind our Cherenkov radia-
tion constraint using a prototype model. Specifically, we consider a prototype
model for a massless mode with non-relativistic sound speed cs � 1 that di-
rectly couples to matter with a standard gravitational coupling constant. As
discussed above, this is a natural setup for hybrid MOND dark matter mod-
els with a common origin for the cosmological and galactic scale phenomena.
The three models we explicitly discuss below in Secs. 4.3, 4.4, and 4.5 are not
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exactly of the form discussed here. However, we prefer to keep the discussion
simple for now and later adapt our results as needed.

We consider a matter object, for example a star, with mass M and velocity
V at a distance Rp from the center of its host galaxy. We denote the host
galaxy’s baryonic mass inside a radius Rp by Mgal. In general, we use a
capital R for distances to the center of the host galaxy and a lower case r for
distances to the matter object, also referred to as the perturber.

Our main result will be an estimate for the timescale τE on which non-
relativistic objects like stars lose a significant fraction of their energy, if their
velocity V is larger than a critical velocity Vcrit = O(c̄), i.e. if they are
supersonic,

τE =
2 · 108 yr
faf2

p g
2
m

·
(
V/c̄

2

)2

·

(
a0

agalb

)
·
(

V

200 km/s

)
·
(
1.2 · 10−10m/s2

a0

)
.

(4.3)

Here, c̄ sets the scale of the sound speed cs, gm is a model-dependent coupling
constant, a0 is the MOND acceleration scale, and agalb is the Newtonian accel-
eration due to baryons in the host galaxy at the position of the matter object.
The factor fa depends on the relative orientation of ~V and the MOND force of
the background galaxy. The factor fp is determined by the radius where the
perturber’s field becomes smaller than the galaxy’s background field. Both fa
and fp are typically of order 1. For a standard gravitational coupling, gm is
also of order 1. Details are explained below.

Thus, stars with V > Vcrit may lose a significant fraction of their energy on
galactic timescales. This constrains hybrid MOND-DM models. Such models
either need a sound speed large enough such that most stars are subsonic, or
a timescale τE that is much larger than galactic timescales.

4.2.1. Prototype Lagrangian
Consider a model with a real scalar field ϕ that satisfies a MOND-type equa-
tion on galactic scales in the static limit. Then, roughly, ϕ ∝

√
GMgala0 ln(R).

Typically, the Lagrangian for perturbations δ around a galaxy’s static back-
ground field ϕ0 can be written as

L =
1

2

1

c̄2
(∂tδ)

2 − 1

2

(
(~∇δ)2 + (â~∇δ)2

)
− gm√

2MPl

δ δb , (4.4)

after an appropriate definition of δ. We will discuss concrete examples of
this later. Here, gm and c̄ are constants that may depend on the background
field ϕ0, and δb is a perturbation of the baryonic density ρb. Further, â is a
unit vector that points into the direction of the background ~∇ϕ0, i.e. into
the direction of the background MOND force or in the opposite direction,
depending on the signs. The dispersion relation is ω = cs|~k| with the sound
speed

c2s = c̄2(1 + γ2) , (4.5)
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where γ is the cosine of the angle between the perturbation’s wavevector ~k
and â.

As mentioned in Sec. 1.4, a prototypical MOND Lagrangian is

L =
2M2

Pl

3a0

√
|Kϕ|Kϕ − ρb ϕ , (4.6)

where Kϕ = ∇αϕ∇αϕ is a standard kinetic term and a0 is the MOND accel-
eration scale. After rescaling, this gives the Lagrangian Eq. (4.4) with

c̄ = 1 , gm =

√
a0

|~∇ϕ0|
, (4.7)

as the second-order Lagrangian for perturbations δ. Thus, the sound speed is
relativistic (even superluminal [79, 111, 112]) and gm is roughly of order 1 on
galactic scales since |~∇ϕ0| is roughly of order a0 there.

In many hybrid MOND-DM models, we expect this to be still qualitatively
true, except that c̄ will give a non-relativistic sound speed

c̄ � 1 . (4.8)

For example, in standard SFDM, δ corresponds to the phonons of a non-
relativistic superfluid. These have a non-relativistic sound speed so that c̄ � 1.
We will discuss this and other examples in more detail below.

As already mentioned above, the models we discuss below do not exactly
have the form of our prototype Lagrangian. For example, standard SFDM
has an additional term that mixes spatial and time derivatives of δ. Two-field
SFDM has a more complicated coupling gm and no â term for the relevant
mode. The SZ model also has a more complicated coupling gm. We will discuss
how the calculation needs to be adjusted in each case in Secs. 4.3, 4.4, and
4.5, respectively. Nevertheless, the general considerations for our prototype
Lagrangian give a useful qualitative picture.

4.2.2. Cherenkov radiation
Consider a non-relativistic perturber, e.g. a star, that moves in a galaxy.
Following Refs. [130, 131], we model the perturber as a real scalar field χ with
mass M . In the non-relativistic limit, this scalar field’s energy density is

ρχ ≈ 1

2
(χ̇2 +M2χ2) ≈ M2χ2 . (4.9)

We take this as the baryon density’s perturbation δb in our prototype La-
grangian from Eq. (4.4). We can then calculate the perturber’s energy loss
rate

Ė = −
∫

ωdΓ , (4.10)
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where dΓ is the differential decay rate and ω = cs|~k| is the energy of the quasi-
particle that is radiated away. It is important to impose cutoffs in the integral
in Eq. (4.10) that reflect the regime in which our prototype Lagrangian is valid.
For now, we keep the calculation general and assume cutoffs kmin and kmax

with kmin < kmax in the momentum integral. We will discuss the numerical
values of these cutoffs below. We find (see Appendix A),

|Ė| = fa
c̄2

16πV

g2mM2

M2
Pl

(k2max − k2min) ·Θ(V − Vcrit) . (4.11)

Here, fa is a factor that depends on the direction of â relative to ~V . The critical
velocity Vcrit also depends on the direction of ~V and denotes the velocity below
which no Cherenkov radiation is emitted. For ~V ‖ â:

f‖
a =

1

1− (c̄/V )2
, (4.12a)

V
‖
crit =

√
2c̄ . (4.12b)

And for ~V ⊥ â:

f⊥
a =

1√
1 + (c̄/V )2

, (4.13a)

V ⊥
crit = c̄ . (4.13b)

The factor fa does not change the order of magnitude of the energy loss.
Numerically, for V > Vcrit, it varies between 1 and 2 for ~V ‖ â and between 1
and 1/

√
2 for ~V ⊥ â.

Note that Ė scales as c̄2. This is because the correct normalization for using
the standard QFT formalism with the standard Feynman rules is not the one
shown in Eq. (4.4). Instead, the correct normalization is to scale the 1/c̄2

in front of the time derivatives away [130]. This scaling makes the coupling
proportional to c̄ and the amplitude squared proportional to c̄2.

The critical velocity Vcrit reflects the fact that Cherenkov radiation is allowed
only for supersonic perturbers, V > cs. Here, the sound speed cs depends on
the direction of the wave vector ~k of the perturbation relative to that of the
background field â, i.e. cs = c̄

√
1 + γ2 depends on γ. This is why fa and Vcrit

depend on the relative orientation of ~V and â. Without the â-term in our
prototype Lagrangian, this would just be fa = 1 and Vcrit = c̄, independently
of the direction of ~V .

Our result for the energy loss |Ė| scales differently from what Refs. [124–
126, 134] have found for standard gravitational Cherenkov radiation. This is
because these consider the limit of a relativistic perturber and sound speed,
V ≈ 1 and cs ≈ 1, while we consider a non-relativistic perturber and sound
speed, V � 1 and cs � 1.

The timescale on which perturbers like stars lose a significant amount of
their energy E is roughly E/|Ė|. Thus, assuming V > Vcrit, we define the
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timescale τE as

τE ≡ Ekin

|Ė|
≡

1
2MV 2

|Ė|
=

8πV 3M2
Pl

fac̄2g2mMk2max

1

1− (kmin/kmax)2
. (4.14)

As alluded to in the introduction, this scales as 1/G ∝ M2
Pl, which is different

from the standard dynamical friction timescale that scales as 1/G2 ∝ M4
Pl [34,

129, 130]. Stars have both kinetic and potential energy. For simplicity, our
definition of τE includes only the kinetic energy. Including the gravitational
energy does not change the order of magnitude. Indeed, we will now discuss
a concrete example to see that τE is a useful quantity.

For a star in a galaxy, we have

∂t (Ekin + Egrav) = Ė , (4.15)

where Ė is the energy loss through Cherenkov radiation, and Egrav is the
gravitational energy. If Egrav depends only on the star’s position Rp in the
galaxy, we have

∂t

(
1

2
MV 2

)
+MṘp agrav = Ė , (4.16)

where agrav is the gravitational acceleration produced by the host galaxy at
the star’s position. In the MOND-dominated part of the galaxy with a flat
rotation curve, we have agrav =

√
GMgala0/Rp. If we further assume that the

star is always approximately on a circular orbit, we have V 2 =
√
GMgala0,

which is constant. This gives

Ṙp

Rp
= − 1

2τE
. (4.17)

As long as τE depends only weakly on Rp, this means that stars transition to
smaller galactic radii as exp(−t/2τE) due to Cherenkov radiation.

If this calculation is correct, stars in the flat part of the rotation curve lose
energy by transitioning to smaller galactic radii, not by losing their velocity.
This is due to the assumption that the star’s velocity is always the circular
velocity, even as it transitions to smaller radii. In the next subsection, we
show numerically that this assumption is justified.

4.2.3. Orbits of stars emitting Cherenkov radiation
Here, we numerically investigate how stars orbit around a galaxy under the
influence of the non-relativistic Cherenkov radiation derived above. We model
the effect of the Cherenkov radiation as a friction force that reproduces the
energy loss Ė calculated above. Modelling the Cherenkov radiation as a fric-
tion force is justified because the energy loss happens through a large number
of emissions, each of which carries away only a very small fraction of the star’s
energy. This is different from the high-energy Cherenkov radiation emitted
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from ultra-relativistic protons discussed in Refs. [124–126, 134], where a sin-
gle emission carries away a significant fraction of the proton’s energy and thus
produces a significant recoil [128].

For simplicity, we consider the deep-MOND regime of a galaxy and we
consider orbits ~X(t) that would be circular without the energy loss due to
Cherenkov radiation. Concretely, we consider initial conditions Y (t0) = R0,
X(t0) = Z(t0) = 0, Ẋ(t0) = V0, and Ẏ (t0) = Ż(t0) = 0, with equation of
motion

~̈X = ~agrav −
(
Rη · ~̇X

)
η . (4.18)

Here, V0 is the MOND circular velocity (GMgala0)
1/4, ~agrav is the MOND

gravitational acceleration, and η is the coefficient of the friction force due to
Cherenkov radiation. The direction of this friction force is that of Rη

~̇X, where
Rη is a rotation matrix.

For our prototype Lagrangian, the friction force points in the direction of
~V for ~V ⊥ â and ~V ‖ â, i.e. Rη is just the identity matrix. For a general
orientation of ~V , the force is rotated within the X-Y plane. This is discussed
in Appendix A.3. For standard SFDM, the force is rotated in the X-Y plane
even for the special case ~V ⊥ â. This is because spatial and time derivatives
are mixed there, see Sec. 4.3 and Appendix C.5.

We can find the coefficient η by contracting Eq.(4.18) with ~̇X = ~V and then
comparing to the energy balance equation

∂t

(
1

2
MV 2 + Egrav

)
= ĖCherenkov , (4.19)

where Egrav is the gravitational energy and ĖCherenkov is the energy loss rate
due to Cherenkov radiation. This gives

η =
|ĖCherenkov|
M(~V TRη

~V )
=

1

2τE cos θη
, (4.20)

where θη is the angle by which Rη rotates the vector ~V in the X-Y plane.
Since τE scales as V 3, we choose to write

~̈X = ~agrav −
Rη · ~̇X

2 cos θηV 3
· V

3

τE
, (4.21)

where the factor V 3/τE is independent of V and is time-dependent only
through factors like a0/a

gal
b that occur in τE in some models and depend on

the star’s position in the galaxy. For simplicity, we assume such factors to be
roughly constant, but we have numerically verified that the same conclusions
hold also if we include Rp-dependent factors in τE .

We first consider the case where θη = 0 that is relevant for our prototype
Lagrangian for circular orbits. The resulting orbits will not be exactly circular,

59



4. Cherenkov radiation from stars in hybrid models

30 20 10 0 10 20 30
X in kpc

30

20

10

0

10

20

30

Y 
in

 k
pc Without friction

With friction

Figure 4.2.: Orbit of a perturber in the MOND regime of a galaxy with
(dashed orange line) and without (solid blue line) friction due
to Cherenkov radiation. The friction corresponds to a timescale
τE = 5 · 109 yr and acts in the direction of the velocity, i.e.
θη = 0. The initial conditions are X(0) = 30 kpc, Y (0) = 0,
and V0 = 200 km/s. The galaxy mass is chosen such that these
initial conditions give a circular orbit without friction. The orbits
are integrated for a total time of 1010 yr.

that is we do not have ~V ⊥ â exactly. But we expect this to be a reasonable
approximation for the numerical values we consider. For very large τE , it is
clear that the friction term does not have any effect. Similarly, it is clear that
stars will quickly fall in to the center of the galaxy for very small τE . The
most interesting case is when τE is roughly of the order of galactic timescales.
Thus, here we choose as numerical values

R0 = 30 kpc , V0 = 200 km/s ,
τE
V 3

=
5 · 109 yr

(200 km/s)3
. (4.22)

We do not have to choose a mass for the star since the equations are indepen-
dent of this mass. Our choice of V0 and R0 also fixes the host galaxy’s mass,
since we require orbits to be circular in the absence of Cherenkov radiation.
Specifically,

√
GMgala0/Rp = V 2

0 /Rp.
We numerically integrate the equation of motion with these parameters for

1010 yr in Mathematica [103]. The resulting orbit in the X-Y plane is shown
in Fig. 4.2. We see that the star transitions to lower galactic radii due to the
friction force. Fig. 4.3, left, shows that the mean velocity of the star stays
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Figure 4.3.: Left: Velocity of a perturber losing energy through Cherenkov
radiation relative to its initial velocity. The dashed orange line
corresponds to the orbit with friction from Fig. 4.2 (θη = 0). The
solid blue line shows an orbit with the same parameters but with a
force that is rotated according to Eq. (4.24) (θη 6= 0). Right: The
perturber’s position Rp in the host galaxy relative to its initial
position for the same orbits as in the left panel (solid blue line for
θη = 0 and dashed orange line for θη 6= 0), and additionally for
the analytical estimate Eq. (4.23) (dotted green line).

roughly constant during this transition, but there are small oscillations on the
percentage level. Fig 4.3, right, shows the star’s distance to the host galaxy’s
center Rp = | ~X| for both the numerical calculation and for our analytical
estimate from Sec. 4.2.2,

Ṙp

Rp
= − 1

2τE
. (4.23)

Up to small oscillations, the numerical and analytical results agree with each
other. This justifies the analytical estimate from Sec. 4.2.2.

Consider now the case θη 6= 0. For concreteness we take θη from standard
SFDM, where θη = 0 for ~V ‖ â, but θη 6= 0 for ~V ⊥ â, as shown in Ap-
pendix C.5. In both cases, the force stays within the X-Y plane, so that we
do not need to include a Z component. For ~V ⊥ â, we have

tan θη = −1

2

fβ̄V

c̄
, (4.24)

where fβ̄ is a constant that depends on the model parameter β̄, see Sec. 4.3.
The orbit we consider is mostly, but not exactly, circular. Still, we expect that
using Eq. (4.24) is a reasonable approximation. We further adopt

fβ̄ = 1/
√
3 , c̄ = 50 km/s . (4.25)

The value of fβ̄ is the largest possible value for the parameter range we con-
sider, see Sec. 4.3. The value for c̄ is unusually small. This gives an unusually
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large tan θη. Despite this, the resulting orbit is very similar to that for θη = 0.
This can be seen from the dashed orange lines in Fig. 4.3. The oscillations
differ slightly, but the qualitative behavior is the same.

As mentioned above, there may be Rp-dependent factors in τE that we
have so far neglected. We have numerically verified that our conclusions hold
even with an Rp-dependent τE . That is, Eq. (4.23) accurately captures the
transition to smaller radii even in this more complicated case. Of course,
it may not be possible to integrate Eq. (4.23) analytically depending on its
specific Rp-dependence.

4.2.4. Regime of validity
We now come back to the question of how to choose the cutoffs kmin and kmax

in our calculation of the energy loss due to Cherenkov radiation. We will argue
that reasonable values are

kmin ∼ 1/kpc ∼ 10−26 eV , (4.26a)

kmax ∼ fp ·
√

a0
GM

√
agalb

a0
∼ 10−22 eV · fp ·

√
agalb

a0
. (4.26b)

Here, kmin is determined by the scale on which the background field ϕ0 varies.
In galaxies, this is typically O(kpc). The upper cutoff kmax is determined
by the distance from the perturber where its field drops below the galaxy’s
background field, i.e. the distance from where on we can actually treat the
perturber’s field as a perturbation. This is related to the perturber’s MOND
radius rMOND =

√
GM/a0 outside of which the MOND regime begins. It’s

also related to the galaxy’s Newtonian baryonic acceleration agalb = GMgal/R
2
p

at the perturber’s position. For M = M�, we have rMOND ≈ 3 · 10−5 kpc,
corresponding to kmax ≈ 10−22 eV. Since we assume the galaxy to be in the
MOND regime for our calculations, the factor

√
agalb /a0 is smaller than 1, but

large enough such that kmax is still much larger than kmin. The factor fp is a
model-dependent correction factor.

Our method of calculation gives a nonzero energy loss only for kmax > kmin.
This is because these are the limits of a momentum integral, see Appendix A.
Thus, our method gives useful results only for M . 108M�. This means we
can apply our results to stars and also to many globular clusters. But most
dwarf galaxies are too heavy. In the following, we will mainly consider stars.

We choose the cutoffs kmin and kmax to ensure that our prototype Lagrangian
from Eq. (4.4) is valid. The conditions for this are:

• Our calculation assumes that gm and c̄ do not vary on the scales under
consideration. Also, in deriving a Lagrangian like Eq. (4.4) for pertur-
bations, one usually neglects derivatives of the background fields against
derivatives of the perturbations. This restricts us to scales smaller than
∼ kpc since the galactic background varies on this scale. This means we
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4.2. Cherenkov radiation in a prototype hybrid model

need to choose

kmin & 1/kpc . (4.27)

• Close to a star, the baryonic acceleration is larger than the MOND
acceleration scale a0 and we are in the Newtonian regime. Depending
on the model, other terms in the Lagrangian may become important
there. For example, higher derivative terms might become important
[24]. Thus, our prototype Lagrangian may not be valid in this regime. Or
it may be valid but with different parameters gm and c̄. This Newtonian
regime ends at a radius of about

rMOND =
√
GM/a0 . (4.28)

This means we should restrict our calculation to larger scales, i.e. we
should choose

kmax . 1

rMOND
. (4.29)

• Close to a star, the field due to the star dominates compared to the
background field of the host galaxy. Thus, we are not allowed to expand
around the galaxy’s background field. This regime ends roughly at a
radius

rpert = Rp

√
M/Mgal . (4.30)

We can write this as

rpert = rMOND

√
a0

agalb

. (4.31)

Thus, we should choose

kmax . 1

rMOND

√
agalb

a0
. (4.32)

• The estimate Eq. (4.30) gives the radius where the static field of a
static perturber becomes smaller than the host galaxy’s background field.
However, we are interested in a dynamical situation where Cherenkov
radiation is emitted. It is possible that a different condition controls
when the dynamical field due to the perturber is small compared to the
galaxy’s static background field. In general, this cannot be estimated in
a model-independent way. Thus, we introduce a factor fp . 1 to allow
for a smaller cutoff

kmax . fp
1

rMOND

√
agalb

a0
. (4.33)
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For standard SFDM, we have explicitly checked which values of fp are
allowed, see Appendix C.6. We find that we can set fp = 1 for ~V ⊥ â,

f⊥
p = 1 . (4.34)

For ~V ‖ â, we may need to decrease fp a bit. The worst case is for
parallel (rather than anti-parallel) ~V and â with β̄ = 3/2 and a velocity
V that is just barely larger than the critical velocity. In this case, we
estimate (

f‖
p

)worst case
≈ 1/

√
2.8 . (4.35)

For larger values of β̄, larger velocities, or for anti-parallel ~V and â,
we can choose f

‖
p much closer to 1. As explained in Appendix C.4,

introducing cutoffs in the way we do means we cannot take V → Vcrit

without perturbations becoming large. Thus, here we restrict ourselves
to V at least 1% away from Vcrit. This does not significantly affect any
of our conclusions.

• We need to choose kmax < 2M(V − c̄
√
2). This is the standard cut-

off in Cherenkov radiation calculations, see Appendix A. However, nu-
merically, this is not relevant in our case because the other cutoffs we
considered are much more restricting. Concretely, we have 2MV ∼
1063 eV · (M/M�) · (V/200km/s). This is the reason our energy loss be-
haves like a friction force without a significant recoil. We restrict k to
be much smaller than the perturber’s momentum MV .

In principle, there can be additional model-dependent cuts, i.e. further
restrictions on the validity of our prototype Lagrangian. Here, we assume
that there are no such cuts or, at least, that they are less restricting than the
cuts we already considered above.

As long as kmin � kmax, the result Eq. (4.14) for the timescale τE is domi-
nated by kmax. Then, with our particular choice of kmin and kmax,

τE =
V 3

faf2
p c̄

2g2ma0
· a0

agalb

. (4.36)

This is independent of the perturber’s mass, but depends on the position of
the perturber in the galaxy. Numerically,

τE =
2 · 108 yr
faf2

p g
2
m

·
(
V/c̄

2

)2

·

(
a0

agalb

)
·
(

V

200 km/s

)
·
(
1.2 · 10−10m/s2

a0

)
.

(4.37)
Thus, for gm of order 1 and V > Vcrit, stars in galaxies lose a significant fraction
of their energy on timescales τE which are not much larger than typical galactic
timescales.

As already mentioned above, our result for |Ė| is a conservative lower bound.
The actual energy loss may be higher. In particular, modes with k > kmax

and k < kmin may contribute to the energy loss, but are not considered here.
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4.2. Cherenkov radiation in a prototype hybrid model

4.2.5. Constraints from Cherenkov radiation
The energy loss from Cherenkov radiation rules out models unless either their
Vcrit is large enough to make most stars subsonic or their τE is large enough
so that supersonic stars do not lose much energy on galactic timescales. That
is, we need for most stars

V > Vcrit or τE > τmin , (4.38)

for some reasonable minimum timescale τmin. We will now make this more
concrete.

Consider first the rotation curve of a disk galaxy with approximately circular
orbits. In this case, we can assume ~V ⊥ â since â (or −â) points to the center
of the galaxy. Then,

Vcrit = c̄ , τE =
V 3

f⊥
a f2

p c̄
2g2ma0

a0

agalb

, (4.39)

with f⊥
a =

√
1 + (c̄/V )

−1. Below, it will be useful to allow a more general
form of Vcrit and f⊥

a ,

Vcrit = fV c̄ , f⊥
a =

1

A
√
1 +B(c̄/V )2

, (4.40)

for some constants fV , A, and B. The condition τE > τmin can then be written
as √

1 +B(c̄/V )2

(c̄/V )2
> τmin

f2
p g

2
ma0

V

agalb

a0

1

A
≡ X . (4.41)

In terms of c̄,

c̄ < V ·

√
B +

√
B2 + 4X2

2X2
≡ V · fX . (4.42)

Thus, for rotation curves, the two conditions from Eq. (4.38) become

c̄ > V/fV or c̄ < V · fX . (4.43)

A set of model parameters is ruled out if the measured rotational velocity V
satisfies neither of these two conditions. Specifically, each measured point in
a rotation curve rules out c̄ in the interval

(fXV, V/fV ) , (4.44)

because if c̄ lies in this interval, neither c̄ > V/fV nor c̄ < V fX can be
satisfied. This constraint applies only for fX < 1/fV , of course. That is, we
get a constraint only for

X > fV

√
B + f2

V , (4.45)
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which translates to a maximum velocity,

V < f2
p g

2
m

τmina0

AfV

√
B + f2

V

agalb

a0
. (4.46)

For A = B = fV = 1, this is,

V < 2700
km

s
· f2

p g
2
m ·

(
agalb

a0

)
·
(

τmin

109 yr

)
·
(

a0
1.2 · 1010 m

s2

)
. (4.47)

Thus, for gm of order 1, rotation curves usually do give a constraint.
For general orbits, we can assume neither ~V ⊥ â nor ~V ‖ â. We can still

obtain simple constraints if we take the most conservative values of Vcrit and
τE . That is, we can take Vcrit = V

‖
crit and fa = f⊥

a . Then, we can rule out an
interval

(fXV, V/fV ) , (4.48)

with fV =
√
2.

4.3. Application to standard SFDM
We will now use the results of Sec. 4.2 to constrain standard SFDM. We assume
the MOND limit (~∇θ)2 � 2mµ̂. In Sec. 3.2 we estimated that many galaxies
cannot reach this MOND limit. Here, we assume the MOND limit anyway for
two reasons. First, this simplifies the equations so that our results for stan-
dard SFDM serve as an illustrative example of how one can constrain hybrid
models using Cherenkov radiation from non-relativistic objects. Second, our
results provide an independent method to rule out that a given galaxy is in
the MOND limit. That is, compared to our estimates from Sec. 3.2, our Che-
renkov radiation constraints can rule out a MOND limit for a different set of
galaxies and using a different physical mechanism. Of course, our constraints
can be avoided by simply allowing galaxies to go outside the MOND limit.
But the MOND limit is one of the main motivations behind SFDM. Knowing
under which circumstances such a MOND limit can exist is important.

We will use the observed Milky Way rotation curve to rule out a MOND
limit in the Milky Way for certain values of the SFDM model parameters.
Specifically, assuming a MOND limit, we find constraints on the parameter
combination

√
ᾱ/m for each fixed value of the parameter β̄, which parametrizes

finite-temperature corrections. For the fiducial value β̄ = 2 from Ref. [72], we
will rule out roughly the interval

0.34 eV−1 .
√
ᾱ

m
. 3.29 eV−1 . (4.49)

This includes the fiducial value
√
ᾱ/m = 2.4 eV−1 from Ref. [72].
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4.3.1. Perturbations
We consider perturbations on top of a background galaxy in the MOND limit
(~∇θ)2 � 2mµ̂. We further consider the MOND regime ab < a0, so that
potential higher-order terms are negligible, as discussed in Sec. 4.2.4. Then,
the perturbed Lagrangian is (see Appendix B)

L =
1

2
δ̇2c̄−2 − 1

2
(~∇δ)2 − 1

2
(â~∇δ)2 + c̄−1(3− β̄)f̄β̄ â

~∇δδ̇ − gm√
2MPl

δ δb , (4.50)

with

c̄ = 3f̄β̄
|~aθ0 |
a0

ᾱ2Λ

m
, gm =

√
a0
|aθ0 |

, â =
~∇θ0

|~∇θ0|
= − ~aθ0

|aθ0 |
, (4.51)

and

f̄β̄ =
1√

3
(
β̄ − 1

) (
β̄ + 3

) . (4.52)

This has the form of our prototype Lagrangian from Eq. (4.4) up to the term
that mixes spatial and time derivatives.

The quantity c̄ determines the sound speed up to order 1 corrections, which
we discuss below. This gives a non-relativistic sound speed, as expected for
a non-relativistic superfluid. For the fiducial parameters from Ref. [72] (m =
1 eV, ᾱ = 5.7, Λ = 0.05meV, β̄ = 2), we have

c̄ = 1.25 · 10−3 |~aθ0 |
a0

= 375 km/s · |~aθ0 |
a0

. (4.53)

Since we consider the MOND regime ab < a0, we have |~aθ0 |/a0 . 1. Thus,
indeed c̄ � 1. The full dispersion relation is, see Appendix B,

ω = c̄|~k|
(√

1 + γ2(1 + f2
β̄
) + fβ̄γ

)
, (4.54a)

with fβ̄ ≡ (3−β̄)f̄β̄. This is the standard result from our prototype Lagrangian
up to corrections from fβ̄, i.e. up to corrections from the mixing of spatial
and time derivatives.

Unfortunately, due to this mixing of spatial and time derivatives, our stan-
dard calculation of the energy loss Ė from Appendix A based on the standard
QFT formalism does not apply here. Instead of adjusting the QFT formal-
ism for our case at hand, we instead choose to do a classical calculation for
standard SFDM. This calculation is done in Appendix C and follows that of
the standard electromagnetic Cherenkov radiation from Ref. [135]. The result
from the classical calculation has the same form as that from our previous QFT
calculation, but with slightly adjusted critical velocities Vcrit and â-dependent
factors fa to account for the mixing of spatial and time derivatives. We also
use this classical calculation to explicitly determine the factor fp. That is,
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we check when perturbations are small compared to the galaxy’s background
field. We find that we can use fp = 1 for our purposes, see Appendix C.6 and
Sec. 4.2.4.

For ~V ‖ â, the critical velocity Vcrit is

V
‖
crit = c̄

(√
2 + f2

β̄
± fβ̄

)
. (4.55)

The plus and minus signs are for parallel and antiparallel orientations, re-
spectively. For the parallel case, V ‖

crit can be significantly larger compared to
our prototype Lagrangian where V

‖
crit =

√
2c̄. For the antiparallel case, V ‖

crit

can be significantly smaller. The timescale τE has the same form as for our
prototype Lagrangian but with a modified factor fa,

f‖
a =

1

1− (c̄/V )2 ∓ 2fβ̄(c̄/V )
, (4.56)

where the minus sign is for the parallel and the plus sign for the antiparallel
case. Depending on this sign, f‖

a is smaller or larger than for our prototype
Lagrangian where f

‖
a = 1/(1 − (c̄/V )2). Both V

‖
crit and f

‖
a agree with our

standard calculation in the fβ̄ = 0 case.
For ~V ⊥ â, the critical velocity Vcrit is

V ⊥
crit = c̄

√
2

2 + f2
β̄

. (4.57)

In this case, some angular integrals are difficult to calculate analytically, see
Appendix C.4. This makes it difficult to analytically obtain the timescale τE .
But we can do a somewhat more conservative estimate and find as a lower
limit on f⊥

a ,

f⊥
a =

1√
2

1

1 + f2
β̄

. (4.58)

The critical velocity V ⊥
crit reproduces our standard result for the fβ̄ = 0 case.

But f⊥
a does not due to the more conservative estimate, see Appendix C.4.

4.3.2. Constraints
We can now put quantitative constraints on standard SFDM using the general
results from Sec. 4.2.5. But first we give a qualitative discussion.

In the MOND limit, a good approximation is |~aθ0 | =
√

a0a
gal
b with agalb =

GMgal/R
2
p. This gives

c̄ =
3f̄β̄√
8π

√
ᾱ

m

√
Mgal

MPl

1

Rp
. (4.59)
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Figure 4.4.: Critical velocity V ⊥
crit (solid orange line) and rotation curve Vrot

(dashed blue line) of a galaxy with mass Mgal = 5 · 1010M� con-
centrated at its center in standard SFDM with the fiducial param-
eter values from Ref. [72]. The shaded region is not in the MOND
regime since agalb > a0. The dotted blue line shows the asymptotic
rotation velocity Vrot,asympt. Stars emit Cherenkov radiation when
they move faster than the critical velocity.

For circular orbits, the critical velocity is V ⊥
crit = c̄

√
2/(2 + f2

β̄
). This critical

velocity scales as 1/Rp inside a given galaxy. In contrast, rotation curves are
flat at large Rp. Thus, there is a galactocentric radius where Vcrit drops below
the rotation curve velocity Vrot. Beyond this radius, stars with velocity Vrot

lose energy on timescales τE . This is illustrated in Fig. 4.4.
For standard SFDM, the timescale τE is

τE =
V 3

faf2
p c̄

2a0
·
√

a0

agalb

. (4.60)

This depends on parameters of the model mainly through the factor c̄−2. In
principle, a0 = ᾱ3Λ2/MPl also depends these parameters. But a0 is mostly
fixed by requiring standard MOND-like rotation curves. Thus, τE depends
on the model parameters as τE ∝ 1/c̄2 so that our Cherenkov constraints
can be avoided in two ways: Either, c̄ is sufficiently large so that most stars
are subsonic and therefore don’t emit Cherenkov radiation since Cherenkov
radiation is kinematically forbidden. Or c̄ is sufficiently small so that stars
that are supersonic lose only little energy through Cherenkov radiation.

We will now make this more quantitative using the results from Sec. 4.2.5.
For simplicity, we consider three different values of β̄

β̄ ∈ {3/2, 2, 3} . (4.61)
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This covers the range of plausible values for β̄. Namely, β̄ must be larger than
3/2 to fix an instability2 and it must be smaller than 3 so that the superfluid
energy density is positive [71]. The fiducial value from Ref. [72] is β̄ = 2. For
a fixed value of β̄, we have c̄ ∝

√
ᾱ/m. This allows us to constrain

√
ᾱ/m

given a value of β̄.
Consider first rotation curves with approximately circular orbits. As dis-

cussed in Sec. 4.2.4 and Appendix C.6, this means we can set fp = 1. In terms
of the notation from Sec. 4.2.5, we have

B = 0 , A =
√
2(1 + f2

β̄) , fV (β̄) =

√
2

2 + f2
β̄

. (4.62)

Then, we can rule out c̄ in the interval (fXV, V/fV ) given that V is smaller
than a certain maximum velocity, as discussed in Sec. 4.2.5. For standard
SFDM, this maximum velocity requires

V <
τmin

√
a0GMgal√
2Rp

1 + 1
2f

2
β̄

1 + f2
β̄

. (4.63)

As discussed in Sec. 4.2.5, this is usually satisfied for rotation curves. Then,
we can rule out

√
ᾱ/m in the interval

V Rp

f̄β̄

√
8π

3

√
MPl

Mgal
·
(
fX , 1/fV (β̄)

)
, (4.64)

where we used the notation a · (x1, x2) ≡ (ax1, ax2).
Here, the quantity X is

X =
τmin

√
a0GMgal

RpV
√
2(1 + f2

β̄
)
. (4.65)

In standard SFDM, a0 is given by ᾱ3Λ2/MPl. Thus, strictly speaking, the lower
boundary of the interval in Eq. (4.64) depends on a different combination of
model parameters than the upper boundary, which depends only on

√
ᾱ/m.

However, in practice this is not important. Namely, fX depends on a0 only
very mildly, as a

−1/4
0 . For a useful MOND regime, we must choose a0 close to

10−10m/s2 [11, 72]. Thus, to get a conservative estimate, we simply take the
unusually small but fixed value

ā0 ≡ 0.5 · 10−10m/s2 , (4.66)

in fX instead of a0 = ᾱ3Λ2/MPl. That is, we take
√
ᾱ/m in the following

interval to be ruled out

V Rp

f̄β̄

√
8π

3

√
MPl

Mgal
·
(
fX(ā0), 1/fV (β̄)

)
. (4.67)

2In the MOND limit, β̄ > 1 is sufficient, but more generally β̄ > 3/2 is needed.
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Here, fX(ā0) means fX evaluated at a0 = ā0.
We can now rule out various intervals of

√
ᾱ/m using the observed Milky

Way rotation curve. We assume a Milky Way baryonic mass of Mgal = 6 ·
1010M� following Refs. [73, 85], and the rotation curve data from Refs. [104,
107]. We choose τmin = 1010 yr, i.e. stars should not lose a significant fraction
of their energy in 1010 yr. For β̄ = 3/2, 2, and 3, we list the excluded intervals
of

√
ᾱ/m from three different galactic radii in Table 4.1. These radii are,

roughly, Rp = 15 kpc, 20 kpc, and 25 kpc. The ruled out intervals from these
three different radii overlap. Thus, taken together they rule out

√
ᾱ/m in a

larger interval√
6 · 1010M�

Mgal

√1010 yr

τmin

(
6 · 1010M�

Mgal

)1/4

ql, qh

 · eV−1 , (4.68)

for some dimensionless numbers ql and qh. We have

ql = 0.25 , qh = 2.34 , for β̄ = 3/2 ,

ql = 0.34 , qh = 3.29 , for β̄ = 2 ,

ql = 0.51 , qh = 5.01 , for β̄ = 3 .

(4.69)

This also rules out the fiducial value
√
ᾱ/m ≈ 2.4 eV−1 for β̄ = 2 from Ref. [72].

The precise ruled out values of
√
ᾱ/m depend on our choice for Mgal and

τmin, as shown in Eq. (4.68). For example, Ref. [104] adopts the somewhat
higher baryonic Milky Way mass Mgal = 7.4 · 1010M�. This would decrease
both the upper and lower boundaries of the excluded

√
ᾱ/m interval by about

10%. The value of τmin enters our result as the inverse square root, but affects
only the lower interval boundary. Uncertainties in the measured rotation curve
affect both the upper and lower boundaries of the excluded

√
ᾱ/m interval, see

Eq. (4.68). However, the formal errors in the rotation curve from Refs. [104,
107] are less than 5% for Rp . 25 kpc. Thus, the uncertainties in Mgal and
τmin are the dominant sources of uncertainty in our constraints.

It may be possible to push the upper boundary of our excluded interval
of

√
ᾱ/m even higher by considering hypervelocity stars (HVS) or globular

clusters (GCs). The reason is that HVS and GCs can be at much larger
galactic radii and have much higher velocities than the Milky Way stellar
rotation curve. Thus, the quantity V Rp can be much larger, which allows
to reach much higher values of

√
ᾱ/m. However, in practice, this is more

complicated, because HVS and GCs cannot be assumed to be on circular
orbits. Thus, we are forced to make various worst-case assumptions if we
know only the distance to the host galaxy’s center and total velocity and
nothing more about the orbit. That is, in general, we are forced to assume
the worst-case critical velocity Vcrit and direction-dependent factors fa and fp.
We must also choose a very conservative timescale τmin since we cannot, in
general, assume the HVS or GC to have been at its current position for most
of the host galaxy’s lifetime.
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Rp V (ql, qh) for β̄ = 3/2 (ql, qh) for β̄ = 2 (ql, qh) for β̄ = 3
kpc km/s

15.2 220+1
−1 (0.25, 1.56) (0.34, 2.19) (0.51, 3.34)

20.3 203+3
−3 (0.35, 1.92) (0.46, 2.70) (0.69, 4.11)

24.8 202+6
−6 (0.47, 2.34) (0.62, 3.29) (0.93, 5.01)

Table 4.1.: Assuming a MOND limit in the Milky Way, we rule out
√
ᾱ/m

intervals (ql, qh)·eV−1 from the observed Milky Way rotation curve
at different radii. We assume Mgal = 6·1010M� and τmin = 1010 yr.
See Eq. (4.68) for how the exclusion interval depends on these
quantities. The rotation curve data is that of Ref. [107] adopted to
the assumptions of Ref. [104], as also used in Sec. 2.2. The different
radii taken together exclude a larger total interval, see Eq. (4.69).

As a result, we cannot get good constraints from HVS or GCs with the
simple procedure we use for the Milky Way rotation curve. Doing better is
certainly possible but requires a more detailed modelling of their orbits. We
leave such a more involved analysis for future work.

The parameter combination
√
ᾱ/m that we have constrained is phenomeno-

logically important since the superfluid energy density is directly proportional
to powers of it. For example, in the MOND limit and using the no-curl ap-
proximation,

ρSF = 2

(
1− β̄

3

)(
m√
ᾱ

)2

MPl

√
a0 a

gal
b , (4.70)

where we used Λm3 = (m/
√
ᾱ)3

√
a0MPl. Thus, our constraints likely have

further implications for situations where the superfluid energy density is im-
portant, for example for strong lensing. Investigating this is left for future
work.

Our results rule out that the Milky Way is in the MOND limit (~∇θ)2 �
2mµ̂ for a certain range of parameters. As mentioned above, this does not
completely rule out this range of parameters. Being in the MOND limit is one
of the main motivations behind SFDM. Still, we might just accept that the
Milky Way is outside the MOND limit3 and hope that this makes it one of only
few outliers, while most galaxies actually are in the MOND limit. This should
be checked in future work by doing a similar analysis for a comprehensive

3Indeed, the Milky Way model discussed in Sec. 2.2 goes outside the MOND limit (~∇θ)2 �
2mµ̂, see Sec. 3.2. But we have verified that one can adjust the µ̂ boundary condition
in order to obtain other solutions with ε∗ . 0.15 at the radii 15 kpc . R . 25 kpc that
are relevant here. The condition ε∗ � 1 is equivalent to the condition (~∇θ)2 � 2mµ̂, see
Sec. 3.2. So equilibrium solutions in the MOND limit may, barely, be possible. The price
to pay for this is that the superfluid core ends shortly after the last measured rotation
curve data point. The associated dark matter mass is probably too small to be plausible,
see Sec. 2.2. Our Cherenkov radiation constraint rules out such solutions without relying
on knowing which dark matter masses are or are not plausible in SFDM.
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sample of galaxies with measured rotation curves. But see the discussion in
Sec. 4.6 for why this may be more complicated than one might naively expect.

4.4. Application to two-field SFDM
Standard SFDM runs into problems due to the double role played by the
phonon field θ, as discussed in Chapter 3. To avoid these problems, we pro-
posed two-field SFDM which splits the two roles of the phonon field θ between
two separate fields, see Sec. 3.4. We will now check whether or not this model
is affected by our Cherenkov radiation constraint for hybrid models.

Two-field SFDM contains two gapless low-energy modes, roughly corre-
sponding to the two fields θ+ and θ−. Of these, only the mode corresponding
to θ− has a non-relativistic sound speed

cs =

√
µ̂

m
, (4.71)

so that only this mode can potentially be radiated away by stars as Cherenkov
radiation. The coupling of this mode to normal matter is suppressed because
θ− does not directly couple to normal matter. This is because only θ+ carries
the MOND-like force in this model, not θ−. Cherenkov radiation is possible
only through a mixing of θ− and θ+ from the f(K+ +K− −m2) term of the
Lagrangian, see Eq. (3.22).

We can write down a low-energy effective Lagrangian for this non-relativistic
mode. This gives our prototype Lagrangian Eq. (4.4) without the â term and
with (see Appendix D)

c̄ =

√
µ̂

m
, gm = −

√
λ4

ᾱ

γ

1 + γ2
a0

|~aθ0+ |
. (4.72)

This is different from our prototype model in two ways. First, since there is
no â term, we have cs = c̄ without the

√
1 + γ2 factor. As a result, the critical

velocity Vcrit is Vcrit = c̄ independently of the orientation of ~V . Similarly, we
have fa = 1 independently of the orientation of ~V . Otherwise, the energy-loss
time scale τE is not affected by the missing â term. Second, the coupling gm
depends on γ. This requires a more careful evaluation of the integrals in the
Ė calculation, as we will discuss below.

Numerically, the combination
√
λ4/ᾱ that controls the coupling gm is small.

Specifically,
√
λ4

ᾱ
=

1

107/2

(
ā

a0

)1/4

, (4.73)

where ā � a0 is the minimum baryonic acceleration below which the equilib-
rium on galactic scales typically becomes unstable, see Sec. 3.4. Thus, this
non-relativistic mode does not have a standard gravitational coupling constant
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Figure 4.5.: Sound speed cs and rotation curve vrot for the two-field SFDM
Milky Way model from Sec. 3.4. The shaded region is not in the
MOND regime since agalb > a0.

of order
√
G to normal matter. This is because this mode couples to normal

matter only indirectly through a mixing between θ+ and θ−. This enhances
the timescale τE .

In addition to the cutoffs discussed in Sec. 4.2, this model requires another
model-dependent cutoff, see Appendix D.1 or Ref. [131]. Namely, the disper-
sion relation ω = csk of the non-relativistic mode receives corrections from
higher orders of k for k & mcs. Thus, our standard calculation applies only
if we introduce a cutoff of order mcs. However, in practice this is not rele-
vant since the other cutoffs introduced in Sec. 4.2 are much more restrictive.
Roughly, the mcs cutoff becomes relevant only if mcs . 10−22 eV. Typical
values of cs are of order 100 km/s. Thus, the mcs cutoff is relevant only if
m . 10−18 eV which is much smaller than typical masses in two-field SFDM
[73] (see also Sec. 3.4).

In many galaxies, at least some stars will be supersonic and lose energy
through Cherenkov radiation, since typically cs =

√
µ̂/m ∼ O(100 km/s), as

mentioned above. The precise value of cs depends on the boundary condi-
tion µ∞ of µ̂ which controls how much dark matter a galaxy contains [73].
Typically, cs falls off as a function of galactocentric radius since µ̂/m does.
Indeed, in spherical symmetry µ̂′(r)/m = −G(Mb+MSF)/r

2 < 0. In contrast,
rotation curves become constant at large radii. Thus, as in standard SFDM,
there is typically a critical radius Rc beyond which the rotational velocity is
supersonic and stars emit Cherenkov radiation. This is illustrated in Fig. 4.5,
which shows the sound speed and rotation curve of the Milky Way model
discussed in Sec. 3.4.

We can analytically estimate the critical radius Rc as a function of how much
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4.4. Application to two-field SFDM

the superfluid’s gravitational pull contributes to the rotation curve velocity.
This is because both the superfluid energy density ρDM and the sound speed
c2s are proportional to µ̂/m. For given model parameters, a smaller superfluid
mass implies a smaller sound speed which means Rc becomes smaller. Another
way to say this is that more MOND-like rotation curves lead to more stars
emitting Cherenkov radiation. Quantitatively, we have

c2s =
λ4

2m4
ρDM =

1

2

r20
M2

Pl

ρDM . (4.74)

For simplicity, we assume a spherically symmetric superfluid. Since ρDM de-
creases with distance to the host galaxy’s center, we have

ρDM ≡ fρρ̄DM < ρ̄DM , (4.75)

where ρ̄DM is the dark matter density averaged over a sphere of radius R.
Then,

c2s =
3fρr

2
0

R
· aDM , (4.76)

where aDM = GMDM(R)/R2 is the Newtonian gravitational acceleration due
to the superfluid. The condition for a supersonic rotation curve, V 2 > c2s, then
becomes

3fρ r
2
0

R2
− 1 <

ab + a+
aDM

, (4.77)

where we used V 2/R = ab+a++aDM with the MOND-like acceleration a+ due
to the field θ+ and the Newtonian baryonic acceleration ab. Rotation curves
in two-field SFDM are MOND-like if the contribution from aDM is small. If we
allow aDM to change V by at most a fraction εV , the rotation curve velocity
is supersonic beyond a critical radius Rc given by

Rc

r0
=
√
6fρ

√
εV + 1

2ε
2
V

1 + εV
. (4.78)

For small εV , this is

Rc = 39 kpc · fρ ·
(

r0
50 kpc

)
·
√

εV
10%

. (4.79)

For the Milky Way model discussed in Sec. 3.4, the contribution from aDM

changes the rotation curve by about εV = 6% at R = 30 kpc where the dark
matter density is smaller than its average by about a factor fρ = 0.86. Thus,
Rc ∼ 39 kpc is likely a conservative estimate. Indeed, in this Milky Way model
the rotation curve is supersonic already at R ≈ 11 kpc, see Fig. 4.5.

This confirms that stars in many galaxies will likely be supersonic and lose
energy on timescales τE . In principle, this might be avoided by choosing model

75



4. Cherenkov radiation from stars in hybrid models

parameters such as r0 differently. But since r0 also controls the superfluid
energy density, one must be careful not to produce too much or too little dark
matter mass to account for strong lensing, see Sec. 2.1.

In any case, two-field SFDM can avoid our Cherenkov radiation constraints
if τE is larger than galactic timescales. As mentioned above, we need to revisit
our calculation to include the factor of γ/(1 + γ2) in gm. If, for simplicity, we
first set γ = 1 in gm, we can use our standard calculation and find

τγ=1
E =

V 3

f2
p g

2
mc̄2a0

a0

agalb

= 4
V 3

f2
p c̄

2a0

a0

agalb

ᾱ2

λ4

(
|~aθ0+ |
a0

)2

= 4 · 107 V 3

f2
p c̄

2a0

√
a0
ā

.

(4.80)

Here, we assumed the MOND limit value aθ0+ =
√
a0a

gal
b so that the factor

a0/a
gal
b cancels. Assuming the MOND limit is usually justified in two-field

SFDM, see Sec. 3.4. In the special cases ~V ⊥ â and ~V ‖ â, the corrections due
to the factor γ/(1 + γ2) in gm are calculated in Appendix A.4,

τ
‖
E =

τγ=1
E

4
·
(
cs
V

+
V

cs

)2

, (4.81)

τ⊥E =
τγ=1
E

4
·
25/2

(
1− 1

2

(
cs
V

)2)3/2
1−

(
cs
V

)2 . (4.82)

Thus, the timescale τE is significantly enhanced for fast stars with ~V ‖ â and
for barely supersonic stars with ~V ⊥ â. Otherwise, the order of magnitude is
that of τγ=1

E ,

τγ=1
E =

8 · 1016 yr
f2
p

·
(
V/c̄

2

)2

·
(

V

200 km/s

)
·
(
1.2 · 10−10m/s2

a0

)
·
√

10−2a0
ā

.

(4.83)

As discussed in Sec. 3.4, ā must be much smaller than a0 for a useful MOND
limit. Thus, for reasonable values of ā, the timescale τE is much larger than
galactic timescales. That is, our method does not constrain two-field SFDM.
The reason is that the non-relativistic gapless mode couples to normal matter
only indirectly through a mixing.

4.5. Application to the SZ model
Recently, Skordis and Złośnik proposed a novel type of hybrid MOND dark
matter model [25]. This model has a cosmological limit that reproduces the
CMB, a static limit that reproduces MOND, and has gravitational tensor
modes that propagate at the speed of light. In the cosmological limit, a scalar
field φ(t) is responsible for a dark fluid that plays the role of dark matter. In
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the late-time static limit relevant for galaxies, this model has φ = Q0 · t + ϕ
where ϕ carries the MOND-like force and Q0 is a constant. That is, the field
φ plays a double role, analogously to the phonon field θ in standard SFDM.
Cosmological and galactic phenomena share a common origin. Therefore, our
method is, in principle, able to constrain this model.

This SZ model is complex and we will not attempt a full calculation of
perturbations on top of a galactic background. Instead, we follow Ref. [25] and
consider perturbations on top of the late-time Minkowski background with φ =
Q0t. We assume that this gives results that are at least qualitatively valid in
galaxies. Concretely, we consider gαβ = ηαβ + hαβ with the Minkowski metric
ηαβ , the vector field Aα = (−1 + 1

2h00,
~A), and the scalar field φ = Q0 · t+ ϕ.

Then, the second-order Lagrangian reads [25]

L =KB| ~̇A− 1

2
~∇h00|2 − 2KB

~∇[iAj]
~∇[iAj]

+ 2 (2−KB)

(
~̇A− 1

2
~∇h00

)
· ~∇ϕ+ 2(2−KB)Q0

~Ai

(
−1

2
∂ih00

)
− (2−KB)(1 + λs)

(
~A2Q2

0 + (~∇ϕ)2 + 2Q0A
i(∂iϕ)

)
+ 2K2

(
ϕ̇+

1

2
h00Q0

)2

+
1

M̃2
Pl

Tαβh
αβ , (4.84)

where we left out the standard metric perturbations from the Ricci scalar R
for simplicity and we set h0i = 0. Here, λs = 2J ′(0)/(2 − KB) where the
function J determines the MOND interpolation function [25]. The quantities
KB, Q0, K2, and M̃Pl are constants.

There is a peculiar term proportional to K2Q
2
0h00 in this Lagrangian. This

acts as a kind of mass term for h00 in the static limit, as discussed in Ref. [25].
A useful static limit with a long-range gravitational force on galactic scales
then requires √

K2Q0 . 1/Mpc . (4.85)

For simplicity, we further assume

2−KB = O(1) , 1 + λs = O(1) . (4.86)

The first condition is fulfilled as long as KB is not too close to 2. This is the
case for the concrete numerical examples considered in Ref. [25]. The second
condition is natural in our case, since for an actual galactic background J ′(0)
would be replaced by J ′((~∇ϕ)2) ∼ |~∇ϕ|/a0 . 1.

There is one scalar mode relevant at low energies [25] (see also Appendix E).
This mode has sound speed

cs =
c′√

K2KB
, c′2 = (2−KB)

(
1 +

1

2
λsKB

)
. (4.87)
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Since we did not include the galaxy’s background field, there is no term (â~∇ϕ)2

in the Lagrangian and the sound speed is cs = c̄ without a factor
√
1 + γ2.

In a full calculation including the galaxy’s background field, we expect such a
term to be present. Here, we assume that such corrections do not change the
order of magnitude of our result.

Since c′ = O(1), stars with velocity V are supersonic if, roughly,

√
K2KB & 103 ·

(
200 km/s

V

)
. (4.88)

In this case, stars may lose energy to Cherenkov radiation, if this mode is
coupled to matter. One possibility to avoid constraints is to choose the com-
bination K2KB large enough to make stars subsonic. But it turns out that
this is not necessary. The reason is that the coupling to matter is sufficiently
suppressed to make the energy-loss time scale τE much larger than galactic
timescales, as we will now explain.

The field ϕ mediates a MOND-like force in galaxies. Therefore, in the static
limit ω = 0, this field is coupled to normal matter by a standard gravitational
coupling. Since the low-energy scalar mode discussed above contains the field
ϕ [25], one might expect this coupling to survive also for dynamical modes,
ω > 0. However, it turns out that this coupling is suppressed by powers of
Q0/(

√
KBω) for dynamical modes with ω � Q0/

√
KB. This can be seen in

an explicit calculation in Appendix E and we give a heuristic argument in
Sec. 4.5.1. On-shell and ignoring order 1 factors, the condition ω � Q0/

√
KB

can be written as

Q0√
KBω

∼ Q0

√
K2

|~k|
� 1 . (4.89)

For our Cherenkov radiation constraints, we consider only |~k| > kmin ∼ 1/kpc.
Together with the condition

√
K2Q0 . 1/Mpc from Eq. (4.85) this implies

that the condition Eq. (4.89) is satisfied. That is, the coupling to matter is
suppressed in our case. Thus, the energy loss through Cherenkov radiation is
reduced and the timescale τE is enhanced so that our constraints are weakened.
We will now discuss this in more detail.

4.5.1. Suppressed matter coupling

The coupling of ϕ to matter in the static limit comes from the ( ~̇A− 1
2
~∇h00)~∇ϕ

term in the Lagrangian. Specifically, in the static limit, the ϕ equation of
motion is

0 = · · · − 1

2
~∇2h00 , (4.90)

where we only show the contributions from the ( ~̇A − 1
2
~∇h00)~∇ϕ term. Here,

~∇2h00 contains a term that is proportional to the matter density, just as in
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standard general relativity. That is, the matter coupling of ϕ is due to a mixing
of ϕ and h00. Consider now a dynamical situation where time derivatives may
be important. Then, in the ϕ equation of motion, we have

0 = · · ·+ ~∇
(
~̇A− 1

2
~∇h00

)
. (4.91)

The combination ~̇A − 1
2
~∇h00 also occurs in the ~A equation of motion, from

the kinetic term of ~A proportional to ( ~̇A− 1
2
~∇h00)

2. Roughly,

0 = · · ·+ ∂t

(
~̇A− 1

2
~∇h00

)
. (4.92)

For scalar perturbations, we may choose ~A as the gradient of a scalar field [25].
As a result, spatial derivatives from the kinetic term of ~A drop out. Then,
the ∂2

t
~A term may dominate over other terms proportional to ~A in Eq. (4.92),

even though the dispersion relation ω = csk with non-relativistic sound speed
cs � 1 forces time derivatives to be much smaller than spatial derivatives. In
this case, the solution of Eq. (4.92) becomes ∂t ~A = 1

2
~∇h00 + . . . . This cancels

the ~∇2h00 term in the ϕ equation of motion Eq. (4.91). Thus, for sufficiently
large ω, the standard coupling of ϕ to matter is absent.

We expect this to hold also for perturbations on top of a galaxy instead of
empty Minkowski space. Roughly, the galaxy introduces a new scale of order
a0 ∼ 10−34 eV. This is much smaller than ω = csk since we typically have a
lower cutoff of order kmin ∼ 10−26 eV. Except possibly for an extremely low
sound speed, i.e. cs . 10−8 ∼ m/s. We leave a detailed study of this regime
for future work.

Thus, for ω → 0, the field ϕ has a standard gravitational coupling to matter
which is crucial for the MOND force in the static limit. However, for ω → ∞,
this coupling vanishes due to the specific form of the ~A equation of motion.
A more detailed calculation shows that the relevant scale to compare ω to is
Q0/

√
KB. The coupling to matter is suppressed for ω � Q0/

√
KB but not for

ω � Q0/
√
KB. This is calculated explicitly in Appendix E.

4.5.2. Energy loss through Cherenkov radiation
In the language of our prototype Lagrangian from Eq. (4.4), the matter cou-
pling of the non-relativistic mode of the SZ model is suppressed by

gm ∝
(√

K2Q0

k

)3

, (4.93)

see Appendix E. Thus, the matrix element squared for Cherenkov radiation
has the order of magnitude of

|M|2 ≈ c2s
M4

M2
Pl

(√
K2Q0

|~k|

)6

, (4.94)
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where we assumed M̃Pl to be of the same order of magnitude as MPl. Due to
the k-dependent factor (

√
K2Q0/k)

6 in |M|2, the k integral in Ė does not give
k2max as usual but instead

(
√
K2Q0)

6

k4min

= k2max

(
kmin

kmax

)2(√
K2Q0

kmin

)6

, (4.95)

where we again neglected O(1) constants. Thus, as a rough order of magnitude
estimate,

τE ∼ 108 yr ·
(
V

cs

)2

·
(
kmax

kmin

)2

·
(

kmin√
K2Q0

)6

·
(

V

200 km/s

)
. (4.96)

We typically have kmax ∼ 104kmin and kmin ∼ 1/kpc. Further, for a useful
static limit we need

√
K2Q0 � 1/kpc. Thus, τE is much larger than galactic

timescales and does not constrain the model. The reason is that the matter
coupling is suppressed in dynamical situations.

4.6. Discussion
Usually, Cherenkov radiation is discussed for highly relativistic objects like
cosmic rays. Above, we have considered non-relativistic perturbers like stars.
That these can emit Cherenkov radiation is a novel feature typical of certain
hybrid MOND dark matter models, as discussed above. Of course, relativistic
perturbers can also emit Cherenkov radiation in these models. We have not
discussed them here since our strict cutoffs do not allow useful constraints in
this case. For example, for a proton with mass mp, the upper cutoff kmax that
we used in Sec. 4.2.4 would be

kmax ∼

√
M�
mp

10−22 eV ∼ MeV . (4.97)

This is very high compared to the scales where the models discussed above
are usually probed, see e.g. Ref. [71]. Thus, the models we discuss may not
be valid at such scales. But even if we ignore this, we do not find a useful
constraint. Concretely, the timescale τE would scale as4

τE ∼
EM2

Pl

c2sm
2
pk

2
max

∼ 1029 yr , (4.98)

where we used cs = 100 km/s and assumed a proton energy E ∼ 1011GeV.
This is much larger than the age of the universe even for much smaller proton
energies.5

4Our calculation in Appendix A assumes a non-relativistic perturber. Very roughly, we
expect dĖ ∼ ωdΓ → (ωγ)(dΓ/γ) in the relativistic case, where the Lorentz factor γ
cancels. So we can reuse our formulas for Ė to get an order-of-magnitude estimate even
for the relativistic case.

5This estimate assumes that the Cherenkov radiation mode couples to the proton’s rest
mass. Depending on the details of the model under consideration in the relativistic limit,
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Above, we have used the Milky Way rotation curve to constrain standard
SFDM. We could not go to radii larger than about 25 kpc because the stellar
rotation curve is not measured at larger radii. The rotation curves of other
galaxies are sometimes measured very precisely to much larger radii, see e.g.
Ref. [31]. However, we cannot readily use the rotation curve data from Ref. [31]
since these rotation curves are not obtained from stars but from gas. It may
be possible to apply our results to gas clouds as a whole, depending on their
specific size and mass. Alternatively, we could try to apply our results to indi-
vidual neutral hydrogen atoms. Naively, our minimum radius rmin = 1/kmax

is roughly 10 fm in this case. This corresponds to kmax ∼ MeV which may
be too large for the models discussed here, as already mentioned above. But
even if we ignore this, our naive rmin of ∼ 10 fm is much smaller than the Bohr
radius ∼ 105 fm. Thus, we must anyway decrease our usual cutoff by a factor
of about 104 if we want to treat the hydrogen atoms as point particles. This
enhances τE by a factor of about 108 so that we do not get useful constraints.
A potential way around these issues is to argue that, from astrophysical con-
siderations, stellar rotation curves trace those obtained from gas and restrict
the analysis to sufficiently small radii where the stellar number density is still
significant. Investigating this in more detail is left for future work.

A possible limitation of our results is that our point-particle approximation
for stars breaks down if stars are closer to each other than their effective size
rmin = 1/kmax. Numerically,

rmin = 3 · 10−5 kpc ·

√
M

M�
· 1

fp
·
√

a0

agalb

, (4.99)

for a0 = 1.2 · 10−10m/s2. This is much smaller than the typical distance
between stars of about 10−3 kpc in the Milky Way. Thus, this does not affect
our results. Another possible effect is that stars could absorb some of the
Cherenkov radiation emitted by other stars. In this way, stars may regain some
of the energy lost to Cherenkov radiation. Of course, purely geometrically,
some of the Cherenkov radiation should be able to escape the galaxy, since
Cherenkov radiation is dominated by wavelengths of order 1/kmax, while stars
are typically much further away from each other than 1/kmax. In addition,
the coupling of Cherenkov radiation to matter is suppressed by 1/MPl so that
reabsorption happens only rarely. Thus, we expect this to be only a small
effect. We leave a more detailed investigation for future work.

Another interesting effect was discovered by Ref. [130]. Namely, when rmax

is comparable to the Jeans length rJ of a superfluid, the dispersion relation
may be modified so that Cherenkov radiation is possible for arbitrarily low

the proton rest mass might have to be replaced by its energy, see for example Ref. [124].
In this case, the cutoff would be smaller but the energy loss rate might be enhanced due
to the larger coupling. Which effect wins out needs to be checked separately for each
specific model. In some models, the coupling might even be suppressed compared to the
non-relativistic limit. For example for scalar fields that are coupled to the trace of the
energy-momentum tensor, see Ref. [136].
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4. Cherenkov radiation from stars in hybrid models

velocities V . This concerns perturbations with large wavelengths. Thus, this
would not affect our result for the energy loss which is dominated by short
wavelengths. However, it means there may not be a hard cutoff of the energy
loss at a critical velocity. That is, evading our constraints by increasing the
sound speed, as we have done in standard SFDM, would only decrease the
energy loss but not shut it down entirely. Of course, this applies only if our
cutoff rmax ∼ kpc is larger than the Jeans length rJ . So possibly our strict
cutoffs do not allow to directly see this effect in our case.

4.7. Summary
In modified gravity theories, one usually tries to avoid superluminal sound
speeds for theoretical reasons. But, for empirical reasons, one must also be
careful with subluminal sound speeds. Specifically, a subluminal sound speed
often leads to gravitational Cherenkov radiation which allows various astro-
physical objects to lose energy.

In this chapter, we have discussed a new type of Cherenkov radiation that
is often possible in hybrid MOND dark matter models with a common origin
for the cosmological and galactic scale phenomena. Such models typically
contain a massless mode that couples directly to normal matter for the MOND
phenomenology. This same mode often has a non-relativistic sound speed to
account for the CDM phenomenology. This allows even non-relativistic objects
like stars to lose energy.

In our calculation, we use a controlled approximation that relies only on
the MOND regime of each model, not on the Newtonian, high-acceleration
regime. This avoids technical issues with the non-linearities of MOND and
the possibly non-trivial high-acceleration behavior of each model. The price
to pay is that we obtain only a conservative lower bound on the energy loss
through Cherenkov radiation. The actual energy loss may be much larger but
is also much more difficult to calculate.

We have first discussed the idea behind this new type of Cherenkov radiation
for a prototype model and then applied the results to the original SFDM
model, two-field SFDM, and the SZ model. For standard SFDM, we could
rule out a MOND limit in the Milky Way for part of the parameter space.
Two-field SFDM avoids these constraints by weakening the link between the
cosmological and galactic phenomena. The relevant massless mode is coupled
to normal matter only indirectly through a mixing. The SZ model avoids
our constraints by having a matter coupling that is a standard gravitational
coupling only in the static limit. In dynamical situations, the matter coupling
is suppressed.

These results do not completely rule out any of the models considered. Still,
we have demonstrated that our method is powerful and can severely constrain
hybrid MOND dark matter models. This method can be improved upon in
the future and it can be applied to more models. Any hybrid MOND dark
matter model must satisfy our constraints.
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We now summarize our results and give a brief outlook.

5.1. Summary
In this thesis, we discussed various aspects of hybrid MOND dark matter
models, both from an observational and a theoretical perspective. We started
with two observational tests of the SFDM model.

The first test was to check whether or not SFDM can explain strong lensing
observations. Lensing is non-trivial to get right in MOND-like models because
often a MOND-like force cannot act on photons. The reason is that the ob-
servation of GW170817 and its electromagnetic counterpart require that the
gravitational tensor mode and light propagate at the same speed. A MOND-
like force acting on photons often introduces a significant Shapiro time delay
for the photons. Thus, the MOND-like phonon force in SFDM cannot con-
tribute to the lensing signal. Still, we find that SFDM can fit the strong lensing
data. The superfluid halo provides sufficient additional mass that generates
the strong lensing signal even without the MOND-like phonon force.

For this to work, the superfluid halo’s gravitational pull must be large at
large galactocentric radii, where most of the lensing signal is generated. But it
must be small at smaller galactocentric radii, where rotation curves are mea-
sured. Otherwise rotation curve velocities come out too large since stars are
affected by both the MOND-like phonon force and the superfluid’s standard
Newtonian gravitational pull. This may be possible in SFDM because the su-
perfluid has a very cored density profile. Indeed, we have checked that SFDM
can simultaneously fit the Einstein radii and the velocity dispersions of the
lensing galaxies.

The second test was the Milky Way rotation curve. We have shown that
SFDM gives a reasonable fit of the observed rotation curve at R . 25 kpc, but
needs about 20% less baryonic mass compared to standard MOND models.
The reason is that, compared to SFDM, the total acceleration in standard
MOND models approaches its limits for small (ab � a0) and large (ab � a0)
accelerations much faster.

We have further estimated the size of the Milky Way’s superfluid core and its
total dark matter mass. For this, we have first demonstrated that the standard
estimates for the size of the superfluid core for spherically symmetric situations
can be straightforwardly extended to axisymmetric situations. This works
because imposing spherically symmetric boundary conditions at large radii is
reasonable. The boundary conditions then have one free parameter, µ∞, which
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determines the size of the superfluid halo and the total dark matter mass. We
find that for virial dark matter masses MDM

200 in the range 0.5− 3.0 · 1012M�
the so-called NFW radius varies between 65 kpc and 73 kpc, while the so-called
thermal radius varies between 67 kpc and 105 kpc.

Next we had a closer look at SFDM from a theoretical perspective. We have
identified three problems that cannot be easily avoided within SFDM. The first
problem is that the equilibrium is unstable. This instability is usually avoided
by introducing finite-temperature corrections parametrized by a parameter β̄.
But both the form of these finite-temperature corrections and the numerical
value of β̄ are completely ad-hoc and may easily be unphysical.

The second problem is that many galaxies cannot reach the MOND limit
of SFDM, although this MOND limit is one of the main motivations behind
SFDM. The MOND limit is controlled the quantity ε∗. The phonon force sat-
isfies a MOND-like equation only in the MOND limit ε∗ � 1. However, for the
choice β̄ = 2, isolated galaxies can have a MOND-like rotation curve even when
ε∗ = O(1), although the phonon force does not satisfy a MOND-like equation.
This is what we call the pseudo-MOND limit of SFDM. But this pseudo-
MOND limit is not a satisfactory substitute for a proper MOND limit because
it depends sensitively on the details of the ad-hoc finite-temperature correc-
tions discussed in the previous paragraph. For example, the pseudo-MOND
limit works only for β̄ ≈ 2. Thus, like the finite-temperature corrections, this
pseudo-MOND limit may easily be unphysical.

The third problem is that the equilibrium of galaxies in SFDM may not
be valid on timescales much longer than galactic timescales. The reason is
that the MOND-like phonon force requires a direct coupling of baryons to
the phonon field θ without derivatives. This explicitly breaks the U(1) shift
symmetry of θ that is typical for superfluids. Heuristically, a chemical potential
µ corresponds to a solution θ = µ · t. Such solutions give an explicit time-
dependence in the baryon coupling where θ appears without derivatives. We
can ignore this time-dependence and assume a time-independent equilibrium
in galaxies only on timescales much shorter than a timescale tQ. We have
estimated this timescale and found that it may be comparable to galactic
timescales. Thus, galaxies in SFDM may not be in equilibrium, in contrast to
what is usually assumed.

All three of these problems have the same root cause. Namely that the
phonon field θ plays a double role. It carries both the superfluid and the
MOND-like phonon force. We have proposed an improved model which avoids
these problem. This improved model works by splitting the two roles between
two fields. One field carries the superfluid, the other field carries the MOND-
like force. We refer to this model as two-field SFDM. We have shown that
the phenomenology on galactic scales is similar to that of standard SFDM, i.e.
the original SFDM model.

More precisely, galactic scale phenomenology of two-field SFDM is close to
that of standard SFDM regarding the superfluid core. Outside the superfluid
core, this is true only if we use the so-called NFW matching procedure to
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estimate the superfluid core’s size. In standard SFDM, this matching proce-
dure agrees reasonably well with the so-called thermal matching procedure.
But in two-field SFDM, thermal matching gives a wildly different answer than
NFW matching. This raises the question whether the NFW, the thermal, or
a completely different matching procedure is correct in two-field SFDM.

At least in principle, this problem is already present in standard SFDM. The
NFW and thermal matching procedures give similar answers only if the com-
bination σ/m5 has the value usually assumed in standard SFDM. In general,
these two procedures give wildly different answers also in standard SFDM.
This is important because the value of the self-interaction cross-section σ is
usually chosen ad-hoc and not calculated from any Lagrangian in standard
SFDM. Thus, it is not clear whether or not the assumed value is realistic. In
any case, the transition from the superfluid core at smaller radii to the NFW
halo at larger radii needs to be investigated in more detail.

Finally, we have introduced a novel observational test regarding Cherenkov
radiation. This test applies not only to SFDM but to a wide variety of hybrid
MOND dark matter models. Specifically, hybrid models with a common origin
for galactic and cosmological phenomena. Cherenkov radiation is a well-known
phenomenon in modified gravity models. If matter is coupled to a massless
mode that propagates with speed cs and a matter object moves faster than cs,
the object radiates away energy in the form of the massless mode. Usually, only
highly relativistic objects emit Cherenkov radiation since cs ≈ 1. In hybrid
models with a common origin for galactic and cosmological phenomena, this is
different. Even non-relativistic objects like stars can emit Cherenkov radiation.
The reason is as follows. For the MOND phenomenology on galactic scales,
there is a massless mode that is coupled directly to normal matter. For the
CDM phenomenology on cosmological scales, there is a collisionless fluid with
non-relativistic sound speed. If these phenomena share a common origin, the
massless mode that is directly coupled to matter typically has cs � 1, since it
is related to the non-relativistic sound speed of the collisionless fluid. Thus,
even non-relativistic objects like stars may emit Cherenkov radiation in such
hybrid models.

On the one hand, this Cherenkov radiation is similar to standard gravita-
tional Cherenkov radiation in that it comes from a direct coupling to matter.
On the other hand, it is similar to standard dynamical friction in collisional
fluids in that it allows even non-relativistic objects to lose energy. For our
specific calculation, it is similar to dynamical friction also in that there is no
significant recoil. This is because each individual Cherenkov emission is soft.
A supersonic object loses a significant amount of energy only through a large
number of these soft emissions. This is a consequence of the strict cuts we
impose on the phase space integrals in our calculation. The purpose of these
cuts is twofold. First, they avoid problems with the inherent non-linearity in
any MOND model. Second, they ensure we rely only on the MOND regime of
a given model. Outside this MOND regime, models may behave very differ-
ently. These cuts also imply that our calculated energy loss is a lower bound.
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The actual energy loss may be larger, but is much harder to calculate.
We have first considered a prototype model with a Lagrangian typical for hy-

brid MOND dark matter models. With this, we have calculated the timescale
τE on which a non-relativistic, supersonic object with velocity V loses a sig-
nificant amount of its energy through Cherenkov radiation. We found that τE
is proportional to V 3/(g2m c2s a

gal
b ) where cs is the sound speed of the massless

mode that is coupled to normal matter with a coupling constant gm
√
G and

agalb is the baryonic Newtonian acceleration of the host galaxy at the object’s
position. This is independent of the mass of the object under consideration.

Hybrid models are ruled out unless they satisfy at least one of two condi-
tions. Either their sound speed is large enough so that most non-relativistic
objects like stars are subsonic. That is, Cherenkov radiation is kinematically
forbidden. Or the timescale τE is sufficiently large so that supersonic objects
emitting Cherenkov radiation don’t lose much energy on galactic timescales.
This latter case can be achieved by having a small coupling constant gm or a
small sound speed cs.

We have applied our general results to three concrete models: To standard
SFDM, to two-field SFDM, and to the SZ model. For standard SFDM, the
phonon field θ gives a massless mode that is directly coupled to matter (for the
MOND-like phonon force) and has a non-relativistic sound speed (since it is
related to the non-relativistic superfluid around galaxies). This allows for the
type of Cherenkov radiation we have discussed above. In particular, we can
use the observed Milky Way rotation curve to constrain the MOND limit of
standard SFDM. We have ruled out a MOND limit in the Milky Way for values
of

√
ᾱ/m in an interval that depends on the parameter β̄. For example, for

β̄ = 2, we have ruled out a MOND limit with 0.34 eV−1 .
√
ᾱ/m . 3.29 eV−1.

This excludes the fiducial values β̄ = 2 and
√
ᾱ/m = 2.4 eV−1 that are widely

used in standard SFDM. Globular clusters and hypervelocity stars may give
even more stringent constraints, but require a more sophisticated modelling
of their trajectories. This is left for future work.

For two-field SFDM, there are two massless modes, roughly corresponding to
the two fields that carry the MOND-like force and the superfluid, respectively.
Of these, only the mode corresponding to the superfluid allows for Cherenkov
radiation, since only this mode is subluminal. However, this mode is coupled to
normal matter only indirectly through a mixing. This is because this mode is
not directly responsible for the MOND-like force. As a result, as in standard
SFDM, non-relativistic objects like stars do lose energy through Cherenkov
radiation in two-field SFDM. But the associated energy loss is much smaller
because the coupling to matter is suppressed. Indeed, typically τE ∼ 1017 yr.
Thus, this model evades our constraints by weakening the link between galactic
and cosmological phenomena.

For the SZ model, there is again a massless mode that allows for Cherenkov
radiation. This model evades our constraints by a new mechanism: In the
static limit, the coupling to normal matter is a standard gravitational coupling.
But in dynamical situations with ω � Q0/

√
KB, the coupling is suppressed
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by powers of Q0/(ω
√
KB). As a result, non-relativistic objects like stars may

emit Cherenkov radiation, but lose a significant amount of energy only after
a time that is much longer than the age of the Universe.

To sum up, this novel type of Cherenkov radiation may severely constrain
hybrid models (like standard SFDM), but there are also mechanisms to avoid
such constraints (like in two-field SFDM and the SZ model). Any future
hybrid models, or improvements of existing models, will have to satisfy our
constraints.

5.2. Outlook
The evidence for both a collisionless fluid on cosmological scales and MOND-
like scaling relations on galactic scales has only become more convincing in
recent years. As a result, finding good explanations to account for both of
these at the same time is increasingly important. Hybrid MOND-DM models
are one promising approach to attack this. Future work must continue to
observationally test and theoretically develop such models.

One important area of study is the interplay between the MOND and dark
matter components in hybrid models. For example, we have shown that SFDM
can simultaneously fit Einstein radii and velocity dispersions of observed lens-
ing galaxies. But an open question is whether SFDM can have sufficient
superfluid mass for strong lensing at the same time as naturally MOND-like
rotation curves and velocity dispersions. This is nontrivial for two reasons.

First, in SFDM specifically, the phonon force is naturally MOND-like only in
a certain limit, ε∗ � 1, which may not be compatible with having a sufficiently
large superfluid mass for strong lensing. For example, it needs to be checked
whether or not our strong lensing fits satisfy the condition ε∗ � 1 in the
inner parts of the lensing galaxies where the velocity dispersions are measured.
Second, more generally, if the dark matter mass around a galaxy becomes too
large, the total acceleration will not be dominated by the MOND-like force,
but will have significant contributions from the Newtonian acceleration of the
dark matter component. Then, the total acceleration will not be naturally
MOND-like. This is a potential issue in all hybrid MOND-DM models.

Another test of the interplay between the MOND-like force and the dark
matter component in galaxies is suggested by a recent measurement of the
RAR. In Ref. [137], the authors extend the observed RAR to smaller accel-
erations (larger radii) using weak lensing. This extended RAR follows the
predictions of pure MOND. Hybrid models naturally follow the MOND pre-
dictions only if the dark matter component remains subdominant. But this is
often not true at sufficiently large radii. So it may be non-trivial for hybrid
models to naturally explain this new observed RAR at larger radii.

Hybrid MOND-DM models allow for some new phenomena like Cherenkov
radiation emitted from non-relativistic sources like stars, as we have discussed
in Chapter 4. In future work, constraints from this phenomenon should be
applied to more models and to more general situations, e.g. not just to stars
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on circular orbits but also to hypervelocity stars or dwarf galaxies. Similarly,
a more complete calculation of this Cherenkov radiation from non-relativistic
sources in the SZ model is warranted, including a proper galaxy background
to see whether or not this constrains the model.

But even standard observational tests like rotation curves remain to be fully
explored. For example, we have seen in Sec. 2.2 that SFDM requires about
20% less baryonic mass than standard MOND models to fit the Milky Way
rotation curve. It will be important to see whether or not rotation curves in
SFDM require less baryonic mass more generally and whether or not this is
compatible with astrophysical constraints, for example from stellar population
synthesis models.

On the purely theoretical side, understanding existing and developing new
hybrid models is another important area of study. For example, in both stan-
dard SFDM and two-field SFDM the transition between the superfluid and
the non-superfluid phases is not well-understood. In the fully-relativistic SZ
model, so far little is known about the dark matter component in galaxies or
galaxy clusters. More generally, other novel theoretical approaches to MOND
(e.g. based on non-metricity [138, 139]) remain to be explored in more detail
and in the context of hybrid MOND-DM models.

We expect hybrid MOND dark matter models to play an increasingly im-
portant role in the future. It will be exciting to learn what these models have
to teach us about the universe.
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A. Calculation of energy loss through
Cherenkov radiation

Consider the prototype model from Sec. 4.2. Consider further an incom-
ing, non-relativistic matter particle with initial four-momentum pαi = (M +
1
2MV 2,M ~V ). For concreteness, we assume ~V = (0, 0, V ). When this mat-
ter particle emits Cherenkov radiation, the Cherenkov radiation carries away
four-momentum kα = (ω,~k) which leaves the matter particle with a final four-
momentum pαf = (Ef , ~pf ) = (M + 1

2MV ′2,M ~V ′). We have [140]

dΓ =
1

2M

d3~pf
(2π)3 2Ef

d3~k

(2π)3 2ω
|M|2(2π)4δ(4)(pi − pf − k) . (A.1)

And we can calculate the energy loss per time from this,
dE

dt
= −

∫
ωdΓ . (A.2)

The coupling term in the Lagrangian Eq. (4.4) is −M2χ2 gmδ/(
√
2MPl). The

Feynman rules give a factor of 2! for the two factors of χ. Thus, we have

|M| =
√
2c̄gm
MPl

M2 . (A.3)

The factor c̄ is because we need to canonically normalize our field, δ → c̄ · δ,
so that we can apply the standard Feynman diagram formalism. Here, we
assume that gm does not depend on ~k. This is not true in two-field SFDM
and in the SZ model. Corrections due to this are discussed in Appendix A.4
and in Sec. 4.5.2.

Then, using ω = cs|~k|,

dΓ =
1

(2M)2
1

(2π)2
d3~k

2ω
|M|2δ

(
1

2
MV 2 − 1

2
M(~V − ~k/M)2 − cs|~k|

)
=

1

(2M)2
1

(2π)2
d3~k

2ω
|M|2δ

(
V |~k| cos θ −

(
|~k|2

2M
+ cs|~k|

))

=
1

(2M)2
1

(2π)2
d|~k||~k| dϕd cos θ

2ωV
|M|2δ

(
cos θ −

(
|~k|

2MV
+

cs
V

))
,

(A.4)

where θ is the angle between ~k and ~V . We see that the delta function requires
|~k| to be not too large. In particular, we need to cut off the |~k| integral at

|~k| = 2M(V − cs) = 2M
(
V − c̄

√
1 + γ2

)
, (A.5)
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where γ is the cosine of the angle between ~k and â. This condition implies
that there will be energy loss due to Cherenkov radiation only for supersonic
velocities V > cs.

Numerically, we are interested in M ∼ M� and we impose an additional
cutoff kmax ∼ 10−22 eV to stay in the regime of validity of our calculation, see
Sec. 4.2.4. In this case, the cs/V term dominates over the k/(2MV ) term in
the delta function. Thus, this delta function becomes

δ
(
cos θ − c̄

V

√
1 + γ2

)
. (A.6)

In general, γ = ~k · â/k depends on cos θ in a complicated way. Thus, ana-
lytically evaluating this delta function is nontrivial. Here, we first give the
result for the simpler case â = 0 where the

√
1 + γ2 factor in cs is absent. In

the following sections, we then give the result including â for the special cases
~V ⊥ â and ~V ‖ â. For â = 0, we have

|Ė|â=0 =

∫ kmax

kmin

d|~k| 1

(2M)2
1

(2π)

|~k|
2V

|M|2

=
1

(2M)2
1

(2π)

1

4V
(k2max − k2min)

2c̄2g2mM4

M2
Pl

=
c̄2

16πV

g2mM2

M2
Pl

(k2max − k2min) .

(A.7)

A.1. Special case: ~V ‖ â

In this case, we have

γ2 =
(~kâ)2

|~k|2
= cos2 θ , (A.8)

since θ is the angle between ~V and ~k and ~V ‖ â. Then, the delta function
Eq. (A.6) in dΓ can be written as

δ
(
cos θ − c̄

V

√
1 + cos2 θ

)
. (A.9)

This is solved by

cos θ =
1√

(V/c̄)2 − 1
. (A.10)

Thus, Cherenkov radiation requires

V >
√
2c̄ , (A.11)
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otherwise cos θ would be larger than 1. Evaluated at this solution, the delta
function becomes

1

1− (c̄/V )2
δ

(
cos θ − 1√

(V/c̄)2 − 1

)
, (A.12)

which implies

|Ė| = 1

1− (c̄/V )2
· |Ė|â=0 . (A.13)

A.2. Special case: ~V ⊥ â

For simplicity, we choose our coordinate system such that â points into the
positive x direction. This is perpendicular to ~V which points into the positive
z direction. Then,

γ2 =
(~kâ)2

|~k|2
= sin2 θ cos2 ϕ . (A.14)

That is, the delta function Eq. (A.6) in dΓ becomes

δ
(
cos θ − c̄

V

√
1 + (1− cos2 θ) cos2 ϕ

)
. (A.15)

This is solved by

cos θ =
c̄

V

√
1 + cos2 ϕ

1 + (c̄/V )2 cos2 ϕ
. (A.16)

As a result, Cherenkov radiation requires

V > c̄ , (A.17)

otherwise cos θ would be larger than 1. Evaluated at this solution, the delta
function becomes

1

1 + (c̄/V )2 cos2 ϕ
δ

(
cos θ − c̄

V

√
1 + cos2 ϕ

1 + (c̄/V )2 cos2 ϕ

)
. (A.18)

After doing the ϕ integral, this implies

|Ė| = 1√
1 + (c̄/V )2

· |Ė|â=0 . (A.19)
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A.3. Direction of friction force
Above, we calculated the total energy loss, but not the direction in which
the Cherenkov emission happens, i.e. the direction in which the resulting
effective friction force acts. This direction is proportional to the direction of
the following integral

∫
~k dΓ ∝

∫ +1

−1
d cos θ

∫ 2π

0
dϕ

1√
1 + γ2

sin θ cosϕ
sin θ sinϕ

cos θ

 δ
(
cos θ − c̄/V

√
1 + γ2

)
.

(A.20)

Here, as in the previous section, we choose y to be the direction that is per-
pendicular to both ~V and â. For the two special cases ~V ‖ â and ~V ⊥ â,
the friction force points exactly in the z direction, i.e. in the direction of
~V . This follows by using the delta function to do the cos θ integral and then
noticing that the integrand depends on ϕ only through cos2 ϕ, except for the
factors cosϕ and sinϕ in the x and y components of ~k. That is, the x and y
components vanish for these two special cases.

For a general orientation of ~V relative to â, it is still true that the force in
the y direction vanishes. That is, the force stays in the x-z plane spanned by
~V and â. This can be seen analytically by using the delta function to do the
ϕ integral. This gives two solutions for cosϕ,

cosϕ =
1

a⊥ sin θ

±

√(
V

c̄

)2

cos2 θ − 1− a‖ cos θ

 , (A.21)

where a⊥ is the component of â in the x direction and a‖ that in the z direction.
Each of these solutions for cosϕ corresponds to two different values of ϕ in the
interval (0, 2π). These two values of ϕ give the same cosϕ, but ± sinϕ. The
integrand in Eq. (A.20) depends on the sign of sinϕ only through the factor
sinϕ in the y component. Thus, the y component of the force vanishes, since
the contributions from the two different values of ϕ cancel each other.

In contrast, the x component does not vanish in general. The integrals
are hard to evaluate analytically, but we have numerically verified that the x
component can be as large as a few 10% of the z component. Thus, in general,
the friction force does not act in the direction of ~V .

A.4. Two-field SFDM corrections
As discussed in Sec. 4.4 (see also Appendix D below), two-field SFDM differs
from our prototype model in two ways. First, the sound speed cs does not have
the

√
1 + γ2 factor, so that cs = c̄ =

√
µ̂/m is independent of the direction

of ~k. Second, the matter coupling gm depends on this direction through the
γ-dependent factor γ/(1 + γ2).
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That cs has no factor
√
1 + γ2 means that the energy-conserving delta

function gives cos θ = cs/V . Thus, there is Cherenkov radiation as long as
V > cs =

√
µ̂/m and the correction factor fa is absent.

The additional factor γ2/(1 + γ2)2 in |M|2 modifies the result for |Ė|. We
again orient our coordinate system such that ~V points in the z direction and
â has zero component in the y direction. Then

γ2 =
(~kâ)2

|~k|2
= (az cos θ + ax sin θ cosϕ)2 . (A.22)

If, for simplicity, we set γ = 1, we get from the ϕ integration in |Ė|∫
dϕ

γ2

(1 + γ2)2

∣∣∣∣
γ=1

=
2π

4
. (A.23)

For general γ, the ϕ integral can be done analytically for the special cases
~V ‖ â and ~V ⊥ â. For â ‖ ~V , we have ax = 0 and a2z = 1, so that∫

dϕ
γ2

(1 + γ2)2

∣∣∣∣
~V ‖â

= 2π
cos2 θ

(1 + cos2 θ)2
= 2π

(
cs
V

+
V

cs

)−2

. (A.24)

For â ⊥ ~V , we have az = 0 and a2x = 1, so that∫
dϕ

γ2

(1 + γ2)2

∣∣∣∣
~V⊥â

=

∫
dϕ

sin2 θ cos2 ϕ

(1 + sin2 θ cos2 ϕ)2

= 2π
1

2

sin2 θ

(1 + sin2 θ)3/2

= 2π
1

2

1−
(
cs
V

)2(
2−

(
cs
V

)2)3/2 .
(A.25)

Thus,

|Ė| = 4|Ė|γ=1 ·


(
cs
V + V

cs

)−2
, ~V ⊥ â

1
2

1−( cs
V )

2(
2−( cs

V )
2
)3/2 , ~V ‖ â

. (A.26)

For ~V ‖ â and ~V ⊥ â, the direction of the effective friction force stays
the same as in the case of our prototype Lagrangian. However, for a general
orientation of ~V , the additional γ-dependence may give corrections also to
the direction of the force. Here, we do not calculate these since they are not
important for our results.
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B. Standard SFDM perturbations
Consider the SFDM Lagrangian Eq. (1.7). If we define

f̄(K) ≡ 2Λ

3
(2m)3/2

√
|K| ,

f(K) ≡ f̄(K)K ,
(B.1)

the kinetic term in this Lagrangian can be written as f̄(X − β̄Y )X. If X −
β̄Y ≈ X, this becomes approximately f(X). We now consider a background
equilibrium solution θ0 in the MOND limit, i.e. (~∇θ0)

2 � 2mµ̂. We expand
X and Y in perturbations δ of the phonon field θ and introduce a formal
expansion parameter ε,

X = X0 + εX1 + ε2X2 + . . . ,

Y = Y0 + εY1 ,
(B.2)

with

X1 = δ̇ −
~∇θ0~∇δ

m
,

X2 = −(~∇δ)2

2m
,

Y1 = δ̇ ,

(B.3)

where we left out a possible ε2 term in Y since Y is linear in the fields. We
further define

f ′
0 = f ′(X0) = (2m)Λ|~∇θ0| ,

f ′′
0 = f ′′(X0) = −(2m)2

Λ

2

1

|~∇θ0|
,

f̄ ′
0 = f̄ ′(X0) = −(2m)2

Λ

3

1

|~∇θ0|
,

f̄ ′′
0 = f̄ ′′(X0) = −(2m)3

Λ

6

1

|~∇θ0|3
.

(B.4)

For simplicity, we also write

λ ≡ ᾱΛ

MPl
. (B.5)

For a background galaxy in the MOND limit, spatial derivatives dominate so
that X0 − β̄Y0 ≈ X0. Then, the perturbed Lagrangian is
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L = X2f
′
0 +

1

2
X2

1f
′′
0 − β̄X1Y1(f̄

′
0 +X0f̄

′′
0 ) +

1

2
β̄2Y 2

1 X0f̄
′′
0 − λδ δb

= Λ|~∇θ0|

−(~∇δ)2 − m2

|~∇θ0|2

(
δ̇ −

~∇θ0~∇δ

m

)2

+
2

3

m2

|~∇θ|2
β̄δ̇

(
δ̇ −

~∇θ~∇δ

m

)
+

1

3
β̄2δ̇2

m2

|~∇θ0|2

)
− λδ δb

= 2Λ|~∇θ0|

(
δ̇2

m2

|~∇θ0|2
1

6
(β̄ − 1)(β̄ + 3)− 1

2
(~∇δ)2 − 1

2
(â~∇δ)2

−1

3

m

|~∇θ0|
â~∇δδ̇(β̄ − 3)

)
− λδ δb ,

(B.6)

where we set â = ~∇θ0/|~∇θ0|. With the definition

c̄−1 =
m

|~∇θ0|

√
(β̄ − 1)(β̄ + 3)

3
, (B.7)

this can be written as

L = 2Λ|~∇θ0|
(
1

2
δ̇2c̄−2 − 1

2
(~∇δ)2 − 1

2
(â~∇δ)2 + c̄−1fβ̄ â

~∇δδ̇

)
− λδ δb , (B.8)

where, following Ref. [71, 72], we assumed β̄ < 3 and defined

fβ̄ =

√
(3− β̄)2

3(β̄ − 1)(β̄ + 3)
. (B.9)

With an appropriate rescaling we finally get

L =
1

2
δ̇2c̄−2 − 1

2
(~∇δ)2 − 1

2
(â~∇δ)2 + c̄−1fβ̄ â

~∇δδ̇ − gm√
2MPl

δ δb , (B.10)

with

gm =

√
a0
|aθ0 |

, (B.11)

where we used a0 = ᾱ3Λ2/MPl and ~aθ = −λ~∇θ [71].
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C. Standard SFDM Cherenkov
radiation

For standard SFDM, our simple QFT calculation from Appendix A does not
apply because spatial and time derivatives are mixed in the Lagrangian for
the perturbations. Thus, we do a classical calculation instead, along the lines
of the standard calculation of electromagnetic Cherenkov radiation [135].

C.1. Reference calculation
For reference, we first consider a field φ̄(t̄, ~̄x) with Lagrangian

L̄ =
1

2

1

c2eff
(∂t̄φ̄)

2 − 1

2
( ~̄∇φ̄)2 − gm√

2MPl

φ̄ ρb,eff , (C.1)

with some constant ceff . This is our prototype Lagrangian from Sec. 4.2 but
in the simpler case with â = 0 and with c̄ replaced by ceff . We also introduced
a modified baryonic density

ρb,eff = Meffδ(z̄ − Veff t̄)δ(x̄)δ(ȳ) , (C.2)

with constants Meff and Veff . This is the usual form for the perturber’s density
used in classical Cherenkov radiation calculations [129, 130, 135]. Below,
we will express solutions of the equation of motion of the standard SFDM
perturbation field δ in terms of solutions of the equation of motion of φ̄.

We use the following convention for the Fourier transform and inverse
Fourier transform of a function f

f(ω,~k) =
1

(2π)2

∫
d4x e−iωt+i~k~xf(t, ~x) , (C.3a)

f(t, ~x) =
1

(2π)2

∫
d4k e+iωt−i~k~xf(ω,~k) . (C.3b)

The equation of motion of φ̄ is

0 = − 1

c2eff
∂2
t̄ φ̄+ ~̄∇2φ̄− gm√

2MPl

Meffδ(z̄ − Veff t̄)δ(x̄)δ(ȳ) . (C.4)

In Fourier space

0 =

(
ω̄2

c2eff
− ~̄k2

)
φ̄(ω̄, ~̄k)− gm√

2MPl

Meff

2π
δ(ω̄ − Veff k̄z̄) , (C.5)
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where we used
∫
dkeikx = (2π)δ(x) and introduced the notation ω̄ and ~̄k to

indicate that this is a Fourier transform with respect to t̄ and ~̄x. This gives

φ̄(ω̄, ~̄k) =
gm√
2MPl

Meff

2π

δ(ω̄ − Veff k̄z̄)
ω̄2

c2eff
− k̄2

=
1

|Veff |
gm√
2MPl

Meff

2π

δ
(

ω̄
Veff

− k̄z̄

)
λ̄2 − k̄2⊥

,

(C.6)

where

λ̄2 = ω̄2

(
1

c2eff
− 1

V 2
eff

)
, (C.7)

and ~̄k⊥ denotes the components of ~̄k in the x̄ and ȳ directions. On-shell
radiation (that is Cherenkov radiation) is possible only for λ̄2 > 0. Otherwise,
the propagator has no pole that could be picked up. This gives the standard
condition for Cherenkov radiation

|Veff | > ceff . (C.8)

In this case, we have [135]

φ̄(t̄, ~̄x) =
1

(2π)2

∫
d4k̄eiω̄t̄−i~̄k~̄x 1

|Veff |
gm√
2MPl

Meff

2π

δ
(

ω̄
Veff

− k̄z̄

)
λ̄2 − k̄2⊥

=
1

(2π)2
1

|Veff |
gm√
2MPl

Meff

2π

∫
dω̄e

iω̄
(
t̄− 1

Veff
z̄
)

×
∫

d2~̄k⊥e
−i~̄k⊥~̄x⊥

1

λ̄2 − k̄2⊥

= − Meff

(2π)2
1

|Veff |
gm√
2MPl

∫
dω̄e

iω̄
(
t̄− 1

Veff
z̄
)
K0(iλ̄|~̄x⊥|) ,

(C.9)

where K0 is the zeroth modified Bessel function of the second kind and ~̄x⊥
denotes components of ~̄x in the x̄ and ȳ directions. Here, λ̄ is given by

λ̄ = ω̄

√
1

c2eff
− 1

V 2
eff

≡ ω̄

ceff
fcrit . (C.10)

When doing the ~̄k⊥ integral, we implicitly assumed the retarded propaga-
tor. For our convention of the Fourier transform, this gives the K0(iλ̄|~̄x⊥|).
Ref. [135] uses the opposite sign in the e±iωt factors of the Fourier transform
and therefore gets λ̄ → −λ̄ in the Bessel function’s argument. We see that φ̄
depends on ~̄x only through the combinations

z̄ − Veff t̄ and |~̄x⊥| . (C.11)

Below, we are interested in the limit |λ̄~̄x⊥| � 1. In this limit,

φ̄(t̄, ~̄x) = −
√

π

2

Meff

(2π)2
1

|Veff |
gm√
2MPl

∫
dω̄e

iω̄
(
t̄− 1

Veff
z̄
)
e−iλ̄|~̄x⊥|√
iλ̄|~̄x⊥|

. (C.12)
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C.2. Mapping to the reference system
To calculate Cherenkov radiation for standard SFDM, we use the standard
perturber density

δb(t, ~x) = Mδ(z − V t)δ(x)δ(y) . (C.13)

This assumes that the emitted Cherenkov radiation is soft. Otherwise, we
could not assume the perturber to travel on a straight line with constant
velocity. This is justified because we set very conservative limits on the in-
tegration boundaries. This is discussed in Appendix A and Sec. 4.2.3. The
equation of motion for the perturbation δ is then

0 = − 1

c̄2
∂2
t δ + ~∇2δ + ~∇

(
(â · ~∇δ)â

)
−

2fβ̄
c̄

â~∇δ̇

− gm√
2MPl

Mδ(z − V t)δ(x)δ(y) . (C.14)

To facilitate an analytical treatment, we discuss only the special cases ~V ‖ â
and ~V ⊥ â. Here, ~V points in the positive z direction.

For ~V ‖ â, we have â = a‖êz where êz is the unit vector in the z direction
and a‖ = ±1. The solutions for δ(t, ~x) can be obtained from those for φ̄(t̄, ~̄x)
by a coordinate transformation. Specifically, we take

t̄ = t+ a‖
fβ̄
2c̄

z ,

z̄ =
z√
2
,

~̄x⊥ = ~x⊥ .

(C.15)

Then, δ defined as

δ(t, ~x) = φ̄(t̄, ~̄x) , (C.16)

solves the δ equation of motion if we take

ceff = c̄
1√

1 + 1
2f

2
β̄

, (C.17a)

Veff = V

√
2

2 + a‖fβ̄(V/c̄)
, (C.17b)

Meff = M

√
2

|2 + a‖fβ̄(V/c̄)|
, (C.17c)

in the φ̄ solution. Note that ceff , Veff , and Meff are constants. They do not
depend on spacetime coordinates or fields. This immediately allows to find
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the condition for Cherenkov radiation. As discussed above, δ(t, ~x) contains a
pole only if |Veff | > ceff . This gives the critical velocity

V
‖
crit = c̄

(√
2 + f2

β̄
+ a‖fβ̄

)
. (C.18)

For ~V ⊥ â, we choose our coordinates such that â points in the positive x
direction, â = êx. We further choose

t̄ = t+
fβ̄
2c̄

x ,

x̄ =
x√
2
,

ȳ = y ,

z̄ = z .

(C.19)

Then, δ defined as

δ(t, ~x) = φ̄(t̄, ~̄x) , (C.20)

solves the δ equation of motion if we take

ceff = c̄
1√

1 + 1
2f

2
β̄

, (C.21)

Veff = V , (C.22)

Meff =
M√
2
, (C.23)

in the φ̄ solution. This gives the critical velocity

V ⊥
crit = c̄

1√
1 + 1

2f
2
β̄

. (C.24)

C.3. Energy loss without cutoffs

To calculate the energy loss through Cherenkov radiation following Ref. [135],
we first need to know the energy flux in different spatial directions. The
canonical energy density of the standard SFDM perturbations is

H =
1

2

1

c̄2
δ̇2 +

1

2
(~∇δ)2 +

1

2
(~∇δâ)2 . (C.25)
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The fβ̄ term that mixes spatial and time derivatives does not contribute since
it is linear in time derivatives. From this we find, using the equation of motion

∂tH =
δ̇δ̈

c̄2
+ ~∇δ~∇δ̇ + (~∇δâ)(~∇δ̇â)

= δ̇

[
~∇2δ + ~∇

(
(~∇δ · â)â

)
−

2fβ̄
c̄

â~∇δ̇

]
+ ~∇δ~∇δ̇ + (~∇δâ)(~∇δ̇â)

=
[
δ̇ ~∇2δ + ~∇δ~∇δ̇

]
+
[
δ̇ ~∇
(
(~∇δ · â)â

)
+ (~∇δâ)(~∇δ̇â)

]
− ~∇

(
fβ̄
c̄
âδ̇2
)

= ~∇
[
δ̇ ~∇δ + δ̇â (â · ~∇δ)− â

fβ̄
c̄
δ̇2
]
.

(C.26)

That is, we have ∂tH− ~∇ ~J = 0 with

~J = δ̇

(
~∇δ + â(~∇δ · â)− â

fβ̄
c̄
δ̇

)
. (C.27)

To derive this, we neglected the coupling of δ to the baryonic density pertur-
bation δb. Corrections from this coupling can only be non-zero at the position
of the perturber, as long as we model the perturber as a point particle. Below,
we integrate ~J over a surface at a finite distance from the perturber. For this
purpose, such corrections are irrelevant.

For ~V ‖ â, we have

Jx(t, ~x) = δ̇(t, ~x) (∂xφ(t, ~x)) = (∂t̄φ̄)(t̄, ~̄x)(∂x̄φ̄)(t̄, ~̄x) , (C.28a)
Jy(t, ~x) = δ̇ ∂yφ = (∂t̄φ̄)(∂ȳφ̄) , (C.28b)

Jz(t, ~x) = δ̇

(
2∂zδ − a‖

fβ̄
c̄
δ̇

)
=

√
2(∂t̄φ̄)(∂z̄φ̄) , (C.28c)

where, for brevity, we explicitly show the arguments only in the first line. And
for ~V ⊥ â,

Jx(t, ~x) = δ̇

(
2∂xδ −

fβ̄
c̄
δ̇

)
=

√
2(∂x̄φ̄)(∂t̄φ̄) , (C.29a)

Jy(t, ~x) = δ̇(∂yδ) = (∂t̄φ̄)(∂ȳφ̄) , (C.29b)
Jz(t, ~x) = δ̇(∂zδ) = (∂t̄φ̄)(∂z̄φ̄) . (C.29c)

Note that the fβ̄/c̄ terms drop out when written in terms of φ̄.
To streamline the calculation, we write derivatives with respect to t̄ and ~̄x

of φ̄ as

(∂µ̄φ̄) = −
√

π

2

Meff

(2π)2
1

|Veff |
gm√
2MPl

∫
dω̄(iω̄)fµ̄e

iω̄
(
t̄− 1

Veff
z̄
)
e−iλ̄|~̄x⊥|√
iλ̄|~̄x⊥|

, (C.30)
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with

fµ̄ =


1 , µ̄ = t̄

− 1
Veff

, µ̄ = z̄

−fcrit
ceff

x̄
|~̄x⊥| , µ̄ = x̄

−fcrit
ceff

ȳ
|~̄x⊥| , µ̄ = ȳ

, (C.31)

where we assumed the |λ̄~̄x⊥| � 1 limit. Consider then the integral over the
surface of a cylinder oriented along the z axis with radius a → ∞

Igµ̄ν̄ ≡ a

∫
dϕ

∫
dz g(ϕ) (∂µ̄φ̄)(t̄, ~̄x)(∂ν̄ φ̄)(t̄, ~̄x) , (C.32)

with x = a cosϕ and y = a sinϕ. Here, g is a function of ϕ. Later, we will
consider g = cosϕ and g = sinϕ. We can now calculate (assuming z̄/z to be
constant)

Igµ̄ν̄ = a
1

64π3

M2
eff

V 2
eff

g2m
M2

Pl

∫
dϕg(ϕ)

∫
dz

∫
dω̄(iω̄)fµ̄

∫
dω̄′(−iω̄′)f ′†

ν̄

× eit̄(ω̄−ω̄′)e
−iz̄ 1

Veff
(ω̄−ω̄′) e−i|~̄x⊥|(λ̄−λ̄′)

√
λ̄λ̄′|~̄x⊥|

= a
1

64π3

M2
eff

V 2
eff

g2m
M2

Pl

2π
1∣∣∣ z̄z 1

Veff
− a‖

fβ̄
2c̄

∣∣∣


×
∫

dϕg(ϕ)
1

|~̄x⊥|

∫
dω̄

ω̄2

λ̄
fµ̄f

†
ν̄

=
1

16π2

M2
eff

|Veff |
g2m
M2

Pl

 ceff
fcrit

1

|Veff |
∣∣∣ z̄z 1

Veff
− a‖

fβ̄
2c̄

∣∣∣


×
∫

dϕg(ϕ)
a

|~̄x⊥|

∫
+
dω̄ω̄ fµ̄f

†
ν̄ .

(C.33)

Here,
∫
+ means we integrate only over positive values. This result holds for

both ~V ‖ â and ~V ⊥ â. For ~V ⊥ â, we have a‖ = 0 in Eq. (C.33). For ~V ‖ â,
we have a‖ = ±1.

The energy loss due to Cherenkov radiation is an integral over such a cylin-
der surface [135]. We take this cylinder to be infinitely long along the z
direction with a large but finite radius a. We consider only the side of the
cylinder, since the top and bottom bases do not contribute, as we show below,

Ė =

∫
d~S ~J = a

∫
dϕ

∫
dz(cosϕJx + sinϕJy) . (C.34)
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For ~V ‖ â, we have ~̄x⊥ = ~x⊥ such that

Ė = Icosϕ
t̄x̄

+ Isinϕ
t̄ȳ

= − 1

16π2

M2
eff

|Veff |
g2m
M2

Pl

1

|Veff |
∣∣∣ 1√

2
1

Veff
− a‖

fβ̄
2c̄

∣∣∣
×
∫

dϕ(cos2 ϕ+ sin2 ϕ)

∫
+
dω̄ω̄

= − 1

8π

M2

V

g2m
M2

Pl

∫
+
dω̄ω̄ .

(C.35)

For ~V ⊥ â, we have

|~̄x⊥| = a

√
1 + sin2 ϕ

2
. (C.36)

This gives

Ė =
√
2Icosϕ

t̄x̄
+ Isinϕ

t̄ȳ

= − 1

16π2

M2
eff

|Veff |
g2m
M2

Pl

×
∫

dϕ

√
2

1 + sin2 ϕ

2(√
2

1√
2
cos2 ϕ+ sin2 ϕ

)∫
+
dω̄ω̄

= − 1√
2 8π

M2

V

g2m
M2

Pl

∫
+
dω̄ω̄ .

(C.37)

The contributions of the top and bottom cylinder bases are proportional to∫
|~x⊥|<a

d2~x⊥(∂t̄φ̄)(∂z̄φ̄)

∣∣∣∣∣
z→±∞

. (C.38)

This holds for both ~V ‖ â and ~V ⊥ â. In position space [135], we have

φ̄ ∝ 1√
(z̄ − Veff t̄)2 −

f2
crit

1−f2
crit

|~̄x⊥|2
, (C.39)

whenever the argument of the square root is positive. Otherwise, φ̄ vanishes,

φ̄ = 0 for (z̄ − Veff t̄)
2 − f2

crit

1− f2
crit

|~̄x⊥|2 < 0 . (C.40)

For both ~V ‖ â and ~V ⊥ â, the limit z → ±∞ at fixed t and ~x⊥ implies
|z̄ − Veff t̄| → ∞. Thus, the integrand in Eq. (C.38) vanishes at least as 1/z4.
Therefore, the cylinder bases do not contribute to Ė.
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C.4. Cutoffs
The above calculations were without any kind of cutoff. But, as discussed in
Sec. 4.2, we need to impose cutoffs. In our QFT calculation in Appendix A,
we imposed cutoffs kmin and kmax on the spatial wavevector ~k of the emitted
radiation. In our classical computation, ~k corresponds to the prefactor of i~x in
the ei

~k~x factor in the Fourier transform of δ. We express δ(t, ~x) through φ̄(t̄, ~̄x)

which depends on the coordinates as ei(ω̄t̄−
~̄k~̄x). We can write the dependence

of this exponential on ~x as e−i~k~x for some ~k using the transformation between
t̄, ~̄x and t, ~x. Then, we can try to impose our standard cutoffs on the absolute
value of ~k. The calculation in the previous section naturally leaves an ω̄
integral in the end. Thus, we will try to express |~k| through ω̄. Then, our
standard cutoffs on |~k| translate to cutoffs on ω̄.

Consider first ~V ‖ â. Then,

ω̄t̄− ~̄k~̄x = ω̄t̄− ~̄k⊥~̄x⊥ − k̄z̄ z̄

= ω̄t− ~̄k⊥~x⊥ − z

(
1√
2
k̄z̄ − a‖

fβ̄
2c̄

ω̄

)
.

(C.41)

Thus

|~k|2 = k̄2⊥ +

(
1√
2
k̄z̄ − a‖

fβ̄
2c̄

ω̄

)2

. (C.42)

The source term δb,eff ∝ δ(z̄−Veff t̄) gives in Fourier space ω̄ = Veff k̄z̄. Further,
we are interested only in the on-shell contribution from the pole ω̄ = ceff k̄.
Thus, using k̄2⊥ = k̄2 − k̄2z̄ , we have

|~k|2 = ω̄2

[(
1

c2eff
− 1

V 2
eff

)
+

(
1√
2

1

Veff
− a‖

f

2c̄

)2
]

=
ω̄2

c̄2

(
1

1− (c̄/V )2 − 2a‖fβ̄(c̄/V )

)−1

≡ ω̄2

c̄2
1(

f
‖
max

)2 . (C.43)

This is a relation between k and ω̄. We can use this to impose our standard
cutoffs on k, i.e. k < kmax and k > kmin, in the ω̄ integrals in the result for Ė
found in the previous section. This gives the final result for the energy loss

Ė = − c̄2

16π

M2

V

g2m
M2

Pl

1

1− (c̄/V 2)− 2a‖fβ̄(c̄/V )
(k2max − k2min) . (C.44)

Consider next ~V ⊥ â. Then,

ω̄t̄− ~̄k~̄x = ω̄t̄− k̄x̄x̄− k̄ȳȳ − k̄z̄ z̄

= ω̄t− x

(
1√
2
k̄x̄ −

fβ̄
2c̄

ω̄

)
− k̄ȳy − k̄z̄z .

(C.45)
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That is

|~k|2 =
(

1√
2
k̄x̄ −

fβ̄
2c̄

ω̄

)2

+ k̄2ȳ + k̄2z̄ . (C.46)

We can again use the two relations ω̄ = Veff k̄z̄ and ω̄ = ceff k̄. But, in contrast
to the ~V ‖ â case, this does not uniquely specify |~k| in terms of ω̄. Instead, |~k|
depends on both ω̄ and the orientation of ~̄k, i.e. the spherical angles θ̄ and ϕ̄.
Concretely

|~k|2 = 1

2
k̄2x̄ + k̄2ȳ + k̄2z̄ +

(
fβ̄
2c̄

)2

ω̄2 − 1√
2

fβ̄
c̄
k̄x̄ω̄

=
1

2
k̄2x̄ + (k̄2 − k̄2x̄ − k̄2z̄) + k̄2z̄ +

(
fβ̄
2c̄

)2

ω̄2 − 1√
2

fβ̄
c̄
k̄x̄ω̄

= k̄2 − 1

2
k̄2s2θ̄c

2
ϕ̄ − 1√

2

fβ̄
c̄
k̄ω̄sθ̄cϕ̄ +

(
fβ̄
2c̄

)2

ω̄2

= k̄2 +

(
fβ̄
2c̄

)2

ω̄2 − 1

2

(
k̄sθ̄cϕ̄ +

1√
2

fβ̄
c̄
ω̄

)2

+
1

4

f2
β̄

c̄2
ω̄2 ,

(C.47)

where sθ̄ = sin θ̄ and cϕ̄ = cos ϕ̄. To get a relation between k and ω̄, we could
use the relations ω̄ = Veff k̄z̄ and ω̄ = ceff k̄ to fix cos θ̄ = ceff/Veff . But this still
leaves ϕ̄ undetermined.

To avoid complications from this, we do something simpler. We set ϕ̄ to the
value that gives the largest value (|~k|2)largest of |~k|. Using this largest value of
|~k| to set the cutoff on ω̄ gives a more conservative cutoff than the cutoffs we
used previously. This largest possible value of |~k| is(

|~k|2
)
largest

= k̄2 +
f2
β̄

2

( ω̄
c̄

)2
. (C.48)

With ω̄ = ceff k̄, this gives(
|~k|2
)
largest

=
( ω̄
c̄

)2 [( c̄

ceff

)2

+
1

2
f2
β̄

]

=
( ω̄
c̄

)2
(1 + f2

β̄) ≡
( ω̄
c̄

)2 1

(f⊥
max)

2
.

(C.49)

We will use this relation between k and ω̄ to set the upper cutoff in the ω̄
integral. For the lower cutoff, we should in principle use the value of ϕ̄ that
gives the smallest possible |~k|2. However, our result is dominated by the upper
cutoff. Thus, for simplicity, we take the same value of ϕ̄ for both the upper
and the lower cutoff. Imposing our standard cutoffs on k then gives the final
result for the energy loss

Ė = − c̄2√
2 16π

M2

V

g2m
M2

Pl

1

1 + f2
β̄

(k2max − k2min) . (C.50)
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Above, we have ignored three subtleties regarding cutoffs that we discuss
now. First, we have calculated the energy loss through Cherenkov radiation by
integrating the energy flux over the surface of an infinitely large cylinder. But
we justified our cutoffs by arguing that the perturbation’s Lagrangian is valid
only between a distance rmin and rmax away from the perturber. So maybe
we should use a cylinder with radius and length at most rmax instead of an
infinitely large cylinder. Here, we do not do this. Instead, we keep the infinitely
large cylinder but use the field φ̄ as calculated with a momentum-space cutoff.
One reason is that energy conservation guarantees that the integral over an
infinitely large cylinder gives the same result as that over a finite cylinder.
Of course, the infinitely large cylinder is unphysical. But it suffices that,
mathematically, the result will be the same in both cases. More precisely, this
holds only up to small corrections because, with the cutoffs, the perturber is
no longer a strictly localized point particle. Instead, the perturber is smeared
out over a distance rmin so that some of the Cherenkov radiation is produced
outside any finite volume. Corrections from this are negligible as long as
rmin � rmax, which is true in our case. Another reason why we keep the
infinitely large cylinder is that this is what we already did implicitly when we
employed the standard QFT formalism with momentum-space cutoffs in our
standard calculation in Appendix A.

The second subtlety is that, in our calculation of φ̄(t̄, ~̄x), we used the fol-
lowing result from Ref. [135]

I ≡
∫

d2k̄⊥e
−i~̄k⊥~̄x⊥

1

λ̄2 − k̄2⊥
= −2πK0(iλ̄|~̄x⊥|) . (C.51)

This, in principle, includes wavevectors k̄⊥ that are arbitrarily large. Instead
we should use a version of this integral with appropriate cuts on k̄⊥. However,
the e−i~̄k⊥~̄x⊥ factor already effectively cuts off the integral at

k̄⊥ ∼ 1/|~̄x⊥| . (C.52)

Thus, our previous calculation is valid as long as |~̄x⊥| is larger than 1/k̄⊥,max

where k̄⊥,max is the cutoff we should impose on k̄⊥. For smaller values of |~̄x⊥|
we should use a version of the integral with cutoffs.

Specifically, we have for the upper cutoff on k̄⊥,

(
k̄
‖
⊥,max

)2
= k2max −

( ω̄
c̄

)2( 1√
2

c̄

Veff
− a‖

fβ̄
2

)2

, (C.53a)

(
k̄⊥⊥,max

)2
= k2max −

( ω̄
c̄

)2(( c̄

Veff

)2

+
1

2
f2
β̄

)
, (C.53b)

where k̄
‖
⊥,max applies for ~V ‖ â and k̄⊥⊥,max applies for ~V ⊥ â. This follows

from Eq. (C.42) and Eq. (C.48) using k̄z̄ = ω̄/Veff . Both cases can be written
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as

(k̄⊥,max)
2 = k2max − ω̄2

((
1

c̄fmax

)2

−
(
λ̄

ω̄

)2
)

= k2max

(
1−

(
ω̄

ω̄max

)2
(
1− f2

critf
2
max

(
c̄

ceff

)2
))

.

(C.54)

The smallest possible value of k̄2⊥,max is exactly λ̄2 evaluated at ω̄ = ω̄max.
Thus, our previous calculation is valid if

|~̄x⊥| &
1

λ̄|ω̄=ω̄max

= rmin ·
ceff
c̄

1

fmaxfcrit
. (C.55)

The right-hand side is of the same of order of magnitude as rmin except if
ceff/Veff is close to 1, i.e. for barely supersonic perturbers. In this case, fcrit
becomes small. But, as we will discuss below, we consider only perturbers that
are at most 1% away from the critical velocity. So this is never much larger
than rmin for our purposes. Thus, for our energy loss calculation we can keep
our previous result.

In principle, there is also a lower cutoff on k̄⊥. However, this cutoff is 0
except for ω̄ close to its lower cutoff. As already mentioned above, our results
are dominated by the upper cutoff of ω̄. Thus, we leave out this lower cutoff
on k̄⊥ for simplicity.

The third subtlety is regarding stars that are barely supersonic, V → Vcrit.
One may suspect a logarithmic divergence in φ̄ at V → Vcrit, i.e. at Veff →
ceff . The reason is that λ̄2 ∝ f2

crit = 1 − (ceff/Veff)
2 and K0(iλ̄|~̄x⊥|) diverges

logarithmically for small arguments. Indeed, such a divergence exists in our
case and we will restrict ourselves to perturbers at least 1% away from Vcrit in
order to stay away from this divergence.

This logarithmic divergence does not affect the calculated energy loss. The
energy loss is calculated from an expansion of K0(iλ̄|~̄x⊥|) for large arguments,
while the divergence comes from an expansion of this function for small argu-
ments. However, the logarithmic divergence is relevant when judging whether
or not perturbations are small at various locations, for example at ~̄x⊥ = 0
where the argument of K0 is definitely small. This is discussed in more detail
in Appendix C.6. In electrodynamics, such logarithms occur as well (see for
example Eq. (13.39) in Ref. [135] and the discussion below this equation).

For later reference, we explicitly give the result of the k̄⊥ integral at |~̄x⊥| = 0
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including cutoffs,

1

2π

∫
d2k̄⊥e

−i~̄k⊥~̄x⊥
Θ(k̄⊥,max − k̄⊥)

λ̄2 − k2⊥

= −K0(iλ̄|~̄x⊥|)−
∫ ∞

k̄⊥,max

dk̄⊥
k̄⊥J0(k̄⊥|~̄x⊥|)

λ̄2 − k̄2⊥

≈ −K0(iλ̄|~̄x⊥|)−
∫ N |λ̄|

k̄⊥,max

dk̄⊥
k̄⊥

λ̄2 − k̄2⊥
−
∫ ∞

N |λ̄|
dk̄⊥

J0(k̄⊥|~̄x⊥|)
−k̄⊥

≈
(
γE + ln

(
|λ̄~̄x⊥|
2

)
+ iσ(λ̄)

π

2

)
−
(
−1

2

[
ln
(
k̄2⊥ − λ̄2

)]N |λ̄|
k̄⊥,max

+ γE + ln

(
N |~̄x⊥||λ̄|

2

))
≈ −1

2
ln

(
k̄2⊥,max

λ̄2
− 1

)
+ iσ(λ̄)

π

2
,

(C.56)

where we expanded in |~̄x⊥|, N is a large integer, and we used the fact that
k̄2⊥,max is always larger than λ̄2. If we define f̄crit ≡ fcrit · fmax · (c̄/ceff), we can
write the remaining logarithm as

ln

(
1− (1− f̄2

crit)(ω̄/ω̄max)
2

f̄2
crit(ω̄/ω̄max)2

− 1

)
= ln

(
1− (ω̄/ω̄max)

2

(ω̄/ω̄max)2

)
− ln

(
f̄2
crit

)
.

(C.57)

C.5. Direction of friction force

Above, we calculated the total energy loss of a perturber due to Cherenkov
radiation. But in which direction does this energy loss push the perturber? To
answer this question we can calculate the linear momentum loss in different
directions. Or, a bit simpler, we can calculate the relative amount of the
momentum loss in different directions.

The canonical linear momentum of perturbations is

~P =
∂L
∂δ̇

(~∇δ) =

(
δ̇

c̄2
+

fβ̄
c̄
â~∇δ

)
(~∇δ) . (C.58)

Each component Pi satisfies a continuity equation ∂tPi − ∂j(J
P
i )j = 0. If we

know (JP
i )j we can calculate the momentum loss in a way similar to how we

calculated the energy loss, i.e. by evaluating a surface integral.
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We have, using the δ equation of motion

∂tPi =

(
δ̈

c̄2
+

fβ̄
c̄
â~∇δ̇

)
(∂iδ) +

(
δ̇

c̄2
+

fβ̄
c̄
â~∇δ

)
(∂iδ̇)

=

(
~∇2δ + ~∇

(
(~∇δâ)â

)
− 2â

fβ̄
c̄
~∇δ̇ +

fβ̄
c̄
â~∇δ̇

)
(∂iδ)

+

(
δ̇

c̄2
+

fβ̄
c̄
â~∇δ

)
(∂iδ̇)

= ∂j

(
∂iδ∂jδ + aj(ak∂kδ)(∂iδ)−

fβ̄
c̄
aj δ̇(∂iδ)

)
+ ∂i

(
1

2

δ̇2

c̄2
− 1

2
(∂jδ)

2 − 1

2
(aj∂jδ)

2 +
fβ̄
c̄
(aj∂jδ)δ̇

)
.

(C.59)

Thus

(JP
i )j = ∂iδ∂jδ + aj(ak∂kδ)(∂iδ)−

fβ̄
c̄
aj δ̇(∂iδ)

+ δji

(
1

2

δ̇2

c̄2
− 1

2
(∂kδ)

2 − 1

2
(ak∂kδ)

2 +
fβ̄
c̄
(ak∂kδ)δ̇

)
. (C.60)

The linear momentum loss of the i-th component through the surface of a
cylinder with radius a → ∞ is then

Ṗi = a

∫
dz

∫
dϕ
(
cosϕ(JP

i )x + sinϕ(JP
i )y

)
. (C.61)

As in the case of the energy loss, we can express (JP
i )j as a linear combination

of (∂µ̄φ̄)(∂ν̄ φ̄) using the transformation between t̄, ~̄x and t, ~x. Then, Ṗi is just
a linear combination of the integrals Icosϕµ̄ν̄ and Isinϕ

µ̄ν̄ defined in Appendix C.3.
Many of these Igµ̄ν̄ terms vanish after doing the ϕ integral. The only non-zero
integrals for g = cosϕ are

Icosϕ
x̄t̄

, Icosϕx̄z̄ , (C.62)

and the only non-zero integrals for g = sinϕ are

Isinϕ
ȳt̄

, Isinϕ
x̄z̄ . (C.63)

This can be seen from the fact that the ϕ integral is of the form∫
dϕ g̃(sin2 ϕ) g(ϕ) fµ̄fν̄ , (C.64)

where g̃ is some function of sin2 ϕ and then using the specific form of fµ̄ and
fν̄ given by Eq. (C.31).
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For ~V ‖ â, we have

(JP
x )x = (∂xδ)

2 +
1

2

δ̇2

c̄2
− 1

2
(~∇δ)2 − 1

2
(∂zδ)

2 +
fβ̄
c̄
(a‖∂zδ)δ̇ . (C.65)

When written in terms of φ̄, this contains no terms proportional to (∂x̄φ̄)(∂t̄φ̄)
or (∂x̄φ̄)(∂z̄φ̄). The same is true for (JP

x )y. Thus, Ṗx = 0. An analogous
argument shows that Ṗy = 0. Thus, the friction force points in the z direction.

For ~V ⊥ â, we have for JP
x

(JP
x )x = (∂xδ)

2 + (∂xδ)
2 −

fβ̄
c̄
δ̇(∂xδ) +

1

2

δ̇

c̄2
− 1

2
(~∇δ)2

− 1

2
(∂xδ)

2 +
fβ̄
c̄
(∂xδ)δ̇

= (∂xδ)
2 + · · · = 1√

2

fβ̄
c̄
(∂t̄φ̄)(∂x̄)φ̄+ . . . ,

(C.66)

where “. . . ” denotes terms that cannot contribute to Ṗx. Similarly,

(JP
x )y = (∂xδ)(∂yδ) =

(
1√
2
(∂x̄φ̄) +

fβ̄
2c̄

(∂t̄φ̄)

)
(∂ȳφ̄)

=
fβ̄
2c̄

(∂t̄φ̄)(∂ȳφ̄) + . . . .

(C.67)

For (JP
y ), we find

(JP
y )x = (∂yδ)(∂xδ) + (∂xδ)(∂yδ)−

fβ̄
c̄
δ̇(∂yδ)

= (∂yδ)

(
2∂xδ −

fβ̄
c̄
δ̇

)
= (∂ȳφ̄)

(
2

1√
2
(∂x̄φ̄) + 2

fβ̄
2c̄

(∂t̄φ̄)−
fβ̄
c̄
(∂t̄φ̄)

)
= 0 + . . . ,

(C.68)

and

(JP
y )y = (∂yδ)

2 +
1

2

δ̇2

c̄2
− 1

2
(~∇δ)2 − 1

2
(∂xδ)

2 +
fβ̄
c̄
(∂xδ)δ̇

= (∂xδ)

(
−(∂xδ) +

fβ̄
c̄
δ̇

)
=

(
1√
2
(∂x̄φ̄) +

fβ̄
2c̄

(∂t̄φ̄)

)(
− 1√

2
(∂x̄φ̄) +

fβ̄
2c̄

(∂t̄φ̄)

)
= 0 + . . . .

(C.69)

Thus, Ṗy = 0, but Ṗx 6= 0. That is, the direction of the friction force lies in
the x-z plane, i.e. the plane spanned by ~V and â.

To find the direction within this plane, we can compare Ṗx to Ṗz. We have

(JP
z )x = (∂zδ)(∂xδ) + (∂xδ)(∂zδ)−

fβ̄
c̄
δ̇(∂zδ)

= 2(∂zδ)(∂xδ) + · · · =
√
2(∂z̄φ̄)(∂x̄φ̄) + . . . ,

(C.70)
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and

(JP
z )y = (∂zδ)(∂yδ) = (∂z̄φ̄)(∂ȳ δ̄) . (C.71)

Using (∂z̄φ̄) = (−1/Veff)(∂t̄φ̄), we then have

Ṗx

Ṗz

= −Veff

fβ̄
c̄

1√
2
Icosϕ
t̄x̄

+ 1
2I

sinϕ
t̄ȳ√

2Icosϕ
t̄x̄

+ Isinϕ
t̄ȳ

. (C.72)

The relevant ϕ integral in Icosϕ
t̄x̄

is∫
dϕ

a cosϕ

|~̄x⊥|
fx̄ =

∫
dϕ

a cosϕ

|~̄x⊥|

(
− x̄

|~̄x⊥|

)
= −

√
2

∫
dϕ

cos2 ϕ

1 + sin2 ϕ
= 2π(

√
2− 2) .

(C.73)

The corresponding ϕ integral in Isinϕ
t̄ȳ

is∫
dϕ

a sinϕ

|~̄x⊥|
fȳ =

∫
dϕ

a sinϕ

|~̄y⊥|

(
− ȳ

|~̄x⊥|

)
= −2

∫
dϕ

sin2 ϕ

1 + sin2 ϕ
= 2π · 2(

√
2− 2) .

(C.74)

Thus,

Ṗx

Ṗz

= −
fβ̄V

c̄

1√
2
+ 1

2 · 2
√
2 + 2

= −1

2

fβ̄V

c̄
,

(C.75)

where we used that Veff = V for ~V ⊥ â. Usually, a friction force points into
the negative ~V direction, i.e. in the negative z direction. Our result shows
that there is also a component into the positive x direction in our case. For
standard SFDM, â = êx points into the opposite direction of the background
MOND force. Thus, this additional component of the friction force pushes the
perturber away from the galactic center.

C.6. When are perturbations small
Let us now check explicitly when perturbations are smaller than the back-
ground fields. This determines when we can expand in them so that the
perturbations’ Lagrangian we derived above is valid. In terms of our proto-
type calculation in Sec. 4.2.4, this determines the factor fp. The standard
SFDM Lagrangian has a coupling to matter that is linear in the phonon field
θ. Thus, the coupling term can always be expanded, no matter how large the
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perturbations are. The kinetic term is more complicated. In the MOND limit,
it is a function of

X − β̄Y = (1− β̄)δ̇θ +
(~∇θ0 + ~∇δθ)

2

2m
, (C.76)

where θ = θ0+ δθ is the full phonon field with background field θ0 and pertur-
bation δθ. The kinetic term also depends on X without the −β̄Y term. This
has the same form as Eq. (C.76) but with 1 instead of 1− β̄. We can expand
in δθ as long as ~∇δθ is smaller than ~∇θ0 and both (1− β̄)δ̇θ and δ̇θ are smaller
than (~∇θ0)

2/2m.
We can estimate in the MOND limit

|~∇θ0| ≈ aθ/λ ≈
√
a0a

gal
b /λ = ᾱ2Λ

√
agalb

a0
, (C.77)

where λ = ᾱΛ/MPl. The variables δ and δθ are related by the rescaling
δ2 = 2Λ|~∇θ0|δ2θ , see Appendix B. This gives

δθ =
1√

2Λ|~∇θ0|
δ ≈ 1√

2ᾱΛ

(
a0

agalb

)1/4

δ . (C.78)

Our goal is to check if δθ is sufficiently small at a distance rmin away from
the perturber, see Sec. 4.2.4. For simplicity, here we check explicitly at a few
specific points: At a distance rmin purely in the direction of the perturber’s
trajectory, purely in the perpendicular direction, and on the shockwave front.
That is, we consider (z−V t)2+ |~x⊥|2 = r2min together with one of the following
conditions

|~x⊥| = 0 , (C.79a)
z − V t = 0 , (C.79b)

t̄− z̄/Veff = |~̄x⊥|
fcrit
ceff

. (C.79c)

Without our cutoffs, we could skip some of these cases. E.g. the field at
|~x⊥| = 0 is exactly zero for z̄−Veff t̄ < 0, since we used the retarded propagator.
However, with our cutoffs, we effectively impose a finite spatial resolution and
the shockwave front cannot be precisely resolved, see Appendix C.4. Thus,
the field can be nonzero even outside the shockwave front.

To check the smallness of perturbations, we will again express δ in terms of
φ̄. For ~V ‖ â we have

t̄− z̄

Veff
= t− z

V
, |~̄x⊥| = |~x⊥| . (C.80)

And for ~V ⊥ â,

t̄− z̄

Veff
= t− z

V
+

fβ̄
2c̄

|~x⊥|cϕ , |~̄x⊥| = |~x⊥|
(
1− 1

2
c2ϕ

)
, (C.81)
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C.6. When are perturbations small

where ϕ is the azimuthal angle in the ~x⊥ plane. Including our cutoffs, the
coordinate-dependence of the field φ̄ is given by the integral

Ī = 2<
[
1

2π

∫ ω̄max

ω̄min

dω̄e
iω̄

(
t̄− z̄

Veff

) ∫
d2k̄⊥e

−i~̄k⊥~̄x⊥
Θ(k̄⊥,max − k̄⊥)

λ̄2 − k̄2⊥

]
, (C.82)

where Θ denotes the Heaviside theta function. For large |~̄x⊥|, the k̄⊥,max

cutoff can be neglected, as discussed in Appendix C.4. For |~̄x⊥| = 0, it is
required. For |~̄x⊥| ∼ rmin, it may or may not be necessary depending on
the precise numerics. As a conservative estimate, we impose the cutoff for
|~̄x⊥| = 0, but leave it out at |~̄x⊥| ∼ rmin. The k̄⊥ integral then gives the
standard −2πK0(iλ̄|~̄x⊥|) for |~̄x⊥| ∼ rmin. For |~̄x⊥| = 0, we can use Eq. (C.56).
That is, we have

Ī = 2<
[∫ ω̄max

ω̄min

dω̄e
iω̄

(
t̄− z̄

Veff

)

×

−K0(i(λ̄/ω̄)ω̄|~̄x⊥|) , |~̄x⊥| ∼ rmin ,

−1
2 ln

(
k̄2⊥,max

(λ̄/ω̄)2ω̄2 − 1

)
+ iπ2 , |~̄x⊥| = 0

 . (C.83)

At the shockwave front, Eq. (C.79c), both |~̄x⊥| ∼ rmin and |~̄x⊥| � rmin are
possible, depending on whether or not V is close to Vcrit. For V close to Vcrit,
we have |~̄x⊥| ∼ rmin. For V � Vcrit, we have |~̄x⊥| � rmin. Thus, we should
leave out the cutoff only for V ∼ Vcrit. Here, we leave out the cutoff in both
cases as a conservative estimate.

Below, we are interested in derivatives of the integral Ī. After a rescaling

ω̄ = ω̄maxω̂ = c̄fmaxkmaxω̂ =
c̄fmax

rmin
ω̂ , (C.84)

we have

∂µ̄Ī = f̂µ̄

(
c̄fmax

rmin

)2

2<

[∫ 1

ω̄min
ω̄max

dω̂(iω̂)eiω̂fexp

×

{
−Kn̂(iω̂fK) , |~̄x⊥| ∼ rmin ,

−1
2 ln

(
1

f ′2
K ω̂2 − 1

)
+ iπ2 , |~̄x⊥| = 0

]

≡ f̂µ̄

(
c̄fmax

rmin

)2

Îµ̄ ,

(C.85)

where

fexp = fmax

(
c̄t̄

rmin
− c̄

Veff

z̄

rmin

)
, (C.86a)

fK = fmax
c̄λ̄

ω̄

|~̄x⊥|
rmin

, (C.86b)

f ′
K = fmax

c̄λ̄

ω̄

kmax

k̄⊥,max
, (C.86c)
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and

f̂µ̄ =


1 , µ̄ = t̄ ,

− 1
Veff

, µ̄ = z̄ ,

− µ̄
|~̄x⊥|

λ̄
ω̄ , µ̄ = x̄, ȳ , |~̄x⊥| ∼ rmin ,

0 , µ̄ = x̄, ȳ , |~̄x⊥| = 0 ,

(C.87)

and

n̂ =

{
0 , µ̄ = t̄, z̄ ,

1 , µ̄ = x̄, ȳ .
(C.88)

Note that f ′
K depends on ω̂ through k̄⊥,max. In contrast, fexp and fK are

independent of ω̂.
We can now calculate various ratios of ∂µ̄φ̄ and ~∇θ0. For example,

r̄µ̄ ≡
1√

2Λ|~∇θ0|
∂µ̄φ̄

|~∇θ0|
=

1√
2a0MPl

(
a0

agalb

)3/4

∂µ̄φ̄

=
1√

2a0MPl

(
a0

agalb

)3/4
Meff

(2π)2
1

|Veff |
gm√
2MPl

f̂µ̄

(
c̄fmax

rmin

)2

Îµ̄ .

(C.89)

We can simplify this using

gm =

(
a0

agalb

)1/4

, r−2
min = f2

p

8πM2
Pla0

M

agalb

a0
. (C.90)

We find

r̄µ̄ =
f2
p f

2
max

π

f̂µ̄c̄
2

|Veff |
Meff

M
Îµ̄ . (C.91)

We also need

r̄′µ̄ ≡
1√

2Λ|~∇θ0|
∂µ̄φ̄

|~∇θ0|2/(2m)
=

r̄µ̄
c̄

2mc̄

|~∇θ0|
. (C.92)

We can simplify this using

c̄ = 3f̄β̄

√
agalb

a0

ᾱ2Λ

m
. (C.93)

We find

r̄′µ̄ = 6f̄β̄
r̄µ̄
c̄
. (C.94)
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As discussed above, we are interested in the following ratios that tell us
whether or not we can expand in the perturbation δθ,

rt ≡
max(|1− β̄|, 1)δ̇θ
(~∇θ0)2/(2m)

, ri ≡
∂iδθ

|~∇θ0|
, (C.95)

where i = x, y, z. We can express these ratios in terms of the ratios r̄µ̄ and r̄′µ̄
by expressing δθ through φ̄. We find

rt = max(|1− β̄|, 1)r̄′t̄ , ry = r̄ȳ . (C.96)

Further, for ~V ‖ â

rx = r̄x̄ , rz =
1√
2
r̄z̄ + a‖

fβ̄
2c̄

r̄t̄ . (C.97)

And for ~V ⊥ â

rx =
1√
2
r̄x̄ +

fβ̄
2c̄

r̄t̄ , rz = r̄z̄ . (C.98)

These should all be smaller than 1 in magnitude when evaluated at a distance
rmin from the perturber. Otherwise, we must adjust our choice of rmin, i.e.
the factor fp.

It can easily be seen that r̄~̄x, r̄′t̄, and (fβ̄/2c̄)r̄t̄ cannot be much larger than
1 for supersonic velocities Veff > ceff , if the integral Îµ̄ is not much larger
than 1. Indeed, this integral cannot be much larger than 1 at a distance
rmin from the perturber. Thus, at a distance rmin from the perturber, the
background field and the perturbation are of the same order of magnitude.
This roughly confirms our choice of rmin from Sec. 4.2.4. As discussed in
Appendix C.4, one caveat to this is that our integral diverges logarithmically
for V → Vcrit at |~̄x⊥| = 0, corresponding to the fact that f ′

K → 0 for V → Vcrit.
Thus, we restrict ourselves to velocities at least 1% above the critical velocity,
as also discussed above. There is, in principle, a similar divergence also for
|~̄x⊥| ∼ rmin from the integral within Îµ̄, corresponding to the fact that fK → 0
for V → Vcrit. But it affects the imaginary part, while only the real part enters
our result.

We can make this more precise by numerically evaluating these ratios in
Mathematica [103]. We find that they are smaller than 1 for many cases. In
these cases, we can safely keep rmin as it is, i.e. set fp = 1. In some cases, rt/f2

p

is larger than 1. In particular, this can happen for ~V ‖ â with a‖ = +1 and at
velocities that are only slightly larger than the critical velocity. The ratio is
larger for smaller values of β̄. We show the two worst cases in Fig. C.1. These
occur for β̄ = 3/2. At V = 1.01Vcrit, we have |rt| ≈ 2.3f2

p for |~x⊥| = rmin and
z − V t = 0. Similarly, at the same V , we have |rt| ≈ 2.8f2

p for z − V t = rmin

and |~x⊥| = 0. In this case, we may need to make fp smaller by a factor of
about 1/

√
2.8.
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Figure C.1.: The absolute value of the ratio rt =
δ̇θ max(|1−β̄|,1)

(~∇θ0)2/2m
as a function

of the perturber’s velocity V relative to the critical velocity Vcrit.
The ratio rt determines whether or not the perturbation’s time
derivative is smaller than the relevant combination of background
fields. Left: For ~V ‖ â with a‖ = +1 at |~x⊥| = rmin and z−V t = 0.
Right: For ~V ‖ â at |~x⊥| = 0 and z − V t = rmin. These are the
two worst cases, i.e. the cases with the largest |rt|/f2

p .
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D. Two-field SFDM perturbations
We consider perturbations on top of a background galaxy in equilibrium in
two-field SFDM. Ref. [73] derived the second-order Lagrangian for such pertur-
bations. With the definition λ ≡ ᾱΛ/MPl and including the −λδ+δb coupling
term,

L =+
1

2

(
δ̇2ρ − (~∇δρ)

2
)
− (µ2

0g
00 −m2)δ2ρ

+
(
f ′
0δ̇

2
+ − (f ′

0 − 2f ′′
0 γ

2|~∇θ+|2)(~∇δ+)
2
)

+
(
(f ′

0 + 2f ′′
0 µ

2
0 +A)δ̇2− − (f ′

0 +A)(~∇δ−)
2
)

+
(
−4f ′′

0 µ0|~∇θ0+|γ
)
|~∇δ+|δ̇−

+ 2µ0ρ0δρδ̇−

− λδ+δb .

(D.1)

Here, δρ is the perturbation on top of the background solution ρ0 of the field
ρ− and δ± are the perturbations on top of the background solutions θ0± of the
fields θ±. Further, µ0 is the background chemical potential and A = ρ20/2.

D.1. Equations of motion
The δρ equation of motion in Fourier space gives

δρ = − 2iωµ0ρ0

ω2 − ~k2 − 2(µ2g00 −m2)
δ− . (D.2)

Plugging this into the δ− equation, we find

0 =(δ−e
ikx + δ∗−e

−ikx)
[(

2(f ′
0 + 2f ′′

0 µ
2 +A)ω2 − 2(f ′

0 +A)~k2
)

− (2µ0ρ0ω)
2

ω2 − ~k2 − 2(µ2
0g

00 −m2)

]
+
(
4f ′′

0 µ0|~∇θ0+|γ
)
|~k|ω(δ+eikx + δ∗+e

−ikx) .

(D.3)

The δ+ equation reads

0 =
(
2f ′

0ω
2 − 2(f ′

0 − 2f ′′
0 γ

2|~∇θ0+|2)~k2
)
(δ+e

ikx + δ∗+e
−ikx)

+
(
4f ′′

0 µ0|~∇θ0+|γ
)
|~k|ω(δ−eikx + δ∗−e

−ikx)

+ λ(δbe
ikx + cc) .

(D.4)
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D. Two-field SFDM perturbations

Solving the δ+ equation for δ+ gives

δ+ = −
δ−4f

′′
0 µ0|~∇θ0+|γ|~k|ω + λδb

2f ′
0ω

2 − 2(f ′
0 − 2f ′′

0 γ
2|~∇θ0+|2)~k2

. (D.5)

Plugging this result into the δ− equation and dividing by A yields

0 =

[(
2

(
f ′
0 + 2f ′′

0 µ
2
0

A
+ 1

)
ω2 − 2

(
f ′
0

A
+ 1

)
~k2
)

− 8µ2
0ω

2

ω2 − ~k2 − 2(µ2
0g

00 −m2)

−2f ′′
0 µ

2
0

A

4 · 2f ′′
0 |~∇θ0+|2γ2|~k|2ω2

2f ′
0ω

2 − 2(f ′
0 − 2f ′′

0 γ
2|~∇θ0+|2)~k2

]
(δ−e

ikx + cc)

− 1

A

4µ0f
′′
0 |~∇θ0+|γ|~k|ω

2f ′
0ω

2 − 2(f ′
0 − 2f ′′

0 γ
2|~∇θ0+|2)~k2

λ(δbe
ikx + cc) .

(D.6)

Here,

A =
ρ20
2

=
m2

λ4

µ̂0

m
, (D.7)

where 2mµ̂0 ≈ µ2
0g

00 −m2. Numerically, 2f ′′
0 |~∇θ0+|2 ≈ −f ′

0. So we can write

0 =

[(
2

(
f ′
0 + 2f ′′

0 µ
2
0

A
+ 1

)
ω2 − 2

(
f ′
0

A
+ 1

)
~k2
)

− 8µ2
0ω

2

ω2 − ~k2 − 2(µ2
0g

00 −m2)

−
(
−2f ′′

0 µ
2
0

A

)
2 · γ2|~k|2ω2

ω2 − (1 + γ2)~k2

]
(δ−e

ikx + cc)

+
µ0

A|~∇θ0+|
ω

|~k|
γ

ω2/~k2 − (1 + γ2)
λ(δbe

ikx + cc) .

(D.8)

As discussed in Ref. [73], at low energies with ω = cs|~k| and for a non-
relativistic background, this equation takes the form

0 =

(
−2~k2 +

2mω2

µ̂0

)
(δ−e

ikx + cc)

+
µ0

A|~∇θ0+|
ω

|~k|
γ

ω2/~k2 − (1 + γ2)
λ(δbe

ikx + cc) .
(D.9)

Note that this not only assumes k � m but also k � m
√
µ̂0/m [131]. This

introduces an additional cutoff on k. However, numerically this is not rel-
evant compared to our cutoff kmax ∼ 10−22 eV that we impose anyway for
independent reasons.
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We will now write this in terms of

δ̄− ≡
√
2Aδ− = ρ0δ− . (D.10)

This is a useful normalization as we will see in the next section. This gives
the dispersion relation

ω = cs|~k| =
√

µ̂0

m
|~k| . (D.11)

Since µ̂0 � m, we will have ω � k for on-shell radiation. We can then write

0 =

(
−~k2 + mω2

µ̂0

)
(δ̄−e

ikx + cc)

− m
√
2A|~∇θ0+|

ω

|~k|
γ

1 + γ2
λ(δbe

ikx + cc) ,
(D.12)

which gives

0 =

(
−~k2 + mω2

µ̂

)
(δ̄−e

ikx + cc)

− 1√
2MPl

√
λ4γ

ᾱ

a0
|~aθ0+ |

γ

1 + γ2
(δbe

ikx + cc) .

(D.13)

D.2. Effective Lagrangian
Our calculation so far tells us how the non-relativistic mode of two-field SFDM
reacts to a given perturber. But not how much energy such a mode carries.
For this, we calculate the associated effective Lagrangian. I.e., we simply put
our results for δρ and δ+ back into the original Lagrangian L from Eq. (D.1).
In our case, we have ω � k and k2 � m2c2s. This gives

δρ ≈ 1

2
(iω)

√
2A

µ̂
δ− , (D.14a)

δ+ ≈
2f ′′

0 µ0
~∇θ0+

~kω

f ′
0(1 + γ2)k2

δ− +
λδb

2f ′
0k

2(1 + γ2)

≈ −cs
ᾱmΛ

MPlaθ0

γ

1 + γ2
δ− +

λδb
2f ′

0k
2(1 + γ2)

≡ (δ+)− + (δ+)b .

(D.14b)

Numerically,

(δ+)− = − cs

107/4
γ

1 + γ2
a0
aθ0

1
√
a0r0

(
ā

a0

)1/8

δ− , (D.15)

where the prefactor of δ− is typically not much larger than 1.
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D. Two-field SFDM perturbations

The non-negligible terms in the Lagrangian are

L ≈− (µ2
0g

00 −m2)δ2ρ − (f ′
0 − 2f ′′

0 γ
2|~∇θ+|2)(~∇δ+)

2

− (f ′
0 +A)(~∇δ−)

2 +
(
−4f ′′

0 µ0|~∇θ0+|γ
)
|~∇δ+|δ̇−

+ 2µ0ρ0δρδ̇− − λδ+δb .

(D.16)

A coupling of δ− to the matter density δb can in principle come from three
terms. From the δ+δb term, from the (~∇δ+)

2 term, and from the ~∇δ+δ̇− term.
However, the contributions from the latter two terms cancel,

− f ′
0(1 + γ2)2(−i~k)2(δ+)b(δ+)− − 4f ′′

0 µ0
~∇θ0+(−i~k)(iω)(δ+)bδ−

=2(δ+)b

(
f ′
0(1 + γ2)k2(δ+)− − 2f ′′

0 µ0
~kω~∇θ0+δ−

)
= 0 .

(D.17)

Thus, the coupling to matter comes only from the δ+δb term. We further have

2µ0ρ0δρδ̇− ≈ ρ20
1

c2s
δ̇2− , (D.18a)

−(µ2
0g

00 −m2)δ2ρ ≈ −1

2
ρ20

1

c2s
δ̇2− . (D.18b)

Both terms together give the δ̇2− term. The mixing term ~∇δ+δ̇− in princi-
ple also contributes to the δ̇2− term. However, its size relative to the other
contributions is of order

m2

|~∇θ0+|2
f ′
0

A
c2s =

1

107

(
a0
aθ0

)(
ā

a0

)1/2

, (D.19)

which is typically much smaller than 1.
This finally gives, using A � f ′

0,

L =
1

2
ρ20

1

c2s
δ̇2− − 1

2
ρ20(

~∇δ−)
2 − λδ+δb

=
1

2

1

c2s

˙̄δ2− − 1

2
(~∇δ̄−)

2 − λ

ρ0

δ+
δ−

δ̄−δb

=
1

2

1

c2s

˙̄δ2− − 1

2
(~∇δ̄−)

2 +
1√
2MPl

√
λ4

ᾱ

a0
aθ0

γ

1 + γ2
δ̄−δb .

(D.20)

This is our prototype Lagrangian without the â term and with

c̄ =

√
µ̂

m
, gm = −

√
λ4

ᾱ

a0
aθ0

γ

1 + γ2
. (D.21)

To calculate the energy loss through Cherenkov radiation, we can reuse our
standard calculation of Ė from Appendix A after adjustments for the missing
â term and the factor γ/(1 + γ2) in the coupling gm. This is discussed in
Sec. 4.4 and Appendix A.4.
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E. SZ model perturbations
In this Appendix, we consider perturbations of the SZ model on top of a
Minkowski background. Here, we use the metric signature (−,+,+,+) to
facilitate easier comparison to Ref. [25]. Following Ref. [25] we multiply the
Lagrangian of the SZ model by 16πG̃ = 2/M̃2

Pl. Then, the Lagrangian for the
perturbations is [25], see also Sec. 4.5,

S =

∫
d4x

{
(standard perturbations fromR) +

1

M̃2
Pl

Tαβh
αβ

+KB| ~̇A− 1

2
~∇h00|2 − 2KB

~∇[iAj]
~∇[iAj]

+ 2 (2−KB)

(
~̇A− 1

2
~∇h00

)
· ~∇ϕ+ 2(2−KB)Q0

~Ai

(
−1

2
∂ih00

)
− (2−KB)(1 + λs)

(
( ~A2 + (h0i)2)Q2

0 + (~∇ϕ)2

+2Q0(−h0i +Ai)(∂iϕ)
)

+ 2K2

(
ϕ̇+

1

2
h00Q0

)2}
,

(E.1)

where “(standard perturbations fromR)” denotes the metric perturbations from
the Ricci scalar as in standard General Relativity. In the following, we set
h0i = 0.

E.1. Equations of motion
The hαβ equation is

(standard)αβ =

(
KB

~∇( ~̇A− 1

2
~∇h00) + (2−KB)(~∇2ϕ+Q0

~∇ ~A)

+2K2Q0

(
ϕ̇+

1

2
h00Q0

))
δ0αδ

0
β +

1

M̃2
Pl

Tαβ

≡ 1

M2
Pl

T̄αβ ,

(E.2)

where “(standard)µν” denotes terms from the metric perturbations from the
Ricci scalar as in standard General Relativity. In the harmonic gauge [141],

1

2
�hαβ = − 1

M̃2
Pl

(
T̄αβ − 1

2
ηαβT̄

ρ
ρ

)
. (E.3)
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E. SZ model perturbations

For the 00 component, this is

(~∇2 − ∂2
t )h00 = − 2

M̃2
Pl

S00 −KB
~∇( ~̇A− 1

2
~∇h00)− (2−KB)(~∇2ϕ+Q0

~∇ ~A)

− 2K2Q0

(
ϕ̇+

1

2
h00Q0

)
, (E.4)

where Sαβ = Tαβ − 1
2ηαβT

ρ
ρ . We can write this as(

(1−KB/2)~∇2 − ∂2
t +K2Q

2
0

)
h00

= − 2

M̃2
Pl

S00 −KB
~∇ ~̇A− (2−KB)(~∇2ϕ+Q0

~∇ ~A)− 2K2Q0ϕ̇ . (E.5)

In Fourier space this gives

h00 =
− 2

M̃2
Pl

S00 −KBω~k ~A+ (2−KB)(~k
2ϕ+ iQ0

~k ~A)− 2K2Q0iωϕ

ω2 − ~k2(1−KB/2) +K2Q2
0

. (E.6)

The ~A equation reads

0 =− 2KB∂t

(
∂t ~A− 1

2
~∇h00

)
+ 2KB

(
~∇2 ~A− ~∇(~∇ · ~A)

)
− 2(2−KB)∂t~∇ϕ− 2(2−KB)(1 + λs)

(
Q2

0
~A+Q0

~∇ϕ
)

+ 2(2−KB)Q0

(
−1

2
~∇h00

)
.

(E.7)

In Fourier space, we can write this as(
2KBω

2 − 2(2−KB)(1 + λs)Q
2
0

)
~A− 2KB

(
~k2 ~A− ~k(~k · ~A)

)
= −ω~k (KBh00 − 2(2−KB)ϕ)− 2(2−KB)iQ0

~k

(
(1 + λs)ϕ+

1

2
h00

)
.

(E.8)

The only vector in this equation is ~k, so we can assume ~A ‖ ~k. Then,

~A = −
~k(2−KB)

2KB

h00

(
ω KB

2−KB
+ iQ0

)
+ 2 ((1 + λs)iQ0 − ω)ϕ

ω2 − (2−KB)(1 + λs)Q2
0/KB

= −
~k(2−KB)

2KBω

h00

(
KB

2−KB
+ iQ0/ω

)
− 2 (1− (1 + λs)iQ0/ω)ϕ

1− (2−KB)(1 + λs)Q2
0/(KBω2)

.

(E.9)

The ϕ equation of motion is

0 =− 4K2ϕ̈+ 2(2−KB)(1 + λs)
(
~∇2ϕ+Q0

~∇ ~A
)

+ (2−KB)~∇2h00 − 2(2−KB)∂t~∇ ~A− 4K2

(
1

2
ḣ00Q0

)
.

(E.10)
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In Fourier space, this is

0 =4K2ω
2ϕ− 2(2−KB)(1 + λs)~k

2

(
ϕ+

iQ0
~k

~k2
~A

)

− (2−KB)~k
2h00

(
1 +

1

2−KB

iω

Q0

2K2Q
2
0

~k2

)
− 2(2−KB)ω~k ~A .

(E.11)

For a useful static limit we need√
K2Q0 � |~k| , (E.12)

as discussed in Ref. [25]. We are interested in non-relativistic modes ω = csk
with cs � 1. Thus, we assume

ω � |~k| . (E.13)
As discussed in Sec. 4.5, we also assume

2−KB = O(1) , 1 + λs = O(1) . (E.14)
Then, we have

(2−KB)~k
2h00 = 2f00

(
2

M̃2
Pl

S00 +KBf
′
Aω

~k ~A− (2−KB)fϕ~k
2ϕ

)
, (E.15)

with

fϕ ≡ 1− 1

2−KB

2K2Q
2
0

k2
iω

Q0
,

f−1
00 ≡ 1− ω2/(~k2(1−KB/2))−K2Q

2
0/(k

2(1−KB/2)) ,

f−1
A ≡ 1− (2−KB)(1 + λs)Q

2
0/(ω

2KB) ,

fQ1 ≡ 1 + (iQ0/ω)(2−KB)/KB ,

fQ2 ≡ 1− (1 + λs)(iQ0/ω) ,

f ′
A ≡ 1− (2−KB)

iQ0

KBω
,

(E.16)

which are all typically close to 1 due to our assumptions, except if KB is very
small. This is because below we will find ω ∼ k/

√
KBK2. Thus, f ′

A, fQ1, and
fϕ can be large if KB is sufficiently small. For ~A, we have

~A = −fA
~k

ω

(
1

2
h00fQ1 −

2−KB

KB
fQ2ϕ

)
. (E.17)

In the ϕ equation of motion, this gives
0 =4K2ω

2ϕ

− 2(2−KB)(1 + λs)~k
2ϕ

(
1 +

2−KB

KB
fAfQ2

(
iQ0

ω
+

1

1 + λs

))
− (2−KB)~k

2h00

(
(1− fAfQ1) +

1

2−KB

iω

Q0

2K2Q
2
0

~k2

− iQ0

ω
(1 + λs)fAfQ1

)
.

(E.18)
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E. SZ model perturbations

In the static limit in galaxies, ϕ is coupled to matter due to a k2h00 term with
constant prefactor. Here, the only such term cancels if fQ1 and fA are close to
1, i.e. if KB is not too small. We will further discuss this coupling to matter
below. If we plug the ~A solution into the h00 equation, we find

(2−KB)~k
2h00 = 2f00

(
2

M̃2
Pl

S00 −KB
1

2
h00fQ1fAf

′
A
~k2

+(2−KB)fQ2fAf
′
A
~k2ϕ− (2−KB)fϕ~k

2ϕ
)
. (E.19)

This gives

(2−KB +KBf00fQ1fAf
′
A)
~k2h00

= 2f00

(
2

M̃2
Pl

S00 − (2−KB)(fϕ − fQ2fAf
′
A)
~k2ϕ

)
. (E.20)

As mentioned above, f00 and fA are always close to 1 since we will find ω =
kc′/

√
K2KB with c′ of order 1. Then, we have

2−KB +KBf00fQ1fAf
′
A ≈ 2−KB +KBfQ1f

′
A

= 2−KB +KB

(
1 + (Q0/(ωKB))

2(2−KB)
2
)

= 2 +

(
1

c′
Q0

√
K2

k

)2

(2−KB)
2

≈ 2 .

(E.21)

Further,

fϕ − fQ2fAf
′
A = O

(
Q0

ωKB

)
. (E.22)

In the non-relativistic limit,

S00 = T00 −
1

2
η00T

0
0 =

1

2
T00 =

1

2
ρm , (E.23)

where ρm is the matter density. This finally gives

k2h00 =
ρm

M̃2
Pl

+O
(
k2ϕ

Q0

ωKB

)
. (E.24)

The ϕ equation becomes

0 =4K2ω
2ϕ− 4

2−KB

KB

~k2
(
1 +

1

2
λsKB

)
ϕ

− (2−KB)

(
ρm

M̃2
Pl

+O
(
k2ϕ

Q0

ωKB

))
X , (E.25)
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where X will be defined shortly. Below, we will see that the Xk2ϕ(Q0/ωKB)
term does not affect the dispersion relation. The dispersion relation is ω =
cs|~k| with

c2sKBK2 = c′2 = (2−KB)

(
1 +

1

2
λsKB

)
. (E.26)

We can now evaluate the quantity X using this dispersion relation

X ≡ −i
(2−KB)(2 +KBλs)(1 + λs)√

KB
· ε̄3 · 1

1− ε̄2(2−KB)(1 + λs)
, (E.27)

where ε̄ ≡
√
K2Q0/(c

′k) � 1. That is, we have

X ≈ −i
(2−KB)(2 +KBλs)(1 + λs)√

KB
·
(√

K2Q0

c′k

)3

. (E.28)

We can now check explicitly that the Xk2ϕ(Q0/ωKB) term indeed does not
change the dispersion relation, as claimed above. Corrections from this term
scale as

k2ϕ

(
Q0

ωKB

)4

KB ∼ k2ϕ

(√
K2Q0

k

)4
1

KB
, (E.29)

which is much smaller than the already-present term k2ϕ/KB since
√
K2Q0 �

k. Finally, the ϕ equation becomes

0 =
K2KB

c′2
ω2ϕ̄− ~k2ϕ̄

+ i
ρm√
2M̃Pl

(√
K2Q0

|~k|

)3
1 + λs

√
2
√
2−KB

(
1 + 1

2KBλs

)3/2 , (E.30)

where we introduced

ϕ̄ ≡ M̃Pl√
KB

ϕ . (E.31)

E.2. Effective Lagrangian
So far, our calculation tells us how the non-relativistic mode of the SZ model
reacts to a perturber density δb. But, as in Appendix D.2 for two-field SFDM,
this does not tell us how much energy this mode carries. This requires the
normalization of the effective Lagrangian. We have ω � k,

√
K2Q0 � k,

2−KB = O(1), and 1 + λs = O(1). This implies

h00 = O
(
ϕ

Q0

ωKB

)
, (E.32)

~A = O

(
~k

ω

ϕ

KB

)
. (E.33)

127



E. SZ model perturbations

Then, the spatial derivative terms in the effective Lagrangian scale as

M̃2
Pl

KB
(~∇ϕ)2 ∼ (~∇ϕ̄)2 . (E.34)

Here, we are only interested in the order of magnitude of the terms in the
effective Lagrangian since that is sufficient for our purposes, as discussed in
Sec. 4.5.2. Thus, Eq. (E.34) together with the equation of motion for ϕ̄ suffices
to fix the effective Lagrangian. We have in terms of our prototype Lagrangian

c̄ = O
(

1√
K2KB

)
, gm = O

((√
K2Q0

k

)3
)

. (E.35)

There is no â term for the non-relativistic mode of the SZ model because â cor-
responds to the background galaxy, while we assume a Minkowski background
for simplicity.
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