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Zusammenfassung

Homöostase bezeichnet die Fähigkeit eines dynamischen Systems, mittels regelnder
Prozesse einen intrinsischen Zustand gegenüber äußeren Einflüssen zu stabilisieren.
Derartige Prozesse finden sich insbesondere in Organismen, deren Funktion nur un-
ter gewissen physikalischen Rahmenbedingungen gewährleistet ist. Ähnlich wie bei-
spielsweise die Regulation der Kerntemperatur von Säugetieren finden sich auch im
Gehirn Mechanismen, die die mittlere neuronale Aktivität auf einem bestimmten Ni-
veau halten, um eine normale kognitive Funktionsfähigkeit zu ermöglichen. Als dyna-
mische Prozesse wurden verschiedene Formen dieser neuronalen Homöostase bisher
auch theoretisch mittels numerischer Modelle untersucht. Neben den biochemischen
Grundlagen dieser Adaptionsprozesse stellt sich aus solch einer theoretischen Sicht
auch die Frage, in welche Wechselwirkung diese im Gehirn mit weiteren dynamischen
Komponenten treten.

Zum einen ist dabei von Interesse, wie sich neuronale Systeme so selbst regu-
lieren, dass ihre dynamischen Eigenschaften komplexe Informationsverarbeitung er-
möglichen. Insbesondere im Fall von zeitlich variablen sensorischen Stimuli haben
die dynamischen Eigenschaften des sie verarbeitenenden neuronalen Systems einen
großen Einfluss auf die Effektivität bzw. Präzision solcher Verarbeitungsprozesse.
Zum anderen ist zu berücksichtigen, dass homöostatische Mechanismen Einfluss auf
synaptische Plastizität und Lernprozesse nehmen können, da diese unmittelbar durch
die auftretenden neuronalen Aktivitätsmuster beeinflusst werden. Eine genauere Be-
trachtung dieser beiden Aspekte anhand zweier theoretischer Netzwerkmodelle ist
Kernthema der vorgelegten Arbeit.

Ein besonderer Aspekt von homöostatischen Adaptionsmechanismen ist die Tat-
sache, dass mehrere Parameter zeitgleich dynamischen Veränderungen unterliegen
können. Im einfachsten Fall, der über einen einzigen Parameter hinausgeht, wer-
den zwei Parameter als Funktion intrinsischer Zustandsgrößen verändert. Wie in
vorangegangenen theoretischen Arbeiten gezeigt wurde, erlaubt eine solche duale
Homöostase nicht nur die Regelung des zeitlichen Mittels bestimmer Variablen, son-
dern auch ihrer zeitlichen Varianz. Dadurch kann entsprechend detaillierter auf die
statistische Verteilung solcher intrinsischer Variablen Einfluss genommen werden. In
dieser Arbeit werden zwei verschiedene Netzwerk- bzw. Neuronenmodelle vorgestellt,
und deren Zusammenspiel mit dualen homöostatischen Adaptionsmechanismen un-
tersucht. Diese beiden Modelle stehen stellvertretend für die zwei im vorigen Absatz
genannten Fragestellungen. Beim ersten Modell handelt es sich um ein rekurrentes
Netzwerk, also ein neuronales System, in dem synaptische Verbindungen innerhalb
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einer Population von Neuronen existieren. Dieses steht den sogenannten Feedforward-
Netzen gegenüber, in denen Verbindungen nur in eine Richtung zwischen mehre-
ren Populationen existieren. Rekurrente Netzwerke weisen aufgrund ihrer Struktur
grundsätzlich eine Eigendynamik auf, die es dem System erlaubt zeitabhängige exter-
ne Signale zu verarbeiten. Anhand eines solchen rekurrenten Netzwerks untersuchen
wir die Wechelwirkung der dualen homöostatischen Adaption und der Eigendynamik
des Netzwerks, insbesondere im Hinblick auf die Leistungsfähigkeit des Systems bei
der Speicherung und Verarbeitung externer Signale.

Das zweite Modell betrachtet exemplarisch anhand einzelner Neuronen den mög-
lichen Vorteil dualer Homöostase im Falle der bereits erwähnten Feedforward-Netze.
Aus der Tatsache, dass in Feedforward-Netzen neuronale Populationen seriell und
unidirektional miteinander verknüpft sind, ergibt sich biologisch ein Problem: Bei
Lernprozessen, die darauf abzielen, aus einem bestimmten Input durch solch ein
serielles Netzwerk einen bestimmten Output zu generieren, müssen plastische Verän-
derungen global über das gesamte Netzwerk koordiniert werden. Synaptische Plasti-
zität ist aber biologisch betrachtet ein Prozess, der an lokale physikalische Zustände
gebunden ist, nämlich in erster Linie an die prä- und postsynaptische neuronale
Aktivität. Die Frage ist also, wie globale Lernprozesse über lokale Plastizitätsme-
chanismen koordiniert werden können. Theoretische Ansätze zur Lösung dieses Pro-
blems basieren im Wesentlichen auf der Annahme, dass über weitere synaptische
Verbindungen ein umgekehrter (d.h. entgegen der primären seriellen Informations-
verarbeitung) Informationsfluss, bzw. Feedback-Signale existieren. In dem von uns
betrachteten Neuronenmodell können wir zeigen, dass eine Kombination aus dualer
Homöostase und synaptischer Plastizität es erlaubt, über ein solches Feedback-Signal
die lokalen Lernprozesse zu koordinieren. Die Effektivität dieses Prozesses wird zu-
sätzlich anhand eines Lernszenarios demonstriert, in dem das Neuron eine lineare
binäre Klassifikation durchführt.

Inhalt der Kapitel

Zunächst werden in Kapitel 2 die theoretischen Grundlagen zur Modellierung ein-
zelner Neuronen bzw. neuronaler Netzwerke erläutert. Insbesondere erfolgt hier eine
Einordnung rekurrenter Netzwerkmodelle in die Theorie nicht-autonomer dynami-
scher Systeme. Für große neuronale Netze werden Mean-Field-Methoden zur statis-
tischen Beschreibung der Dynamik eingeführt. Abschließend wird auf einige Grund-
lagen der Theorie der bereits erwähnten dualen Homöostase eingegangen und erläu-
tert, wie ein solches duales Kontrollsystem sowohl den Erwartungswert als auch die
Varianz einer zeitabhängigen Größe determiniert.

Beim ersten untersuchten Modell, welches in Kapitel 3 vorgestellt wird, han-
delt es sich ein sogennantes Echo-State Netzwerk, das unter die Kategorie der be-
reits erwähnten rekurrenten Netzwerke fällt. Echo-State Netzwerke sind in der Lage,
komplexe nichtlineare Berechnungen an sequentiellem externen Input durchzufüh-
ren. Die Besonderheit von Echo-State Netzwerken liegt in der Tatsache, dass das
Erlernen einer bestimmten sequenziellen Informationsverarbeitung nicht durch die
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Adaption der rekurrenten synaptischen Gewichte erfolgt. Stattdessen geschieht dies
nur durch die Anpassung von synaptischen Verbindungen, die auf ein oder mehrere
Output-Neuronen projizieren. Die Kapazität bzw. Leistungsfähigkeit solcher Netz-
werke ist dennoch stark abhängig von der grundsätzlichen Skalierung der rekurren-
ten synaptischen Gewichte, welche sich durch den Spektralradius der rekurrenten
Gewichtsmatrix parametrisieren lässt. Da der Spektralradius aber eine globale und
damit relativ aufwendig zu bestimmende Größe ist, kann ein biologisches Netzwerk
diesen nicht direkt regulieren. Stattdessen wird ein heuristischer Ansatz benötigt,
der auf der Ebene einzelner Neuronen die Skalierung synaptischer Gewichte anpasst.
Wir führen einen lokalen, biologisch plausiblen, dualen homöostatischen Regulati-
onsmechanismus ein („Flow Control“), der in der Lage ist, diese Skalierung der syn-
aptischen Gewichte dynamisch zu regeln. Essentiell für Flow Control ist hier, dass
der lokale rekurrente und der externe Input als separate Größen betrachtet wer-
den. Zunächst wird die Effektivität des Adaptionsmechanismus für unterschiedliche
Input-Sequenzen, die sich hinsichtlich ihrer statistischen Verteilung und Korrelati-
on unterscheiden, betrachtet. Es zeigt sich, dass sich durch Korrelationen zwischen
dem externen Input einzelner Neuronen der tatsächlich resultierende Spektralradius
gegenüber dem einzuregelnden Zielwert erhöht. Eine statistische Beschreibung der
rekurrenten Netzwerkstruktur erlaubt uns, einen analytischen Zusammenhang zwi-
schen der durchschnittlichen Kreuzkorrelation der neuronalen Aktivitäten und der
zu erwarteten Abweichung vom Zielwert des Spektralradius herzustellen, der sich gut
mit den numerischen Ergebnissen deckt.

Zusätzlich zu diesen Ergebnissen wird auch der Effekt des Adaptionsmechanismus
auf die Netzwerk-Performance untersucht. Der hierzu designte Task, an dem die
Output-Gewichte trainiert werden, besteht aus einem zufällig generierten, zeitlich
diskreten, binären Input-Signal, an dem aus aufeinander folgenden Werten zeitlich
verzögert eine XOR-Operation durchgeführt werden soll. Diese Berechnung erfordert
somit einerseits die Werte der Input-Sequenz über den Zeitraum der Verzögerung
im Netzwerk zu speichern, zum anderen aber auch die Fähigkeit, eine nichtlineare
Operation wie in diesem Fall XOR an diesen gespeicherten Werten durchzuführen.
Die Performance des Netzwerks bestimmt sich über die Korrelation zwischen den
vom Task definierten Ziel-Werten und dem tatsächlich vom Netzwerk generierten
Output. Unter Variation des Zielwertes des Spektralradius als auch der Varianz des
verwendeten Input-Signals ergibt sich für die Performance des Netzwerks keine starke
Abhängigkeit von der Input-Varianz. Insbesondere wird die maximale Performance
für einen Zielwert des Spektralradius erreicht, der unabhängig von der Varianz des
Input-Signals ist.

Das zweite eingangs erwähnte Modell wird in Kapitel 5 behandelt. Motivation
ist hier das überwachte Lernen in hierarchischen Netzwerken. In der theoretischen
Neurowissenschaft wird nach möglichen biologischen Mechanismen gesucht, die über-
wachtes Lernen auf Basis gegebener physiologischer Rahmenbedingungen ermögli-
chen. Eine Überblick über den Stand der Forschung wird zunächst in Kapitel 4
gegeben. Die Frage ist hier, wie plastische Lernprozesse innerhalb eines gestaffelten,
hierarchischen Netzwerks über lokale, biologisch plausible Mechanismen koordiniert
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werden. Ähnlich wie bei Algorithmen, die als überwachte Lernverfahren für künst-
liche neuronale Netze entwickelt wurden (beispielsweise Backpropagation), ist aus
theoretischer Sicht ein Informationsfluss vonnöten, der dem der eigentlichen Rich-
tung der Informationsverarbeitung im Netzwerk entgegensteht. Dieser Ansatz führt
in Bezug auf biologisches Lernen zu zwei Teilaspekten, die zu betrachten sind.

Erstens ist hier von Bedeutung, welche Art von Information konkret über syn-
aptische Feedback-Verbindungen übermittelt wird und wie diese kodiert ist. Im Fall
von Backpropagation wird für jedes Neuron im Netzwerk ein exakter Gradient des
im Output-Layer vorhandenen Fehlers berechnet. Dies ist aus mehreren Gründen
aus biologischer Sicht unplausibel. Erstens würde dies eine exakte Abstimmung bzw.
Parallelität zwischen Feedforward- und Feedback-Gewichten erfordern. Zweitens kön-
nen die berechneten Gradienten prinzipiell sowohl positive als auch negative Werte
annehmen, was eine Kodierung über neuronale Aktivität erschwert, da diese zu-
mindest im Sinne von Feuerraten notwendigerweise strikt positiv ist. Als mögliche
Lösungen für diese beiden Punkte werden in Kapitel 4 zum einen randomisierte
Feedback-Gewichte diskutiert (random feedback alignment), zum anderen die Mög-
lichkeit, individuelle Zielwerte für die Aktivität einzelner Neuronen anstatt der ge-
nannten Fehler-Gradienten als Feedback zu nutzen (target propagation).

Ein zweiter Aspekt, der aus biologischer Sicht in Bezug auf Lernprozesse in hier-
archischen Netzwerken zu betrachten ist, bezieht sich darauf, wie einzelne Neuronen
sowohl Feedforward- als auch Feedback-Signale intrinsisch koordinieren und wie da-
durch lokal synaptische Plastizität beeinflusst wird. Ein Ansatz, dem experimentelle
Befunde hinsichtlich der mikroskopischen Anatomie von Neuronen im Kortex voraus-
gingen, ergibt sich aus der Tatsache, dass Pyramidenzellen oft eine sehr spezifische
dendritische Morphologie aufweisen: Während ein Teil der synaptischen Verbindun-
gen sich an Dendriten befindet, die relativ dicht am Zellkern liegen (basal), existiert
zudem eine baumartige dendritische Struktur, die sich vertikal in höhere kortikale
Schichten erstreckt (apikal). Messungen haben gezeigt, dass dieses entfernte dendri-
tische Kompartiment in Teilen als eigenständige Einheit verstanden werden kann, da
es auch dort möglich ist, Aktionspotentiale zu initiieren. Eine Hypothese ist, dass
Feedback-Signale, die in diesem oberen dendritischen Bereich zusammenlaufen, durch
diese nichtlineare Dynamik Einfluss auf die Plastizität der basalen synaptischen Ver-
bindungen nehmen können.

In dem von uns untersuchten und in Kapitel 5 diskutierten Modell werden die-
se spezifischen Eigenschaften mittels zwei separater externer Inputs abgebildet, die
jeweils die Stimulation in den genannten basalen und apikalen dendritischen Berei-
chen subsumieren. Essenziell ist dabei, dass zwei Modi neuronaler Aktivität auftreten
können: Für den Fall, dass nur basaler Input vorhanden ist, kann das Neuron ein be-
stimmtes maximales Aktivitätsniveau erreichen, welches jedoch deutlich unter der
Aktivität liegt, die sich maximal aus gleichzeitig präsentem basalen und apikalen
Input ergibt.

In unseren Untersuchungen wenden wir auf die basalen Synapsen zwei biolo-
gisch motivierte Plastizitätsmechanismen an: erstens die Hebbsche Plastizität, deren
Grundprinzip von Donald O. Hebb bereits Ende der 1940er Jahre postuliert wurde.

8



Als zweiten, alternativen Mechanismus verwenden wir die sogenannte BCM-Regel,
die von Elie Bienenstock, Leon Cooper und Paul Munro im Jahr 1981 als Modell für
synaptische Plastizität im visuellen Kortex entwickelt wurde. Wir können zeigen, dass
sowohl Hebbsche Plastizität als auch die BCM-Regel in den basalen Synapsen dazu
führt, dass das Feedback-Signal im oberen dendritischen Kompartiment als Zielsi-
gnal fungiert, welches letztlich im basalen Kompartiment reproduziert wird. Ähnlich
zu Flow Control sind auch hier homöostatische Prozesse ein essentieller Bestandteil:
Durch eine separate Regelung beider Input-Signale wird sichergestellt, dass das Neu-
ron sich in dem gewünschten Arbeitsbereich befindet. Der beschriebene Lernprozess
kann nur teilweise reproduziert werden, wenn anstatt des komplexeren Neuronenmo-
dells ein einfaches punktartiges Modell verwendet wird, in dem beide Input-Ströme
addiert werden. In erster Linie zeigt sich dieser Unterschied darin, dass das simplere
Modell hinsichtlich des Lernprozesses anfälliger für Störsignale ist: Hebbsche Plasti-
zität führt in punktartigen Neuronenmodellen dazu, dass sich die Gewichte entlang
der Hauptkomponente des präsentierten Inputs ausrichten. Für den Fall, dass diese
Hauptkomponente orthogonal zu der für die Reproduktion des Lernsignals optimalen
Kombination von Gewichten ist, kann diese Rekonstruktion gestört oder komplett
verhindert werden. Das aus zwei Kompartimenten bestehende Modell ist hingegen
deutlich robuster gegenüber einer solchen distraktiven Komponente im basalen Input.
Wir demonstrieren diesen Effekt anhand zweier Lernszenarios.

Im ersten Szenario konstruieren wir das Lernsignal im apikalen Kompartiment
als eine zufällig gewichtete Superposition mehrerer zufällig generierter Zeitsequenzen.
Die gleichen Signale werden auch für die Erzeugung des Inputs für das basale Kom-
partiment verwendet. Eine perfekte Rekonstruktion des Lernsignals ist im basalen
Kompartiment dann erreicht, wenn die basalen Gewichte die für das Lernsignal vor-
ab generierte Wichtung der Zeitsequenzen reproduzieren. Allerdings wird als stören-
der Einfluss zusätzlich der basale Input orthogonal zu dieser optimalen Gewichtung
skaliert, d.h. die Varianz erhöht. Das Ausmaß dieser Skalierung bestimmt also die
Stärke der Störung. Im Falle des Punktmodells werden die beiden so generierten In-
puts addiert. In diesem Szenario konnten wir im Vergleich zum Punktmodell für das
Zwei-Kompartimente-Modell signifikant stärkere Störungen wählen ohne die korrekte
Rekonstruktion des Lernsignals nach dem Lernprozess negativ zu beeinflussen.

Den gleichen Effekt konnten wir auch im zweiten Szenario feststellen, in dem der
apikale Input ein Lernsignal für eine binäre lineare Klassifikation darstellt. In diesem
Fall erfolgt die Störung über eine Skalierung des zu klassifizierenden Inputs parallel
zur Hyperebene, die die korrekte binäre Klassifizierung definiert. Auch hier ergibt sich
nach dem Lernprozess, dass die korrekte Klassifikation für das Zwei-Kompartimente-
Modell weniger stark durch die Störung beeinflusst wird.

Insgesamt können wir dadurch also die Hypothese untermauern, dass die Morpho-
logie pyramidaler Neuronen dazu beitragen kann, dass Feedback-Signale in spezifi-
scher Weise auf synaptische Plastizität und damit auf Lernprozesse Einfluss nehmen.
Aus biologischer Sicht ist auch hervorzuheben, dass das von uns verwendete Modell
keine Lernregel benutzt, die explizit auf einem Fehler zwischen apikalem Lernsignal
und der basalen Rekonstruktion basiert, sondern sich auf biologisch plausible bzw.
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etablierte Plastizitätsmodelle beschränkt. Die Tatsache, dass es dennoch zu einer
korrekten Rekonstruktion des Lernsignals kommt, unterziehen wir im Hinblick auf
die BCM-Regel in Abschnitt 5.2.3 einer genaueren theoretischen Betrachtung. Unter
bestimmten vereinfachenden Annahmen können wir zeigen, dass die BCM-Regel in
Kombination mit dem verwendeten Zwei-Kompartimente-Modell einer gradienten-
basierten Maximierung einer Zielfunktion entspricht, die einer Erhöhung der Korre-
lation zwischen basalem und apikalem Input entspricht.

Zum Schluss dieser Arbeit ordnen wir in Kapitel 6 beide betrachteten Model-
le in einen gemeinsamen Kontext ein. Dabei sind zwei verbindende Merkmale zu
erwähnen. Zum einen die Relevanz dualer homöostatischer Adaption (und die mit
ihr einhergehende Kontrolle über die im System auftretenden Fluktuationen) für
Informationsverarbeitung und synaptische Plastizität. Zum anderen lässt sich als
Gemeinsamkeit beider Modelle die Tatsache nennen, dass eine Trennung funktional
verschiedener Input-Kanäle erfolgt, die die beschriebenen Ergebnisse ermöglichen.
Abschließend diskutieren wir einige weitere Forschungsfragen, die sich aus unserer
Sicht für zukünftige Arbeiten aus den hier vorgestellten Ansätzen und Ergebnissen
ableiten lassen.

In Bezug auf Flow Control, also der dualen Adaption von Echo-State Netzwerken,
sollte für weitere Forschung die Anwendung in biologisch realistischeren Netzwerk-
modellen im Vordergrund stehen. Dies beinhaltet zum einen eine strikte Aufteilung
der neuronalen Population bzw. synaptischen Verbindungen in anregende und hem-
mende Verbindungen, zum anderen aber auch die Implementierung in spikebasierten
Neuronen im Gegensatz zu dem hier verwendeten kontinuierlichen, ratenbasierten
Neuronenmodell.

Im Hinblick auf das untersuchte Zwei-Kompartimente-Modell sollte der Fokus
zukünftiger Untersuchungen hingegen darin liegen, das in dieser Arbeit diskutier-
te Framework in ein mehrschichtiges hierarchisches Netzwerk zu integrieren, um so
dessen Potenzial in komplexeren Lernszenarien zu beurteilen.
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CHAPTER 1

Introduction

An essential component in the central nervous system of mammals is the neocortex.
In humans, it refers to the outer layers of neural tissue in the cerebrum, which is
the largest region of the central nervous system [1, p. 415–419]. About 25% of the
approximately 80 billion neurons in the human brain are located within the neocortex
[2], which also makes up for about 40% of the total mass [1, p. 417], illustrating its
relative importance for brain function.

A major portion of experimental and theoretical neuroscience is dedicated to un-
derstanding how the cognitive capabilities of humans and other mammals are linked
to the physical processes inside the cortex. Experimental work has shaped the picture
of an extremely complex structure that gives rise to electrical and chemical dynamic
processes on spatial and time scales ranging from micrometers to centimeters as well
as milliseconds to days, months and years. While this vast spatiotemporal range still
poses a challenge to theories of the brain and the cortex in particular, there is some
general consensus on the basic components that a model of cortical dynamics and
function should comprise.

First, it is generally believed within neuroscience that the “mental state” of an
animal is reflected in the dynamics of the neurons of its central nervous system.
In particular, higher cognitive functioning, e.g. the processing and interpretation of
sensory information and the planning and execution of movements are reflected in
the electrical patterns observed in the cortex [3, p. 195–199]. Though this view has
been the subject of many debates regarding the philosophy of the mind—that is, the
nature of the “relation between the mind and the physical”—it is generally not much
of a concern within the natural sciences. Therefore, any mechanistic model of the
cortex intending to explain some cognitive function has to do so by predicting neural
electrical activity and relating it to the function in question. On a microscopic level,
the “electrical activity” of individual neurons is characterized by temporal patterns of
so-called action potentials: Short, highly stereotyped spikes of the electric potential
between the interior and exterior of a nerve cell. Naturally, the appearance of these
events in a single neuron can vary in their overall amount, as well as their temporal
regularity. A detailed introduction will be given in Section 2.2. For now, “neuronal
activity” shall refer to the temporal frequency of action potentials, i.e. the “firing
rate”.
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CHAPTER 1. INTRODUCTION

Second, the overall dynamics of cortical activity is considered an emergent result
of the physical coupling between the neurons as well as external driving from sensory
inputs. This coupling is predominantly implemented by the transmission of electrical
signals via axons, synapses and dendrites, see Section 2.2. To draw an analogy from
physics, it is the physical coupling between the elements of a many-body system that
leads to its potentially very complex dynamical properties. The entirety of synaptic
connections in the brain is generally referred to as the connectome.

Third, the coupling between neurons is not static, but subject to dynamical
processes as well. This effect, generally known as synaptic plasticity, allows the
brain to adapt to its environment, form memories and learn from experience [4,
p. 615–618, 1493]. While some plasticity mechanisms can act on the same time scale
as the dynamics of neuronal activity [5], most changes happen on a slower time scale
than the dynamics of neuronal activity that are shaped by the synaptic coupling [3,
p. 719].

Ultimately, the study of plasticity is driven by the belief that most changes within
the connectome serve a purpose: to shape the dynamic properties of the brain in
such a way that it can process sensory information from the exterior physical world,
plan and execute movements and, thereby, provide an evolutionary advantage [6]. As
more and more plasticity mechanisms were discovered in experiments, a conceptual
distinction emerged: Some changes in the connectome appeared to be suitable for
explaining the emergence of specific functionalities, e.g. the execution of motor pat-
terns, the recognition of sensory patterns or the formation of memories [4, p. 1281,
1483]. One of the most prominent plasticity mechanisms falling into this category
is known as Hebbian learning [4, p. 1498]: Neurons that are synchronously active
form stronger synaptic connections. Other adaptations seemed to be less specific in
their function, but rather served the more general purpose of maintaining certain
statistical properties of neuronal activity over time. The latter, known as home-
ostatic plasticity, was first described in the early 1990s, where it was found that
neurons that were forced into a state of higher activity autonomously returned to
their previous activity level by means of compensatory processes [7, 8]. As a mul-
titude of homeostatic controls were subsequently found experimentally, this raised
further questions from a control theoretic perspective: What dynamics result from
multiple—potentially conflicting—control mechanisms attempting to regulate the av-
erage neuronal activity? Theoretical studies have shown that under certain stability
conditions, multiple competing control mechanisms allows for the tuning of higher
moments or entire distribution of neuronal activity [9, 10, 11, 12], in contrast to the
simple case of a single parameter regulating the first moment. In particular, two dy-
namic control parameters, referred to as dual homeostasis, can adjust the temporal
mean and variance of neuronal activity [11, 12].

In this work, we will present the potential role of dual homeostasis in the context
of two different frameworks: reservoir computing and supervised learning. Both of
these concepts have a strong relationship to research on artificial neural networks
and machine learning:
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Research on reservoir computing is both concerned with applying it as a machine
learning framework that can be applied to sequence processing in practical applica-
tions, as well as its possible role in understanding recurrent network dynamics and
learning. Reservoir computing is approaching recurrent neural networks such as those
found in the cortex as high-dimensional systems that serve as dynamical reservoirs,
allowing for complex computations on external input patterns. Synaptic connections
in this reservoir are not adapted to give rise to a specific dynamic behavior. Rather,
homeostatic regulatory processes drive the system towards a dynamical state that is
generally beneficial for signal processing. We will discuss dual dual homeostasis as a
potential candidate for such a regulatory system.

Supervised learning is an ubiquitous approach in machine learning, which can be
applied if the desired response of a system to a given input is known. Different theo-
ries as to what extent this learning scheme is present in the brain have been proposed
[13, 14, 15, 16]. Here, we will present a model that utilizes the interplay between dual
homeostasis and Hebbian learning to form a supervised learning scheme. Building
upon previous research incorporating the specific compartmental anatomy and in-
trinsic dynamics of Pyramidal Neurons as a way of implementing a form of feedback
learning, we show that the combination of Hebbian plasticity and dual homeostasis
can drive a top-down supervised learning scheme.

A Note on Nomenclature

Both the term “neural” as well as “neuronal” can be found in the scientific literature.
While in some cases, both terms have been used interchangeably to refer to the same
concept, we make use of both terms in this work, adhering to the usual definition:
While “neural” concerns nerves, “neuronal” refers to something pertaining neurons.
As the models treated in our work are supposed to model properties of neurons,
we will use the “neuronal” in most of the cases. An exception is the term “neural
network”: Albeit being inconsistent with the given definition of “neural”, it is the
standard term used when referring to mathematical models describing ensembles of
neurons.
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Basics

2.1 Historical Context

In the nineteenth century, medical researchers began to theorize about a functional
separation of brain regions, mostly based on case studies where certain brain lesions
caused characteristic changes in the personality, or cognitive capabilities of patients
[17]. Since then, research in humans as well as other mammals has further unveiled
different functional areas across the cerebral hemisphere [3, p. 198–199]. In partic-
ular, the cortex is now typically divided into four lobes that can be associated with
different cognitive functions, e.g. visual (occipital lobe), auditory (temporal lobe) and
somatosensory processing (parietal lobe), as well as motor control, action planning
and short term memory (frontal lobe) [18]. While these discoveries consolidated the
belief that cognitive function is rooted within physical structure of the brain, they did
not yet link actual physical phenomena in the brain with particular mental processes.
Even though first experiments using electroencephalography (EEG) date back to the
end of the nineteenth century, it was not until the 1920s that EEG measurements
were used to investigate their relation to mental states [19].

On a smaller scale, the groundbreaking work by Ramón y Cajal and Golgi at the
end of the nineteenth century first showed the basic microscopical structure of the
human neocortex [20]: Neurons were found to be generally organized into six cortical
layers, exhibiting differences in the shapes and densities of neurons [1, p. 418].

Apart from the discovery of this laminar structure, these early results also showed
the highly complex anatomy of the neurons itself: Originating from the cell body,
tree-like structures were observed, that could span vertically across the entire cortical
tissue [21]. While these findings did suggest some form of discrete network structure
between nerve cells, it was not before the advent of electron microscopy until it
became completely evident that neurons are interconnected via axons and synapses
that are attached to what is referred to as dendrites.

A milestone in the theoretical study of neuronal dynamics was the work by Alan
Hodgkin and Andrew Huxley in the early 1950s [22]. Hodgkin and Huxley managed
to map the behavior of neurons to an electrical circuit model containing a number
of non-linear components. The model, consisting of a set of coupled differential
equations opened up the possibility for a mathematically rigorous analysis using the
tools of dynamical systems theory.
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Due to the continuous refinement of experimental tools, the historical develop-
ment of neuroscience progressed from macroscopic observations to increasingly finer
detail. In a sense, the theoretical mathematical modeling and analysis of neural sys-
tems took the opposite route, starting at the modeling of individual neurons as done
in the aforementioned works by Hodgkin and Huxley, followed by the construction of
increasingly larger and complex neuronal ensembles. On a practical side, this devel-
opment was also driven by the steadily increasing computing power that researchers
could use for those models. In the following sections, we will take this opposite route,
and lay out the theoretical basis for modeling cortical neural networks by starting at
the single neuron level, followed by the synaptic coupling of multiple neurons towards
statistical models of large-scale networks.

2.2 Single Neuron Models

As stated in the previous section, what makes a neuron the basic unit of cognition is
its ability to exhibit complex electrical dynamics. In the following, we will describe
the physical basis of these dynamics.

2.2.1 General Anatomy

Fig. 2.1 shows the basic anatomy of neurons. Although a wide anatomical variety
exists, three main parts can be identified. First, a cell body, consisting of a large
component, the soma, which holds the cell nucleus. Second, a large amount of
branches, called dendrites. Those are connected to the axon terminals of other
neurons via synapses. The number of synaptic connections per neuron in the human
neocortex is roughly estimated to be on the order of 103 [23]. The entirety of these
connections transmit action potentials from presynaptic neurons causing changes
in the intracellular electric potential which can, in turn, trigger the initiation of
action potentials in the soma. These are then propagated along the third major
component, the axon. Shown in beige in Fig. 2.1 is the myelin sheath covering the
axon. This insulating layer facilitates the propagation of electrical impulses, and
its disintegration, e.g. due to diseases such as multiple sclerosis can have severely
detrimental effects on motor control, sensory perception and cognition. The axon
eventually separates into thinner branches which end in axon terminals, attached to
the dendritic trees of other neurons. This is where electric signals are transmitted
from one nerve cell to another.

2.2.2 Equilibrium Potential

Just like other cells, neurons are enclosed by an insulating membrane. This mem-
brane prevents ions from freely floating in and out of the cell. In particular, this
separation causes a difference in the concentration of ions, the most prominent be-
ing sodium (Na+), potassium (K+) and chloride (Cl−) ions, see inset B in Fig. 2.1:
While sodium and chloride have a higher concentration outside the cell, potassium
has a higher concentration inside. This imbalance stems from a combination of
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Figure 2.1: Basic anatomy of a nerve cell. The colored circles in panel B represent
intra- and extracellular ions. The rectangular shapes in the cell membrane represent
active ion pumps. Some ion channels are only permeable to specific ions, illustrated
by the respective colored membrane insets.

effects, namely active ion transport across the membrane via so-called ion pumps
(represented by rectangular shapes in inset B in Fig. 2.1), osmotic pressure and a
gradient between the intracellular and extracellular potential. Ion pumps actively
move ions unidirectionally from one side of the membrane to the other. For ex-
ample, the sodium-potassium pump (sodium–potassium adenosine triphosphatase)
transfers sodium out of the cell and potassium into the cell. As the differences in
the ion concentrations across the membrane increase, the osmotic pressure increases,
reducing the effectiveness of the ion transfer. Furthermore, a gradient in the elec-
tric potential arises due to the differences in concentration. Altogether, these effects
generate a thermodynamic equilibrium state for a given ion type, associated with
a certain difference in the intra- and extracellular electric potential. This so-called
Nernst potential, if measured as ∆E = Einside − Eoutside, is given by

∆E =
kBT

q
ln
nout
nin

(2.1)

where kB is the Boltzmann constant, T is the temperature, q the ion charge and nout
and nin are the respective ion densities with arbitrary units, as it is their ratio that
determines the resulting potential. Since this defines a state of equilibrium, it is also
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called the reversal potential: A voltage difference below the reversal potential causes
an inward current of positively charged ions. As an example, the reversal potential
of sodium is approximately +55mV [4, p. 153].

However, since different types of ions are present inside and outside the cell, an
equilibrium is not simultaneously present for all ions. Still, one finds an intracellular
potential where all ionic currents cancel to an effective equilibrium. This equilibrium
is typically found at approximately −65mV. As previously explained, this potential
causes sodium ions to flow into the cell. On the other hand, the reversal potential of
potassium is approximately −77mV, hence potassium ions flow outward. In total,
all these ionic currents result in a dynamic equilibrium.

2.2.3 Synapses

Synapses are the main component of electrical communication between neurons.
While electrical synapses also exist (with a direct conducting link between neurons),
the dominant type of synapse in the cortex is the chemical synapse, which trans-
mits signals via the release of neurotransmitters. As shown in inset A in Fig. 2.1,
synapses consist of two parts, the presynaptic axon terminal (top) and a region on a
dendrite of the postsynaptic neuron (bottom) with specific receptors located in the
membrane. When the axon terminal is depolarized, it causes a series of biochem-
ical reactions that lead to the release of neurotransmitters from synaptic vesicles.
These neurotransmitters diffuse through the synaptic cleft and bind to receptors on
the postsynaptic membrane. This binding in turn causes local ion channels to open
and can either cause a depolarization or hyperpolarization relative to the equilib-
rium potential. Various receptor types exist and their effect on the postsynaptic
potential determines whether the synapse is referred to as excitatory (depolarizing)
or inhibitory (hyperpolarizing). The time scale of the ionic currents caused by the
synaptic transmission is generally very short at approximately 2ms [3, p. 105]. This
causes a transient change in the postsynaptic potential on the order of millivolts.
It is crucial, however, that the effect on the postsynaptic potential can vary signifi-
cantly among synapses, and it is this variation in synaptic efficacy that defines the
structure of the connectome.

2.2.4 Intrinsic Dynamics

So far, we have described the neuron as an enclosed structure whose membrane is
permeable to certain types of ions (yielding an equilibrium potential of approximately
−65mV), which can be transiently perturbed via synaptic currents. Using this
picture, we can model the neuron as a capacitor in a passive electrical circuit. For
this model, the total electric current Im and the voltage across the membrane Vm
are related via:

Im = CV̇m . (2.2)

Here, C is the capacity of the cell. The current Im is the sum of the sodium and
potassium currents INa and IK, the synaptic currents IS, as well as a leakage current
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Figure 2.2: Recording of an action potential in a mouse hippocampal pyramidal
neuron. Taken from Bean [24].

that subsumes other less dominant ionic currents, including chloride. Each of these
currents Ii are simply given by the respective reversal potential Vi and a specific
conductance gi via

Ii = gi(Vi − Vm) , (2.3)

which reflects the effect of the respective reversal potentials. In total, the current
reads

CV̇m = Im = gK(VK − Vm) + gNa(VNa − Vm) + gL(VL − Vm) + gS(VS − Vm) . (2.4)

Note that we already described the synapses as actively changing the behavior of
local ion channels over time, which can be accounted for by making the synaptic
conductance gS time dependent. Still, in its current form, the solution of (2.4)
would only yield a fluctuating voltage trace, depending on the changes in the synaptic
conductance. In contrast, neurons have the intrinsic ability to elicit short bursts of
depolarization, known as action potentials. An example is shown in Fig. 2.2. During
a very short period of approximately 2ms, the electric potential rises to roughly
45mV, followed by a return to the resting potential.

Hodgkin and Huxley proposed the first mathematical model explaining the emer-
gence of action potentials [22]. It added time dependence to the sodium and potas-
sium conductances gNa and gK entering (2.4). The dynamics of these conductances
are described by an additional set of differential equations which, importantly, are
in turn coupled to the voltage across the membrane Vm. While it provides a very
accurate description of the intrinsic dynamics, it is rather complicated to analyze,
which is why simplified models have been devised in an attempt to capture the es-
sential features of the Hodgkin-Huxley model. In the following, we will discuss two
such types of simplified models
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Figure 2.3: Example of the dynamics of the leaky integrate-and-fire model.

Leaky Integrate-and-Fire Model

The first observation allowing for a reduction in complexity is the fact that the tem-
poral postsynaptic voltage response to a presynaptic action potential is very generic,
apart from differences in the overall amplitude and sign accounting for the synaptic
efficacy. Furthermore, these responses approximately follow a simple superposition
rule, i.e. the total voltage response to all synaptic inputs is the sum of the responses
to all individual presynaptic events.

Second, action potentials are typically initiated if the voltage surpasses a bound-
ary, referred to as the firing threshold. After the spike event, the voltage returns to a
certain reset potential. One of the simplest models accounting for these observations
is the leaky integrate-and-fire model [25, p. 94–97]. In differential form, it can be
expressed as

τ V̇ (t) = Vrest − V (t) + Isyn(t) (2.5)

Isyn(t) =
∑

i,j

wiδ(t− tij) , (2.6)

where τ is a membrane time constant, typically set to τ ≈ 20ms, and Vrest the
resting potential. Note that, technically, the physical units of this equation are not
consistent: The left hand side of the equation has the unit of volts. Thus, the
term Isyn(t) as a synaptic current is not actually an electric current, rather than
an “effective” current given by Ieff = I · τ/C, with C being the membrane capacity
as introduced in (2.2). This effective synaptic current Isyn(t) is modeled as a sum
over instantaneous current peaks from all synaptic connections, indexed by i and
all presynaptic spiking event times tij , weighted by the synaptic efficacies wi of the
individual synapses. A spike occurs if V (t) surpasses a threshold θ from below, and
is directly followed by V returning to a reset voltage Vres. Alternatively, the return
to the reset potential can be modeled by a finite-time generic voltage trace including
the action potential itself. However, since only the timing of spiking events enters
(2.6), the exact shape is of no importance. Still, what can be of importance is the
fact that no additional spiking event can occur during this short period between the
spike initiation and the return to the reset potential. An example of a voltage trace
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Figure 2.4: Firing rate of the leaky integrate-and-fire model as a function of the
synaptic input. σI denotes the standard deviation of random Gaussian white noise
added to the average input Isyn.

is shown in Fig. 2.3. In this case, the voltage is directly set back to its reset potential
after passing the threshold.

Rate Models

The activity of the spiking neuron model discussed in the previous section is given by
the timing of its action potentials. Using spiking models to describe the behavior of
larger networks of neurons hence implicitly holds the assumption that the spiking na-
ture of neurons is essential for an understanding of the entire system. An alternative
view on the behavior of single neurons and networks is captured in what is known as
rate-based models. Those are based on the observation that the frequency of spiking
events in a neuron systematically varies as a function of its input current, known as
the f-I curve, see Fig. 2.4. This effect has led to more abstract models, suggesting
that the firing rate is the dominant unit for encoding and transmitting information
in the brain [26, chapt. 15]. As one would expect, the issue of “spike versus rate” can
be approached from different perspectives, potentially resulting in different conclu-
sions in favor of or against the rate picture [27]. From an experimental standpoint,
measuring firing rates has been a viable method to relate neuronal activity to percep-
tion, behavior, movement or other cognitive functions [28, 29, 30, 31]. Furthermore,
large-scale measuring techniques such as functional magnetic resonance imaging or
electroencephalography rely on firing rates as a neuronal physical correlate, since the
observation of individual firing events is not possible with these methods. Hence,
firing rates certainly encode information on the state of the brain, or parts of it.
However, this should lead to the simple conclusion that firing rates are sufficient
for explaining neuronal dynamics itself. As the theory of recurrent neural networks
will be frequently discussed in this work, it is of particular interest here to examine
the question of validity for rate neuron models in recurrent networks. Important
work was done in this respect by Sompolinsky, van Vreeswijk and Brunel by showing
that for random sparse network connectivity, a mean field theory using population
firing rates is sufficient to explain the observed asynchronous irregular firing activity
termed the balanced state [32, 33]. We will return to this in Section 2.3.3.
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For now, we note that a typical rate model consists of a nonlinear function of the
synaptic input, representing the frequency of action potentials. Obviously, since this
input is generally a time dependent quantity, we face the problem of how to interpret
a firing rate at any given moment in time: If we define the time averaged firing rate
at time t as lim∆t→0 n[t, t+∆t]/∆t, where n[t, t+∆t] is the number of spikes within
the time interval [t, t+∆t], we will eventually find n[t, t+∆t] to be zero or one, which
causes the rate estimate to be either zero or diverge to infinity. There are multiple
possibilities to alter our interpretation in order to avoid this issue. First, we could
propose that the idea of-quasi instantaneous firing should be rejected in the first
place: It is only well defined in a static situation, where the input is not changing
over a prolonged time span. However, this completely rules out the possibility to use
rate models in a dynamic context. As a first alternative, we could propose that the
rate should be measured and averaged across an entire population of desynchronized
neurons receiving the same temporal input pattern. This interpretation is reasonable
in the case when we can identify populations of neurons that share similar synaptic
inputs.

As a third alternative, we could propose that the instantaneous rate is the average
number of spikes in a given small time window over a large number of trials: We can
present the same external input pattern (if present) and average over the responses
of individual neurons. This is also a typical procedure in experiments where animals
or humans are given a specific task or stimulus that can be repeated multiple times
[34, p. 9][35]. While this procedure can yield averaged temporal firing rate patterns
of individual neurons, it comes with another set of potential issues. Simulating
such a scenario with a deterministic model requires randomized initial conditions,
since otherwise the resulting spike pattern would be exactly the same on each trial.
This raises the question as to which extent the results are sensitive to the initial
conditions: In the extreme case, slight variations in the initial conditions could result
in completely different activity patterns. In a certain sense, the same problem applies
to experiments: Even in the most carefully designed experiment, each trial takes
place under a slightly different set of initial conditions, be it due to changes in the
physical environment or the simple fact that previous trials might affect the outcome
e.g. due to learning processes or exhaustion of the subject. We will return to the issue
of sensitivity to initial conditions in Section 2.3.2 when discussing the dynamics of
recurrent networks. Furthermore, the previously mentioned mean-field approach also
utilizes a rate definition based on an average response over different initial conditions.
Yet, even in the most simple interpretation of a static input, one should be aware
that a perfectly constant synaptic input is not biologically plausible: Since the total
synaptic current is approximately the sum of a finite amount of short individual
synaptic currents, this will always result in fluctuations around a certain mean. A
simple model accounting for these fluctuations is to describe these fluctuations as
Gaussian white noise around a given mean. Due to the central limit theorem, this
approximation is justified in the case of a large number of statistically independent
presynaptic spiking events. As an example, the effect of such fluctuations on the
time-averaged firing rate of a leaky integrate-and-fire model is shown in Fig. 2.4. A
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finite amount of noise smoothes the f-I curve. Therefore, rate-based models usually
account for this continuous transition by using continuous activation functions, most
prominently the sigmoid function

φ(t) = σ(Isyn(t)) =
1

1 + exp(−gIsyn(t) + b)
. (2.7)

This notation includes the possibility to shift the transition point using a bias b and
adjust the gain, i.e. the steepness of the transition, by a factor g.

Naturally, since individual spiking events are no longer considered in this model,
the synaptic input has to be calculated differently. The natural modification to (2.6)
is therefore

Isyn(t) =
∑

i

wiφi(t) , (2.8)

where wi still represent synaptic weights and φi are the presynaptic firing rates,
including neurons acting as potential external input sources.

Technically, if none of the neurons in a network are recurrently coupled, (2.7)
and (2.8) are sufficient to describe the rates within the network. However, if neu-
rons couple recurrently, this formulation, where rates are defined as an instantaneous
function of the input current, causes an issue of self-consistency. Therefore, a dy-
namic rate model is required. For continuous-time models, one usually chooses to
model firing rates as a function of a passive membrane variable x(t) with a specific
time constant, whose dynamics are similar to (2.5):

φi(t) = σ(xi(t)) (2.9)

τ ẋi(t) = Ii(t)− xi(t) (2.10)

Ii(t) =
∑

j

wijφj(t) . (2.11)

Note the additional indexing, making wij the synaptic weight between the j-th presy-
naptic neuron to the i-th postsynaptic neuron. Alternatively, if the network is mod-
eled as a discrete-time dynamical system, one usually uses

φi(t) = σ(xi(t)) (2.12)

xi(t) = Ii(t) (2.13)

Ii(t) =
∑

i

wijφj(t− 1) . (2.14)

Before we turn towards a more detailed description of the overall network dy-
namics, we note that equations (2.12) – (2.14) can be transformed into a system of
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similar form but with a hyperbolic tangent as the activation function by defining:

x̃i ≡
xi(t)

2
− wij

4
(2.15)

w̃ij ≡ wij/4 (2.16)

b̃i ≡ −
∑

j wij

4
(2.17)

which leads to
x̃i(t) =

∑

j

w̃ij tanh
(
x̃j(t− 1)− b̃j

)
. (2.18)

Unless stated otherwise, we will use the hyperbolic tangent as our standard activation
function.

2.3 Recurrent Networks

Before introducing the theoretical basics of recurrent neural network dynamics, we
shall introduce the mathematical model in its most general terms. We describe re-
current networks as a set of N neurons, that are coupled by a matrix Ŵ ∈ R

N×N ,
with entries wij ∈ R specifying the connection strength from neuron j to neuron
i. Diagonal entries are set to wii = 0, i.e. self-coupling is not present. Option-
ally, Next external neurons can be included into the model using a weight matrix
Ŵext ∈ R

N×Next . Throughout this work, we will model neural networks as time-
discrete systems. Neuronal activities are represented as a time series of vectors,
y(ta) ∈ R

N and yext(t) ∈ R
Next . The internal activities y(t) are given by a neuronal

activation function φ(·) via y(t) = φ (x(t)− b), where we refer to x(t) as the mem-
brane potential and b as the bias. The activation function is applied element-wise
to the vector. The membrane potential is then given by a sum of the projection of
the internal and external activity. In vector notation, the dynamical system is thus
given by

y(t) = φ (x(t)− b) (2.19)

x(t) = Ŵy(t− 1) + Ŵextyext(t− 1) . (2.20)

In addition, the recurrent neurons of the network might project onto another set of
neurons, which we shall interpret as the output of the network:

xout(t) = Ŵouty(t) . (2.21)

An illustration of the entire architecture is shown in Fig. 2.5.

2.3.1 Biological Motivation of the Network Architecture

As we shall see, the relative weight of each class of the synaptic connections has
significant effects on the behavior of the system. This raises the question of the
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Figure 2.5: Illustration of the recurrent network structure as defined by (2.19)–(2.21).

actual importance of each of these elements in a biological context. Obviously, the
recurrent network model presented here is a strong abstraction from biological cor-
tical networks. Yet, similar models have been widely used and accepted as models
for cortical networks [36, 37] and their success in explaining temporal dynamics, or
cognitive functions involving time, suggests that recurrence plays a significant role in
brain function. Furthermore, experimental measurements indeed indicate an abun-
dance of local recurrent synaptic connections among various cortical regions [38].

A well-known cortical network model is referred to as the canonical microcircuit

[39]. Speaking in broader terms, it supports the notion of the cortex as a network of
strong local, intralaminar connections, as well as additional “external” input, mainly
from thalamic neurons or from other more distant cortical regions. Naturally, in the
generic model presented here, the former would thus be subsumed by the matrix Ŵ ,
while the latter corresponds to Ŵext.

2.3.2 Recurrent Neural Networks as Dynamical Systems

Equations (2.19) and (2.20) define a particular realization of a mathematical struc-
ture known as a discrete dynamical system. The mathematical theory of dynamical
systems allows us to gain insights into the behavior of the physical system we at-
tempt to model: classifying and quantifying different dynamical states and, crucially,
relate those to the parameters that enter our model.

This section will introduce the necessary theory and exemplify it using the intro-
duced recurrent network model. As it uses discretized time steps, we will focus on
the theory of discrete-time dynamical systems. The theory introduced in this section
can be found in various textbooks on dynamical systems. As a popular choice, we
refer to Strogatz [40] for a rigorous introduction.

27



CHAPTER 2. BASICS

Maps

Discrete-time dynamical systems are also known as maps, and we formally define
them by a function

x 7→ G(x) , x, G(x) ∈ R
n (2.22)

that allows us to construct a flow Φ as

Φ(x0, t) ≡ G(t)(x0) , x0 ∈ R
n , t ∈ N0 (2.23)

where G(t) represents the t-times iterated application of G. The n-dimensional Eu-
clidean space in which the state of the system is represented shall be referred to as
the phase space of the dynamical system. Technically, there is no need for G to be
differentiable with respect to x. However, for practical purposes, we will assume
that the differential of G with respect to x exists everywhere, unless stated other-
wise. As a shorthand notation, we usually refer to Φ(x0, t) simply by x(t), keeping
the possibility in mind that there is, in general, an explicit dependence on the initial
conditions.

Note that the flow introduced here defines an autonomous dynamical system:
time only enters as an incremental parameter that represents the progression of the
system through time. The iterative map G is time independent. If this is not the
case, the system is non-autonomous and can be defined by a time dependent function

(x, t) 7→ G(x, t) , x, G(x, t) ∈ R
n , t ∈ Z (2.24)

and the corresponding flow Φ which is now implicitly defined as

Φ (x0, t0, t) ≡ G (Φ (x0, t0, t− 1) , t− 1) , t > t0 (2.25)

Φ (x0, t0, t0) ≡ x0 . (2.26)

In contrast to the autonomous case, both t and t0 now represent “absolute” time:
For the autonomous case, t simply represents the number of iterations on the initial
state. For the non-autonomous system, however, the explicit dependence of G on
some absolute time t also requires the flow to be placed within this absolute time
reference.

In the absence of external input, our recurrent network model corresponds to an
autonomous system, that is

y(t) = φ
(
Ŵy(t− 1)− b

)
. (2.27)

External activity yext then adds an explicit time dependence to the map.
The mathematical treatment of autonomous and non-autonomous systems differs

in a number of aspects. We will first introduce the required basics of autonomous
systems and then cover the relevant theory for the non-autonomous case.
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Fixed Points

We define the fixed point of an autonomous discrete dynamical system as a point
x∗ ∈ R

n in phase space that satisfies

G(x∗) = x∗ , (2.28)

that is, the map G maps x∗ onto itself. By induction and (2.23), it is evident that
the flow of the system will remain in x∗ for all times if x0 = x∗.

The stability of a fixed point x∗ is defined by the long term behavior of the
dynamical system in the neighborhood of x∗:

A fixed point x∗ is asymptotically stable if there exists an ǫ > 0 for which any initial
condition satisfying |x0 − x∗| < ǫ leads to Φ (x0, t) → x∗ as t→ ∞.
A fixed point x∗ is unstable if for arbitrarily small ǫ > 0 and all initial conditions
x0 with 0 < ‖x0 − x∗‖ ≤ ǫ, there is a t for which ‖Φ(x0, t

′)− x∗‖ > ǫ for all t′ ≥ t,
where ‖·‖ denotes the Euclidean norm.

This definition formalizes the statement that fixed points are referred to as stable
if small perturbations from the fixed point vanish over time, whereas for unstable
fixed points, they are amplified. According to the Hartman-Grobman theorem [41],
the behavior of the system close to a fixed point can be characterized by means of
its first order linearization around the fixed point:

G(x) = x∗ + ĴG(x
∗)δ +O(x2) (2.29)

δ ≡ (x− x∗) (2.30)
(
ĴG(x)

)
ij
≡ ∂Gi(x)

∂xj
, (2.31)

where we have defined ĴG(x∗) as the Jacobian matrix evaluated at x∗, and O(x2) be-
ing higher order terms in x. Then, the dynamics of the perturbation δ(t) = x(t)− x∗

is given by
δ(t+ 1) = ĴG(x

∗)δ(t) . (2.32)

The solution of this linear map is simply given by the eigenvectors vi and eigenvalues
λi of ĴG via

δ(t) =

n∑

i=1

αiviλ
t
i , (2.33)

where the factors αi are related to the initial condition by
∑n

i=1 αivi = x0. Writing
the eigenvalue terms in their Euler representation λti = rti exp (iφit), we see that
their long term behavior is determined by their absolute values ri. For t → ∞, the
term in corresponding to the eigenvalue with the largest ri dominates in the sum of
(2.33). Hence, the fixed point is stable if the largest absolute value of all eigenvalues
is smaller (stable fixed point) or larger than one (unstable fixed point). This value
is also referred to as the spectral radius of the matrix.
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For two-dimensional systems, fixed points can generally be divided into five dif-
ferent classes, based on their eigenvalue spectrum:

• Saddle-nodes have two real eigenvalues, one of which is positive and one is
negative.

• Stable and unstable nodes have real eigenvalues that are either both negative
(stable) or positive (unstable).

• Stable and unstable spirals have complex pairs of eigenvalues whose real part
is either negative (stable) or positive (unstable). In contrast to the stable and
unstable nodes, the imaginary component reflects a rotational component in
the dynamics.

Taking the recurrent network model with φ(x) = tanh(x) as an example, fixed
points of the autonomous system are given by the solution of

y∗ = tanh
(
Ŵy∗ − b

)
. (2.34)

A general analytical solution to this equation does not exist, but if we choose our
biases to be zero, a trivial solution is y∗ = 0, which yields a Jacobian that is equiva-
lent to the synaptic weight matrix Ŵ . The stability of the network around this fixed
point is therefore determined by the spectral radius of Ŵ , which will be a reoccurring
quantity throughout this thesis.

While the overall stability of a fixed point is determined by the spectral radius
of its Jacobian, a further characterization is possible using the eigenvalue spectrum.
For the linearized system, we can separate the eigenvalues of the Jacobian into three
sets, based on whether their absolute values are smaller, equal or larger than one. if
we denote the corresponding sets of eigenvectors by S<, S= and S>, the subspaces
spanned by the respective sets of vectors are called the stable, center and unstable
eigenspace of the fixed point. Fig 2.6 shows an example of a three-dimensional system
with a two-dimensional stable eigenspace and a one-dimensional unstable eigenspace.
The dimension and orientation of these manifolds allow us to better understand the
characteristic dynamics of the system close to the fixed point.

Invariant sets and Attractors

Stable fixed points as introduced in the previous section are a particular realization
of the more general notion of attractors. To explain the idea behind attractors, we
introduce an important concept of dynamical system theory, namely invariant sets
(see, e.g. Kloeden and Rasmussen [42, p. 4]):

For a dynamical system given by the flow Φ(x, t), the set M is called an invariant set

of Φ if Φ(M, t) = M for all t. We denote by Φ(M, t) the set of all points generated
by applying Φ(·, t) to all elements in M : Φ(M, t) ≡ {Φ(m, t) : m ∈M}.
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Figure 2.6: Three-dimensional discrete dynamical system with its unstable
eigenspace shown in red and the stable eigenspace shown in green.

An attractor in the most general sense is an invariant set towards which the
dynamical system evolves for some number of initial states. The geometry of these
invariant sets may vary, but certain types can be identified. The simplest one, a stable
fixed point, consists of a single point in phase space. Furthermore, the attractor can
consist of a finite number of points (in the case of discrete systems), known as limit
cycles, or infinite sets of points, with complex fractal structure, also known as strange
attractors, which are indicators of chaotic behavior.

In addition to the attracting set itself, we can associate to it a so-called basin

of attraction: It consists of all points in phase space from which the system will
converge to the attractor. Therefore, the size of the basin of attraction is, in a sense,
a measure for the robustness of the attractor against perturbations.

Limit cycles in discrete dynamical systems are sets of two or more points in phase
space that map onto each other to form a periodic dynamical pattern. A set of unique
points {x0, ...,xN−1} is a limit cycle of length N of a map G if the flow satisfies
Φ (xi, N) = xi and G (xi) = x mod (i+1,N). By defining a map G′(x) ≡ Φ (x, N), we
find that we can analyze the stability of the limit cycle by analyzing the stability of
G′ at any of the points of the limit cycle. For example, the Jacobian Ĵ ′ of the limit
cycle evaluated at x0 is simply given by

Ĵ ′ (x0) = Ĵ (xN−1) Ĵ (xN−2) ... Ĵ (x0) , (2.35)

where we have used the chain rule. To see that the eigenvalues of Ĵ ′ do not change
across the elements of the limit cycle, we can assume that λ is an eigenvalue of Ĵ ′ (x0)
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with an eigenvector v and write

Ĵ ′ (x0)v = λv (2.36)

Ĵ (x0) Ĵ
′ (x0)v = λĴ (x0)v (2.37)

Ĵ (x0) Ĵ (xN−1) ... Ĵ (x0) = λĴ (x0)v (2.38)

Ĵ ′ (x1)v
′ = λv′ , v′ ≡ Ĵ (x0)v . (2.39)

Therefore, by induction, λ must be an eigenvalue of all Ĵ ′ (xi)—even though their
eigenvectors will be different.

Strange attractors typically exhibit chaotic behavior (even though counterexamples
exist) [43]. The fractal geometry is a consequence of the nonlinear dynamics, gen-
erating irregular sequences of states. The most important characteristic of chaotic
behavior is the sensitivity of the system to its initial conditions. A similar effect was
described for the local behavior around unstable fixed points, where small perturba-
tions are amplified exponentially. However, unstable fixed points are not attractors.
This emphasizes the crucial property of chaotic attractors: The attractor has a basin
of attraction from which the system evolves towards the attractor, while states within
the attractor diverge.

One way of analyzing the behavior of the system on a strange attractor is by
means of the Lyapunov Spectrum. It is a natural extension of the analysis described
for limit cycles, that is, in the case of an infinite series of non-repeating states gen-
erated by the system. There are different equivalent definitions of the Lyapunov
spectrum. In analogy to the procedure in the case of limit cycles and (2.35), we
consider an initial state x0 on an attractor and the corresponding series of states
defined by the evolution of the dynamical system Φ(x0, t) = xt. By denoting

Ĵt ≡ Ĵ (xt) Ĵ (xt−1) ... Ĵ (x0) , (2.40)

we define the Lyapunov spectrum li of the attractor as

li ≡ lim
t→∞

1

2t
ln
(
λi

(
Ĵ†
t Ĵt

))
(2.41)

where Ĵ†
t is the conjugate transpose of Ĵt and λi(Ĵ

†
t Ĵt) is the i-th element in the

eigenvalue spectrum of Ĵ†
t Ĵt. By definition, the exponents are real valued, and the

sign of the largest Lyapunov exponent lmax determines the long-term behavior on
the attractor: A negative lmax implies that small perturbations decay exponentially,
while lmax > 0 is associated with an exponential growth of perturbation, which is an
indicator of chaotic dynamics.

The definition of the Lyapunov spectrum generally applies to all types of attrac-
tors, including fixed points and limit cycles. In this context, it is worth to note
that (2.41) contains the singular values si of Ĵt, since λi(Ĵ

†
t Ĵt) = s2i (Ĵt). This might

appear incommensurate with the fact that we introduced the absolute values of the
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Figure 2.7: Chaotic dynamics in a recurrent network of 100 randomly connected
neurons. A/B: Lyapunov spectrum of the chaotic attractor, panel B showing only
the 20 largest exponents. C: Diverging trajectories of the activity of the first neuron
in the network with an initial perturbation of 10−2.

Jacobian as a measure for the stability of fixed points and limit cycles. The connec-
tion between both approaches lies in the following relation [44]:

lim
n→∞

si

(
Ân
)1/n

=
∣∣∣λi
(
Â
)∣∣∣ . (2.42)

For a fixed point attractor, we simply have Ĵt = Ĵ t(x∗), which, in combination with
(2.42), reduces (2.41) to li = ln(|λi(Ĵ(x∗))|), showing that the largest Lyapunov
exponent is just the logarithm of the spectral radius of the Jacobian of the fixed
point.

Figure 2.7 illustrates chaotic behavior in a recurrent neural network of 100 ran-
domly connected neurons. 15 of the 100 exponents are positive, causing small per-
turbations to be amplified.

Bifurcations

Up to this point, we treated maps as static functions that lead to certain dynam-
ical properties. Introducing additional parameters affecting the shape of the map
allows us to study the behavior of the dynamics with respect to these variables.
Less substantial effects could for example be gradual changes in the shape of attrac-
tors, without fundamentally changing the dynamics. However, it is also possible to
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construct parameterizations that fundamentally change the topology of the system.
Such changes are referred to as bifurcations.

Due to the various types of bifurcations, giving a general definition to the term is
not straightforward. For our purposes, a sufficiently rigorous definition can be given
following Guckenheimer and Holmes [45, p. 119]:

Given a map G(x, µ) that is parameterized by µ ∈ R
d, a value µ0 of µ for which

the flow is not structurally stable is a bifurcation value of µ. We informally define a
system to be structurally stable with respect to the parameter µ if small changes in
µ retain the topology of the system.

The number of dimensions d of µ is the codimension of the bifurcation, that is, the
minimal number of scalar parameters necessary for the bifurcation to be observed.
For most bifurcations, d = 1.

The most general distinction among bifurcations can be made between local and
global bifurcations. Local bifurcations can be described as changes in the properties of
fixed points and their local neighborhoods, whereas global bifurcations involve larger
subsets of phase space, e.g. the annihilation of limit cycles. In the following, we will
introduce some of the most commonly observed types. Most of the bifurcations can
be found in both continuous and discrete systems, but differ in their mathematical
definition. Here, we will introduce bifurcations as appearing in discrete maps. Each
of these bifurcations has a normal form: the most mathematically simple system
necessary to generate the desired behavior.

A saddle-node bifurcation or fold bifurcation is the local annihilation of a stable
and an unstable fixed point. For a discrete system, its normal form can be written
as x(t+ 1) = x(t) + x(t)2 + µ, which means that the two fixed points x∗0,1 = ±√−µ
exist for µ < 0.

The pitchfork bifurcation shows a similar behavior, involving the annihilation
of two fixed points. However, it also includes a third fixed point that changes its
stability. The normal form is x(t+1) = x(t)+µx(t)−x(t)3. The fixed point x∗0 = is
always present but changes from stable to unstable as µ increases and passes µ0 = 0.
Furthermore, two stable fixed points x∗1,2 = ±√

µ emerge. Similarly, we can invert
the behavior by choosing the normal form to be x(t+1) = x(t)+µx(t)+x(t)3 which
gives a single unstable fixed point for µ > 0, which changes to a stable fixed point
for µ < 0, along with the emergence of two unstable fixed points x∗1,2 = ±√−µ.

The flip bifurcation, or period doubling bifurcation only appears in discrete sys-
tems and is characterized by a period doubling of a limit cycle, where we include
“period-1 limit cycles”, i.e. fixed points yielding a period-2 limit cycle. A normal form
of a flip bifurcation can be written as x(t+ 1) = µ

(
x2(t)− x(t)

)
, which has a fixed

point at x∗ = 0 that is stable for µ < 1 and becomes unstable for µ > 1, causing the
emergence of a stable period-2 limit cycle.

The Hopf bifurcation is commonly defined on continuous two-dimensional dy-
namical systems but can also appear in discrete systems. In a Hopf bifurcation, an
invariant closed curve bifurcates from a fixed point. An invariant set is defined as
a subset of phase space within which a dynamical system will remain indefinitely if
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initialized inside the set. One can distinguish between supercritical and subcritical
Hopf bifurcations: In the supercritical case, a stable fixed point turns unstable and
a stable invariant curve emerges. In the subcritical case, an unstable fixed point be-
comes stable and an unstable invariant curve emerges. A normal form of the discrete
Hopf bifurcation can be written as

x(t+ 1) =
(
R̂(ω)x(t)

) [
1 + α

(
µ− ‖x(t)‖2

)]
, (2.43)

where ‖·‖ denotes the euclidean norm, R̂(ω) is a rotation matrix for some arbitrary
angle ω and α = ±1 determines whether the bifurcation, taking place at µ = 0, is
supercritical (α = 1) or subcritical (α = −1).

In the literature, global bifurcations are commonly introduced in the context of
continuous systems. Still, they can also be found in discrete systems [46]. Global
bifurcations emerge from the interaction of limit cycles with fixed points or other
limit cycles: Similar to e.g. the pitchfork bifurcation, the dynamical properties of the
system change fundamentally when those constituents come into contact in phase
space.

Typical global bifurcations are for example:

• The homoclinic bifurcation denotes a transition point of the bifurcation param-
eter, where a saddle-node merges with a limit cycle and forms a homoclinic
orbit: its stable and unstable manifolds connect to form a closed loop.

• The saddle-node bifurcation of limit cycles appears when a stable and an un-
stable limit cycle join and annihilate each other. This is the global equivalent
to a saddle-node bifurcation.

Routes to Chaos

As mentioned in the previous section, dynamical systems such as recurrent networks
can exhibit chaotic behavior for certain parameter values. As one might imagine,
the onset of chaotic behavior is generally not instantaneous with respect to the
bifurcation parameter. Rather, one often observes a gradual transition from regular,
i.e. stationary or periodic dynamics to irregular, aperiodic behavior as parameters
are varied. However, the characteristics of these transitions can vary, and different
“routes to chaos” can be identified [47]. Here, we briefly discuss some of the most
common types.

One of the most prominently found transition to chaos in low-dimensional systems
is the period doubling route to chaos. Initially, a fixed point turns into a period-two
limit cycle. This limit cycle loses stability again, subsequently transitioning to limit
cycles with a period length twice as long as the previously stable cycle. Eventually,
a value of the bifurcation parameter µ∞ is reached where the period length diverges,
corresponding to non-repeating, irregular sequences. The most prominent example
of this behavior can be observed in the logistic map x(t+1) = µx(t) (1− x(t)), where
µ∞ ≈ 3.5699. Note that the value µ∞ is a lower bound for the possible emergence
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Figure 2.8: Bifurcation diagram and largest Lyapunov exponent lmax of a network
as defined in (2.19) and (2.20), of two recurrently coupled neurons. Shown in the
top panel is the projection of the activity on the first node y0 as a function of the
bifurcation parameter g, which is a scaling factor acting on the recurrent weights as
gŴ . Values of Ŵ are w00 = −5, w01 = 5, w10 = −25 and w11 = 25, taken from [48].

of chaos, but does not imply chaotic behavior for all µ > µ∞. The logistic map, for
example, exhibits a return to a stable period-three cycle at µ ≈ 3.83 [40, p. 356]. In
our recurrent network model, the same type of transition can also be observed as a
function of some global scaling g on the recurrent weights, e.g. in a small network of
two coupled neurons (including self coupling) [48]. Fig. 2.8 shows an example of a
bifurcation diagram and the corresponding largest Lyapunov exponent. Regions of
g where chaotic dynamics are present correspond to lmax > 0, indicating sensitivity
to the initial conditions.

Another type is known as the intermittency route to chaos, where intermittent
phases of chaotic dynamics alternate with regular activity. As parameters of the
system are changed, the chaotic phases become the more and more dominant, even-
tually leading to persistent chaotic dynamics. For example, intermittent chaos can
be observed in the well-known Lorenz system [49]. Recurrent neural networks can
be trained to replicate these dynamics [50].

Furthermore, the Ruelle–Takens–Newhouse route to chaos is characterized by two
subsequent Hopf-bifurcations, yielding quasi-periodic orbits which then turn into a
chaotic attractor [49]. This type of transition has been observed in large random
recurrent networks [51]. In our network model, if no biases are present, the first
Hopf-bifurcation appears at the x∗ = 0 fixed point as the spectral radius of Ŵ
becomes larger than one. We will come back to this transition when introducing the
mean field theory for large random networks.
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Non-autonomous Dynamical Systems

For externally driven networks, the concepts introduced for autonomous systems
have to be adjusted to account for an explicit time dependence. In particular, the
notion of attractors needs to be revisited.

As a first remark, we should note that a non-autonomous system defined by the
map G(x, t) as introduced by (2.24)–(2.26) can always be reduced to an autonomous
system by extending the phase space to x̃ ≡ (x1, ..., xn, t), i.e. adding time as an
additional coordinate. The autonomous map is then simply given by

G̃ (x̃) ≡ (G ((x̃1, ..., x̃n), x̃n+1) , x̃n+1 + 1) . (2.44)

However, this transformation is not particularly helpful, since it rules out the possibil-
ity of finding attractors within a finite area of phase space: The temporal coordinate
will grow indefinitely.

In the following, we will extend some of the definitions given for the case of
autonomous to non-autonomous systems. For a rigorous mathematical introduction,
see for example Kloeden and Rasmussen [42].

Invariant non-autonomous sets are the counterpart to invariant sets introduced for
autonomous systems. Instead of a single invariant set M , a series of sets

M ≡ {Mt0 ,Mt0+1,Mt0+2, ...} (2.45)

is called an invariant non-autonomous set of a system Φ(x, t0, t) if Φ(Mt0 , t0, t) = Mt

for all t ≥ t0. Note that, as for the definition of invariant sets, we denote by
Φ(Mt0 , t0, t) the set resulting from applying the flow Φ(·, t0, t) to all elements in
Mt0 .

The correspondence to invariant sets of autonomous systems can be seen by consid-
ering the special case where Mt =Mt′ for all t and t′, which makes both definitions
equivalent. In a sense, the definition of invariant families is less restrictive compared
to invariant sets, since a family of sets fulfilling the definition can be easily obtained
by choosing an initial set Mt0 and subsequently generating the following sets by the
repeated application of the map to the last generated set. Still, the definition allows
us to extend the concept of attractors to non-autonomous systems.

Generally, one can distinguish between two types of non-autonomous attractors:
Forward attractors and pullback attractors.

An invariant non-autonomous set M of a system Φ(x, t0, t) is called forward attractor

if limt→∞ dist (Φ(x, t0, t),Mt) = 0 for all x and t0, where dist(x, A) between a point
x and a set A is defined as the smallest distance between x and all points in A.

This formal definition expresses the property of the dynamical system to converge
towards the invariant set from any initial point in time and space if evolved forward.
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Likewise, an invariant non-autonomous set M of a system Φ(x, t0, t) is called pullback

attractor if limt0→−∞ dist (Φ(x, t0, t),Mt) = 0 for all x and t.

In this definition, the distance to the invariant set will tend to zero at any point
in time if the starting time is pulled back to negative infinity. Based on intuition,
it might appear that both types of attractors are equivalent. This is, however, not
generally the case. A counterexample is given by the non-autonomous system

x(t+ 1) = x(t) exp(−t) (2.46)

with the general solution

x(t) = x0 exp

(−(t− 1/2)2 + (t0 − 1/2)2

2

)
. (2.47)

The invariant set {0, 0, 0, ...} is a forward attractor of the system, but not a pullback
attractor. The opposite is true for x(t+ 1) = x(t) exp(t).

For recurrent networks, the notion of pullback and forward attractors will become
relevant when introducing echo state networks in Section 3.1. For now, we note
that for a recurrent network to reliably perform computations, it is, among other
properties, essential that the response to a certain input sequence should be robust
against perturbations. This property is captured by the forward attracting property,
where the forward attractor consists of a sequence of internal network states.

Similar to the autonomous case, one might be interested in defining a measure
that characterizes the properties of the non-autonomous attractor. In analogy to
autonomous systems, we can define the largest Lyapunov exponent as the long term
growth rate of small perturbations to the system. A practical definition of the largest
Lyapunov exponent of a non-autonomous system defined by the flow Φ(x, t0, t) can
thus be given by

lmax ≡ lim sup
t→∞,‖δ0‖→0

1

t− t0
ln

(‖δ(t)‖
‖δ0‖

)
(2.48)

δ(t) = Ĵt,t0δ0 (2.49)

where Ĵt,t0 is defined in analogy to (2.40) via

Ĵt,t0 ≡ Ĵ (Φ(x0, t0, t)) Ĵ (Φ(x0, t0, t− 1)) ...Ĵ (x0) (2.50)

as the evolution of the tangent space [52, 53]. It is interesting to note that the
limit superior is used in the definition. This is due to the fact that the explicit
time dependence can prevent strict convergence, which is only guaranteed in the
autonomous case by the Osedelets theorem [54]. In practice, using (2.48) and (2.49)
for numerical purposes can be challenging due to potential divergence issues or when
rounding errors occur at the machine precision limit. Different methods have thus
been devised for estimating the largest Lyapunov exponent [53, 55] or the entire
Lyapunov spectrum [56].

38



2.3. RECURRENT NETWORKS

Figure 2.9: Largest Lyapunov exponent of a random recurrent network driven by
sinusoidal input. A: Estimate of lmax according to (2.48). B: Average membrane
potential. C: Time evolution of the initial perturbation δ, see (2.49).

Fig. 2.9 illustrates the estimation of the largest Lyapunov exponent in a non-
autonomous system by means of a network of 1000 randomly connected neurons
driven with a sinusoidal input current. The external input causes the network to
transition from phases of chaotic, irregular behavior to periods of contracting net-
work dynamics, see Fig. 2.9B. This is reflected in the perturbation vector shown in
Fig. 2.9C increasing and decreasing periodically in its length. In the particular case
shown here, a general trend towards a decreasing perturbation is observable, which
is in line with the estimate of lmax converging towards a value slightly below zero, as
shown in Fig. 2.9A.

2.3.3 Mean Field Theory of Large Neural Networks

So far, we have introduced methods and theoretic concepts that are applicable when
analyzing small networks, i.e. dynamical systems with relatively low dimensionality.
In particular, bifurcation analyses can yield insights into the dynamical behavior of
such systems. However, describing the dynamics of recurrent networks of several
hundreds or thousands of neurons on such a detailed level can be challenging. For
example, since the parameter space of recurrent weights scales quadratic with the
number of neurons, finding critical points and characterizing possible bifurcations
becomes an almost impossible task for numerical reasons alone. Yet, even a single
cubic millimeter of the human visual cortex can contain roughly 3× 104 to 4× 104
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neurons [57]. Even a cortical minicolumn, which is considered the smallest informa-
tion processing unit in the cortex, still contains approximately 100 neurons [58, 59].
In addition, due to experimental limitations, a complete picture of the connectivity
and dynamical properties of an entire neuronal system is still not available in large
mammals, despite massive advancements in recent years [60, 61, 62]

Therefore, similar to systems considered in many-body physics, meaningful pre-
dictions can only be made on the level of statistical quantities, describing the ex-
pected activity of neurons in a large ensemble. On the other hand, this approach
also implies that we should drop the details of a particular synaptic connectome in
favor of a statistical distribution over the entire population, allowing for a dramatic
reduction in the amount of parameters to be considered. While it might appear at
first that extracting meaningful predictions from such a drastic simplification is a
hopeless endeavor, one should remind oneself of the fact that each neuron can have
thousands of synaptic inputs, making the effect of each single signal relatively small.
Therefore, by adding a lot of small input currents, we can expect that the law of
large numbers should come into effect, which is a first step towards a statistical
understanding of the neuronal dynamics [63].

The Balanced State

Before we progress to a mean-field description of the model at hand, we shall briefly
discuss the conditions under which the use of a rate model is justified. When dis-
cussing the basics of single neuron models, we stated that using rate model is justified
in the case when it is sufficient for modeling the network dynamics. This implies
that individual spiking events should occur in irregular, unpredictable patterns. This
asynchronous irregular state was first analyzed by van Vreeswijk, Sompolinsky and
Brunel [32, 33]. Depending on the details of the network model, the exact mathe-
matical formulation might vary, but the essential condition that should be fulfilled
is that the dynamics of the membrane potentials are dominated by fluctuations in-
duced by the superposition of strong excitatory and inhibitory input. For illustrative
purposes, we introduce a discrete-time binary spiking network model similar to the
one used by van Vreeswijk and Sompolinsky [32]. In the original publication, the
model consists of an excitatory and an inhibitory population, with synaptic connec-
tions within and across both populations. However, we further simplify the model by
not applying the excitatory-inhibitory constraint imposed by Dale’s law: We do not
assume any topological restrictions with respect to the sign of the synaptic weights.
We denote the activity of the i-th neuron in a population time t as yi(t) and, in the
spirit of modeling spiking activity, it is given by the Heaviside function acting on a
recurrent input xi(t), an external input current Ii(t) and a bias bi:

yi(t) = Θ (xi(t) + Ii(t)− bi) . (2.51)
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Furthermore, the recurrent input is given by

xi(t) =
N∑

j=1

Wijyj(t− 1) . (2.52)

The matrix Wij is usually assumed to be sparse and that Wii = 0. To further
progress, we introduce a local “rate average” quantity, ri(t) = 〈yi(t)〉, that is defined
by van Vreeswijk and Sompolinsky as an average over initial conditions [32, A.1]. In
practice, it is the chance of the respective neuron being active at time t averaged
over an ensemble of network simulations with different initial activities that are
consistent with given initial rates ri(0). We further assume that the activities yi(t)
are uncorrelated across the population. This does not imply that the population
average 〈yi(t)〉i has to be static over time. Under the assumption of statistical
independence, and if the number of afferent presynaptic neurons is large, we can
describe xi(t) as a Gaussian variable with mean µi(t) and variance σ2i (t) given by

µi(t) =

N∑

j=1

Wijrj(t− 1) (2.53)

σ2i (t) =
N∑

j=1

Var [Wijyj(t− 1)] =
N∑

j=1

W 2
ijrj(t− 1) [1− rj(t− 1)] . (2.54)

For (2.54), we have made use of the fact that for a binary sequence yj(t), we find
y2j (t) = yj(t) and thus Var [yj(t)] = 〈y2j (t)〉 − 〈yj(t)〉2 = 〈yj(t)〉 − 〈yj(t)〉2. The
balanced state assumption now poses the condition that the fluctuations in the input
should not become arbitrarily small relative to the mean input as the network size
increases: The standard deviation, σi(t), should remain finite. The reason for this
assumption is that a finite level of fluctuations guarantees an irregular pattern of
spiking activity, which justifies the initial assumption of statistical independence
across the population. For simplicity, let us assume a static and symmetric state
where ri(t) = r for all i and t. Then, we find µi = Nr〈Wij〉j and σ2i = Nr(1 −
r)〈W 2

ij〉j . For σi to stay finite, synaptic weights thus need to scale with 1/
√
N .

This however, raises the issue that µi then scales with
√
N . The only solution here

is to impose a “balanced” situation, that is, inhibitory and excitatory cancel each
other. This does not imply that we need to find 〈Wij〉j = 0 exactly, but excitation
and inhibition should keep the mean input on the same order of magnitude as the
fluctuations.
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Modeling the recurrent input as a Gaussian random variable, we can calculate
the expected rate via

ri(t) =

∫ ∞

−∞
N
(
x, µi(t) + Ii(t)− bi, σ

2
i (t)

)
Θ(x)dx (2.55)

=
1

2


1 + erf


µi(t) + Ii(t)− bi√

2σ2i (t)




 (2.56)

≡ ψ


µi(t) + Ii(t)− bi√

2σ2i (t)


 (2.57)

where the function N
(
x, µ, σ2

)
denotes a Gaussian density function with mean µ and

variance σ2 and erf(x) is the error function. As a function of the mean input, ψ(x)
has a shape that is very similar to the sigmoidal activation function introduced in
(2.7). Yet, the variance σ2i (t) enters as a quantity modulating the gain. The validity
of using a simple sigmoidal type activation function with a static gain and the mean
entering as the input therefore depends on how much fluctuations vary over time.
There is, of course, no general answer to this: Fluctuations are in turn determined
by varying activities within the network, as indicated by (2.54). However, it is also
important to consider the fact that (2.54) essentially performs an average over all
synaptic afferents, thereby potentially mitigating changes over time.

Ultimately, rate models can only provide some approximation to the dynamics
appearing in spiking models. As this simple model illustrates, the predictive power
of such models depends on how crucial exact spike times are for predicting the ex-
pected activity. Balanced state dynamics justify the treatment of spiking variability
as fluctuations entering the membrane potential, leading to sigmoid-like activation
functions.

Mean Field Equations for Random Neural Networks

To this point, we did not bother describing the synaptic weights by means of some
statistical model other than introducing the general scaling 1/

√
N . In this section, we

will describe a mean field theory derived from the assumption that weights are inde-
pendently drawn from a probability density. Early work on the dynamics of recurrent
networks with quenched random connectivity have considered autonomous dynamics
(i.e. not externally driven) for either continuous [64] or discrete time dynamics [51, 65]
and have later been extended to driven recurrent networks [66, 67, 68, 69, 70]. Since
our research was concerned with the dynamics of echo state networks, we will intro-
duce key elements of the theory based on Moynot and Samuelides [66] and Massar
and Massar [69].

Starting with a network defined by (2.19) and (2.20), we now assume that the
network size N is large, Wij is sparse and that non-zero elements are drawn from
a continuous probability distribution with zero mean and variance σ2. As usual,
diagonal elements are always zero. For simplicity, even though not strictly necessary,
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we can choose a Gaussian distribution. Furthermore, the external weights are also
assumed to be drawn independently from a probability distribution with mean µext
and variance σ2ext.

To derive a mean-field description of the system, we make the same assumption
for the firing rates in the system as we did for the spiking events in the previous
section: We assume statistical independence across the population. The recurrent
part of the membrane potential

xr,i(t) =
N∑

j=1

Wijyj(t− 1) (2.58)

therefore is a sum over statistically independent terms, which means that forN → ∞,
the distribution over the population is given by a Gaussian distribution with mean

µx,r(t) ≡ E [xr,i(t)]i = NE [Wijyj(t− 1)]ij (2.59)

and variance
σ2x,r(t) ≡ Var [xr,i(t)]i = NVar [Wijyj(t− 1)]ij . (2.60)

By assumption, weights and activities are also statistically independent, which allows
for a factorization, yielding µx,r(t) = 0 and

σ2x,r(t) = NE
[
y2j (t− 1)

]
j
Var [Wij ]ij (2.61)

= NE
[
y2j (t− 1)

]
j
σ2 . (2.62)

For convenience, and in line with the scaling of weights introduced in the previous
section on the balanced state, we redefine σ2 by a parameter g via σ2 = g2/N . For
the external input, we can consider two limit cases: First, the input sequence could
be scalar valued, that is, a single input stream yext(t) is projected onto the neurons
via weights wext,i. In this case, the distribution over the population of external inputs
at time t is a Gaussian distribution with mean yext(t)µext and variance y2ext(t)σ

2
ext.

In the other extreme, the dimensionality of the input could be large enough to
argue that each neuron receives a sum of independent input streams, which, again,
can be modeled by a Gaussian distribution, except that in this case, the mean is
NextE[yext,i(t)]iµext and the variance NextE[y

2
ext,i(t)]iσ

2
ext. In any case, we denote by

µx,ext(t) and σ2x,ext(t) the sequence of population means and variances of the external
input, allowing us to write the population mean and variance of the total membrane
potential as

µx(t) = µx,ext(t) (2.63)

σ2x(t) = g2E
[
y2j (t− 1)

]
j
+ σ2x,ext(t) (2.64)
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Figure 2.10: Mean field dynamics compared to full simulation in a driven recurrent
network. A random neural network with N = 1000 and g = 1 is driven by the oscil-
latory binary sequence shown in green. The population variance shows relaxational
behavior, correctly predicted by the mean field dynamics as defined in (2.66), using
the approximation given by (2.68).

To close the loop, we calculate E[y2j (t)]j by

E
[
y2j (t)

]
j
≡ σ2

y

(
µx,ext(t), σ

2
x(t)

)
=

∫
∞

−∞

φ2 (x)N
(
x, µx,ext(t)− b, σ2

x(t)
)
dx . (2.65)

Hence, the population mean µx(t) simply follows the average external input and the
time evolution of the population averaged variance of the membrane potential can
be determined by evolving a one-dimensional discrete map given by

σ2x(t) = g2σ2y
(
µx,ext(t− 1), σ2x(t− 1)

)
+ σ2x,ext(t) . (2.66)

The integral involved in the function σ2y
(
µ, σ2

)
can not be solved analytically for

the usual choice of φ(x) = tanh(x). However, we can use an approximation of the
hyperbolic function that allows for an analytic solution, which we will repeatedly use
for analytic purposes. The approximation reads

tanh(x) ≈ sign(x)
√
1− exp (−x2) (2.67)

and has a maximum relative error of approximately 4.6%. Using this approximation,
the integral can be evaluated to

σ2y
(
µ, σ2

)
≈ 1− exp

(
−µ2/(1 + 2σ2)

)
√
1 + 2σ2

(2.68)

For the example shown in Fig. 2.10, we simulated a sparse random network with
1000 neurons, a weight scaling of g = 1 and projected a single binary sequence—
switching between an up and down state every 10 time steps—with random Gaussian
weights onto the neurons. To predict the dynamics of the variance of the membrane
potentials across the population, we used (2.68). The change in the external input
shifts the fixed point of σ2x, and the network relaxes towards it.
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On the mean field level, the Lyapunov exponent of the non-autonomous system
(2.66) is generally negative. However, this does not imply stability of the full network.
Yet, it is possible to derive an analytic expression for the expected largest Lyapunov
exponent of the full system, see Massar and Massar [69]. We define the difference
between two initially close solutions xi(t) and x̃i(t) as δi(t) = xi(t)− x̃i(t). Since we
are free to choose the initial state, we can, for simplicity, assume that δi(0) = δ0 for
all neurons. Using (2.48), we get

lmax = lim sup
t→∞

1

2t
ln

(
E
[
δ2i (t)

]
i

δ20

)
(2.69)

and therefore have to determine the evolution of the population averaged perturba-
tion. In general, we find

δi(t) =

N∑

j=1

Wijφ
′ (xj(t− 1)) δj(t− 1) (2.70)

where φ′(x) is the first derivative of the activation function. For E
[
δ2i (t)

]
i
, this

results in

E
[
δ2i (t)

]
i
=

N∑

j,k=1

E [WijWik]φ
′ (xj(t− 1))φ′ (xk(t− 1)) δj(t− 1)δk(t− 1) (2.71)

=
N∑

j=1

E
[
W 2

ij

]
φ′2 (xj(t− 1)) δ2j (t− 1) (2.72)

= g2E
[
δ2i (t− 1)

]
i

∫ ∞

−∞
φ′2 (x)N

(
x, µx,ext(t− 1)− b, σ2x(t− 1)

)
dx

(2.73)

where we assumed the usual statistical independence of presynaptic activities, as well
as across the synaptic weights. depending on whether the external input statistics
are static or time dependent, the map given by (2.73) can then either be used to
directly calculate lmax using the stationary solution of σ2x or as an average given by

lmax = ln (g) + lim sup
t→∞

1

2t

1−t∑

k=0

ln
(
σ̃2y
(
µx,ext(t− 1)− b, σ2x(t− 1)

))
, (2.74)

where we defined by

σ̃2y
(
µx,ext(t)− b, σ2x(t)

)
≡
∫ ∞

−∞
φ′2 (x)N

(
x, µx,ext(t)− b, σ2x(t)

)
dx (2.75)

the population average of the square of the first derivative of the activation function,
in correspondence to (2.65).
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Figure 2.11: Solution of the self-consistent mean field equation (2.76).

For the particular case of stationary external input statistics with zero mean, we
can derive from (2.66) and (2.68) a self-consistency equation for σ2y:

(
1− σ2y

)2 (
1 + 2g2σ2y + 2σ2x,ext

)
= 1 . (2.76)

Fig. 2.11 shows solutions for different values of the external standard deviation σx,ext.
A second order phase transition can be observed at g = 1. For σx,ext = 0, this
transition corresponds to the onset to chaotic behavior as described by Sompolinsky
et al. [64]. In the σx,ext = 0 case, it can also be explicitly solved for σ2y, giving

σ2y =




g ≥ 1 :

4g2−1−
√

1+8g2

4g2

g < 1 : 0
. (2.77)

This solution has a first-order expansion at the critical point g = 1 of σ2y ≅ 4/3g for
g ≥ 1. This means that, close to the critical point gc = 1, the standard deviation σy
shown in Fig.2.11 scales as (g−gc)1/2, corresponding to the critical exponent obtained
in the Landau theory for continuous, second-order phase transitions [71, p. 431–432].
If we denote the differential zero-field susceptibility to the external driving σx,ext as
χ = ∂σy/∂σext|σext=0, we obtain the critical scaling χ ∝ (gc − g)−1/2 for g < gc,
showing that the responsiveness of the of the system to small external perturbations
diverges at the critical point. Note, however, that the obtained critical exponent 1/2
is not the same as one would expect for the susceptibility in the Landau theory for
second-order phase transitions, which is 1.

Non-zero external driving smoothes out the transition, which also has the effect
of stabilizing the network, i.e. reducing lmax [72, 69]. This effect can be explained by
the second term appearing in (2.74): External input tends to push the membrane
potential away from zero. Due to the sigmoidal shape of the activation function,
this causes the average over the squared derivative φ′2(x) to become less than one,
making the entire term negative, decreasing lmax.
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2.4 Neuronal Homeostasis

So far, we described neuronal dynamics as a result of a rigid architecture defined by
synaptic weights as well as intrinsic parameters like gains and biases. This static
perspective is, evidently, an idealization. In reality, an abundance of mechanisms
constantly alter intrinsic and synaptic properties of neural networks [73, 74, 8, 75,
76, 77]. Some of these mechanisms have been summarized under the notion of neural

homeostasis. The term homeostasis was introduced by Walter Cannon [78, 79] and
refers to the capability of a biological system to approach and maintain a stable
internal state under external physical influences. A well known example is the ability
of mammals to keep their core body temperature relatively constant in the face of
changing environment temperatures.

Similar effects have been observed in the brain, where neuronal activity remains
quite stable given that the brain is subject to structural changes during development,
as well as changes in external stimuli. Therefore, it is generally acknowledged that
neuronal activity must be controlled by some form feedback mechanism. Indeed,
many different types of regulatory processes have been experimentally confirmed,
acting on synaptic efficacies as well as intrinsic neuronal parameters [7, 75, 80].

On the theoretic side, feedback dynamics generally fall into the field of control
theory [81]. In control systems, the target quantity that is to attained is usually
called a set point and the system attempts to minimize the distance between some
measure of its internal state and this predefined quantity. For neuronal homeostasis,
this quantity is usually assumed to be the average firing rate. Apart from metabolic
advantages [82], operating in a certain activity range is also assumed to be benefi-
cial for computational capabilities [83, 9]. We will further discuss the unsupervised
optimization of hyperparameters for echo state networks in Section 3.1.

2.4.1 Dual Homeostasis

Given the fact that numerous realizations of such control mechanisms can exist,
the question arises how these different processes work together in controlling neural
activity. In the worst-case scenario, two or more control mechanisms conflicting in
their individual set points might cause instabilities, not only failing to reach any of
the homeostatic targets but causing the state of the system to undergo fast, chaotic
and potentially harmful transitions [10]. Here, we introduce a theoretic treatment
of the most simple polyhomeostatic case, i.e. two parameters of the neuronal system
acting upon the neuronal dynamics via two separate feedback loops. This is largely
based upon the work of Cannon and Miller [11] on dual homeostasis.

Suppose two local neuronal control parameters, a and b, affect some intrinsic,
time dependent physical quantity x(t, a, b) that is to be regulated. As an example,
x could be the internal membrane potential, but also some estimate of the firing
rate. In the most general sense, a homeostatic mechanism acting on a and b could
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be written as

∆a(t) = ǫaf (x (t, a(t), b(t)) , a(t), b(t)) (2.78)

∆b(t) = ǫbg (x (t, a(t), b(t)) , a(t), b(t)) (2.79)

where a(t + 1) = ∆a(t) + a(t) and b(t + 1) = ∆b(t) + b(t) describe discrete time
dynamics. Since we assume both adaptation rates ǫa and ǫb to be small, the same
expressions could also be used for ȧ and ḃ in continuous time models. Note that the
homeostatic feedback functions f and g are dependent on the variable x that is to be
controlled, but can also have some explicit dependence on the control parameters a
and b. An example for the latter would be the case where the rate of change is propor-
tional to the control parameter itself, meaning e.g. f(x, a, b) = af̃(x), which prevents
a from becoming negative. As long as x is not static, we can, in general, not expect to
find a fixed point of the dynamics in the strict sense, that is ∆a(t) = ∆b(t) = 0 ∀t.
However, if we assume that adaptation is slow compared to the time scale of the
fluctuations in x and that x is a stationary sequence, we can define a weaker form
of fixed point by means of the temporal average as 〈∆a(t)〉t = 〈∆b(t)〉t = 0. More
generally, we can state that the non-autonomous adaptation dynamics (2.78) and
(2.79) can be approximated by the stationary system

〈∆a(t)〉t = ǫa 〈f (x (t, a, b) , a, b)〉t (2.80)

〈∆b(t)〉t = ǫb 〈g (x (t, a, b) , a, b)〉t . (2.81)

While this generic form does not allow for much further analysis, it should already
become apparent that such a system is not guaranteed to have a fixed point: Since a
and b are coupled via their effect on x, the function f could drive a into a direction
that would make it impossible for b to reach a stationary state, and vice versa. For
further analysis, Cannon and Miller [11] make the assumption that both f and g are
well described by a quadratic equation over the support of the probability distribution
of x. Since we also included the possibility of an explicit dependence on a and b,
we generalize this assumption to the case where f and g are still approximately
quadratic in x, but the coefficients are functions of a and b:

ǫ−1
a 〈∆a〉 ≈ f0(a, b) + f1(a, b)〈x〉+

1

2
f2(a, b)〈x2〉 (2.82)

ǫ−1
b 〈∆b〉 ≈ g0(a, b) + g1(a, b)〈x〉+

1

2
g2(a, b)〈x2〉 . (2.83)

For simplicity, we have dropped the explicit notation of temporal averages and the
dependence of x on a and b, which is still present. Setting the left hand side to zero,
one finds a linear system for the fixed point of the adaptation, which can be solved
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for the first and second moment of x, resulting in

〈x〉 = f2g0 − g2f0
f1g2 − g1f2

(2.84)

〈
x2
〉
= 2

g1f0 − f1g0
f1g2 − g1f2

. (2.85)

Therefore, if a steady state solution of the adaptation exists, it determines the mean
and variance of the variable x that is to be controlled. Furthermore, a unique solution
can only be present if the denominator f1g2 − g1f2 is not zero. In particular, the
denominator becomes zero if the dynamics of both a and b are only linear (meaning
f2 = g2 = 0). Moreover, the fact that a solution exists does not imply that it can be
attained by a certain a and b. For example, obviously, a negative 〈x2〉 predicted by
(2.85) is not a viable solution.

If the coefficients entering (2.84) and (2.85) are independent of a and b, the
corresponding fixed point (a∗, b∗) can be directly determined by finding a pair (a, b)

resulting in the correct first and second moment of x. In general, however, the
coefficients in (2.84) and (2.85) are dependent on a and b and the solution might not
be readily available.

Stability

If a fixed point in the dual homeostatic system exists, the next task is to determine
whether it is stable under perturbations. For this purpose, we have to evaluate the
stability of the linearized system

Ĵ =

(
d
da〈f〉 d

db〈f〉
d
da〈g〉 d

db〈g〉

)
=




〈
∂f
∂x

∂x
∂a

〉
+
〈
∂f
∂a

〉 〈
∂f
∂x

∂x
∂b

〉
+
〈
∂f
∂b

〉

〈
∂g
∂x

∂x
∂a

〉
+
〈
∂g
∂a

〉 〈
∂g
∂x

∂x
∂b

〉
+
〈
∂g
∂b

〉


 (2.86)

at the fixed point.

A Simple Example

For illustrative purposes, we can consider the a dual-homeostatic system on the
neuronal firing rate, given by y = tanh(ax− b) and some input x(t) that is a random
Gaussian variable with zero mean and unit variance. For the feedback dynamics we
choose

ǫ−1
a 〈∆a〉 = 〈y〉 − 〈y2〉 (2.87)

ǫ−1
b 〈∆b〉 = −1

2
+ 〈y〉 . (2.88)

According to (2.84) and (2.85), we should expect for a fixed point to yield both
〈y∗〉 = 0.5 and 〈y2∗〉 = 0.5.

In Fig. 2.12, we show both the resulting dynamics on a and b as well as the cor-
responding dynamics on the first and second moment of y. As correctly predicted,
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Figure 2.12: Homeostatic dynamics given by (2.87) and (2.88) and y = tanh(ax− b),
where x is a standard Gaussian random variable with zero mean and unit variance.
A: Flow of the system. Shown in red and green are the nullclines of a and b, respec-
tively. The white dot denotes a saddle point, the black point a stable fixed point.
The blue line is the trajectory of a simulation serving as an example. B: Dynamics
of the first two moments of neuronal activity corresponding to the blue line in A. As
predicted, both moments settle to 0.5 (dashed line).

both 〈y〉 and 〈y2〉 settle at 0.5. However, the flow of the system shown in Fig. 2.12A
reveals that two fixed points exist, yet one is a saddle point. Thus, while the home-
ostatic control is locally stable against perturbations around the stable fixed point,
it is not globally stable.

Controlling the Membrane Potential by Firing Rate Homeostasis

In the previous example, the average squared activity enters the adaptation dynam-
ics for the scaling factor a. While not entirely implausible, one might be tempted to
consider it biologically questionable to include higher orders of neuronal firing rates.
Yet, for controlling the first and second moment of y, this was inevitable. Here,
we would like to give another example of dual homeostasis that only uses the first
moments of physically interpretable quantities, that is, the effective membrane po-
tential x̃ = ax− b and the firing rate y. We choose the dual homeostatic mechanism
to simply be

ǫ−1
a 〈∆a〉 = 〈φ (x̃)〉 − µy (2.89)

ǫ−1
b 〈∆b〉 = 〈x̃〉 − µx̃ . (2.90)

Furthermore, we choose our activation function to be φ(x) = [1 + erf(2x)]/2 in this
case, which has two advantages: First, it is a continuous, strictly positive nonlinear
function within [0, 1], which makes it simpler to interpret at as a firing rate. Sec-
ond, the use of the error function instead of the hyperbolic function allows us to
analytically determine the fixed points resulting from the dynamics.
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Figure 2.13: Homeostatic dynamics given by (2.89) and (2.90). A: Flow of the system,
using the same scheme as in Fig. 2.12. B: Dynamics of the first two moments of the
effective membrane potential x̃ = ax − b for the blue trajectory in A. The dashed
lines mark the corresponding analytic predictions.

First, we note that the fixed points per se are attained if 〈x̃〉 = µx̃ and 〈y〉 = µy,
meaning that this control directly regulates the average firing rate as well as the
average internal effective membrane potential. Since we assume, as in the previous
example, that the input signal x has zero mean and unit variance, we directly find
b∗ = −µx̃ for the fixed point coordinate of b. For Gaussian input, the average of the
firing rate in (2.89) can be explicitly evaluated by a Gaussian integral, resulting in

〈φ (x̃)〉 = 1

2

∫ ∞

−∞

exp(−x2)√
2π

[1 + erf (2(ax− b))] dx (2.91)

=
1

2

[
1− erf

(
b√

2a2 + 1/4

)]
. (2.92)

Since we already found b∗, we can use this explicit expression to solve for a∗, giving

a∗ = ±
√

µ2x̃

2
[
erf−1 (1− 2µy)

]2 − 1

8
. (2.93)

Furthermore, we can calculate the second moment of x̃ at the fixed point from
the solution of a∗ via 〈x̃2〉 = a∗2 + µ2x̃. Thus, the homeostatic control has fixed
points each associated with some first two moments of x̃. However, it does not
explicitly require x̃2 or higher moments to enter the dynamics as it utilizes the
inherent nonlinearity of the activation function φ. In Fig. 2.13, the dynamics of the
system are shown for µy = 3/4 and µx̃ = 1/2. The flow is quite similar to the
previous example in that one of the two fixed points is stable and one is a saddle
node.

51



CHAPTER 2. BASICS

This example goes to show that stable dual homeostasis does not necessarily im-
ply that higher moments of physical quantities have to contribute to the dynamics
of the adaptation if nonlinear relationships that are already inherent to the system
can be employed. However, even though the particular choice of activation function
in the example allowed us to analytically determine the fixed points of the system,
in general, predicting fixed points of the adaptation for arbitrary nonlinear systems
can of course potentially be more difficult compared to the simple quadratic form
introduced earlier. Still, if the fluctuations of the driven system only weakly cou-
ple to third order or higher contributions in the adaptation, a second-order Taylor
expansion might give good predictions regarding the steady state of the adaptive
system.
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In Section 2.4, we introduced neuronal homeostasis as a means to regulate activity
in neural networks. A particular variant, synaptic scaling, has been successfully
applied in recurrent neural networks [85, 86, 87, 88, 89]. Still, these works used
synaptic scaling either as the only homeostatic control [87, 86], or resorted to a
form of multiplicative normalization of weights [85, 88, 89]. Therefore, controlling
higher moments of neuronal activity is not possible in these control schemes, see
Section 2.4.1 on dual homeostasis.

On a more abstract level, a combination of intrinsic homeostasis and synaptic
scaling can be mapped to an adjustment of the bias and gain of a nonlinear acti-
vation function. A combined adaptation of these parameters has been investigated
with respect to their effect on the computational capabilities of networks. A common
practice for deriving appropriate learning rules is to define a target probability distri-
bution for the neuronal activity rather than a single set point. The Kullback-Leibler
divergence between the target distribution and the empirical distribution can then
be minimized via gradient descent [9, 90, 91, 92]. Alternative approaches were also
based on information-theoretic measures [83].

These studies did indeed find computational advantages if the target distribution
was appropriately chosen. On the other hand, other studies suggested that the
spectral radius of the recurrent weight matrix, see Section 2.3.2, is a crucial parameter
for optimization [91]. In consequence, while optimizing a network with respect to a
given distribution appears to be a good strategy from a machine learning point of
view, from a mechanistic, biological perspective, it is likely that an additional control
mechanism is required regulating the overall scaling of the recurrent weights, or the
spectral radius, as a representative measure.

To the best of our knowledge, theoretical work on spiking neural networks did
not investigate the effect of the spectral radius on network dynamics and task perfor-
mance. However, as introduced in Section 2.3.3, balanced state dynamics in recurrent
spiking networks imply a scaling of synaptic weights as a function of the number of

53



CHAPTER 3. FLOW CONTROL

presynaptic connections k by 1/
√
k (which is equivalent to 1/

√
N where N is the

number of neurons if the network is densely connected). It follows from the cir-
cular law for large random matrices [93] that this scaling keeps the spectral radius
finite as the network size and the number of afferent connections increases. Indeed,
experiments have verified this scaling [94].

In [84], we explored the possibility of controlling the spectral radius of a recurrent
network by combining intrinsic adaptation with a local synaptic scaling rule. For this
purpose, we used an echo state framework [95, 96], which we introduce in Section 3.1.
While echo state networks as a form of reservoir computing are mostly known in the
neuro-inspired machine learning community, they can also be regarded as an abstract
representation of neuronal dynamics and computation in recurrent cortical networks
[97, 98, 99]. From another perspective, controlling the spectral radius would allow
to tune the dynamics of the network to the “edge of chaos” [100], which is considered
beneficial for information processing.

The major challenge of such a local learning rule is the non-locality of the spectral
radius: It is a quantity defined by all synaptic weights. Yet, individual neurons only
have access to a limited amount of information about the entire network state. More
precisely, a neuron only has access to its own internal physical state and the presy-
naptic activity arriving at its afferent synapses, and any local adaptation mechanism
is necessarily restricted to utilizing those quantities. In a less restrictive sense, one
could also argue that it should be possible to have access to some population- aver-
aged quantities, such as information about neighboring neuronal activity transmitted
by diffusive neurotransmitters [101].

In this chapter, we will present an unsupervised homeostatic mechanism, termed
flow control that is local in its variables but is capable of regulating the spectral
radius of the network, thus providing a solution to the described issue of controlling
the spectral radius as a non-local quantity. Functionally, it regulates the mean
and variance of neuronal activity such that the network operates in a state suitable
for sequence learning tasks. As indicated, it affects both biases and the scaling of
recurrent synaptic weights.

After a general description of the echo state framework, we will present the
adaptation rules of flow control and discuss their capacity of controlling the spectral
radius. This is followed by an evaluation of the sequence processing performance of
networks that were subject to homeostatic adaptation.
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3.1 Echo State Networks

Inspired by the highly recurrent networks found in the brain, recurrent neural net-
work models have proven to be a powerful tool in processing sequential information,
due to their combination of dynamic memory and nonlinear processing capabili-
ties. While their complex dynamics are a strength of these networks, it also poses
a problem which, in reverse, still concerns research on biological networks: How do
recurrent networks learn?

In contrast to computational models of biological networks, utilizing neural net-
work models for machine learning purposes does not impose any biological constraints
on potential learning algorithms. One of the most prominent solutions for supervised
learning applications, error backpropagation (BP) [102], was initially invented for
non-recurrent networks and relies on the propagation of training errors through the
network. The ideas was transferred to recurrent networks shortly after and is now
known as backpropagation through time (BPTT) [103, 104]. Apart from exhibiting
practical challenges such as potential instabilities in the learning algorithm that pre-
vent convergence of the training process, it appeared unlikely that such a learning
algorithm could resemble learning processes in the brain. Therefore, while backprop-
agation did inspire research aiming to transfer the framework to hierarchical, layered
networks in biology [13, 15, 105], there is no evidence that temporal learning in the
brain could utilize a principle similar to BPTT.

In the last two decades, reservoir computing has emerged as an alternative ap-
proach to training recurrent networks [96, 106, 107]. Reservoir computing, as an
overarching principle, subsumes methods for sequential information processing that
utilize high-dimensional, non-linear dynamical systems as “dynamic reservoirs” which
are, in some way, coupled to the sequential input that is to be processed. Essential
to the idea is that the learning process does not affect the internal architecture or
parameters of the dynamical system. Rather, the output that is to be generated is
a simple linear projection from the high-dimensional internal state of the system.
Echo state networks are a particular realization of the concept, using large, sparse
random recurrent networks with rate encoding neurons as the dynamical reservoir
[95, 96, 108, 72]. On the practical side, this idea radically simplifies the learning
process: It reduces to a simple fitting of a linear model. On the biological side, it
offers a potential solution to the constraint that learning should be local: Readout
neurons, see Fig. 2.5, can calculate a linear superposition of the recurrent network
activity via their synaptic afferents and adjust synaptic efficacies by some local plas-
ticity rule that utilizes information from additional inputs encoding error signals or
targets. The necessity of passing learning errors back into the recurrent network is
therefore completely eliminated. Indeed, the dynamical behavior found in neuronal
reservoir models has also been identified in cortical networks [99].

In the following, we introduce a mathematical definition of the echo state archi-
tecture, much of which has already been introduced in Sections 2.3 and 2.3.3. The
essential components of an echo state network are contained in the equations given
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in (2.19)–(2.21):

y(t) = φ (x(t)− b) (3.1)

x(t) = Ŵy(t− 1) + Ŵextyext(t− 1) (3.2)

xout(t) = Ŵouty(t) . (3.3)

As introduced before, echo state networks traditionally use tanh-activation functions.
Furthermore, the network is typically large (e.g. N = 1000), but sparsely and ran-
domly connected, except for self-connections which are always absent. Connection
probabilities between nodes in the network are usually chosen to be in the low per-
centage range (we usually chose a connection probability of p = 0.1). Alternatively,
one can define a fixed number of afferent connections k that is kept constant for
different network sizes. This has the particular computational advantage that the
number of computations needed for calculating recurrent inputs only scales linear
with the network size, in contrast to O

(
N2
)

for dense networks. Non-zero connec-
tions are randomly generated from a probability distribution with zero mean, which,
in our case, was a Gaussian distribution. Input weights are usually dense and, for
our implementation, drawn independently from a Gaussian distribution.

Training of the network is only taking place at the readout weights Ŵout. If the
network is supposed to generate a target output sequence f(t), the weights should
be the solution to a simple linear regression problem, which usually uses the mean
squared error:

Ŵout = argmin
V̂

T−1∑

t=0

∥∥∥V̂ y(t)− f(t)
∥∥∥
2
. (3.4)

If we denote by Yij = yi(j) the matrix whose columns are the neuronal activity
vectors for different times, and, likewise, Fij = fi(j), then the solution to the mini-
mization problem is given by

Ŵout = F̂ Ŷ T
(
Ŷ Ŷ T

)−1
. (3.5)

Optionally, we can regularize the objective function by a matrix norm penalizing
large readout weights:

Ŵout = argmin
V̂

T−1∑

t=0

∥∥∥V̂ y(t)− f(t)
∥∥∥
2
+ γ

∥∥∥V̂
∥∥∥
2

F
, (3.6)

where ‖·‖F is the Euclidean, or Frobenius matrix norm. In this case, we find

Ŵout = F̂ Ŷ T
(
Ŷ Ŷ T + γ1̂

)−1
, (3.7)

where 1̂ is the identity matrix. As expected, (3.5) is restored for γ = 0. For a
derivation of (3.7), see Appendix B.1.
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From a more biological perspective, learning can also take place in an incremental
in-time procedure, for example by using a simple local gradient descent rule, which
would read

∆Wout,ij = −ǫ [yj(t) (xout,i(t)− fi(t)) + γWout,ij ] . (3.8)

For testing the network performance, we always use (3.7), with the additional choice
of adding a single neuron projecting to the readouts which was always fully active,
that is yN+1(t) = 1 for all t. This is equivalent to adding a bias term to (3.3).

Hyperparameters of Echo State Networks

The echo state framework vastly reduces the number of parameters that have to be
optimized for learning a specific task. It comes at the cost, however, of choosing a
number of hyperparameters that characterize the statistics of the neuronal reservoir.
Even if we restrict ourselves to input and recurrent weights with zero mean and a
Gaussian distribution, we still need to choose variances for those distributions, apart
from the parameter p that we already introduced. In the following, we will denote
the variance of Ŵin by σ2ext and the variance of Ŵ by σ2w. Importantly, the latter
can be related to the spectral radius ρ(Ŵ ) of the matrix for large N by means of the
circular law of random matrices [93]. It states that the spectral radius of a random
N ×N matrix with zero mean and variance 1/N converges to 1 as N → ∞. In the
light of this relation, it makes sense to use the same parameterization of σ2w as done
in Section 2.3.3, σ2w = g2/N , such that we have ρ(Ŵ ) ≅ g for large N .

Both σ2ext and g can significantly affect the performance of the network [95, 108].
At the very least, parameters must be chosen such that the network fulfills what is
known as the echo state property (ESP), which we will discuss in the following.

The Echo State Property

A formal definition of the echo state property can be given by the non-autonomous
flow Φ(x0, t0, t)u, see Section 2.3.2, associated with a given echo state network and
a left-infinite external input sequence U = {...,u(t− 1),u(t)} [95]:

A driven recurrent network with the flow Φ(x0, t0, t)u generated by a left-infinite
input sequence U = {...,u(t − 1),u(t)} has the echo state property if for all such
possible sequences U , the following two conditions are met. (1): unique states x(U),
meaning that x(U) 6= x(U ′) if U 6= U ′. (2): x(U) = limt0→−∞Φ(x0, t0, t)u for all
initial conditions x0.

This definition is very similar to the definition of a pullback attractor as introduced in
Section 2.3.2. This resemblance comes from the idea that the effect of differences in
the initial internal state of the network should gradually vanish. Moreover, on top of
this general condition, the attracting invariant set should be a sequence of individual
points in phase space. Finally, each input sequence up to a time t should yield a
unique state in phase space. The latter condition is not a necessary condition for
a pullback attractor (different input sequences could result in the same attractor),
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but is essential to the information processing capabilities of the network: If the
uniqueness condition is met, the mapping x(U) of all left-infinite time series to
the state space x is bijective. This means that, in principle, any function—that
is, computation—acting on some entire input sequence could be transformed to a
function acting only on the network state x(t) at the last time step. In the basic
echo state model, this function happens to be a simple linear transformation given
by Ŵout. Other approaches using non-linear models for generating the readout have
also been successfully used [109, 110].

The conditions under which the echo state property can be found have been
successively refined in recent years [111, 112, 113]. A necessary condition for the echo
state property is given by ρ(Ŵ ) < 1. This is relatively easy to see by considering the
null-sequence u(t) = 0, ∀t. If the spectral radius is greater than one, the network
enters the chaotic phase, see Fig. 2.11. In this regime, the network is highly sensitive
to the initial conditions, which violates the first condition of the ESP. While not being
a sufficient condition, in practice, ρ(Ŵ ) < 1 guarantees the ESP [95, 108]. A more
strict and sufficient condition is σmax(Ŵ ) < 1, where σmax is the largest singular
value. For example, for a zero-mean large random matrix with a largest singular
value of 1, the expected spectral radius would be 1/2 [114], which is significantly
smaller than the practical condition ρ(Ŵ ) < 1.

Optimization of Hyperparameters

While the ESP is the most basic condition for an ESN to perform sequential process-
ing, it does not guarantee good performance, and many parameter choices that fulfill
the ESP can still lead to bad results. Therefore, finding some objective measures
helping to optimize the reservoir for better performance has been in issue of ongoing
research. One approach is based upon local information-theoretic measures, which
was inspired by biological neurons: An exponential distribution of (non-negative)
firing rates maximizes entropy for a given mean, and a corresponding intrinsic plas-
ticity rule was first investigated by Triesch [9]. An application to neuronal reservoirs
did indeed show an improved performance [90, 115].

Another more general concept is known as the edge-of-chaos hypothesis, stating
that the computational capabilities of dynamical systems are improved if they op-
erate close to, but below a transition to chaotic behavior [116, 117, 118, 91, 119].
For small input amplitudes, this transition appears at ρ(Ŵ ) = 1, and the traditional
approach to constructing echo state reservoirs was to set the spectral radius to val-
ues close to, but below 1 [108]. For stronger inputs, the control parameter g can be
pushed to higher values and still remain in the non-chaotic regime [120, 68]. Still,
experiments on different sequential tasks showed that adjusting the spectral radius
to a value close to one gave generally good performance, comparable to what was
achieved when the network was optimized using intrinsic plasticity [121].

An important property of recurrent networks that is directly affected by the
spectral radius is the memory capacity of the network. For a given scalar valued
input sequence u(t) and a time delay τ , one can define the target output to be a
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delayed version of the input: fτ (t) = u(t− τ). The memory capacity of the network
is then given by

MC ≡
∞∑

k=0

ρ2 (fk(t), xout(t)) , (3.9)

where ρ2 (fk(t), xout(t)) is the squared Pearson correlation between the target se-
quence and the generated output. Importantly, the readout weights are indepen-
dently optimized for each time delay τ . In practice, it is neither possible nor necessary
to evaluate an infinite number of terms of the sum, since the maximally achievable
delay that can be recalled is bounded by the network size N [122]. For random se-
quences and linear echo state networks (φ(x) = x), this upper bound is achieved for
a spectral radius ρ(Ŵ ) → 1 from below [122]. For the usual nonlinear activation, the
maximally achievable memory capacity is still attained at ρ(Ŵ ) = 1, albeit being
smaller than in the linear case.

These results illustrate that a spectral radius close to one is beneficial in cases
where extended temporal memory is required. Therefore, optimal tuning of param-
eters depends on the task at hand. However, from a biological point of view, tuning
such hyperparameters should rather be viewed as a form of homeostasis that regu-
lates the recurrent network towards a dynamic regime that is generically beneficial
for processing temporal information, rather than being a fine-tuning process, tai-
lored for a very specific, single task. Therefore, if we assume that memory is always
required to some extent when temporal information is to be extracted from sequen-
tial data, tuning the spectral radius towards a value close to one is a reasonable
assumption.

3.2 Homeostatic Model

On top of the standard echo state model, we introduce two adaptation rules, affecting
recurrent synaptic weights and biases.

First, biases are subject to a simple adaptation rule controlling the mean neuronal
activity:

bi(t) = bi(t− 1) + ǫb [yi(t)− µt] . (3.10)

Here, ǫb controls the adaptation rate and µt is the target activity.
For the synaptic scaling rule, we added a local multiplicative factor, ai(t), which

defines an effective synaptic weight matrix Wa,ij(t) ≡ ai(t)Wij with a spectral radius
Ra that is to be controlled. Accordingly, the recurrent contribution to the membrane
potential is then given by

xr,i = ai(t)
N∑

j=1

Wijyj(t− 1) . (3.11)
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The multiplicative factor ai(t) is subject to an adaptation rule that we termed flow

control :

ai(t) = ai(t− 1)
[
1 + ǫa∆Ri(t)

]
, ∆Ri(t) = R2

ty
2
i (t− 1)− x2r,i(t) . (3.12)

Here, Rt is the target spectral radius that is to be achieved, and ǫa is small factor
controlling the adaptation rate. We also define an alternative non-local rule that we
used mainly for comparative purposes when testing the effectiveness of (3.12)., Here,
the change ∆Ri(t) reads

∆Ri(t) =
1

N

[
R2

t ||y(t− 1)||2 − ||xr(t)||2
]
. (3.13)

A list of the used parameter values is given in Table 3.1. Note that adaptation is gen-
erally slow, since its dynamics should capture temporal averages over the fluctuating
quantities entering (3.10) and (3.12).

For (3.12) to be biologically plausible, we had to make a number of assumptions.
First, the only the recurrent part of the synaptic input enters the equation. This
means that we had to assume some physical separation between recurrent connec-
tions and external input. A possible justification for this approach is the anatomical
structure of pyramidal neurons, which would allow for a physical separation of dif-
ferent input types [123]. In return, the scaling also only affects recurrent weights
and not external weights. This separation is, however, not essential for the suc-
cessful tuning of the spectral radius, since external weights have no effect on ρ(Ŵ ).
An additional assumption that we had to make was to allow second moments of y
and xt to enter the adaptation rule. While it might appear questionable that such
quantities are physically represented in the cell, we have illustrated in the second ex-
ample given in 2.4.1 that the second moment of physical quantities can be controlled
via polyhomeostatic control if intrinsic nonlinearities between the components of the
system are utilized. Similar models of biologically inspired intrinsic plasticity have
also been proposed using complex functions of firing rates and membrane potentials
[9, 90, 121].

3.2.1 Theoretical Motivation

As described in the introduction to echo state networks, the circular law for random
matrices states that for large N , the eigenvalues are distributed uniformly on the
complex unit disc if the variance of the underlying distribution is 1/N [93]. There-
fore, if the synaptic scaling factors of a large randomly initialized recurrent weight
matrix with entries Wij were uniformly set to 1/

√
Nσ2w, where σw is the variance

Table 3.1: Standard values for model parameters

N pr µt ǫb ǫa

500 0.1 0.05 10−3 10−3
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of the entries Wij , the resulting effective matrix Ŵa would have a spectral radius
approximately equal to one. Our goal was, however, to find a dynamic scaling rule
for ai that relied solely on local intrinsic quantities of the corresponding neuron.

A first step towards such a rule is to note that the circular law can be extended
to the case where the rows or columns of the matrix do not have uniform variances.
Rajan and Abbott [124] considered square matrices with columns having different
means and variances. If excitatory weights balance along the rows of the matrix, the
square of the spectral radius is 〈σ2w,i〉i, where σ2w,i are the variances of the columns.
The eigenvalues of the matrix do not change under a transposition, therefore the
same result applies to matrices with σ2w,i representing row-wise variances and an E-I
balance along the columns. This balance is not a strict assumption in our model, but,
given the assumptions we made on the underlying distribution of Wij , the average
deviations of the row-wise mean from zero scale as 1/

√
N , becoming negligible for

large N . Therefore, we can estimate the spectral Radius Ra of the effective matrix
by

R2
a ≅

〈
R2

a,i

〉
i
, R2

a,i ≡ a2i
∑

j

W 2
ij (3.14)

for large N . We refer to R2
a,i as the local estimates of the squared spectral radius

R2
a. Alternatively, this estimate can be expressed using the Frobenius norm as

R2
a ≅

∥∥∥Ŵa

∥∥∥
2

F
/N . (3.15)

For N = 500, we evaluated the estimate in (3.14) for ai drawn from a uniform
distribution on [0, 1] and found an average relative error of approximately 3.5%. Since
the quantities R2

a,i are essentially neuron-specific estimates of the spectral radius, we
concluded that the correct global spectral radius is attained if the population average
over these local estimates matches the target.

If we recall (2.60) as the description of the expected variance of the recurrent
membrane potential for the mean field theory, we can state a slightly different local
variant by replacing the population average in (2.60) by a temporal average (and
including the scaling factors ai):

〈
x2r,i(t)

〉
t
= a2i

N∑

j,k=1

WijWik 〈yj(t)yk(t)〉t . (3.16)

At this point, the equation is still exact. Similar to the argument used to derive the
population average, we now assume that the neuronal activities are uncorrelated,
meaning that 〈yj(t)yk(t)〉t = δjk〈y2j (t)〉t (and assuming zero mean activity):

〈
x2r,i(t)

〉
t
= a2i

N∑

j=1

W 2
ij

〈
y2j (t)

〉
t
. (3.17)
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Given that the synaptic scaling factors ai have been adjusted according to (3.12) and
have reached a stationary configuration, we find as a temporal average

〈
x2r,i(t)

〉
t
= R2

t

〈
y2i (t)

〉
t
. (3.18)

Plugging this result into (3.17), we find

R2
t

〈
y2i (t)

〉
t
= a2i

N∑

j=1

W 2
ij

〈
y2j (t)

〉
t
. (3.19)

If we furthermore assume that the bare synaptic weights Wij are not correlated with
the average square of their corresponding presynaptic activities 〈y2j (t)〉t, the sum can

be written as 〈y2i (t)〉t,i
∑N

j=1W
2
ij . An additional average over the index i in (3.19)

results in
R2

t

〈
y2i (t)

〉
t,i

=
〈
R2

a,i

〉
i

〈
y2i (t)

〉
t,i

≅ R2
a

〈
y2i (t)

〉
t,i
, (3.20)

showing that R2
a ≅ R2

t if the adaptation rule has reached a stationary state.
This derivation required two key assumptions: First, neuronal activities should

not be correlated. Whether this holds true or not obviously depends on the type
of input that the network receives, and we will discuss the effect of interneuronal
correlations in Section 3.4.3. A second assumption is that weights are not correlated
with the variances of their presynaptic activities. For the random weights considered
here, this assumption can be considered true, independent of the input. Especially
for sparse recurrent networks, the effect of a weight Wij (that is, projecting from
neuron j to neuron i) back onto the activity of the j-th neuron becomes negligible.

3.3 Input Protocols

To determine the effectiveness of the adaptation mechanism as well as for evaluating
the task performance after adaptation, we used different types of input protocols.
The first distinction concerns the general statistics of the external input. Here, we
considered two cases:

• In the first variant, the network was driven by binary input sequences. More
precisely, we projected a single binary sequence u(t) ∈ {−1, 1} onto the network
using a set of weights wext,i such that the external input to each neuron was
u(t)wext,i. This corresponds to a situation where the network predominantly
receives input from e.g. another neuronal ensemble which has an active or
inactive state.

• Second, we considered the case where the network receives a superposition
of a large number of different independent external sources. Then, the input
can be modeled as random independent Gaussian inputs for each neuron. For
simplicity, we chose the external input to have zero mean.
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In addition to this distinction, we also distinguished between a variant where the
variance of the external input was homogeneous across the network, and a situation
where the variances were heterogeneous:

• In the homogeneous case, the globally homogeneous input variance was param-
eterized by the value σ2ext.

• For the heterogeneous case, a local variance σ2ext,i was randomly drawn from a
positive half-normal distribution with the density p(x) ∝ Θ(x) exp(−x2/2σ2ext)
which led to a population averaged variance given by σ2ext.

Combined, this gives a total of four different input protocols, “heterogeneous binary”,
“homogeneous binary”, “heterogeneous Gaussian” and “homogeneous Gaussian”, that
allowed us to study the effect of both cross-correlations in the input as well as het-
erogeneity in the input strength.

3.4 Results

In Fig. 3.1, we show the dynamics of the spectral radius resulting from the local and
global homeostatic adaptation for the four input protocols described in the previous
section. The spectral radius was always initialized to Ra = 2 and the target was set
to Rt = 1. For both heterogeneous and homogeneous independent Gaussian input
(Fig. 3.1C and Fig. 3.1D), the spectral radius Ra was regulated very close to the
target. Notably, a high precision for Ra is present for heterogeneous input strengths
and local adaptation, even if the local estimates R2

a,i of the squared target deviates
from this target, as shown in Fig. 3.1D. This is in line with the theory outlined in
Section 3.2.1, where we allowed for possible variations in the variances of neuronal
activity across the population (see (3.19)), which is a natural consequence of differing
external input strengths. The opposite side of this effect can be seen in Fig. 3.1C,
where the perfectly homogeneous external input variances lead to very similar local
estimates.

In contrast, binary correlated input had a detrimental effect on the correct tuning
of the spectral radius if local adaptation was used. This mismatch was completely
absent, however, for the global adaptation rule, which can also bee seen in Fig. 3.2,
showing the full spectrum of eigenvalues for the final state of the simulation.

To quantify the amount of deviation from the target spectral radius in more
detail, we ran a parameter sweep using a range of external input strengths σext and
three different values for Rt, 0.5, 1.0 and 1.5, and calculated the deviation Ra − Rt

after adaptation for all four input protocols. The results are shown in Fig. 3.3. The
amount of deviation depends approximately linearly on the strength of the external
input. Furthermore, smaller target spectral radii amplify the effect. We will return to
this observation when discussing the effect of cross-correlated activity on the tuning
precision in Section 3.4.3
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Figure 3.1: Time evolution of the spectral radius Ra and the local estimates R2
a,i

for the different input protocols as described in Section 3.3. Panels A–D correspond
to homogeneous binary, heterogeneous binary, homogeneous Gaussian and heteroge-
neous Gaussian input. The solid blue line shows Ra(t) for local adaptation, whereas
the red line shows Ra(t) for global adaptation. The standard deviation among the
local estimates R2

a,i is represented by the widths of the shaded area. The variance of
the external input was σext = 0.5 for all four simulations, as well as Rt = 1.

3.4.1 Dynamic Mean Field Model and Stabillity

Explaining the theoretical motivation of flow control in Section 3.2.1, we have implic-
itly assumed that the stationary solution is dynamically stable. In order to better
understand whether this holds true, we used a reduced dynamic mean field model
that describes the temporal evolution of the population averaged variances of neu-
ronal activity as well as the population average of the synaptic scaling parameters ai.
To do so, we first state that the change of the population average of the the synaptic
scaling variable, a(t) ≡ 〈ai(t)〉i, is simply given by the global update rule (3.13) via

a(t) = a(t− 1) [1 + ǫa∆R(t)] , ∆R(t) = R2
t

〈
y2i (t)

〉
i
−
〈
x2r,i(t)

〉
i
. (3.21)

Using the mean field method outlined in Section 2.3.3 and the approximation (2.68),
we arrive at the following dynamic map for the synaptic scaling and population
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Figure 3.2: Distribution of the eigenvalues of Ŵa corresponding to the final state of
the simulations shown in Fig. 3.1. Blue: local adaptation. Red: global adaptation.

averaged variance of neuronal activity σ2y:

a(t) = a(t− 1)
[
1 + ǫaσ

2
y(t− 1)

(
R2

t − a2(t− 1)
)]

(3.22)

σ2y(t) = 1− 1√
1 + 2a2(t− 1)σ2y(t− 1) + 2σ2ext(t)

. (3.23)

In Fig. 3.4, we have plotted the dynamics of full simulations over the flow of the
dynamic mean field model for different parameter values of Rt and σext. Here, we
used homogeneous Gaussian input, which makes the external source term σ2ext(t)

time independent and thus yields an autonomous two-dimensional system. Since
the usual choice of the adaptation rate ǫa generates much faster dynamics in σ2y
than in a, we set ǫa = 0.1 for illustration purposes. Considering that we used an
approximation for the calculation of σ2y, the dynamic mean field model predicts the
transient dynamics and the fixed point (given by the intersection of the nullclines)
very well. As a further step, this allowed us to evaluate the stability of the adaptation
mechanism on a population level by analyzing the stability of the fixed point of the
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Figure 3.3: Error between the spectral radius Ra and the target Rt after adaptation.
Shown are the results for different input strengths, target spectral radii and input
protocols. The standard deviation over 10 trials is represented by the height of the
respective filled area.

mean field model. The Jacobian matrix of the system is

Ĵ =



1 + ǫaσ

2
y

(
R2

t − 3a2
)

ǫaa
(
R2

t − a2
)

2aσ2
y

(1+2a2σ2
y+2σ2

ext)
3/2

a2

(1+2a2σ2
y+2σ2

ext)
3/2


 . (3.24)

While the fixed point value for a is simply a∗ = Rt, it is not possible to find an
explicit solution for σ2y

∗. Still, it is possible to simplify the Jacobian of the fixed
point to

Ĵ∗ =

(
1− 2ǫaσ

2
y
∗
R2

t 0

2Rtσ
2
y

(
1− σ2y

∗)3
R2

t

(
1− σ2y

∗)3

)
, (3.25)

which has eigenvalues λ∗1 = 1 − 2ǫaσ
2
y
∗
R2

t and λ∗2 = R2
t

(
1− σ2y

∗)3. In principle,
|λ∗1| can be made greater than one (and thereby making the fixed point unstable)
by choosing appropriately large values of Rt, which can, however, be mitigated by a
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Figure 3.4: Comparison of the dynamic mean field model given by (3.22) and (3.23),
represented by the blue flow lines, with full network simulations, shown in orange,
for different values of Rt and σ2ext. Homogeneous Gaussian external input was used.
For visualization purposes, we chose a faster adaptation rate of ǫa = 0.1. Black
dots represent stationary states of the full simulations. The green and red line are
the nullclines of the mean field model, i.e. the solutions of a(t + 1) = a(t) and
σ2y(t+ 1) = σ2y(t), respectively.

slow adaptation rate ǫa. For λ∗2, the picture is less clear, since the behavior depends

on the scaling of
(
1− σ2y

∗)3 relative to R2
t .

We numerically determined the fixed point of the dynamic mean field model and
calculated the eigenvalue spectrum. In Fig. 3.5 we plotted the absolute values of both
eigenvalues of Ĵ∗ for different Rt and σext (now using the standard value ǫa = 10−3).
Both eigenvalues never exceed 1 for the parameter range which we considered realistic
and that is shown in the plot. It is interesting to note that λ∗2 approaches 1 for
the autonomous network, σext = 0, at the point of the phase transition Rt = 1,
indicating that, similar to the network dynamics itself, the homeostatic system is
also most sensitive to perturbations at this critical point.
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Figure 3.5: Magnitude of eigenvalues of the linearized mean field dynamics given by
(3.22) and (3.23) at the fixed point. The adaptation rate of the synaptic scaling was
set to the standard value ǫa = 10−3.

From this analysis, we concluded that for stationary input statistics, flow control
is stable for the parameter range considered to be biologically plausible.

3.4.2 Task Performance

So far, we have only inspected the effectiveness of flow control by itself, without tak-
ing its actual effect on network performance into account. To address this point, we
constructed a sequential learning task that we termed XOR-memory recall. Similar
to the pure short-term memory task, see (3.9), the task requires a certain amount
of dynamic short term memory, to an extent controlled by the delay parameter τ .
However, our goal was to add an additional layer of complexity to the task by includ-
ing a nonlinear operation. This was done by choosing the random binary sequence
described in Section 3.3 for generating the external input and training the network
on a target sequence fτ (t) given by an XOR operation on subsequent elements of
the sequence, delayed by τ :

fτ (t) = XOR [u(t− τ), u(t− τ − 1)] . τ = 1, 2, ... (3.26)

Crucially, the XOR operation is not solvable by a linear classification, thus requiring
the use of the inherent nonlinearity of the reservoir. For the training of the readout
weights, we used the offline ridge regression procedure as defined in (3.6) and (3.7).
We chose a sample size of Tsample = 10N = 5000 and a regularization factor γ = 0.01.

Analogous to the definition of the memory capacity, we defined the total XOR
memory capacity, MCXOR as

MCXOR ≡
∞∑

k=1

ρ2 (fk(t), yout) , (3.27)
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Figure 3.6: XOR memory capacity as defined in (3.27), for networks that were
homeostatically adapted using flow control under homogeneous/heterogeneous bi-
nary input and different target spectral radii and input variances. The white dashed
line denotes pairs of Rt and σext where Ra = 1 after adaptation. The yellow line
shows the value of Rt for which the performance was maximized for a given σext.

again, denoting by ρ2 (fk(t), yout) the squared Pearson correlation between fk(t) and
yout.

Before the activity data was collected for learning, a simulation with homeostatic
adaptation was run under the same type of input sequence as in the described task
until a stationary state was achieved. Thereafter, the activity batch Ŷ for training
the readout weights was collected from a network run without adaptation.

Similar to our analysis of the adaptation mismatch shown in Fig. 3.3, we ran a
parameter sweep over σext and Rt and measured MCXOR. The result is shown in
Fig. 3.6. In accordance to the observations shown in Fig. 3.3A/B, the white dashed
line denoting Ra = 1 deviates from Rt = 1 as the input strength increases. Yet,
the best performance was achieved for Rt ≈ 0.6, independent of the external input
strength and the actual spectral radius Ra. Overall, homogeneous binary input led
to a lower performance.

As previously discussed, driving the network exclusively with a single binary se-
quence represents an “edge case” that is unlikely to mimic input received by local
recurrent networks in the cortex. A more realistic scenario could be described by a
situation where adaptation takes place under a number of different input streams,
while temporarily, a single input source could dominate. To this end, we implemented
a variant of the simulation where we adapted the network under independent Gaus-
sian input and then tested the network performance using binary input sequences
with the same σext. This is shown in Fig. 3.7. Similar to the previous results, op-
timal performance was achieved for a value of Rt that was not significantly affected
by σext, though being overall larger than the optimal value for binary adaptation.
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Figure 3.7: XOR memory capacity as given by (3.27). Networks were homeostatically
adapted using homogeneous/heterogeneous Gaussian input and then trained and
tested using binary input sequences under the same external input variance σext.
The white dashed line marks Ra = 1 and the yellow line shows the value of Rt where
performance was maximized for a given σext.

3.4.3 Cross-Correlations induced by Input

As we have discussed in Section 3.2.1, we can not expect flow control to exactly match
the target spectral radius if cross-correlations in the neuronal activity is present, i.e.
if 〈yi(t)yj(t)〉t 6= 0 for i 6= j. If we define xbare,i =

∑
j Wijyj as the “bare” recurrent

membrane potential, without the synaptic scaling factors, the essential assumption
we made in deriving the adaptation mechanism can be expressed by the statement
that the temporal variance of this quantity is given by σ2bare,i = σ2w,iσ

2
y, where σ2y is

the temporal and population variance of the neuronal activity and

σ2w,i ≡ Var




N∑

j=1

Wij


 (3.28)

is the variance of the summed bare synaptic weights. Thus, deviations from this
prediction of σ2bare,i are expected to negatively affect the precise tuning of the spectral
radius. Naturally, even if no correlations are present, we expect this estimate only to
become exact for large N due to finite size fluctuations. Therefore, we evaluated the
behavior of the population averaged error between σ2bare = 〈σ2bare,i〉i and σ2wσ

2y =

〈σ2w,i〉iσ2y for different network sizes and input protocols to see if different input
statistics affected the scaling of this error. This is shown in Fig. 3.8 on a log-log
plot. As expected, errors decrease by a power law for both uncorrelated Gaussian
input protocols as the network size increases. For correlated binary input on the
other hand, the error remains relatively large and shows only weak dependence on
the network size.
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Figure 3.8: Absolute error between population averaged variance of xbare,i =∑
j Wijyj and σ2bareσ

2
y, see (3.28), for different input protocols, as given in Section

3.3. Convergence can be observed for the input protocols where uncorrelated input is
presented to the network. Parameters used in the simulations are σext = 0.5, Ra = 1
and µt = 0.05.

To further illustrate that this effect coincides with cross-correlations within the
population, we determined the cross-correlation of neuronal activities ρ(yi, yj). As
an aggregate measure, we defined

ρ2 ≡ 1

N(N − 1)

∑

i 6=j

ρ2(yi, yj) (3.29)

as the average squared correlation between the activity of all pairs of neurons in
the network. In Fig. 3.9, ρ2 is shown as a function of the spectral radius and
different external input strengths. A clear distinction can be made between the
correlated binary input and uncorrelated Gaussian input. The former causes high
cross-correlations, which are more prominent for larger σext and get attenuated by
increasing the spectral radius, that is, the influence of recurrent coupling. On the
other hand, uncorrelated input leads to almost no cross-correlations for small spectral
radii, but monotonically increase as a function of Ra.

A special case which is also depicted is the case of zero external driving, mean-
ing that any observed cross-correlations are due to autonomous recurrent dynamic.
Values for ρ2 for Ra < 1 should thus be treated with caution, since the actual ac-
tivity variances are approaching zero even if the network is initialized with non-zero
activity. For Ra > 1, chaotic dynamics are present in the autonomous case, which
corresponds to uncorrelated activity in the limit N → ∞. This implies that the
observed cross-correlations can be considered a finite-size effect.
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Figure 3.9: Average squared network cross-correlations as defined in (??) for dif-
ferent input protocols, spectral radii and input strengths. Averaged over five trials
(standard error indicated by shaded area).

3.4.4 Relation between the Tuning Error and Cross-Correlations

Having established that cross-correlations are present under correlated external driv-
ing, and that the very same conditions lead to errors in the correct tuning of the
spectral radius, it would be desirable to derive a concrete link between those two
observations. In appendix A, a detailed analysis of this relation is given, leading to
the estimate

Ra ≈ Rt

√
1 + 2ρ2 . (3.30)

To test this prediction, we ran the same parameter sweep as used for Fig. 3.3A/B,
but also recorded ρ2. This allowed us to plot the resulting deviations from the target
spectral radius as a function of ρ2 instead of the varying σext (which, as discussed in
the previous section, did still affect ρ2). A comparison between the simulation and
the prediction by means of (3.30) is shown in Fig. 3.10. The prediction is in excellent
agreement if the spectral radius is large enough to decorrelate neuronal activity due
to the chaotic recurrent dynamics. For the usual target Rt = 1, the simulations using
homogeneous input still led to a very good fit to the prediction. For both binary input
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Figure 3.10: Error between the spectral radius of the effective weight matrix Ŵa and
the target spectral radius as a function of the average squared cross-correlation of
neuronal activities.

protocols, a small target radius resulted in large cross-correlations, which caused the
analytic prediction to substantially deviate.

3.5 Discussion

As indicated by our numerical and theoretical results, the precision of flow control
crucially depends on the amount of cross-correlations that are present within the
recurrent network. We found the main driver of these correlations to be shared ex-
ternal synaptic input. The extent to which the external driving affected flow control
was thus partially determined by the correlations among the external input currents,
but also their variance relative to the recurrent input. Thus, the effectiveness of the
proposed mechanism depends on the ratio between the fluctuations of recurrent and
external input. Binzegger et al. [125] found that approximately 50% of synapses in
the rat visual cortex are associated with interlaminar loops and intralaminar connec-
tions, which can be considered as being part of a local recurrent structure. For this
reason, it is a plausible estimate that the contribution of external and recurrent input
is of the same order of magnitude. With respect to flow control, this implies that
potential cross-correlations within the external input are to be considered relevant
for the tuning of the spectral radius. Furthermore, synchronization can commonly
be found in the brain [126] and also might play an important role in processing
information [127].

However, correlations in the external input has a detrimental effect on the stor-
age of information in neuronal ensembles [83], and maximal information storage is
present if neuronal activity forms an orthogonal ensemble [128, 83, 129]. Moreover,
cortical microcircuits exhibit decorrelated firing across neurons in the presence of
common external input [130], indicating some form of active cancellation. Hence,
the correlations that were found in our network model in the presence of shared ex-
ternal input could potentially be mitigated by changes to the model. For example,
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a strict distinction between inhibitory and excitatory neurons could serve the decor-
relation of neuronal activity [131, 132]. Furthermore, given that higher dimensional
input patterns are presented, plasticity mechanisms could facilitate the emergence
of orthogonal representations [128, 83, 133]. Given those potential reductions in
cross-correlations, we would thus also expect a more precise tuning of the spectral
radius.

Interestingly, despite the observed deviations from the spectral radius, we found a
relatively stable network performance over a wide range of external input strengths,
see Fig. 3.6. This result might indicate that, while the spectral radius provides a
good measure for tuning the properties of neuronal reservoirs, it could be considered
a heuristic substitute quantity for the actually more important property of how the
neuronal activity is scaled when projected back as recurrent input. Even in the cases
where the desired spectral radius was not attained, flow control did, by definition of
the stationary solution, enforce the scaling relation 〈‖xr‖2〉 = R2

t 〈‖y‖2〉: since the
equality 〈x2r,i〉 = R2

t 〈y2i 〉 holds for all i, it is also necessarily true for the sum, which
is the squared euclidean norm.

In contrast to conventional homeostatic mechanisms, flow control does not include
a pre-defined set point. This loosening of the homeostatic control could be relevant
in the face of experimental results, indicating individual homeostatic firing rate set
points within a neuronal population [134].

In a broader context, our findings on the behavior of flow control illustrates the
potential relevance of the separability of recurrent and external inputs with respect
to the understanding of homeostasis in recurrent networks. On the experimental
side, homeostasis in neuronal compartments has been investigated to some degree
[135, 136, 137, 138], but further theoretical work is needed, especially since there is
evidence that the functional segregation across the dendritic structure also has an
impact on homeostasis [139].

Apart from introducing a strict distinction between excitatory and inhibitory
populations, a natural extension of our model improving biological realism would
be the use of spiking neuron models. Firing rate in this respect then becomes an
averaged quantity, raising the question of how to properly define higher moments,
since longer averaging windows for estimating firing rates also reduces temporal
fluctuations of the rate. One “physical correlate” of the firing that is typically studied
is the intracellular calcium concentration, since it is, approximately, a temporally
filtered trace of the spike train [140]. Cannon and Miller [11] showed that the mean
and variance of such a time-averaging physical correlate can be controlled by dual
homeostasis, indicating that flow control could also be utilized in spiking networks.
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Hierarchical Networks

In the late 1950s, an electrical device was invented by Rosenblatt [141] known as
the perceptron. In today’s terms, it was a single-layered, binary neural network that
had the ability to classify input patterns to a certain degree. While its introduction
raised the hope of building machines that were able to understand its physical en-
vironment on the level of human cognition, in particular recognizing complex visual
patterns, it soon became clear that, by mathematical necessity, a single layer of neu-
rons receiving weighted inputs would never be able to correctly classify certain types
of input patterns. For example, it was shown that it was incapable of performing a
simple XOR operation [142]. In the mid-1980s, the backpropagation was introduced
as a breakthrough learning algorithm in the sense that it allowed multiple layers
of feed-forward networks, see Fig. 4.1, to be trained on labeled training data [102].
Naturally, the success of this learning approach raised the question as to its applica-
bility in understanding learning in biological networks, and, in its original form, has
largely been rejected as a biologically plausible learning algorithm [143, 13, 144].

Despite the criticism regarding the biological plausibility of the learning process,
increasing evidence was found that feed-forward network architectures comprised of
many hierarchical layers (or deep networks, as used in the field of machine learn-
ing) are good models for predicting or mimicking patterns of activity that can also
be observed in the cortex [145, 146, 147, 148]. Thus, while backpropagation as
a learning process is considered biologically implausible, the underlying architec-
ture and the resulting activity patterns are consistent with experimental observa-
tions. Consequently, ongoing efforts in theoretical research have been dedicated
to finding alternative learning rules that are compatible with biological constraints
[144, 149, 105, 150, 151].

One approach to this issue is to consider the unique anatomical properties of
cortical pyramidal neurons, and, especially, their dendritic structure. The tree-like
structure separating basal, or somatic synapses from the apical, or distal dendritic
structure is considered to be suitable for processing functionally different streams of
input. This might serve as a physical correspondence to the upstream and down-
stream of information found in conventional learning algorithms for deep networks
[123, 152, 153]. Apart from further understanding the intracellular mechanisms shap-
ing synaptic connectivity as a result of certain different input streams, it also remains
an open question what information should actually be sent as “feedback” via up-
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Figure 4.1: Illustration of a multi-layered feed-forward neural network.

stream pathways and how it should be encoded (where by “upstream” in contrast
to “downstream” we refer to signals flowing opposite to the usual pathways from
earlier stages of sensory processing to areas involved in more complex associations).
As a direct analogy to the backpropagation algorithm, some theoretical work was
dedicated to biologically plausible algorithms where feedback signals encode learning
errors [154, 105, 155, 156]. An alternative approach is known as target propagation:
Feedback signals encode targets that are then to be reproduced by the feed-forward
pathway [15, 157, 144, 158].

Naturally, depending on the information that is encoded in the feedback signals,
different internal plasticity rules are required. In [159], we showed how a simple
Hebbian learning rule in combination with a dual homeostatic mechanism in a simple
pyramidal compartment model allows feedback signal to serve as target signals for the
plasticity in the basal synaptic weights. Before presenting this work in detail, we will
first review the anatomical basics that motivates the theoretical work on biologically
plausible learning in deep neural networks, which is summarized thereafter.

The mammalian visual cortex is one of the most extensively studied brain region,
and, while differences in the processing of other types of sensory input certainly
exists by the nature of their spatiotemporal properties, many of the properties and
organization of the visual cortex is shared among other cortical regions, such as the
auditory cortex [160]. Therefore, we will use the visual cortex as an example case
in the following section for introducing the anatomical structure underlying sensory
processing.
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4.0.1 The Hierarchical Anatomy of the Visual Cortex

In 1962, Hubel and Wiesel [29] performed a series of measurements on the cat vi-
sual cortex while presenting a number of basic optical stimuli, such as dots, stripes
and bars at different angles. Measuring the activity of single cells in the primary
visual cortex, they found a number of cells that reliably responded to stimuli of cer-
tain primitive shapes within a confined area on the retina. In contrast, other cells
could not be characterized by those simple response properties, and also responded
generally to a larger area on the retina. Those experiments were of the first that
led to the idea of a hierarchical structure built into cortical visual processing [161].
The receptive fields measured by Hubel and Wiesel are found in the primary visual
cortex, V1, which can also be found in the human brain, see Fig. 4.2.

V1 has strong projections onto the adjacent secondary and tertiary visual regions
V2 and V3. A popular view on the organization of the visual system is known as
the dorsal and ventral stream hypothesis [162]. It describes a split of two streams
of information originating from the primary visual cortex, shown in Fig. 4.2 by the
upper (dorsal) and lower (ventral) arrows. While the dorsal stream projects from
V1 to V3 and further into the parietal lobe (red region), the ventral stream passes
through V2 and V4 towards the inferior temporal gyrus (green region). Function-
ally, those pathways are considered to be responsible for the recognition of objects
(ventral) and the identification of their location (dorsal). Within the ventral stream,
neurons respond to increasingly complex visual patterns, or features of objects [4,
p. 470–472]. While now being considered an over-interpretation of the principle, it
was suggested that eventually this functional pathway terminates in single neurons
being responsible to entire objects, also termed “grandmother neurons” [163]. A
more realistic approach is the idea of objects being represented by populations of
neurons corresponding to certain reoccurring features, where neurons with similar
responsiveness are physically grouped together [164].

With respect to its connectivity, the dorsal stream is less strictly serial or hierar-
chical, but, similarly, responses become increasingly complex: In later stages within
the parietal lobe, cells respond e.g. to distinct types of motion such as rotation or
linear movement [3, p. 334–336].

If one disregards the existence of unique grandmother neurons as being an overly
simplistic view in favor of a more parallel approach, the purely feed-forward, hierar-
chical picture also becomes questionable. In fact, many synaptic connections exist
besides those constituting the here presented flow of information. For example, area
V3 also has strong connections to V2 and V4 [165].

Functional Hierarchy vs. Anatomical Hierarchy

As pointed out by Hilgetag and Goulas [166], some confusion may stem from the
use of the term “hierarchy” in the neurological context, and, related to the concept,
the idea of “forward” and “backward” connections. The functional hierarchy and the
synaptic connections associated with it are referred to as “topological” hierarchy in
[166], since it is an order stemming from the number of synaptic transmission steps
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Figure 4.2: Illustration of the visual ventral (lower arrow) and dorsal (upper arrow)
stream in the human brain. The ventral stream propagates from the primary visual
cortex V1 to V2 and V4, terminating in the inferior temporal gyrus (IT). The dorsal
stream propagates from V1 to V3, which then projects into the parietal lobe.

between the source of the sensory stimulus and the respective cortical populations.
Alternatively, an often used nomenclature refers to connections as “forward”, ”back-
ward” and “lateral” based on the origin and destination within the laminar structure
of the cortex that as depicted in Fig. 4.3. Connections origination from more su-
perficial layers towards deeper layers are referred to as forward connections, while
backward connections are formed in the opposite direction. In addition, intralaminar
connections are usually referred to as lateral.

Importantly, the functional hierarchy laid out in the previous section also allows
for a distinction between forward connections, projecting from areas of earlier sensory
processing to areas with more complex responses, backward, or feedback connections
projecting in the opposite direction and, to an extent, lateral connections remaining
within a certain cortical area. However, while the functional and laminar perspective
on hierarchy may coincide to some degree, there is no necessity that they have to.
Still, the assumption that the laminar structure and anatomy of neurons may be
involved into the functioning and organization of hierarchical processing remains
a valid hypothesis that is considered as a possible explanation for various aspects
cognitive functioning including the formation of associations and, more general, the
issue of learning and credit assignment [153]. In the following, we will summarize
the theoretic approaches to learning and plasticity in hierarchical networks based on
the more recent findings on the interplay between the dendritic anatomy of cortical
pyramidal neurons and the laminar organization in the cortex. Crucially, these
theoretic models indeed assume that, due to a certain regularity in the cortical
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Figure 4.3: Illustration of the laminar structure of the mammalian cortex. Layer I
contains mostly dendritic arborizations from deeper cortical areas. Pyramidal neu-
rons are found primarily in Layers IV, V and VI, but also in layer III. Stellate cells
can be found in Layer IV. Interlaminar connections can be distinguished into forward,
backward, and lateral connections. Source and termination layers are indicated by
the colored arrows.

laminar anatomy and connectivity, these anatomical properties can support learning
in a functionally hierarchical network.

4.0.2 Models of Biologically Plausible Learning in Hierachical Net-

works

Before we introduce proposed solutions to the problem of learning and credit assign-
ment in the brain, we shall introduce the mathematical formulation of the classical
backpropagation algorithm, which was already briefly mentioned in the beginning of
this chapter. Using the nomenclature shown in Fig. 4.1, we define the activity of
nodes in a feed-forward network with n intermediate, or “hidden” layers, an input
layer y0 and an output layer yn+1 as

xi = Ŵiyi−1 (4.1)

yi = φ (xi) (4.2)

where 1 ≤ i ≤ n + 1. All layers may have different sizes, which we shall denote by
Ni for the ith layer. Given a set {(y1

0,f
1), ..., (ym

0 ,f
m)} of m pairs of input vectors

yi
0 and target output vectors f i, one can define a loss Li = L

(
yn+1

(
yi
0

)
,f i
)

whose
average over the set of pairs is then to be minimized with respect to all the synaptic
weights entering the model:

argmin
Ŵ1,...,Ŵn+1

1

m

m∑

i=1

Li (4.3)
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The Backpropagation algorithm approaches this minimum by means of gradient de-
scent with respect to each weight. If we use the notation for the element-wise deriva-
tive y′

i ≡ ∇xφ(xi), we find, for a single pair (y0,f) for Ŵn+1

∂L
∂Wn+1,ij

=
∂L

∂yn+1,i
(yn+1 (y0) ,f) y

′
n+1,iynj , (4.4)

where ynj is the activity of the jth neuron in the nth hidden layer. If we use a
squared error loss function, given by

L ≡ 1

2

Nout∑

k=1

e2k =
1

2

Nn+1∑

k=1

[yn+1,k (y0)− fk]
2 , (4.5)

we can write (4.4) as

∂L
∂Wn+1,ij

= ynjdn+1,i (4.6)

dn+1,i ≡ y′n+1,iei . (4.7)

Similarly, for all other weights, we get

∂L
∂Wl,ij

= yl−1,jdli (4.8)

dli ≡ y′li

Nl+1∑

k=1

Wl+1,kidl+1,k . (4.9)

In vector notation, this can be written as

∂L
∂Ŵl

= dly
T
l−1 (4.10)

dl ≡ D̂
(
y′
l

)
Ŵ T

l+1dl+1 , (4.11)

with D̂ (y′
l) denoting a diagonal square matrix with its diagonal elements given by

y′
l.

While solving (4.1) and (4.2) incrementally from y0 is referred to as the for-

ward pass, (4.11) corresponds to an iterative process in the reverse order known
as the backward pass, or the backpropagation of errors. Depending on the type
of activation function, calculating the derivatives entering (4.11) can be done from
the stored inputs xi, or directly from the neuronal activities, if a relation such as
∂/∂x tanh(x) = 1− tanh2(x) exists. Weights can then updated incrementally by
gradient descent with a learning rate ǫ using

∆Wl,ij = −ǫ 1
m

m∑

k=1

∂Lk

∂Wl,ij
. (4.12)
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In practice, however, m might be very large, making it impractical to calculate the
derivatives for all samples before updating the weights. Faster convergence might be
achieved if sub-sampled smaller batches are used to estimate the full gradient. In
the extreme case, a single sample is used:

∆Wl,ij(k) = −ǫ ∂Lk

∂Wl,ij
. (4.13)

The latter also resembles a more biological approach, since each input pattern and
the resulting activity in the network should have an immediate, though very small,
effect on the synaptic weights.

The essential issue that renders backpropagation biologically implausible is the
fact that the backward pass requires an entire set of mirrored weights Ŵ T

i for each
layer to correctly propagate errors. Biologically, this would require an entirely par-
allel network running in the opposite direction, while tracking changes in the feed-
forward network, and to date, such mirrored subnetworks were not found. Grossberg
[143] referred to this issue as the weight transport problem.

Still, motivated by the success of the algorithm, research has been dedicated to
potential workarounds to the problem of weight transport. One proposition to solve
this issue was based on the fact that axons also transmit information in the opposite
direction, from the synapse to the soma of the presynaptic neuron, potentially remov-
ing the need for a separate network entirely [167]. Yet, it was shown empirically that
this form of information transmission operates much too slow to serve as a backbone
for backpropagation [168]. Despite the lack of experimental evidence, some learning
mechanisms have been suggested that would implement backpropagation through an
actual separate network [169, 170]. Still, this requires quite complex learning rules
to maintain the symmetry between both networks.

Random Feedback Weights

In recent years, another promising approach to biologically plausible backpropagation
was was found. The key insight was that learning was still possible without the
strict condition of using Ŵ T for the feedback [105, 171]. If certain conditions on the
feedback are met, randomly generated feedback weights are sufficient.

While a general condition that would allow to analytically determine learning
cases that converge under random feedback weights does not exist to this point,
it is possible to derive analytical results under certain simplified assumptions (see
[105, Suppl. Note 11]) and Appendix B.2: eT Ŵ B̂e > 0, where B̂ is the random
feedback matrix, Ŵ T is the exact backpropagation matrix and e is the feedback
error. Note that Lillicrap et al. [105] derived this for linear networks, but showed
numerically that successful learning was also possible in more complex, nonlinear
networks. In this work, each layer in a multi-layered network had its own random
feedback matrix, entering (4.11) instead of Ŵ T

l+1. This meant that, for nonlinear
networks, each layer still included the modulatory factors y′

i ≡ ∇xφ(xi) given by the
derivatives. Therefore, biologically speaking, while random feedback as presented in
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[105] provides a solution to the problem of weight transport, it still implies that two
operations should be carried out at each neuron: the usual nonlinear transformation
of the input in the forward pass, as well as providing a multiplicative modulation to
the random feedback.

Direct feedback alignment seeks to circumvent the latter issue by providing a
feedback to each previous layer instead of using a successive iterative backward pass
[155, 172]. Similar to random feedback alignment, such models were also successfully
trained on complex classification tasks such as the MNIST dataset [155]. Still, follow-
up work found that the trainability of random feedback networks significantly suffers
if increasingly deep networks are used [173, 174]. In this case, additional methods are
required to increase the alignment between forward and backward weights, which, in
a sense, diminishes the appeal of random feedback as a biologically plausible learning
framework.

4.0.3 Target Propagation

The previously discussed method of random feedback still assumes that the informa-
tion that is sent back to earlier stages of information processing encodes errors. This
entails another issue in the biological context, being the fact that error signals can be
both positive or negative. Yet, if we adhere to a rate encoding scheme of neural pro-
cessing, neuronal activity is a strictly positive quantity. As a potential workaround,
error signals could be transmitted relative to some positive baseline, or, depending
on the sign, be sent over separate synaptic pathways. While the latter significantly
increases the number of required connections, as well as posing the issue of how such
a coding scheme should be temporally coordinated, measuring errors relative to some
baseline activity seems unlikely from a metabolic perspective: Neurons would have
to constantly be active to a certain degree, even in the absence of any errors.

An alternative to sending error signals as feedback information, known as target

propagation was first proposed by Le Cun [175] and applied to auto-encoder networks
by Bengio [15]. Following studies sought to implement target propagation in biolog-
ical network models [156, 151, 16]. Here, we briefly summarize the mathematical
framework of target propagation as introduced by Bengio [15] and Lee et al. [157].

We adhere to the notation for a feed-forward network as given in (4.1) and (4.2)
and first note that for each training input y0, the target ln+1 for the last layer yn+1

is simply given by the target of the training data, f . If we define the mapping from
the activity of layer i− 1 to layer i via

yi = ψ (yi−1) ≡ φ
(
Ŵiyi−1

)
, (4.14)

we note that, given a target li for the activity yi, this target can be attained under a
given weight matrix Ŵi if the activity of yi−1 = ψ−1 (li), i.e. the inverse of the non-
linear feed-forward transformation. Therefore, an exact backpropagation of targets
would be given by

li−1 = Ŵ−1
i φ−1 (li) . (4.15)
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Figure 4.4: Schematic of target propagation. The forward pass of activities yi is
represented by the blue layers, with weights Ŵi. Targets li are backpropagated by
the feedback weights Q̂i, allowing for a layer and element-wise loss between targets
and activities (red arrows).

In the original target propagation approach, (4.15) is replaced by an approximation
such as

li−1 = φ̃
(
Q̂ili

)
, (4.16)

where the Q̂i serve as the feedback weights and φ̃ is a smooth nonlinear activation
function (which is not necessarily the same as φ). This setup constitutes two learn-
ing processes in each layer that can be implemented via a local gradient loss: First,
feed-forward weights Ŵi seek to minimize the local error between the target li and
the activity yi, ‖li − yi‖2. Second, the feedback weights Q̂i are adapted to minimize
the error between the approximate inverse φ̃(Q̂iyi) and the actual activity yi−1,∥∥∥φ̃(Q̂iyi)− yi−1

∥∥∥
2
. In a sense, the latter process uses the activity in the network as

training samples for optimizing the projection that is required for the backpropaga-
tion of targets. It was suggested by Lee et al. [157] to add noise to the activities in
order to optimize the mapping with respect to points that might not be present in
the sample space of activities. An illustration of the target propagation principle is
shown in Fig. 4.4.

Similar to the random feedback backpropagation approach discussed previously,
one might ask if the plasticity within the hidden layers actually reduce the output
error using target propagation. It was shown by Lee et al. [157] that this is the case
under the condition that the inverse mapping φ̃(Q̂iyi) is exactly reproducing yi−1.

From a biological perspective, one advantage of target propagation stems from
the fact that it resolves the aforementioned issue of propagating signed error sig-
nals in backpropagation-inspired frameworks: If the inverse projection of targets is
sufficiently precise and strictly positive rates are present in the model, the result-
ing targets should also always remain positive. Furthermore, more recent studies
indicate that cortical feedback indeed appears to predict activity induced by sensory
input [176, 177, 178], which bears some resemblance to the inverse mapping φ̃(Q̂iyi).
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Yet, similar to the random feedback of errors, what still remains is the question of
how the parallel forward and backward stream of information illustrated in Fig. 4.4
could be implemented biologically. As both pathways are tightly linked with respect
to their plasticity processes, it appears unlikely that an entirely separate network of
neurons could be responsible for the backpropagation of targets. In a more general
sense, both random feedback and target propagation as candidates for biological
learning face the problem of how to combine two linked but functionally different
signaling routes into a hierarchical network of neurons.

In recent years, potential solutions to this issue were proposed based on the par-
ticular dendritic anatomy of pyramidal neurons in L5 [153, 154, 151, 156], see Fig. 4.3.
In contrast to the point-like neuron models introduced in Section 2.2, pyramidal neu-
rons in the cortex possess a quite elaborate, tree-like dendritic structure, that lead
to complex dynamical properties [123, 179, 180, 181], which can not be accounted
for by point neuron models [182, 183]. One important finding was that the apical
dendritic tree of pyramidal neurons can behave as a separate synaptic integration
zone [123, 184]. Here, we shall briefly introduce the biophysical properties that were
incorporated into theoretical network models.

4.0.4 Nonlinear Dendritic Integration in L5 Pyramidal Neurons

Apart from intralaminar dendritic connections, pyramidal neurons in Layer 5 have
a relatively large number of distal dendrites that span into the more superficial
supragranular layers 1 and 2. Due to the attenuating effect along the dendrites that
transmit postsynaptic potentials to the soma [185, 186], one would expect that these
distal synaptic connections have a minor effect on the spike initiation at the soma: In
the case of passive dendrites, the voltage along the dendrite as a function of time and
space is governed by the cable equation [26], which implies an exponential decay of
the signal strength as the postsynaptic potential is transmitted towards the cell body.
However, different studies have highlighted the potential importance of these distal
dendrites for cognition [187, 188, 189]. Therefore, additional mechanisms appeared to
be necessary to facilitate the impact of distal synapses onto somatic spiking activity,
and, indeed such mechanisms were subsequently uncovered.

One of these mechanisms exceeding passive dendrite dynamics was found to be
the initiation of calcium action potentials (also termed Ca2+ spikes) in the apical
dendritic tree [190, 191, 192]. As described in Section 2.2.4, the spike initiation at the
soma was explained in the Hodgkin-Huxley model as a result of the voltage-dependent
conductance of the sodium and potassium channels. Similarly, dendritic calcium
spikes are initiated by currents induced from voltage-dependent calcium channels in
the dendrites. In its most simple form, the dendritic tree may be considered as a
separate, point like compartment with active spike initiation dynamics, coupled to
the basal somatic component [193]. If a calcium spike is triggered in the dendritic
tree, it can, in turn, elicit rapid, bursting somatic spiking activity [192]. This effect
can be explained by the relatively long lasting (up to 50 ms) plateau-like potentials
generated by the calcium spike, which transiently facilitates spike initiation at the
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soma [191, 193]. Moreover, the somatic firing rates caused by dendritic spiking
exceeds those that can be achieved if only somatic input is presented [192]. This
implies that, rather than being a negligible part of somatic firing, dendritic input can,
in principle, become the dominant driver of somatic firing, provided some baseline
basal synaptic input is present.

Another process affecting the interplay between the somatic and apical compart-
ment is known as backpropagation activated Ca2+ firing (BAC firing). The previously
described spiking mechanism in the dendritic tree can hardly be triggered by solely
applying apical synaptic input, but is relatively easy to evoke when somatic spiking
is also present [186]. This observation can be explained by somatic action poten-
tials propagating in retrograde direction towards the apical dendritic compartment
[183, 123, 153]. Naturally, this bidirectional coupling via both dendritic spiking and
BAC firing brings about quite intricate intracellular dynamics. In a more general
sense, three major aspects can be identified:

• The apical compartment can be considered an active spike initiation zone,
responding to synaptic input nonlinearly.

• Dendritic spiking can transiently depolarize the somatic compartment, facili-
tating somatic spiking.

• The maximally achievable transient firing rates in the soma are also elevated
due to dendritic spiking.

From these three features, Shai et al. [181] constructed a phenomenological model
predicting the somatic firing rate as a function of the total basal and apical synap-
tic input and found a very good agreement with simulations using a detailed full
compartment model. The model predicts the output frequency y based on the to-
tal apical input current Ia and the total basal input current Ib using the following
expressions:

M (Ia) = α1 + α2σ ((Ia − α3) /α4) (4.17)

T (Ia) = β1 + β2σ ((Ia − β3) /β4) (4.18)

y (Ib, Ia) =M (Ia)σ (Ib − T ((Ia)) /γ) , (4.19)

where σ(x) = 1/(1 + exp(−x)) is a standard sigmoidal activation function and the
parameters α1/2/3, β1/2/3 and γ were fitted to the full compartment model. The
nonlinear dendritic response to synaptic inputs is captured by the sigmoidal functions
entering (4.17) and (4.18). While M acts as a modulating factor accounting for
the dendritic firing elevating the maximal somatic firing rate, T directly enters the
activation function in (4.19) as an input source which corresponds to the transient
somatic depolarization.

In Fig. 4.5, we plotted an example of y (Ib, Ia), where we matched the parameters
to resemble the shape of the activation function that was found in [181] to best fit
the full compartment model. Note, however, that we normalized both the output
firing and the input current range to [0, 1]. In the original publication, the maximally
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Figure 4.5: Plot of the rate model introduced by Shai et al. [181]. For simplicity, the
color-coded output firing rate was normalized to [0, 1]. Likewise, the input currents
Ib and Ia were rescaled to fit the region of interest into Ib/a ∈ [0, 1].

achieved firing rate was approximately 150 Hz. Importantly, Fig. 4.5 exhibits two
major regions of non-zero activity: an intermediate firing rate that is the result of
stimulating only with basal input current Ib, and an area where the maximal firing
rate is achieved when stimulating both with Ib and Ia. This distinction between two
different modes of firing is considered a potential candidate for detection of temporal
coincidence between apical and basal input [153].

Returning to the problem of how errors or targets are backpropagated in a biolog-
ical network, the insight that the apical dendritic compartment of pyramidal neurons
can act as a separate synaptic integration zone inspired theoretical models offering
a potential solution to the problem of coordinating coupled forward and backward
pathways for learning in hierarchical networks. An important additional insight is
the conceptual idea (partially backed up by experimental evidence, see Section 4.0.1)
that feed-forward input is projected onto deeper cortical layers, physically close to
the basal part of the dendritic structure of layer 5 pyramidal neurons, while feedback
signals terminate in more superficial cortical layers, which are physically closer to
the apical dendritic tree of the same pyramidal neurons [161, 153].

The combination of the intracellular properties of neurons with segregated inte-
gration zones with this topological feature led to a line of research aiming to include
those findings into biological models of deep learning. In the following we shall review
two such theoretical works.
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4.0.5 Deep Learning with Segregated Dendrites

A first model utilizing dendritic segregation in a supervised learning framework was
proposed by Sacramento et al. [156]. Here, excitatory pyramidal neurons were mod-
eled as leaky integrators that receive separate inputs from both a somatic and an
apical dendritic compartment. In addition, inhibitory interneurons in each layer re-
ceived input from pyramidal neurons within the same layer, as well as direct input
mirroring the activity of neurons in the next layer. Importantly, the apical compart-
ment of the pyramidal neurons receive both top-down excitatory input from the next
layer as well as inhibitory input from the interneurons in the same layer. Therefore,
the superposition between both inputs encodes an error between the feedback pro-
vided by the next layer and the intralaminar prediction via the interneurons. In a
pre-training phase, the network is stimulated with random inputs (not providing any
specific errors to the last layer) so that the intralaminar inhibitory loop can learn to
cancel the feedback provided at the apical compartments. After this stage, the net-
work is considered to be in a “self-predicting state”, in the sense that the intralaminar
inhibitory pathway predicts the self-generated feedback from each next layer. In a
second stage, the activity in the output layer is nudged towards the targets defined
by actual training data, and, likewise, the activity of the input layer is also given by
the corresponding input pattern. Considering the last hidden layer, the superposi-
tion of both top-down input and the input from the inhibitory interneurons in the
apical compartments now encode an error between the target activity of the output
layer and the activity that would be present in the output layer if it were generated
from feed-forward input. This non-zero apical input drives the membrane potential
away from the potential induced by the somatic feed-forward input. Learning in this
stage now seeks to match the somatic, feed-forward input to the membrane potential
nudged by the apical error signal. If this succeeds, the network again has attained a
self-predicting state, except that the generated output activity in the last layer now
matches the output given by the target activity.

The separation of apical synaptic input in this model serves to calculate an intra-
cellular error signal by means of inhibitory interneurons, while the learning process
on the feed-forward can take place separately. Crucially, Sacramento et al. also as-
sume that different learning rules apply to the basal and apical compartment. One
advantage of the proposed learning scheme is that the feedback signal simply projects
neuronal activities back to the previous layer, while the error information is calcu-
lated internally by the superposition with inhibitory input modeling the effect of the
feed-forward signal in the next layer.

Another approach to the use of segregated dendrites in hierarchical networks
was presented by Guerguiev et al. [151]. As in Sacramento et al. [156], feed-forward
inputs are integrated in the somatic compartment, while feedback input arrives at the
apical compartment. The resulting membrane potential is then given by a weighted
superposition between both inputs, from which a firing rate is calculated. In contrast
to Sacramento et al., no inhibitory neurons are used to determine errors. Instead, the
learning phase is temporally separated into alternating forward and target phases.
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While the forward phase simply calculates the feed-forward and feedback input as
well as the activities using only input from the training data, the feedback phase
also adds input to the output layer driving the activity towards the desired target
output. From these two phases, the authors calculate what they refer to as “plateau
potentials”, which are nonlinear functions of the average apical input present in each
node during the forward and target phase. The intention behind this quantity is to
reflect the nonlinear response to apical synaptic input found in pyramidal neurons, as
discussed in the previous section. In the spirit of the target propagation approach,
the differences between the local plateau potentials in the forward and the target
phase define a local error signal that can be used to adjust feed-forward weights.
Interestingly, in contrast to the original target propagation approach, it is shown
that the method also works with random feedback weights that are not subject to
additional plasticity.

Comparing both studies, the presented works solve the coordination of the feed-
forward and feedback flow of information in two different ways: While Sacramento
et al. introduce an additional inhibitory pathway in each layer, Guerguiev et al.
temporally separate the feed-forward and feedback processes. Still, both methods
demonstrate the potential advantage of the specific anatomy of pyramidal neurons,
making it plausible that synaptic inputs are integrated separately.

Is Learning Driven by Intracellular Error Signals?

What both presented studies have in common is a specific aspect of their learning
rules. In both cases, plasticity is driven by the reduction of an internal error signal:
In [156], it enters as the difference between the total somatic input and the membrane
potential nudged by the apical input. In the study by Guerguiev et al., this error is
given by the forward and target plateau potentials. However, a biological plasticity
mechanism supporting such error-driven learning is, to our knowledge, not known to
date.

Motivated by this issue, we introduced a learning framework attempting to com-
bine the specific dynamics of segregated dendrites in pyramidal neurons with well-
documented biological plasticity mechanisms [159]. In the next chapter, we present
the results of this study.
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CHAPTER 5

Learning by Dendritic Coincidence Detection

Fabian Schubert, Claudius Gros
Nonlinear Dendritic Coincidence Detection

for Supervised Learning,
Front. Comput. Neurosci. (2021)

[159]

In the previous chapter, we discussed some of the challenges in transferring ma-
chine learning techniques applied to deep networks over to biological neural networks.
A relatively new line of research aims to incorporate the distinct physiology of cortical
pyramidal neurons. Specific properties of these cells include the physical separation
between basal and apical dendrites, the intrinsic neuronal dynamics resulting from
this anatomy, and the fact that the overall hierarchical structure in the sensory cortex
is, to some degree, reflected in the dendritic termination of feed-forward connections
in the basal area and feedback connections in the apical compartment. However, the
learning rules devised for these biologically inspired learning frameworks are depen-
dent on an explicit internal error signal and thus, albeit local, different from plasticity
mechanisms commonly assumed to be biologically plausible, which usually fall into
the class of two-factor Hebbian learning rules [194, 195, 196, 76] or three-factor rules
with a modulating component [197, 198, 199, 200]. Hence, we considered the possi-
bility that the nonlinear properties of segregated dendritic integration discussed in
the previous section in combination with a conventional Hebbian-type learning rule
could yield plasticity dynamics suitable for a supervised learning framework where
apical synaptic input provides a feedback signal guiding the plasticity of feed-forward
synaptic weights.

Given the potential role of dendritic spiking as a means for coincidence detection,
we hypothesized that the strong activity response to temporally coincident basal
and distal input could guide plasticity towards an increasing alignment between the
basal and apical input. To test this hypothesis, we combined a phenomenological rate
model that determines the output firing rate as a function of the total basal and apical
input with a standard Hebbian and a BCM-like plasticity rule [201, 202], acting on
the basal synapses. If both input streams indeed temporally aligned as a consequence
of the plasticity process, the distal input would effectively act as a reconstruction
target for the basal inputs. Apart from investigating the dynamics of the plasticity
process, we tested our model using a linear supervised binary classification task,
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which allowed us to compare the performance to the case of a point neuron subject
to the same type of plasticity.

5.1 Model

We studied two types of rate neuron models with two types of plasticity mechanisms,
which were tested in all four possible combinations.

5.1.1 Neuron Model

The two-compartment model is a discrete-time rate encoding model including two
input variables, the total basal input current Ib and the total apical input current
Ia. It is largely based on the phenomenological model of Shai et al. [181] introduced
in Section. 4.0.4. To obtain an easily interpretable parameterization, we simplified
the model to the following expression:

y (t) = ασ (Ib(t)− θb0) [1− σ (Ia(t)− θa)]

+ σ (Ia(t)− θa)σ (Ib(t)− θb1)

σ(x) ≡ 1

1 + exp(−4x)
.

(5.1)

The parameters θb0 > θb1 and θa denote thresholds for the sigmoidal functions
entering the equation. Similar to (4.19), the model consists of two areas of neuronal
activity within the two-dimensional space spanned by (Ib, Ia). These two regions
have different maximal firing rates, which are given by 1 and the parameter α, which
is always chosen to be within [0, 1]. Note that the sigmoidal function was rescaled
by a factor of 4 such that the slope at x = 0 is 1. A plot of the activation function
illustrating the meaning of the parameters is shown in Fig. 5.1.

Similar to the model plotted in Fig. 4.5, two modes of neuronal activity can be
distinguished, whose boundaries are defined by the threshold parameters. In the case
where both inputs are active, one gets y ≈ 1. The intermediate activity α is found
if only basal input is present. This means that, while maximal activity is obtained if
both inputs are active, the neuron can still encode information in the case of basal
input alone. It should be noted that, for simplicity, we centered the model around
the origin, subtracting potential biases.

We compared the compartment model to a point neuron, which can simply be
written as

y(t) = σ (Ib(t) + Ia − θ) . (5.2)

In this study, we only considered a single neuron or layer receiving feed-forward
and top-down input. The latter, injected as the apical input, was directly generated
to serve as a teaching signal for the learning task at hand. In a multi-layered setup,
this input would be a projection of activities from the next network layer. Thus, the

90



5.1. MODEL

Figure 5.1: Plot of the activation function given by (5.1). The dashed lines indicate
the position of the thresholds. The lower right area has a maximal firing rate given
by α. Here, θb0 = 0, θb1 = −1,θa = 0 and α = 0.3.

Table 5.1: Parameter values for the compartment model, homeostatic adaptation
and synaptic plasticity.

θb0 0 σ2a 0.25
θb1 −1 µb 0
θa 0 µa 0
α 0.3 ǫb 10−3

ǫw 5 · 10−5 ǫn 10−4

γ 0.1 ǫav 5 · 10−3

σ2b 0.25

apical input current always had the form

Ia(t) = na(t)xa(t)− ba(t) , (5.3)

with na(t) being a scale factor, xa(t) the teaching signal at hand and ba(t) a bias.
Both the scaling factor and the bias were dynamically adapted according to a dual-
homeostatic process, which we describe in Section 5.1.2. Similarly, the basal input
Ib(t) was defined as

Ib(t) = nb(t)w
T (t)xb(t)− bb(t) , (5.4)

where wT (t)xb(t) denotes the projection of the time dependent, N -dimensional feed-
forward input sequence xb(t) via the basal synaptic weight vector w(t), which is time
dependent due to additional synaptic plasticity. As for the apical input, nb(t) and
bb(t) denote homeostatic scaling and bias parameters. Parameter values can be found
in Table 5.1.
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5.1.2 Homeostasis

For the biases bb/a involved in (5.3) and (5.4), the homeostatic adaptation rule reads

bb/a(t+ 1) = bb/a(t) + ǫb
[
Ib/a(t)− µb/a

]
. (5.5)

The inverse adaptation rate 1/ǫb = 103 determines the time scale of the adaptation,
driving the inputs towards the target averages µb/a. This is similar to the bias
adaptation introduced in (3.10) for flow control, except that the bias was coupled
to the firing rate rather than the local input current or membrane potential. The
variables nb/a(t) take the role of synaptic scaling factors and are updated according
to

nb/a(t+ 1) = nb/a(t) + ǫn

[
σ2b/a −

(
Ib/a(t)− Ĩb/a(t)

)2]
(5.6)

Ĩb/a(t+ 1) = (1− ǫav) Ĩb/a(t) + ǫavIb/a(t) . (5.7)

The running averages Ĩb/a(t) are subtracted from the input currents Ib/a(t) in (5.6) to
get an estimate of the variances of input currents which are thus dynamically driven
towards the targets σ2b/a. Thus, (5.5) and (5.6) constitute two dual homeostatic
control loops separately controlling the mean and variance of basal and apical input
currents. We chose homeostatic target parameters such that the distribution of apical
and basal input serves a certain working regime of the neuronal activation function.
For the compartment model considered here, it was set to values that would cover
the nonlinearity with respect to both input streams, while preventing saturation, i.e.
the case where the activity almost exclusively takes the values 0, α or 1.

Note that for the point neuron model, the same dual homeostatic adaptation was
applied for Ib and Ia. Since the nonlinear sigmoid used in this model was the same
as for the compartment model, target parameters remained the same.

5.1.3 Synaptic Plasticity

We considered two plasticity rules that were applied to the basal synaptic weights.
The first rule is a simple Hebbian learning rule given by

w(t+ 1) = w(t) + ǫw [(xb(t)− x̃b(t)) (y(t)− ỹ(t))− γw(t)] (5.8)

x̃b(t+ 1) = (1− ǫav) x̃b(t) + ǫavx(t) (5.9)

ỹ(t+ 1) = (1− ǫav) ỹ(t) + ǫavy(t) . (5.10)

As the trailing averages x̃b and ỹ of the basal presynaptic activities and the post-
synaptic activity enters (5.8), the change of the basal synaptic weight is determined
by the covariance term

C(xb, y) = 〈(xb(t)− 〈xb(t)〉t) (y(t)− 〈y(t)〉t)〉t (5.11)
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and a proportional decay −γw(t), which prevents unbounded growth of the weights.
The former covariance term is similar to the Hebbian rule proposed by Linsker [203]
in that it is proportional to the correlation between pre- and postsynaptic activities
by subtracting the means. Note that, as for the homeostatic plasticity, the averaging
time scale is 1/ǫav = 200. Since our model operates in discrete time steps, we did
not explicitly associate a physical time span to each simulation step. However, the
transient bursts found by Shai et al. [181] lasted approximately 50–100 ms, which
allows us to state that each simulation step corresponds to 0.1 s at maximum. This
means that the averaging time scale of 200 steps corresponds roughly to 20 s. Since
the temporal adaptation of the average can be considered a form of metaplasticity,
which can be rather observed to happen within days [204], it appears that the chosen
timescale is too fast. However, this was done for reasons of computational efficiency:
increasing the averaging windows does not introduce any new dynamic effects if the
time scale is already sufficiently larger than the observed fluctuations around the
mean, but requires a longer run-up in the simulation to ensure that the averaging
estimate has reached a stationary state. As for the homeostatic model, the Hebbian
learning rule could readily applied to both neuron models without changes to the
parameters.

BCM Learning Rule

The second plasticity rule that we tested is known as the BCM rule [201, 202].
The key difference to the standard Hebbian learning rule is that, even if pre- and
postsynaptic activities are positively correlated, the BCM-rule can induce both long-
term potentiation or depression, depending on whether the postsynaptic activity
exceeds a threshold or not. The mathematical formulation of the rule applied in our
model is given by

w(t+ 1) = w(t) + ǫw [y(t) (y(t)− θM)x(t)− γw(t)] . (5.12)

As for the Hebbian rule, the decay term −γw(t) prevents runaway growth of weights.
The parameter θM defines the threshold between long-term depression for y(t) < θM
and long-term potentiation for y(t) > θM. According to the version of the learning
rule proposed by Law and Cooper [205], the threshold is given by θM = 〈y2(t)〉t.
Here, the quadratic dependence on the postsynaptic activity was necessary to prevent
weights from growing indefinitely. However, since we introduced an additional weight
decay, this choice of setting the threshold was not strictly necessary in our model.
Importantly, for the compartment model, we explicitly set the threshold value to
θM = (1 + α)/2. The reasoning behind this choice was to separate the dynamics in
the low-activity regime, given by a maximal output rate of α, from the high-activity,
bursting regime where the maximal firing rate is 1. By means of this distinction,
basal weight configurations that increased the chance of inducing the high-activity
regime would be dynamically favored by the plasticity mechanism.
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For the point model, this argumentation could not be applied. Yet, for the sake
of comparability, we chose to set the threshold θM to a running average of y2(t) in
this case.

5.2 Results

Depending on the learning task at hand, we used different combinations of basal and
apical input patterns. Two protocols were devised. The first, having the purpose of
unveiling general properties of the proposed compartment model in combination with
the synaptic plasticity rules, is described in Section 5.2.1. In the second protocol,
see Section 5.2.2, we sought to further quantify performance differences between the
point neuron and the compartment model by means of a binary classification task.

5.2.1 Alignment Between Apical and Basal Inputs

The first simulation protocol was set up to test the ability of both neuron models
to align the basal input to some apical teaching input. As a quantifiable measure,
we determined the Pearson correlation ρ(Ib, Ia) between both input currents after
the synaptic plasticity and homeostasis have evolved into a stationary state. For
this test, the basal input sequence xb(t) was independently drawn from a uniform
distribution within [0, 1] for each of the N elements and each time step.

For this test to be meaningful, the apical input current should, in principle,
be reproducible by the basal input stream. Thus, we constructed the apical input
sequence xa(t) as a linear combination of the basal input sequence via

xa(t) = aTxb(t) (5.13)

after the basal input sequence was generated, where the projection vector a ∈ R
N

was generated as a random vector with uniform directional probability and unit
length.

Considering the Hebbian learning rule defined in (5.8), we expected that the
orientation and dominance of the principal component in the basal input space should
significantly influence the resulting stationary weight configuration. Yet, the vector
a corresponds to the basal weight configuration resulting in a perfect reconstruction
of the apical signal. Consequently, if the direction of the principal component is, in
the worst case, orthogonal to a, we expected this to act as a strong distraction for
the correct reconstruction of the teaching signal, negatively affecting ρ(Ib, Ia).

To investigate the effect of distracting input on the teaching signal reconstruction,
we added a linear transformation to the input sequence xb(t), which was parame-
terized by the scaling factor s, determining the amount of stretching that should be
applied orthogonal to xb(t), and the dimension Ndist of the orthogonal distraction
subspace. Obviously, Ndist could at maximum be equal to N−1. The transformation
was set up by generating a random orthogonal basis Û ∈ R

N×N with the constraint
that the first basis vector should be parallel to a.
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Figure 5.2: Alignment between basal and apical input. The color coding in plots
A/B and D/E depicts the Pearson correlation ρ(Ib, Ia) between basal and apical
input after learning. A–C: Using Hebbian learning as given by (5.8). D–F: Using
the BCM rule as given by (5.12). Plots C and F depicts the sum of ρ over the s-axis
for different Ndist. All depicted values were averaged over 5 trials.

The transformation x̃b(t) = Ŝxb(t) was then given by

Ŝxb(t) = ÛD̂ (s,Ndist) Û
Txb(t) , (5.14)

where D̂ (s,Ndist) is a diagonal matrix with D(s,Ndist)ii = s if 2 ≤ i ≤ N2+dist and
D(s,Ndist)ii = 1 else. After the learning process has converged using the transformed
input x̃b(t), the same input generation procedure was used to determine ρ(Ib, Ia).
During this second phase, plasticity was deactivated. For the simulation, the dimen-
sion of the basal input space, N , was set to 100. The same input protocol was also
applied when using the BCM-like plasticity rule. In Fig. 5.2, the results are shown
for all combinations of neuron models and learning rules.

For all combination of models, we found a relatively quick transition from a fully
correlated to a decorrelated configuration as the scaling factor s was increased. How-
ever, the dimension of the distraction subspace had only a negligible effect on the
resulting alignment. Similarly, only marginal differences could be observed between
the two synaptic plasticity rules. Still, the compartment model performed signifi-
cantly better for both rules, in the sense that it retained the alignment for higher
values of s, as illustrated by the aggregate plots shown in Fig. 5.2C/F.
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Figure 5.3: Structure of the basal input for the linear classification task. Two Gaus-
sian distributed clusters were generated, located on either side of a separating plane
defining the linear classification. The scaling s denotes the standard deviation of the
cluster parallel to the plane, with a being its normal vector.

Overall, this first test supported our hypothesis that the particular shape of
the compartment model activation function would support the temporal alignment
between basal and apical input. Yet, to some degree, we did expect the BCM rule to
have a more significant advantage over the Hebbian rule, for the reasons explained
in the end of Section 5.1.3.

5.2.2 Performance in a Binary Classification Task

In the second test, we aimed to relate the differences between models described
in the previous section to the actual performance in a classification task. To this
end, we generated proximal input patterns consisting of two clusters that can be
separated by a linear classifier. Fig. 5.3 illustrates the geometry of the basal input.
Two Gaussian distributed clusters can be separated by a plane defined by the normal
vector a, which is a random vector with unit length as introduced for the previous
simulation protocol, and an offset vector b whose entries are drawn independently
from a uniform distribution on [0, 1]. The centers of the Gaussian clusters both
have a distance of 0.5 from the separating plane and a standard deviation along the
direction of a of σa = 0.25. Orthogonal to a, the clusters are Gaussian distributed
with standard deviation given by s. In total, each sample can be generated by

xb(t) = b+ c(t)a+ ÛD̂ (s,Ndist) Û
T ζ(t) , (5.15)

where ζ(t) is a random N -dimensional multivariate Gaussian with zero mean
and unit variance, Û a unitary transform as defined for the previous protocol and
used in (5.14). The diagonal matrix D̂ (s,Ndist) is defined similar to the definition
used in (5.14), except that D̂ (s,Ndist)11 = σa, D̂ (s,Ndist)ii = s for 2 ≤ i ≤ N2+dist

and D̂ (s,Ndist)ii = 0 for i > Ndist. Finally, c(t) is a random binary variable with
c(t) ∈ {−0.5, 0.5} and equal probabilities, defining whether the sample belongs to
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Figure 5.4: Accuracy of binary classification. The color coding depicts the fraction
of correctly classified samples for different distraction scaling values s and distraction
dimensions Ndist. A–C: using Hebbian plasticity. D–F: using the BCM rule. Plot
C and F depicts the summed accuracy along the s-axis for different Ndist and both
neuron models.

either of the two clusters. It should be noted, however, that a small minority of
samples fell on the opposite side of the separating plane than the cluster center
determined by c(t), but the correct class of each sample was ultimately defined by
the location with respect to the separating plane.

For the classification, two neurons were used (numbered with indices 0 and 1),
having the task to determine on which side of the separating plane the sample ap-
peared. We used two neurons to allow for a one-hot encoding of this information,
which was reflected in the top-down target inputs which were given by

xa,0(t) = 1−Θ
(
aT (xb − b)

)
(5.16)

xa,1(t) = Θ
(
aT (xb − b)

)
, (5.17)

where Θ denotes the Heaviside step function. After the usual simulation run using
plasticity and homeostasis, the classification performance was tested with a simula-
tion run without plasticity/homeostasis and the top-down input turned off. Due to
the one-hot encoding, the classification prediction was based on the neuron with the
higher activity given the same basal input pattern. The accuracy was defined as the
fraction of correctly classified inputs.
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Figure 5.5: Alignment between basal and apical input after training the binary
classification task. The plots A/B and D/E show the Pearson correlation ρ(Ib, Ia)
between basal and apical input after learning. A–C: Using Hebbian learning as given
by (5.8). D–F: Using the BCM rule, given by (5.12). Plots C and F depicts the sum
of ρ over the s-axis for different Ndist. All shown values were averaged over 5 trials.

As shown in Fig. 5.4A–C, Hebbian plasticity did result in a small, yet notice-
able difference between the point neuron and the compartment model, where the
latter performed better. In contrast, the accuracy using the BCM rule, shown in
Fig. 5.4D–F, was significantly improved for the compartment model and also re-
sulted in the overall best performance averaged over the considered parameter space.
This result suggested that the compartment model, having two distinct modes of
neuronal activation, well suited the particular form of the BCM rule.

Additionally, we quantified the temporal alignment between apical and basal
input after learning in the classification by means of the Pearson correlation, as
done in the previous setup. The result is shown in Fig. 5.5. Here, the advantage
of the compartment model is more pronounced for both plasticity mechanisms. In
particular, one can identify parameter values where the point model still showed
above-chance classification accuracy while the alignment was very close to zero. We
attribute this effect to the method we chose to determine the classification, which
was to choose the neuron responding with the higher activity, indifferent of the actual
significance of the difference in the activity between both. Thus, as both neurons
received the same input patterns, a small difference in the resulting basal input
currents might suffice for the correct classification, given that the fluctuations in the
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input currents induced by the distracting components of the basal presynaptic input
patterns are correlated between both nodes.

5.2.3 Objective Function for BCM Learning

To this point, we have provided some intuitive reasoning regarding the plasticity
within the compartment model, in particular for the BCM rule. However, we also
wanted to achieve a better theoretical insight into the the learning process driving
basal and apical input towards an increased temporal alignment. Therefore, we
formulated the BCM rule for the basal weights in the compartment by means of
an objective function that is maximized by weight update by stochastic gradient
descent.

As a first step, we further simplified the compartment model by replacing the
sigmoidal function σ(x) with a step function Θ(x). The overall shape of the model
in the space of Ib and Ia is not altered by this replacement, except that the smooth
transitions in (5.1) are replaced by sharp edges. If we use the same BCM update
rule ∆w ∝ y(y − θM)x, we can write the modified update rule as

∆w ∝ [(1− α)Θ (Ia − θa)Θ (Ib − θb1)

+α (α− 1)Θ (θa − Ia)Θ (Ib − θb0)]x . (5.18)

Conveniently, Θ(x) is also the first derivative of the ReLu function [x]+ ≡ max(0, x).
Therefore, we can define the update rule as the first derivative of an objective function
Lb with respect to the weights:

∆w ∝ ∂Lb

∂w
(5.19)

Lb ≡ (1− α)Θ (Ia − θa)
(
[Ib − θb1]

+ + θb1
)

+ α (α− 1)Θ (θa − Ia) [Ib − θb0]
+ . (5.20)

Note that we are free to include additional terms in Lb that are not dependent
on w, which we did by adding θb1 in the first parenthesis, allowing for a better
visualization. This objective function is plotted in Fig. 5.6. One can observe that
values of Lb tend to be higher along the Ib-Ia diagonal. Therefore, if we assume that
both input streams have zero mean, we can expect that a high correlation leads to a
larger average 〈Lb〉t.

The relation between the correlation ρ of basal and apical input currents and
the expectation value of the objective function can be determined analytically for
the case where θa = θb0 = 0, θb1 ≪ −σb and (Ib(t), Ia(t)) is modeled as a random
vector distributed as a two-dimensional normal distribution with zero mean and a
covariance matrix given by

Σ =

(
σ2b ρσbσa

ρσbσa σ2a

)
. (5.21)
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Figure 5.6: Illustration of the objective function Lb defined in (5.20) as a 3D plot (A)
and color coded (B). The functions tends to be maximized along the Ib-Ia diagonal,
thus favoring both inputs being correlated.

In this case, the Gaussian integral can be evaluated, giving

〈Lb〉t =
(1− α)σb√

8π
[(2 + α) ρ− α] . (5.22)

Thus, under these assumptions, the objective function is guaranteed to increase
linearly with the basal-apical correlation ρ. Conversely, if the mean and variance of
the basal input is kept at their homeostatic targets, an increase of 〈Lb〉t must then
necessarily go along with a higher correlation. Yet, as we shown in Section 5.2.1,
the correlation does not always reach its maximum if distracting input is present. In
that respect, it should be noted that the assumptions entering this analysis might
not always be sufficiently fulfilled and, in particular, the smoothness of the actual
activation function could alter the results under certain inputs. Moreover, even if
the temporal average of the objective function monotonically increases, it does not
imply that it has to reach the maximum since the rate of increase might approach
zero such that 〈Lb〉t tends toward a sub-optimal limit from below.

5.2.4 Maximal Correlation vs. Minimal Mean Squared Error

As discussed in Section 4.0.2, many approaches to biological learning via feedback
weights implicitly or explicitly strive to reduce a local or global loss function that is
usually assumed to be the mean squared error (MSE) between two biologically relat-
able quantities. In the work presented in this chapter, we argued for a maximization
of correlation between basal and apical input Ib and Ia under homeostatic constraints
controlling the mean and variance of both variables. Naturally, one might wonder
how this approach relates to the minimization of the mean squared error with respect
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to the basal weights. Suppose we define a squared error loss function as

LSE ≡ [Ib(t)− Ia(t)]
2 (5.23)

whose average 〈LSE(t)〉t is to be minimized with respect to the basal weights w and
an intercept, or bias parameter b. This is, essentially, a linear regression problem
[206, chapt. 3] and the question at hand is whether a minimization of 〈LSE〉t yields
the same result for the weights as a maximization of ρ under certain constraints
regarding the mean and variance. For simplicity of the notation, we consider the
general case of a linear regression problem where a variable f should be predicted by
a linear model y = wTx+ b, where x is the input variable, w the linear coefficients
and b an intercept parameter. Generally, we find that the relation between ρ(f, y)

and MSE(f, y) ≡ 〈(f − y)2〉 is

ρ (f, y) =

〈
f2
〉
+
〈
y2
〉
− 2 〈f〉 〈y〉 −MSE (f, y)

2σfσy
, (5.24)

where σf and σy are the respective standard deviations. First, we note that decreas-
ing the MSE term on the right side appears to increase the correlation. However, this
should not be taken for granted, as changes in the model parameters also affect the
mean and variance of y which, implicitly, also enter the equation via 〈y2〉, 〈y〉 and σy.
On the other hand, we can consider the case where the learning procedure attempts
to increase the correlation while keeping the first and second moment of the pre-
diction variable y constant by means of some homeostatic mechanism. In this case,
the only term on the right side that can change is the MSE. Therefore, increasing
the correlation under the described constraints must necessarily decrease MSE(f, y).
Thus, similar to the argument regarding the relation between ρ and 〈Lb〉, both op-
timization processes are monotonically connected, such that, in this case, increasing
ρ decreases the MSE, however, this does not imply that the absolute optima of both
measures are necessarily attained for the same set of model parameters. However,
for the linear model considered here, it can be shown that the optimal parameters
for the MSE also indeed maximize the correlation. The parameters are given by

w0 = Ĉ−1
xx cfx , b0 = 〈f〉 −wT

0 〈x〉 , (5.25)

where Ĉxx is the covariance matrix of the input x and cfx is the covariance vector
between the target f and x. For both optimization problems, the solution is found
by determining the point of zero gradient in the parameters space. The solution
for the correlation maximization can be found in Appendix B.3. In fact, while the
intercept variable b is required to obtain the solution for the MSE shown in (5.25),
the choice of the bias is, by definition, irrelevant for achieving maximal correlation
since it only shifts the mean of y. Furthermore, any rescaling of w0 likewise yields
maximal correlation, reflecting the fact that the Pearson correlation is also scale
invariant with respect to the variances of the random variables.
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In our compartment model, the homeostatic mechanisms ensure that the means
of both Ia and Ib are equal. Therefore, if learning is successful and the correlation
between Ia and Ib is maximized, the resulting basal weight vector must be parallel
to the weight vector that one would have achieved by a MSE minimization, though
their length might differ. Thus, maximizing the correlation yields the same ratios
between synaptic weights as minimizing the MSE.

5.3 Discussion

In this study, we have shown that the nonlinear dendritic integration in the apical
dendritic compartment of cortical pyramidal neurons could serve as a driver for
basal synaptic plasticity processes maximizing the correlation between top-down and
feed-forward input streams. For both considered testing protocols and plasticity
mechanisms, the phenomenological compartment model was more robust against
distracting patterns in the basal input than a nonlinear point model.

These results are in line with previous studies, suggesting the pyramidal dendritic
structure to have a key role in coordinating feed-forward and feedback signaling in
hierarchical neural networks [15, 157, 151].

In these previous studies, backpropagation in networks of pyramidal neurons
utilized learning rules requiring an explicit error term. Our work indicates that
Hebbian-type learning rules in combination with appropriate homeostatic mecha-
nisms can act as a viable and biologically plausible alternative: By learning to max-
imize the correlation between basal and apical input under homeostatic constraints,
the resulting synaptic weight configuration is the same as if the mean squared error
was minimized. In a sense, correlation as an objective function is even more flexible,
since it allows for arbitrary variances of both input streams, even though we chose
to regulate both basal and apical input currents to the same variance.

As the basal input is a linear combination of the basal presynaptic input pat-
terns, maximizing ρ(Ib, Ia) is a realization of canonical correlation analysis (CCA)
[207], even though the apical input space was only one-dimensional in our model
since we directly used a scalar input. CCA as a learning objective was investigated
by Haga and Fukai [208]. For the model presented by the authors, BCM-like plas-
ticity resulted in an alignment towards the principal component of the input space.
CCA was only achieved if a multiplicative term, consisting of the local basal and
apical activity, was included. This finding differs from our our results insofar as a
multiplicative term was not required to push the basal synaptic weights towards a
maximal basal-apical correlation, given that distraction activity was not too domi-
nant. Not requiring a multiplicative term between both compartments is favorable
from a biological perspective, as it avoids the necessity to explain an additional cou-
pling between spatially separate loci within the neuron. Ideally, synaptic plasticity
rules should only contain locally available information, such as local membrane po-
tentials [209, 210], and pre- and postsynaptic activity, which is the case for both
synaptic mechanisms that we implemented.
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Beyond single neurons with predefined top-down input, it remains to be tested
how the presented framework could operate in a hierarchical network. In particular,
it poses the additional question of how to define appropriate top-down target signals
and which plasticity rules in the apical compartment would support the formation of
those. One potential solution discussed in Section 4.0.2, random feedback weights,
could serve as a starting point for further exploration.
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CHAPTER 6

General Discussion and Concluding Remarks

In a 2011 review titled “Neuronal homeostasis: time for a change?”, O’Leary and
Wyllie [211] discuss different facets of current research on neuronal homeostasis, and
also bring up the potential effects and implications of homeostatic adaptation tak-
ing place as a dendrite- and compartment-specific, distributed process, rather than
by means of a centralized control of intracellular properties. The authors speculate
that such a control could lead to emergent, potentially more complex dynamical
properties of the cell. Furthermore, they note that cell wide, averaged quantities,
such as the intrinsic excitability, that have traditionally been the subject of experi-
mental investigations are likely to be the result of the interaction of a multitude of
decentralized mechanisms.

In this work, we have presented two models that illustrate the potential role of
such a functional segregation of homeostatic processes. In the context of recurrent
networks, flow control is an example of a regulatory mechanism that makes use of
an intrinsic distinction between recurrent and external inputs, allowing the network
to settle into a dynamic state that is required for the optimal processing of time-
dependent input. The importance of this separation stems from the homeostatic
target that flow control poses onto the amplification of recurrent inputs. It establishes
a control loop in the recurrent part of the network that is—to a certain extent—
invariant under changes in the external driving.

For hierarchical networks utilizing feedback information, we have proposed a
biological learning scheme that also utilizes two separate homeostatic controls, each
regulating the mean and variance of the basal and apical input of a cortical pyramidal
neuron. Similar to flow control, the functional separation plays an important role
here: It allows the neuron to control the moments of both input streams such that
their inherent nonlinear interaction affects the synaptic plasticity in a way that lets
the apical input act as a target signal for the basal input.

Apart from the intracellular dissociation of homeostatic controls, our results also
highlight the potential importance of controlling higher order statistics of intrinsic
physical quantities. While theoretical work was done in this respect [83, 107, 92, 9],
showing that the computational capabilities of neurons and networks can be affected
by adaptation mechanisms that drive neuronal activity towards a desired distribution
rather than just a temporal mean, more experimental evidence is needed in this
respect: Is it possible to identify biological feedback mechanisms that control e.g. the
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temporal variance of some physical quantity in the cell? One issue that might impede
the experimental analysis of higher order homeostasis is that it necessarily involves
nonlinear control theory, as we have discussed for dual homeostasis in Section 2.4.1:
Identifying nonlinear dynamic relationships in experimentally obtained data poses a
significantly harder problem compared to a linear model approach [212, cf. chapt.
10]. Furthermore, if temporal recordings are made on a single cell level, the spiking
nature of neuronal activity could potentially further complicate the process as it
most likely requires some form of temporal filtering of the data [34, p. 12].

The fact that biological neurons generate spikes is also what might be considered
a point of critique regarding both models presented in this work: As we have used
rate neurons, we did circumnavigate the question as to how the presented adaptation
processes could translate to spiking neurons. As mentioned in Section 3.5, firing rates
that affect an adaptation process linearly could, in principle, be directly replaced by
a physical quantity representing a running average of the spiking activity. A more
challenging question concerns the variance or second moment of neuronal activity,
as appearing in (3.12) for flow control. An estimate of the second moment using a
running average of the spike train will yield different results depending on the time
scale of the averaging. Thus, it is likely that an appropriate scaling determined by
this time scale would have to be introduced in the adaptation rule to recover the
desired dynamics.

Apart from the firing rate appearing in flow control, it also directly utilizes the
local (recurrent) membrane potential. Likewise, input currents are homeostatically
controlled in the compartment model. For a spiking neuron model, this could be
represented by the temporal dynamics of the sub-threshold membrane potential. Of
course, a homeostatic feedback that is directly coupled to the membrane potential is
inevitably also influenced by the intermittent occurrence of action potentials. Yet,
those events take place within approximately 2–5 ms. Thus, for a neuron spiking at
an average rate of e.g. 20 Hz, the actual percentage of time spent within the execution
of an action potential is only roughly 5–10 %, thus not substantially affecting the
homeostatic feedback.

Outlook

Dual homeostasis controlling the mean and variance of separate intrinsic neural vari-
ables as an underlying principle has allowed us to postulate new potential mech-
anisms for the functioning and adaptation of single neurons and networks. As we
have shown their effectiveness within the modeling framework presented in this work,
what remains to be investigated is whether the proposed ideas can be transferred
into more elaborate and biologically realistic models.

For flow control, future work should investigate the principle in recurrent spiking
networks using strictly excitatory and inhibitory units. Apart from the previously
discussed issue of how to properly define and implement a measure for the variance
of neuronal activity in a spiking model, the following questions could be considered:
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• In our current version of flow control, excitatory-inhibitory balance was taken
for granted. Could this balance also be dynamically achieved by using different
synaptic scaling rules for excitatory and inhibitory synaptic weights?

• Can the separation between external and recurrent inputs be justified by using a
more detailed dendritic compartment model, assuming that synapses belonging
to either of both input streams are spatially organized into different dendritic
locations?

• The important role of the spectral radius in optimizing network performance
is evident in the echo state framework. How does this translate to spiking
networks?

Regarding our proposed learning rules in a nonlinear compartment model, we
suggest that the model should be embedded into a hierarchical network. We expect
that this could already pose some challenges and scientific questions:

• How are feed-forward and feedback signals temporally coordinated in a multi-
layer network? Does an asynchronous forward and backward pass yield the
same results as a synchronous, dynamic model?

• How are feedback weights adjusted? As a starting point, is random feedback
sufficient for learning?

• How do the rate-based models of synaptic plasticity presented here translate
to spike-based models such as spike-timing dependent plasticity?

Naturally, we would expect that a larger network should be able to tackle more
complex learning and classification tasks. At some point, it might be possible to
combine recurrent, layer-wise network dynamics and adaptation such as flow control
with biologically plausible learning rules for feed-forward and feedback projections.
Ultimately, sensory input has, in general, a both a temporal and a spatial quality,
and it is likely that a complete picture of cortical learning and information processing
will only be acquired by building models that account for both of these aspects.
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APPENDIX A

Estimation of the Spectral Radius

In Section 3.4.4, we show from simulations that a direct link exists between neuronal
activity cross-correlations and the precision of the tuning of the spectral radius.
Here, we describe the theory leading to an analytic prediction of the spectral radius
resulting from flow control, taking into account cross-correlations in the neuronal
activity.

Our goal here is to derive an analytic prediction of the spectral radius estimate

R2
a ≅

〈
N∑

j=1

a2iW
2
ij

〉

i

, (A.1)

as given in Section 3.2.1. We begin by denoting that a stationary state of flow control
fulfills

R2
t

〈
y2i
〉
t
= a2i

〈
x2bare,i

〉
t

(A.2)

where xbare,i =
∑N

j=1Wijyj . We solve (A.1) for a2i :

a2i = R2
t

〈y2i 〉t
〈x2bare,i〉t

. (A.3)

Therefore, we find that

R2
a = R2

t

〈
〈y2i 〉t

〈x2bare,i〉t

N∑

j=1

W 2
ij

〉

i

. (A.4)

We assume that the variance of Wij scales with 1/N , which implies that, for large
N , the expression converges to

R2
a = R2

t

〈
〈y2i 〉t

〈x2bare,i〉t

〉

i

. (A.5)

As a next step, we assume that the network is self-averaging and replace the average
over the population in (A.5) by an average over many realizations of the system for
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an arbitrary single node:

R2
a = R2

t

〈
〈y2i 〉t

〈x2bare,i〉t

〉

Ŵ ,Ŵext

. (A.6)

To further progress, we have to consider if the average over the product of 〈y2i 〉t and
1

〈x2
bare,i〉t

factors out, i.e., if these two factors are statistically independent. To this

end, we can write the second moment of the neuronal activity as

〈y2i 〉t =
〈
φ2 (aixbare,i(t) + u(t)Wext,i)

〉
t
. (A.7)

Plugging in the solution of ai from (A.3), we get:

〈y2i 〉t =
〈
φ2


Rt

√
〈y2i 〉t

xbare,i(t)√
〈x2bare,i〉t

+ u(t)Wext,i



〉

t

. (A.8)

Despite the fact that this only yields 〈y2i 〉t in an implicit way, it shows that xbare,i(t)
enters rescaled by the square root of its own second moment. In a large system,

x′bare,i(t) ≡ xbare,i(t)/
√

〈x2bare,i〉t can thus be modeled by a random variable with zero

mean and unit variance for all nodes. Therefore, 〈y2i 〉t is statistically independent
from 〈x2bare,i〉t and only determined by the respective values of Wext,i. Returning to
(A.6), this allows us to state

R2
a = R2

t

〈
y2i
〉
t,Ŵ ,Ŵext

〈
1

〈x2bare,i〉t

〉

Ŵ ,Ŵext

. (A.9)

Estimating the second average over the inverse of the squared bare recurrent weights
is not straightforward. However, due to Jensen’s inequality [213], we have, in general,

〈
1

〈x2bare,i〉t

〉

Ŵ ,Ŵext

≥ 1〈
x2bare,i

〉
t,Ŵ ,Ŵext

. (A.10)

Note that the expected value
〈
x2bare,i

〉
t,Ŵ ,Ŵext

is given by

〈
x2bare,i

〉
t,Ŵ ,Ŵext

=
〈
y2i
〉
t,Ŵ ,Ŵext

, (A.11)
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which allows us to combine (A.9),(A.10) and (A.11):

R2
a = R2

t

〈
y2i
〉
t,Ŵ ,Ŵext

〈
1

〈x2bare,i〉t

〉

Ŵ ,Ŵext

(A.12)

≥ R2
t

〈
y2i
〉
t,Ŵ ,Ŵext

1〈
x2bare,i

〉
t,Ŵ ,Ŵext

(A.13)

= R2
t , (A.14)

showing at least that Ra can only be larger or equal to Rt, with equality only if
the fluctuations of 〈x2bare,i〉t vanish. To progress further, we thus have to find a
description of the distribution of 〈x2bare,i〉t, and from there, estimate the expected
value of its reciprocal 1/〈x2bare,i〉t. The distribution of 〈x2bare,i〉t necessarily has a
support of [0,∞), limiting the possible distributions to use as our model. Based
on the empirical observation that ln(〈x2bare,i〉t) resembles a normal distribution, we
chose a log-normal distribution as our model. For our particular application, the log-
normal distribution has a handy symmetry relation: If x is log-normal distributed,
i.e. if log(x) is normally distributed, it follows that log(1/x) = − log(x) is normally
distributed with the same variance as log(x) and a mean of −〈log(x)〉. To calculate
the mean of 1/x, we parameterize the distribution of x by µlog and σ2log, denoting
the mean and variance of log(x). The actual mean is then given by

µx = exp

(
µlog +

σ2log
2

)
, (A.15)

which means, by using the symmetry explained above, that the mean of 1/x is simply
given by

µ1/x = exp

(
−µlog +

σ2log
2

)
. (A.16)

Furthermore, the mean and variance of log(x) can be calculated from the actual
mean and variance of x by

µlog = log

(
µ2x√
µ2x + σ2x

)
= log

(
〈x〉2√
〈x2〉

)
(A.17)

σ2log = log

(
1 +

σ2x
µ2x

)
= log

(〈x2〉
〈x〉2

)
. (A.18)

This means that µ1/x is simply given by

µ1/x =
〈x2〉
〈x〉3 . (A.19)

We have already stated that 〈x2bare,i〉t,Ŵ ,Ŵext
= 〈y2i 〉t,Ŵ ,Ŵext

, so, we still need to

calculate the second moment 〈〈x2bare,i〉2t 〉Ŵ ,Ŵext
. Writing out the weighted summation
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of inputs, we get

〈〈
x2bare,i

〉2
t

〉
Ŵ ,Ŵext

=

〈
N∑

j,k,l,m=1

WijWikWilWim〈yjyk〉t〈ylym〉t
〉

Ŵ ,Ŵext

. (A.20)

Strictly speaking, one might find some indirect causal relation between the afferent
weights entering the i-th node and the presynaptic activity. However, if the network
is sufficiently large and sparse, such potential recurrence effects can be ignored and
we can factor out the average over the weights and over the covariance matrices:

〈〈
x2bare,i

〉2
t

〉
Ŵ ,Ŵext

=
N∑

j,k,l,m=1

〈WijWikWilWim〉
Ŵ

〈〈yjyk〉t〈ylym〉t〉Ŵ ,Ŵext
. (A.21)

For the first term, we find the following:

〈WijWikWilWim〉
Ŵ

=





1/N2 :





j = k = l = m

j = k 6= l = m

j = l 6= k = m

j = m 6= k = l

0 : else

(A.22)

For the second term, we find a similar grouping of indices:

〈〈yjyk〉t〈ylym〉t〉Ŵ ,Ŵext
=





〈
y2
〉2
t,Ŵ ,Ŵext

: j = k = l = m〈
〈y2α〉t〈y2β〉t

〉
Ŵ ,Ŵext,α 6=β

: j = k 6= l = m

〈
〈yαyβ〉2t

〉
Ŵ ,Ŵext,α 6=β

:

{
j = l 6= k = m

j = m 6= k = l

〈〈yαyβ〉t〉2Ŵ ,Ŵext,α 6=β
: else

(A.23)

Note that we stated earlier that the average square activity of each node is implicitly
determined only by the external weights wi, which are drawn independently. There-
fore, the term in the second line, 〈〈y2α〉t〈y2β〉t〉Ŵ ,Ŵext,α 6=β

, is actually the same as in

the first line, 〈y2〉2
t,Ŵ ,Ŵext

, since we do not expect any correlations.

Combining (A.21), (A.22) and (A.23), we get

〈〈
x2bare,i

〉2
t

〉
Ŵ ,Ŵext

=
N(N − 1)

N2

[〈
y2
〉2

+ 2c2off

]
(A.24)

≅

〈
y2
〉2

+ 2c2off , (A.25)

where in 〈y2〉2 = 〈y2〉2
t,Ŵ ,Ŵext

we have omitted the averaging notation and

c2off ≡
〈
〈yαyβ〉2t

〉
Ŵ ,Ŵext,α 6=β

(A.26)

112



is the average of the square of the off-diagonal elements of the product matrix 〈yαyβ〉t.
Now we can apply (A.19) to

〈
x2bare,i

〉
t
and get

〈
1

〈x2bare,i〉t

〉

Ŵ ,Ŵext

=
〈y2〉2 + 2c2off

〈y2〉3 . (A.27)

We use this result in (A.9) and get

R2
a = R2

t

〈y2〉2 + 2c2off
〈y2〉2 . (A.28)

This simple formula that establishes a link between the resulting spectral radius
and the presence of non-vanishing correlations between the activity of the nodes.
Obviously, this formula also correctly predicts that Ra will be exactly Rt if no cross-
correlations are present. Moreover, it is in agreement with our earlier result that Ra ≥
Rt. If the variations of the average squared neuronal activity among the population
as well as the off-diagonal elements entering c2off are small and the activities are zero

on average, we may further simplify this equation by stating that c2off/〈y2〉2 ≈ ρ2,
where ρ2 was given in Section 3.4.3, resulting in

R2
a ≈ R2

t

(
1 + 2ρ2

)
. (A.29)
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APPENDIX B

Mathematical Derivations

B.1 Solution to the Regularized Least Squares Problem

Here, we give a derivation of the matrix solution given in Section 3.1 for the regu-
larized least squares problem for the linear readout weights.

Using the same matrix notation for the matrices Yij = yj(i) and Fij = fj(i)

introduced for (3.5) and (3.7), the minimization problem is given by

argmin
V̂

[∥∥∥V̂ Ŷ − F̂
∥∥∥
2

F
+ γ

∥∥∥V̂
∥∥∥
2

F

]
, (B.1)

with ‖·‖2F denoting the square of the Frobenius norm. A convenient property of the
Frobenius norm is the identity

∥∥∥X̂
∥∥∥
2

F
= Tr

(
X̂T X̂

)
(B.2)

for real matrices X̂, allowing us to rewrite (B.1) as

argmin
V̂

[
Tr
(
V̂ T V̂ Ŷ Ŷ T

)
− 2Tr

(
V̂ Ŷ F̂ T

)
+Tr

(
F̂ T F̂

)
+ γTr

(
V̂ T V̂

)]
. (B.3)

For finding the minimal solution, we set the derivative ∂/∂Vij of each matrix element
with respect to the expression in the parenthesis to zero, giving

2

N,T∑

l,m=1

VilYlmY
T
mj − 2

T∑

m=1

FimY
T
mj + 2γVij = 0 , ∀i, j , (B.4)

where N denotes the dimension of the neuronal reservoir and T the number of
sampled time steps. In matrix notation, this can be rewritten as

V̂
(
Ŷ Ŷ T + γ1̂

)
− F̂ Ŷ T = 0 . (B.5)

which is solved for V̂ by

V̂ = F̂ Ŷ T
(
Ŷ Ŷ T + γ1̂

)−1
, (B.6)
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concluding the derivation.

B.2 Sufficient Condition for Random Feedback in Linear

Networks

In [105, Suppl. Note 11], a condition on the random feedback matrix B̂ in a linear
network was given, guaranteeing stability and convergence of the learning process:
eT Ŵ B̂e > 0, where e is the error term and Ŵ T is the exact feedback matrix used
in the backpropagation algorithm. Here, we briefly summarize the derivation.

Consider a network with one hidden layer, so that the only weights requiring a
feedback signal are given by the matrix Ŵ1 projecting from the input to the hidden
layer. Furthermore, we assume that the network is linear, i.e. φ(x) = x. In the full
backpropagation algorithm, the update rule for a single pair of training data would
read

∆Ŵ1 = −ǫŴ T
2 eyT

0 (B.7)

and
∆Ŵ2 = −ǫeyT

1 . (B.8)

The transposed matrix Ŵ2 in ∆Ŵ1 is now replaced with a randomly generated matrix
B̂. If a solution exists that exactly reproduces the target outputs, it implies that
they can be generated from a “target matrix” T̂ via f = T̂y0. In this case the error

term e becomes
[
Ŵ2Ŵ1 − T̂

]
y0. Therefore, the weight changes over the full set of

input samples is given by
〈
∆Ŵ1

〉
= −ǫB̂ÂĈ0 (B.9)

〈
∆Ŵ2

〉
= −ǫÂĈ0Ŵ

T
1 (B.10)

where we have defined Â ≡ Ŵ2Ŵ1− T̂ and Ĉ0 ≡ 〈y0y
T
0 〉 is the input auto-correlation

matrix. Immediately, it follows from (B.9) and (B.10) that Ŵ2Ŵ1 = T̂ is a stationary
solution of the learning process, as expected. However, since we have introduced the
random feedback matrix B̂, this stationary solution is not necessarily stable in Ŵ1.
The condition that should be fulfilled is that the loss function averaged over the
input samples should monotonically decrease as ∆Ŵ1 is applied:

〈∆L〉 =
∑

k,l

〈∆W1,kl〉
∂ 〈L〉

∂∆W1,kl
< 0 (B.11)

In vector notation, this equals

Tr

(
∆Ŵ T

1

∂ 〈L〉
∂Ŵ1

)
< 0 . (B.12)
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REGRESSION MODEL

if we further define Λ̂ ≡ ÂĈ0, (B.12) can be written as

− ǫTr
(
Λ̂T B̂T Ŵ T

2 Λ̂
)
= −ǫTr

(
Ŵ T

2

〈
eeT

〉
B̂T
)
< 0 . (B.13)

This condition is fulfilled if 〈eT Ŵ2B̂e > 0〉, meaning that the error feedback given
by B̂e should not differ by more than a right angle from the exact feedback given
by Ŵ T

2 e. This is necessarily true, independent of the distribution of error signals, if
Ŵ2B̂ is positive definite.

B.3 Solution of Correlation Maximization in a Linear Re-

gression Model

In Section 5.2.4, we discussed the relation between minimizing the mean squared error
and maximizing correlation in a linear regression model and stated that the solution
for the minimal mean squared error also maximizes the correlation, which is what
we will derive here. As in Section 5.2.4, we write the linear model as y = wTx + b

and denote the variable that is to be predicted by f . Defining

MSE(y, f) ≡
〈
(y − f)2

〉
, (B.14)

we find the minimal solution for the model parameters by setting the gradient
∇w,bMSE to zero:

〈
(y − f)

∂

∂b
y

〉
= 0 (B.15)

〈
(y − f)

∂

∂wi
y

〉
= 0 , ∀i . (B.16)

This gives

〈y〉 = 〈f〉 (B.17)

〈yx〉 = 〈fx〉 . (B.18)

inserting the definition of y, one can solve for the parameters

b0 = 〈f〉 − cfxĈ
−1
xx 〈x〉 (B.19)

w0 = Ĉ−1
xx cfx , (B.20)

where we defined

Ĉxx ≡
〈
(x− 〈x〉) (x− 〈x〉)T

〉
(B.21)

cfx ≡ 〈(f − 〈f〉) (x− 〈x〉)〉 . (B.22)
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Using a similar approach, we now show that any vector that has the the same direc-
tion as w0 also maximizes the correlation.

From the definition of the Pearson correlation

ρ (y, f) ≡ 〈(y − 〈y〉) (f − 〈f〉)〉√〈
(y − 〈y〉)2

〉〈
(f − 〈f〉)2

〉 (B.23)

we get for ∂/∂wiρ

∂ρ

∂wi
=

1

σfσ2y

[
〈f (xi − 〈xi〉)〉σ2y − 〈y (f − 〈f〉)〉 〈y (xi − 〈xi〉)〉

]
= 0 . (B.24)

From this equation, we get
σ2ycfx = cyfcyx (B.25)

where, as for cfx, cyf and cyx denote the covariances between the corresponding
variables. Expressing y via the linear model, this becomes

(
wT Ĉxxx

)
cfx =

(
wTcfx

)
Ĉxxw . (B.26)

It is straightforward to check that using w0 = λĈ−1
xx cfx with an arbitrary scaling

factor λ satisfies this equation, showing that maximal correlation is attained with
linear coefficients that—up to an arbitrary scaling factor—are the same as for the
minimal least squares solution.
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