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Abstract 
Extreme convective precipitation events are among the most severe hazards in central Eu-

rope and are expected to intensify under global warming. However, the degree of intensi-

fication and the underlying processes are still uncertain. In this thesis, recent advances in 

continuous, radar-based precipitation monitoring and convection-permitting climate mod-

eling are used to investigate Lagrangian properties of convective rain cells such as precip-

itation intensity, cell area, and precipitation sum and their relationship to large-scale, en-

vironmental conditions.  

Firstly, convective precipitation objects are tracked in a gauge-adjusted radar-data set and 

the properties of these cells are related to large-scale environmental variables to investi-

gate the observed super-Clausius-Clapeyron (CC) scaling of convective extreme precipi-

tation. The Lagrangian precipitation sum of convective cells increases with dew point 

temperature at rates well above the CC-rate with increasing rates for higher dew point 

temperatures. These varying, high rates are caused by a covarying increase of CAPE with 

dew point temperature as well as the effect of high vertical wind shear causing an increase 

in cell area and thus precipitation sum. At the same time, cells move faster at high vertical 

wind shear so that Eulerian scaling rates are lower than Lagrangian but still above the 

CC-rate. The results show that wind shear and static instability need to be taken into ac-

count when transferring precipitation scaling under current climate conditions to future 

conditions. Secondly, the representation of convective cell properties in the convection-

permitting climate model COSMO-CLM is evaluated. The model can simulate the ob-

served frequency distributions of cell properties such as lifetime, area, mean and maxi-

mum intensity, and precipitation sum. The increase of area and intensity with lifetime is 

also well captured despite an underestimation of the intensity of the most severe cells. 

Furthermore, the model can represent the temperature scaling of intensity, area, and pre-

cipitation sum but fails to simulate the observed increase of lifetime. Thus, the model is 

suitable to study climatologies of convective storms in Germany. Thirdly, two COSMO-

CLM projections at the end of the century under emission scenario RCP8.5 were investi-

gated. While the number of convective cells and their lifetime remain approximately con-

stant compared to present conditions, intensity and area increase strongly. The relative 

increase of intensity and area is largest for the highest percentiles meaning that extreme 

events intensify the most. The characteristic afternoon maximum of convective precipita-

tion is damped, and shifted to later times of day which leads to an increase of nighttime 

precipitation in the future. Scaling rates of cell properties with dew point temperature are 

nearly identical in present and future in the simulation driven by the EC-Earth model 

which means that the upper limit of cell properties like intensity, area, and precipitation 

sum could be predicted from near-surface dew point temperature. However, this result 
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could not be reproduced by the simulation driven by MIROC5 and needs further investi-

gation. 
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Kurzzusammenfassung 
Konvektive Starkregenereignisse gehören zu den verheerendsten Naturkatastrophen in 

Mitteleuropa und werden im Zuge des anthropogenen Klimawandels voraussichtlich an 

Intensität zunehmen. Die Höhe dieser Zunahme und die zugrundeliegenden physikali-

schen Prozesse sind allerdings noch sehr unsicher. Durch technischen Fortschritt stehen 

mittlerweile Fernerkundungstechniken zur Verfügung, die eine kontinuierliche Beobach-

tung konvektiver Stürme erlauben. Außerdem können Klimasimulationen seit einigen 

Jahren hochreichende Konvektion direkt simulieren. Auf Basis eines Zellverfolgungsal-

gorithmus wurden in dieser Arbeit sowohl beobachtungs- als auch modellbasierte Klima-

tologien von Eigenschaften konvektiver Zellen für Gegenwart und Zukunft analysiert. 

Mithilfe eines an ortsfeste Niederschlagsmessungen angeeichten Radardatensatzes wurde 

untersucht, wie großskalige atmosphärische Variablen die Eigenschaften konvektiver 

Stürme beeinflussen und welche Prozesse für das beobachtete super-Clausius-Clapeyron 

(CC) Scaling von konvektiven Niederschlägen verantwortlich sein könnten. Die Nieder-

schlagssumme konvektiver Zellen steigt mit der Taupunkttemperatur weit über der CC-

Rate an, wobei der Anstieg mit steigender Taupunkttemperatur zunimmt. Dieser starke 

Anstieg wird durch eine Zunahme von CAPE mit der Taupunkttemperatur verursacht, 

sowie durch den Effekt, dass vertikale Windscherung die Fläche der konvektiven Zellen 

und somit auch die Niederschlagssumme erhöht. Gleichzeitig sorgt hohe vertikale Wind-

scherung dafür, dass die konvektiven Zellen sich schneller verlagern, sodass die ortsfesten 

Skalierungsraten unter denen der mitbewegten Niederschlagssumme, aber immer noch 

über der CC-Rate liegen. Diese Ergebnisse zeigen, dass das gegenwärtige Scaling nicht 

ohne Weiteres in die Zukunft übertragen werden kann, sondern Windscherung und die 

atmosphärische Schichtung berücksichtigt werden müssen. 

Es wurde evaluiert, inwieweit das regionale Klimamodell COSMO-CLM die Eigenschaf-

ten konvektiver Zellen abbilden kann. Hierzu wurden Simulationen, die mit Reanalysen 

angetrieben wurden, mit Beobachtungsdaten verglichen. Das Modell kann sowohl die 

beobachteten Häufigkeitsverteilungen der Zelleigenschaften ‚Lebensdauer‘, ‚mittlere und 

maximale Intensität‘, ‚Fläche‘ und ‚Niederschlagssumme‘ gut wiedergeben, als auch den 

Anstieg von Intensität und Fläche mit der Lebensdauer. Allerdings wird die Intensität und 

Fläche der extremsten Zellen unterschätzt. Des Weiteren kann die Simulation den Anstieg 

der hohen Perzentile von Intensität, Fläche und Niederschlagssumme mit der Temperatur 

wiedergeben, aber nicht den Anstieg der Lebensdauer. Somit ist das Model geeignet, die 

Klimatologien konvektiver Stürme in Deutschland zu untersuchen. 

Für die Zukunft (2071-2100) wurden zwei COSMO-CLM Simulationen, angetrieben von 

verschiedenen Globalmodellen unter dem repräsentativen Konzentrationspfad RCP8.5, 

untersucht. Die Intensität und Fläche der konvektiven Zellen steigt im Vergleich zur Ge-

genwart (1976-2005) in beiden Simulationen stark an, wohingegen Anzahl und Lebens-
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zeit der Zellen gleich bleiben. Der relative Anstieg von Intensität und Fläche ist am größ-

ten für die hohen Perzentile, was bedeutet, dass sich extreme konvektive Ereignisse am 

stärksten intensivieren. Der typische Tagesgang des konvektiven Niederschlags ist in der 

Zukunft gedämpft. Während am Nachmittag weniger konvektiver Niederschlag fällt, 

nimmt er in der Nacht zu. Die Skalierungsraten der Zelleigenschaften mit dem Taupunkt 

sind in Gegenwart und Zukunft in der Simulation, die vom EC-Earth Modell angetrieben 

wird, nahezu identisch. Das bedeutet, dass die bodennahe Taupunkttemperatur einen gu-

ten Prädiktor für die Obergrenze von Intensität, Fläche, und Niederschlagssumme kon-

vektiver Zellen darstellt. Dieses Ergebnis konnte allerdings nicht für die zweite, von MI-

ROC5 angetriebene Simulation reproduziert werden, und bedarf daher weiterer Untersu-

chung.  
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1. Introduction – Deep Convection in Climate Change 
 

Extreme convective precipitation is among the most severe natural hazards. Several se-

vere convective precipitation events occurred in Germany in recent years, most notably in 

2016 (Piper et al. 2016) and 2021
1
, which increased public interest in this phenomenon 

and the question of how much such events will intensify under anthropogenic climate 

change.  

Theoretical considerations, complex climate models, and observations agree that the hy-

drological cycle and, with it, extreme precipitation in large parts of the world will intensi-

fy in a warming climate (Trenberth et al. 2003, Fischer & Knutti 2016). As a first approx-

imation, using the atmosphere’s water holding capacity to deduce changes in extreme 

convective precipitation has been intensely discussed in recent years (Lenderink and van 

Meijgaard 2008, Zhang et al. 2017). The water holding capacity of air is described by the 

Clausius-Clapeyron (CC) equation which states that the water holding capacity increases 

exponentially by approximately 7 %/K.  

However, multiple effects can cause deviations from this rate. Firstly, assuming an in-

crease according to the CC-rate implies that the relative humidity remains constant in a 

climatological sense. This assumption can be invalidated if changes in the general circula-

tion cause changes in the relative humidity in a particular region. Typically, scaling 

curves of extreme precipitation with temperature peak at a certain temperature (Drobinski 

et al. 2016). Above this temperature, precipitation is limited by decreasing moisture avail-

ability. This temperature increases in the future, which implies that present scaling curves 

cannot be used to predict precipitation extremes in the future (Prein et al. 2017a). To cir-

cumvent this problem, low-level moisture as measured by dew point temperature has been 

suggested as a covariate for precipitation scaling (Lenderink et al. 2011).  

As a further complication for both temperature and dew-point temperature scaling, sub-

daily precipitation extremes have been shown to increase at rates above the CC-rate in 

certain regions, for example, Germany. Here, Berg et al. (2013) found scaling rates of 

convective precipitation at twice the CC-rate. Various hypotheses about the cause of this 

 

1 Hydro-klimatologische Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im  
Zusammenhang mit dem Tiefdruckgebiet „Bernd“ vom 12. bis 19. Juli 2021. 
https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_be
rnd.pdf?__blob=publicationFile&v=6. Letzter Zugriff: 21.11.2021 
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effect are discussed in the literature which do not necessarily exclude each other. Firstly, 

precipitation extremes are caused by convective precipitation to a larger degree at higher 

temperatures. Secondly, the dynamics of convective storms might change with increasing 

temperature (Trenberth 1999). This hypothesis states that higher temperatures lead to 

more available moisture at cloud base. More moisture increases latent heating in the up-

draft of convective storms, invigorating the updraft. A stronger updraft can source mois-

ture from a larger area in the boundary layer. In addition to this positive feedback in con-

vective updrafts, the degree of convective organization and its temperature dependence 

has been discussed (Moseley et al. 2016, Haerter et al. 2017, Lochbihler et al. 2019).  

These uncertainties in the effect of global warming and associated regional changes on 

convective precipitation motivated this work. The goal is to investigate the dependence of 

convective storms on large-scale variables, especially temperature and dew point tem-

perature, and other well-known ingredients for convection such as vertical instability and 

wind shear in observational data and convection-permitting climate simulations. 

Historically, two facts have complicated the investigation of convective storms. Firstly, 

their small spatial (ca. 10 km) and temporal (ca. 1 h) scales have prevented continuous 

observations until a few years ago. The progress of weather radars has eliminated this ob-

stacle making it possible to observe convective storms continuously in time and space 

(Lengfeld et al. 2020). Secondly, their non-linear behavior requires non-hydrostatic at-

mosphere models with a complex representation of microphysics. For a couple of years 

now, convection-permitting climate models (CPMs), which are characterized by a fine 

grid spacing (< 4 km), have been used to simulate convective storms explicitly instead of 

parameterizing convection (see Prein et al. 2015 for a review). Their main advantage is a 

better representation of the diurnal cycle of precipitation and extreme precipitation inten-

sities on short time scales compared to models that parameterize convection. For evaluat-

ing CPMs, most studies use rain gauge data or gridded precipitation data sets based on 

gauge data as observations, which can lead to an underestimation of storm frequency and 

storm peak intensity (Schroeer et al. 2018a). In contrast, using radar data allows for eval-

uating the space-time dynamics of convective cells but has been done very rarely so far 

(Brisson et al. 2017, Prein et al. 2020). To the authors’ knowledge, sub-hourly precipita-

tion output from continuous CPM simulations has not been evaluated yet.  

As mentioned above, extrapolating precipitation scaling rates at the regional scale to the 

future is questionable because of potential changes in the large-scale circulation. This is 

especially true for Germany because of its mid-latitude location and the influence of vary-
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ing synoptic situations on precipitation statistics. As general circulation models differ 

considerably in their representation of atmospheric dynamics (Shepherd 2014), large en-

sembles are necessary to assess the robustness and significance of change signals in mean 

and extreme precipitation. As large ensembles of CPM simulations are computationally 

demanding and not yet available, this thesis assesses the plausibility and reliability of 

simulations in another way by understanding the processes that lead to changes in convec-

tive cell properties
2
. Therefore, CPM simulations forced by a historical and a future, high-

emission scenario were used to compare convective cell properties and their relationship 

to the large-scale environment. Additionally, this approach can potentially be used as a 

statistical model to calculate changes in convective cell properties from environmental 

variables of coarse-grid models (e.g., Seeley and Romps 2015, Púčik et al. 2017). 

Using the tools described above, this thesis aims at answering the following research 

questions: 

 

1) Process Understanding 
 

a. What is the effect of large-scale environmental variables on convective cell 

properties and the dew point temperature scaling of these properties?  

b. To what extent does higher cell velocity offset the higher organization of 

convective cells in high-shear environments with respect to precipitation at 

fixed location? 

 

To answer these questions, the influence of environmental variables (CAPE, 

wind shear, and dew point temperature) on convective cell properties based on 

radar observations on a climatological time scale was investigated. Specifically 

convective rain cells were tracked in 5-min radar data and connected to envi-

ronmental variables from reanalysis data. The results are presented in more de-

tail in paper 1 (Appendix A). 

 

 

 

	

 

2 The terms “cell properties” and “cell characteristics” are used synonymously in this thesis. 
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2) Evaluation of the Convection-Permitting Climate Model COSMO-CLM 
 

a. How well can a convection-permitting climate model represent the proper-

ties of convective cells? 

b. Can the model reproduce the temperature scaling of cell properties? 

	
These questions were tackled by tracking convective cells in 5-min precipita-

tion model output and comparing the cell properties to the radar results. The re-

sults are presented in more detail in paper 2 (Appendix B). In addition, another 

hindcast simulation was evaluated to test the influence of different driving rea-

nalysis data (Appendix D).  

	
3) Future Changes in Convective Cells 

	
a. How will convective cells change in the future? 

b. Is the scaling behavior of Lagrangian cell properties similar in present and 

future conditions? 

 

Changes in convective cell properties were investigated in a convection-

permitting climate model under a strong emission scenario (RCP8.5). The re-

sults are presented in more detail in paper 3 (Appendix C). The reliability of the 

results was assessed by analyzing another convection-permitting simulation 

that uses the same RCM with a larger domain driven by a different general cir-

culation model (GCM). This analysis can be found in Appendix E.  
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2. Theoretical Background 
2.1. Convective Storms in Mid-Latitudes 

 

Parcel Theory 

 

The term convection generally refers to a mode of heat transfer in a fluid. In meteorology, 

convection denotes the thermally direct circulation caused by an unstable vertical distri-

bution of mass. The stability of a column of air is typically investigated using parcel theo-

ry. This concept rests on several simplifications. It does not consider: (i) dynamic vertical 

pressure perturbations, (ii) mixing of updraft air with ambient environmental air (entrain-

ment), and (iii) the weight of condensed water (hydrometeor loading) rising in the updraft 

parcel. We briefly revisit parcel theory in the following.  

As a first step, we define the buoyancy force. The starting point is the vertical equation of 

motion in hydrostatic balance, neglecting viscosity and the Coriolis force:  

!"
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= −
1
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+ , 

 

(1) 

 
where w is the vertical velocity, ' is the air density, p is the pressure, and g is the gravita-

tional acceleration. Buoyancy is caused by density variations in the atmospheric column, 

which in turn cause an unbalanced pressure gradient. By introducing a horizontally ho-

mogeneous base state in hydrostatic balance (indicated by overbars), which is defined as  

0 = −
()̅
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and substracting it from (1) we obtain the following equation: 
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where B is the buoyancy force and the primed variables denote deviations from the base 

state. Using the equation of state and neglecting products of perturbations, the buoyancy 

can be rewritten as  

 

/ =
'′
'̅
, ≈ 2

)!

)̅
−
3"′
3"4
5, ≈ −

3"′
3"4
, 

 

(4) 

 

where 3" is the virtual temperature and it has been used that 6
#!

#̅
6 ≪ 6

%"!
%"&&&
6. To investigate 

the buoyancy of an air parcel in an updraft, it is customary to calculate its buoyancy using 

the parcel’s virtual temperature 3"#and the virtual temperature of the environment 3"$%" so 

that: 

 

/ = ,(
3"# − 3"$%"
3"$%"

) 

 

(5) 

 

Static stability of an air column can be assessed by displacing an air parcel, which has the 

same temperature as its environment, i.e. 3: = 3 = 3'	in the vertical: 

 

!(∆*
!#(

= ,
3 − 3:

3:
 

 

(6) 

 

where ∆* denotes the distance of the vertical displacement. The temperature of the parcel 

at the new position can be expressed via the moist adiabatic lapse rate Γ)or the dry adia-

batic lapse rate Γ*. The environmental lapse rate is > = !3: !*⁄ . Using a first-order Tay-

lor-Approximation for the temperature at the new position this leads to: 

 

!(∆*
!#(

+
,
3'
@Γ# − >A∆* = 0 

 

(7) 

 

The solution to this second order ordinary differential equation is real for > > Γ#, which 

means the stratification is unstable and ∆* increases with time. In contrast, the solution is 

imaginary for > < Γ#, which means the stratification is stable and the parcel oscillates 

about its initial place. A further distinction can be made between saturated and unsaturat-
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ed displacements. The term "absolutely unstable," refers to the situation when > > Γ* and 

"absolutely stable" means > < Γ) . When Γ) > > > Γ*, the atmosphere is "conditionally 

unstable" (stable with respect to unsaturated vertical displacements, unstable with respect 

to saturated vertical displacements). 

A useful and widely adopted measure for the strength of convective updrafts is convective 

available potential energy (CAPE). CAPE is defined as  

DEFG = H /	!*

+,

,-.

 

 

(8) 

 

Where LFC denotes the Level of Free Convection and EL denotes the Equilibrium Level. 

CAPE can be used to estimate the maximum updraft speed in the following way. We as-

sume that acceleration in the vertical is caused by buoyancy only:  
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Multiplying both sides by " ≡ !* !#⁄  yields: 
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Thus: 

!"( = 2/!* 
 

(11) 

 

Integrating (11) from the LFC to the EL (assuming that w=0 at the LFC and 

w(EL)=max(w)) yields: 
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(13) 

 

")/0 = √2DEFG 
 

(14) 

 

This equation sets an upper limit for maximum updraft velocity. In reality, updraft veloci-

ty is reduced by entrainment and hydrometeor loading to varying degrees. 

 

Initiation and organization of convective storms 

 

Convective storms can occur when sufficient instability is present and potentially buoyant 

air is lifted to its level of free convection. Convective storms can be organized in a variety 

of ways. Although the processes which determine the severity and form of a convective 

storm are very complex, the environmental conditions which determine the strength and 

shape of a convective storm to a large degree can be summarized into three categories: (1) 

low-level (boundary layer) moisture, (2) vertical instability, and (3) vertical wind shear 

(see e.g., Weismann and Klemp, 1982 or Rasmussen and Blanchard, 1998). These condi-

tions are a necessary but insufficient condition for convective storms. Additionally, a trig-

ger mechanism has to be present to initiate deep convection. These trigger mechanisms 

typically are mesoscale air mass boundaries, orographic processes, or differential land 

surface heating. These result in horizontal density gradients that facilitate the depletion of 

vertical instability. 

As mentioned above, CAPE is useful for predicting the intensity of convection but is 

mainly related to updraft strength and not directly to precipitation intensity. Precipitation 

intensity in convective storms can be influenced by various processes, like entrainment 

rates differing between storm types and evaporation below cloud base. Precipitation effi-

ciency, the ratio of total precipitation of a convective cloud to the moisture inflow at 

cloud base has been shown to be strongly influenced by vertical wind shear (Weisman & 

Klemp 1982, Market & Allen 2003, Chen et al. 2015). 

Wind shear determines the organization of convective storms via various processes. First-

ly, it increases the organization of convective storms by separating the updraft from the 

downdraft (= precipitation) region. Furthermore, it can facilitate the development of 

supercells by tilting horizontal vortices into the vertical and thus creating a rotating up-
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draft. The spectrum of convective storms ranges from unorganized, single convective 

cells at low wind shear via multicells, characterized by the repeated development of new 

cells in the vicinity of old ones at intermediate wind shear to supercells and mesoscale 

convective systems at high wind shear (Houze 2014). Figure 1 shows a schematic of the 

spectrum of convective storms.  

 

 

Figure 1: Spectrum of storm types as a function of wind shear. Adapted from Markowski and Richardson 2010, p. 206. 

 

2.2.  Deep Convection in Convection-Permitting Climate Models 
 

Convection-permitting climate models (CPMs) are regional climate models (RCMs) that 

can simulate deep convection explicitly instead of parameterizing it. The grid spacing be-

low which the main features of deep convection can be explicitly resolved is commonly 

estimated at ~ 4 km (Prein et al., 2015; Weisman et al., 1997), although it has been argued 

that explicit representation of deep convection is beneficial above 4 km in some respects 

(Vergara-Temprado et al. 2020). The lower boundary of spatial resolution is typically set 

at 1 km, below which Large-Eddy-Simulations (LES) are advantageous to resolve parts of 

the turbulence spectrum. Most studies using CPMs use a 1-way dynamical downscaling 

approach where the simulation is driven by lateral boundary data from global climate 

models or reanalyses (Laprise et al. 2008). The maximum step in resolution of 12 identi-

fied for coarser RCMs also applies for CPMs, although larger steps are possible when 

using a larger spin-up zone (Berthou et al. 2020). This factor of 12 typically makes a two-

step approach feasible to get from the typical GCM-resolution of 75 km to CPM-

resolution (Brisson et al. 2016). The majority of modeling centers (28 out of 30) partici-

pating in a current coordinated experiment of convection-permitting experiments (FPS-

Convection CORDEX, Coppola et al. 2020) adopt such a two-way nesting approach (Lu-
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cas-Picher et al. 2021). Switching off the parameterization of deep convection requires 

changes in other parametrizations such as microphysics, radiation, and turbulence. Be-

cause not all convective clouds can be resolved at kilometer-scale resolution, it may be 

necessary to parameterize shallow convection depending on the model setup (Chow et al. 

2019). For the microphysics parameterization, it has been shown that adding dense hy-

drometeors, like graupel, to the parameterization leads to more intense and more realistic 

convective precipitation (Brisson et al. 2016). Using a two-moment microphysics scheme 

can lead to improvements in areas with steep orography but not necessarily in other re-

gions (Orr et al., 2017; Van Weverberg et al., 2014).   

The main benefit of convection-permitting models is a better representation of precipita-

tion statistics, especially of the diurnal cycle of precipitation and extreme precipitation. 

Nevertheless, they can also improve the representation of other variables, such as temper-

ature or cloud cover. Furthermore, they have the potential to improve the representation 

of other hazards associated with deep convection, like lightning (Brisson et al. 2021) and 

hail.  

As CPM simulations are computationally expensive, the number of studies covering 

large, continental-scale domains and time periods of decades is still limited. An overview 

of recent CPM studies can be found in Lucas-Picher et al. (2021). For Germany, Knist et 

al. (2018) conducted a CPM study using the WRF model, which showed a decrease in 

mean precipitation and an increase in extreme hourly precipitation. In this study, the tem-

perature scaling of hourly precipitation extremes exceeds the C-C-rate. Varying scaling 

rates have been reported for different areas in Europe (Lucas-Picher et al., 2021).  

 

2.3. Precipitation Scaling with Temperature and Moisture 
 

This section begins by reviewing the use of the Clausius-Clapeyron equation to estimate 

the response of extreme precipitation to climate change. Afterward, methods to calculate 

precipitation scaling with temperature and moisture are discussed. 

The Clausius-Clapeyron equation describes the dependency of the saturation water vapor 

pressure on temperature and is commonly used as a starting point when discussing chang-

es in extreme precipitation with climate change. It is frequently approximated by the 

Magnus formula: 
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L1(3) = 6.1094 ∗ L
23.5(6%
%7(89.'8 

 

(15) 

 

where L1 denotes the saturation vapor pressure, and T denotes the temperature in °C. Alt-

hough the exponent varies with temperature, this formula is often approximated as an ex-

ponential function with a fractional increase of ca. 7 %/K for typical tropospheric temper-

atures. 

From the increase of saturation vapor pressure with temperature, it follows that atmos-

pheric water vapor content will increase with temperature approximately at the CC-rate 

globally as climate models agree on an approximately constant relative humidity 

(O’Gorman and Muller 2010). However, this increase may vary regionally and is ex-

pected to be lower over land areas (Byrne and O’Gorman, 2018). 

Theoretical considerations alone are not sufficient to estimate changes in mean and ex-

treme precipitation with climate change as complex feedback processes are involved in 

precipitation formation, and changes in the transport of moisture and large-scale stratifica-

tion play an important role. Global mean precipitation is governed by energetic con-

straints meaning that the intensification of the hydrological cycle is lower than expected 

from water availability alone because the increase in global precipitation is offset by an 

increase in net radiative cooling (Allen and Ingram 2002). Global climate models agree 

on an increase of 1-3 %/K in mean global precipitation (Collins et al. 2013). 

In contrast, extreme precipitation usually occurs when all available moisture in a precipi-

tating system has precipitated out. Thus, it is assumed that precipitation extremes are 

largely constrained by moisture availability. Early climate models already predicted an 

increase in extreme daily precipitation on a global scale (e.g. Noda & Tokioka 1989 or 

Gordon et al. 1992). These findings have been largely confirmed by newer models 

(Kotlarski et al. 2014) and observations (Donat et al. 2016) on continental scales. As an 

example, Fischer & Knutti (2016) compared daily precipitation extremes in Europe from 

two datasets to the expected increase by the Clausius-Clapeyron equation and found them 

to be in good agreement (Figure 2b). On the local scale, insignificant or even decreasing 

trends in extreme precipitation can occur caused by the large internal variability of precip-

itation or local changes in moisture availability or atmospheric circulation (Groisman et 

al. 2005). 
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Figure 2: Increase in daily precipitation extremes a, Observed frequency of occurrence of heavy precipitation in Europe in the 
periods 1951–1980 (black) and 1981–2013 (light blue solid) according to the EOBS gridded observation data set. b, Ratio of 
observed daily precipitation frequency in 1981–2013 versus 1951–1980 according to the EOBS gridded observation data set 
(light blue solid) and the ECA station series (violet solid). Light blue dashed lines show changes for 1981–2013 as expected from 
Clausius–Clapeyron (CC) scaling due to the regional mean warming of 0.75 °C between the two periods. c, Same as b but for 
CMIP5 models (red), EURO-CORDEX models run at 0.44° resolution (yellow) and 0.11° resolution (blue). Models are masked 
by the observational data set. Shading denotes minimum– maximum ranges across all models in the ensembles, but note that no 
model follows the upper or lower bound of the shading for all percentiles. Reprinted by permission from Springer Nature: Fisch-
er, E., Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nature Clim Change 6, 986–
991©2016. 

 

As mentioned in the introduction, sub-daily precipitation extremes have been found to 

increase at rates higher than the CC-rate under current climate conditions. These sub-daily 

precipitation extremes are caused by convective precipitation. Multiple hypothesis have 

been suggested to explain this behavior, such as a shift from stratiform to convective pre-

cipitation for higher temperatures, a positive feedback-loop between moisture supply at 

cloud base, latent heating in the updraft, and updraft strength, and increased organization 

(see Fowler et al. 2021 for a review).  



Theoretical Background 

 - 13 - 

 

Distinguishing between dynamical and thermodynamical processes contributing to precip-

itation can help to understand changes in extreme precipitation conceptually. O’Gorman 

et al. (2015) use the following equation to describe the precipitation rate in an extreme 

event: 

 

F = −R{T()) ∗ U((3, ))} 
 

(16) 

 

Where R denotes precipitation efficiency, T()) is vertical velocity in pressure coordi-

nates, U((3, )) =
*:&
*#|'$∗

 is the derivative of saturation specific humidity qs with respect to 

pressure taken at constant saturation equivalent potential temperature X<∗ (meaning the 

derivative along a moist adiabat), and the brackets {} denote the mass weighted integral 

over the troposphere. Thus, T represents the dynamical contribution, and S represents the 

thermodynamical contribution to precipitation intensification. The authors call R the mi-

crophysical contribution as it can be influenced for example by aerosol concentrations. 

However, in the case of convective precipitation, R can also be influenced by vertical 

wind shear as stated before and could thus be considered a dynamical contribution.  

Although the increase of the thermodynamic contribution S with warming is influenced 

by changes in the moist adiabatic lapse rate, the authors argue that it can be shown to 

scale with near surface humidity at 6-7 %/K. For stratiform precipitation, the authors ar-

gue that the contribution of the dynamical component is negligible for extratropical re-

gions by analyzing the quasi-geostrophic omega equation. This line of reasoning would 

explain the observed and projected consistent increase of daily precipitation extremes at 

about 7 %/K. In contrast, the dynamic contribution T might change for convective precip-

itation due to the aforementioned positive feedback-loop or changes in convective storm-

type and thus organization. 

 

Methods to quantify extreme precipitation “scaling” 

 

The term “scaling”, when referring to the dependence of extreme precipitation on temper-

ature, was first used in the literature in 2008 by Lenderink & van Meijgaard (2008). They 

investigated the dependence (or “scaling”) of extreme precipitation on day-to-day temper-

ature variability by binning hourly precipitation into temperature classes and computing 

high (e.g. 99
th

) percentiles for each bin. Since then, this procedure has been widely adopt-



Theoretical Background 

 - 14 - 

 

ed and is often called binning scaling or apparent scaling (Zhang et al. 2017). Statistical-

ly, these scaling curves can be seen as the highest percentiles of precipitation distributions 

conditioned on daily temperature.  

In contrast to binning scaling, trend scaling refers to the ratio of long-term absolute 

changes in extreme precipitation and mean temperature (Zhang et al., 2017). To calculate 

trend scaling, the highest percentiles of precipitation from two full climate periods are 

empirically computed and the ratio is divided by the mean temperature change signal be-

tween these periods. This approach was used, for example, by Fischer & Knutti (2016) to 

compute the changes in extreme daily precipitation described previously.  

Commonly, the term scaling is used to describe scale invariance, i.e., a property of power 

laws where “a relative change in one quantity gives rise to a proportional relative change 

in the other quantity, independent of the initial size of those quantities”
3
. As convective 

precipitation has been shown to increase at varying rates across the temperature or dew 

point temperature range, using the term scaling is questionable in this context. In general, 

whenever the term scaling is used in the literature related to the intensification of precipi-

tation with temperature, it should be interpreted as “consistent exponential increase”. 

Binning scaling can be seen as a substitute for trend scaling used because of the limited 

observations of hourly precipitation and has a number of limitations. As binning scaling is 

related to daily temperature variability it includes varying synoptic conditions, times of 

day, and seasons. Therefore, it is hard to distinguish between thermodynamic and dynam-

ic effects based on the binning scaling of precipitation at a fixed location. Furthermore, 

the temperature scaling of hourly extreme precipitation has been shown to drop off at high 

temperatures due to moisture limitation. This drop-off is expected to occur at higher tem-

peratures under future conditions so that present scaling rates cannot be projected into the 

future (Prein et al. 2017a). It has been discussed whether temperature scaling can be a 

two-way causality because downdrafts of convective cells can influence the temperature 

if hourly temperature around the time of convection occurrence is used (Barbero et al. 

2018). Because of these varying scaling rates, dew point temperature has been suggested 

and widely adopted as a more meaningful covariate (Lenderink et al. 2011). 

To understand these varying scaling rates of sub-daily precipitation extremes, a number of 

studies have investigated the scaling of Lagrangian cell properties based on weather ra-

 

3 Yaneer Bar-Yam. "Concepts: Power Law". New England Complex Systems Institute. https://necsi.edu/power-law. 
Accessed: 28 November 2021. 
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dars. They show that convective cells increase in area and intensity with temperature in 

central Europe (Lochbihler et al., 2017; Moseley et al., 2013; Purr et al., 2019), whereas 

no area increase and generally lower scaling rates were found in Mediterranean and semi-

arid climate (Peleg et al., 2018). 
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3. Data 
3.1. Radar Climatology 

 

The radar-based precipitation climatology (Winterrath et al. 2017) developed by the na-

tional weather agency of Germany, Deutscher Wetterdienst, is used for tracking convec-

tive cells. This precipitation data set is based on radar data which has been quality 

checked, corrected, and adjusted to rain gauge measurements. The correction steps used 

for this product to derive precipitation from radar reflectivity include clutter filtering, dis-

tance-dependent signal correction, and removal of radar spokes. The 5-min dataset, the 

so-called YW-product (Winterrath et al. 2018a), is used for the tracking. For the compari-

son to stationary hourly precipitation intensities, the hourly dataset is, the so called RW-

product (Winterrath et al. 2018b), is used. The analysis covers the period 2001-2016. The 

data set has a spatial resolution of 1 km x 1 km.  

 

3.2. Reanalysis 
 

ERA5, the 5th generation global reanalysis by ECMWF (Hersbach et al. 2020), is used to 

derive the environmental conditions of convective storms. The variables used to charac-

terize convective storm conditions are dew point temperature at 2 m (Td), convective 

available potential energy (CAPE), and bulk vertical wind shear (SH) calculated as vector 

difference between the wind in 500 hPa height and 10 m. ERA5 provides hourly values of 

atmospheric variables at a spatial resolution of 0.25° x 0.25°. Convective parameters cal-

culated from ERA5 data have been compared with sounding data and the MERRA-2 rea-

nalysis by Taszarek et al. (2020). ERA5 performs better than MERRA-2 for all variables 

but underestimates both mean and extreme values of CAPE and wind shear compared to 

rawinsoundings. An important consideration when relating cell properties to environmen-

tal conditions from reanalysis is the spatial and temporal representativity of the reanalysis. 

Precipitation scaling has been shown to depend on the time of temperature recording 

(Lenderink et al. 2011). Downdrafts and evaporative cooling of rain associated with con-

vective storms lead to a decrease in surface temperature. Visser et al. (2021) found that 

using sub-daily atmospheric conditions before the start of the storm for determining scal-

ing rates results in increased consistency of the scaling rates. However, since we use a 

reanalysis that parameterizes convection, it cannot be expected that the diurnal cycle of 
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convective precipitation is perfectly represented. The convection parameterization might 

trigger precipitation prematurely which leads to depleted CAPE and decreased dew point 

temperature, and thus the environmental conditions before storm onset do not necessarily 

represent the determining conditions for storm development. For these reasons, we relate 

convective environmental conditions at various times to cell properties. By default, we 

assign each cell to the 3-hourly values of CAPE, SH, and Td before storm onset at its 

starting point. Additionally, we test the influence of sub-daily variability by using daily 

mean values. 

 



 

 - 18 - 

4. Methods 
4.1. COSMO-CLM Simulations 

 

The Consortium for Small-Scale Modeling model in climate mode (COSMO-CLM, from 

now on abbreviated as CCLM) is used to downscale reanalysis data and output from gen-

eral circulation models. For the evaluation part, the European Centre for Medium-Range 

Weather Forecast Interim Reanalysis (ERA-Interim) is downscaled to a horizontal grid 

spacing of 0.025° (≈2.8 km) via an intermediate nest with a grid spacing of 0.22° (≈25 

km). At the lateral boundaries of the simulation domain, the model is nudged towards the 

driving data using Davies relaxation (Davies 1976). Within the simulation domain, no 

nudging is applied. The model domain of the inner nest covers central Europe (Figure 3) 

and is comprised of 368 * 306 grid points. The CCLM is a non-hydrostatic limited-area 

climate model based on the COSMO model (Steppeler et al. 2003), a model designed by 

the Deutsche Wetterdienst (DWD) for operational weather predictions. The climate lim-

ited-area modeling (CLM) community adapted this model to perform climate projections 

(Böhm et al. 2003, Rockel et al. 2008). We use the version COSMO5.0clm7 with the fol-

lowing setup. For time integration, the 5th order Runge–Kutta split-explicit time-stepping 

scheme is used with a time step of 25 s. The lower boundary fluxes are provided by the 

TERRA model. The radiative scheme is the Ritter and Geleyn scheme (Ritter & Geleyn 

1992) and is called every 15 min. As recommended in Brisson et al. (2015), we use a one-

moment microphysics scheme, including graupel in the finest nest, which provides a more 

realistic representation of deep convective clouds. While the parameterization of deep 

convection is switched off, shallow convection is still parameterized using the convection 

scheme after Tiedtke et al. 1989. 

In addition, a COSMO-CLM hindcast simulation conducted at DWD was evaluated. This 

simulation was downscaled from the ERA5 reanalysis without an intermediate nest. Fur-

ther specifications of this simulation can be found in Appendix D. 

For the future projections, two continuous 30-yearlong simulations were performed: 

1976–2005 (named Historical from now on) and 2071–2100 (named RCP8.5) at a resolu-

tion of 0.025. The model is forced by the global climate model EC-Earth (Hazeleger et 

al., 2012), in particular, realization r12i1p1 of the CMIP5 ensemble. The model setup, the 

nesting strategy, and the simulation domain is similar to the hindcast run driven by ERA-

interim. The RCP8.5 emission scenario was used for the future simulation. 
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Figure 3: Model domain and model orography. 

 
4.2. Tracking Algorithm 

 

To obtain the properties of convective objects from model and radar data, we used a 

tracking algorithm. The tracking consists of three major steps: 

1. Contiguous precipitation areas with precipitation intensity above a threshold of 8.5 

mm/h (within 5 min), potential convective objects, are identified in the current and 

the subsequent time step. Contiguous areas are defined as pixels that share a com-

mon edge. 

2. Wind information is used to predict the position of the object at the subsequent 

time step. To this end, a “cone of detection” is set up for each pixel of every object, 

and the cone is swept for precipitation objects from the subsequent time step. The 

axis of the cone is defined by the wind direction; the length of the cone is calculat-

ed as twice the wind speed. The opening angle of the cone is 45°. If a new cell is 

present in the cone, a probability value is assigned to the origin pixel of the cone, 

which links this pixel to the new cell. The probability value is highest in the center 

of the cone and drops off exponentially in all directions. As an example, Figure 4a 

shows the probability values for a single pixel in the case of purely westward wind. 

In this case, the probability is calculated according to the following formula: 
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where x and y are the indices in x and y direction starting at the original pixel (0,0). 

The parameter Ycent denotes the centerline of the cone, and Xmax is the length of the 

cone, as determined by the wind data. This procedure is repeated for wind infor-

mation in three height levels (500, 700, and 850 hPa). Afterward, the height de-

pendent probability values are averaged to obtain the final probability value. 

3. In the next step, the probabilities of all pixels are summed up for each cell. If one 

single object is present in the cone, the corresponding objects from the current and 

the subsequent time step are connected. If multiple cells are present, the current 

cell is associated with the cell with the highest probability in the subsequent time 

step. 

The properties that are extracted by the algorithm are cell lifetime, mean intensity, maxi-

mum intensity, area, cell speed, and track length. It should be noted that merges and splits 

of objects are not accounted for. If two cells merge, the cell track with the higher proba-

bility of association is continued, whereas the other track ends. The track that is not con-

tinued is regarded as an individual track in itself. Figure 4b shows an example of a 

tracked precipitation object. 
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Figure 4: Visualization of the tracking algorithm: (a) detection probabilities for a cone with Xmax = 8 and Ycent = 0 (assuming a 
grid size of 1 km × 1 km and a time step of 5 min, this is equal to a westward wind of ca. 13.3 m/s), and (b) radar snapshot of a 
cell (shown is the 5-min precipitation intensity on 30 May 2008 at 21:40 (UTC) in colors and the detected cell track as red line). 

 

Only cells with a lifetime of at least three time steps (=15 min) are considered for analy-

sis. This condition reduces the chances of misinterpreting single clutter pixels in the radar 

data (which are still present but heavily reduced compared to operational radar products) 

as convective cells. Furthermore, the algorithm only selects precipitation areas larger than 

four grid boxes for the same reason. For consistency, this requirement is also kept when 

tracking the model data. This requirement is also justified because the effective resolution 

of any numerical model is always coarser than the grid spacing. For the purely radar-

based investigation (section 5.1), the data is kept at the original grid in polar-

stereographic projection with 1 km * 1 km grid size. For the comparison of model to radar 

data (section 5.2), both the model data and the radar data are conservatively remapped to 

a grid in polar stereographic projection with a grid size of 2.8 km * 2.8 km in order to 

have both data sets on a common, equidistant grid for ease of comparison. For the inves-

tigation of potential changes in the future (section 5.3), the model data is kept in its origi-

nal grid.  

The wind information used for estimating the position of each cell at the subsequent time 

step is taken from different sources for technical reasons. For the purely radar-based in-

vestigation (section 5.1), the ERA5 reanalysis was used. For the comparison of the model 

to the radar data (section 5.2), the ERA-Interim reanalysis was used in case of the radar 
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data (as ERA5 was not yet available at the time of investigation). In the case of the ERA-

Interim driven simulation and the EC-Earth driven simulation, the wind information from 

the intermediate nest driving the finer simulation is used. In the case of the ERA5-driven 

simulation and the MIROC5-driven simulation, wind information from the inner nest 

could be used. 

 

4.3. Calculation of Temperature and Moisture Scaling 
 

To calculate scaling rates of cell properties we employ different techniques of binning 

scaling:  

• For the investigation of convective cells based on radar observations (section 5.1), 

cells are grouped into 23 bins of dew point temperature, CAPE, or wind shear. The 

bin width varies in such a way that there is an approximately equal number of cells 

in each bin. As there are a total of ca. 1,350,000 cells in the area of investigation in 

the period 2001-2016, there are about 60,000 cells in each bin. The scaling rates c# 

as a function of dew point temperature are computed for the highest percentiles p 

(90
th

, 95
th

, and 99
th

) of all cell properties as the average fractional change of the re-

spective quantity (e.g., precipitation sum, maximum intensity, etc.) Q from bin i to 

i+1 as: 

c#4 =
∑ c#,B
(9
BC2

23
= fg

h#,B72
h#,B

/(3B72 − 3B)	
 
(18) 
 

  
where Ti denotes dew point temperature of the respective bin i. 

• For the comparison of convective cells in the COSO-CLM simulation driven by 

ERA-Interim with radar observations (section 5.2) we group the convective cells 

properties total precipitation, maximum area, and lifetime and mean intensity into 

temperature bins of 1 °C width and determine the 90
th

, 95
th

, and 99
th

 percentile for 

each bin. For the radar data, we use ERA-Interim 2-m temperature of the grid point 

closest to the origin of the convective cell. For the simulation data, we use the sim-

ulated 2-m temperature at the location of cell origin directly. 

• For the investigation of potential changes in the future (section 5.3) The tempera-

ture and moisture scaling of cell properties are investigated by assigning 2m-

temperature and 2m-dew point temperature to each cell. We use daily mean values 
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of temperature and dew point temperature from the driving, intermediate nest for 

the simulations driven by EC-Earth (because temperature and dew point tempera-

ture were not stored for the inner nest), whereas temperature and dew point tem-

perature could be used from the inner nest directly for the MIROC5-driven simula-

tions. For each cell, the respective conditions at the start location of the cell are 

used. Cells are sorted into bins of 1°C width for both temperature and dew point 

temperature. For each bin, the 95
th

 and 99
th

 percentiles of the investigated cell 

properties are computed. 
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5. Results and Discussion 
 

The following chapter summarizes the answers to the research questions outlined in the 

introduction. A more detailed presentation of the results can be found in the 3 papers in 

the appendices A-C and the additional investigations in the appendices D and E.   

 

5.1. Process Understanding 
 

5.1.1. What is the effect of instability and wind shear on Lagrangian cell properties 

and the dew point temperature scaling of these properties? 

 

Using the tracking algorithm described in section 4.2, we track convective cells in the 

radar data set (3.1) and connect them to large-scale environmental variables (dew point 

temperature, CAPE, and wind shear) from the ERA5 reanalysis (3.2). The highest percen-

tiles of Lagrangian cell properties scale with dew point temperature at varying rates 

(Figure 5). While maximum intensity scales consistently at the CC-rate, the area and pre-

cipitation sum per cell scale at varying rates above the CC-rate.  
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Figure 5: Dew point scaling of the cell properties (a) maximum intensity, (b) maximum area, and (c) precipitation sum (in blue). 
For orientation, the scaling CC- and 2x CC-rates are given (black). Note the logarithmic y-axis. 

The super-CC scaling of the precipitation sum is caused by a covarying increase of static 

instability with dew point temperature and the effect of wind shear on cell area. In par-

ticular, the highest percentiles of daily maximum CAPE increase with Td at varying rates 

well above the CC-rate. The increase is higher at high Td values. The 95
th

 percentile in-

creases at rates around 4x CC-rate while the 99.9
th

 percentile increases at around 3x CC-

rate. The highest number of cells occurs at very high CAPE and Td values. Because of the 

correlation between CAPE and Td, cells are concentrated along a corridor of increasing 

CAPE and Td values. The most extreme cells, in terms of maximum intensity, area, and 

precipitation sum, occur at high CAPE, Td, and SH values (Figure 6). Wind shear increas-

es the precipitation sum per cell mainly by increasing the cell’s spatial extent (Figure 6a 

and 6c) and has little influence on the maximum intensity of cells (Figure 6d and 6e).  



Results and Discussion 

 - 26 - 

 

 

Figure 6: 99th percentile of cell properties depending on environmental variables CAPE, dew point temperature Td, and wind 
shear SH. 

The influence of CAPE and wind shear on dew point scaling is investigated by classifying 

convective cells according to their environmental CAPE and wind shear values. Cells are 

classified as “Low CAPE” cells if they occur in conditions below the median value of 

87.5 J/kg or as “High CAPE” cells if they occur at a higher value. Similarly, cells are 

classified as “Low Wind Shear” cells if they occur in conditions below the median value 

of 11.2 m/s or as “High Wind Shear” cells if they occur at a higher value. Classifying the 

cells according to environmental CAPE shows the effects of the general increase of 

CAPE with dew point temperature: cells which occur at low dew point temperatures, oc-

cur predominantly at low CAPE values. Thus, the scaling curves of all cells shift gradual-

ly from the “Low CAPE” curve at low dew point temperatures to the “High CAPE” curve 

at high dew point temperatures (Figure 7a,c,e). The effect is smallest for the maximum 

area (Figure 7a), where it is only present for low dew point temperatures up to 12 °C, and 

larger for maximum intensity (Figure 7c) and precipitation (Figure 7e).  

Concerning the influence of wind shear, the scaling curves of the 99
th

 percentile are at 

higher values for the maximum area (Figure 7b) and the precipitation sum (Figure 7f) for 
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“High Wind Shear”, whereas there is little influence on maximum intensity (Figure 7d) 

which is in line with the findings in the previous section. In contrast to CAPE, the scaling 

rates do not differ between cells occurring at high or low wind shear conditions and all the 

cells. 

 

 

Figure 7: Dew point scaling of the cell properties maximum area,  maximum intensity, and  precipitation sum (in blue) depending 
on CAPE (left column), and wind shear (right column). For orientation, the scaling CC- and 2x CC-rates are given (black). Note 
the logarithmic y-axis. 
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5.1.2. To what extent does higher cell velocity offset the higher organization of 

convective cells in high-shear environments with respect to precipitation at 

fixed location? 

 

From a Eulerian point of view, the increase of precipitation sum with wind shear is com-

pensated by higher cell velocity, which leads to Eulerian precipitation scaling rates close 

to the CC-rate. To quantify the influence of wind shear on scaling for fixed location, we 

calculate the fixed location precipitation potential FDE for each cell. The purpose of this 

quantity is to derive a measure of how much each cell can precipitate at fixed location 

based on its mean Lagrangian properties as derived from the tracking algorithm. It is cal-

culated as 

 

FDE = j ∗ # = min	(j ∗
F

"
, j ∗ f) = min	(j ∗

(√H

"√I
, j ∗ f) , 

 

where j	denotes the mean precipitation intensity, # the duration of precipitation, n the 

diameter calculated based on the mean area of the cell, o the mean speed, E the cell area 

and f the lifetime of the cell. 

FDE shows varying scaling regimes over the dew point temperature range (Figure 8a). It 

increases at rates below the CC-rate for dew point temperatures below ~11 °C and slightly 

above the CC-rate, at a rate of 8.8 %/K, above 11 °C. The different percentiles increase at 

approximately similar rates. Concerning the influence of wind shear, the fixed location 

precipitation potential decreases with increasing wind shear (Figure 8b).  

 

 

Figure 8: (a) Scaling of fixed location precipitation potential with dew point temperature; (b) wind shear dependence of fixed 
location precipitation potential. 



Results and Discussion 

 - 29 - 

 

Furthermore, it was investigated what kind of cells cause intense precipitation events at 

fixed locations. Intense precipitation events at fixed locations are defined as events with a 

precipitation amount of more than 25 mm in 1 h within an area of 1 km
2
. This definition 

follows the warning criterion for severe precipitation (at level 3 out of 4) of Deutscher 

Wetterdienst. A convective cell is connected to a heavy precipitation event if it passes the 

grid box of heavy precipitation within the hour of its occurrence. 

Cells that cause heavy precipitation at fixed locations (abbreviated as hp-cells) move 

comparably slow: the median cell speed of hp-cells is 8.3 m/s compared to 9.3 m/s for all 

cells. As cell speed is largely determined by wind shear, the frequency distribution of 

wind shear for hp-cells is also shifted to lower values compared to all cells. 

 

 

5.2. Evaluation of the Convection-Permitting Climate Model COSMO-CLM 
	

5.2.1. How well can a convection-permitting climate model represent the proper-

ties of convective cells? 

	
Using the tracking algorithm described in section 4.2, we track convective cells in the 

radar data set (section 3.1) and in a COSMO-CLM simulation driven by the ERA-Interim 

reanalysis (CCLM-ERAi). A more detailed presentation of the results can be found in 

Appendix B. Additionally, we evaluated another COSMO-CLM simulation driven by the 

ERA5 reanalysis (CCLM-ERA5) to test if shortcomings in the previously mentioned sim-

ulation are inherent to the model or caused by simulation settings. A detailed description 

of the results of these simulations can be found in Appendix D.  

The mean daily precipitation in observation and simulation data is 2.0 mm/d and 1.7 

mm/d, respectively, resulting in a 14 % underestimation of total precipitation in the simu-

lation. The model overestimates precipitation in mountainous regions, especially in the 

Black Forest in southwest Germany, and underestimates it in the lowlands of Northern 

Germany (Figure 9c). This points to an overestimation of the orographic intensification of 

precipitation in the simulations.  

The analysis of convective cells is restricted to the summer half-year from April to Sep-

tember because convective precipitation mainly occurs in this period. The mean observed 
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and simulated summer precipitation (April to September) is 2.3 mm/d and 1.5 mm/d, re-

spectively, resulting in an underestimation of 34 % in the simulation. Taking into account 

that convective precipitation occurs almost exclusively in the summer months in Germa-

ny, this indicates that the model underestimates convective precipitation more than strati-

form precipitation. The underestimation is strongest in Northern Germany, while more 

realistic precipitation amounts are simulated in the South (Figure 9f). 

 

 

Figure 9: Mean precipitation intensities and differences in the period 2001–2015; (a–c) full year; (d–f) summer half-year (April–
September). 

 

The simulation underestimates convective activity, represented by the total number of 

convective cells, by 33 %. Convective precipitation, calculated as the precipitation sum of 

all convective cells, is very well matched with an overestimation of 2 %. The lifetime of 

convective cells ranges from 15 min (the lowest possible value as set by the tracking algo-

rithm) to 7 h (Figure 10a). As expected, short-living cells are the most common form of 

convective cells. The simulation captures but underestimates the decrease in frequency 

with lifetime and produces too many long-living and too few short-living cells. Compar-
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ing the lifetime distributions of the simulation and remapped radar data yields a Perkin’s 

skill score (PSS) of 0.84. A possible reason for the overestimation of cell lifetime could 

be that tracks are more often lost in the radar data than in the simulation data by the track-

ing algorithm. The reason for this is that radar data provide snapshots of precipitation, 

whereas, in the model, precipitation is accumulated, which leads to a smoother precipita-

tion field. This difference between accumulated and instantaneous precipitation also has a 

small influence on cell size and mean intensity. To estimate how many tracks are wrong-

fully split up by the tracking algorithm, we investigate the cell size at the first occurrence 

of the cell. If the cell only just started its life cycle, one would expect a small size close to 

the lower boundary of five grid points. If, on the other hand, the cell is the second part of 

a track that was wrongfully split up, it will have a larger extent. If we consider an initial 

area larger than 10 grid points (80 km
2
) to be unrealistically large and discard those cells, 

then the underestimation of convective activity is only slightly reduced from 33 % to 28 

%. The frequency distributions of total precipitation per cell (Figure 10b) and maximum 

cell area (Figure 10c) are very well matched with a PSS of 0.99 and 0.98, respectively. 

There are too few high-intensity cells (Figure 10d). The PSS for the mean intensity is 

0.86. 

 

 

Figure 10: Frequency distributions of the cell properties (a) lifetime, (b) total precipitation, (c) maximum area, and (d) mean cell 
intensity as observed by the radar (black), by radar remapped to the model grid (blue,) and simulated (red). 
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To verify that it is really the long-living convective cells that have a high intensity and 

area, Figure 11 shows the distributions of mean intensity and of maximum area depending 

on the lifetime of the convective cells. To this end, cells are grouped into lifetime classes 

of 15-min width. A systematic increase in maximum area and mean intensity with lifetime 

can be seen in both the radar observations and the simulation. While the observed median 

maximum area is 226 km
2
 for cells living 195 to 210 min, the median is only 25 km

2
 for 

cells living 15 to 30 min. The observed median values of mean intensity of cells in the 

same lifetime classes are 21 mm/h for long-living and 12 mm/h for short-living cells. 

These relationships indicate that the detected short-living cells can either be single-cell 

storms or individual cells of a multicell storm. The long-living, large, and intense cells are 

organized forms of convective systems like squall lines, supercells, and mesoscale con-

vective systems. The simulation systematically underestimates the increase in mean inten-

sity with lifetime. The increase in maximum area is well matched. 

 

 

Figure 11: Dependence of (a) cell mean intensity and (b) cell maximum area on cell lifetime for radar observation and CCLM 
simulation. The boxes denote the 25th, 50th, and 75th percentiles. The whiskers denote the 5th and 95th percentile. 

 

Figure 12 shows the spatial distribution of the occurrence of convective cells. Here, the 

occurrence of convective cells per grid-point for the period 2001–2015 is shown. The 

tracking algorithm stores the area and center of mass for each cell at every point in time. 

For this reason, no information about the actual shape of a cell is available. Instead, the 

cells are reconstructed as squares around the center of mass to match their original size. It 

has to be noted that every occurrence of a cell per 5-minute time step is counted. The val-

ue can, thus, be interpreted as the number of exceedances of a 5-minute precipitation in-

tensity of 8.5 mm/h (the detection threshold of the tracking algorithm). Instead of count-
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ing each cell only once (e.g., at its point of largest extent), this method represents the area 

affected by convective cells more realistically because cells can have widely varying are-

as and translation speeds. 

Mountain ranges facilitate the triggering of deep convection through various processes 

(see Kirshbaum et al. (2018) for a review). Therefore, it is not surprising that the Alps and 

the pre-alpine region show the highest occurrence of convective cells. Low mountain 

ranges also show increased values compared to lowland regions. In general, there is a pos-

itive North–South gradient in convective activity. The mean intensity of convective cells 

is lower over the mountains (not shown). This can be explained by the fact that orograph-

ically induced convection is early in its life cycle in this area and, thus, has a relatively 

low intensity. 

The simulation is capable of representing the increased convective activity in mountain 

areas. It overestimates the number of convective cells in the South and underestimates it 

in the North (Figure 12). However, there are areas of overestimation and underestimation 

in both parts of the investigated domain. Near the radar locations, overestimation prevails, 

while areas of underestimation tend to be located furthest away from the radar. More cells 

are initiated in the mountainous areas of Southern Germany than in the North. This sup-

ports the hypothesis that the more complex topography facilitates the onset of convection 

and, thus, eliminates the negative bias in the cell number present in Northern Germany. 

Since the convective activity shows a different pattern in North and South Germany, 

which may be related to the different orography in these regions, we further investigate 

the height dependence of convective activity. Therefore, the convective cells are stratified 

by the terrain height at which they occur. While the cell number is underestimated by 

15% in regions with a terrain height below 400 m a.s.l., the number of cells for terrain 

heights above 400 m a.s.l. is overestimated by 6%. The overestimation of convective pre-

cipitation in mountainous areas is in line with the results in Knist et al. (2018), who per-

formed convection-permitting climate simulations over Germany using the WRF-model 

and compared the results to gauge data. 
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Figure 12: Spatial distribution of the number of convective cells; (a) observation, (b) simulation, (c) relative difference CCLM—
radar. 

 

The diurnal cycle of convective activity is slightly delayed in the simulation (Figure 13a). 

The afternoon maximum is observed at 15:50 (UTC), while the modeled maximum oc-

curs around 16:30 (UTC). The number of cells initiated during the night and morning is 

well matched, whereas the daytime increase of convective activity is too small, resulting 

in 36% fewer cells being initiated in the afternoon and evening (between 13:00 UTC and 

20:00 UTC). The maximum number of cell initiation is underestimated by 40%. Com-

bined with the general overestimation of cell lifetime, this leads to an overestimation of 

cells present at each point in time during the night and an underestimation during the time 

of highest activity (Figure 13b). The mean intensity, defined as the mean over all cells of 

spatial mean intensity at every 5-min time step, increases during the daytime. The mod-

eled increase of mean intensity is too weak. 

 

 

Figure 13: Diurnal cycle of convection; (a) cell number at cell initiation (every cell is counted once), (b) cell number at each 
individual time step (cells are counted multiple times, according to their lifetime), and (c) mean intensity of all cells at a certain 
point in time. 
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Results of the CCLM simulation driven by ERA5 

 

The CCLM-ERA5 simulation produces more precipitation than CCLM-ERAi in the eval-

uation period 2001-2015. While total precipitation is overestimated by 6% in CCLM-

ERA5 compared to the observations, it is underestimated by 14% in CCLM-ERAi. The 

underestimation of precipitation in Northern Germany is much less pronounced in 

CCLM-ERA5. During the summer months (Apr-Sep), mean precipitation is well simulat-

ed in CCLM-ERA5 with overestimation in the mountain ranges, which is compensated by 

underestimation in the lowlands.  

Both simulations can represent the frequency distributions of cell properties showing the 

spectrum from short-living, unorganized convection to long-living, organized convection. 

However, there are more long-living cells in CCLM-ERA5, which could be caused by the 

better performance of the tracking algorithm resulting from more accurate wind infor-

mation. Maximum cell intensity is better simulated in CCLM-ERA5, shown by a PSS 

value of 0.87 compared to 0.84 for CCLM-ERAi.  

The diurnal cycle of convective cells is also better represented in CCLM-ERA5. While 

the diurnal cycle of cell initiation is virtually similar with a slightly later peak in CCLM-

ERAi, the amplitude and the phase of the diurnal cycle are more realistic in CCLM-ERA5 

when counting cells multiple times according to their lifetime. Furthermore, the phase and 

the amplitude of the diurnal cycles of mean and maximum intensity per cell are much bet-

ter represented in CCLM as they do not underestimate the amplitude as strongly as 

CCLM-ERAi. For example, the diurnal maximum of mean intensity is 18.7 mm/h in the 

observations, 17.8 mm/h in CCLM-ERA5, and 16.1 mm/h in CCLM-ERAi.  

Both simulations can represent the spatial distribution of increased initiation of convec-

tion in the alpine area and the lower mountain ranges but generally underestimate the ini-

tiation of convection. The underestimation of convective activity in Northern Germany 

(North of 52°N) is stronger in CCLM-ERAi (-47%) than in CCLM-ERA5 (-40%), where-

as CCLM-ERAi initiates more convection in the pre-alpine area than CCLM-ERA5. This 

could be explained by the larger domain of CCLM-ERA5, which allows for convection to 

be triggered over the entire alps. Assuming a southerly flow, this would mean that con-

vective cells have already depleted when reaching the northern end of the Alps.  
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Comparison of CCLM-ERAi simulation with GCM-driven simulation 

 

So far, all of the evaluated simulations were driven by reanalysis data, which represent a 

best estimate of the large-scale atmospheric conditions. Using a GCM to provide the 

boundary data for the CCLM simulation introduces additional potential errors related to 

the representation of large-scale atmospheric conditions in the GCM. In order to assess 

the reliability of the simulations driven by the EC-Earth model, these simulations are 

briefly compared to the CCLM-ERAi simulation in terms of the frequency distributions of 

cell properties (Figure 14). It has to be noted that the simulation periods do not fully over-

lap: CCLM-ERAi covers the period 1976-2005, whereas Historical covers the period 

1982-2011. Qualitatively, the frequency distributions of all cell properties are well repre-

sented. While the lifetime of cell is well captured (Figure 14a), the Historical simulation 

underestimates the area (Figure 14c) and intensity (Figure 14d) of cells compared to 

CCLM-EraI. In combination this leads to an underestimation of the total precipitation 

sum per cell (Figure 14b).   
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Figure 14: Frequency distributions of the cell properties (a) lifetime, (b) total precipitation, (c) maximum area, and (d) mean cell 
intensity in CCLM-ERAi (black), Historical (blue), and RCP8.5 (red). 

 

5.2.2. Can the model reproduce the temperature scaling of cell properties? 

 

The scaling of total precipitation, mean intensity, lifetime, and maximum area for both 

radar and simulation data is shown in Figure 15. Shown are the 90
th

, 95
th

, and 99
th

 percen-

tiles based on the simulation and the remapped radar data. For comparison, the 95
th

 per-

centile of the original radar data is shown additionally. The general underestimation of the 

highest percentiles of the variables mean intensity and total precipitation, as well as the 

overestimation of lifetime, is also visible here. In contrast to these variables, the maxi-

mum area is well represented in the model, both in terms of absolute value and scaling 

rate. Generally, the rate at which mean intensity increases with temperature is well repro-

duced by the model. However, the underestimation of precipitation intensity for long-

lasting, organized cells shown in the previous section is visible in the scaling rates of 

mean intensity. While the radar data shows an exponential increase up to the highest tem-
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peratures, the simulated mean intensity flattens at 20 °C. The largest difference in scaling 

rate appears for the lifetime of convective cells.  

 

Figure 15: Temperature scaling of cell properties. (a) Spatial and temporal mean intensity of cells, (b) total precipitation, (c) 
lifetime, and (d) maximum area. Shaded areas denote the uncertainty range estimated by repeatedly calculating the respective 
quantile using bootstrapping. Note the logarithmic y-axis in all panels. 

 

The radar data shows an increase in lifetime of ca. 5 % in the temperature range between 

13 and 22 °C and flattens at higher temperatures. In contrast to this, the lifetime of con-

vective cells in the simulation is mostly flat, with small increases only in the low-

temperature range and a drop at high temperatures. An intensification of convective cells 

above the Clausius–Clapeyron rate, which supports the hypothesis of a positive feedback 

loop in the strength of convective cells with rising temperatures, is apparent from the scal-

ing rate of the total precipitation. The scaling of the modeled total precipitation is larger 

than the Clausius–Clapeyron rate for the whole temperature range up to 23 °C, where it 

levels off. This leveling off is also frequently reported for scaling of extreme precipitation 

at fixed locations and attributed to limited moisture supply at high temperatures (Hard-
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wick Jones et al. 2010, Chan et al. 2016). The observed total precipitation shows a slight-

ly different behavior with a smaller increase at low temperatures and a larger increase 

starting at 15 °C. 

 

5.3. Future Changes in Convective Cells 
	

5.3.1. How will convective cells change in the future? 

	
Cell properties are investigated by tracking precipitation from the two 30-yearlong CCLM 

simulations Historical and RCP8.5 driven by EC-Earth (described in section 4.1). Addi-

tionally, the robustness of the results is assessed by repeating the analysis with two simu-

lations driven by MIROC5 at the end of the section. A more detailed presentation of the 

results can be found in Appendix C. A detailed description of the results of the simula-

tions driven by MIROC5 can be found in Appendix E.  

While mean summer precipitation (Apr-Sep) is reduced by 15 % in the future period 

compared to historical conditions, mean convective precipitation (defined as the spatial 

and temporal mean of precipitation classified by the tracking algorithm) increases by 16 

% (from 0.25 mm/d to 0.29 mm/d). This translates to an increase in the fraction of con-

vective to total precipitation from 15.8 % to 21.8 %. The frequency of hourly precipita-

tion at fixed location increases for intensities above 5 mm/h with the biggest relative 

changes for the highest percentiles. This increase in extreme hourly precipitation is 

caused by an increase in the number of large, long-living convective cells occurring at 

high temperature and moisture levels.  

Changes in the frequency distribution of cell properties show a complex picture of the 

response of deep convection to climate warming. While the total number of cells and the 

lifetime does not change significantly in the future (Figure 16a), as simulated for the end 

of the 21
st
 century under RCP8.5, there is a shift towards more intense (Figure 16b) and 

larger events (Figure 16c). In combination, this leads to higher precipitation sums per cell 

(Figure 16d).  

 



Results and Discussion 

 - 40 - 

 

 

Figure 16: Frequency distribution of cell properties in the Historical (blue) and RCP8.5 (red) simulations: (a) lifetime, (b) mean 

intensity, (c) maximum area, (d) precipitation sum. Shaded areas denote the 95% confidence interval obtained from 1000 boot-

strap samples of all cells. Dashed, vertical lines denote the 99th percentiles. Circles show the midpoints of bins. 

The relative increase is strongest for the highest percentiles for all of these properties 

(mean and maximum intensity, area, and precipitation sum). However, caution should be 

taken when interpreting results related to the most severe cells as the precipitation intensi-

ty is underestimated by the model, especially for long-lasting, organized convection (see 

previous section). Table 1 summarizes the relative changes. The trend scaling (relative 

changes divided by the mean temperature change signal, Zhang et al., 2017) is slightly 

above the CC-rate for the highest percentiles of precipitation sum and maximum area and 

below the CC-rate for mean and maximum intensity. 

 

 



Results and Discussion 

 - 41 - 

 

Table 1: Relative changes in cell characteristics (from Historical to RCP8.5).  

Change in % Lifetime Maximum 

Area 

Precipitation 

Sum 

Mean Intensity Maximum 

Intensity 

Mean 

Speed 

Mean -2.1 +13.4 +18.3 +3.3 +8.3 +9.0 

Median 0.0 +9.1 +3.2 +2.4 +5.8 +7.9 

P95  0.0 +16.9 +16.9 +6.4 +12.6 +10.0 

P99 0.0 +27.9 +27.0 +9.3 +15.8 +11.0 

P99.9 +1.1 +32.0 +30.6 +11.3 +19.1 +13.4 

Trend Scaling 

of P99 [%/K] 

0.0 +8.2 +7.9 +2.7 +4.6 +3.2 

 

The diurnal cycle of convective activity changes towards fewer convective cells during 

the afternoon maximum and more cells during the nighttime (Figure 17a). In combination 

with the increase in mean precipitation intensity per cell (Figure 17b), this leads to up to 

50% more convective precipitation during nighttime and a small decrease during the af-

ternoon maximum (Figure 17c). The afternoon decrease in cell number is primarily 

caused by fewer slow-moving cells despite the fact that there is no change in the large-

scale wind speed.  

 

Figure 17: Diurnal cycle of (a) number of cells, (b) mean intensity per cell, and (c) mean sum of convective precipitation. 

Although the total number of cells stays approximately constant in the future, the change 

in cell number varies considerably in space (Figure 18a). In South-West Germany, the 

number of convective cells decreases while in the North-East increases prevail. However, 

these changes are not uniform, and changes between increases and decreases occur at 

small spatial scales of about 10-100 km. This pattern is not related to orography and is 
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likely caused by internal variability of the convective cells. Mean intensity increases 

throughout the domain (Figure 18b). The sum of convective precipitation, which can be 

derived as cell number times mean intensity, therefore, shows a pattern similar to the 

number of convective cells (Figure 18c). 

 

 

Figure 18: Spatial distribution of (a) cell number in the Historical simulation, (b) relative change in cell number in RCP8.5 com-

pared to Historical, and (c) relative change in convective precipitation sum. 
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Results of the CCLM simulations driven by MIROC5 

 

In the MIROC5-driven simulations (MIROC5-CCLM), precipitation decreases by 9% 

from 2.0 mm/h in Hist to 1.8 mm/h in RCP8.5 in the summer months (Apr-Sep). Thus, 

this projection shows a smaller decrease than the EC-Earth driven simulation (ECE-

CCLM) of -15%. The mean temperature change is 4.4 K in the full simulation domain 

and 4.5 K in the ECE domain (compared to 3.4 K in the EC-Earth simulation). The fre-

quency distributions of the cell properties lifetime, area, precipitation sum, and intensity 

are qualitatively similar to the EC-Earth simulation but differ quantitatively in a number 

of ways. While cell area is quite similar in both simulations, cells are longer living and 

more intense in MIROC5-CCLM. For estimating the changes in cell properties, again, we 

calculate the relative changes of different percentiles for future conditions compared to 

present conditions. As in ECE-CCLM, the relative changes are highest for the highest 

percentiles (Table 2). The relative changes of all cell properties are higher in MIROC5-

CCLM than in ECE-CCLM for the high percentiles and about the same for the median 

(except for precipitation sum, which is 3,2% and thus lower in ECE-CCLM). This higher 

increase in extreme cells seems to be caused by the higher temperature change signal, as 

can be seen from the trend scaling. Trend scaling of P99 is very similar in ECE-CCLM 

and MIROC5-CCLM. The scaling rates do not differ more than 1.5% between the two 

simulations. The largest difference in scaling rates occurs for maximum intensity which is 

higher in the MIROC5 simulation. As in ECE-CCLM, the scaling rates for maximum area 

and precipitation sum are very close to the CC-rate. The simulation of the diurnal cycle is 

very similar in MIROC5-CCLM compared to ECE-CCLM showing a damped afternoon 

maximum of convective activity.  
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Table 2: Relative changes in cell characteristics (from Historical to RCP8.5) for the ECE domain. 

Change in % Lifetime Maximum 

Area 

Precipitation 

Sum 

Mean Intensity Maximum 

Intensity 

Mean 

Speed 

Mean 0,20 22,5 30,25 4,95 13,1 9,38 

Median -10,00 16,70 11,60 2,00 5,10 8,10 

P75 0,00 18,20 18,70 5,30 12,20 10,80 

P90 0,00 23,80 26,00 9,00 18,20 12,00 

P99 4,50 40,60 44,70 15,70 31,60 11,90 

Trend scaling 

of P99 (%/K) 

1,0 7,60 8,20 3,2 6,1 2,50 

 

5.3.2. Is the scaling behavior of Lagrangian cell properties similar in present and 

future conditions? 

	
At first, the results of the ECE-CCLM simulation are described, followed by the descrip-

tion of the MIROC5-CCLM simulations. The temperature scaling curves of cell proper-

ties peak at higher values in the future (Figure 19). This is caused by more abundant hu-

midity at these high temperatures, resembling the scaling curves of extreme hourly pre-

cipitation at fixed locations. In contrast to the temperature scaling, dew point scaling 

curves in historical and future conditions are consistent across the whole dew point tem-

perature range.  

The Clausius-Clapeyron scaling of cell area and maximum cell intensity in combination 

leads to super Clausius-Clapeyron scaling (ca. 14%/K) of the precipitation sum per cell.  

The scaling curves under historical and future conditions are most similar for the highest 

percentiles. The differences for the lower percentiles reflect the complex changes in the 

properties of convective cells related to, e.g., the change in the diurnal cycle. The similar 

dew point scaling curves for the highest percentiles of cell properties facilitate inference 

of the upper limit of convective cell properties from large-scale humidity values. 

The fact that the number of convective cells per dew point temperature bin changes both 

in absolute and relative terms (number of cells per occurrence of dew point temperature 

bin) prevents inference of extreme precipitation at fixed locations. This is also illustrated 



Results and Discussion 

 - 45 - 

 

by the differences in the dew point temperature scaling curves of extreme precipitation at 

fixed locations.  

In contrast to the ECE-CCLM simulations, the scaling rates differ for present and future 

conditions in MIROC5-CCLM. Concerning the temperature scaling, the scaling rates are 

higher in future conditions for all cell properties over the whole temperature range Again, 

this is in contrast to the ECE-CCLM simulation where temperature-scaling is similar in 

the intermediate temperature range and the difference between present and future are 

higher peak values in the future. Concerning dew point scaling, the differences are not as 

large as for temperature scaling but still larger than in the ECE-CCLM simulation. 
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Figure 19: Temperature scaling (left column) and dew point temperature scaling (right column) of cell properties. (a) and (b): 
maximum area; (c) and (d): maximum intensity; (e) and (f): mean intensity; (g) and (h): precipitation sum. Shaded areas denote 
the uncertainty range caused by varying bin occupancy, obtained from bootstrapping cells in each bin. (i) and (j) show the fre-
quency distribution of cells, where bars denote the absolute number of cells per temperature or dew point temperature class (left 
y-axis) and lines denote the relative number of cells per occurrence of temperature or dew point temperature class (right y-axis).
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6. Conclusions 
 

In this thesis, the properties of convective rain cells and their potential changes under 

global warming were investigated for Germany. Firstly, the influence of the environmen-

tal conditions CAPE, vertical wind shear, and dew point temperature on cell properties 

was investigated in the current climate using radar and reanalysis data.  

It was shown that the cell area is strongly influenced by vertical wind shear, with higher 

wind shear leading to larger cells. In contrast, wind shear has very little influence on the 

maximum intensity of cells. Consequently, different Lagrangian cell properties scale with 

dew point temperature at varying rates. While the maximum intensity of cells scales with 

dew point temperature consistently at the CC-rate, the area of cells increases at varying 

rates, namely at the CC-rate below 12 °C and at 2x CC-rate above. The precipitation sum 

scales at above CC-rate at varying rates which increase with dew point temperature. Dif-

ferent processes are discussed in the literature as a cause for super Clausius-Clapeyron 

scaling of extreme precipitation, for example a positive feedback of updraft strength with 

moisture supply (Lenderink et al. 2017) or increased convective organization at higher 

temperatures (Lochbihler et al. 2019). As CAPE is correlated with dew point temperature, 

we conclude that besides these processes, the super-CC scaling is at least partially caused 

by more unstable stratification of the pre-storm environment at high dew point tempera-

tures. Precipitation scaling at fixed locations is lower than the Lagrangian scaling rate of 

the total precipitation sum per cell due to the compensating effect of higher cell speed at 

high wind shear. This means that the increase in cell speed with increasing wind shear 

overcompensates the increase in cell area caused by increased convective organization. 

Another finding that illustrates this point is that intense precipitation events at fixed loca-

tions are caused by cells that, in the mean, move slower than all cells. The fact that bin-

ning scaling rates are modulated by vertical wind shear and CAPE makes it unlikely that 

present scaling rates for fixed locations can be transferred into the future as both variables 

are projected to change under global warming. 

Potential changes of convective rain cell properties in the future were investigated using 

the convection-permitting climate model COSMO-CLM. To assess if the model is capa-

ble of representing climate statistics of convective cell properties, it was first evaluated by 

comparing Lagrangian cell properties to the observed cell properties discussed above.  

The model is capable of reproducing the total amount of convective precipitation, as well 

as the frequency and properties of convective cells ranging from short-living, small cells 
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to long-living, intense cells. However, the number of convective cells is underestimated. 

This underestimation is compensated by an overestimation of cell lifetime. A possible 

explanation for the underestimation of convective activity and the overestimation of cell 

lifetime could be that the grid size of 2.8 km is too coarse to capture boundary layer in-

homogeneities, which facilitate the initiation of convection; thus, the number of cells is 

reduced. The underestimation of mean intensity and maximum intensity of large, long-

living cells suggests model deficiencies in representing large, organized forms of convec-

tion. This underestimation is reduced when using the ERA5 reanalysis instead of ERA-

Interim as driving data. To evaluate the model’s capability of representing the properties 

of extreme convective cells at different temperatures, we investigate the temperature scal-

ing of cell properties. While the model can reproduce the increases in mean intensity and 

area of extreme convective cells with temperature, it fails to reproduce the increasing cell 

lifetime seen in observations. The simulated scaling of total precipitation shows a contin-

uous increase above the Clausius–Clapeyron rate, which indicates dynamical changes in 

extreme convective cells with increasing temperature. The observations show different 

scaling rates with a value close to the Clausius–Clapeyron rate at temperatures below 15 

°C and higher values above. More detailed investigations are needed to understand these 

differences. These results suggest that the evaluation of coarse-grained (e.g., hourly) pre-

cipitation fields is insufficient for revealing challenges in convection-permitting simula-

tions. 

Potential changes in the properties of convective cells were investigated for the end of the 

21
st
 century under the high emission scenario RCP8.5. Changes in the frequency distribu-

tion of cell properties show a complex picture of the response of deep convection to cli-

mate warming. While the total number of cells and the lifetime do not change in the fu-

ture according to the projections, there is a shift towards larger and more intense events. 

In combination, this leads to higher precipitation sums per cell. The relative increase of 

mean and maximum cell intensity, cell area, and precipitation sum is largest for the high-

est percentiles meaning that the most extreme events intensify the most. The trend scaling 

rates for the 99
th

 percentile are within 1.5 % in the two investigated simulations. This in-

dicates that it may be possible to infer the upper limit of cell properties from the mean 

temperature change signal to a certain degree. However, two simulations are too few to 

estimate a robust range for the scaling rates.  

The diurnal cycle of convective activity changes towards fewer convective cells during 

the afternoon maximum and more cells during the nighttime. Combined with the increase 
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in mean precipitation intensity per cell, this leads to up to 50% more convective precipita-

tion during nighttime and a small decrease during the afternoon maximum. The afternoon 

decrease in cell number is primarily caused by fewer slow-moving cells despite the fact 

that there is no change in the large-scale wind speed. In combination with an increase in 

CIN this points to less air-mass convection in the future projections meaning that it be-

comes more difficult to initiate convective storms without a dynamical trigger mecha-

nism. However, once convection is initiated, the increase in CAPE and near-surface hu-

midity leads to more intense cells, which, in turn, can produce stronger cold pools and 

thus trigger new cells, which could explain the shift towards later times of day. These 

findings are in line with results from the USA, where a shift towards more extreme and 

less moderate events because of increased CAPE and CIN values is reported (Rasmussen 

et al. 2020). This process could mitigate the increase of intense precipitation at fixed loca-

tions because intense hourly precipitation is often caused by slow-moving cells, as previ-

ously described.  

The temperature binning scaling curves of cell properties peak at higher values in the fu-

ture, resembling the scaling curves of extreme hourly precipitation at fixed locations. In 

contrast to the temperature scaling, dew point scaling curves in historical and future con-

ditions are consistent across the whole dew point temperature range. The Clausius-

Clapeyron scaling of cell area and maximum cell intensity leads to super Clausius-

Clapeyron scaling (ca. 14 %/K) of the precipitation sum per cell. Similar to the reanalysis 

data investigated in the first part of the thesis, there is a correlation of dew point tempera-

ture with CAPE, which can partially explain scaling above the Clausius-Clapeyron rate.  

The scaling curves under historical and future conditions are similar for the highest per-

centiles in the simulation driven by EC-Earth. The differences for the lower percentiles 

reflect the complex changes in the properties of convective cells related to, e.g., the 

change in diurnal cycle. The similar dew point scaling curves for the highest percentiles 

of cell properties facilitate inference of the upper limit of convective cell properties from 

large-scale humidity values. However, the fact that the number of convective cells per 

dew point temperature bin changes both in absolute and relative terms (number of cells 

per occurrence of dew point temperature bin) prevents inference of extreme precipitation 

at fixed locations. In contrast to these findings, the scaling curves for the highest percen-

tiles are different between present and future in the MIROC5 simulation. Further studies 

are necessary to understand the reasons for these discrepancies. Future research could 

build on the evaluation of Lagrangian cell properties to develop a BIAS correction meth-
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od based on cell properties with the aim of assessing the hydrological consequences of the 

projected increase in heavy precipitation events. Concerning future changes of convective 

precipitation, more projections are necessary to determine the uncertainty related to large-

scale changes in the general circulation as general circulation models vary in their repre-

sentation of climate change in mid-latitudes. 
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A.  Paper 1: Convective Rain Cell Properties and the Resulting Pre-
cipitation Scaling in a Warm Temperate Climate 

 

 

Submitted as:  

Purr, Christopher; Erwan Brisson; K. Heinke Schlünzen; and Bodo Ahrens. 2021. " Con-

vective rain cell properties and the resulting precipitation scaling in a warm temperate 

climate" to Quarterly Journal of the Royal Meteorological Society.  

 

Abstract 
 

Convective precipitation events have been shown to intensify at rates exceeding the Clau-

sius-Clapeyron rate (CC-rate) of ca. 7 %/K under current climate conditions. In this study, 

we relate atmospheric variables (low-level dew point temperature, convective available 

potential energy, and vertical wind shear), which are regarded as ingredients for severe 

deep convection, to properties of convective rain cells (cell area, maximum precipitation 

intensity, lifetime, precipitation sum, and cell speed). The rain cell properties are obtained 

from a rain gauge-adjusted radar data set in a mid-latitude region, which is characterized 

by a temperate climate with warm summers (Germany). Different Lagrangian cell proper-

ties scale with dew point temperature at varying rates. While the maximum precipitation 

intensity of cells scales consistently at the CC-rate, the area and precipitation sum per cell 

scale at varying rates above the CC-rate. We show that this super-CC scaling is caused by 

a covarying increase of convective available potential energy with dew point temperature. 

Wind shear increases the precipitation sum per cell mainly by increasing the spatial cell 

extent. From a Eulerian point-of-view, this increase is partly compensated by a higher cell 

velocity, which leads to Eulerian precipitation scaling rates close to and slightly above the 

CC-rate. Thus, Eulerian scaling rates of convective precipitation are modulated by con-

vective available potential energy and vertical wind shear making it unlikely that present 

scaling rates can be applied to future climate conditions. Furthermore, we show that cells 
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that cause heavy precipitation at fixed locations occur at low vertical wind shear and, 

thus, move relatively slow compared to typical cells. 

 
A.1 Introduction 
 

Convective precipitation is expected to intensify with global warming (Trenberth et al. 

2003). This intensification is also projected for warm temperate climates in mid-latitudes 

(Purr et al. 2021). However, the rate of increase and the role of thermodynamic and dy-

namic processes remain uncertain. The water holding capacity of the atmosphere, gov-

erned by the Clausius-Clapeyron (CC) equation, is frequently used as a baseline estimate 

on how much extreme precipitation will change with global warming (Westra et al. 2014). 

Two different approaches have been used to estimate the increase in extreme precipitation 

with temperature: trend scaling and binning scaling, sometimes also referred to as appar-

ent scaling (Zhang et al. 2017). While trend scaling describes the ratio of precipitation 

extremes in different climate states scaled by the mean temperature change, binning scal-

ing calculates the dependence of extreme precipitation on day-to-day temperature varia-

bility in the current climate period. Binning scaling has been frequently used in recent 

years due to a lack of long-term observations of sub-daily precipitation. Binning scaling 

rates above the CC rate of 7%/K have been reported for convective precipitation extremes 

on sub-daily timescales in warm temperate climate in a number of studies (e.g. Lenderink 

& van Meijgaard 2008, Berg et al. 2013). Different explanations have been given for this 

super-CC scaling. Firstly, it has been attributed to a positive feedback mechanism be-

tween moisture supply at cloud base and updraft speed in convective clouds (Lenderink et 

al. 2017). Secondly, the increasing degree of convective organization at higher tempera-

tures has been suggested to cause more intense precipitation (Moseley et al. 2016). This 

hypothesis has been established from idealized LES simulations which show that the pre-

cipitation field is organized into fewer but more intense precipitation cells at higher tem-

peratures (Lochbihler et al. 2019). Additionally, the statistical effect that at high tempera-

tures extreme precipitation is increasingly caused by convection was shown by Berg et al. 

(2013). The temperature scaling of both hourly extreme precipitation at fixed location 

(Prein et al. 2017) and of Lagrangian cell properties (Purr et al. 2019) has been shown to 

drop-off at high temperature due to moisture limitation. Because of these varying scaling 

rates, dew point temperature has been suggested and widely adopted as a more meaning-

ful covariate (Lenderink et al. 2011). It has been questioned whether binning scaling rates 
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can be extrapolated to the future as other environmental conditions which influence con-

vective storms besides low-level moisture might change, too (Bao et al. 2017, Sun et al 

2020). These environmental conditions, which determine the strength of a convective cell 

to a large degree, are vertical instability, and vertical wind shear (see e.g. Weisman and 

Klemp (1982) or Rasmussen and Blanchard (1998)).Vertical instability is often measured 

by convective available potential energy (CAPE). Although CAPE is useful for predicting 

the strength of convection it is mainly related to maximum vertical velocity in the updraft 

(Markowski and Richardson 2010, p. 43) and only indirectly to precipitation intensity. 

Precipitation intensity can be influenced by various additional processes, like entrainment 

rates and evaporation below cloud base. Precipitation efficiency, the ratio of total precipi-

tation of a convective cloud to the moisture inflow at cloud base, has been shown to be 

strongly influenced by vertical wind shear (Weisman & Klemp 1982, Market & Allen 

2003, Chen et al. 2015). In general, vertical wind shear influences the degree of organiza-

tion of convective storms via various processes. Firstly, it increases the organization of 

convective storms by separating the updraft from the downdraft (and precipitation) re-

gion. Furthermore, it can facilitate the development of super cells by tilting horizontal 

vortices into the vertical and thus creating a rotating updraft. The spectrum of convective 

storms ranges from unorganized single convective cells at low wind shear via multi-cells, 

which are characterized by the repeated development of new cells in the vicinity of old 

ones, at intermediate wind shear to supercells and mesoscale convective systems at high 

wind shear (Houze 2014).  

Besides increasing the severity of convective storms (Kaltenboeck & Steinheimer, 2014), 

high wind shear also increases the horizontal velocity of convective storms. Storm veloci-

ty increases because convective storms move approximately with the mean tropospheric 

wind and the commonly used bulk wind shear is largely determined by the wind in the 

500 hPa level. In general, long-living cells are larger, more intense (Purr et al. 2019) and 

move faster. Because the high speed balances the higher precipitation intensity to some 

extent, it is not a priori clear to what extent intense fast-moving cells or less intense slow-

moving cells cause heavy precipitation at fixed locations.  

Due to their small spatial and temporal scale, convective storms are notoriously difficult 

to observe. When investigating extreme precipitation many observational studies rely on 

gauge data, although it has been shown that gauge data sets are only representative for 

spatial scales of up to 11 km for hourly accumulation periods (Bohnenstengel et al. 2011) 

and miss about 80% of hourly extreme precipitation events in Germany (Lengfeld et al. 
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2020) due to sparse sampling in space. Nonetheless, some interesting relations were 

found: for example, Lepore et al. (2016) investigated conditions leading to hourly precipi-

tation extremes in the contiguous United States and found CAPE and dew point tempera-

ture to be the best predictors for precipitation intensity.  

The shortcomings of in-situ measurements can be remedied by remote sensing techniques 

to an ever increasing degree. Remote sensing data used for investigating convective 

storms include lightning data (Wapler 2013, Brisson et al. 2021) and weather radars (e.g. 

Moseley et al. 2013, Lochbihler et al. 2017). Kunz et al. (2020) combined radar data with 

storm reports and reanalysis data to investigate hailstorms in Central Europe. They found 

that vertical wind shear provides a good predictor for the size of hail stones as frontal 

storms associated with high wind shear tend to form larger hail stones. The progress of 

weather radars has made it possible to track convective storms in data sets that currently 

cover time periods of up to two decades (e.g. Peleg et al. 2018). While many studies track 

convective cells based on radar reflectivity, few radar data sets offer reliable estimates of 

ground-level precipitation. For this reason, Lagrangian properties of convective rain 

events have seldomly been quantitatively connected to precipitation at fixed locations. As 

an example for this kind of study, Schumacher & Johnson (2005) showed that about 2/3 

of daily extreme precipitation is caused by Mesoscale Convective Systems and investigat-

ed the MCS’s properties. 

The influence of the environmental conditions described above on storm properties has 

not yet been studied in observational data on decadal time scales to the authors' 

knowledge. Therefore, we attempt to establish a link between the influence of environ-

mental conditions on storm properties focusing on the effect of wind shear on storm ve-

locity and the resulting precipitation at fixed locations in this study. Besides process un-

derstanding, investigating the effect of large-scale environmental conditions on cell prop-

erties is beneficial in the context of model evaluation and climate change. Firstly, the re-

sults obtained here can be used for evaluating convective clouds in convection-permitting 

weather and climate models. While Purr et al. (2019) already evaluated the frequency dis-

tribution and temperature scaling of convective cells in a regional climate model, a more 

thorough evaluation linking cell properties to environmental conditions would be advan-

tageous. Additionally, convection parameterizations could be tested, especially with re-

spect to the influence of wind shear on mesoscale organization (Rio et al. 2019, Yano & 

Moncrieff 2016). In the context of climate change, linking convective cell properties to 

environmental conditions could be used to develop a statistical model, which allows de-
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riving convective cell properties for future conditions from environmental variables pro-

vided by hydrostatic RCMs. Currently, these RCMs are used to investigate frequency 

changes in severe convection environments, which are usually defined as environments 

with certain amounts of instability and wind shear without knowing how convective cells 

will react to the changes (Púčik et al. 2017). Therefore, we aim at answering the following 

questions: 

 

1. What is the effect of instability and wind shear on Lagrangian cell properties and 

the dew point temperature scaling of these properties? 

2. To what extent does higher cell velocity offset the higher organization of convec-

tive cells in high-shear environments with respect to precipitation at fixed location? 

 

We use a novel, gauge-adjusted radar climatology, which provides continuous precipita-

tion data in time and space. Properties of convective storms causing extreme sub-daily 

precipitation are investigated by tracking convective cells in 5-min radar data (Section 

A.2.1 and A.3.1). To estimate the influence of wind shear, instability, and low-level mois-

ture we connect the cell properties to the corresponding large-scale atmospheric condi-

tions using ERA5 reanalysis data (Section A.2.2). Reanalysis data is used instead of 

sounding data because of their high temporal and spatial frequency. While soundings are 

often taken only 2 or 4 times a day and hundreds of kilometers away from a convective 

storm, the ERA5 reanalysis provides hourly values at 0.25° resolution. For the United 

States, Lepore et al. (2015) found that rainfall intensity is better correlated with CAPE 

from reanalysis than with CAPE computed from atmospheric soundings. The results are 

presented in Chapter A.4 for univariate and multivariate dependence of Lagrangian cell 

properties on environmental variables (Section A.4.1, A.4.2), and thus question 1 is ad-

dressed. The relation of cell properties to precipitation at fixed locations, which adresses 

question 2, is provided in Section A.4.3. 

 

A.2 Data  
A.2.1 Radar climatology 
 

We use the radar-based precipitation climatology (Winterrath et al. 2017) developed by 

the national meteorological service of Germany, Deutscher Wetterdienst, for tracking 

convective cells. This precipitation data set is based on radar data, which has been quality 
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checked, corrected, and adjusted to rain gauge measurements. The correction steps used 

for this product to derive precipitation from radar reflectivity include clutter filtering, dis-

tance dependent signal correction and removal of radar spokes. For the tracking we use 

the 5-min dataset, the so called YW-product (Winterrath et al. 2018a). For the comparison 

to stationary hourly precipitation intensities, we use the hourly dataset, the so called RW-

product (Winterrath et al. 2018b). Our analysis covers the summer half years (Apr-Sep) of 

the period 2001-2016. Focusing in the summer half year is sufficient as convective rain 

events occur almost exclusively in this time (Lengfeld et al. 2021). The data sets have a 

spatial resolution of 1 km x 1 km.  

 

A.2.2 Environmental variables 
 

We use ERA5, the 5
th

 generation global reanalysis by ECMWF (Hersbach et al. 2020), to 

derive environmental conditions of convective storms. The variables used to characterize 

convective storm conditions are dew point temperature at 2 m (Td), convective available 

potential energy (CAPE), and bulk vertical wind shear (SH) calculated as vector differ-

ence between the wind in 500 hPa height and 10 m. ERA5 provides hourly values of at-

mospheric variables at a spatial resolution of 0.25° x 0.25°. Convective parameters calcu-

lated from ERA5 data have been compared with sounding data and the MERRA-2 (Mod-

ern-Era Retrospective Analysis for Research and Applications version 2, Gelaro et al. 

2017) reanalysis by Taszarek et al. (2020). ERA5 performs better than MERRA-2 for all 

variables but underestimates both mean and extreme values of CAPE and wind shear 

compared to rawinsoundings.  

An important consideration when relating cell properties to environmental conditions 

from reanalysis is the spatial and temporal representativity of the reanalysis data. Precipi-

tation scaling has been shown to depend on the timing of the temperature recording rela-

tive to the storm occurrence (Lenderink et al. 2011). Downdrafts and evaporative cooling 

of rain associated with convective storms lead to a decrease in surface temperature. Visser 

et al. (2021) found that using sub-daily atmospheric conditions before the start of the 

storm for determining scaling rates results in increased consistency of the scaling rates. 

However, since we use a reanalysis that parameterizes convection it cannot be expected 

that the diurnal cycle of convective precipitation is perfectly represented. The convection 

parameterization might trigger precipitation prematurely which leads to depleted CAPE 

and decreased dew point temperature, and thus the environmental conditions before storm 
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onset do not necessarily represent the determining conditions for storm development. For 

these reasons, we relate convective environmental conditions at two different times to cell 

properties. By default, we assign each cell to the 3-hourly values of CAPE, SH, and Td 

before storm onset at its onset location. Additionally, we test the influence of sub-daily 

variability by using daily mean values.  

 

A.3 Methods 
A.3.1 Convective cell tracking 
 

Because of its high temporal and spatial resolution, the radar data allows for a quasi-

continuous monitoring of convective cells. We use a tracking algorithm to derive convec-

tive cell properties from the radar data. The algorithm is described in detail in Purr et al. 

(2019). In summary, convective cells are tracked in three major steps: 

 

1. Contiguous precipitation areas with precipitation intensity above a threshold of 8.5 

mm/h (within 5 minutes), are identified in the current and the subsequent time step 

as potential convective objects. The minimum cell area is set to four grid points. 

2. Wind information from the ERA5 reanalysis is used to predict the position of the 

cell at the subsequent time step. To this end, a “cone of detection” is set up for 

each pixel of every cell in the current time step. If a new cell is present in the cone, 

a probability value is assigned to the origin pixel of the cone, which links this pixel 

to the new cell.  

3. The probability values of all pixels are summed up for each cell. If a single cell is 

present in the cone, the corresponding objects from the current and the subsequent 

time step are connected. If multiple cells are present, the current cell is associated 

with the cell with the highest probability in the subsequent time step. 

 

Cells must have a lifetime of at least three time steps, equal to 15 min, to be considered 

for analysis. This condition ensures that potential radar artifacts are not considered in the 

analysis. Cell mergers and splits are dealt with as follows: If two cells merge, the cell 

track with the higher probability of cell association is continued. The other track is re-

garded as an individual track in itself. The same applies to cells that split. The properties 

that are obtained by the algorithm for each cell are: (1) lifetime ; (2) mean intensity, i.e., 

the temporal and spatial mean over the entire lifetime; (3) maximum intensity, i.e., the 
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highest grid-point intensity during the entire lifetime; (4) maximum area, defined as the 

maximum instantaneous area over the entire lifetime; (5) precipitation sum, i.e., the total 

spatial and temporal precipitation sum over the entire lifetime; and (6) mean speed, de-

fined as the temporal mean speed of the cells’ center of mass. The center of mass is de-

fined as average position of all cell pixels, weighted according to their precipitation inten-

sity. Figure A1 provides an example of detected cells and a selected cell track (red line). 

 

 

Figure A1: Radar snapshot of a convective cell. Shown is the 5-min precipitation intensity on 30 May 2008 at 21:50 (UTC) in 
colors and an exemplary detected cell track as a red line. The track starts with cell detection at 21:00 (UTC) and is shown up to 
the time of the snapshot. 

 

A.3.2 Calculation of scaling rates 
 

To investigate the influence of environmental conditions on cell properties, cells are 

grouped into 23 bins of dew point temperature, CAPE, or wind shear. The bin width var-

ies in such a way that there is an approximately equal number of cells in each bin. As 

there are a total of ca. 1,350,000 cells in the area and period of investigation, there are 

about 60,000 cells in each bin.  

The scaling rates c# as function of dew point temperature 3* are computed for the highest 

percentiles p (90
th

, 95
th

, 99
th

, and 99.9
th

) of all cell properties as the average fractional 

change of the respective quantity (e.g., precipitation sum, maximum intensity, etc.) Q 

from bin i to i+1 as: 
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 c#4 =
∑ K#,*+,
*-.
(9

= fg
L#,*/.
L#,*

/(3*	B72 − 3*	B)  

Td i denotes dew point temperature of the respective bin i. 

 

A.4 Results 
A.4.1 Univariate dependence of cell properties on environmental variables 
 

The environmental variables influence the investigated cell properties, maximum intensi-

ty, maximum area, and precipitation sum by varying degrees. In general, an increase in 

CAPE or dew point temperature increases the severity of convective cells as expected. 

Foremost, maximum intensity (Figure A2a and Figure A2b) and area (Figure A2d and 

Figure A2e ) increase with these variables. To a lesser extent, lifetime of convective cells 

increases, too (Figure A2g and Figure A2h). The 75
th

 (99
th

) percentile of lifetime increas-

es from 30 min (95 min) for CAPE values between 0 and 0.75 J/kg to 40 min (140 min) 

for CAPE values above 1284 J/kg. The maximum area of cells is relatively constant for 

low CAPE values up to ~200 J/kg and increases for higher values. In contrast, it increases 

more uniformly with dew point temperature.  

The maximum intensity increases approximately linearly with CAPE and exponentially 

with dew point temperature (note the varying bin widths in Figure A2a and A2b). Wind 

shear exerts a strong control on cell area (Figure A2f). While the 99
th

 percentile of cell 

area is 85 km
2
 for the wind shear class 0-2 m/s, it is 160 km

2
 for wind shear above 25 m/s. 

Interestingly, the maximum cell intensity decreases with wind shear (Figure A2c). As a 

result, the total precipitation sum per cell increases strongly with increasing CAPE and 

dew point temperature but only slightly with increasing wind shear (Figure A2j-l). The 

overall increase in maximum intensity and precipitation sum with CAPE is non-

monotonic for very low CAPE values with decreasing values from 0 J/kg to 10 J/kg. This 

decrease is smaller when using daily mean CAPE values. For example, the 99
th

 percentile 

of maximum intensity decreases from 113 mm/h for CAPE values between 0 J/kg and 0.8 

J/kg to 95 mm/h for values between 10 J/kg and 15.5 J/kg when using CAPE values be-

fore storm onset whereas it increases from 85 mm/h to 87 mm/h when using daily mean 

CAPE values. The mean cell speed is constant across the dew point range, decreases 

slightly with increasing CAPE values, and increases with wind shear (not shown). How-

ever, an increase in wind shear leads to a smaller increase in cell speed. While the median 
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cell speed is 7.0 m/s in the 0 m/s wind shear bin it increases to 14 m/s for 27.5 m/s wind 

shear. 

 

Figure A2: Dependence of cell properties on environmental variables. Cells are grouped into bins as explained in section A3.2. 
The lower and upper hinges denote the 25th, and 75th percentiles, respectively. The lower and upper whiskers denote the 5th and 
99th percentiles, respectively. Note the logarithmic y-axis. 

 

Maximum intensity scales consistently over the dew point range at the CC-rate, except for 

very high Td suggesting that maximum intensity is mainly constrained by moisture avail-

ability (Figure A3a). The scaling rates range from 7.7 %/K for s99 to 8.0 %/K for s95. In 

contrast, cell area scales at different rates below and above a threshold of ~12 °C. The 

scaling rates are below the CC-rate below this threshold and at about the 2*CC-rate above 

this threshold (Figure A3b). Furthermore, the scaling rates of the different percentiles are 
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more variable than for maximum intensity with values from 8.4%/K for s90 to 11.4%/K for 

s99.9. These varying rates suggest that area is not controlled by dew point temperature 

alone and that the scaling rates are influenced by other variables like vertical wind shear. 

Like cell area, the total precipitation sum also shows an increase in scaling rates with dew 

point temperature (Figure A3c). However, there is no distinct shift but a gradual increase 

of scaling rates from about the CC-rate at low dew point temperatures to more than 

2*CC-rate at high dew point temperatures. Using daily mean Td instead of the value be-

fore storm onset does not change the shape of the scaling curves and influences the scal-

ing rates only slightly. The scaling rates for maximum intensity increase to a range of 

8.1%/K (s99) to 8.5%/K (s99.9). The scaling rates for cell area and precipitation sum per 

cell using daily mean Td are similar to the scaling rates using environmental conditions 

before storm onset. 

Concerning the possible uncertainty estimation of scaling rates, the data set does not pro-

vide error ranges. However, the data set was evaluated against gauge data by Kreklow et 

al. (2020) who found an underestimation of high intensity precipitation. As the highest 

precipitation intensities occur predominantly at high dew point temperatures, this under-

estimation implies that the radar-based scaling rates can be seen as the lower bound of the 

real scaling rates.  

It has been shown that the occurrence of moderate hourly precipitation (>15mm/h) is 

clearly coupled to orography, whereas extreme precipitation (>40 mm/h) is independent 

from orography (Lengfeld et al. 2019). For this reason we separately investigated low-

land and mountainous regions, defined as areas below or above 400 m elevation, to de-

termine any differences in the scaling depending on region. However, no difference in 

scaling between low-lands and mountainous regions was found. 
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Figure A3: Dew point scaling of the cell properties (a) maximum intensity, (b) maximum area, and (c) precipitation sum (in blue). 
For orientation, the scaling CC- and 2xCC-rates are given (black). Note the logarithmic y-axis. 

 

A.4.2 Multivariate dependence of cell properties on environmental variables 
	
We investigate cell properties and frequency of cells depending on combinations of envi-

ronmental variables. In CAPE-SH space, the convective cells occur mainly at low CAPE, 

high shear values (SH) or high CAPE, low shear values (Figure A4a). While for low 

CAPE convection seems implausible at first sight, low CAPE, high shear convection is 

frequently observed in the US (see e.g. Sherburn et al. 2016). Besides, it cannot be com-

pletely ruled out that strong stratiform precipitation cells are detected by the tracking al-

gorithm.	
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Figure A4: (a-c) Occurrence of cells depending on values of the environmental variables CAPE, dew point temperature Td, and 
wind shear SH. Note the different colour bar in subfigure (c). 

InTd-SH-space (Figure A4b), the cell numbers are approximately homogeneously distrib-

uted. However, there seems to be a slightly increased number of cells occurring at low Td 

and high shear values, which are separated from cells occurring at higher Td values. These 

cells could be related to fronts, which are characterized by high wind shear and may occur 

at low Td values. In CAPE- Td -space, the highest number of cells occurs at very high 

CAPE and Td values. Furthermore, cells are concentrated along a corridor of increasing 

CAPE and Td values (Figure A4c). The reason for this is that CAPE increases with Td. We 

find an increase of the highest percentiles of daily maximum CAPE with daily Td for all 

days of the investigation period 2001-2016 at varying rates well above the CC-rate in the 

ERA5 reanalysis (Figure A5). The 95
th

 percentile increases at rates around 4x CC-rate 

while the 99.9
th

 percentile increases at around 3x CC-rate for dew point temperatures 

above 7 °C. These values are well above the CC-increase found in a simplified model 

which simulates peak CAPE under varying boundary-layer moisture in a continental envi-

ronment (Agard and Emanuel 2017).  

 

Figure A5: Increase of daily maximum CAPE with dew point temperature. 
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The most extreme cells, in terms of maximum intensity, area and precipitation sum, occur 

at high CAPE, Td, and SH values (Figure A6). Low-CAPE, high-shear cells are not among 

the most extreme cells but have the lowest maximum intensity (Figure A6d). Again, wind 

shear is correlated predominantly with the area of cells (Figure A6a and Figure A6c) and 

has little influence on the maximum intensity of cells (Figure A6d and Figure A6e). 

 

 

Figure A6: 99th percentile of cell properties depending on environmental variables CAPE, dew point temperature Td, and wind 
shear SH. 

The influence of CAPE and wind shear on dew point scaling is investigated by classifying 

convective cells according to their environmental CAPE and wind shear values. Cells are 

classified as “Low CAPE” cells if they occur in conditions below the median value of 

87.5 J/kg or as “High CAPE” cells if they occur at a higher value. Similarly, cells are 

classified as “Low Wind Shear” cells if they occur in conditions below the median value 

of 11.2 m/s or as “High Wind Shear” cells if they occur at a higher value. Classifying the 

cells according to environmental CAPE shows the effects of the general increase of 

CAPE with dew point: cells which occur at low dew point temperatures, occur predomi-
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nantly at low CAPE values. Thus, the scaling curves of all cells shift gradually from the 

“Low CAPE” curve at low dew point temperatures to the “High CAPE” curve at high 

dew point temperatures (Figure A7a,c,e). The effect is smallest for the maximum area 

(Figure A7a), where it is only present for low dew point temperatures up to 12 °C, and 

larger for maximum intensity (Figure A7c) and precipitation (Figure A7e).  

Concerning the influence of wind shear, the scaling curves of the 99
th

 percentile are at 

higher values for the maximum area (Figure A7b) and the precipitation sum (Figure A7f) 

for “High Wind Shear”, whereas there is little influence on maximum intensity (Figure 

A7d) which is in line with the findings in the previous section. In contrast to CAPE, the 

scaling rates do not differ between cells occurring at high or low wind shear conditions 

and all the cells. 
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Figure A7: Dew point scaling of the cell properties maximum area, maximum intensity, and precipitation sum (in blue) depending 
on CAPE (left column), and wind shear (right column). For orientation, the scaling CC- and 2x CC-rates are given (black). Note 
the logarithmic y-axis. 

A.4.3 Relation of cell properties to precipitation at fixed location 
 

We now investigate the relationship between Lagrangian cell properties and their poten-

tial to cause extreme precipitation for fixed locations. We use two methods to describe 

this relationship: (1) calculation of fixed location precipitation potential using Lagrangian 
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cell properties, (2) selection of all heavy precipitation events at fixed locations and inves-

tigation of the convective cells which caused these extreme events. 

 

(1) Precipitation potential for fixed locations 

 

To investigate the influence of wind shear on scaling for fixed location, we define the 

fixed location precipitation potential FDE for each cell. The purpose of this quantity is to 

derive a measure of how much each convective cell can precipitate at a fixed location 

based on its mean Lagrangian properties as derived from the tracking algorithm. FDE is 

calculated as 

 

FDE = j ∗ # = min	(j ∗
F

"
, j ∗ f) = min	(j ∗

(√H

"√I
, j ∗ f) , 

 

where j	denotes the mean precipitation intensity, # the duration of precipitation, n the 

diameter calculated based on the mean area of the cell, o the mean speed, E the cell area 

and f the lifetime of the cell. The duration of the rain event at fixed location is either cal-

culated as the minimum of the diameter divided by the mean cell speed or taken as the 

cell lifetime. This condition accounts for the fact that a precipitation event at fixed loca-

tion can only last as long as the moving cell causing it.  

FDE shows varying scaling regimes over the dew point range (Figure A8a). It increases at 

rates below the CC-rate for dew point temperatures below ~11°C and slightly above the 

CC-rate, at a rate of 8.8%/K, above 11°C. The different percentiles increase at approxi-

mately similar rates. Concerning the influence of wind shear, the fixed location precipita-

tion potential decreases with increasing wind shear (Figure A8b). 
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Figure A8: (a) Scaling of fixed location precipitation potential with dew point; (b) Wind shear dependence of fixed location pre-
cipitation potential. 

Convective cells causing heavy precipitation events 

 

We define heavy precipitation events at fixed locations as events with a precipitation 

amount of more than 25 mm in 1 h within an area of 1 km
2
 (equal to one grid box of the 

radar data set). This definition follows the warning criterion for severe precipitation (at 

level 3 out of 4) of Deutscher Wetterdienst. A convective cell is connected to a heavy 

precipitation event if it passes the grid box of heavy precipitation within the hour of its 

occurrence. 

Cells that cause heavy precipitation at fixed locations (abbreviated as hp-cells from now 

on) move comparably slow (Figure A9a). The median cell speed of hp-cells is 8.3 m/s 

compared to 9.3 m/s for all cells. As cell speed is largely determined by wind shear, the 

frequency distribution of wind shear for hp-cells is also shifted to lower values compared 

to all cells (Figure A9b). 

 

Figure A9: Frequency densities of (a) cell speed of all cells and hp-cells, and (b) environmental wind shear for all cells and hp-
cells. 
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A.5 Discussion and conclusion 
 

We showed that Lagrangian cell properties scale with dew point temperature at varying 

rates under current climate conditions. The maximum intensity of cells scales consistently 

at the CC-rate, implicating that the maximum intensity of cells is governed by thermody-

namics. The area of cells increases at varying rates, namely at the CC-rate below 12 °C 

and at 2x CC-rate above, which implicates a dynamic control. Indeed, cell area is strongly 

influenced by vertical wind shear, with higher wind shear leading to larger cells. This be-

havior reflects the well-known increase of convective organization by vertical wind shear. 

In contrast, wind shear has very little influence on the maximum intensity of cells. The 

precipitation sum scales at above CC-rate with higher scaling rates at higher dew point 

temperature. In summary, the strongest convective cells as measured by the precipitation 

sum per cell occur at high wind shear, high CAPE and high dew point conditions.  

Scaling for fixed location is lower than the Lagrangian scaling rate of total precipitation 

sum per cell due to the compensating effect of higher cell speed at high wind shear. The 

scaling rate of fixed precipitation potential (8.8%/K) is in line with other studies which 

report super-CC scaling for Germany (Berg et al. 2013, Ali et al. 2021). Thus, local dif-

ferences in scaling rates of sub-daily precipitation at fixed location, which vary between 

the CC-rate and 2x CC-rate, are modulated by differences in properties of convective 

storms. While we cannot distinguish between different processes discussed in the litera-

ture, like a positive feedback loop of cloud dynamics or the effect of self-organization in 

the current analyses, we point out that the increase of environmental CAPE with dew 

point temperature can serve as an explanation for super-CC scaling of sub-daily precipita-

tion without assuming changes in the storm dynamics. Although it is well known that 

moist air is less dense, little attention has been paid to the fact that buoyancy (as measured 

by CAPE) increases with dew point on climatological time scales when discussing super 

CC-scaling of sub-daily extreme precipitation. We conclude that super-CC scaling is at 

least partially caused by more unstable stratification of the pre-storm environment at high 

dew point temperatures.  

The role of convective self-organization for the intensification of convective precipitation 

is currently an active area of research (e.g. Moseley, 2016, Lochbihler et al. 2019). Con-

vective self-organization describes the process of convective cells to form clusters that 

tend to produce higher precipitation intensities and react differently to environmental 

conditions than unorganized convection. Often, convective self-organization is investigat-
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ed by tracking precipitation and differentiating between cells that merge or split and soli-

tary tracks. Preliminary analyses show that the average number of splits and mergers per 

cell increases consistently with increasing dew point temperature from ca. 0.2 splits and 

merges per cell at 6 °C to 0.95 at 19 °C. Further investigations are needed to understand 

the role of mesoscale organization and the role of cold pools in detail. 

The fact that scaling rates are modulated by vertical wind shear and CAPE makes it un-

likely that present scaling rates for fixed locations can be transferred into the future. 

However, the results obtained in this paper can be used to infer how convective events 

might change by using a more quantitative description, like multivariate regression, of the 

relationship of cell properties to environmental conditions. As an alternative to purely 

statistical inference, convection-permitting climate simulations can be used to investigate 

changes in convective cells. As shown in Purr et al. (2021), the dew point scaling of con-

vective cell properties is similar in present and future conditions for the highest percen-

tiles. Thus, the dew point scaling of cell properties shown in section 4.1 might also be 

valid in the future climate. However, the frequency distribution of cells depending on dew 

point temperature changes. To understand the changes in the frequency distribution, other 

variables might have to be taken into consideration. For example, changes in convective 

inhibition have been shown to change the population of convective cells in the future 

(Rasmussen et al. 2020). These changes potentially include a decreasing number of slow-

moving convective cells in the afternoon (Purr et al. 2021). Combined with the fact that 

slow-moving cells have a higher potential for heavy precipitation at fixed location as 

shown in section 4.3 this indicates a compensating effect on heavy precipitation. Again, 

this illustrates the fact that present scaling rates at fixed locations cannot simply be ex-

trapolated into the future (Fowler et al. 2021). Future research should investigate the role 

of different formulations of convective parameters like storm relative helicity or lifted 

index to better understand the organization of convective storms. Furthermore, the role of 

fronts and convergence lines as trigger mechanisms and the effect of orography or urban 

areas for triggering and enhancing convective cells should be further investigated. 
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Abstract 
 

This paper evaluates convective precipitation as simulated by the convection-permitting 

climate model (CPM) Consortium for Small-Scale Modeling in climate mode (COSMO-

CLM) (with 2.8 km grid-spacing) over Germany in the period 2001–2015. Characteristics 

of simulated convective precipitation objects like lifetime, area, mean intensity, and total 

precipitation are compared to characteristics observed by weather radar. For this purpose, 

a tracking algorithm was applied to simulated and observed precipitation with 5-min tem-

poral resolution. The total amount of convective precipitation is well simulated, with a 

small overestimation of 2%. However, the simulation underestimates convective activity, 

represented by the number of convective objects, by 33%. This underestimation is espe-

cially pronounced in the lowlands of Northern Germany, whereas the simulation matches 

observations well in the mountainous areas of Southern Germany. The underestimation of 

activity is compensated by an overestimation of the simulated lifetime of convective ob-

jects. The observed mean intensity, maximum intensity, and area of precipitation objects 

increase with their lifetime showing the spectrum of convective storms ranging from 

short-living single-cell storms to long-living organized convection like supercells or 

squall lines. The CPM is capable of reproducing the lifetime dependence of these charac-

teristics but shows a weaker increase in mean intensity with lifetime resulting in an espe-

cially pronounced underestimation (up to 25%) of mean precipitation intensity of long-

living, extreme events. This limitation of the CPM is not identifiable by classical evalua-

tion techniques using rain gauges. The simulation can reproduce the general increase of 

the highest percentiles of cell area, total precipitation, and mean intensity with tempera-

ture but fails to reproduce the increase of lifetime. The scaling rates of mean intensity and 
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total precipitation resemble observed rates only in parts of the temperature range. The 

results suggest that the evaluation of coarse-grained (e.g., hourly) precipitation fields is 

insufficient for revealing challenges in convection-permitting simulations. 

 
Keywords: precipitation; tracking; convective storms; convection-permitting simulation; 

COSMO-CLM 

 

B.1 Introduction 
 

The correct representation of deep convection in climate models is essential for assessing 

the risks associated with this phenomenon like wind gusts, hail, lightning, and flash 

floods. Convection-permitting climate models (CPMs) that simulate deep convection ex-

plicitly improve the representation of the diurnal cycle of precipitation and the simulation 

of extreme precipitation intensities on short time scales compared to models that parame-

terize convection (Ban et al. 2014, Kendon et al. 2014, Prein et al. 2015, Brisson et al. 

2016). The vast majority of studies evaluating precipitation in CPMs use rain gauge data 

or gridded precipitation data sets based on gauge data as observations. However, this tra-

ditional evaluation of precipitation has limitations for evaluating convective precipitation 

since the typical dimension of convective storms is smaller than the distance between sta-

tions. This can lead to an underestimation of storm frequency and storm peak intensity 

(Schroeer et al. 2018a). An evaluation of the space-time dynamics of convective cells re-

quires the finer spatial and temporal resolution of remote sensing techniques. Since the 

temporal and spatial resolution of radar data is finer than the characteristic scales of con-

vective clouds, it allows for continuous tracking of convective cells over their life cycle. 

Although mainly used for now-casting purposes, tracking of radar data to derive charac-

teristics of convective cells on climatological time scales has been done in a few studies, 

for example by Lochbihler et al. (2017) or Moseley et al. (2013). Precipitation output of 

convection-permitting climate models has rarely been used for tracking so far. Brisson et 

al. (2017) simulated selected days of high convective activity and compared the life cycle 

of precipitation intensity of convective cells to radar data. Prein et al. (2020) conducted a 

comparison of hourly precipitation from a CPM and radar data in order to evaluate the 

model’s capability to simulate mesoscale convective systems in North America. To the 

authors’ knowledge, sub-hourly precipitation output from continuous CPM simulation has 
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not been evaluated yet. This is why we apply a tracking algorithm to 5-min precipitation 

output of a CPM and to a newly developed 5-min precipitation climatology based on 

gauge adjusted radar data. The first aim of this study is to evaluate the characteristics of 

convective precipitation objects (the term convective cells is used synonymously from 

now on) in a CPM in terms of lifetime, mean precipitation intensity, area, and total pre-

cipitation. 
Because of climate change, the hydrological cycle is expected to intensify with increasing 

temperatures, leading to changes in intensity, frequency, and duration of precipitation 

events Trenberth et al. (2003). The question of how the characteristics of deep convection 

and the accompanying extreme short-term precipitation events will change is still being 

discussed. Observational studies (Lenderink and van Meijgaard 2008; Berg et al. 2003) 

have reported intensification of hourly precipitation above the Clausius–Clapeyron rate 

(the increase of the saturation water vapor pressure with temperature) of ca. 7%/K. Dif-

ferent hypotheses have been suggested to explain this behavior, for example, the invigora-

tion of convective cells through a positive feedback loop caused by increased moisture 

availability at higher temperatures leading to increased latent heat release in the updraft of 

convective cells, which, in turn, leads to higher updraft speeds and increased moisture 

convergence at the cloud base (Lenderink et al. 2017). Moseley et al. 2013 investigated 

the life cycle of convective precipitation cells by tracking radar data. They showed a 

stronger increase in mean intensity of convective precipitation cells with temperature than 

for stratiform cells. The application of a tracking algorithm allows us to investigate the 

temperature dependence of cell characteristics. Therefore, the second aim of this study is 

to gain insights into how well the model can reproduce the temperature scaling of cell 

characteristics observed in the radar data. 
The paper is structured as follows: In the following section, the model setup and the radar 

data will be introduced, followed by a description of the cell tracking algorithm. The sub-

sequent result section starts with an evaluation of stationary precipitation statistics. Af-

terward, the characteristics and spatial distribution of convective cells in the convection-

permitting simulation are compared to the radar data. The section is concluded by the in-

vestigation of the temperature dependence of the cell characteristics. In the final section, 

the results are summarized, and conclusions are drawn. 

 

B.2 Data and Methods 
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B.2.1 Model Setup 
 

The Consortium for Small-Scale Modeling model in climate mode (COSMO-CLM, from 

now on abbreviated as CCLM) is used to downscale the European Centre for Medium-

Range Weather Forecast Interim Reanalysis (ERA-Interim) to a horizontal grid spacing of 

0.025° (≈2.8 km) via an intermediate nest with a grid spacing of 0.22° (≈25 km). At the 

lateral boundaries of the simulation domain, the model is nudged towards the driving data 

using Davies relaxation (Davies 1976). Within the simulation domain, no nudging is ap-

plied. The model domain of the inner nest covers central Europe (Figure B1). The CCLM 

is a non-hydrostatic limited-area climate model based on the COSMO model (Steppeler et 

al. 2003), a model designed by the Deutsche Wetterdienst (DWD) for operational weather 

predictions. The climate limited-area modeling (CLM) community adapted this model to 

perform climate projections (Böhm et al. 2003, Rockel et al. 2008). We use the version 

COSMO5.0clm7 with the following setup. For time integration, the 5th order Runge–

Kutta split-explicit time-stepping scheme is used with a time step of 25 s. The lower 

boundary fluxes are provided by the TERRA model. The radiative scheme is the Ritter 

and Geleyn scheme (Ritter and Geleyn 1992) and is called every 15 min. As recommend-

ed in Brisson et al. 2015, we use a one-moment microphysics scheme, including graupel 

in the finest nest, which provides a more realistic representation of deep convective 

clouds. While the parameterization of deep convection is switched off, shallow convec-

tion is still parameterized using the convection scheme after Tiedtke et al. (1989). The 

simulation covers the period from 1983 to 2015. Surface temperature and precipitation 

output are stored every 5 min. Since the evaluation data set is available from 2001, the 

evaluation period is 2001–2015. 
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Figure B1: Model domain and model orography. 

 
B.2.2 Radar Data 
 

As a reference for the model evaluation, we use the radar-based precipitation climatology 

developed by DWD (Winterath et al. 2017). This precipitation data set is based on radar 

data that has been quality checked and adjusted to rain gauge measurements. The correc-

tion steps used for this product to derive precipitation from radar reflectivity include clut-

ter filtering, distance-dependent signal correction, and removal of radar spokes. For the 

tracking, we use the 5-min dataset (YW-product) (Winterath et al. 2018a). For the com-

parison of mean precipitation and for the comparison of stationary hourly precipitation 

intensities, we use the hourly dataset (RW-product) (Winterath et al. 2018b). The full data 

set covers the time period 2001–2018. The data set has a spatial grid resolution of 1 km × 

1 km. For the evaluation, the radar data is conservatively remapped to 2.8 km × 2.8 km. In 

order to assess the impacts of this remapping on the tracking results, the results of track-

ing the data in the original resolution are often shown in addition. 

 
B.2.3 Tracking Algorithm 

 

To obtain the characteristics of convective objects from model and radar data, we use a 

tracking algorithm. The tracking consists of three major steps: 
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Contiguous precipitation areas with precipitation intensity above a threshold of 8.5 mm/h 

(within 5 min), potential convective objects, are identified in the current and the subse-

quent time step. Contiguous areas are defined as pixels that share a common edge. 
Wind information is used to predict the position of the object at the subsequent time step. 

To this end, a “cone of detection” is set up for each pixel of every object, and the cone is 

swept for precipitation objects from the subsequent time step. The axis of the cone is de-

fined by the wind direction; the length of the cone is calculated as twice the wind speed. 

The opening angle of the cone is 45°. If a new cell is present in the cone, a probability 

value is assigned to the origin pixel of the cone, which links this pixel to the new cell. The 

probability value is highest in the center of the cone and drops off exponentially in all 

directions. As an example, Figure B2a shows the probability values for a single pixel in 

the case of purely westward wind. In this case, the probability is calculated according to 

the following formula: 

Prob(0,0) = exp	(−](YNOPQ − y)( + `
XRST
2

− xb
(

) 

 

 

where x and y are the indices in x and y direction starting at the original pixel (0,0). The 

parameter Ycent denotes the centerline of the cone, and Xmax is the length of the cone, as 

determined by the wind data. This procedure is repeated for wind information in three 

height levels (500, 700, and 850 hPa). Afterward, the height dependent probability values 

are averaged to obtain the final probability value. 
In the next step, the probabilities of all pixels are summed up for each cell. If one single 

object is present in the cone, the corresponding objects from the current and the subse-

quent time step are connected. If multiple cells are present, the current cell is associated 

with the cell with the highest probability in the subsequent time step. 
The characteristics that are extracted by the algorithm are cell lifetime, mean intensity, 

maximum intensity, area, cell speed, and track length. It should be noted that merges and 

splits of objects are not accounted for. If two cells merge, the cell track with the higher 

probability of association is continued, whereas the other track ends. The track that is not 

continued is regarded as an individual track in itself. Figure B2b shows an example of a 

tracked precipitation object. 
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Figure B2: Visualization of the tracking algorithm: (a) detection probabilities for a cone with Xmax = 8 and Ycent = 0 (assuming 
a grid size of 1 km × 1 km and a time step of 5 min, this is equal to a westward wind of ca. 13.3 m/s), and (b) radar snapshot of a 
cell (shown is the 5-min precipitation intensity on 30 May 2008 at 21:40 (UTC) in colors and the detected cell track as red line). 

 

Only cells with a lifetime of at least three time steps (=15 min) are considered for analy-

sis. This condition reduces the chances of misinterpreting single clutter pixels in the radar 

data (which are still present but heavily reduced compared to operational radar products) 

as convective cells. Furthermore, the algorithm only selects precipitation areas larger than 

four grid boxes for the same reason. For consistency, this requirement is also kept when 

tracking the model data. This requirement is also justified because the effective resolution 

of any numerical model is always coarser than the grid spacing. When applying the track-

ing algorithm to the model data, the model data is conservatively remapped to the polar 

stereographic projection of the radar data in order to have both data sets on a common, 

equidistant grid for ease of comparison. The wind information used for estimating the 

position of each cell at the subsequent time step is taken from the ERA-Interim reanalysis 

in case of the radar data. In the case of the simulation data, the wind information from the 

intermediate nest driving the finer simulation is used. 
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B.3 Results and Discussion 
 

B. 3.1 Precipitation Statistics 
 

We first evaluate the mean precipitation sum in the simulation with respect to the radar 

climatology on the common 2.8-km grid. The highest precipitation amount is found in the 

Alps (Figure B3). Least precipitation occurs in the North-East of Germany. The mean 

daily precipitation in observation and simulation data is 2.0 mm/d and 1.7 mm/d, respec-

tively, resulting in a 14% underestimation of total precipitation in the simulation. Consid-

ering that no bias correction (Dobler and Ahrens 2008) has been applied, this is in line 

with other CPM evaluations. The model overestimates precipitation in mountainous re-

gions, especially in the Black Forest in southwest Germany, and underestimates it in the 

lowlands of Northern Germany. This points to an overestimation of the orographic inten-

sification of precipitation in the simulations. Unfortunately, no measurement uncertainty 

is provided for the radar data. Since other gridded precipitation data sets also show con-

siderable deviations from each other (Prein and Gobiet 2017), a detailed comparison of 

the radar data set to other precipitation data would be beneficial. In a first comparison to a 

daily gridded observational dataset for precipitation, temperature, and sea level pressure 

in Europe (E-OBS, version 20.e, Cornes et al. 2018), we find that areal mean precipitation 

in the radar data is 5.9% smaller than in E-OBS. This is in line with Winterrath et al. 

(2017), who compared the radar data to a station-based data set and found the precipita-

tion amount in the radar data to be smaller, especially in mountain areas. The spatial pat-

tern of underestimation in the North and overestimation in the mountains is also present 

when comparing the simulation to the E-OBS data set (not shown). 

We restrict our analysis of convective cells to the summer half-year from April to Sep-

tember because convective precipitation mainly occurs in this period. The mean observed 

and simulated summer precipitation (April to September) is 2.3 mm/d and 1.5 mm/h, re-

spectively, resulting in an underestimation of 34% in the simulation. Taking into account 

that convective precipitation occurs almost exclusively in the summer months in Germa-

ny, this indicates that the model underestimates convective precipitation more than strati-

form precipitation. The underestimation is strongest in Northern Germany, while more 

realistic precipitation amounts are simulated in the South. 
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Figure B3: Mean precipitation intensities and differences in the period 2001–2015; (a–c) full year; (d–f) summer half-year 
(April–September). 

The simulated probability distribution of hourly precipitation compares well with the ob-

served one (Figure B4). The observed wet hour frequency defined as hours with precipita-

tion above 0.1 mm/h is 8.5 %; the simulated wet hour frequency is 9.6%. The Perkin’s 

Skill Score (PSS), which calculates the overlapping area between observed and modeled 

probability distribution function (Perkins et al. 2007), is 0.89 for the wet hour frequency. 

The simulation considerably underestimates precipitation occurrence in the range below 

12 mm/h. This range contributes 95% to the total observed precipitation sum and is un-

derestimated by ca. 28%. The precipitation sum resulting from intensities between 12 

mm/h and 50 mm/h is overestimated by 12%. The occurrence of hourly precipitation 

sums above 50 mm/h is underestimated by 32%. Considering the 5-min intensity distribu-

tion, the model always underestimates precipitation intensity. The drop-off at the highest 

5-min intensities corresponds well with the drop-off at the hourly time scale. However, 
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the fact that there is no overestimation of high intensities corresponding to the one at the 

hourly time scale points to differences in the dynamics of convective cells. 

 
Figure B4: Frequency distribution of (a) hourly and of (b) 5-min precipitation intensities from radar observations (black) and 
CCLM simulation (red). 

B.3.2. Frequency and Characteristics of Convective Cells 
 

In this subsection, we compare the simulated frequency distributions of cell characteris-

tics with the radar characteristics. The simulation underestimates convective activity, rep-

resented by the total number of convective cells, by 33%. Convective precipitation, calcu-

lated as the precipitation sum of all convective cells, is very well matched with an overes-

timation of 2%. The lifetime of convective cells ranges from 15 min (the lowest possible 

value as set by the tracking algorithm) to 7 h (Figure B5). As expected, short-living cells 

are the most common form of convective cells. The simulation captures but underesti-

mates the decrease in frequency with lifetime and produces too many long-living and too 

few short-living cells. Comparing the lifetime distributions of the simulation and re-

mapped radar data yields a PSS of 0.84. A possible reason for the overestimation of cell 

lifetime could be that tracks are more often lost in the radar data than in the simulation 

data by the tracking algorithm. The reason for this is that radar data provide snapshots of 

precipitation, whereas, in the model, precipitation is accumulated, which leads to a 

smoother precipitation field. This difference of accumulated versus instantaneous precipi-

tation also has a small influence on cell size and mean intensity. To estimate how many 
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tracks are wrongfully split up by the tracking algorithm, we investigate the cell size at the 

first occurrence of the cell. If the cell only just started its life cycle, one would expect a 

small size close to the lower boundary of five grid points. If, on the other hand, the cell is 

the second part of a track that was wrongfully split up, it will have a larger extent. If we 

consider an initial area larger than 10 grid points (80 km
2
) to be unrealistically large and 

discard those cells, then the underestimation of convective activity is only slightly re-

duced to 28%. 

The frequency distributions of cell area and total precipitation per cell are very well 

matched with a PSS of 0.99 and 0.98, respectively. There are too few high-intensity cells. 

The PSS for the mean intensity is 0.86. 

 
Figure B5: Frequency distributions of the cell characteristics (a) lifetime, (b) total precipitation, (c) maximum area, and (d) mean 
cell intensity as observed by the radar (black), by radar remapped to the model grid (blue) and simulated (red). 

To verify that it is really the long-living convective cells that have a high intensity and 

area, Figure B6 shows the distributions of mean intensity and of maximum area depend-

ing on the lifetime of the convective cells. To this end, cells are grouped into lifetime 
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classes of 15-min width. A systematic increase in maximum area and mean intensity with 

lifetime can be seen in both the radar observations and the simulation. While the observed 

median maximum area is 226 km
2
 for cells living 195 to 210 min, the median is only 25 

km
2
 for cells living 15 to 30 min. The observed median values of mean intensity of cells 

in the same lifetime classes are 21 mm/h for long-living and 12 mm/h for short-living 

cells. These relationships indicate that the detected short-living cells can either be single-

cell storms or individual cells of a multicell storm. The long-living, large, and intense 

cells are organized forms of convective systems like squall lines, supercells, and 

mesoscale convective systems. The simulation systematically underestimates the increase 

in mean intensity with lifetime. The increase in maximum area is well matched. 

 
Figure B6: Dependence of (a) cell mean intensity and (b) cell maximum area on cell lifetime for radar observation and CCLM 
simulation. The boxes denote the 25th, 50th, and 75th percentiles. The whiskers denote the 5th and 95th percentile. 

B.3.3 Spatial Distribution of Cell Characteristics 
 

Figure B7 shows the spatial distribution of the occurrence of convective cells. Here, the 

occurrence of convective cells per grid-point for the period 2001–2015 is shown. The 

tracking algorithm stores the area and center of mass for each cell at every point in time. 

For this reason, no information about the actual shape of a cell is available. Instead, the 

cells are reconstructed as squares around the center of mass to match their original size. It 

has to be noted that every occurrence of a cell per 5-minute time step is counted. The val-

ue can, thus, be interpreted as the number of exceedances of a 5-minute precipitation in-

tensity of 8.5 mm/h (the detection threshold of the tracking algorithm). Instead of count-

ing each cell only once (e.g., at its point of largest extent), this method represents the area 

affected by convective cells more realistically because cells can have widely varying are-

as and translation speeds. 
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Mountain ranges facilitate the triggering of deep convection through various processes 

(see Kirshbaum et al. 2018 for a review). Therefore, it is not surprising that the Alps and 

the pre-alpine region show the highest occurrence of convective cells. Low mountain 

ranges also show increased values compared to lowland regions. The overall pattern 

matches the climatology of convective activity derived from lightning data presented in 

Wapler and James 2013. In general, there is a positive North–South gradient in convec-

tive activity. The mean intensity of convective cells is lower over the mountains (not 

shown). This can be explained by the fact that orographically induced convection is early 

in its life cycle in this area and, thus, has a relatively low intensity. 

In general, the simulation is capable of representing the increased convective activity in 

mountain areas. It overestimates the number of convective cells in the South and underes-

timates it in the North (Figure B7). However, there are areas of overestimation and under-

estimation in both parts of the investigated domain. Near the radar locations, overestima-

tion prevails, while areas of underestimation tend to be located furthest away from the 

radar. More cells are initiated in the mountainous areas of Southern Germany than in the 

North. This supports the hypothesis that the more complex topography facilitates the on-

set of convection and, thus, eliminates the negative bias in the cell number present in 

Northern Germany. 

Since the convective activity shows a different pattern in North and South Germany, 

which may be related to the different orography in these regions, we further investigate 

the height dependence of convective activity. Therefore, the convective cells are stratified 

by the terrain height at which they occur. While the cell number is underestimated by 

15% in regions with a terrain height below 400 m a.s.l., the number of cells for terrain 

heights above 400 m a.s.l. is overestimated by 6%. The overestimation of convective pre-

cipitation in mountainous areas is in line with results in Knist et al. (2018), who per-

formed convection-permitting climate simulations over Germany using the WRF-model 

and compared the results to gauge data. 
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Figure B7: Spatial distribution of the number of convective cells; (a) observation, (b) simulation, (c) relative difference CCLM—
radar. 

 
B.3.4 Diurnal Cycle 
 

The diurnal cycle of convective activity in Central Europe has a pronounced maximum in 

the afternoon, which is caused by daytime land surface heating (Pfeifroth et al. 2013). The 

diurnal cycle of convective activity is slightly delayed in the simulation (Figure B8a). The 

afternoon maximum is observed at 15:50 (UTC), while the modeled maximum occurs 

around 16:30 (UTC). The number of cells initiated during the night and morning is well 

matched, whereas the daytime increase of convective activity is too small, resulting in 

36% fewer cells being initiated in the afternoon and evening (between 13:00 UTC and 

20:00 UTC). The maximum number of cell initiation is underestimated by 40%. Com-

bined with the general overestimation of cell lifetime, this leads to an overestimation of 

cells present at each point in time during the night and an underestimation during the time 

of highest activity (Figure B8b). The mean intensity, defined as the mean over all cells of 

spatial mean intensity at every 5-min time step, increases during the daytime. The mod-

eled increase of mean intensity is too weak. 
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Figure B8: Diurnal cycle of convection; (a) cell number at cell initiation (every cell is counted once), (b) cell number at each 
individual time step (cells are counted multiple times, according to their lifetime), and (c) mean intensity of all cells at a certain 
point in time. 

While the peak of convective activity in areas with an elevation below 400 m is underes-

timated, the convective activity above 400 m is well simulated (Figure B9). The sum of 

convective precipitation is overestimated in mountainous areas, which is caused by an 

overestimation of cell size during the daytime, which is especially pronounced in the af-

ternoon. 

 
Figure B9: Dependence of the diurnal cycle of cell initiation. (a) Cells originating over terrain with an elevation <400 m. (b) 
Cells originating over terrain with an elevation >400 m. 

 
B.3.5 Temperature Scaling of Cell Characteristics 
 

In this subsection, we investigate the temperature scaling of cell properties like total pre-

cipitation, area, and mean intensity. We assign the mean daily temperature to each cell. 

Mean daily temperature is chosen instead of, for example, hourly temperature, to mini-

mize the effect of local processes like cold pool formation on the scaling rate (Lenderink 

and van Maijgaard 2008; Barbero et al. 2018). For the radar data, we use ERA-Interim 2-

m temperature of the grid point closest to the origin of the convective cell. For the simula-
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tion data, we use the simulated 2-m temperature at the location of cell origin directly. Af-

terward, we group the convective cells properties total precipitation, maximum area, and 

lifetime and mean intensity into temperature bins of 1 °C width and determine the 90
th

, 

95
th

, and 99
th

 percentile for each bin. 

The scaling of total precipitation, mean intensity, and lifetime and maximum area for both 

radar and simulation data is shown in Figure B10. Shown are the aforementioned percen-

tiles based on the simulation and the remapped radar data. For comparison, the 95
th

 per-

centile of the original radar data is shown additionally. The general underestimation of the 

highest percentiles of the variables mean intensity and total precipitation, as well as the 

overestimation of lifetime, is also visible here. In contrast to these variables, the maxi-

mum area is well represented in the model both in absolute value as well as the scaling 

rate. Generally, the rate at which mean intensity increases with temperature is well repro-

duced by the model. However, the underestimation of precipitation intensity for long-

lasting, organized cells shown in Section B.3.2 is visible in the scaling rates of mean in-

tensity. While the radar data shows an exponential increase up to the highest tempera-

tures, the simulated mean intensity flattens at 20 °C. The largest difference in scaling rate 

appears for the lifetime of convective cells. The radar data shows an increase in lifetime 

of ca. 5% in the temperature range between 13 and 22 °C and flattens at higher tempera-

tures. In contrast to this, the lifetime of convective cells in the simulation is mostly flat 

with small increases only in the low-temperature range and a drop at high temperatures. 

An intensification of convective cells above the Clausius–Clapeyron rate, which supports 

the hypothesis of a positive feedback loop in the strength of convective cells with rising 

temperatures, is apparent from the scaling rate of the total precipitation. The scaling of the 

modeled total precipitation is larger than the Clausius–Clapeyron rate for the whole tem-

perature range up to 23 °C, where it levels off. This leveling off is also frequently report-

ed for scaling of extreme precipitation at fixed locations and attributed to limited moisture 

supply at high temperatures (Hardwick et al. 2010, Chan et al. 2016). The observed total 

precipitation shows a slightly different behavior with a smaller increase at low tempera-

tures and a larger increase starting at 15 °C. 
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Figure B10: Temperature scaling of cell characteristics. (a) Spatial and temporal mean intensity of cells, (b) total precipitation, 
(c) lifetime, and (d) maximum area. Shaded areas denote the uncertainty range estimated by repeatedly calculating the respective 
quantile using bootstrapping. Note the logarithmic y-axis in all panels. 

B.4 Conclusions 
 

In this study, we evaluate the representation of convective precipitation objects in a CPM 

by applying a tracking algorithm to 5-min precipitation output and a newly developed 5-

min radar climatology over Germany. The model is capable of reproducing the total 

amount of convective precipitation, as well as the frequency and characteristics of con-

vective cells ranging from short-living, small cells to long-living, intense cells. However, 

the number of convective cells is underestimated. This underestimation is compensated by 

an overestimation of cell lifetime. A possible explanation for the underestimation of con-

vective activity and the overestimation of cell lifetime could be that the grid size of 2.8 

km is too coarse to capture boundary layer inhomogeneities, which facilitate the initiation 

of convection; thus, the number of cells is reduced. At the same time, convective availa-

ble potential energy (CAPE) can accumulate longer without being consumed by convec-

tion, and the cells that manage to evolve can live longer. The observed enhanced convec-
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tive activity in the mountain ranges is reproduced by the model. However, convective ac-

tivity is underestimated in the lowlands of Northern Germany and overestimated in the 

mountainous regions of Southern Germany. This supports the hypothesis that the grid size 

is too coarse to fully represent the initiation of deep convection without the help of oro-

graphic forcing. However, it cannot be ruled out that other model deficiencies contribute 

to this bias. The difference in representing convective precipitation in mountainous areas 

and lowland regions agrees with an evaluation of the WRF-CPM (Knist et al. 2018). The 

fact that both models overestimate convective precipitation in the mountains whilst giving 

correct amounts in the lowlands might indicate a general, model-independent problem, 

such as resolution, which is 2.8 km in both studies. The underestimation of mean intensity 

and maximum intensity of large, long-living cells suggests model deficiencies in repre-

senting large, organized forms of convection. To evaluate the model’s capability of repre-

senting the characteristics of extreme convective cells at different temperatures, we inves-

tigate the temperature scaling of cell characteristics. While the model can reproduce the 

increases in mean intensity and area of extreme convective cells with temperature, it fails 

to reproduce the increasing cell lifetime seen in observations. The simulated scaling of 

total precipitation shows a continuous increase above the Clausius–Clapeyron rate, which 

indicates dynamical changes in extreme convective cells with increasing temperature. The 

observations show different scaling rates with a value close to the Clausius–Clapeyron 

rate at temperatures below 15 °C and higher values above. More detailed investigations 

are needed to understand these differences. Further studies could investigate the scaling 

behavior of forced vs. unforced convection. Additionally, the combination of the tracking 

algorithm with spectral methods characterizing the organization of the precipitation field, 

for example, Brune et al. (2018), could yield insight into the organization of deep convec-

tion. 

The approach presented here can be used for more detailed process studies of deep con-

vection in regional climate models, for example, focusing on different synoptical situa-

tions with potentially different types of convection, as investigated in Wapler et al. 

(2015). It might also be beneficial to evaluate the consequences of changing the model 

setup by increasing resolution or switching to a more sophisticated (i.e., two-moment) 

microphysics scheme. Furthermore, this study can be the basis for gaining confidence in 

the representation of different types of convection in order to use the output from RCMs 

for hydrological applications. One idea could be to construct a synthetic time series of 

convective precipitation objects that are derived from RCM output and bias-corrected 
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with radar data to estimate the hydrological consequences of the projected increase in 

heavy precipitation events. 
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Abstract 
	
Extreme convective precipitation is expected to increase with global warming. However, 

the rate of increase and the understanding of contributing processes remain highly uncer-

tain. We investigated characteristics of convective rain cells like area, intensity, and life-

time as simulated by a convection-permitting climate model in the area of Germany under 

historical (1976-2005) and future (end-of-century, RCP8.5 scenario) conditions. To this 

end, a tracking algorithm was applied to 5-min precipitation output. While the number of 

convective cells is virtually similar under historical and future conditions, there are more 

intense and larger cells in the future. This yields an increase in hourly precipitation ex-

tremes, although mean precipitation decreases. The relative change in the frequency dis-

tributions of area, intensity, and precipitation sum per cell is highest for the most extreme 

percentiles, suggesting that extreme events intensify the most.  

Furthermore, we investigated the temperature and moisture scaling of cell characteristics. 

The temperature scaling drops off at high temperatures, with a shift in drop-off towards 

higher temperatures in the future, allowing for higher peak values. In contrast, dew point 

temperature scaling shows consistent rates across the whole dew point range. Cell charac-

teristics scale at varying rates, either below (mean intensity), at about (maximum intensity 

and area), or above (precipitation sum) the Clausius-Clapeyron rate. Thus, the widely in-

vestigated extreme precipitation scaling at fixed locations is a complex product of the 

scaling of different cell characteristics. The dew point scaling rates and absolute values of 

the scaling curves in historical and future conditions are closest for the highest percen-

tiles. Therefore, near-surface humidity provides a good predictor for the upper limit of 

e.g. maximum intensity and total precipitation of individual convective cells. However, 
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the frequency distribution of the number of cells depending on dew point temperature 

changes in the future, preventing statistical inference of extreme precipitation from near-

surface humidity. 

 

Keywords: precipitation, tracking, convection-permitting simulation, COSMO-CLM, 

Clausius-Clapeyron scaling, convective storms  

 

C.1 Introduction 
 

The question of how extreme precipitation will change in the future due to climate change 

is of high relevance due to the potentially severe hazards accompanying it. While daily 

precipitation extremes are projected to increase close to the Clausius-Clapeyron (CC) rate 

of ca. 7%/K on average in mid-latitudes, the change of precipitation extremes at regional 

level and on shorter time scales (e.g. hourly) is still uncertain (Zhang et al., 2017).  

Observational studies show that the temperature scaling of extreme precipitation can di-

vert from the CC-rate on sub-daily timescales (Lenderink et al., 2008), especially in the 

case of convective precipitation (Berg et al. 2013). Furthermore, Schroeer and 

Kirchengast (2018b) showed that the scaling can vary considerably at small spatial scales 

and depending on the season. 

Since hourly precipitation extremes are primarily caused by convective precipitation in 

mid-latitudes, it is necessary to use models that can simulate deep convection explicitly, 

so- called convection-permitting climate models (CPMs). CPMs substantially improve the 

representation of convective precipitation, especially in terms of extreme precipitation, in 

contrast to coarser models, parameterizing deep convection (Prein et al., 2015; Brisson et 

al., 2016). Convection-permitting simulations agree on an increase in extreme hourly pre-

cipitation with global warming showing the highest increases for the highest percentiles 

(Knist et al., 2018).  

A common way of investigating extreme precipitation in CPMs is calculating the temper-

ature scaling of precipitation extremes. The temperature scaling on the hourly scale found 

in CPM studies varies between values slightly below (Fosser et al., 2017) or above the 

CC-rate (Kendon et al., 2014; Knist et al., 2018). What is common among these studies is 

that the scaling curves keep their characteristic shape but are shifted towards higher peak 

values at high temperatures in future conditions (Prein et al., 2017a). This suggests that 
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atmospheric conditions with sufficient humidity are present at higher temperatures in the 

future.  

Varying scaling rates in observations and shifting scaling curves in CPMs indicate that 

the dynamics of deep convection and changes in the large-scale environment have a 

strong influence on the scaling rate and that the temperature scaling of extreme hourly 

precipitation under current climate conditions cannot be used to infer how convective 

events might react to climate change. 

The rationale behind the procedure of relating extreme precipitation to near-surface tem-

perature is that near-surface temperature provides a proxy for absolute humidity if relative 

humidity remains unchanged. However, the severity and structure of deep convective 

storms are determined by at least two additional ingredients besides near-surface mois-

ture: static instability, as measured, for example, by convective available potential energy 

(CAPE), and wind shear (Weismann and Klemp, 1982). When coarse regional or global 

climate models (grid spacing larger than 4 km) are used to investigate how severe convec-

tion might change in a warmer climate, a combination of these three parameters is usually 

used to calculate changes in the frequency of thermodynamic environments favorable for 

convection (e.g., Seeley and Romps, 2015). Púčik et al. (2017) found an increase in storm 

favoring environments in Europe based on an ensemble of 14 regional climate models. 

Solid understanding of the changes in deep convection and the processes involved can 

strengthen the reliability and plausibility of results. Therefore, we apply a tracking algo-

rithm to 5-min precipitation output from the regional climate model COSMO-CLM to 

investigate convective rain cells’ characteristics under historical and future conditions. 

Applying such a Lagrangian approach has the advantage of being able to monitor precipi-

tating convective cells along their entire lifecycle. Observational studies based on weather 

radars show that convective cells increase in area and intensity with temperature in central 

Europe (Lochbihler et al., 2017; Moseley et al., 2013; Purr et al., 2019), whereas no area 

increase and generally lower scaling rates were found in Mediterranean and semi-arid 

climate (Peleg et al., 2018). Prein et al. (2017b) investigated the characteristics of 

Mesoscale Convective Systems in the USA by applying a tracking algorithm to hourly 

precipitation data from a CPM. They found an increase in the storm size and storm inten-

sity for future conditions using a pseudo-global warming approach. Rasmussen et al. 

(2018) found an increase in intense convective precipitation events and a decrease in 

moderate events for North America at the end of the century. They used the WRF-model 
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in a pseudo global warming setup. They attributed these changes to increases in both 

CAPE and convective inhibition (CIN). 

This study compares cell characteristics and their dependence on near-surface temperature 

and humidity in two 30-year periods, covering historical (1976-2005) and future (2071-

2100) conditions. We relate the scaling of cell characteristics to the scaling of precipita-

tion at fixed locations and discuss the influence of static stability and wind shear on the 

scaling rates. 

In section 2 we describe the simulations that were performed and the tracking algorithm. 

The setup we use here has been shown to represent convective cell characteristics ade-

quately in Purr et al. (2019). In this former study we evaluated the same model setup as 

used here but driven by reanalysis instead of a general circulation model. We will refer to 

these evaluation results specifically by stating the model’s limitations in representing the 

individual cell characteristics in the respective result sections. The following section de-

scribes the setup of the CPM simulations, the tracking algorithm, and the way the temper-

ature and moisture scaling was calculated. In the result section we first show “traditional” 

precipitation statistics such as change in mean precipitation and frequency distribution of 

hourly precipitation. Afterward, we investigate the overall frequency distributions of cell 

characteristics as well as their diurnal cycle and spatial distribution. Subsequently, the 

dependence of cell characteristics on near-surface temperature and dew point temperature 

is investigated. At the end, we discuss the influence of the large-scale environment de-

scribed by CAPE and wind shear and potential limitations of the current study.   

 

C.2 Methods 
 

C.2.1 COSMO Simulations 
 

The simulations analyzed in this study were performed with the Consortium for Small-

Scale Modeling in climate mode (COSMO-CLM) model. The COSMO-CLM model is a 

non-hydrostatic limited-area climate model, based on the COSMO model (Steppeler et al. 

2003), a model designed by the Deutsche Wetterdienst (DWD) for operational weather 

predictions. The climate limited-area modeling (CLM) community adapted this model to 

perform climate projections (Böhm et al. 2006; Rockel et al. 2008). For time integration, 

the 5
th

 order Runge-Kutta split-explicit time stepping scheme is used. The lower boundary 
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fluxes are provided by the TERRA model (Doms et al. 2018). The radiative scheme is the 

Ritter and Geleyn (1992) scheme. As recommended in Brisson et al. (2015), we used a 

one-moment microphysics scheme, including graupel in the finest nest, which provides a 

more realistic representation of deep convective clouds. Shallow convection is parameter-

ized using the convection scheme after Tiedtke (1989). 

Two continuous 30-year long simulations were performed: 1976-2005 (named Historical 

from now on) and 2071-2100 (named RCP8.5) at a resolution of 0.025°. The model is 

forced by the global climate model EC-Earth (Hazeleger et al. 2012), in particular realiza-

tion r12i1p1 of the CMIP5 ensemble, in a one-way nesting setup with an intermediate 

COSMO-CLM nest which has a resolution of 0.22°. The RCP8.5 emission scenario was 

used for the future simulation. The model domain covers an area in central Europe 

(Figure C1) and comprises 368 x 306 grid points.   

 

Figure C1: Model domain of the 0.025° simulation. Colors indicate the model orography in the evaluation region. The non-
colored margin is the relaxation zone, which is not used for evaluation. 

 

C.2.2 Tracking algorithm 
 

We use a tracking algorithm to obtain convective cell characteristics from model simula-

tions. A detailed description of the tracking algorithm can be found in Purr et al. (2019). 

In summary, the tracking algorithm consists of three major steps: 
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Contiguous precipitation areas with precipitation intensity above a threshold of 8.5 mm/h 

(within 5 minutes), potential convective objects, are identified in the current and the sub-

sequent time step. The minimum cell area is set to 4 grid points. 

Wind information is used to predict the position of the cell at the subsequent time step. To 

this end, a “cone of detection” is set up for each pixel of every cell in the current time 

step. If a new cell is present in the cone, a probability value is assigned to the origin pixel 

of the cone, which links this pixel to the new cell.  

The probability values of all pixels are summed up for each cell. If a single cell is present 

in the cone, the corresponding objects from the current and the subsequent time step are 

connected. If multiple cells are present, the current cell is associated with the cell with the 

highest probability in the subsequent time step. 

 

Cells are considered for analysis only if they are traceable for at least three time steps. It 

should be noted that cell mergers and splits are not accounted for. If two cells merge, the 

cell track with the higher probability of cell association is continued. The other track is 

regarded as an individual track in itself. The same applies to cells that split. The charac-

teristics that are extracted by the algorithm for each cell are: (1) lifetime; (2) mean inten-

sity, i.e., the temporal and spatial mean over the entire lifetime; (3) maximum intensity, 

i.e., the highest grid-point intensity during the entire lifetime; (4) maximum area, defined 

as the maximum instantaneous area over the entire lifetime; (5) precipitation sum, i.e., the 

total spatial and temporal precipitation sum over the entire lifetime; and (6) mean speed, 

defined as the temporal mean speed of the cells’ center of mass. 

 

C.2.3 Temperature- and moisture-scaling methods 
 

The temperature and moisture scaling of cell characteristics are investigated by assigning 

2m-temperature and 2m-dew point temperature to each cell. We use daily mean values of 

temperature and dew point temperature from the driving, intermediate nest. For each cell, 

the respective conditions at the start location of the cell are used.  

Cells are sorted into bins of 1°C width for both temperature and dew point. For each bin, 

the 95
th

 and 99
th

 percentiles of the investigated cell characteristics are computed. The scal-

ing rates cB are computed as the fractional change of the respective quantity (e.g., precipi-

tation sum, maximum intensity, etc.) P from bin i to i+1 as: cB = fg
U*/.
U*
/(3B72 − 3B) 
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where T denotes temperature or dew point temperature for temperature and dew point 

temperature scaling, respectively. 

	
C.3 Results and discussion 
 

The following section starts by describing the simulations’ general precipitation statistics, 

and putting them into context with other regional climate simulations. Afterward, the fre-

quency distributions, spatial distribution, and diurnal cycle of convective cell characteris-

tics are analyzed in subsection C.3.2. The scaling of these characteristics with temperature 

and dew point temperature is investigated in subsection C.3.3, followed by a description 

of the influence of CAPE and wind shear on these scalings. 

 

C.3.1 Mean and extreme precipitation 
 

Mean summer precipitation (Apr-Sep) is reduced by 15% in the future period compared 

to historical conditions on domain average (Figure C2). The mean temperature change 

signal in the simulation is +3.4 K. Both values are within the range of the EURO-

CORDEX ensemble projections (Jacob et al. 2014). The mean dew point temperature 

change is +3.0 K. The reduction of precipitation is strongest in the Southwest of the do-

main covering northeastern France and the Netherlands. In the eastern part of the domain, 

there is an increase in precipitation.  

 

 

Figure C2: Relative change in mean summer (APR-SEP) precipitation from Historical to RCP8. 
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Despite the decrease in mean precipitation, the frequency of hourly precipitation intensi-

ties above 5 mm/h increases. The relative change is highest for the highest percentiles 

(Figure C3). Accordingly, mean convective precipitation (defined as spatial and temporal 

mean of precipitation classified by the tracking algorithm) increases from 0.25 mm/d to 

0.29 mm/d, whereas non-classified precipitation decreases from 1.34 mm/d to 1.05 mm/d. 

This translates to an increase in the fraction of convective to total precipitation from 

15.8% to 21.8%. 

 

Figure C3: Frequency distribution of hourly precipitation intensity in Historical (blue) and RCP8.5 (red). 

	
C.3.2 Cell characteristics 
 

In this subsection, we investigate the frequency distributions of cell characteristics as well 

as the diurnal cycle and the spatial distribution of convective cells. The number of cells 

remains approximately constant. In the future simulation, ca. 5x10
5
 cells are detected, 

which is a decrease of only 0.4% compared to the historical simulation. The frequency 

distribution of cell lifetime does not change either (Figure C4a). There is a decrease in 

frequency towards longer lifetimes in both simulations. The median and 99
th

 percentile of 

cell lifetime are 35 min and 255 min respectively in both Historical and RCP8.5. There is 
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a shift towards higher mean (Figure C4b) and maximum intensity. Furthermore, maxi-

mum cell area is increasing (Figure C4c). The increase in mean intensity and area results 

in an increase in total precipitation sum per cell (Figure C4d). 

 

Figure C4: Frequency distribution of cell characteristics in the Historical (blue) and RCP8.5 (red) simulations: (a) lifetime, (b) 
mean intensity, (c) maximum area, (d) precipitation sum. Shaded areas denote the 95% confidence interval obtained from 1000 
bootstrap samples of all cells. Dashed, vertical lines denote the 99th percentiles. Circles show the midpoints of bins. 

 

The relative increase is strongest for the highest percentiles for all of these characteristics 

(mean and maximum intensity, area, and precipitation sum). However, caution should be 

taken when interpreting results related to the most severe cells since it has been shown 

that the precipitation intensity is underestimated by the model especially for long-lasting, 

organized convection (Purr et al. 2019). Table C1 summarizes the relative changes. The 

trend scaling (relative changes divided by the mean temperature change signal, Zhang et 

al., 2017) is slightly above the CC-rate for the highest percentiles of precipitation sum and 

maximum area and below the CC-rate for mean and maximum intensity.  
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Table C1: Relative changes in cell characteristics (from Historical to RCP8.5). 

Change 

in % 

Lifetime Max. 

Area 

Precipitation 

Sum 

Mean Intensity Max Intensi-

ty 

Mean 

Speed 

       

Mean -2.1 +13.4 +18.3 +3.3 +8.3 +9.0 

Median 0.0 +9.1 +3.2 +2.4 +5.8 +7.9 

P95  0.0 +16.9 +16.9 +6.4 +12.6 +10.0 

P99 0.0 +27.9 +27.0 +9.3 +15.8 +11.0 

P99.9 +1.1 +32.0 +30.6 +11.3 +19.1 +13.4 

Trend 

Scaling 

of P99 

[%/K] 

0.0 +8.2 +7.9 +2.7 +4.6 +3.2 

 

The mean speed of convective cells increases in the future by 9%. The increase is approx-

imately constant for all percentiles showing the highest value for the 99
th

 percentile with 

+11%. Interestingly, the mean large-scale wind speed in the mid-troposphere, provided by 

the daily-mean wind speed in the 850 hPa, 700 hPa, and 500 hPa height levels of the driv-

ing intermediate simulation does not change accordingly. The overall mean changes in 

daily mean wind speed are between -0.7% and -3.9% for the 500 hPa and 850 hPa levels. 

The changes in the 99
th

 percentile of daily mean wind speed are within ± 1% for all three 

levels. However, when only considering the large-scale wind speed in the presence of 

convective cells, there is an increase between 4.5% (850 hPa) and 7.7% (500 hPa) in 

mean wind speed.  

 

Diurnal cycle  
 

Deep convection has a pronounced maximum in the afternoon in mid-latitudes over land 

caused by solar insulation, which acts to destabilize the boundary layer. The model is ca-

pable of reproducing the timing of this maximum with a delay of about 40 min compared 

to observations (Purr et al. 2019). This characteristic convective maximum is damped in 
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the future, whereas the number of convective cells increases during the night and morning 

hours (Figure C5a). In contrast to the number of cells, the mean intensity per cell increas-

es throughout the whole diurnal cycle in the future compared to present conditions 

(Figure C5b). This increase in precipitation per cell compensates for the drop in the num-

ber of cells resulting in only a slight decrease in total convective precipitation in the after-

noon and an increase during the nighttime and early morning hours (Figure C5c). These 

results are in line with the findings of Meredith et al. (2019), who report a shift in the di-

urnal cycle of extreme precipitation from afternoon to early morning hours for future 

conditions under RCP8.5 using COSMO-CLM-simulations driven by MPI-ESM. 

 

 

Figure C5: Diurnal cycle of (a) number of cells, (b) mean intensity per cell, and (c) mean sum of convective precipitation. 

The increase in cell speed reported in the previous subsection is present during the whole 

diurnal cycle but is more pronounced at the time of increased convective activity. While 

the mean speed of cells initiated between 00:00 UTC and 09:00 UTC increases from 3.8 

m/s to 4.0 m/s (i.e. 5.2%), this value increases from 3.2 m/s to 3.5 m/s (i.e. 8.8%) for cells 

initiated between 09:00 UTC and 18:00 UTC. This increase during the daytime is mainly 

caused by fewer slow-moving cells. Stratifying cells as slow-moving (< 3.3 m/s) and fast-

moving (> 3.3 m/s) shows that the number of slow-moving cells decreases by 24%, 

whereas the number of fast-moving cells decreases by 5% during the daytime. This de-

crease in slow-moving cells is not present during nighttime, where slow-moving cells in-

crease by 22%, and fast-moving cells increase by 34%. 

 

Spatial distribution 
 

The spatial distribution of convective cells is tightly coupled to the orography in Germany 

since mountains can initiate deep convection through various processes. The regions of 

highest convective activity in Germany are the alpine and pre-alpine area as well as the 
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Black forest with values up to 4 times as high as in the flatlands of Northern Germany 

(Figure C6a). The model is capable of reproducing the observed spatial distribution of 

convective cells in Germany with a tendency to overestimate convective activity in the 

mountains and to underestimate it slightly in the lowlands (Purr et al. 2019). 

The total number of cells stays approximately constant in the future, but the change in cell 

number varies considerably in space (Figure C6b). In South-West Germany, the number 

of convective cells decreases while in the North-East increases prevail. However, these 

changes are not uniform, and changes between increases and decreases occur at small spa-

tial scales of about 10-100 km. This pattern is not related to orography and likely caused 

by internal variability of the convective cells. Mean intensity increases throughout the 

domain. The sum of convective precipitation, which can be derived as cell number times 

mean intensity, therefore, shows a pattern similar to the number of convective cells 

(Figure C6c). 
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Figure C6: Spatial distribution of (a) cell number in the Historical simulation, (b) relative change in cell number in RCP8.5, and 
(c) relative change in convective precipitation sum. 

 

C.3.3 Temperature and moisture scaling 
 

In this subsection, we investigate the scaling of cell properties with temperature and dew 

point temperature as a measure for absolute humidity. The highest percentiles of cell area, 

mean intensity, maximum intensity, and precipitation sum increase with temperature. All 

of these characteristics follow a qualitatively similar increase up to a specific temperature. 

Above this temperature, the scaling curves level off. In contrast to this, lifetime does not 

increase with temperature. The scaling rates under historical conditions are in close 

agreement with the temperature scaling in a simulation using a similar setup with ERA-

Interim reanalysis as driving data instead of the EC-Earth model (Purr et al. 2019). There 
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are two main differences between modelled and observed scaling of cell characteristics. 

Firstly, the lifetime of cells does not increase with temperature in the model, whereas it 

does in the observations. Secondly, mean intensity levels off in the simulations whereas it 

increases constantly, even at high temperatures, in the observations which can be attribut-

ed to the underestimation of intensity in long-lasting, severe cells mentioned previously.  

While maximum intensity and area increase close to the Clausius-Clapeyron rate at the 

intermediate temperature range between 10 °C and 20 °C, mean intensity scales at consid-

erably lower values (Figure C7a,c, and e). Precipitation sum shows super CC-scaling in 

the intermediate temperature range and a drop-off at high temperatures (Figure C7g). The 

peak values for all of these characteristics are higher in the future compared to historical 

values and occur at higher temperatures. Thus, the scaling curves show the same charac-

teristic shift that is well known for extreme precipitation at fixed-locations (Prein et al. 

2017a, Knist et al. 2018) and is also found in this study (Figure S1). Furthermore, the 

number of cells occurring at high temperatures which have a higher potential for large 

precipitation sums, areas, and intensity increases (Figure C7i).  

To investigate the influence of limited moisture supply at high temperatures, which has 

been suggested as a cause for the drop off at high temperatures, we investigate the scaling 

of cell properties with dew point temperature. As expected, there is no drop off at high 

dew point temperatures, and the scaling rates are more continuous across the whole dew 

point range. The maximum area increases at rates slightly above the Clausius-Clapeyron 

rate (Figure C7b). The scaling rates for present and future conditions do not differ signifi-

cantly. Also, the 99
th

 and 95
th

 percentile’s absolute values of do not differ significantly in 

present and future conditions.  

The scaling rates for the maximum intensity are remarkably close to the Clausius-

Clapeyron rate (Figure C7d). Interestingly, the 90
th

 (not shown) and the 95
th

 percentile 

values are smaller in the future compared to present conditions; the values for the 99
th

 

percentile are closer. This also implies that the scaling rates under future conditions 

(7.4%/K for the 99
th

 percentile) are a little higher than under historical conditions 

(6.1%/K).  

Like for temperature, the mean intensity scales at values lower than the CC-rate (Figure 

C7f). Again, the absolute values for the 90
th

 and 95
th

 percentile under historical conditions 

are higher than the future values for a large part of the dew point temperature range up to 

17 °C. This indicates that changes in other factors (like atmospheric instability) influence 
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the cell properties in the future. The precipitation sum scales at values of about 14%/K 

close to twice the CC-rate (Figure C7h).  

More cells occur at high moisture levels in the future (Figure C7j). The increase in num-

ber at high dew point temperatures is compensated by a decrease at low dew point tem-

peratures. While only 0.4% of all cells at present conditions occur at dew point tempera-

tures above 18°C, in future conditions this ratio increases to 8.5 % Thus, the increase in 

the high percentiles of the overall frequency distribution of cell properties is largely 

caused by more cells occurring at higher moisture levels in the future. However, when 

looking at the relative number of cells per dew point bin (the number of cells per dew 

point bin divided by the number of occurrences of the dew point bin) as indicated by the 

lines in Figure C7j, we see apparent differences in present and future conditions. For dew 

point temperatures up to 18 °C, the relative number of cells is substantially lower in the 

future. For higher humidity levels, the relative number increases in the future while it de-

creases in the present. In contrast, the relative number of cells per temperature bin follows 

the same curve in the future with a maximum at 18 °C (Figure C7i). 
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Figure C7: Temperature scaling (left column) and dew point temperature scaling (right column) of cell properties. (a) and (b): 
maximum area; (c) and (d): maximum intensity; (e) and (f): mean intensity; (g) and (h): precipitation sum. Shaded areas denote 
the uncertainty range caused by varying bin occupancy, obtained from bootstrapping cells in each bin. (i) and (j) show the fre-
quency distribution of cells, where bars denote the absolute number of cells per temperature or dew point class (left y-axis) and 
lines denote the relative number of cells per occurrence of temperature or dew point temperature class (right y-axis). 
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C.3.4 Influence of static instability and wind shear 
 

Since static instability plays a major role in determining the severity of atmospheric con-

vection, we investigate the influence of CAPE on the moisture scaling of cell properties. 

In addition, the direct influence of CAPE and wind shear is investigated in Appendix S1.  

From conceptual models, it can be shown that CAPE increases with warming. Specifical-

ly, peak CAPE in a continental environment which is characterized by not being in radia-

tive-convective equilibrium scales with moisture at the CC-rate (Agard and Emanuel, 

2017). These findings obtained from a simplified conceptual model are also supported by 

more complex regional climate models. Púčik et al. (2017) investigated the occurrence of 

storm environments and found an increase in static instability under warmer conditions.  

In our simulations, the highest percentiles of daily maximum CAPE increase with dew 

point temperature at varying rates well above the CC-rate. Since high dew point values 

are much more abundant in the future, this leads to a strong increase in extreme CAPE 

values. As an example, the frequency of daily maximum CAPE exceeding 2000 J/kg in-

creases from 0.8% to 2.2%. The connection between the increase in CAPE and high dew 

point temperature is not uniform but occurs mostly at high dew point levels. To investi-

gate the effect of instability on the moisture scaling of cell properties, we stratify the con-

vective cells according to environmental CAPE. Cells which occur at CAPE values below 

200 J/kg are classified as low-CAPE cells while those above 200 J/kg are classified as 

high-CAPE cells. As expected, cells occurring at high CAPE are more extreme than low-

CAPE cells, as illustrated by the 99
th

 percentile of precipitation sum for high-CAPE cells 

and low-CAPE cells in Figure C8a. Despite the overall increase in CAPE, the scaling 

rates do not change from historical to future conditions. The scaling rate of precipitation 

sum per cell is below the 2xCC-rate found for all cells when considering only low-CAPE 

(historical: 5.9 %/K, RCP8.5: 9.2 %/K) cells or only high-CAPE cells (historical: 10.4 

%/K, RCP8.5: 8.8 %/K). The reason for this is that more low-CAPE cells occur at low 

dew point temperatures and more high-CAPE cells occur at high dew point temperatures 

so that the overall scaling curve follows the lower values of the low-CAPE curve at low 

dew point temperature and shifts towards the high-CAPE curve at high dew point temper-

atures. 
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We now investigate the influence of wind shear on the scaling rates. We calculate wind 

shear as the difference between the wind in the 850 hPa and 500 hPa height levels. Higher 

wind shear leads to higher organization of convective cells. Thus, it is not surprising that 

higher wind shear leads to higher precipitation sum per cell (Figure C8b). The frequency 

distribution of wind shear does not change in the future. In contrast to CAPE, wind shear 

and dew point temperature are not correlated. As a result, an equal number of low- and 

high-wind shear cells occur at each dew point bin. The scaling rates are identical for low-

wind shear and high wind shear cells.  

 

 

Figure C8: Dew point scaling of precipitation sum dependent on (a) environmental daily maximum CAPE, and (b) wind shear. 
Shaded areas denote the uncertainty range obtained from bootstrapping. The uncertainty range for the future period is omitted 
for readability. 

 

C.4 Conclusions and outlook 
 

We investigated how the characteristics of convective cells might change in a climate 

change scenario by applying a tracking algorithm to CPM precipitation with high tem-

poral resolution. Changes in the frequency distribution of cell characteristics show a com-

plex picture of the response of deep convection to climate warming. While the total num-

ber of cells and the lifetime does not change significantly in the future, as simulated for 

the end of the 21
st
 century under RCP8.5, there is a shift towards larger and more intense 

events. In combination, this leads to higher precipitation sums per cell. We showed that 

the increase in extreme hourly precipitation is caused by an increase in the number of 

large, long-living convective cells occurring at high temperature and moisture levels.  
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The diurnal cycle of convective activity changes towards fewer convective cells during 

the afternoon maximum and more cells during the nighttime. In combination with the in-

crease in mean precipitation intensity per cell this leads to up to 50% more convective 

precipitation during nighttime and a small decrease during the afternoon maximum. The 

afternoon decrease in cell number is primarily caused by fewer slow-moving cells despite 

the fact that there is no change in the large-scale wind speed. This suggests that there is 

less air mass convection in the future, which would be in line with the findings of Ras-

mussen et al. (2018), who report a shift towards more extreme and less moderate events 

because of increased CAPE and CIN values. The increase during evening and nighttime 

could be explained by the fact that once convection is initiated, the tendency towards 

more intense cells implies that these cells produce stronger cold pools which can trigger 

new cells. 

The temperature scaling curves of cell properties peak at higher values in the future, 

which is caused by more abundant humidity at these high temperatures, resembling the 

scaling curves of extreme hourly precipitation at fixed locations. In contrast to the tem-

perature scaling, dew point scaling curves in historical and future conditions are con-

sistent across the whole dew point range.  

The Clausius-Clapeyron scaling of cell area and maximum cell intensity in combination 

leads to super Clausius-Clapeyron scaling (ca. 14%/K) of the precipitation sum per cell. 

As a cause for super Clausius-Clapeyron scaling of extreme precipitation, a positive feed-

back of updraft strength with moisture supply has been discussed in the literature 

(Lenderink et al., 2017). While this may indeed contribute to super Clausius-Clapeyron 

scaling, we point out that the correlation of dew point temperature with CAPE may be a 

simple reason that can partially explain scaling above the Clausius-Clapeyron rate.  

The scaling curves under historical and future conditions are most similar for the highest 

percentiles. The differences for the lower percentiles reflect the complex changes in the 

properties of convective cells related to, e.g., the change in diurnal cycle. The similar dew 

point scaling curves for the highest percentiles of cell characteristics facilitate inference of 

the upper limit of convective cell properties from large scale humidity values. However, 

the fact that the number of convective cells per dew point bin changes both in absolute 

and relative terms (number of cells per occurrence of dew point bin) prevents inference of 

extreme precipitation at fixed locations. This is also illustrated by the differences in the 

dew point temperature scaling curves of extreme precipitation at fixed locations.  
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While one CPM simulation is not sufficient to robustly estimate the increase in extreme 

precipitation, the Lagrangian approach adopted here can help to understand processes re-

lated to deep convection. More projections are necessary to determine the uncertainty re-

lated to large-scale changes in the general circulation because general circulation models 

vary in their representation of climate change in mid-latitudes. Common deficiencies that 

currently limit the skill of convection-permitting climate models at the kilometer scale 

include the representation of cold pools as a trigger mechanism (e.g. Hirt et al., 2020). 

Furthermore, the tracking algorithm could be enhanced to include the merging and split-

ting of convective cells. This would facilitate the investigation of convective organization, 

a topic mainly investigated in idealized simulations so far (Lochbihler et al., 2019; Mose-

ley et al., 2016).  
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Figure S1: Temperature scaling (a) and dew point scaling (b) of hourly precipitation at fixed location. 
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The figure shows the scaling of hourly extreme precipitation at fixed location (“Eulerian” 

scaling). The scaling curves are calculated following Lenderink and van Meijgaard (2008) 

and Knist et al. (2018). The daily maximum of hourly precipitation is related to daily 

mean values of 2 m-temperature and 2 m-dew point temperature.  

 

 

Appendix S1 

 

Dependence of cell characteristics on CAPE and wind shear 

 

In analogy to the temperature and dew point scaling in subsection 3.3, we investigate the 

changes in the highest percentiles of cell characteristics with CAPE and wind shear in this 

appendix. In contrast to dew point and temperature scaling, absolute values of the cell 

characteristics differ in present and future conditions. The future values are higher than 

the present values for all characteristics across the whole CAPE and wind shear range 

showing the effect of increased dew point temperature in the future. The maximum area 

of cells increases with CAPE and wind shear at approximately the CC-rate. In contrast, 

maximum intensity does not increase consistently with CAPE and even shows a decrease 

with wind shear. This decrease is surprising as one would expect an increasing degree of 

convective organization with increasing wind shear and thus higher maximum intensities. 

Maybe this effect is overcompensated by higher cell velocity, as higher wind shear impli-

cates higher wind speeds steering the convective cells (and thus, distributing the extreme 

precipitation over multiple grid boxes). Changes in mean intensity are qualitatively simi-

lar to changes in maximum intensity. The precipitation sum of cells increases with both 

CAPE and wind shear at varying rates. Concerning the number of cells, in the future more 

cells occur in high-shear environments and fewer cells occur in low-shear environments. 

This supports the hypothesis that it is harder to initiate deep convection without dynamic 

trigger mechanisms like fronts or convergence lines associated with high shear in the fu-

ture. 
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Figure S 2: Dependency of cell characteristics on CAPE and wind shear. Layout same as Figure 7.
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D. Evaluation of Cell Characteristics in a CCLM Simulation Driven 
by ERA5 
 

D.1. Motivation  
 

While the evaluation of convective cell characteristics in COSMO-CLM conducted in 

paper 2 showed promising results, a few shortcomings were also noticeable.  

To test if these shortcomings are inherent to the model or caused by simulation settings 

we evaluated another COSMO-CLM simulation. This simulation was conducted by Su-

sanne Brienen at DWD in the framework of the research project "Network of Experts -

Adapting transport and infrastructure to climate change and extreme weather events”. 

While this is not a systematic sensitivity analysis of different model parameters, using this 

additional simulation can provide valuable insight as these are the first convection-

permitting simulations with sub-hourly precipitation output for Germany. 

 

D.2. Model Setup 
	
The two simulations differ in a number of ways. Most notably, the driving reanalysis data 

is different, which is why we name the two simulations accordingly: CCLM-ERAi and 

CCLM-ERA5. As ERA5 is the newer reanalysis it has a number of advantages compared 

to ERA-Interim. It has a higher spatial resolution which enables the direct nesting of 

COSMO-CLM in the reanalysis. Furthermore, it provides a higher temporal resolution. 

Another important difference is the simulation domain. The simulation domain of CCLM-

ERA5 is bigger, including Austria and Switzerland in the South and Denmark in the 

North (Figure D1). Other important model parameters are summarized in Table D1. 
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Figure D1: Simulation domains and orography of the two simulations. (a) CCLM-ERAi, (b) CCLM-ERA5. 

 

Table D1: Model configurations of the two simulations. 

Name CCLM-ERAi CCLM-ERA5 

   

Model version COSMO5.0_clm7 COSMO5.0_clm16 

Frequency of boundary 
data  

6h  1h 

Intermediate nest Yes No 

   

Grid spacing 0.0275° 0.0275° 

Shallow-convection On On 

Microphysics 1-moment with graupel 1-moment with graupel 

 

D.3. Differences in applying the tracking algorithm 
 

For the CCLM-ERAi simulation, the necessary wind information for using the tracking 

algorithm had to be taken from the intermediate nest as wind data was not stored for the 

inner nest. In contrast, the wind information for CCLM-ERA5 was taken directly from the 

inner nest. This leads to a better performance of the tracking algorithm, meaning the cells 

can be tracked for longer times, in CCLM-ERA5. However, this complicates the compari-

a) 
b) 
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son to the observations where ERA-Interim wind data (interpolated in time to 5 min) is 

used for tracking. 

 
D.4. Results 
 

D.4.1. Mean Precipitation (for fixed location) 

 

There is more precipitation in CCLM-ERA5 than in CCLM-ERAi in the evaluation peri-

od 2001-2015 (Figure D2). While total precipitation is overestimated by 6% in CCLM-

ERA5 compared to the radar observations, it is underestimated by 14% in CCLM-ERAi. 

Both simulations overestimate precipitation in the mountain ranges, especially the Black 

forest. The CCLM-ERA5 simulation only underestimates precipitation along the North-

Sea and parts of Schleswig-Holstein, whereas CCLM-ERAi underestimates precipitation 

in Northern Germany and parts of Hessen and Rheinland-Pfalz. 

During the summer months (Apr-Sep) mean precipitation is well simulated in CCLM-

ERA5 with overestimation in the mountain ranges which is compensated by underestima-

tion in the low-land. CCLM-ERAi underestimates precipitation more strongly in the 

summer months (-34%). Again, the underestimation is focused on Western and Northern 

Germany. 
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Figure D2: Mean precipitation bias in period 2001-2015. (a) CCLM-ERA5 summer months, (b) CCLM-ERA5 full year, (c) 
CCLM-ERAi summer months, (d) CCLM-ERAi full year. 

 

D.4.2. Frequency distributions of convective cell characteristics 

 

Both simulations match the frequency distributions of cell characteristics quite well com-

pared to radar data (Figure D3). However, there are more long-living cells in CCLM-

ERA5 which could be caused by the better performance of the tracking algorithm. Maxi-

mum cell intensity is better simulated in CCLM-ERA5. The Perkins Skill Scores for both 

simulations are summarized in Table D2. 
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Table D2: Perkin's Skill Scores for different cell characteristics. 

 CCLM-ERAi CCLM-ERA5 

Lifetime 0.84 0.81 

Precipitation Sum 0.98 0.99 

Maximum Area 0.99 0.98 

Maximum Intensity 0.84 0.87 

 

 

Figure D3: Frequency distributions of cell characteristics; (a) lifetime, (b) total precipitation, (c) maximum area, and (d) maxi-
mum intensity. 

D.4.3. Diurnal cycle 

 

The diurnal cycle of convective cells is better represented in CCLM-ERA5 (Figure D4). 

While the diurnal cycle of cell initiation is virtually similar with a slightly later peak in 

CCLM-ERAi (Figure D4a), the amplitude and phase of the diurnal cycle is more realistic 

in CCLM-ERA5 when counting cells multiple times according to their lifetime (Figure 

D4b). Furthermore, phase and amplitude of the diurnal cycles of mean and maximum in-

tensity are much better represented in CCLM-ERA5 (Figure D4c and Figure D4d) as they 

do not underestimate the amplitude as strongly as CCLM-ERAi. For example, the diurnal 
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maximum of mean intensity is 18.7 mm/h in the observations, 17.8 mm/h in CCLM-

ERA5, and 16.1 mm/h in CCLM-ERAi. 

 

 

Figure D4: Diurnal cycle of (a) cell frequency with every cell counted once (at initiation), (b) cell frequency with every cell 
counted for every 5-min timestep, (c) mean intensity, and (d) maximum intensity. 

 

D.4.4. Spatial distribution of convective cells 
 

In this section, we first compare the spatial distribution of convective cells at initiation in 

the CCLM-ERAi and the CCLM-ERA5 simulation. Afterward, we use the method pre-

sented in paper 2, where every occurrence of a cell per 5‐minute timestep is counted. Us-

ing the initiation of cells mitigates the effect of the more efficient tracking in CCLM-

ERA5.  

Both simulations can simulate the spatial distribution of increased initiation of convection 

in the alpine area and the lower mountain ranges (Figure D5) but generally underestimate 

the initiation of convection. CCLM-ERAi initiates more convection in the pre-alpine area 

than CCLM-ERA5. This could be explained by the larger domain of CCLM-ERA5 which 

allows for convection to be triggered over the entire alps. Assuming a southerly flow, this 

would mean that convective cells have already depleted when reaching the northern end 

of the Alps. The underestimation of convective activity in Northern Germany (North of 

52°N) is stronger in CCLM-ERAi (-47%) than in CCLM-ERA5 (-40%). 
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Figure D5: Spatial distribution of (a) convective cells at initiation in CCLM-ERAi, (b) convective cells at initiation in CCLM-
ERA5, (c) relative Difference CCLM-ERAi to observations, and (d) relative difference CCLM-ERA5 to observations. 

 

When counting every 5-min occurrence of cells according to their lifetime, CCLM-ERAi 

overestimates the number of convective cells in the South and underestimates it in the 

North. CCLM-ERA5 overestimates the number of cells everywhere. In both simulations, 

the cell number is overestimated near radar locations. Areas of underestimation tend to be 

located furthest away from the radar. Despite the general overestimation, the spatial dis-

tribution of cell is better captured in CCLM-ERA5. While cell number is underestimated 

predominantly in Northern Germany in CCLM-ERAi, the overestimation is more regular-

ly distributed over Northern and Southern Germany in CCLM-ERA5. 
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D.5. Conclusions 
 

Both simulations can represent the frequency distributions of cell characteristics showing 

the spectrum from short-living, unorganized convection to long-living, organized convec-

tion, as well as the North-South gradient and the elevation dependence of convective ac-

tivity. CCLM-ERA5 has a number of advantages potentially caused by the larger simula-

tion domain and more realistic boundary conditions. It can better represent the diurnal 

cycle of convection. Both the phase and amplitude of convective activity is closer to ob-

servations in CCLM-ERA5. Furthermore, the afternoon increase in the intensity of con-

vective cells is much better represented. A drawback of CCLM-ERA5 is the higher over-

estimation of cell lifetime which is potentially caused by the better performance of the 

tracking algorithm. The spatial pattern of mean precipitation and convective cells is better 

represented in CCLM-ERA5 with a lower underestimation of precipitation in the North-

ern low-lands of Germany than CCLM-ERAi. 

  



 

 - 120 - 

 

 

E. Convective Rain Cell Characteristics and Scaling in a CCLM 
Simulation Driven by MIROC5 for Germany 
 

E.1. Motivation 
 
As general circulation models vary in their representation of climate change in mid-

latitudes, the results of paper 3 which are based on one GCM-CPM combination are sub-

ject to large uncertainty (see Outlook of paper 3). Because of this, it is very beneficial to 

reproduce the investigations using another simulation. Here, we use a CCLM simulation 

driven by MIROC5 conducted by Michael Haller at DWD.  

 

E.2. Model setup 
 
The MIROC5-driven simulation (MIROC5-CCLM ) described here differs from the EC-

Earth driven simulation (ECE-CCLM) in the following ways:  

• nesting strategy: a downscaled CCLM simulation at 0.11° horizontal resolution 

taken from the EURO-CORDEX ensemble is used as intermediate nest instead of a 

0.22° simulation 

• simulation domain: the simulation domain is bigger, including Austria and Swit-

zerland in the South and Denmark in the North similar to the ERA5-driven simula-

tion (Figure D1b) 

• parameterizations: similarly to ECE-CCLM a one-moment microphysics scheme 

including graupel is used and the parameterization of shallow convection is 

switched on 
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E.3. Results 
 
E.3.1. Mean quantities 
 
Total mean precipitation remains virtually constant in RCP8.5 compared to Hist at 2.1 

mm/d. Precipitation increases mainly in Germany , Poland, Denmark and the Northern 

and Baltic Sea (Figure E1). It decreases in the Alps and the West of the simulation do-

main. Precipitation in the summer months (Apr-Sep) decreases by 9% from 2.0 mm/h in 

Hist to 1.8 mm/h in RCP8.5. Thus, this projection shows a smaller decrease than the EC-

Earth driven simulation (-15%). Again, the decrease is strongest in the Alps and in the 

West of the simulation domain. In central Germany, summer precipitation is projected to 

increase slightly.  

The mean temperature change is 4.4 K in the full simulation domain and 4.5 K in the ECE 

domain. It is higher than the temperature change in the EC-Earth simulation of 3.4 K. The 

spatial and temporal mean of convective inhibition (CIN) increases from present to future 

conditions in magnitude from -21.7 J/kg to -38.5 J/kg. CIN values at the starting point and 

starting time of convective cells change from -106.3 J/kg to -148.1 J/kg. Convective 

available potential energy (CAPE) increases from 30.4 J/kg to 55.3 J/kg in the spatial and 

temporal mean, and from 306.1 J/kg to 415 J/kg at the starting point and starting time of 

convective cells. 
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Figure E1: Mean precipitation. (a) historical, (b) difference RCP8.5 (2071-2100)-Hist (1971-2000) in Apr-Sep, (c) difference 
RCP8.5 (2071-2100)-Hist (1971-2000), (d) difference of EC-Earth driven simulation; RCP8.5 (2071-2100)-Hist (1976-2005) in 
Apr-Sep. 

 
E.3.2. Cell characteristics 

 

The frequency distributions of the cell characteristics lifetime, area, precipitation sum, 

and intensity are qualitatively similar to the EC-Earth simulation but differ quantitatively 

in a number of ways. First of all, cells are longer living in MIROC5-CCLM (Figure E2a). 

This might be related to the fact that in ECE-CCLM we had to use wind data from the 

intermediate nest for tracking whereas in MIROC5-CCLM wind data from the inner nest 

was used. Furthermore, there are more cells with high maximum intensity and fewer cell 

with low maximum intensity in MIROC5-CCLM compared to ECE-CCLM (Figure E2b). 

Cell area is quite similar in both simulations (Figure E2c). In combination this leads to 

higher precipitation sums per cell in MIROC5-CCLM (Figure E2d).  

 

(a) (b) 

(c) (d) 
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Figure E2: Frequency distribution of cell characteristics in the Historical (blue) and RCP8.5 (red) simulations: (a) lifetime, (b) 
mean intensity, (c) maximum area, (d) precipitation sum. Shaded areas denote the 95% confidence interval obtained from 1000 
bootstrap samples of all cells. Dashed, vertical lines denote the 99th percentiles. Circles show the midpoints of bins. 

To quantify the changes in cell characteristics in the future, we calculate the relative 

changes in cell characteristics for different percentiles of the frequency distributions.  

 

These changes are then compared to the ECE-simulation (see Table C1 in Appendix C). 

For comparison the changes are calculated for the full domain and for the ECE domain 

separately; the results do not differ much but the changes are a little higher for the ECE 

domain (compare Table E1 and Table E2). As in ECE-CCLM, the relative changes are 

highest for the highest percentiles. The relative changes of all cell characteristics are 

higher in MIROC5-CCLM than in ECE-CCLM for the high percentiles (Table E1) and 

about the same for the median (except for precipitation sum which is 3,2% and thus lower 

in ECE-CCLM). This higher increase in extreme cells seems to be caused by the higher 

temperature change signal as can be seen from the trend scaling. Trend scaling of P99 is 

very similar in ECE-CCLM and MIROC5-CCLM. For maximum area, precipitation sum, 

and mean and maximum intensity the scaling rate does not differ more than 1% between 

(a) (b) 

(d) (c) 
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the two simulations. As in ECE-CCLM, the scaling rates for maximum area and precipita-

tion sum are very close to the CC-rate. 

 

Table E1: Relative changes in cell characteristics (from Historical to RCP8.5) for the ECE domain. 

Change in % Lifetime Max. Area Precip. Sum Mean Intensity Max. 
Intensity 

Mean 
Speed 

Median -10,00 16,70 11,60 2,00 5,10 8,10 

Mean 0,20 22,5 30,25 4,95 13,1 9,38 

P75 0,00 18,20 18,70 5,30 12,20 10,80 

P90 0,00 23,80 26,00 9,00 18,20 12,00 

P99 4,50 40,60 44,70 15,70 31,60 11,90 

Trend 
scaling of 
P99 (%/K) 

1,0 
 

7,60 8,20 3,2 6,1 2,50 

 

Table E2: Relative changes in cell characteristics (from Historical to RCP8.5) for the full domain. 

Change in % Lifetime Max. Area Precip. Sum Mean Intensity Max. Inten-
sity 

Mean Speed 

Median 0,00 8,30 12,50 2,20 5,20 4,50 

Mean 1,90 21,00 29,80 3,25 8,32 8,99 

P75 5,50 13,60 18,40 4,90 10,80 11,00 

P90 3,20 22,00 24,70 7,90 15,70 10,50 

P99 5,60 39,20 40,00 14,00 28,50 11,1 

Trend 
scaling of 
P99 (%/K) 

1,2 7,5 7,6 3,0 5,6 2,3 

 

E.3.3. Yearly and diurnal cycle 
	
In general, the diurnal cycle of convective activity is simulated very similar in MIROC5-

CCLM compared to ECE-CCLM. The afternoon maximum is damped in the future com-

pared to present conditions. The main difference in the MIROC5-CCLM simulations is 

that in the future convective activity declines more slowly in the afternoon after reaching 
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its peak at around 15 UTC (Figure E3a). Furthermore, mean intensity of cells does not 

increase in the morning between 10 and 12 UTC (Figure E3b). In combination this leads 

to an increase of convective precipitation during the whole day except for the time be-

tween 12 UTC and 15 UTC (Figure E3c). 

 

 

Figure E3: Diurnal cycle of (a) number of cells, (b) mean intensity per cell, and (c) mean sum of convective precipitation. 

 

While the tracking could only be carried out for the summer months (Apr-Sep) for the 

ECE-CCLM simulation, the MIRCO5-CCLM simulations provide data for the whole 

year. The maximum of convective activity occurs in July for both historical and future 

periods in MIROC5-CCLM (Figure E4a), whereas in ECE-CCLM it occurs earlier (June 

for hist and May for RCP8.5). The mean intensity is higher in MIROC5-CCLM during 

the whole summer season (Figure E4b). In sum, the yearly cycle of convective precipita-

tion is shifted by about 1-2 months in MIROC5-CCLM compared to ECE-CCLM (Figure 

E4c). The relative increase per month in the future is quite constant, meaning that the total 

increase in convective precipitation is strongest in the wettest months of June and July. 

  

 

Figure E4: Yearly cycle of (a) number of cells, (b) mean intensity per cell, and (c) mean sum of convective precipitation. 
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E.3.4. Spatial distribution 
 

Convective activity as measured by the occurrence of convective cells increases by 38% 

(compared to virtually no change in the ECE simulation). The increase is strongest in the 

Alps and Northern and Baltic Sea (Figure E5). In the Alps, convective activity increases 

especially in an area which experiences little convective activity in the present, on the 

main Alpine ridge.  

 

 

 

Figure E5: Spatial distribution of (a) cell number in the historical simulation, (b) relative change in cell number in RCP8.5. 

 

E.3.5.	Temperature	and	dew	point	scaling	of	cell	characteristics	
	
One of the main conclusions in Purr et al. (2021) was that near-surface Td is a good pre-

dictor of the upper limit of cell characteristics because the scaling curves for the highest 

percentiles (99
th

 perc.) were similar in present and future conditions. To assess the robust-

ness of this result, we repeat the same analysis using the MIROC5-CCLM simulation.  

In contrast to the ECE-CCLM simulations, the scaling rates differ for present and future 

conditions in MIROC5-CCLM (Figure E6). Concerning the temperature scaling, the scal-

ing rates are higher in future conditions for all cell characteristics over the whole tempera-

ture range (Figure E6, left column). Again, this is in contrast to the ECE-CCLM simula-

tion where temperature-scaling is similar in the intermediate temperature range and the 

difference between present and future are higher peak values in the future. Concerning 
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dew point scaling, the differences are not as large as for temperature scaling but still larg-

er than in the ECE-CCLM simulation. For maximum area and precipitation sum, the ex-

treme values are higher in the future but the mean scaling rate across the whole dew point 

range are almost identical (Figure E6b and h). For maximum and mean intensity the scal-

ing rate for future conditions is higher than for present conditions meaning that extreme 

values are higher at high Td values and lower at low Td values (Figure E6d and f).  
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Figure E6: Temperature scaling (left column) and dew point temperature scaling (right column) of cell properties. (a) and (b): 
Maximum area; (c) and (d): Maximum intensity; (e) and (f): Mean intensity; (g) and (h): Precipitation sum. Shaded areas denote 
the uncertainty range caused by varying bin occupancy, obtained from bootstrapping cells in each bin. (i) and (j) show the fre-
quency distribution of cells, where bars denote the absolute number of cells per temperature or dew point class (left y-axis). 
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These results question the conclusion that near-surface Td is a good predictor of the upper 

limit of cell characteristics. A potential reason for this deviation could the difference in 

the large scale circulation. Hypothetically, the higher extreme values at high Td values in 

the future could be caused by more instability or more wind shear in these cases. Further 

investigations are required to clarify these contrasting results. 
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F. Deutsche Zusammenfassung 
 

Über die Intensivierung konvektiver Starkregenereignisse bei steigenden Tempera-
turen in Deutschland 

 

Konvektive Starkregenereignisse gehören zu den verheerendsten Naturkatastrophen in 

Mitteleuropa. Speziell in Deutschland traten in den letzten Jahren einige markante 

Starkregenereignisse auf, die sehr hohe Niederschlagssummen brachten und große Schä-

den verursachten, z.B. 2016 (Piper et al. 2016) und 2021
4
. Allerdings konnte eine Zunah-

me von Niederschlagsextremen in der Gegenwart für Dauerstufen unter einem Tag auf 

Basis von Beobachtungsdaten bisher nicht belegt werden (Rauthe et al. 2020). Dies liegt 

vor allem an der geringen räumlichen Ausdehnung von konvektiven Niederschlagsgebie-

ten, wodurch die Erfassung von Starkniederschlägen erschwert wird. Seit einigen Jahren 

stehen allerdings Fernerkundungstechniken, wie z.B. Regenradare zur Verfügung, die 

eine kontinuierliche Beobachtung konvektiver Stürme erlauben. Diese werden in zuneh-

mendem Maße für klimatologische Untersuchungen eingesetzt (Lengfeld et al. 2020). Im 

ersten Teil dieser Arbeit wird solch ein Radardatensatz benutzt, um mithilfe eines Zellver-

folgungsalgorithmus konvektive Regengebiete über ihren Lebenszyklus zu verfolgen.  

Für die zukünftige Entwicklung stimmen theoretische Überlegungen und komplexe 

Klimamodelle darin überein, dass sich der Wasserkreislauf und somit Extremniederschlä-

ge im globalen Mittel intensivieren werden (Trenberth et al. 2003, Fischer & Knutti 

2016). Um diese Änderung zu quantifizieren, wird als erste Näherung oft die Clausius-

Clapeyron Beziehung benutzt (Lenderink et al. 2008, Zhang et al. 2017). Sie besagt, dass 

der Sättigungsdampfdruck für Wasserdampf in Luft exponentiell mit der Temperatur an-

steigt, und zwar um 7 %/K. Allerdings können verschiedene Faktoren zu Abweichungen 

von dieser Rate führen. Zunächst basiert diese Näherung auf der Annahme, dass sich die 

relative Feuchte im Klimawandel nicht ändert. Diese Annahme kann auf regionaler Skala 

verletzt werden, wenn eine Änderung der großskaligen Zirkulation zu regionalen Klima-

änderungen führt. Typischerweise haben Skalierungskurven ein Maximum bei der Tem-

peratur, über welcher geringere Feuchte dazu führt, dass Niederschlag begrenzt ist 

 

4 Hydro-klimatologische Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im  
Zusammenhang mit dem Tiefdruckgebiet „Bernd“ vom 12. bis 19. Juli 2021. 
https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_be
rnd.pdf?__blob=publicationFile&v=6. Letzter Zugriff: 21.11.2021 
 



F. Deutsche Zusammenfassung 

 - 131 - 

 

(Drobinski et al. 2016). Verschiedene Studien, z.B. Prein et al. 2017a, haben anhand von 

Klimasimulationen gezeigt, dass dieses Maximum in der Zukunft bei höheren Temperatu-

ren auftritt. Um dieses Problem zu umgehen, wurde vorgeschlagen, den Taupunkt als ab-

hängige Variable für das Niederschlagsscaling zu verwenden (Lenderink et al. 2008). 

Während der beobachtete Anstieg von täglichen Niederschlagsextremen mit der Tempera-

tur in mittleren Breiten gut mit der Clausius-Clapeyron-Rate übereinstimmt, wurden für 

kurzzeitige Starkniederschläge, also auf einer Zeitskala von Minuten bis Stunden, Anstie-

ge oberhalb der Clausius-Clapeyron-Rate in bestimmten Regionen beobachtet (siehe 

Fowler et al. 2021 für eine Übersicht). Für Deutschland fanden Berg et al. (2013) Skalie-

rungsraten von bis zu 14%/K, also der doppelten Clausius-Clapeyron-Rate. 

Als Erklärung für dieses super-Clausius-Clapeyron-Scaling werden in der Literatur meh-

rere Hypothesen diskutiert, die sich gegenseitig nicht ausschließen. Erstens wird der sta-

tistische Effekt angeführt, dass der Anteil konvektiver Niederschläge bei zunehmender 

Temperatur ansteigt. Zweitens wird ein positiver Rückkopplungsmechanismus diskutiert, 

der die Dynamik konvektiver Stürme bei hohen Temperaturen überproportional verstärkt. 

Diese Hypothese besagt, dass mit höheren Temperaturen das Feuchteangebot in der 

Grenzschicht, also am Wolkenunterrand, ansteigt. Ist mehr Feuchte vorhanden, kann im 

Aufwindbereich von konvektiven Zellen durch Kondensation auch mehr latente Wärme 

freigesetzt werden, was wiederum zu einer Erhöhung der Auftriebskraft führt. Der so ver-

stärkte Aufwindbereich kann wiederum mehr Feuchte aus einem größeren Gebiet der 

Grenzschicht ansaugen. Als weiterer Einflussfaktor wird der Organisationsgrad der kon-

vektiven Stürme diskutiert. Der Einfluss von steigenden Temperaturen auf den Organisa-

tionsgrad wird in der Literatur hauptsächlich im Zusammenhang mit tropischer Konvekti-

on diskutiert (Wing et al. 2017). Nichtsdestotrotz untersuchen auch einige Studien anhand 

von idealisierten Simulationen die Temperaturabhängigkeit des Organisationsgrads von 

Konvektion in mittleren Breiten (Moseley et al. 2016, Lochbihler et al. 2019).  

Aufgrund dieser komplexen, nicht-linearen Prozesse sind Klimamodelle mit einer hohen 

zeitlichen und räumlichen Auflösung nötig, um hochreichende Konvektion und deren 

Veränderungen im Klimawandel realistisch zu simulieren. Solche, häufig als „konvekti-

onserlaubend“ bezeichneten Modelle sind gekennzeichnet durch eine Gitterweite kleiner 

als 4 km und werden seit einigen Jahren erfolgreich zur Simulation hochreichender Kon-

vektion eingesetzt (eine Übersicht bietet z.B. Prein et al. 2015). Aufgrund des hohen Be-

rechnungsaufwands sind die Zeiträume und Simulationsgebiete allerdings begrenzt, so-

dass bisher nur wenige Simulationen über Jahrzehnte existieren, die meist einzelne Län-
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der oder in einigen Fällen Kontinente abdecken. Eine Übersicht über alle wesentlichen, 

bisher durchgeführten konvektionserlaubenden Simulationen bieten Lucas-Picher et al. 

(2021).Welche Prozesse zu einer Intensivierung konvektiver Starkniederschläge führen 

und wie sich diese Prozesse in der Zukunft verändern werden, sind die Leitfragen dieser 

Arbeit. Das Ziel ist es, die Abhängigkeit von Eigenschaften konvektiver Stürme, wie de-

ren Lebenszeit, Größe und Niederschlagsintensität, von großskaligen Umgebungsvariab-

len wie Taupunkt, Schichtungsstabilität und vertikaler Windscherung in Beobachtungen 

und Klimasimulationen besser zu verstehen.  

Zunächst wurden Eigenschaften konvektiver Stürme mittels eines Zellverfolgungsalgo-

rithmus aus einem an ortsfeste Niederschlagsmessungen angeeichten Radardatensatz ge-

wonnen und untersucht, wie diese von großskaligen, atmosphärischen Variablen abhän-

gen, um zu verstehen, welche Prozesse für das beobachtete super-Clausius-Clapeyron-

Scaling von konvektiven Niederschlägen verantwortlich sein könnten. Insbesondere wur-

de der Frage nachgegangen, welche Rolle die vertikale Windscherung spielt, da sie zum 

einen den Organisationsgrad und somit die Intensität konvektiver Stürme erhöht, zum 

anderen aber dafür sorgt, dass sich diese Stürme schneller verlagern, was die Nieder-

schlagsdauer und somit die Niederschlagsmenge für einen ortsfesten Beobachter senkt.  

Die Niederschlagssumme konvektiver Zellen steigt mit der Taupunkttemperatur weit über 

der Clausius-Clapeyron-Rate an, wobei der Anstieg mit steigender Taupunkttemperatur 

zunimmt. Dieser starke Anstieg wird durch eine Zunahme der Convective Available Po-

tential Energy (CAPE) mit der Taupunkttemperatur verursacht, sowie durch den Effekt, 

dass vertikale Windscherung die Fläche der konvektiven Zellen und somit auch die Nie-

derschlagssumme erhöht. Gleichzeitig sorgt hohe vertikale Windscherung dafür, dass die 

konvektiven Zellen sich schneller verlagern, sodass die ortsfesten Skalierungsraten unter 

denen der mitbewegten Niederschlagssumme, aber immer noch über der Clausius-

Clapeyron-Rate liegen. Der Anstieg der Zellfläche mit größerer Windscherung wird also 

durch die erhöhte Zuggeschwindigkeit überkompensiert was ortsfeste Niederschläge an-

geht. Dies führt dazu, dass konvektive Zellen, die ortsfeste Starkniederschläge (>25 

mm/h) auslösen im Mittel langsamer ziehen als die Gesamtheit aller beobachteten Zellen. 

Die Tatsache, dass CAPE und Windscherung die Skalierungsraten beeinflussen, macht es 

unwahrscheinlich, dass die gegenwärtigen Skalierungsraten für ortsfeste Niederschläge in 

die Zukunft übertragen werden können. 

Im zweiten Teil der Arbeit wurde evaluiert, inwieweit das regionale Klimamodell 

COSMO-CLM die Eigenschaften konvektiver Zellen abbilden kann. Hierzu wurden Si-
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mulationen, die mit den Reanalysen ERA-Interim und ERA5 angetrieben wurden, mit 

Beobachtungsdaten verglichen. Insgesamt kann das Modell die Eigenschaften konvekti-

ver Zellen mit einigen Abstrichen gut darstellen. Die beobachteten Häufigkeitsverteilun-

gen der Zelleigenschaften Lebensdauer, mittlere und maximale Intensität, Fläche und 

Niederschlagssumme werden vom Modell gut wiedergegeben. Weiterhin kann auch der 

Anstieg von Intensität und Fläche mit der Lebensdauer korrekt simuliert werden, was na-

helegt, dass auch das Spektrum von wenig intensiven Einzelzellengewittern bis hin zu 

intensiveren, organisierten Formen von Konvektion wie Superzellen oder mesoskaligen 

Komplexen im klimatologischen Mittel gut dargestellt wird. Allerdings wird die Nieder-

schlagsintensität vor allem bei den langlebigen, intensiven Ereignissen systematisch un-

terschätzt. Das Modell kann den Anstieg der hohen Perzentile von Intensität, Fläche und 

Niederschlagssumme mit der Temperatur wiedergeben, aber nicht den Anstieg der Le-

bensdauer. Hinsichtlich der räumlichen Verteilung können beide Simulationen die erhöhte 

konvektive Aktivität im Bergland gut wiedergeben. Allerdings zeigt die mit ERA-Interim 

angetriebene Simulation eine Unterschätzung (Überschätzung) des konvektiven Nieder-

schlags in Norddeutschland (Süddeutschland), was in der ERA5-angetriebenen Simulati-

on schwächer ausgeprägt ist. Der Tagesgang der konvektiven Aktivität mit seinem typi-

schen Maximum am Nachmittag wird von beiden Simulationen realistisch wiedergege-

ben. Allerdings wird der Tagesgang der mittleren und maximalen Intensität der konvekti-

ven Zellen von der ERA-Interim angetriebenen Simulation unterschätzt, wohingegen die 

ERA5-angetriebene Simulation einen ausgeprägteren Anstieg am Nachmittag und somit 

realistischere Werte dieser Größen simuliert. Zusammenfassend lässt sich sagen, dass das 

Modell die wesentlichen Eigenschaften und die raum-zeitliche Variabilität konvektiver 

Regenzellen hinreichend gut abbilden kann. Die hier verwendete Art der Evaluation er-

laubt es, Modelldefizite zu identifizieren, die durch die klassische Evaluation ortsfester 

Niederschläge nicht erkennbar sind. 

Um herauszufinden, wie sich die Eigenschaften konvektiver Zellen und der Einfluss groß-

skaliger Umgebungsvariablen in Zukunft verändern könnten, wurden kontinuierliche 

Klimasimulationen für Gegenwart (1976-2005) und Zukunft (2071-2100) unter dem re-

präsentativen Konzentrationspfad RCP8.5 durchgeführt. Die Antriebsdaten stammen vom 

Globalmodell EC-Earth. Zusätzlich wurde die Analyse mit einer weiteren Simulation mit 

anderen Antriebsdaten (MIROC5) und leicht verändertem Simulationsgebiet wiederholt, 

um die Unsicherheit der Ergebnisse, die von Unterschieden in der großskaligen Zirkulati-

on verursacht werden, grob abschätzen zu können.  
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In der Zukunftsprojektion zeigen beide Simulationen einen Anstieg der ortsfesten, stünd-

lichen Starkniederschläge im Sommer bei gleichzeitiger Abnahme des mittleren Sommer-

niederschlags, was mit den Ergebnisses größerer Ensembles regionaler Klimamodelle 

übereinstimmt (Jacob et al. 2014). Die Intensität und Fläche der konvektiven Zellen steigt 

in der Zukunft im Vergleich zur Gegenwart stark an, wohingegen Anzahl und Lebenszeit 

der Zellen gleich bleiben. Der relative Anstieg von Intensität und Fläche ist am größten 

für die hohen Perzentile, was bedeutet, dass sich extreme konvektive Ereignisse am 

stärksten intensivieren. In der von MIROC5 angetriebenen Simulation sind die Anstiege 

deutlich höher als in der von EC-Earth angetriebenen Simulation, z.B. für das 99. 

Perzentil der Niederschlagssume mit 44,7% im Vergleich zu 27%. Allerdings sind die 

Skalierungsraten für das trend-scaling, also der Änderungsrate pro K Temperaturände-

rungssignal, nahezu identisch mit 8,2% bzw. 7,9%. Dies deutet darauf hin, dass die stär-

kere Zunahme hauptsächlich durch stärkere Erwärmung verursacht ist.  

Für den Tagesgang zeigen beide Simulationen eine Abnahme des nachmittäglichen Ma-

ximums und eine Verlagerung des konvektiven Niederschlags zu späteren Tageszeiten. 

Grund hierfür sind eine Zunahme der Convective Inhibition (CIN), wodurch es schwieri-

ger wird, Konvektion auszulösen. Die Abnahme der Anzahl konvektiver Zellen am 

Nachmittag wird vor allem durch eine Abnahme langsam ziehender Zellen verursacht. 

Diese Abnahme ist bemerkenswert, da sich die großskalige Windgeschwindigkeit in den 

Simulationen nicht ändert, was darauf hindeutet, dass es weniger Luftmassengewitter gibt 

und stattdessen öfters ein dynamischer Auslösemechanismus nötig ist. Gleichzeitig stei-

gen die CAPE und die bodennahe, absolute Luftfeuchte in der Zukunft an, sodass die 

konvektiven Ereignisse intensiver werden, wenn sie einmal ausgelöst sind. Dieses Ergeb-

nis deckt sich z.B. mit Ergebnissen aus den USA, wo in der Zukunft ebenfalls höhere 

CAPE und CIN Werte simuliert werden und eine Verschiebung von moderaten hin zu 

extremen konvektiven Ereignissen projiziert wird (Rasmussen et al. 2018). Um zu unter-

suchen, ob und wie sich die Beziehung von den Eigenschaften konvektiver Zellen zu den 

großskaligen Umgebungsvariablen in Zukunft ändert, berechnen wir das binning scaling 

der Zelleigenschaften mit Temperatur und Taupunktstemperatur. Wie bei ortsfesten Nie-

derschlägen verschieben sich die Skalierungskurven in der Zukunft hin zu höheren Tem-

peraturen. Im Gegensatz dazu sind die Skalierungsraten der Zelleigenschaften mit dem 

Taupunkt in Gegenwart und Zukunft laut der EC-Earth angetriebenen Simulation nahezu 

identisch, was bedeutet, dass die bodennahe Taupunkttemperatur einen guten Prädiktor 

für die Obergrenze der Intensität, der Fläche, und der Niederschlagssumme von konvekti-
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ven Zellen darstellt. Dies gilt allerdings nicht für ortsfeste Starkniederschläge, da sich die 

Häufigkeitsverteilung von konvektiven Zellen pro Taupunktsklasse ändert. In der von 

MIROC5 angetriebenen Simulation konnten die identischen Skalierungsraten für die 

Taupunktstemperatur nicht reproduziert werden. Hier sind die Skalierungsraten in der 

Zukunft höher als in der Gegenwart. Weitere Untersuchungen sind nötig, um die Gründe 

hierfür heraus zu finden. 
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