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Zusammenfassung

ªKann ein FestkÈorper suprafluid sein?,º (orig.: ªCan a solid be superfluid?º) lautet der Titel einer
von A.J. Leggett 1970 publizierten Arbeit und eine Frage, der sich diese Arbeit widmet.
Intuitiv scheint diese Fragestellung eine klare Antwort zu besitzen, da in der klassischen
Physik ein FestkÈorper und eine Fl Èussigkeit einer entgegengesetzter Natur sind und sich
dementsprechend gegenseitig ausschlieûen. Doch im Rahmen der Quantenmechanik
mag es f Èur diese Frage keine offensichtliche Antwort geben. Deshalb kam es um 1970 zu
einer Welle von Publikationen, die sich mit der Theorie von Quantenphasen beschÈaftigte,
ein Zustand der sowohl Eigenschaften von FestkÈorpern und Suprafluiden besitzt. Die
Existenz dieser quantenmechanischen Phase, die als SuprasoliditÈat getauft wurde, schien
jahrzentelang ein RÈatsel zu sein.
Die Suche nach einem experimentell realisierbarem System erÈoffnete viele weitere For-
schungszweige, doch im Grunde vereint sie ein Grundgedanke: Kondensierte System
aus langreichweitig wechselwirkenden Teilchen. Trotz dieser recht simplen Idee ergaben
sich eine Vielfalt von Kandidaten, mit denen eines Tages SuprasoliditÈat experimentell
nachgewiesen werden soll. Eines dieser vielversprechenden Systeme, welches das zentrale
Thema dieser Arbeit bildet, sind Bose-Einstein Kondensate, dessen Atome an Rydberg-
ZustÈanden gekoppelt sind.
Bose-Einstein Kondensation ist ein PhÈanomen, welches um 1924 von Albert Einstein
vorhergesagt wurde, der die Arbeiten von Satyendranath Bose Èuber die Quantenstatis-
tik von Photonen auf den Fall von Atomen verallgemeinerte. Im Prinzip lÈasst sich der
dazugehÈorige Aggregatzustand durch eine makroskopische Besetzung eines quanten-
mechanischen Zustandes charakterisieren, weshalb sich ein solches System aus unun-
terscheidbaren Atomen durch eine einzige Wellenfunktion beschreiben lÈasst. Da meist
der besetzte Quantenzustand der energetisch geringste ist, wird mit der Kondensation
von Gasen meist ultrakalte Temperaturen im Nanokelvin-Bereich assoziert. Die ersten
experimentellen Realisierungen von einem Bose-Einstein Kondensat fanden erst 1995 statt
und die daf Èur verantwortlichen Physiker wurden 2001 mit dem Nobelpreis ausgezeichnet.
Doch lang bevor wurde vermutet, dass die Bose-Einstein Kondensation teilweise hinter
dem PhÈanomen der SuprafluiditÈat steckt, welches 1938 durch ultrakaltes Helium gefunden
wurde. Darauffolgende theoretische und experimentelle Arbeiten fanden heraus, dass in
Helium die SuprafluiditÈat aus der Wechselwirkung zwischen den kondensierten Teilchen
stammt und somit entstand die Beziehung zwischen Bose-Einstein Kondensation und
SuprafluiditÈat.
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Folgend auf den ersten Realisierungen von Bose-Einstein Kondensaten erschienen weitere
innovative Experimente, die sich in den optischen Gittern gefangenen Quantengasen
widmeten. In diesen zahlreichen, wissenschaftlichen Untersuchungen konnten die Eigen-
schaften von Bose-Einstein Kondensaten besser verstanden werden. Das Prinzip von
Vielteilchensystemen, gefangen in einem periodischen Potential, bot eine Plattform zur
Untersuchung weiterer Quantenphasen.
Eine konzeptionell einfache Modifikation von solchen Systemen erhÈalt man durch die
Kopplung der GrundzustÈande der gefangenen Teilchen an hoch angeregten ZustÈanden
mithilfe einer externen Lichtquelle. Im Falle dessen, dass diese ZustÈande nahe der Ionisa-
tionsgrenze des Atoms liegen, spricht man von Rydberg-ZustÈanden und Atome, welche
zu diesen ZustÈanden angeregt werden, bezeichnet man als Rydberg-Atome. Eines der
vielen charakteristischen Eigenschaften von Rydberg-Atomen ist die FÈahigkeit Èuber groûe
Entfernungen jenseits der atomaren LÈangenskalen zu wechselwirken. Im Rahmen von Viel-
teilchensystemen wurden dementsprechend Kristallstrukturen aus gefangenen Rydberg-
Atomen experimentell beobachtet.

Nun stellt sich die Frage, was mit einem gefangenen Bose-Einstein Kondensat passiert,
dessen Teilchen an langreichweitig wechselwirkenden ZustÈanden gekoppelt sind. Gibt es
ein Parameterregime, in dem sowohl Kristallstruktur als auch SuprafluiditÈat in solchen
Systemen koexistieren kÈonnen? Dies ist die zentrale Frage dieser Arbeit, die sich mit der
Theorie von gefangenen Quantengasen gekoppelt an Rydberg-ZustÈanden auseinander-
setzt. Die Arbeit ist in vier Teile gegliedert:
Kapitel 1 erÈortert die allgemeinen Konzepte hinter bosonischen Vielteilchensystemen
gefangen in optischen Gittern. ZunÈachst werden in Abschnitt 1.2 die K Èuhlungsmeth-
oden vorgestellt, mit denen Quantengase ultrakalte Temperaturen erreichen kÈonnen.
Im Anschluss wird der physikalische Hintergrund von optischen Gittern diskutiert, in
denen diese gek Èuhlten Gase gefangen werden. Dabei wird das periodische Potential,
welches aus stehenden Wellen von Laserlicht resultiert, aus einer quantenmechanischen
und semiklassischen Sicht erlÈautert. AbhÈangig von den Parametern des Laserlichts wer-
den die Teilchen entweder von den Knoten oder BÈauchen angezogen. Diese periodisch
angeorgneten Potentialminima werden als GitterplÈatze bezeichnet. Aufgrund der Rel-
evanz in weiteren, wichtigen Herleitungen wird das Konzept des reziproken Gitters
ebenfalls vorgestellt. Ausgangspunkt bilden dabei die optischen Gitter f Èur die Auseinan-
dersetzung mit der Theorie von Teilchen gefangen in periodischen Potentialen. Dabei
wird das in dem Kontext bekannte Bloch-Theorem eingef Èuhrt und die Bandstruktur des
Systems in AbhÈangigkeit der Potentialparameter bestimmt,um Einblick in das Verhal-
ten der Teilchen zu gewinnen und mit der Wannier-Darstellung abgeschlossen, die als
Ortsraum-Wellenfunktion der Teilchen verstanden werden kann. Nachdem die Eigen-
schaften einzelner, gefangener Atome diskutiert wurden, widmet sich dieser Abschnitt
den Vielteilchensystemen. Zuerst wird das sogenannte Bose-Hubbard Modell vorgestellt,
mit dem sich bosonische Vielteilchensystem in der Zweiten Quantisierung beschreiben
lassen. Dieses Modell beinhaltet Tunnelprozesse und Kontaktwechselwirkung, d.h. Wech-
selwirkung zwischen zwei Teilchen am selben Gitterplatz. ZusÈatzlich besitzt das Modell
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einen theoretischen Parameter, das chemische Potential, mit denen sich in Berechnungen
von GrundzustÈanden die Teilchenanzahl im System regulieren lÈasst. Da im Rahmen
dieser Arbeit langreichweitige Wechselwirkung auch eine wichtige Rolle spielt, wird
eine Erweiterung des Bose-Hubbard Modells mit Wechselwirkung zwischen Teilchen in
benachbarten GitterplÈatzen diskutiert. Durch das komplexe Zusammenspiel der Tun-
nelamplitude, der beiden WechselwirkungsstÈarken und des chemischen Potentials ergeben
sich in dem System die mÈoglichen Quantenphasen, die im darauffolgenden Abschnitt
diskutiert werden. Zuerst werden die mÈoglichen Quantenphasen besprochen, die in
einem solchen System erwartet werden, nÈamlich der Mott-Isolator, das Suprafluid, die
Ladungsdichtewelle und das Suprasolid. Im Falle, dass solche ZustÈande in bestimmten
GrenzfÈallen erhalten werden kÈonnen, werden diese erÈortert und die dazugehÈorigen ana-
lytischen Wellenfunktionen diskutiert. Um die Quantenphase des Systems jenseits dieser
GrenzfÈalle zu erhalten, werden die Phasendiagramme des Systems anhand numerischer
Rechnungen mit dem erweiterten Bose-Hubbard Modell bestimmt. Mithilfe von Ord-
nungsparametern lassen sich dann die VielteilchengrundzustÈande charakterisieren und
die Quantenphase identifizieren, womit Information Èuber das Wechselspiel der Parameter
des Modells gewonnen werden Diesem Abschnitt folgend werden letzendlich experi-
mentelle Methoden diskutiert, mit denen diese Quantenphasen nachgewiesen werden
kÈonnen. Eine dieser Methoden ist die Flugzeitmessung, bei der das Potential ausgeschaltet
wird und die Teilchenwolke aufgrund der Schwerkraft fÈallt. WÈahrend der Expansion des
Gases kommt es mÈoglicherweise zu Interferenzen zwischen den Teilchen, abhÈangig von
der Quantenphase des Systems vor der Expansion. Nach einiger Zeit wird ein Bild der
Wolke geschossen, welches die Impulsverteilung des vorher gefangenen Systems offen-
bart, woraus die Quantenphase erschlossen werden kann. Eine weitere Methode bietet
das Quantengasmikroskop, mit welchem einzelne Teilchen abgebildet werden kÈonnen
und wodurch sich die genaue Ortsraumverteilung der Teilchen im System darstellen
lÈasst. Damit wurden die f Èur diese Arbeit wichtigsten theoretischen und experimentellen
Aspekte von bosonischen Systemen gefangen in optischen Gittern besprochen.
In Kapitel 2 f Èuhren wir den zweiten, essenziellen Aspekt dieser Arbeit ein, nÈamlich
Rydberg-ZustÈande und Systeme aus Rydberg-Atome. Begonnen wird mit der Herleitung
der Wellenfunktion der Valenzelektronen, mit der sich die herausgehobenen Eigenschaften
von Rydberg-Atomen besser verstehen lÈasst. In diesem Kontext wird die Hauptquan-
tenzahl eingef Èuhrt, mit der sich die Skalierung relevanter Eigenschaften beschreiben
lÈasst. Da der Rydberg-Zustand ein angeregter Zustand ist, besitzt dieser eine endliche
Lebensdauer, welche auf spontane Emission und SchwarzkÈorperstrahlung zur Èuckgef Èuhrt
werden kann. Hierbei wird deren physikalischen Hintergr Èunde dargestellt und deren
Strahlungsraten in AbhÈangigkeit der Hauptquantenzahl quantifizieren. Im Anschluss
wird die langreichweitige Wechselwirkung zwischen zwei Atomen im Rydberg-Zustand
erlÈautert, die aus der Dipol-Dipol-Wechselwirkung zwischen den Atomenkernen und den
entfernten Valenzelektronen stammt. F Èur zwei Atome im selben Rydberg-Zustand erhÈalt
man aus der StÈorungstheorie die charakteristische van-der-Waals Wechselwirkung, die
sowohl isotrop als auch anisotrop sein kann und als langreichweitige Wechselwirkung
im ersten Abschnitt von Kapitel 4 fungiert. Jedoch jenseits der StÈorungstheorie liefert die
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Dipol-Dipol-Wechselwirkung sogenannte Spagetthi-Potentiale, in denen nicht nur die
Wechselwirkung zwischen zwei Rydberg-Atomen ersichtlich werden, sondern auch die
Existenz von Molek Èulen bestehend aus Rydberg-Atomen hervorgeht. Solche Molek Èule
werden im Kontext der Rydberg-Physik auch Macrodimere genannt und bilden die Basis
f Èur die langreichweitige Wechselwirkung im zweiten Abschnitt von Kapitel 4. Da sich
die Diskussion der Wechselwirkung auf Atome im Rydberg-Zustand einschrÈankt, wird
die Rolle der Wechselwirkung in Systemen aus wenigen Atomen, deren elektronischer
Grundzustand an einem Rydberg-Zustand gekoppelt ist, diskutiert. Dabei wird der
Vielteilchengrundzustand f Èur verschiedene interatomare Distanzen im Bezug auf Kop-
plungsparameter und WechselwirkungsstÈarke besprochen. Aus diesen Rechnungen wird
das PhÈanomen der Rydberg-Blockade ersichtlich, in dem die Anregung aller Atome ener-
getisch ung Èunstig ist, wenn die Atome nah genug beieinander sind. F Èur dichte Systeme
aus vielen, ununterscheidbaren Atomen bildet sich ein sogenanntes Superatom und das
System verhÈalt sich wie ein einziges Rydberg-Atom mit modifizierten Kopplungsparame-
tern. Dieses Kapitel schlieût ab mit dem jetzigen Stand der Rydberg-Physik in Bezug auf
Vielteilchensysteme. Dabei wird die experimentelle Realisierung von Kristallstrukturen
aus lokalisierten Atomen erwÈahnt, die in einem tiefen optischen Gitter gefangen sind und
dementsprechend nicht tunneln. ZusÈatzlich wird das sogenannte avalanche dephasing
diskutiert, ein kollektiver Effekt in dem durch SchwarzkÈorperstrahlung unerw Èunschte
Rydberg-ZustÈande in einem System besetzt werden, was zu stÈorenden Wechselwirkungen
und dem Verlust von KoherÈanz f Èuhren kann.
Vor den Hauptergebnissen dieser Arbeit werden in Kapitel 3 essenzielle numerische
Aspekte und Methoden zur Berechnung von Vielteilchensysteme und deren Zeiten-
twicklungen besprochen. Da der Hilbertraum von Vielteilchensysteme und damit der
dazugehÈorige numerische Rechenaufwand einfacher Operationen stark mit der Anzahl
der Teilchen und ber Èucksichtigen EinteilchenzustÈande wÈachst, wird eine Methode zur
Vereinfachung der Rechnungen unentbehrlich. In dieser Arbeit wird die Gutzwiller-
Theorie gewÈahlt, in der sich mithilfe der Gutzwiller-NÈaherung das System in Untersysteme
aufteilen lÈasst. Der Rechenaufwand, der mit der numerischen Berechnung Vielteilchen-
grundzustÈande assoziert wird, ist in diesen Untersystemen stark verringert und ermÈoglicht
durch eine gescheite Wahl der Methodenparameter den Vielteilchengrundzustand des
gesamten Systems approximativ zu erhalten. In diesem Kapitel wird ebenfalls die Mas-
tergleichung in Lindblad-Form hergeleitet, mit der sich Dissipation und DekohÈarenz im
System beschreiben lÈasst. Der Einfluss dieser Prozesse wird aus nicht-unitÈare Zeitentwick-
lungssimulationen ersichtlich.
In Kapitel 4 werden dann die Ergebnisse der zentralen Fragestellung dieser Arbeit
vorgestellt. Im ersten Abschnitt wird ein bosonisches Quantengas gefangen in einem
optischen Gitter gekoppelt an Rydberg-ZustÈanden untersucht. Das dazugehÈorige Mod-
ell beschreibt ein zweikomponentiges System bestehend aus Atomen im elektronischen
Grundzustand und im Rydberg-Zustand. Das Modell beinhaltet zudem einen Kopplung-
sterm zwischen beiden Komponenten und der van-der-Waals Wechselwirkung zwischen
den Rydberg-Atomen. Um mÈoglichst viel Erkenntnis diesem Modell zu gewinnen werden
die VielteilchengrundzustÈande sowohl f Èur isotrope als auch f Èur anisotrope van-der-Waals
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Wechselwirkung berechnet. Die Rechnungen werden f Èur quadratische optische Gitter
ebenso wie f Èur dreieckige optische Gitter durchgef Èuhrt. UnabhÈangig der Geometrie der
langreichweitigen Wechselwirkung und des optischen Gitters werden Phasendiagramme
bestehend Ladungsdichtewellen, suprafluide und suprasolide Phasen entdeckt, wobei
deren Parameterbereiche von den Geometrien abhÈangen. Die Kristallstrukturen, die in
den Ladungsdichtewellen und suprasoliden Phasen auftauchen, weisen unterschiedlich-
ste interatomare AbstÈande zwischen den Rydberg-Atomen. Dementsprechend kann
festegestellt werden, dass anisotrope Wechselwirkung zu streifenfÈormige Dichtemod-
ulation f Èuhrt, die f Èur die Koexistenz von Kristallstruktur und endliche Kondensation
besonders vorteilhaft ist. Der Unterschied zwischen einem quadratischen und einem
dreieckigen optischen Gitter ist nur im Bereich des Phasendiagramms bemerkbar, in dem
das System eine dichte Dichtemodulation aufweist, dessen LÈangenskala vergleichbar
mit den AbstÈanden zwischen benachbarten GitterplÈatzen ist. F Èur Parameterbereiche,
in denen die Phasen aus Rydberg-Atomen mit groûer interatomarer Distanz bestehen,
ist der Unterschied zwischen den Gitter-Geometrien kaum bemerkbar. Da diese Ergeb-
nisse vielversprechend f Èur die experimentelle Realisierung sind, wird die Untersuchung
durch das Einbeziehen von dissipative und dekohÈarente Prozessen vervollstÈandigt. Da
suprasolide Phasen durch eine Kristallstruktur aus Rydberg-Atome und einem endlichen
Kondensat, welches aus der PhasenkohÈarenz der Atome hervorkommt, auszeichnet, ist es
mÈoglich, dass die endliche Lebenszeit der Rydberg-ZustÈande und Dephasierungsprozesse
diesen beiden Charakteristika so sehr schadet, sodass suprasolide Phasen nur theoretisch
existieren und experimentell in solchen Systemen nicht nachgewiesen werden kÈonnen.
Mithilfe der Mastergleichung in Lindblad-Form wird die StÈarke der Dissipation und
DekohÈarenz im Kontext von Zeitentwicklungen Èuberpr Èuft. Dabei wird als Anfangszus-
tand sowohl eine Ladungsdichtewelle als auch eine suprasolide Phase genommen, welche
im Rahmen der vorherigen Rechnungen erhalten wurden, und in Anwesenheit der beiden
genannten Prozesse in der Zeit entwicklen lassen. Hierdurch wird festgestellt, dass in
der Tat Dissipation und DekohÈarenz mit wachsenden Raten der spontanen Emission und
Dephasierung zunimmt, jedoch selbst f Èur hohe Raten das System langlebig ist. Zudem
wird beobachtet, dass die suprasolide Phase von dem endlichen Kondensat profitiert, da
die erlaubte Umverteilung der Atome in dieser Phase dazu f Èuhrt, dass das System weniger
Dissipation und DekohÈarenz erfÈahrt. Der erreichte langlebige Zustand besitzt zwar einen
mit der Zeit verschwindendes Kondensat, welches jedoch f Èur typische Lebenszeiten und
Dephasierungs-Raten erst nach langer Zeit komplett verschwindet, sodass dieser Zustand
experimentell beobachtet werden kÈonnte. Wir kommen deshalb zum Schluss, dass bosonis-
che Quantengase gefangen in optischen Gittern und gekoppelt an Rydberg-ZustÈanden ein
vielversprechendes System f Èur die Realisierung suprasolider Phasen ist.
Da jedoch kollektive PhÈanomene und weitere experimentelle H Èurden, wie zum Beispiel die
maximal realisierbare Tunnelamplitude und KopplungsstÈarke, potentiell Schwierigkeiten
bereiten kÈonnten, wird ein weiteres System vorgestellt, mit dem suprasolide Phasen re-
alisiert werden kÈonnen. Im Gegensatz zum vorherigen System werden nun die Atome
im elektronischen Grundzustand jeweils paarweise schwach an Macrodimer-ZustÈande
gekoppelt. Dadurch erlangen die Atome im Grundzustand die FÈahigkeit langreichweitig
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zu wechselwirken, jedoch nur wenn der Abstand zwischen zwei Atomen der molekularen
BindungslÈange entspricht. Zuerst werden die Eigenschaften der dazugehÈorigen Kopplung
erlÈautert, die realisierbaren WechselwirkungsstÈarken untersucht und den Einfluss von
DekohÈarenz bestimmt. Es stellt sich heraus, dass der Quotient zwischen resultierende
WechselwirkungsstÈarke und DekohÈarenz besonders groû ist, welches vorteilhaft f Èur Ex-
perimente wÈare. Um herauszufinden, ob suprasolide Phasen Èuberhaupt in einem solchen
System mÈoglich ist, wird das Phasendiagramm des dazugehÈorigen erweiterten Bose-
Hubbard Modell berechnet. Da die Wechselwirkung anhand der Auswahl des gekop-
pelten Macrodimer-Zustandes verÈandert werden kann, werden die Phasendiagramme
f Èur Wechselwirkungen zwischen sowohl benachbarte als auch nÈachstnÈachste benach-
barte GitterplÈatze berechnet und verglichen. F Èur die vorher bestimmten, realistischen
WechselwirkungsstÈarken werden Ladungsdichtewellen, suprafluide und suprasolide
Phasen gefunden. Es wird festgestellt, dass die Wechselwirkung zwischen nÈachstnÈachste
Nachbarn zu streifenfÈormige Kristallstrukturen f Èuhrt, welche vorteilhaft f Èur suprasolide
Phasen ist. Da diese Ergebnisse besonders positiv sind, wird dieser Abschnitt mit einem
Vorschlag abgeschlossen, mit der in einem solchen System suprasolide Phasen realisiert
werden kÈonnen. Dabei wird experimentell relevante Prozesse wie das Anschalten des
Kopplungslasers mithilfe Zeitentwicklungsrechnungen simuliert. Durch Bestimmung der
nÈotigen WechselwirkungsstÈarke um aus einem anfÈanglichen suprafluiden System eine
suprasolide Phase zu erreichen und bilden eine Zeitentwicklung exemplarisch abgebildet.
Zusammenfassend wird festegestellt, dass bosonische Quantengase gekoppelt an Rydberg-
ZustÈanden vielversprechende Systeme f Èur die experimentelle Realisierung suprasolider
Phasen sind. Erhofft wird, dass in Zukunft relevante, kollektive PhÈanomene besser
ergr Èundet und neue Apparaturen entwickelt sein werden, um Experimente jenseits der
jetzigen EinschrÈankungen durchf Èuhren zu kÈonnen.
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Introduction

ªCan a solid be superfluidº is the title of a paper published by A.J. Leggett in 1970 and
a question to which this thesis is devoted. Intuitively, this question seems to have an
obvious answer, since in classical physics a solid and a liquid are opposite in nature and
accordingly mutually exclusive. But in the framework of quantum mechanics, there may
be no obvious answer to this question. Therefore, around 1970 rose a wave of publications
dealing with the theory of quantum phases possessing properties of both solids and
superfluids. This quantum mechanical state was coined supersolids and its existence
seemed to be a mystery for decades.
The search for an experimentally realizable system opened many branches of research, but
they are basically united by one basic idea: Condensed systems of interacting particles.
Despite this rather simple idea, a variety of candidates emerged through which super-
solidity were hoped to be experimentally realized. One of these promising candidates,
which forms the central theme of this thesis, are Bose-Einstein condensates whose atoms
are coupled to Rydberg states.
Bose-Einstein condensation is a phenomenon predicted around 1924 by Albert Einstein,
who generalized the work of Satyendranath Bose on the quantum statistics of photons
to the case of atoms. In principle, the associated state of matter can be characterized by
a macroscopic occupation of a quantum mechanical state, which is why such a system
of indistinguishable atoms can be described by a single wave function. Since usually
the occupied quantum state is the energetically lowest, ultracold temperatures in the
nanokelvin range are usually associated with the condensation of gases. The first ex-
perimental realizations of a Bose-Einstein condensate took place only in 1995 and the
physicists responsible for it were awarded the Nobel Prize in 2001. But long before that,
it was suspected that Bose-Einstein condensation was partly behind the phenomenon
of superfluidity, which was found for ultracold helium in 1938. Subsequent theoretical
and experimental work found that in helium the superfluidity arose from the interaction
between condensed particles, and thus the link between Bose-Einstein condensation and
superfluidity was established.
Following the first realizations of Bose-Einstein condensates, other innovative experiments
appeared dedicated to quantum gases trapped in optical lattices. In these numerous, scien-
tific investigations, the properties of Bose-Einstein condensates could be better understood
and many-particle systems trapped in a periodic potential provided a platform for the
investigation of many further quantum phases. A conceptually simple modification of
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such systems is obtained by coupling the ground states of trapped particles to highly
excited states using an external light source. Such states, energetically close to the energy
associated with the ionization of the atom, are called Rydberg states and atoms excited
to these states are called Rydberg atoms. One of the many characteristic properties of
Rydberg atoms is their ability to interact over large distances beyond the typical atomic
length scales. Accordingly, in the context of many-body systems, crystalline structures of
trapped Rydberg atoms have been observed experimentally.
The crucial question now arises as to what happens to a trapped Bose-Einstein condensate
whose particles are coupled to strongly, long-range interacting states. Is there a parameter
regime in which both crystalline structure and superfluidity can coexist in such systems?
This is the central issue of this thesis, which studies the theory of trapped bosonic quantum
gases coupled to Rydberg states. The work is divided into four chapters as follows:

• In Chapter 1 we discuss bosonic quantum gases trapped in optical lattices. We first
elaborate on the various cooling methods, followed by a derivation of the optical
lattice arising from the interference pattern of laser light. We then introduce the
Bloch theorem commonly used for particles trapped in periodical potentials and
examine the resulting Band structure. After the Wannier representation is presented,
we go from the single particle picture to many-body systems. In the context of
second quantization we derive the Bose-Hubbard model and an extension, through
which the quantum phases relevant in the scope of this thesis can be introduced and
discussed. We then conclude with experimental methods, by which these quantum
phases can be detected and observed.

• Chapter 2 focuses on properties of the Rydberg states, interaction between Rydberg
atoms and many-body ground states of atoms coupled to Rydberg states. We
investigate the processes limiting the lifetime of such Rydberg states and the scaling
of their magnitudes with the principal quantum number. We then derive the van-der-
Waals interaction resulting from the dipole-dipole interaction between two identical
Rydberg states through second-order perturbation theory and discuss the potential
landscape obtained beyond perturbation theory. In the context of these potential
landscapes we introduce macrodimer states, molecular bound states arising from
such potential landscapes. This chapter is wrapped up with the study of few atom
systems coupled to Rydberg states. We investigate the coupling scheme of such
systems, introduce the concept of Rydberg-dressing and discuss the many-body
phenomena of such systems, such as the Rydberg blockade and the superatom. We
finalize this section with a recap of important many-body experiments, especially
with respect to the emergence of crystalline structures and the avalanche dephasing.

• As an integral part of the numerical calculations performed in the scope of this thesis
we devote the first part of Chapter 3 to Gutzwiller mean-field theory, through which
the computational cost of the studied problems are reduced and the computation
thus rendered feasible. We elaborate on the associated mean-field decoupling, and
discuss the difference between the single-site and Cluster Gutzwiller approximations
with respect to validity and computational effort. In the second part of the chapter
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we derive the Lindblad master equation, which allows us to include dissipative and
decoherent processes in the system through time evolution simulations.

• Chapter 4 contains the main results of this thesis. We first study a bosonic quan-
tum gas dressed with Rydberg states, which yields van-der-Waals interaction. We
investigate the phase diagrams, analyze the importance of the lattice and interaction
geometry and conclude with time evolution simulations to assess the strength of the
dissipation and decoherence arising from the finite lifetime of the Rydberg state and
blackbody induced transitions. We then focus on a bosonic quantum gas dressed
with macrodimer states. With respect to the associated coupling scheme we deter-
mine experimentally realizable dressed interaction strengths for macrodimer states
emerging from the potential landscape obtained for two chemical elements. After the
thorough investigation of more experimental aspects linked to the coupling scheme,
we compute the corresponding phase diagrams given the previously determined
dressed interaction strengths. We finally propose an adiabatic preparation of the
system in order to obtain phases with spontaneously broken lattice translational
symmetry.
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Chapter 1

Ultracold quantum gases trapped in
optical lattices

In this chapter we discuss the fundamental aspects of bosonic quantum gases trapped
in optical lattices both from a theoretical as well as an experimental point of view. In
Section 1.2 we elaborate on the various cooling techniques through which atoms are
able to reach ultracold temperatures. We especially discuss the Doppler cooling and
mention notable other techniques allowing the atoms to reach temperatures below the
Doppler limit. In Section 1.3 the concept of optical lattices is reviewed. We examine
the effect of an electromagnetic wave on an atom and derive the corresponding periodic
potential arising through the light-atom interaction. As a useful notion we also introduce
the reciprocal space and comment on its role in the context of atoms in a lattice. In
Section 1.4 we study the properties of atoms in periodic potentials by means of the Bloch
theorem. We furthermore introduce useful wave functions and examine their behavior
with varying parameters of the periodic potential. In Section 1.5 we derive the plain
and extended Bose-Hubbard model obtained withing the second quantization formalism
and in section 1.6 we review the possible quantum phases of their corresponding many-
body ground states. After establishing a way to classify these phases we compute their
phase diagrams. Finally in Section 1.7 we review well-established methods to detect and
distinguish between the various previously-discussed quantum phases. We derive the
theoretical background behind time-of-flight measurements and explain the idea behind
the quantum gas microscope.

1.1 Introduction

The field of condensed matter physics flourishes and keeps growing, as many versatile
systems allow for the investigation of novel and exotic quantum phases. In the context of
bosonic quantum gases a landmark has been provided by Albert Einstein which predicted,
based on the work of Satyendranath Bose on quantum statistics [1], a quantum phase
defined by the macroscopic occupation of the energetically lowest quantum state at
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ultracold temperatures [2]. This state of matter, now known as Bose-Einstein condensate,
was many years later experimentally achieved with Rubidium 87Rb [3] and has since then
been reproduced with other types of particles such as molecules [4] and photons [5].
The versatility of Bose-Einstein condensates is not limited to the type of particles involved
in the state of matter. By using different types of external confinements it is possible to
investigate different aspects of the quantum gas, further understand observed phenomena
and even simulate other many-body systems. In this context Bose-Einstein condensates
loaded in optical lattices became a strongly investigated field of research [6±9]. Thanks to
their high tunability and versatility trapped quantum gases in optical lattices are expected
to be an essential tool for the investigation of various phenomena [10±13] and a promising
platform for quantum computation [14, 15].
As ultracold temperatures are a prerequisite for such systems we elaborate in what follows
on the most prominent cooling method, i.e. the Doppler cooling, and techniques, by which
the temperature can be subsequently cooled down even further.

1.2 Cooling atoms

The invention of laser cooling of atoms allowed for the investigation of many highly
relevant systems and phenomena, and the various methods to reach ultracold tempera-
tures have been studied both theoretically as well as experimentally. Among the most
prominent methods is the Doppler cooling, which has been developed for free [16, 17] and
trapped atoms [18]. It consists of the controlled absorption and spontaneous emission of
photons, hereby reducing the kinetic energy and thus the velocity related temperature of
the atom. Although widely used, the effectiveness is limited due to continuous heating
induced by spontaneous emission. In order to reach temperatures below this limitation,
various techniques such as the Sisyphus cooling [19±23], the evaporative cooling [24±27] and
the Raman sideband cooling [28±31] have been established, by which temperatures close to
the one associated with the motional ground state of an atom are obtained.
In the following, we briefly discuss the physics behind Doppler cooling and elaborate
on the accessible range of temperatures. We then give an overview of the more popular
cooling methods to go beyond the Doppler-cooling.

1.2.1 Doppler cooling

The idea behind laser cooling is the momentum exchange between a moving atom and
a photon. The absorption of a photon with momentum k can be viewed as an inelastic
collision and for a photon coming towards the atom, i.e. with opposite directions of their
respective velocity, the momentum p′ of the thus excited atom with initial momentum p is
given by p′ = p − Åhk. Although the subsequent spontaneous emission of a photon affects
the momentum of the atom, its contribution after many absorption-emission cycles is
averaged to zero, because the atom radiates the photon in a random direction, but with a
symmetric average distribution. The atom can thus theoretically be cooled down through
quantizied deceleration.
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Figure 1.1: Schematic experimental setup for the Doppler cooling of atomic clouds. The
atoms are prepared in the oven chamber and prepared into a beam. The beam is then
directed into the Zeeman slower in which the atoms encounter the counterpropagating
laser for the Doppler cooling. The Zeeman slower creates the magnetic field, which causes
the fine splitting necessary for the photonic absorption of the atoms. After being cooled
down the atoms are trapped in a magneto-optical trap (MOT), from where they can either
be further cooled by subdoppler cooling techniques or transferred to an optical lattice.
Reprinted figure with permission from [32]. © 2010 by the American Physical Society.

More realistically however, since the photonic absorption only happens if the energy of
the photon is equivalent to the transition energy between the electronic ground and an
excited state of the atom. Furthermore in an atomic cloud composed of identical atoms
with random motion, the relative velocity of the photon depends on each individual atom
and thus a single light source is not going to be able to cool down the atoms.
The latter issue can be partially solved by preparing the atoms in a directed beam (see
Fig. 1.1). Through an opposing laser beam, we thus limit the description of the system
to one spatial dimension. The direction of the motion is equal for all atoms, however a
sharp distribution of velocities is not guaranteed and therefore only part of the atomic
beam interacts with the incoming photons due to the persisting Doppler shift problem.
Additionally atoms slowed down by several absorption-emission cycles are not able to
absorb more photons beyond a certain point as relative energy the photon shifts out of
resonance.
The solution to these issues is the Zeeman slower, which applies an inhomogeneous mag-
netic field along the propagation of the atomic beam in order to make use of the Zeeman
effect [33±36] (see Fig. 1.2). The magnetic field splits degenerate states and shifts their
energies such that the transition frequencies match the relative energy of the incoming
atoms. As the atoms in the beam decelerate, the magnetic field is decreased to adapt to the
continuously changing relative velocity of the photons. The atoms are thus experiencing a
force opposite to their velocity and hereby cooled down. In order to guarantee that after
many absorption-emission cycles no atoms propagating in the direction of the incoming
photons are lost, a second laser beam with opposite direction to the first laser beam is used.
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Figure 1.2: (a) Overall magnetic field generated within the experimental setup (black) in
the oven chamber (green), the Zeeman slower (red) and the MOT chamber (blue). The
continuously increasing magnetic field guarantees that the decelerated atoms are still
in resonance with the optical transition frequency of the cooling laser. (b) The velocity
of the cooled atoms. In this experiment, the atomic cloud consisted of Rubidium (red)
and Lithium (blue) atoms. (c) The width of the atomic beam, which expands the further
it travels. (d) Dimensionless acceleration of the atoms throughout the cooling process.
Reprinted figure with permission from [32]. © 2010 by the American Physical Society.

Doppler limit

Due to the random nature of the spontaneous emission of a photon, the average velocity
gain of the atoms is zero. The root mean squared velocity

√

⟨v2⟩ = 2
√

kBT/m however
is non zero and implies that the atom is constantly heated during the emission part of
the cycle. In the stationary state the cooling and heating rates of the atoms are equal,
which means that the limit of the Doppler cooling is determined by the decay rate Γ of the
excited state involved in the Doppler cooling. The Doppler limit is then defined through
the lowest achievable temperature, the Doppler temperature TD = ÅhΓ/(2kB). The validity
of this limit has been experimentally demonstrated [37, 38]. The corresponding energy
ED = m⟨v2⟩/2 is generally much larger than the energy gained through the momentum
kick of a single, radiated photon, indicating that temperatures below the Doppler limit are
in principle achievable given the appropriate technique. The Doppler cooling however
can achieve temperatures of about several hundred mK.
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Figure 1.3: Sinusoidal polarization potential for the two degenerate ground states. An
atom in one of the two ground states with residual velocity converts its kinetic energy
into potential energy and upon reaching the maximum of the potential, the light field
transfers the atom into the other ground state through optical pumping. The previously
felt maximum of the potential becomes a potential minimum and the atom hereby loses
the potential energy. This process is repeated until the kinetic energy is not sufficient to
reach the potential maximum and the atom is thus cooled down. Reprinted figure with
permission from [39]. © 1989 by the Optica Publishing Group.

1.2.2 Sub-Doppler cooling

Since the conception of Doppler cooling various techniques have been developed to go
below its limit and approach the recoil temperature kBTR = Åh2k2/(2m). In contrast to the
Doppler cooling, which relies on a two-level system, several of these techniques utilize
the hyperfine structure of the atoms to achieve ultracold temperatures. Among these are
the Sisyphus, the evaporative and the Raman sideband cooling, which are apart from the
above-mentioned common feature vastly different.

Sisyphus cooling

Starting point of the Sisyphus cooling is an experimental setup consisting of two counter-
propagating laser beams with wavelength λ and orthogonal linear polarization. The
resulting light field is then given by a polarization standing wave with period λ/2 [40].
It exhibits an overall linear polarization at the nodes of the standing wave, while the
antinodes are characterized by alternating left-hand and right-hand circular polarized
light.
Due to the periodic light field a multi-level atom experiences a spatially dependent shift of
its energy level. For an atom with a twofold-degenerate electronic ground state a circular
polarized light induces an optical pumping to the preferred ground state. The atom
then experiences the light field with opposite circular polarization as repulsive, which
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renders the standing light wave a periodic potential. An atom in the other ground state
experiences a similar periodic potential, albeit shifted by λ/4.
An atom at rest is optically pumped in one of the ground states in dependence on its
position in the light field and is then trapped due to the circular polarized light. A moving
atom however is optically pumped into one ground state, depending on the handedness
of circular polarization of the surrounding light field at that position, and then through
its kinetic energy climbs up the potential hill 1.3. If the kinetic energy is large enough
such that the atom reaches the top of the potential hill, it is optically pumped to the other
ground state due to the light with opposite circular light and its kinetic energy is converted
to potential energy, hereby losing velocity through the climb. This process is repeated
until the atom is not able to further climb the potential hill.
With the Sisyphus cooling it is hereby possible to reach the recoil temperature, which is
around a few mK and therefore much smaller than the Doppler cooling.

Evaporative cooling

We consider an atomic cloud trapped in an optical harmonic potential. As the atoms
collide and exchange momentum they thermalize and hereby collectively reach a uniform
temperature based on the principle of equilibration. By reducing the strength of the
potential it is possible to let fast atoms escape through their higher kinetic energy. In
magnetic traps however the lowering of the potential well is not as trivial and relies on the
Zeeman effect. In a two-level atom with F = 0 and F = 1, where the Zeeman shift splits
the threefold degenerate excited state into three states with |mF = −1, 0, 1⟩, the gradient
of the magnetic field B leads to forces ∆E ∝ −mFB relative to the center of the harmonic
potential. The force is attractive for one sublevel (mF = −1), while the other sublevels
either do not feel the trap (mF = 0) or are expelled (mF = 1). The first state is referred
to as the trapped state, while the last state as the anti-trapped state. Assuming all the
trapped atoms in the trapped state, it is expected that faster atoms reside on the far edges
of the potential. Through a radiofrequency source, which matches the energy difference
between the trapped and anti-trapped state at the border of the potential, fast atoms are
excited to the anti-trapped state and hereby lost. Although the procedure appears to be
more complex than its optical trap counterpart, it is equivalent in its result as both method
rely on the loss of fast particles. The slower atoms left in the potential rethermalize and
reach a lower uniform temperature. The successive ramping down of the potential can be
understood as a rescaling of the Maxwell-Boltzmann distribution. Instead of becoming
more narrow, the peak of the distribution shifts to lower velocities and at the same time
the atom number decreases such that its shape is not altered greatly. Finally, through
evaporative cooling temperatures of a few nK can be achieved.

Raman sideband cooling

The basic idea of the Raman sideband cooling is the continuous optical pumping of parti-
cles into a low energy mode. For tightly-bound atoms theses energy modes are given by
the vibrational levels ν, with the lowest energy mode ν = 0, which results in unique states
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Figure 1.4: Left: Raman sideband cooling process, through which the kinetic energy
of an atom is reduced by optical pumping it from a higher lying vibrational level to a
lower lying level. Through an external magnetic field the different vibrational levels n
of different states |F, mF⟩ are shifted such that they become degenerate, hereby allowing
Raman transition between these two levels. After several Raman transitions the atom is
optically pumped into an excited state, from which it decays to the initial state |F, mF⟩,
albeit occupying a lower vibrational level. This repeated until a dark state is reached.
Reprinted figure with permission from [31]. © 2017 by the American Physical Society.

|F, mF, ν⟩ for the atom. Through an external magnetic field the Zeeman shift can lead
to two states |F, mF, ν⟩ and |F, mF − 1, ν − 1⟩ being degenerate and additionally coupled
through Raman transitions. Through several of these transitions the atom is transferred to
the state with the lowest mF, where it is optically pumped to an excited state. Subsequent
decay leads to the population of the state |F, mF, ν − n⟩, where n refers to the amount of
Raman transitions involved in one cycle. After many cycles the atom is transferred to the
lowest vibrational mode |F, mF, 0⟩ called the dark state, as it is only weakly coupled by
the coupling lasers.
As Raman sideband cooling relies on tight confinement of atoms, it became a strong
valuable asset in experiments with tunable optical traps. The limitation is only given by
the spectral resolution of the Raman transitions and thus makes ultracold temperatures
far below the Doppler limit of a few hundred nK accessible.

Atom cooling is an essential part of realizing degenerate quantum gases, as the phenomena
we are interested in depend on reaching ultracold temperatures through which bosonic
atoms are able to condense due to their enhanced de-Broglie wavelength. The subsequent
step is the trapping of these cold down atomic clouds.
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1.3 Optical lattices

Optical lattices belong to the category of optical dipole traps, which rely on the dipole
force of a light field acting on atoms, hence the name. The elegant idea behind the trapping
is based on the fact that neutral atoms immersed in a light field gain a finite, light-induced
dipole moment. The thus polarized atom is then able to interact with the surrounding
light field and feel a force, the strength of which depends on the intensity gradient of the
field.
In the following, we discuss the origin of the light-particle interaction and illustrate how
the dipole force can result in a periodic potential.

1.3.1 Light-atom interaction

The light-atom interaction is based on two properties: It couples the ground state of
the atom to higher lying hyperfine states, hereby gaining a finite dipole moment, and
simultaneously shifts the energy of these internal atomic states, such that the atom becomes
sensitive to the light field intensity. The resulting potential landscape felt by the atoms
can be obtained both through second-order perturbation theory and a classical oscillator
picture. Since the derivations of the potential offer a different view on the origin of the
interaction, we discuss both in the following.

Perturbation theory picture

A light field surrounding an atom induces transitions of its electronic ground state to
other hyperfine states and additionally shifts its energy levels. For an atom at position x at
time t, this shift, which is also known as the AC Stark shift [41±43], is determined through
second-order perturbation theory given by

UAC = ∑
j ̸=i

|⟨i|d̂ω|j⟩|2
Ei − Ej

, (1.1)

where d̂(x, t)ω = µω(x, t)Eω(x, t) is the dipole operator, and |i⟩ and |j⟩ denote the elec-
tronic ground state and a hyperfine state respectively, with Ei and Ej being their respective

energies. The dipole operator d̂ω describes the dipole transition matrix element µij be-
tween the states |i⟩ and |j⟩ through the light field with amplitude Eω(x, t). If we set the
internal energy of the atom in the electronic ground state to zero, only the light field
consisting of n photons with energy ω contributes to the energy as Ei = nÅhω. On the other
hand, a transition to |j⟩ implies the absorption of a photon from the surrounding field.
The internal energy of the atom then is given by the optical transition frequency as Åhωij,
which yields Ej = Åhωij + (n − 1)Åhω. The difference between both energies is then defined
as the detuning ∆ij = Åh(ω − ωij).
The higher lying hyperfine states have a finite lifetime and the corresponding decay rate
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back to the electronic ground state is given by [44]

Γij =
ω3

ij

3πϵ0Åhc3
µ2

ij. (1.2)

It is useful to reformulate the dipole transition matrix through a transition coefficient
matrix cij as

µij = cij|µ|, (1.3)

since the squared value c2
ij also known as line strength is experimentally accessible and

theoretically determined for a given atom and its hyperfine structure. We thus arrive at
the most general form of the AC Stark shift

UAC =
3πϵ0c3Γ

ω3
0

∑
j ̸=i

cij

∆ij
|Eω(x, t)|2, (1.4)

where Γ and ω0 denote the decay rate and the transition frequency to the hyperfine state
to which the ground state couples the strongest. Its strength not only depends on the
properties of the atom, but more importantly on the intensity |E2

ω(x, t)| of the light field
and the detunings ∆ij given by the chosen light field through ω, which are experimentally
tunable parameters. In dependence of the sign of ∆ij, the atoms are either attracted
(∆ij < 0) or expelled (∆ij > 0) by the maxima of the light field. If ω is chosen such that the
signs of all detunings are not equal, further calculations are necessary to determine the
potential minima induced by the light field.
In the case of a simple hyperfine structure consisting of only two levels or in the far
off-resonant regime (∆ij ≫ 0), the sum drops out of the Eq. (1.4) and thus yields the
simplified form

UAC =
3πϵ0c3Γ

ω3
0∆

|Eω(x, t)|2, (1.5)

where ∆ is the detuning to the most relevant hyperfine state. Although being an approx-
imation, Eq. (1.5) delivers qualitatively good result [44]. In subsection 1.3.1, we further
discuss the difference between the approximated and the exact AC Stark shift based on an
example.

Classical oscillator picture

Compared to the perturbation theory aspect of the light shift, the oscillator model offers
a more classical view on the matter. Similar to the derivation of the AC Stark shift, the
interaction between atom and light is based on the dipolar interaction through

Vdip(x) = −1

2
⟨dω(x, t)Eω(x, t)⟩t (1.6)

with the previously defined dipole operator dω(x, t) and where ⟨·⟩t signifies the time
averaged expectation value. The goal now is to define the dipole moment µω(x, t) based
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on an oscillator model. Classically the electron of an atom in its electronic ground can be
viewed as elastically bound to the nucleus and oscillating with undamped motion given
by frequency ω0 [45]. However in the presence of the additional light shift, the oscillation
deviates from the unperturbed motion which thus results in a finite dipole moment. Given
the deviation vector rij,ω(x, t), which describes the deviation of the electron from the
unperturbed oscillation, we can define the dipole moment as

µω(x, t) = e ∑
j ̸=i

rij,ω(x, t) (1.7)

We thus need to determine the light field dependence of the deviation. Since we are
working in a classical picture, we can establish an equation of motion through the Lorentz’s
oscillator model, which yields

Èrij,ω(x, t) + Γω ṙij,ω(x, t) + ω2
ijrij,ω(x, t) = −ec2

ij

Eω(x, t)

me
. (1.8)

The damping Γω = (ω/ωij)
2Γij results from the finite lifetimes of the hyperfine states.

Through integration, the differential equation gives

rij,ω(x, t) =
e

me

1

ω2
ij − ω2 − iωΓω

Eω(x, t) (1.9)

Via substitution of the prefactor as

e2

me
=

6πϵ0c3Γω

ω2
(1.10)

and the decay rate Γij, we obtain the potential obtained through the dipole interaction

Vdip(x) = 3πϵ0c3 ∑
j

1

ω3
ij

( Γij

ωij + ω
+

Γij

ωij − ω

)

⟨E2
ω(x, t)⟩t. (1.11)

Although the previously defined detunings ∆ij can be chosen to be large in the off-resonant
regime, it is reasonable to assume the detunings to be all smaller than the actual transition
frequencies ωij ≫ ∆ij. With this assumption, the potential reads

Vdip(x) =
3πϵ0c3Γ

ω3
0

∑
j

c2
ij

∆ij
⟨E2

ω(x, t)⟩t (1.12)

resulting in the same potential as obtained with second-order perturbation theory, al-
though both derivations are different and provide complementary aspects to the under-
standing of the light shift induced potential.
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Figure 1.5: Fine and hyperfine states with fine state splitting ∆FS and hyperfine state
splittings ∆HFS and ∆′

HFS coupled through the external light source with frequency ω
resulting in the trapping of an alkali atom. Even though the full substructure of the
alkali atom contributes to the trapping potential, the two-level approximation leads to an
accurate description. Reprinted figure with permission from [44]. © 1999 by Elsevier.

Significance of the two-level approximation

The two-level description, from which (1.5) arises, appears to disregard potentially im-
portant hyperfine levels, which are also coupled to by the external light field. However
alkali atoms typically used in optical lattice experiments, e.g. 7Li, 41Ka and 87Rb, possess
a number of hyperfine states, which are involved in the dipole interaction (see Fig. 1.5).
The full substructure of such an alkali atom with nuclear spin J = 3/2 can be described by
the hyperfine structure of the levels

∣

∣
2S1/2

〉

,
∣

∣
2S1/2

〉

and
∣

∣
2S1/2

〉

. The associated energies
of fine and hyperfine state are defined as Åh∆FS, Åh∆HFS and Åh∆′

HFS. In such a system the
interaction yields

Vdip(x) =
πϵ0c3Γ

ω3
0

(2 + PgFmF

∆2,F
+

1 − PgFmF

∆1,F

)

⟨E2
ω(x, t)⟩t, (1.13)

with the polarization P of the light-field (P = 0 for linear and P = ±1 for circular polarized
light), the LandÂe factor gF and the magnetic quantum number mF [44]. ∆1,F and ∆2,F refer
to the energetic difference between the lowest hyperfine state

∣

∣
2S1/2, F

〉

and the center of
the hyperfine splitting of

∣

∣
2P1/2

〉

and
∣

∣
2P3/2

〉

respectively. Since the splitting between the
two levels are generally larger than the energies associated with the fine and hyperfine
splitting, i.e. |∆1,F|, |∆2,F| ≫ |∆FS|, |∆HFS|, |∆HFS|, we can define |∆1,F| ≈ |∆2,F| ≡ |∆| and
thus obtain

Vdip(x) =
3πϵ0c3Γ

ω3
0∆

(

1 +
1

3
PgFmF

∆FS

∆

)

⟨E2
ω(x, t)⟩t. (1.14)
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Chapter 1: Ultracold quantum gases trapped in optical lattices

The first term corresponds to the potential obtained within the two-level approximation,
while the residual term reflects the contribution of other fine and hyperfine states, which
is marginal due the considered limit ∆FS/∆ ≪ 1. We thus conclude that for alkali atoms
the two-level picture is a qualitatively good approximation for calculating the potential
strength.

1.3.2 Atomic scattering

The interaction of the light field not only consists of the photon absorption of the atom,
but also the subsequent radiative emission of photons through spontaneous decay. The
power of the dipole radiation is given by

Prad(x) = ⟨µ̇ω(x, t)Eω(x, t)⟩t. (1.15)

Given the photonic energy Åhω, the corresponding photonic scattering rate reads [44]

Γsc(x) =
Prad

Åhω
=

3πϵ0c3Γ2

2Åhω3
0

∑
j

( cij

∆ij

)2
⟨E2

ω(x, t)⟩t, (1.16)

which possesses the same scaling of the light field intensity as the dipole interaction.
In the two-level approximation, direct comparison of the scattering rate and the dipole
interaction yields the relation

ÅhΓsc(x) = − Γ

∆
Vdip(x). (1.17)

Since strong dipole radiation could potentially hinder the trapping of the atoms, it is
important to decrease the ratio between photonic scattering rate Γsc and dipole interaction
Vdip, while maintaining a significant dipole interaction strength. Through the above-
derived relation, we find that large detunings ∆ allow us to achieve this goal. Thus optical
dipole traps commonly work in the far off-resonant regime (|∆| ≫ 1), in order to achieve
low scattering rates and large enough interactions for the trapping.

1.3.3 Periodic lattices

Optical lattices are not only defined by their light-field induced trapping, but also through
their periodic structure. The periodic nature of the potential arises from a set of coun-
terpropagating laser beams, whose interference results in a standing wave with fixed
nodes. These nodes represent the minima of the light-field intensity and thus either repel
or attract the submerged atoms based on the detuning. The field of multiple lasers can be
written as

Eω(r, t) =
1

2 ∑
l

Ẽle
ikl

Lr−iωt+iϕl êl (1.18)

with the laser index l, their field amplitudes Ẽl and phase shifts ϕl . The wave vector
kl

L = kl
Lnl are given by their wave number kl

L and the normalized vectors nl = (nl
x, nl

y, nl
z),
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which indicate their direction (|nl | = 1). Note that we omit the Gaussian shape of the laser
perpendicular to the beam propagation for the sake of simplicity. Assuming that a set of
counterpropagating lasers are identical in their properties, the potential resulting from
their interference reads

V(r) = ∑
m

Vm
0 cos2(km

L (r · nm) + ϕm), (1.19)

where m denotes the set of counterpropagating lasers. The dipole interaction strength

Vm
0 = 3πϵ0c3

ω3
0

∑j
cij

∆ij
|Ẽm|2 is also known as the potential depth and is easily tunable by

variation of the light-field intensity. On the other hand, the wave number km
L = 2π/λm

and thus the periodicity of the potential are directly related to the wavelength of the
laser λm, which depend on the available lasers and can not be freely changed during an
experiment. While changing the relative angle between both counterpropagating lasers
might result in a standing wave with altered wave number, it can also lead to the loss of
interference between the lasers due to its high sensitivity to the relative phase between
both lasers. While several techniques to tune the periodicity of unloaded potentials in
real-time have been established in recent years [46, 47], the continuous trapping of atoms
during the periodicity tuning remains an important experimental challenge.
The resulting potential Eq. (1.19) is known as the optical lattice and the potential minima,
in which the trapped atoms are most likely to be found, are called lattice sites. Through the
chosen spatial configuration of several laser beams, optical lattices with vastly different
geometries in one, two or three dimension are achievable. Since these optical lattices are
theoretically infinite, they can be regarded as Bravais lattices and described by a lattice
vector R = ∑i niai, where ni ∈ Z and ai are the primitive translation vectors. Shifting the
potential V(r) by R would thus result in the same potential, i.e. V(r + R) = V(r).

Examples

Unless mentioned otherwise, we choose the potential depth and the wave number of all
lasers to be equal (V l

0 ≡ V and kl
L ≡ kL) and set the lasers to be phase coherent(ϕl = 0).

For a single standing wave with n1 = (1, 0, 0), the resulting potential is simply given by

V1D(x) = V0cos2(kLx). (1.20)

While in this form the optical lattice resembles a one-dimensional chain, the full potential
resembles stacked discs due to the Gaussian shape of the laser beams and thus reads

V1D(r) = V0cos2(kLx)e−
(y+z)2

σ2 . (1.21)

with the beam waist radius σ. The confinement along x-direction is usually sufficiently
strong for trapping due to the large potential depths, whereas the confinement within the
y, z-discs is weak and allows the atoms to be move more or less freely within the discs. For
a tighter confinement an additional, external potential is necessary, which then restricts the
movement within the discs and thus leads to a pure one-dimensional optical lattice [48].
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Chapter 1: Ultracold quantum gases trapped in optical lattices

Figure 1.6: Set of exemplary two-dimensional optical lattices with different spatial geo-
metries created by lasers with optical lattice constant alat = λ/2 = 532 nm. The most
commonly used two-dimensional optical lattices are (a) square, (b) triangular, (c) honey-
comb and (d) Kagome lattices. Through the inclusion of additional lasers and variation of
their respective phases other configurations such as (e) and (f) can be obtained. The at-
tractive and repulsive regions of the potential landscape of the lattice can be interchanged
through variation of the detuning.

A two-dimensional square lattice can be realized through two perpendicular standing
waves (n1 = (1, 0, 0) and n2 = (0, 1, 0)) and reads

V
square
2D (r) = V0(cos2(kLx) + cos2(kLy))e−

z2

σ2 , (1.22)

which can be understood as two-dimensional square distribution of one-dimensional
tubes, again due to the Gaussian beams involved in the creation of the potential. Although
most cold atoms experimental setups involving two-dimensional square optical lattices
also make use of an additional external confinement, the movement of the atoms within
these tubes can be used to create and investigate so-called quantum wires [49±51].
Another two-dimensional optical lattice is the honeycomb lattice, which is created through
the overlap of three standing waves with directions n1 = (1, 0, 0) and n2 = (cos( 2π

3 ), sin( 2π
3 ), 0)

and n3 = (cos( 4π
3 ), sin( 4π

3 ), 0), and is given by the potential

Vhc
2D(r) = V0

(

cos2(kLx) + cos2(
kL

2
(x −

√
3y)) + cos2(

kL

2
(x +

√
3y))

)

e
− z2

σ2 . (1.23)
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Superimposing two honeycomb lattices with two different wave numbers (k1
L = 2k2

L)
leads to an experimentally highly relevant lattice known as the Kagome lattice. While
a configuration of twelve laser beams with two different wavelengths can be used to
generate such a lattice [52], it is also possible to use three so-called superlaser beam with
equal wavelength, but different polarizations [53±55].
Three perpendicular standing waves (n1 = (1, 0, 0) and n2 = (0, 1, 0) and n3 = (0, 0, 1))
generate a three-dimensional cubic optical lattice

Vcube
3D (r) = V0(cos2(kLx) + cos2(kLy) + cos2(kLz)). (1.24)

In three-dimensional optical lattices no additional confinement is necessary as the potential
depth is larger than the weak Gaussian confinement. Note that for hypercubic lattices the
distance between nearest neighboring potential minima is referred to as the optical lattice
constant alat = λ/2.

1.3.4 Reciprocal space

Albeit difficult to visualize, momentum space offers an important physical insight on
the trapped atoms. Within the plane wave description of the electromagnetic field (see
Eq. (1.18)) lays the duality between space r and momentum k. Although in the previous
sections we considered the wave vector k to be fixed by the laser wavelength and the
space as a variable r, it is possible to view it the other way around. If we define r = λê
and choose the momentum k to be a variable, we see that the plane wave behaves equally
in real and momentum space.
Similar to the plane wave, the optical lattice possesses a counterpart in momentum space,
which is called the reciprocal lattice. The corresponding lattice vector in momentum space
takes the form K = ∑j mjbj and is equivalent to the previously defined lattice vector R of
a Bravais lattice. In order to find their relation, we perform a Fourier decomposition of the
potential V(r) as

V(r + R) = ∑
K

VKeiKr = ∑
K

VKeiK(r+R) = ∑
K

VKeiKReiKr = V(r). (1.25)

For the equality to be true, the lattice vectors in real space and momentum space have to
fulfill the relation

KR = 2πN (1.26)

with N ∈ Z. Since R is given by the configuration of laser beams, K is chosen such that
aibj = 2πδij. We hereby see that the reciprocal lattice spacing given by 2kL is inversely
proportional to the optical lattice constant alat. For a hypercubic lattice the wave number
can be specified as kL = 2π/λ.
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Chapter 1: Ultracold quantum gases trapped in optical lattices

1.4 Atoms in periodic potentials

In order to understand the behavior of the atoms trapped in the optical lattice, we deter-
mine the single-particle spectrum. The Hamiltonian of an atom reads

Ĥ = − Åh2∇2

2m
+ V(r) (1.27)

and simply describes an atom with kinetic energy in an arbitrary potential. Commonly
used as a natural energy scale in an optical lattice, we introduce the so-called recoil energy,
which reads

ER =
Åh2k2

L

2m
(1.28)

and describes the gain in kinetic energy of an atom initially at rest through spontaneous
emission of a photon. In the following, we use the periodic nature of the potential in order
to determine the eigenfunction of trapped atoms.

1.4.1 Bloch theorem

We define the action of the lattice translation operator T̂R on an arbitrary function f (r) as

T̂R f (r) = f (r + R). (1.29)

Through successive application of the operator

T̂R2 T̂R1
f (r) = f (r + R1 + R2) = T̂R1+R2 f (r) (1.30)

we can show its commutative property

T̂R1
T̂R2 = T̂R2 T̂R1

= T̂R1+R2 . (1.31)

Since the periodic potential V(r) = V(r+R) is invariant under translation T̂RV(r) = V(r),
the Hamiltonian Eq. (1.27) must also be invariant under translation and thus commutes
with the operator

[T̂R, Ĥ] = 0. (1.32)

Although it may seem trivial, the above commutation relation reveals that both operators
share a set of common eigenfunctions

ĤΨ(r) = EΨ(r)

T̂RΨ(r) = cRΨ(r)
(1.33)

with eigenvalues E and cR. The commutative property of the translation operator implies

cR1
cR2 = cR1+R2 (1.34)
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and thus the eigenvalues of the translational operator can be rewritten with the wave
vector k as

cR = eikR. (1.35)

Finally, with the application of the translational operator and the definition of the eigen-
value cR we find that the wave function fulfills

Ψ(r + R) = eikRΨ(r). (1.36)

This is known as Bloch’s theorem and it states, that the wave function of a single atom
trapped in a periodic potential can be rewritten as

Ψ(r) = eikru(r) (1.37)

where eikr describes a plane wave and u(r) is a periodic function such that

u(r) = u(r + R). (1.38)

The wave function Ψ(r) is commonly referred to as the Bloch state and can now be used in
order to determine the single-particle spectrum.

1.4.2 Band theory

Before applying the newly defined eigenfunction on the Hamiltonian Eq. (1.27), it is useful
to work in the momentum space and thus we perform a Fourier decomposition of the
periodic function with momentum space lattice vector K as

u(r) = ∑
K

uKeiKr, (1.39)

which leads to
Ψ(r) = ∑

K

uKei(K+k)r = ∑
p

upeipr. (1.40)

The Fourier decomposition of the periodic potential yields

V(r) = ∑
K

VKeiKr. (1.41)

Calculation of the eigenvalue equation of the Hamiltonian Eq. (1.27)

∇2Ψ(r) = ∑
p

up(∇2eipr) = ∑
p

p2upeipr (1.42)

V(r)Ψ(r) = ∑
Kp

VKupeiKreipr = ∑
Kp′

VKup′−Keip′r (1.43)

results in

∑
p

eipr
( Åh2

2m
p2uq + ∑

p

Vpup−K

)

= ∑
p

eiprEuq (1.44)
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Chapter 1: Ultracold quantum gases trapped in optical lattices

Figure 1.7: (a) Energy bands calculated in a one-dimensional lattice through Eq. (1.46).
Each band corresponds to an energy level En, which varies with quasimomentum k. For
no trapping potential V0 = 0, the energy band result from the overlap of the quadratic
dispersion relation of free electrons at different reciprocal lattice points given by Kn = 2nkL

with n ∈ Z . A finite potential depth V0/ER > 0 however leads to avoided crossings and
shifts the bands to higher energies. At large potential depths, the lowest band becomes
flat. (b) The width of the energy bands versus potential depth. The lowest band flattens
fast and the gap Egap between the lowest and second band becomes more important with
increasing potential depth.

and by substituting back the wave vector k and the reciprocal lattice vector K in

Åh2

2m

(

k − K
)2

uk−K + ∑
K′

VK′−kuk−K′ = E(k − K)uk−K (1.45)

Although solving the equation in more than one dimension, we restrict the upcoming
discussion on the one dimensional case as it reduces the complexity and still provides
important insight on the physics at hand.

One dimensional optical lattice

By restricting the problem to one dimension, the Brillouin zone is simply given by k ∈
(−kL, kL] with the center of the primitive cells separated by Kn = 2nkL with n ∈ Z. For
the one-dimensional optical lattice given by Eq. (1.20), the Fourier decomposition yields
Vp=0 = V0 and Vp=±1 = −V0/4, while all other components are zero, e.g. V|p|≥2 = 0. We
introduce the quasi-momentum qn = k − Kn and thus obtain the matrix representation of
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(1.46)

The spectrum obtained through this eigenvalue problem is composed of energy bands
(see Fig. 1.7). In the case of no optical lattice (V0 = 0), the lowest band corresponds to the
parabolic dispersion relation ε(q) = Åh2q2/2m of free particles with mass m. At the edges
and the center of the Brillouin zone the energy band touch due to the degeneracy of the
eigenstates at the corresponding values of q. A finite potential depth (V0 > 0) however
flattens the bands and thus opens a gap, hereby lifting the degeneracy. The parabolic
shape of the lowest band still holds for small values of the quasi-momentum |q| ≪ kL and
reads

ε(q) = ε0 +
Åh2q2

2m∗ (1.47)

with an energy offset ε0 and the effective mass m∗. Through the modified dispersion
relation the trapped atom can be understood as a freely propagating particle with reduced
mass m∗ < m as long as the quasi-momentum is small enough.

Single-band approximation

For deep enough lattices, it is reasonable to assume that only the lowest band E0(k) is
filled. This is called the single-band approximation and its validity is related to the band gap
width Egap between the lowest and the second band. As the lattice depth increases, so
does the energy difference between both bands, which is given by

Egap = 2
√

V0ER (1.48)

Since interaction and kinetic processes could potentially excite atoms from the lowest
to the second band, it is important that all corresponding energies are below the band
gap width. In the upcoming sections, we use the single-band approximation to simplify
expressions.

1.4.3 Wannier function

The Bloch functions are useful to determine the energy eigenspectrum, yet it does not
provide a real space representation of the trapped atoms. To this end we make use of the
Wannier functions wn(r − Ri), a set of orthogonal functions obtained through the Fourier
transform of the Bloch functions as

wn(r − Ri) =
1

VBZ

∫

k∈BZ
Ψn,k(r)e

−ikRi dk. (1.49)
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Figure 1.8: The exact Wannier function ωex(x) and the approximated Wannier function
ωap(x) of the lowest band at site Ri = 0 for different lattice depths. The Wannier function
becomes more narrow as the depth increases, which indicates stronger localization of the
atoms within the lattice. The Wannier functions within the deep lattice approximation
give very reasonable results with larger deviation from the exact Wannier function for
shallow lattices. The differences can be seen at through logarithmic depiction of the tails
(see inset).

where Ri is the position of lattice site i in real space. On a given lattice site, each band n
possesses its own Wannier function. We also define an inverse transformation

Ψn,k(r) =
( 1

VBZ

)
3
2

∑
Ri

wn(r − Ri)e
ikRi (1.50)

and given the orthogonality of the Bloch eigenfunctions, we derive the orthogonality
relation for the Wannier functions

∫

drw∗
m(r − Rj)wn(r − Ri) = δm,nδRj,Ri

(1.51)

Due to the translation symmetry of the lattice, we obtain all Wannier functions within the
optical lattice after computation of the Wannier functions on one lattice site.
The Wannier functions are not invariant under global phase shifts of the Bloch functions,
e.g. Ψn,k → Ψn,keiθ with θ ∈ R. This global phase shift does not yield a different energy
spectrum and therefore does not change the physics of the atom, but results in a vastly
different Wannier function. Although this arbitrariness appears to be inconvenient, it
provides us with an additional degree of freedom to shape the Wannier function to our
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liking. For example, it is possible to choose a global phase shift of the Bloch functions such
that the Wannier function is real, possesses a well defined parity and is highly localized
around the position Ri with exponential decay away from the center.

Deep lattice

Usually the Wannier functions are numerically computed based on the Bloch functions
obtained through the eigenvalue equation Eq. (1.46). For deep enough lattices V0/ER ≫
1 the complexity of the problem can be reduced by assuming that the potential V(r)
decouples into disconnected harmonic wells given by

Vdip(r − Ri) =
1

2
mω2

trap(r − Ri)
2 (1.52)

with the trapping frequency Åhωtrap = 2
√

V0ER. Within this limit the single-band approxi-
mation is valid as the resulting band gap in the energy eigenspectrum between the lowest
and the second band is large enough. Then the atom in lattice site i is described by the
Wannier function of the lowest band, which can be analytically calculated, and reads

w(r − Ri) =
1

π3/4σ3/2
lat

e
− (r−Ri)

2

2σ2
lat . (1.53)

In this limit the shape of the Wannier function is a Gaussian with width σ =
√

Åh/mωtrap.
As expected we find that for increasing lattice depths V0 the width σ decreases, which
implies a higher localization of the atom.
The numerically determined, exact Wannier function and the approximate analytical
Wannier function Eq. (1.53) are in good agreement for deep lattices: Both are localized
around the center of the lattice site and decay exponentially. The main difference is in the
tail of the decay, which is finite but small. We conclude that although the disconnected well
picture may not capture the full Wannier function, it is a simple and useful approximation.

1.5 Bose-Hubbard model

While the previous sections focused on the single-particle case, we are interested in the
many-body eigenstates of the system. A useful formalism developed for describing
systems consisting of many atoms through wave functions is the second quantization, in
which many-body wave functions take the form

Ψ(r1, r2, ...) (1.54)

with the position ri of atom i. The underlying idea of these wave functions is the idea of
indistinguishability of the quantum particles, through which these wave functions become
invariant upon an exchange of the positions of two atoms up to a prefactor

Ψ(..., ri, ..., rj, ...) = ζΨ(..., rj, ..., ri, ...) (1.55)
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The wave function is symmetric (ζ = 1) or antisymmetric (ζ = −1), if the atoms are
bosonic or fermionic respectively. Since the relevant atoms in this work are bosonic, we
omit the fermionic descriptions in the following derivations.
Within second quantization, the many-body Hamiltonian in the many-body wave function
basis is given through

Ĥ =
∫

drΨ̂²(r)
(

− Åh2
∇2

2m
+ V(r)

)

Ψ̂(r)

+
∫∫

drdr′Ψ̂²(r)Ψ̂²(r′)U(r, r′)Ψ̂(r)Ψ̂(r′)
(1.56)

with the field operators Ψ̂²(r) (Ψ̂(r)), which add (remove) an atom in position r. The first
term describes atoms trapped in a potential V(r) and is known from the previous section.
We introduce an interaction term through U(r, r′) acting between two atoms at positions r
and r′. In order to deal with this Hamiltonian, we first need to specify the field operators.

An important algebraic construction of quantum states beyond the single-particle picture
is the so-called Fock space, which contains all states composed of identical particles with
variable particle number. Let us first consider an atom i in a state ϕi = {ψ1, ..., ψM}. The
states ψj with j ∈ M form the complete single-particle basis. The N-particle basis is then
spanned by the states

|Φ⟩ = |ϕ1ϕ2...ϕN⟩ = ∏
k

|ϕk⟩ . (1.57)

Due to their indistinguishability and therefore their common Hilbert space, it is useful to
work in the occupancy number basis. For nj atoms in state

∣

∣ψj

〉

, we obtain

|Φ⟩ = |ψ1⟩n1 |ψ2⟩n2 ... |ψM⟩nM ≡ |n1, n2, ..., nM⟩ (1.58)

with ∑i ni = N. These Fock states form a complete and orthogonal set of basis states such
that

〈

Φ′∣
∣ Φ⟩ =

〈

n′
1, n′

2, ..., n′
M

∣

∣ n1, n2, ..., nM⟩ = ∏
i

δni ,n
′
i

(1.59)

∑
∑i ni=N

|n1, n2, ..., nM⟩ ⟨n1, n2, ..., nM| = 1 (1.60)

Within the Fock space two operators of great importance are the creation operator b̂²
i and

the annihilation operator b̂i. As the name suggests these operator create or remove one atom
in state ψi as

b̂i |n1, n2, ..., ni, ..., nM⟩ = √
ni |n1, n2, ..., ni − 1, ..., nM⟩ (1.61)

b̂²
i |n1, n2, ..., ni, ..., nM⟩ =

√

ni + 1 |n1, n2, ..., ni + 1, ..., nM⟩ (1.62)

These operators follow the commutation relation

[b̂i, b̂²
j ] = δij (1.63)
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meaning that the result of the successive application of both operators on a state de-
pends on their order. In this context we introduce the number operator n̂i, which is an
eigenoperator of the Fock states

n̂i |n1, n2, ..., ni, ..., nM⟩ = ni |n1, n2, ..., ni, ..., nM⟩ (1.64)

and through the above-defined creation and annihilation operator can be written as

n̂i = b̂²
i b̂i (1.65)

While these operators appear to be very basic, they can be used to define the field operators.
In the context of optical lattices occupancy of a state represents the number of atoms on a
lattice site. Thus the field operators are rewritten through the creation and annihilation
operators as

Ψ̂²(r) = ∑
i,n

wn(r − Ri)b̂
²
i . (1.66)

The application of field operators thus can be seen as adding or removing at an atom
on lattice site i for r ≈ Ri . For positions r not close to the center of any lattice site the
field operator has no effect due to the exponential decay of the highly localized Wannier
function. We thus rewrite the Hamiltonian with the newly defined field operators

Ĥ = ∑
mn

∑
ij

∫

drw∗
m(r − Ri)

(

− Åh2
∇2

2m
+ V(r)

)

wn(r − Rj)b̂
²
i b̂j

+ ∑
mnpq

∑
ijkl

∫∫

drdr′w∗
m(r − Ri)w

∗
n(r

′ − Rj)U(r, r′)wo(r − Rk)wp(r
′ − Rl)b̂

²
i b̂²

j b̂k b̂l

(1.67)

The Hamiltonian can be split into the non-interacting, single-particle Hamiltonian Ĥ0 and
the interaction Hamiltonian Ĥint. The first part reads

Ĥ0 = ∑
i

ϵin̂i + ∑
i ̸=j

Jijb̂
²
i b̂j (1.68)

and consists of an on-site term with energy

ϵi = ∑
mn

∫

drw∗
m(r − Ri)

(

− Åh2
∇2

2m
+ V(r)

)

wn(r − Ri), (1.69)

which in case of no external potential is equal for all lattice sites due to the periodicity of
the optical lattice, e.g. ϵi ≡ ϵ. As it merely changes the energy of each atom, it does not
contribute to the overall physics and can be set ϵ = 0. The latter term removes an atom
from site j and creates it in site i with amplitude

Jij = ∑
mn

∫

drw∗
m(r − Ri)

(

− Åh2
∇2

2m
+ V(r)

)

wn(r − Rj), (1.70)
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which effectively describes tunneling of an atom from site i to site j. The amplitude
Jij gives the likeliness of this process. Jij is therefore referred to as tunneling or hopping
amplitude and can be calculated through

Jij =
1

VBZ
∑
mn

∑
k,k′∈BZ

e−i(kRi−k′Rj)
∫

dxΨ∗
m,k(r)

(

− Åh2
∇2

2m
+ V(r)

)

Ψn,k′(r)

=
1

VBZ
∑
mn

∑
k,k′∈BZ

E(k)e−i(kRi−k′Rj)
∫

dxΨ∗
m,k(r)Ψn,k′(r)

=
1

VBZ
∑
n

∑
k∈BZ

En(k)e
−ik(Ri−Rj)

(1.71)

with the energy bands En(k) determined in section 1.4.2. Within the single-band approxi-
mation, calculation of Jij for various lattice depths reveals a decaying behavior. This can be
traced back to the narrowing of the Wannier functions, since Jij essentially describes over-
lap of Wannier functions at two different sites i and j. Quantum mechanically speaking, a
larger potential depth result in higher potential walls between atoms, which decreases
the tunneling probability. Additionally the amplitude greatly decreases for increasing
distances between these two sites as the overlap between the exponential tails of the
Wannier functions vanishes.
In a hypercubic lattice the so-called Mathieu equation [56±58] yields an analytic formula for
the hopping amplitude between neighboring sites

J01 ≡ J ≈ 4√
π

( V0

ER

)
3
4
e
−2

√

V0
ER ER (1.72)

with the recoil energy Eq. (1.28), which is in good agreement with the numerically com-
puted values of Jij, even for more shallow lattices (see Fig. 1.9).

While long-range interactions can be incorporated into the many-body system, the in-
teraction U(r, r′) usually describe s-wave scattering between two atoms and is given
by

U(r, r′) =
4πÅh2a

m
δ(r − r′)

∂

∂(r − r′)
|r − r′| (1.73)

with the scattering length a. The interaction Hamiltonian can thus be rewritten as

Ĥint = ∑
ij

Uijb̂
²
i b̂²

j b̂jb̂i (1.74)

with the interaction strength

Uij =
4πÅh2a

m ∑
mn

∫

dr|wm(r − Ri)|2|wn(r − Rj)|2. (1.75)

Through calculation of the Wannier functions for various lattice depths, we are able to
compute Uij (see Fig. 1.9). While we find that the interaction strength between two atoms
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Figure 1.9: (a) The hopping amplitude J0i between lattice sites R0 and Ri (solid lines). The
hopping amplitude decreases with increasing lattice depth, which is consistent with the
narrowing of the Wannier functions and the hereby resulting smaller overlap between
neighboring and far apart Wannier functions. Furthermore, the hopping amplitude is
considerably smaller between non-nearest neighboring lattice sites. The solution of the
Mathieu equation yields a qualitatively reasonable approximation of the nearest-neighbor
hopping amplitude through Eq. (1.72) (dashed line). (b) The on-site interaction between
to atoms either on the same site U00 or on different sites U0i for various lattice depths
(solid lines). The on-site interaction between two atoms on the same site increases for
larger lattice depths due to higher localization of the atoms, while the initially already
weak interactions between distant atoms decay. The deep lattice approximated on-site
interaction given by Eq. (1.76) gives good results (dashed lines).

decreases rapidly with increasing distance, which is similar to the result obtained for Jij,
we observe that the interaction strength between two atoms on the same site increases
with increasing potential depth. This is due to the higher localization of the Wannier
function, which is reflected in the overlap integral of Uij. The interaction between two
atoms on the same site is known as the on-site interaction.

Within the deep lattice approximation we obtain the analytical expression of the on-site
interaction

U ≈
√

8

π
kLa

( V0

ER

)
3
4
ER, (1.76)

which is also in good agreement with the on-site interaction obtained through calculation
of the exact Wannier functions.
The resulting Hamiltonian is known as the Bose-Hubbard model

Ĥ = −µ ∑
i

n̂i − J ∑
⟨ij⟩

(b̂²
i b̂j + b̂²

j b̂i) +
U

2 ∑
i

n̂i(n̂i − 1) (1.77)
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and describes a bosonic many-body system trapped in an optical lattice, where atoms
tunnel between nearest neighboring sites with hopping amplitude J and interact with
other atoms on the same site with strength U [59]. Here ⟨ij⟩ denotes a pair of nearest
neighbors. Rather than an experimental parameter, the chemical potential µ is a theoretical
tool to adjust the number of trapped atoms. Note that this Hamiltonian is obtained within
the single-band approximation. The inclusion of higher Bloch bands leads to a multiband
version of the model, which in some situations can be mapped back to an effective single-
band Hamiltonian [60±62]. The single-band approximation however is reasonable for the
range of parameters considered in this work as the band gap between the lowest and the
second band is sufficiently large compared to the parameters of the model, thus leaving
higher Bloch bands mostly unoccupied.
The Bose-Hubbard model possesses a high tunability of its parameters in cold atom realiza-
tions. The hopping amplitude is usually controlled through variation of the lattice depth,
while the on-site interaction can be tuned through Feshbach resonances, with which the
scattering length can be adjusted and the on-site interaction made attractive (U < 0) or
repulsive (U > 0) [63±65].
The Bose-Hubbard model with repulsive on-site interaction has been investigated in many
studies. Since the on-site interaction favors localized atoms in the lattice, while a large
hopping amplitude implies that the atoms are delocalized, the interplay between both
processes at various fillings of the lattice is a non-trivial problem.
Due to the intuitive nature of the Hamiltonian, it is easy to describe additional processes
present in the system through inclusion of appropriate expressions and simple modifica-
tion of already existing terms without tedious derivation. These variations of the model
are referred to as extended Bose-Hubbard model and allow to investigate novel quantum
phases not captured by the plain Bose-Hubbard model.

1.6 Phases of bosonic quantum gases

In this section, we discuss and understand the physics behind each of the quantum phases
arising due to the competition between the different processes in bosonic gases trapped in
hypercubic optical lattices. Some of these phases possess an exact analytical description
in limiting cases, while the many-body ground state of others can only be retrieved from
numerical computation with the corresponding Hamiltonian.
For the sake of introducing all quantum phases relevant for this work, we introduce a
simple extended Bose-Hubbard model. Since the Bose-Hubbard model does not break
lattice translation symmetry, i.e. translation of the system by a lattice vector does not
change the Hamiltonian, we include an additional repulsive, long-range interaction term.
The extended Bose-Hubbard model reads

Ĥ = −µ ∑
i

n̂i − J ∑
⟨ij⟩

(b̂²
i b̂j + b̂²

j b̂i) +
U

2 ∑
i

n̂i(n̂i − 1) + V ∑
⟨ij⟩

n̂in̂j (1.78)

with the additional nearest neighbor interaction term with strength V > 0. Note that
V = 0 yields the plain Bose-Hubbard model. For a given set of parameters µ, J, U and V
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we are able to compute the ground state, i.e. the eigenstate with the lowest energy, of the
system.

1.6.1 Mott insulator

In the limiting case J/U → 0, which is known as the atomic limit, and no long-range
interaction V = 0, the system is best described by a homogeneous distribution of highly
localized atoms. These states are known as the Mott insulators (MI) and further described
by their filling n, i.e. the amount of atoms per site, and for N lattice sites thus read

|ΨMI(n)⟩ =
N

∏
i=1

|ni = n⟩ =
N

∏
i=1

(b̂²
i )

n

√
n!

|0⟩ (1.79)

Due to the localization of the atoms, the filling only takes integer values n ∈ Z. The energy
of a MI can be calculated through the Hamiltonian Eq. (1.78)

EMI(n) = ⟨ΨMI(n)| Ĥ |ΨMI(n)⟩ = −N(µn − U

2
n(n − 1)) (1.80)

and through comparison of the energies for different fillings, we find the parameter regime
for which a MI with filling n represents the ground state of the system

|ΨMI(n)⟩ → n − 1 <
µ

U
< n (1.81)

The MI is phase incoherent, i.e. the state is invariant under a global phase shift. This is not
too surprising as the original Hamiltonian itself possesses a U(1) symmetry meaning that
the transformation b̂i → b̂ie

iθj and b̂²
j → b̂²

j e−iθj does not change the Hamiltonian.

As a way to further understand and classify the quantum phases, we introduce the
single-particle density matrix

ρij = ⟨Ψ| b̂²
i b̂j |Ψ⟩ (1.82)

for a general many-body state |Ψ⟩, which gives a measure of the correlation between two
lattice sites i and j in the system. For the MI the density matrix becomes

ρkl = ⟨ΨMI| b̂²
k b̂l |ΨMI⟩ = ∏

ij
j⟨m|b̂²

k b̂l |n⟩i

= ∏
ij

√
m
√

n j⟨m − 1|n − 1⟩iδilδjk

= ∏
ij

√
m
√

nδmnδijδilδjk

= nδkl

(1.83)

The density matrix becomes diagonal with n as its only elements. This alludes to the fact
that the atoms are highly localized and thus do not influence lattice sites away from their
own.
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1.6.2 Superfluid

In the opposite limiting case U/J → 0, the atoms are delocalized and condensed into the
lowest single-particle state, forming a Bose-Einstein condensate. The exact wave-function
reads in this limit

|ΨSF⟩ =
1√
n!

( 1√
N

N

∑
i=1

b̂²
i

)n
|0⟩ (1.84)

where the filling can take non-integer values n ∈ R. These phases are called superfluid (SF)
and the state of each site is given by a superposition of Fock states. Compared to the MI
for which the filling represents the amount of atoms on a lattice site, SF phases do not
possess well-defined atom numbers on each site and thus only the probability distribution
of atom numbers can be determined. The probability p(ni) of finding ni atoms on a lattice
site for a SF phase is given by

p(ni) = | ⟨ni|ΨSF⟩|2 (1.85)

By using the multinomial formula

( N

∑
i=1

b̂²
i

)n
= ∑

∑i ni=N

N!

∏i ni
∏

k

(b̂²
k )

ni (1.86)

we rewrite the wave function of the SF phase as

|ΨSF⟩ = ∑
∑i ni=N

√

n!

Nn ∏i ni
|ni⟩ (1.87)

Using the rewritten wave function for the probability distribution

p(ni) = | ⟨ni|ΨSF⟩|2 =
n!

(n − ni)!

(N − 1)n−ni

Nn

1

ni!
(1.88)

and applying the Stirling formula n! ≈
√

2πnnne−n leads us to

p(ni) = e− Ån Ånni

ni!
(1.89)

We see that the probability distribution of the atom number is given by a Poisson distri-
bution in the limiting case. Other quantum states with the same distribution are coherent
states and using their definition, we obtain an alternative form of the condensate wave
function

|ΨSF⟩ = ∏
i

e−
Ån
2

∞

∑
ni=0

αni

√
ni!

|ni⟩ = ∏
i

|αi⟩ (1.90)

with the coefficient α =
√

neiϕ, which is the eigenvalue of the eigenvalue equation b̂i |αi⟩ =
α |αi⟩. The single-particle density matrix can now be easily determined through the
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coherent state description and

ρkl = ⟨ΨSF| b̂²
k b̂l |ΨSF⟩

= ∏
ij

⟨αi| b̂²
k b̂l

∣

∣αj

〉

= ∏
ij

⟨αi| α∗
i αj

∣

∣αj

〉

= n

(1.91)

Through the derivation we gain several important insights on SF phases. First, since
the wave function can be written as a coherent state, the delocalized atoms are phase-
coherent and each SF phase can be uniquely identified by the common phase of each
boson. Furthermore, SF phases do not have a U(1) symmetry and hence are not invariant
under a global phase shift. This is unexpected as the Hamiltonian itself is U(1)-symmetric.
The broken symmetry of the SF phase can also be understood in the context of particle
number conservation [66]. As a conserved atom number in a system is a consequence of
U(1) symmetry and the coherent state violates this conservation law, since it is invariant
to adding or removing a particle, the U(1) symmetry has to be broken. As the SF phase
breaks a symmetry otherwise present in the Hamiltonian, we refer to this as spontaneous
symmetry breaking.
Another intriguing aspect of SF phases is the single-particle density matrix, which has
non-vanishing off-diagonal terms. The density matrix element ρij can be understood as a
measure of phase coherence between two atoms on lattice site i and j and in SF systems
does not diminish with distance between these two lattice sites. The presence of non-zero
off-diagonal terms is called off-diagonal long-range order (ODLRO) and is related to the
single-particle wave functions of each atom: At the temperatures typical for optical lattice
experiments their de-Broglie wavelength increases and the atoms hereby delocalize over
many lattice sites. Through the overlap of all waves the atom become phase coherent over
long distances, which reflects in ODLRO.
Note that while in the limiting case the condensate wave function Eq. (1.90) represents
the SF phase well, condensation and superfluidity imply different properties of a system.
While a BEC is characterized by the macroscopic occupation of the energetically lowest
quantum state at vanishing temperatures T ≈ 0, superfluidity refers to the frictionless
flow of particles. Thus they are generally not directly related to one another and therefore
neither mutually exclusive nor inclusive [67]. In the context of bosonic quantum gases
however the Landau criterion establishes a link between both physical phenomena [68±70].
To this end we consider an impurity in a BEC moving with a certain velocity. In order
for the movement of the impurity to be frictionless its velocity has to be below the
Landau critical velocity given by the energy of a single elementary excitation ϵp with BEC
momentum p as vc = minp(ϵp/p) [71, 72]. In layman’s terms it means that flow of an
impurity without any loss of kinetic energy is only achievable if the velocity does not
excite the underlying BEC and thus depends on the energy of these elementary excitations.
For an interacting BEC with small momentum the dispersion relation of these elementary
excitations can be approximately given by the Bogoliubov phonons and thus scales as
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ϵp ∝ U1/2. This implies that in the limit of a non-interacting BEC U → 0 the critical velocity
vanishes and hereby the system does not possess any superfluidity. Therefore even though
we consider the limit U/J → 0 we always require a finite interaction strength in order to
call the obtained phase a SF. Experimentally the critical velocity was observed by moving
a laser through a BEC and measurement of heating in dependence on the velocity [73]. We
thus conclude that while ODLRO is a characteristic feature of a condensate it serves also
as a property of the SF phase in combination with a finite interaction strength.
Note that the above-defined many-body wave function Eq. (1.90) is only exact in the
limiting case U/J → 0 and therefore the experimentally accessible single-particle density
matrix may exhibit features of the MI.

1.6.3 Density wave

We consider the previously discussed atomic limit J/U → 0, but with finite long-range
interaction J/V → 0. Similar to the MI, the ground state is given by highly localized atoms,
although the repulsive long-range interaction leads to an inhomogeneous distribution of
the atoms within the optical lattice. The corresponding wave function reads

|ΨDW⟩ =
N

∏
i=1

|ni⟩i =
N

∏
i=1

(b̂²
i )

ni

√
ni!

|0⟩ (1.92)

and the quantum phase is referred to as a density wave (DW). These DW phases exhibit
unique crystalline order given by the type of long-range interaction and have thus to
be characterized their spatial modulation. In the case of nearest neighbor interaction,
the long-range interaction leads to a checkerboard-type distribution of two integer atom
numbers [74, 75].
The single-particle density matrix is obtained through

ρkl = ⟨ΨDW| b̂²
k b̂l |ΨDW⟩ = ∏

ij
j

〈

mj

∣

∣b̂²
k b̂l |ni⟩i

= ∏
ij

√
mk

√
nl j⟨m − 1|n − 1⟩iδilδjk

= ∏
ij

√
mk

√
nlδmnδijδilδjk

= nlδkl

(1.93)

and reflects the inhomogeneous distribution of localized atoms. Since the Hamiltonian
itself is invariant under translation by a lattice vector, the DW phase has so-called sponta-
neously broken lattice translational symmetry. Due to the periodic density modulation of DW
phases they are often defined by a finite (diagonal) long-range order (LRO) [76, 77].

1.6.4 Supersolids

The most peculiar quantum phase discussed in this work is not obtained by any if the
above-mentioned limiting case. The supersolid (SS) combines the crystalline properties of
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the DW phase and the finite condensation of the SF, and intuitively is given when the long-
range interaction strength and hopping amplitude are in the same order of magnitude.
Although no exact wave function has been formulated yet, these phases are characterized
by a spontaneously broken U(1)-symmetry as well as a translational symmetry.
Whether SS phases exist or not has been an intensively researched field in the last decades.
After the initial theoretical speculations and descriptions of phases exhibiting both LRO
and ODLRO [78±81], a long time passed until SS phases were finally experimentally ob-
served. In recent years SS phases have finally been appeared in first experiments involving
either quantum gases with cavity-mediated long-range interaction in the continuum [82]
and on the lattice [83, 84], and with dipolar BECs [85±87] and therefore definite proof of
their existence. Subsequently the study of SS phases became popular and lead to many
further research on their properties such as the ability to form quantized vortices [88] and
their phase rigidity [89, 90].
Note that in the scope of this thesis all subsequent discussions about and mentions of
SS phases refer to many-body states, which spontaneously break the lattice translational
symmetry, and are therefore called lattice supersolids [91]. This specification is important,
since lattice supersolids may not exhibit spontaneously broken translational symmetry
in a continuous system and benefits from the discretization of real-space through the
trapping an optical lattices.

Classification of phases

These quantum phases are unique in their physics and can thus be provided with distinct
quantities, through which their identification becomes possible. We first define a set of
local order parameters, namely the condensate order parameter ϕi = |⟨b̂i⟩| and the occupation
number ni = ⟨b̂i⟩. Since we are also expecting inhomogeneous phases to be many-body
ground states, it is necessary to introduce the corresponding spatially averaged order
parameters Åϕ = 1/N ∑

N
i=1 ϕi and Ån = 1/N ∑

N
i=1 ni for a system with N sites. Another im-

portant quantities in the context of inhomogeneous phases are staggered order parameters
ϕstag and nstag. However no general expression for these order parameters exist, since they
are individually defined by the expected density modulation in the system.
Through the average condensate order parameter we identify whether a many-body
state exhibits insulating or SF properties. We can further differentiate between the ho-
mogeneous and inhomogeneous phases through the staggered occupation number, as it
becomes finite if a crystalline structure is present. The culmination of these properties,
with which a many-body state can be classified, are written in Tab. 1.1.

Note that for homogeneous systems the local order parameters are equal to their averaged
counterparts. Although the staggered order parameters are in theory very useful, the
expected superlattice unit cell of the crystalline structure has to be known beforehand.
For example, a checkerboard-type ordering of local order parameters can be determined
through a finite staggered occupation number defined as Och

stag = 1/N ∑
N
i=1(−1)x(i)+y(i)Oi,
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Phase Ån Åϕ nstag ϕstag

MI N 0 0 0

SF R R 0 0

DW Q 0 Q 0

SS R R R R

Table 1.1: Classification table for the identification of quantum phases in the plain and
extended Bose-Hubbard model. These phases Mott-insulating (MI), superfluid (SF),
density wave (DW) and supersolid (SS) phases.

while striped configurations would be identified through Ostr
stag = 1/N ∑

N
i=1(−1)x(i)Oi

with O ∈ {ϕ, n}. For the computation of phase diagrams, which can possibly exhibit many
unique crystalline structures, it becomes necessary to check the spatial distribution of the
local order parameters.

1.6.5 Phase diagrams

The phase diagrams of the plain and extended Bose-Hubbard model are obtained through
computation of the ground state wave function (see Appendix A.1) and subsequent identi-
fication of the quantum phase based on order parameters (see Appendix B.1). This allows
to investigate the interplay between the different terms contained in the Hamiltonian
beyond the limiting cases. In the following, we introduce the coordination number z
through which we are able to depict the phase diagrams independently on the dimension
of the optical lattice. The coordination number refers to the number of neighbors and in a
hypercubic lattice simplifies to z = 2d, where d is the dimension of the lattice (see Section
3.2).
For V = 0, we obtain the well-known phase diagram of the Bose-Hubbard model (see
Fig. 1.10). The domains of MI phases of different fillings are called Mott lobes. Their
shape can be understood through the degeneracy of two MI phases at integer values of
µ/U ∈ N and vanishing hopping: In the atomic limit an excitation of a MI with filling
n is gapped due to the energy cost of adding a particle E+ = Un − µ or removing a
particle E− = U(n − 1) + µ. This also implies that the energy associated with adding
a particle in a MI phase with filling n is equal to the energy of removing a particle in a
MI with filling n + 1. Beyond the atomic limit however the energy gap can be bridged
through a finite hopping, which the results in condensation of the system. Since the gap
is marginally small around integer values of µ/U, only a small hopping amplitude J is
necessary. Larger hopping amplitudes are necessary between two integer values of µ/U,
where the energy gap reaches its largest values. We therefore obtain the lobe shaped phase
transitions between the MI and SF regimes.

While the phase diagram was determined without any external potential, most optical
lattice experiments work with an additional harmonic confinement. In our numerical
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(a) (b)

Figure 1.10: (a) Phase diagram of the Bose-Hubbard model for various hopping amplitudes
zJ/U and chemical potentials µ/U. The phase diagram consists of integer-filling MI
phases, a SF regime and a vacuum regime. The boundary between the Mott-insulator
phases and the SF regime is lobe-shaped. (b) The occupation probability P(n) = |⟨n|Ψ⟩|2
of a Fock state n for different ratios zJ/U for fixed filling Ån = 1. For on-site interactions
larger than the hopping amplitude the probability P(n = Ån) = 1 hints at the integer-filling
of the system, which indicates a Mott-insulating phase. Increasing the hopping amplitude
leads to a more spread distribution of the propabilities P(n). For very large hopping
amplitudes the probability distribution is close to the Poisson distribution, consistent with
a SF phase.

calculations, we take the harmonic potential into account by making the chemical potential
site dependent, i.e. µ → µi. The chemical potential of a given site decreases in dependence
on the distance to the center of the harmonic confinement, which ultimately leads to a
vanishing population of the sites far away from the center. For given parameters we
determine the ground state inside the potential and visualize the results through the
expectation values ⟨n̂i⟩ and ⟨b̂i⟩. We observe ring-like shells with either constant filling
and no condensation or decreasing filling and finite condensation, implying that the
shell-structure is given by alternating MI and SF phases. This result is reflected in the
phase diagram, since for a finite hopping amplitude a variation of the chemical potential
leads to various quantum phase transitions between both types of phases. Due to its shape
this result is known as the wedding cake (see Fig. 1.11) and has been observed in many
experiments.

Now we consider the extended Bose-Hubbard model with finite long-range interaction
strength V > 0. Through computation of the phase diagram at different values of zV/U,
we investigate the additional competition in the system (see Figure 1.12). At zV/U = 1
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Figure 1.11: The well-known wedding cake shape of the density n(x, y) for a system
with external harmonic confinement given by µi = µ0 + µ̃(x2 + y2). Each plateau of the
wedding cake distribution corresponds to a Mott-insulator. These are commonly referred
to as Mott-insulator shells due to their ring-shape. Calculation of the condensate order
parameter ϕ hints at the presence of SF regions between various Mott-insulating shells.
The width of these regions depends on the hopping amplitude zJ/U and vanishes in the
atomic limit. The alternating shells of Mott-insulating and SF phases reflect the shape of
the phase boundaries (see Fig. 1.10).

the on-site and the long-range interaction are of equal strength, which is reflected in the
phase diagram through the lobes alternating between MI and checkerboard DW phase.
The occupation numbers of the two different sublattices are n and n − 1, which results
in DW phases of average filling Ån = n − 1/2 between a MI with filling n and one with
filling n − 1. Furthermore checkerboard supersolid regimes emerge at the tip of the
DW lobes. Although these supersolid phases exhibit an occupation number distribution
similar to their insulating counterpart of the adjacent DW lobe, the atoms are delocalized
and therefore finite condensation emerges. For large enough hopping amplitudes, the
crystalline order breaks down and the system exhibits a SF phase.

For large zV/U = 1.5, the long-range interaction dictates the phase diagram and regimes
of checkerboard phases dominate. The Mott-insulator lobes are suppressed due to the
strong nearest neighbor repulsion and the checkerboard DW phase are characterized by
one site with filling n and an empty site, which leads to the same average filling obtained
for smaller zV/U. Furthermore, due to the larger long-range interaction the regime of
coexistence between condensation and crystalline order increases and thus the supersolid
regime extends. Its boundary to the SF phase is shifted to much larger hopping amplitudes,
which increase with increasing filling, i.e. increasing chemical potential.
These phase diagrams are helpful to get an intuition on the origin of the different quantum
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Figure 1.12: Phase diagrams of the extended Bose-Hubbard model with (a) moderate
long-range interaction zV/U = 1 and (b) larger long-range interaction zV/U = 1.5. In
addition to the Mott-insulating and SF phases, the phase diagram exhibits inhomogeneous
DW and supersolid phases. For moderate long-range interaction the lobe-shaped phase
boundaries are still present to a certain extent, although Mott-lobes of integer filling are
now seperated by DW regimes, which are surrounded by supersolid regimes. Larger
long-range interaction however renders the Mott-insulator energetically unfavorable and
thus all lobes arising consist of DW phases. The supersolid regime extends to higher
hopping amplitudes with increasing chemical potential. At a critical hopping amplitude
there is a transition from the supersolid regime to a SF regime.

phases and the corresponding models have been well studied in many works. Although
theoretically we are able to identify these phases from calculation of expectation values
through the wave function, experimental observation is no trivial task. In the following,
we discuss the experimental techniques and apparatus for probing quantum gases and
detecting phases.

1.7 Detection of quantum phases

The two most commonly used and efficient techniques to experimentally detect the
various quantum phases are the time-of-flight measurements (TOF) [92, 93] and the quantum
gas microscope [94±96]. Both techniques probe the real-space atomic distribution of the
bosonic quantum gas, however rely on different types of imaging and possess different
ranges of applicability.
We first introduce the notion of time-dependence, since until now the description of
the Hamiltonian and its ground states has been purely stationary. We first define the
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time-dependent field operator at time t

Ψ̂(r, t) = ∑
i

w0(r − Ri, t)b̂i (1.94)

with the time-dependent Wannier function wn(r − Ri, t) = Û²(t)wn(r − Ri, 0)Û(t) ob-
tained through unitary time evolution given by the operator Û(t). Its momentum-space
counterpart can be obtained through the Fourier transform and reads

Ψ̂(k, t) =
∫

dre−ikrΨ̂(r, t) (1.95)

We now are able to define the time-dependent real-space distribution of atoms

n(r, t) = ⟨Ψ̂²(r, t)Ψ̂(r, t)⟩
= ∑

ij

w∗
0(r − Rj, t)w0(r − Ri, t)⟨b̂²

j b̂i⟩ (1.96)

and the time-dependent momentum-space distribution

n(k, t) = ⟨Ψ̂²(k, t)Ψ̂(k, t)⟩

=
∫∫

drdr′e−ik(r−r′)⟨Ψ̂²(r′, t)Ψ̂(r, t)⟩

= |w0(k, t)|2 ∑
ij

eik(ri−rj)⟨b̂²
j b̂i⟩

(1.97)

where the time-dependent momentum-space Wannier function is given by

w0(k, t) =
1

(2π)3

∫

dre−ikrw0(r, t) (1.98)

Both distributions are given by Wannier functions in their respective spaces and the
single-particle density matrix ρij = ⟨b̂²

j b̂i⟩, and are thus related.

1.7.1 Time-of-flight measurement

The basic idea behind time-of-flight (TOF) measurements is simple: Through Feshbach
resonances the interactions are initially switched off and the trapping potential of a
quantum gas is turned off, which leads the released atomic cloud to fall due to gravity and
freely expand. During this expansion the atoms are able to interfere with each other. After
some time, an absorption image of the cloud is taken, which reveals their interference
pattern and thus the quantum phase of the cloud before its release.
The quench-type time evolution of the atoms after turning off the interaction and the trap

is only given by the kinetic term through the operator Û(t) = e−iĤkint/Åh at t > 0. As the
kinetic Hamiltonian Ĥkin = Åh2k2/(2m) is diagonal in momentum space, it is useful to
define the time-dependent real-space Wannier function

w0(r, t) =
1

(
√

2π)3

∫

dkei(kr− Åhk2

2m t)w0(k, t = 0) (1.99)
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through their Fourier transform. Within the stationary phase approximation [97], the
integral reveals

w0(r, t) ≈
( m

iÅht

)3/2
w0(k, t)ei m

2Åht r2
(1.100)

with which we rewrite the real-space distribution

n(r, t) =
(m

Åht

)3
|w0(k, t)|2S(k, t) (1.101)

with the structure factor

S(k, t) = ∑
ij

eik(Ri−Rj)e−i m
2Åht (R2

i −R2
j )⟨b̂²

j b̂i⟩ (1.102)

While the first exponential function in the structure factor is a discrete Fourier transform,
we also obtain an additional phase shift given by the phase factor ≈ R2

i − R2
j , which

bears strong resemblance to the Fresnel distance [92]. If the latter vanishes the structure
factor would allow us to rewrite the real-space distribution through its Fourier transform.
Unfortunately the phase factor can not be engineered to be zero, however, since its
amplitude decreases with time, it is possible to define a time tc for which the phase factor
is negligible. We therefore differentiate between the near-field (t ≪ tc) and far-field
(tc ≫ t) regimes.

Near-field and far-field approximation

Within the near-field regime the interference pattern is not purely given by the momentum-
space distribution and features a more complex pattern, while in the far-field regime the
atomic cloud has expanded enough for the additional phase factor to be vanishing and
thus allows for detection of the quantum phase through absorption imaging. The threshold
time tc can be quantitatively determined through estimation of the magnitude of the phase
factor. Since the single-particle density matrix elements ⟨b̂²

j b̂i⟩ limit the sum in dependence

on the coherence length ζ0 of the initial quantum states, the largest contributions are given
by the coherence length itself through

m

2Åht
(R2

i − R2
j ) ∼

mζ0L

Åht
(1.103)

with the characteristic size L of the atomic cloud before turning off the trap. We thus
identify the threshold value for the distinction between near-field and far-field regime
through

tc =
mζ0L

Åh
(1.104)

Note that tc therefore depends on the quantum phase of the bosonic gas before its release.
While localized phases such as MI or DW phases have short coherence lengths and can thus
enter the far-field regime fast, phase coherent states like SF or supersolid phases require
longer expansions as the coherence length is typically of the same order of magnitude as
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Figure 1.13: The density distribution of (a) a Mott-insulator and (b) a SF phase expected
in a TOF measurement. The Gaussian shape distribution of the initial Mott-insulator
originates from the diffusion of the decoherent atoms after turning off the trap. A SF
however displays an interference pattern due to the free falling phase-coherent atoms.
The sharp peak at the center indicates a high collective occupation of the lowest energy
mode and the spacing of the emerging peaks can be traced back to the lattice vector K of
the reciprocal space.

the characteristic system size, i.e. ζ0 ≈ L.
In the far-field regime the additional phase factor vanishes and the real-space density
distribution after TOF is thus given by

n(r, t) =
(m

Åht

)3
n(k, t) (1.105)

from which we see that the free time evolution of the quantum gas reveals its momentum-
space distribution directly before being released from the trap.

Measurements

With the previously defined single-particle density matrix we are able to theoretically
predict the expected absorption images based on the initial quantum phase. The most
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Figure 1.14: Density distribution of (a) checkerboard and (b) a striped supersolid phase
appearing through TOF measurements. Similar to the density distribution of the SF, we
obtain peaks given by the lattice vector of the reciprocal lattice due to the coherent nature
of the atoms. Furthermore, additional peaks emerge due to the phase being inhomoge-
neous. The peaks not only distinct the SF from the supersolid, but their distributions also
characterizes the superlattice unit cell of the crystalline phase, since the distribution is
defined through the reciprocal lattice vector G of the superlattice.

simple case, namely the MI, yields

nMI(r, t ≫ tc) =
(m

Åht

)3
|w0(k, t)|2 ∑

ij

eik(Ri−Rj)nδij

=
(m

Åht

)3
|w0(k, t)|2 ∑

i

n

=
(m

Åht

)3
|w0(k, t)|2nN

(1.106)

which is merely a rescaled Wannier function. This is not surprising, since the atoms are not
phase coherent and their wave packets therefore just expand with time. The shape of the
distribution broadens as time increases, which further validates the diffusive expansion
of the atoms (see Fig. 1.13 (a)). The quasi momentum-distribution corresponding to this
absorption image is flat, i.e. n(k, t) = N, which can be traced back to the atomic limit
considered for the MI: The atoms due to the large on-site interaction are highly localized,
which implies due to the uncertainty relation a strong momentum-space delocalization.
Furthermore, the on-site interaction induces the population of higher momentum modes
|k| > 0.
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On the other hand, the condensate wave function given by Eq. (1.90) leads to

nSF(r, t ≫ tc) =
(m

Åht

)3
|w0(k, t)|2 ∑

ij

eik(Ri−Rj)n

=
(m

Åht

)3
|w0(k, t)|2n ∑

ij

eik(Ri−Rj)

=
(m

Åht

)3
|w0(k, t)|2nδ(k = K)

(1.107)

The density distribution is characterized by peaks with an enveloping Wannier function
(see Fig. 1.13 (b)). The constructive interference at k not only reflects the phase coherent
overlap of the atoms, but also hints at the fact that all atoms populate the energetically
lowest single-particle mode, i.e. form a BEC, which is possible due to their bosonic nature.
The other peaks arise from the periodicity of the reciprocal lattice.
Although DW phases exhibit an unique crystalline order, their TOF absorption image
does not differ from the one obtained for MI phases, i.e. nMI(r, t ≫ tc) = nDW(r, t ≫ tc) ,
since the evolution of both is given by a diffusive expansion and thus it is not possible to
distinguish these phases within TOF. While for systems with no spontaneously broken
lattice translational symmetry, such as the plain Bose-Hubbard model, it is safe to associate
these absorption images to MI states. The distinction only becomes relevant in the addition
of long-range interacting processes.
Finally for supersolid phases, the structure of the real-space distribution is given by

nSS(r, t ≫ tc) ∝
(m

Åht

)3
|w0(k, t)|2(δ(k = K) + λδ(k = G)) (1.108)

where G is the reciprocal lattice vector of the superlattice unit cell, which describes the
crystalline order of the supersolid phase. The density distribution is similar to the one of a
SF, although with peaks at k = G with modified amplitude λ. These additional features
emphasize the spatially dependent phase coherence and are unique to each spatial modu-
lation of the condensate wave function (see Fig. 1.14).

Through TOF experiments, it was possible to experimentally investigate the phase diagram
of the Bose-Hubbard model and determine the Mott-SF transition [98] (see Fig. 1.15). TOF
measurements are to this day an important experimental tool to monitor phase transitions
and detect physical phenomena. Unfortunately the inability to distinguish between MI
and DW phases renders this measurement method insufficient for the determination of
phase diagrams of systems, which can potentially break lattice translational symmetry.
Furthermore the absorption imaging does not allow for high real-space resolution and
thus only relies on the interference pattern. Finally, it is worth mentioning that in the time-
evolution considered for the theoretical derivation of the real-space density distributions
we disregarded possible interactions between the atoms during the expansion. While
several studies have found that, for experimentally relevant on-site interaction strengths,
the incorporation of interaction in the time evolution does not affect the real-space distri-
bution too importantly, it is possible that at the scattering resonance higher Bloch bands
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Figure 1.15: TOF measurements obtained for a bosonic quantum gas trapped in a lattice
with depth a V0/ER = 0, b V0/ER = 3 c V0/ER = 7 d V0/ER = 10 e V0/ER = 13 f

V0/ER = 14 g V0/ER = 16 and h V0/ER = 20. The interference pattern obtained for
shallow lattices is obtained due to the interference of the coherent atoms of a SF. For
deep enough lattices a MI phase arises, which can be identified through the image of an
expanding atomic cloud of incoherent bosons. Reprinted figure with permission from [98].
© 2002 by Springer Nature.

become populated and the single-band approximation does not hold anymore, leading to
a reduced visibility of the interference pattern [99].

1.7.2 Quantum gas microscope

Although various experimental techniques have been able to generate single-site resolved
images for systems with large periodicity, achieving resolutions necessary for the single-
site imaging in optical lattice experiment with typical lattice spacing proved to be a
challenging task. While the absorption imaging allowed for a resolution of several mi-
crons in two-dimensional systems [100, 101], the fluorescence images were realized in
three-dimensional lattices with similar spacing [102]. The peak resolution of fluorescence
techniques has been reached in a one-dimensional lattice with a spacing of 433 nm, al-
though the image was only obtained thanks to a dilute filling of the system.
Single-site resolved images became accessible through a recently developed experimental
apparatus called quantum gas microscope, which combines fluorescence imaging with
a hemispherical lens. Within the quantum gas microscope the atoms are loaded in two-
dimensional optical lattices by creation of a three-dimensional lattice and ramp up of the
lattice depth in one dimension, hereby disconnecting two-dimensional layers. The atoms
are then illuminated from the side and the scattered fluorescence photons are detected
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Figure 1.16: Single-site resolved images of atoms trapped in an optical lattice with external
harmonic confinement obtained through a quantum gas microscope. While a BEC exhibits
a seemingly random distribution within the external trap, the atoms of MI phases prefer
to localize in the center of the harmonic potential after preparation. Increasing the number
of atoms leads to more occupied sites. Beyond a certain filling the sites in the center start
to be doubly occupied, which leads to empty circles in the single-site fluorescence images
due to two-body loss processes. Further increasing hints at sites occupied with three
atoms at the center, while two Mott shells with single and double filling appear. Reprinted
figure with permission from [105]. © 2010 by Springer Nature.

by objective lenses [94, 95]. Through a deconvolution algorithm the original density dis-
tribution of the atom configuration is reconstructed with very high fidelity [103]. The
resolution obtained is about 600 nm, which matches the lattice spacings relevant in optical
lattice experiments and thus allow for single-site resolved imaging. Note that although
the first quantum gas microscopes were conceived for probing two-dimensional layers,
an extension of the microscope through which fluorescence imaging of single atoms in
three-dimensional optical lattices has been established [104].
The fluorescence imaging however leads to dissipative, light-assisted collisions. The
fluorescence light induces photoassociation, which leads to the pairwise loss of atoms.
Since the time scale of the dissipation is far shorter than the necessary illumination time
of the microscope, the system is left with zero or one atom per site. The quantum gas
microscope thus not only allows for single-site resolution, but also possesses single-atom
sensitivity.
With the quantum gas microscope single-site-resolved imaging of MI phases have been
recently accessible. While the insulating phases with filling n can be determined from a sin-
gle fluorescence image, condensed phases are reconstructed through many images, since

46



the corresponding occupation of a site follows the Poisson distribution. Then through
number statistics using a Poisson distribution modified according to the single-atom
sensitivity, it is possible to determine their filling.
Since all discussed quantum phases can be determined through the quantum gas micro-
scope, it is even possible to image the wedding cake density distribution [105,106] (see Fig.
1.16). In the atomic limit, the image exhibits a ring-shaped shell structure of MI phases
with decreasing filling up to the edge of the system. Due to the single-atom sensitivity, the
MI phase with odd filling result in a bright shell while even filling is detected through an
empty shell. Thus we are able to visualize the wedding cake through rings with filling
alternating between zero and one. Beyond the atomic limit, the image additional displays
non-integer filling due to the emerging SF phases.
Since then the quantum gas microscope was used for many purposes, such monitoring dy-
namics and losses [107], investigation of quantum of spin system [108] and study blocking
mechanism in many-body systems [109], and has thus proven to be a powerful apparatus.
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Chapter 2

Rydberg atoms

The goal of this chapter is to discuss all properties of Rydberg states, atoms and ensembles
relevant in the scope of this thesis. We start in Section 2.2 with the important properties
of the Rydberg state. We establish the valence electron wave function and examine the
energy levels of an excited atom. We then discuss the dipole transitions between different
Rydberg state and the hereby obtained selection rules. Additionally we examine the main
mechanisms behind the finite lifetime of Rydberg states, namely the spontaneous emission
and the blackbody radiation. In Section 2.3 we analyze the different types of interactions
between Rydberg atoms. We complete the description through the full potential landscape
of pair states composed of Rydberg atoms and elaborate on molecular bound state arising
due to avoided crossings within these potentials. In Section 2.4 we explain the coherent
coupling of atoms in their electronic ground state to Rydberg states and the idea behind
the Rydberg-dressing. We examine the phases of few Rydberg-dressed atoms to further
understand the effect of the interatomic interaction and conclude with the characteristic
physical phenomena observed in Rydberg ensembles, namely the emergence of crystalline
structures and the avalanche dephasing mechanism.

2.1 Introduction

Rydberg atoms are to be found in many different fields of research thanks to their ex-
aggerated properties and unique applicability. For example in the context of quantum
simulation, ensembles of Rydberg atoms offer a platform for the investigation of solid
state physics [110,111] and spin lattices [112,113], since the energy scales of Rydberg states
are orders on magnitude larger than the typical energies of such systems, beneficial for
experimentally probing diverse many-body phenomena. Furthermore quantum gates for
the sake of quantum computation have already been realized with Rydberg atoms trapped
in optical lattices and optical tweezers [114±117]. Despite already possessing many ap-
plicabilities, Rydberg ensembles are not yet fully understood, as collective phenomena
and universal scaling behavior are still in the focus of current research. The properties
of Rydberg states and a single atom coupled to those such states however have been
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thoroughly studied for many years and provide a perfect starting point on the way to
understand many-body physics involving Rydberg atoms.

2.2 Properties of Rydberg atoms

Rydberg states are high-lying electronic states energetically close to the ionization thresh-
old. The excitation of an atom to such states greatly increases the distance of an electron
to the nuclei and thus drastically enhances its properties. The potential of the nuclei
surrounded by the core electrons resembles at great distances the potential of an hydrogen
atom, which is why they are commonly referred to as hydrogen-like. The large distance of
the electron induces a high dipole moment, through which the atoms gain high sensitivity
and exaggerated response to external electromagnetic fields. Although the properties
of the different Rydberg states are not directly tunable the desired magnitude of these
properties can be chosen via selection of the chemical element and energy level. Further
tunability exists in the context of coherent coupling between the electronic ground state
and a Rydberg state of an atom.
In the following section, we discuss the elementary properties of Rydberg levels such as
the wave function, the orbital radius of the distant electron and the associated lifetimes.

2.2.1 Valence electron wave function and energy levels

Due to its increased size and hydrogen-like character, it is possible to derive a few quanti-
ties either quantum mechanically or within a classical picture. Although the latter provides
qualitatively good values through simpler calculations, it is important to understand the
quantum mechanical nature of the Rydberg atom. Starting point is the wave function of the
Rydberg atom valence electron, which can be determined through the time-independent
SchrÈodinger equation

− Åh2∇2

2m
Ψ(r) + V(r)Ψ(r) = EΨ(r), (2.1)

where E is the energy and V(r) is the Coulomb potential felt by the valence electron in the
orbit far from the nucleus

V(r) = − 1

4πε0

e2

r
. (2.2)

Due to the radial symmetry of the atom, the wave function in spherical coordinates can be
seperated as

Ψn,ℓ,m(r) = Rn,ℓ(r)Y
m
ℓ
(θ, ϕ) (2.3)

with the position r = (r, θ, ϕ) in spherical coordinates, the radial wave function Rn,ℓ(r)
and the spherical harmonics Ym

ℓ
(θ, ϕ), which are the solutions of the angular SchrÈodinger

equation. Here we introduce quantum numbers with which we can define the individual
Rydberg states, namely the principal quantum number n, the orbital quantum number ℓ
and the magnetic quantum number m. The orbital quantum number ℓ = 0, 1, 2, ... defines
the S, P, D, ...-orbitals. The last two quantum numbers appear in the SchrÈodinger equation
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(a) (b)

(c)

Figure 2.1: (a) Radial distribution ⟨rR(r)⟩2 given by the radial wave function Rn,ℓ(r) for
various states with different principal quantum number n and orbital quantum number
ℓ. The overall shape of the radial wave function does not seem to be dependent on the
orbital quantum number. (b) The characteristic radius of the electron orbital determined
through the radial wave function (solid line) and the Bohr model (dashed lines), which
grows quadratic with increasing principal quantum number. Both lines are in excellent
agreement despite the difference in their nature. (c) Probability distribution of the electron
given by Ψ2(x, y, z = 0) for various principal quantum numbers and orbital quantum
numbers. Additionally to the larger sizes of the atom due to the increasing principal
quantum number, we find characteristic shapes of the probability distribution dependent
on the orbital quantum number. Although not mentioned, these shapes also depend on
the magnetic quantum number m.

through the kinetic term in spherical coordinates and each set of these numbers represents
a solution of the equation.
The radial SchrÈodinger equation

− Åh2

2µ

[

1

r2

∂

∂r

(

r2 ∂Rn,ℓ(r)

∂r

)

− ℓ(ℓ+ 1)Rn,ℓ(r)

r2

]

+ V(r)Rn,ℓ(r) = EnRn,ℓ(r) (2.4)

contains the term ℓ(ℓ+ 1)/r2, which reflects the kinetic energy of the different angular
degrees of freedom. As an effective potential it wards off electrons with non-zero angular
momentum ℓ ̸= 0 from collapsing into the nuclei [118]. The solutions of the radial
SchrÈodinger equation are thus also dependent on the orbital quantum number and the
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radial wave functions are given by

Rn,ℓ(r) = −
√

(

2Z

naµ

)3 (n − ℓ− 1)!

2n(n + ℓ)!
e
−Zr
naµ

(

2Zr

naµ

)ℓ

L
(2ℓ+1)
n−ℓ−1

(

2Zr

naµ

)

(2.5)

with the generalized Laguerre polynomials L
(2ℓ+1)
n−ℓ−1. The corresponding energies are

En = −
(

Z2µe4

8ϵ2
0h2

)

1

n2
= −Rhc

n2
(2.6)

where we define the Rydberg constant R = Z2µe4

8ϵ2
0h3c

. The corresponding unit of energy is

1Ry ≡ Rhc ≈ 13.6 eV, which is the characteristic value associated with the binding
energy of an electron to the nuclei in a hydrogen atom. The binding energies En become
smaller as the principal quantum number increases and become vanishing for very large
quantum numbers, which makes atoms excited to high Rydberg states highly susceptible to
ionization. Despite the strong similarity between the Coulomb potentials of the hydrogen
atom and the Rydberg atom, it is important to add a correction to the binding energy to
take the shielding effect of the core electrons into account through

En,ℓ = − Rhc

(n − δn,ℓ)2
=

Rhc

(n∗)2
. (2.7)

Here we introduced the effective principal quantum number, which is simply a modification
of the principal quantum number by the quantum defect δn,ℓ [119, 120] (see Fig. 2.2). Since
the binding energy decreases with increasing effective principal quantum number, the
density of Rydberg states increases close to the ionization boundary and the transition
frequency between the Rydberg states of principal quantum number n and n ± 1 decreases
as

ωnℓ,n′ℓ′ ∝
1

(n∗ ± 1)2
− 1

(n∗)2
∝

1

(n∗)3
(2.8)

The distance of the electron to the nuclei can be obtained through the radial wave function
Rn,ℓ(r). Calculation of the radial probability density r2Rn,ℓ(r) yields a wide probability
distribution, which maximizes at the outer edge and becomes wider with growing princi-
pal quantum numbers. The dependence of the average distance on the principal quantum
number can be determined through computation of the average of the radial probability

distribution and gives
√

⟨r2R2
n,ℓ(r)⟩ ∝ n2. This result can be understood within the Bohr

model, in which the electron orbitals are defined by the equilibrium of forces [122]. For an
electron on a circular orbit with radius r, the attractive Coulomb force of the nuclei and
the centrifugal force are equal

1

4πε0

e2

r2
=

mv2

r
(2.9)

The orbital momentum of the electrons is quantized, i.e. mvr = nÅh, and thus the solutions
of the equations are given through

rn = a0n2 (2.10)
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Figure 2.2: Quantum defects δnl for various principal quantum numbers n and orbital
quantum number ℓ. As the principal quantum number increases the quantum defects
saturate towards constant values. Calculations for these results were performed with the
help of the package Alkali Rydberg Calculator [121].

with the Bohr radius a0 = 4πε0 Åh2

e2me
, which is the distance between the nuclei and electron of

a hydrogen atom in its ground state. The obtained relation matches the one obtained with

the radial probability distribution. Furthermore, calculation of r and
√

⟨r2R2
n,ℓ(r)⟩ yield

strikingly equal results despite being derived in completely different pictures, which can
be attributed to the strong resemblance to the hydrogen atom and the typical large length
scales associated to Rydberg atoms (see Fig. 2.1).

2.2.2 Dipole transitions

Optical transitions between two Rydberg states can be induced through an external
electromagnetic field given by E(t) = E0e−i(ωt−kr) êr, where k = 2π/λ. Given a frequency
ω close to the transition frequency between two Rydberg states, the electromagnetic field
induces an oscillating drive between these two states. The corresponding time-dependent
Hamiltonian Ĥ = d̂E(t), where d = er is the dipole operator, can be simplified through
the dipole approximation, where we assume that the wavelength k is much larger then the
size of the atom, i.e. kr ≪ 1 [118, 123]. The transition rate between two states Ψn,ℓ,m(r)
and Ψn′,ℓ′,m′(r), the rate with which a photon of energy Åhω is absorbed by the atom and
hereby transitions from one state to another, is given by

Wn′ℓ′m′
nℓm =

πe2

2Åh
|E0|2

∣

∣

∣

∫

d3rΨ∗
n′,ℓ′,m′(r)rΨn,ℓ,m(r)

∣

∣

∣

2
≡ πe2

2Åh
|E0|2|⟨n′

ℓ
′m′|r|nℓm⟩|2, (2.11)

where we adopt the ket-notation of the wave function |nℓm⟩. The first integral is known as
the transition moment integral and its braket-version is the so-called dipole matrix element,
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Chapter 2: Rydberg atoms

Figure 2.3: Energy levels of the different orbitals ℓ for various principal quantum numbers
n for Rubidium 87Rb. The higher lying levels are densely distributed and their binding
energy are vanishingly small, which renders highly excited atoms susceptible to ioniza-
tion. Calculations for these results were performed with the help of the package Alkali

Rydberg Calculator [121].

which is written as a product

⟨n′
ℓ
′m′|r|nℓm⟩ = Rn′ℓ′

n′ℓ′Iang (2.12)

with the radial integral

Rn′ℓ′
n′ℓ′ =

∫ ∞

0
Rn′,ℓ′(r)rRn,ℓ(r)r

2dr (2.13)

and the angular integral

Iang =
∫ 2π

0

∫ π

0
(Ym′

ℓ′ (θ, ϕ))∗r̂Ym
ℓ
(θ, ϕ)sin(θ)dθdϕ (2.14)

Both integrals offer a valuable information about the dipole matrix element: Due to
the previously determined proportionality of the radial wave function and the indepen-
dent angular wave function, we obtain an overall scaling of the dipole matrix element
⟨n′ℓ′m′|r|nℓm⟩ ∝ (n∗)2. This is intuitive, since the orbital radius of the electron assumes
the same scaling and the dipole moment is defined through the distance between two
charges. Furthermore, the radial integral is always finite, albeit small if the two radial
wave functions of different quantum numbers have an inconsiderable overlap, e.g. for
very different principal quantum numbers n′ ≫ n. On the other hand, the angular integral
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is only finite for certain pair of quantum numbers, which follow strict criteria. Unless
these criteria are met the angular integral vanishes and the transition rate becomes zero,
hereby making the transition forbidden.
The criteria for a finite angular integral are known as the selection rules. They describe
conditions for the allowed transitions, which can be derived by computation of the angular
integral.

Selection rules

We restrict the discussion to the orbital quantum number ℓ and the magnetic quantum
number m, although selection rules for other quantum numbers such as the total angular
momentum quantum number or the spin quantum number exist [118, 124].
The orbital quantum number ℓ has to change upon transition. Since the Coulomb potential
used to determine the wave function does not change upon rotation or reflection, the
wave function can be chosen to have well-defined parities and thus invariant under
parity transformation. By application of the parity operator on the angular wave function,
more specifically the dipole operator, one finds that the invariance is only guaranteed for
∆ℓ = ℓ− ℓ′ = ±1 [118, 124].
For the magnetic quantum number m the selection rule depends on the polarization of the
electromagnetic field. Calculation of the angular integral with linear polarized light leads
to the constraint ∆m = m − m′ = 0, while for circular polarized light we obtain the criteria
∆m = ±1, where the sign depends on the kind of circular polarized light. For unpolarized
light none of these constraints apply.
Although these selection rules inhibit certain experimentally valuable coupling schemes,
the existence of forbidden and allowed transitions is a vital part of many cooling methods
as these can be exploited to optically pump an atom in desired hyperfine states (see Section
1.2).

2.2.3 Lifetimes

Another characteristic property of Rydberg atoms is their lifetime, which is determined
through spontaneous decay and blackbody-induced transitions. The latter is surprising,
since we do not expect Rydberg states to be thermally populated in a gas of atoms in their
electronic ground states and thus assume thermal effects to be negligible. But at high
principal quantum numbers the transition frequency between energetically neighboring
Rydberg states becomes marginal such that transitions are enabled, i.e. Åhωnℓ,n′ℓ′ < kBT
even at room temperature. Furthermore the dipole matrix element is particularly large for
neighboring Rydberg states due to the large overlap between the radial wave functions.
Thus we define the effective lifetime of a Rydberg state through the rate of the spontaneous
emission Γ0 = 1/τ0 and the blackbody-induced transition rate ΓBBR = τBBR, which we
write as

1

τ
= Γ0 + ΓBBR =

1

τ0
+

1

τBBR
(2.15)
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In order to understand the overall scaling of the lifetime with principal quantum number
we investigate both the decay rates associated with spontaneous emission and the black-
body radiation by themselves, and finally discuss the regimes in which either of these
processes dominates.

Spontaneous emission

An important quantity appearing in the context of photo-absorption and -emission are the
Einstein A coefficients An′ℓ′

nℓ , which describe the transition rates between the states |nℓ⟩ and
|n′ℓ′⟩ due to spontaneous emission [125]. The coefficients are related to the dipole matrix
elements and read

An′ℓ′
nℓ =

4e2ω3
nℓn′ℓ′

3Åhc3

ℓmax

2ℓ+ 1
|
〈

n′
ℓ
′m

∣

∣ r̂ |nℓm⟩ |2 (2.16)

with ℓmax being the larger of the two involved quantum numbers ℓ and ℓ′. Note, that
we drop the quantum number m in the description of the coefficient since we expect
spontaneous decay to be independent of m. The spontaneous decay rate of a state |nℓ⟩ is
then simply given by the sum of all coefficients with lower lying |n′ℓ′⟩ states

1

τ0
= ∑

En,ℓ>En′ ,ℓ′

An′ℓ′
nℓ . (2.17)

It is usual to introduce the average oscillator strength Åf n′ℓ′
nℓ at this point as

Åf n′ℓ′
nℓ =

2

3
ωnℓn′ℓ′

ℓmax

2ℓ+ 1
|
〈

n′
ℓ
′m

∣

∣ r̂ |nℓm⟩ |2. (2.18)

The average oscillator strengths are dimensionless and follow the sum rule ∑n′ℓ′
Åf n′ℓ′
nℓ = 1

for ℓ′ ∈ {ℓ± 1}. It is therefore possible to get quantitatively good results on the distribution
of transitions rates through the calculation of just a few oscillator strengths.
We thus rewrite the Einstein A coefficient as

An′ℓ′
nℓ =

2e2ω2
nℓn′ℓ′

Åhc3
Åf n′ℓ′
nℓ (2.19)

The overall scaling of the coefficient with the principal quantum number depends on
whether the transition occurs between energetically close (n ≈ n′) or distant (n ≫ n′)
Rydberg levels. In the first case, we can just use the previously obtained scalings of the
transition frequency ∝ (n∗)−3 and the dipole matrix element ∝ (n∗)2 to obtain an overall
scaling of

τn≫n′
0 ∝ (n∗)5 (2.20)

However, these are not the dominant transitions, since the transition rate increases with
increasing transition frequency. Thus we consider the second case, where the spontaneous
emission leads to a transition from a high-lying to a low-lying state (see Fig. 2.4 (a)).
The previously obtained scaling of ωnℓn′ℓ′ is not valid anymore and its value approaches
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the ionization energy. Furthermore the dipole matrix element for Rydberg states with
differing wave function yields an ∝ (n∗)−3 scaling, which results in

τn≈n′
0 ∝ (n∗)3 (2.21)

As the second case gives a lower limit, it is commonly used as the scaling of the lifetime
τ0. Analytic calculation of the spontaneous decay rates only exist for hydrogen, while for
other atoms, such as alkali-atoms, various numerical approaches have been established
[126, 127].

Blackbody radiation

For the definition of the blackbody-induced transition rates we first introduce the Planck
distribution

Ån(ω) = (exp(ω/kBT)− 1)−1, (2.22)

which describe the average photon occupation number Ån(ω) of each mode ω. The stimu-
lated absorption and emission rate is related to the Einstein B coefficient

Bn′ℓ′
nℓ = Ån(ωnℓ,n′ℓ′)An′ℓ′

nℓ , (2.23)

which is defined as the A coefficient rescaled with the photonic distribution. The blackbody-
induced transition rate thus reads

1

τBBR
= ∑

n′ℓ′
Bn′ℓ′

nℓ

=
2

c3 ∑
n′ℓ′

ωnℓ,n′ℓ′
Åf n′ℓ′
nℓ

ωnℓ,n′ℓ′

exp(ωnℓ,n′ℓ′/kBT)− 1)

(2.24)

Note, that we are not limited to lower lying Rydberg levels and transitions to higher
Rydberg levels are also allowed (see Fig. 2.4 (a)). Since these transitions are only relevant
between neighboring, higher lying levels we solely consider the case n ≈ n′. We can
furthermore use the above-mentioned sum rule of the average oscillator strengths, which
yields

∑
n′ℓ′

ωnℓ,n′ℓ′
Åf n′ℓ′
nℓ =

2

3(n∗)2
. (2.25)

We obtain an analytic expression of the blackbody transition rate

1

τBBR
=

4

3(n∗)5c3

1

exp(1/(n∗)3kBT)− 1
, (2.26)

which is in good agreement with experimentally observed transition rates [128, 129]. In
the case of large n∗ ≫ 1 we approximate the the expression and obtain the simplified
proportionality

1

τBBR
≈ 4kBT

3(n∗)2c3
∝ (n∗)−2. (2.27)

57



Chapter 2: Rydberg atoms

Figure 2.4: (a) Transition rates Γm∗
n∗ of a Rubidium 87Rb in the |nP3/2⟩ state to |mS⟩, |mP⟩

and |mD⟩ versus the effective principal quantum number m∗ of the target state for different
n∗. The radiative through spontaneous emission governs the transitions to lower lying
states, while the blackbody radiation induces transitions to states with effective principal
quantum number close to the original one. (b) Lifetimes given by the radiative decay
τ0 and by the blackbody radiation τBBR. The overall lifetime of an atom increases with
the effective principal quantum number. Furthermore, radiative decay dominates the
lifetimes for lower quantum numbers, while blackbody radiation governs the higher
quantum number regime. Calculations for these results were performed with the help of
the package Alkali Rydberg Calculator [121].

This approximation is valid for n∗ > 30, but overestimates the transition rates below this
value. Numerical methods also exist to determine the rates of the blackbody-induced
transition, although these methods require high computational effort [130, 131].

Due to the two different scalings it is possible to define two regimes for n∗ in which
either the spontaneous decay or the blackbody-induced transitions dominate the effective
lifetime (see Fig. 2.4 (b)), although the threshold value n∗

c depends on the numerous
intrinsic properties of the atom and the temperature T. For smaller effective principal
quantum numbers the spontaneous emission governs the overall lifetime of the Rydberg
atom, i.e. τ ∝ (n∗)3 for n∗ ≪ n∗

c , while large effective principal quantum number yield
large blackbody induced transition rates, i.e. τ ∝ (n∗)2 for n∗ ≫ n∗

c . Independently of the
exact scaling, we find an increasing effective lifetime, which implies that Rydberg atoms
are generally long-lived. Experimentally determined power laws of both types of lifetimes
are in good agreement with the derived relations [132±134].
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2.3 Interactions between Rydberg atoms

The ability of two highly-excited atoms to interact on large spatial scales arises through
their vastly increased size and thus induced sensitivity to external electromagnetic fields.
For two independent atoms, whose energy eigenstates are defined through the Hamilto-
nian Ĥ0, the long-range interaction acts as a perturbation in the complete Hamiltonian

Ĥ = Ĥ0 + V̂ (2.28)

The interaction Hamiltonian V̂ modifies the energy levels E0 of the unperturbed atoms
and the shift can be determined through second-order perturbation theory

E = E0 + ⟨i, j| V̂ |i, j⟩+ ∑
k ̸=i
l ̸=j

| ⟨i, j| V̂ |k, l⟩ |2
Ei + Ej − Ek − El

(2.29)

for two atoms in the Rydberg states |i⟩ and |j⟩. Note, that we now simplify the ket-notation
of the wave function and define for each state i a unique set of quantum numbers, i.e.
|i⟩ ≡ |nℓm⟩. Here |i, j⟩ denotes two atoms in states i and j.
In order to compute the induced shifts, it is important to specify the interaction. In a
slightly simplified picture, both atoms can described by two point charges +q and −q,
representing the nuclei and the outer electron respectively, separated by distance r1 (r2)
for the first (second) atom. While the Hamiltonian Ĥ0 takes into account the interaction
between nuclei and electron of each atom individually, the interaction V̂ describes the
Coulomb interaction between all nuclei and electrons of both atoms

V̂ =
e2

4πϵ0

( 1

|R| +
1

|R − r̂1 + r̂2|
− 1

|R − r̂1|
− 1

|R + r̂2|
)

(2.30)

Within the dipole approximation |R| ≫ |r1|, |r2|, it is possible to only consider the dipole
moment of the field, which reduces the Coulomb interaction to the dipole-dipole contribu-
tions as

V̂dip =
1

4πϵ0R3

(

d̂1d̂2 − 3(d̂1 · er)(d̂2 · er)
)

, (2.31)

where d̂1 (d̂2) is the dipole operator of the first (second) atom.

2.3.1 Dipole-dipole interaction

The most general form of the dipole-dipole interaction is given by

⟨i, j| V̂dip |k, l⟩ = 1

4πϵ0R3

(

dikdjl − 3(dik · er)(djl · er)
)

(2.32)

with the dipole moment dmn = ⟨m| d̂1(2) |n⟩ [135±138]. As we know from the previously
discussed dipole matrix elements, only certain transitions are allowed by the selection
rules. In order to describe the interaction between two atoms in state i and j we require
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that the atoms after the interaction are in the same state, i.e. i = k and j = l. Thus
the dipole-dipole interaction is given by ⟨i(j)| r̂ |i(j)⟩ ≡ ⟨nℓm| r̂ |nℓm⟩. However this is
a forbidden transition, which implies a vanishing dipole moment dii = 0 and thus no
dipole-dipole interaction between two atoms in the same state.
The dipole-dipole interaction is finite, if the interaction induces a transition in both atoms,
i.e. i ̸= k and j ̸= l. In the presence of an external electric field, the special case i = l and
k = j yields

⟨i, j| V̂dip |j, i⟩ = |d̂|2
4πϵ0R3

(1 − 3cos2(θ)). (2.33)

Due to the electromagnetic field both atom align and thus d = dij = dji holds. Here we

used d̂ · er = cos(θ) with cos(θ) being the direction of the field. We see from the interaction
in this form that the dipole-dipole interaction leads to an exchange of the Rydberg levels,
which corresponds to energy transfer from one atom to another. This process is referred to
as dipolar exchange [139±143].
With the known proportionality of the dipole moment d ∝ (n∗)2, we obtain a scaling law
of the dipole-dipole interaction term

Vdip ≡ C3

R3
∝

(n∗)4

R3
. (2.34)

In the end, we find that the dipole-dipole interaction term is only finite in the case of
energy transfer and thus the interaction between two atoms in the same state is only given
in second-order by the perturbation theory.

2.3.2 Van-der-Waals interaction

The second-order shift of the energy eigenstates is given by

∑
j ̸=i
k ̸=i

| ⟨i, j| V̂ |k, l⟩ |2
Åh(ωik + ωjl)

, (2.35)

with the transition frequencies ωmn = (Em − En)/Åh. The interaction as a second-order
process can be understood in the following way: Due to potential coupling obtained
through finite dipole matrix elements, the overall energy shift of the unperturbed state i
arises through the instantaneous transition from said state j or k and back. The atom stays
in the same state i, but the virtual transition leads to an energy shift, which depend on the
energy difference between i and j or k and the coupling strength. This transition process
can also be formulated with the corresponding Hamiltonian

ĤvdW =

(

0 ⟨i, j| V̂dip |k, l⟩
⟨k, l| V̂dip |i, j⟩ Åh(ωik + ωjl).

)

(2.36)

Assuming |Åhωmn| ≫ |Vdip|, we determine the lower eigenenergy and hereby obtain the
interaction strength between two atoms in state i and j separated by distance R

VvdW ≈ − |d|4
32π2ϵ2Åh(ωik + ωjl)R6

. (2.37)
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The second-order interaction is known as the van-der-Waals interaction and its scaling with
the effective principal quantum number

VvdW ≡ C6

R6
∝

(n∗)11

R6
(2.38)

hints at the magnitude of the interaction strength. Although the van-der-Waals interaction
decays rapidly with increasing distance between two atoms, the C6-coefficient is generally
very large thanks to its scaling even for moderate values of the effective principal quantum
number. Furthermore, its sign indicates whether the van-der-Waals interaction is attractive
or repulsive. For an atom in its ground state the transition frequencies are all positive, i.e.
ωmn > 0, which yields the characteristic attractive van-der-Waals interaction. However
for Rydberg atoms the transition frequencies can be positive or negative and their sum
weighted by the coupling strength given by the dipole-dipole interaction leads to either
repulsive or attractive interactions.
Note that while the long-range interaction is only given by VvdW, both the first- and the
second-order term contribute to the dipolar-exchange. An useful quantity to define is
the FÈorster defect ∆ = ωik + ωjl , which is simply the sum of both involved transition
frequencies in the exchange. For large defects |∆| ≫ |Vdip|, the energy eigenstates of the
system are predominantly given by the van-der-Waals interaction, however a vanishing
defect |∆| ≪ |Vdip| enhances the dipolar-exchange. The case |∆| → 0 is known as the
FÈorster resonance and implies that the transition frequencies ωik = −ωjl are equal in
magnitude, but opposite in sign. The boundary between the dipole-dipole and van-der-
Waals regime is defined by the crossover distance

Rc =
C6

(Åh∆)2
(2.39)

At the FÈorster resonance, the improved dipolar-exchange is also referred to as FÈorster
Resonance Energy Transfer [citation missing, more explanations required].

Isotropic and anisotropic interaction

Although important to understand the characteristic features of the Rydberg atom, the
principal quantum number alone does not define all relevant properties. The orbital
quantum number ℓ appears in the angular wave function and defines its spatial properties.
Since the dipole matrix element also depends on ℓ, we have to differentiate the van-der-
Waals interaction based on different values of the orbital quantum number. The simplest
case ℓ = 0 defines the S-orbital and corresponds to an isotropic wave function. The dipole-
dipole interaction between two Rydberg atoms is thereby also isotropic. The associated
van-der-Waals interaction can be written as

VvdW =
CS

6

R6
, (2.40)

where the isotropic CS
6 -coefficient is fixed by choice of Rydberg level and chemical element

and does not depend on the direction. On the other hand, ℓ = 1 represents the P-orbital
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Figure 2.5: C6-coefficient between pairs of atoms both in the state |nℓ, nℓ⟩ with |nℓ⟩ ∈
{|35S1/2⟩ , |54P3/2⟩ , |73D3/2⟩}. Contrary to intuition, the interaction geometry is a prop-
erty of a pair state rather than each atom individually. For two atoms in the S-orbital
(ℓ = 0) the inter-atomic long-range resulting interaction is isotropic. Going to higher
orbitals such as P- or D-orbitals results in anisotropic interactions, which is sensitive to the
orientation of both atoms. The strength is predominantly given by the principal quantum
numbers of both atoms. Calculations for these results were performed with the help of the
package Alkali Rydberg Calculator [121].

and the shape of the wave function is strongly anisotropic [144, 145]. The interaction
between two atoms excited to Rydberg P-states then strongly depends on the orientation
of both atoms

VvdW =
CP

6 (ϑ, ϑ′, φ, φ′)
R6

(2.41)

with the angles ϑ (ϑ′) and φ (φ′) of the first (second) atom. The complexity of the interaction
can be reduced by introducing an external magnetic field B = B · êB, which causes the
atoms to align. The van-der-Waals interaction is then simplified to

VvdW =
CP

6 (ϑ)

R6
. (2.42)

The exact shape of the CP
6 (ϑ)-coefficient can be obtained through calculation of the angular

integrals of the dipole matrix element. Based on the selection rules a state |nP⟩ is allowed
to transition to the states |n′S⟩ and |n′D⟩. The dipole matrix element is larger for |n′S⟩ and
thus presents the main channel of the virtual transition in the van-der-Waals interaction.
The resulting angular dependence results in

VvdW ∝
(n∗)11

R6
sin4(ϑ), (2.43)

where ϑ = R · êB denotes the angle between the two Rydberg P-state excited atoms
separated by R [144, 145] (see Fig. 2.6). The interaction seems purely anisotropic and
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Figure 2.6: Visualization of the angle ϑ between two atoms separated by the distance
vector R aligned in a magnetic field B simplified to the xy-plane.

appears to be vanishing for ϑ = 0, however a small residual isotropic interaction appears
due to finite coupling to a |n′D⟩ state, although its magnitude is much smaller than its
anisotropic counterpart.

The discussed interactions are the basis of the energy levels between two Rydberg atoms.
While the energy eigenstates for infinitely large distances R → ∞ is solely given by the
unperturbed energies of the individual atoms, it is now possible to determine the shift
of the energies and the modification of the eigenstates in dependence of the distance
R. Numerical computation of these energies however gives rise to a complex potential
landscape due to the avoided crossing of many different pair states |nℓ, n′ℓ′⟩ at shorter
distances.

2.3.3 Pair potential landscape

In order to determine the correct energy of a pair state |nℓ, n′ℓ′⟩, the dipole interaction has
to be treated beyond perturbation theory [147±150]. Calculation with the exact Hamilto-
nian Eq. (2.28) in the basis spanned by all possible pair states gives rise to the so-called
spaghetti curves, which arise through the overlap of strongly varying pair state energy at
short distances (see Fig. 2.7).
At far distances the pair state energy converges to the summation of both unperturbed
energies. These asymptotic pair state energies shift by decreasing the distance initially
according to the van-der-Waals interaction. At short distances however various pair state
energies grow closer and can potentially exhibit avoided crossings if the dipole transition
matrix for the set of crossing pair states is finite. Along the avoided crossing a pair state
admixes with the other involved pair state through to the dipolar exchange. In most
cases however the distance-dependent admixing of an adressed pair state with other pair
states is not problematic, as the energy of the superposition of all pair states with finite
admixture yields the characteristic van-der-Waals curve (see Fig. 2.7 (b) and (c)) and thus
the desired long-range interaction is retrieved.
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Figure 2.7: Energy of the pair states |nℓ, nℓ⟩ with |nℓ⟩ ∈ {|35S1/2⟩ , |54P3/2⟩ , |73D3/2⟩}
centered around the summed energy of two unperturbed atoms in their respective state
|nℓ⟩. All gray lines correspond to the energies of other pair states |nℓ, n′ℓ′⟩. At close
inter-atomic distances the energetic shift of all pair states lead to many crossing and
avoided crossings. For |nℓ⟩ = |35S1/2⟩ the energy shifts towards larger values as the
distance between both atoms grows closer. For |nℓ⟩ = |54P3/2⟩ a similar curve can be
found, although the pair state admixes with other pair states due to being energetically
close. For |nℓ⟩ = |73P3/2⟩ we again obtain position-dependent admixing of the pair state
with other pair states. Additionally we observe the energy going to both higher and
lower values through branching of the admixed state. We conclude that the long-range
interaction is not just given by a shift of the energy to larger values, but can rather be
defined as an out-of-resonance shift of the unperturbed pair state. Calculations for these
results were performed with the help of the package Pair Interaction [146].

On the other hand the energy of the admixed pair state does not necessarily monotonically
increase or decrease (see Fig. 2.8). In these cases the admixing gives rise to potential wells
through the avoided crossings. By addressing these wells it is possible to excite two atoms,
whose interatomic distance matches the distance of the corresponding avoided crossing,
to a molecular bound state. These molecules are referred to as macrodimers [151±156].
Ultimately the desired long-range interaction heavily depends on the Rydberg levels and
always requires a full calculation of the pair potential spectrum.
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Figure 2.8: Energy of the pair states |38P1/2, 38P3/2⟩ centered around the summed energy
of two unperturbed atoms in their respective state |38P1/2⟩ and |38P3/2⟩. We observe
avoided crossings of the pair states, which lead to effective potential wells. For a pair state,
which exhibits a large admixture of pair states giving rise to such avoided crossings, it
is possible to address these potential wells and thus create molecular states in different
vibrational modes. Calculations for these results were performed with the help of the
package Pair Interaction [146].

2.4 Coherent coupling to Rydberg states

In this section we discuss systems of atoms in an electronic ground state coherently coupled
to a Rydberg state. We study the important properties of the coupling scheme, introduce
the concept of dressing and discuss the role of the van-der-Waals interaction in systems
composed of few atoms. We furthermore elaborate previously observed phenomenon in
many-body Rydberg ensembles.

2.4.1 Coupling schemes and Rydberg-dressing

We consider the simplest coupling scheme, which involves a two-level system coherently
coupled through an external light field E(t). We denote the ground state |g⟩ and the
excited state |e⟩, whose energy difference is given by the optical transition frequency ω0.
The corresponding Hamiltonian of the two-level system in the {|g⟩ , |e⟩} basis is written as

Ĥ(t) = Ĥ0 + Ĥcpl(t) (2.44)

where Ĥ0 gives the unperturbed ground and excited state, while Ĥcpl(t) represents the
time-dependent coupling between both states. It reads

Ĥcpl(t) = −d̂E(t) (2.45)
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with the dipole operator d̂. The driving within the two-level scheme occurs through dipole
transitions

d̂ = ∑
i,j∈{e,g}

dij |i⟩ ⟨j| (2.46)

with the dipole moment dij. Given the laser frequency ωL, we rewrite the external light
field as

E = E0e−iωLt + E∗
0eiωLt (2.47)

which yields the coupling Hamiltonian

Ĥcpl(t) = −1

2
(Ωe−iωLt + Ω∗eiωLt)b̂²

e b̂g −
1

2
(Ω∗e−iωLt + ΩeiωLt)b̂²

gb̂e. (2.48)

Here we introduced the Rabi frequency Ω = 2 ⟨e| d̂E |g⟩, which quantifies the coupling
strength through the corresponding dipole matrix element of the transition between |g⟩
and |e⟩. Furthermore we use the creation and annihilation operator notation to describe
the transition (b̂g)²b̂e = |g⟩ ⟨e|. It is useful to perform a unitary transformation U(t) =

e−iĤ0t/Åh = eiϕ(n̂g + e−iω0tn̂e) into the interaction picture, where ϕ is a complex number
representing the general energy offset of the two-level system. We hereby access the
so-called rotating frame and the coupling Hamiltonian within this representation yields,

ĤRF
cpl(t) = −1

2
(Ωe−i∆t + Ω∗ei(ωL+ω0)t)b̂²

e b̂g −
1

2
(Ω∗e−i(ωL+ω0)t + Ωei∆t)b̂²

gb̂e (2.49)

where we define the detuning ∆ = ωL − ω0. We identify two oscillating terms, the
frequencies of which strongly. We expect the transition and laser frequency to be in
the same order of magnitude, which yields the limit ωL + ω0 ≫ ∆. The terms with
frequency ωL + ω0 oscillate much faster than the oscillation given by ∆ and can therefore
be neglected, as they average to zero on the relevant time scales of the system. This
approximation is known as the rotating wave approximation (RWA) and yields the simplified
Hamiltonian

ĤRF
cpl(t) ≈ −Ω

2
(e−i∆tb̂²

e b̂g + ei∆tb̂²
gb̂e) (2.50)

Another unitary transformation defined by Û(t) = e−iλ(n̂g + e−i∆tn̂e) leads to the co-
rotating frame and allows a time-independent description of the coupling

ĤRF
cpl =

Ω

2
((b̂g)

²b̂e + h.c.)− ∆n̂e. (2.51)

This Hamiltonian allows to describe the coupling of an atom in its electronic ground state
|g⟩ to the excited state |e⟩. We compute the eigenstates and their corresponding energies
and obtain an eigenstate, which can be written as

|g̃⟩ = 1

C
(|g⟩+ β |e⟩) (2.52)

with the normalization factor C. It describes an atom in its electronic ground state with ad-
mixture β = (

√
∆2 + Ω2 −∆)/Ω of the Rydberg state. This eigenstate defines the so-called
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Rydberg-dressing, which is the idea that an electronic ground state atom weakly coupled to
a Rydberg state can be effectively seen as a modified ground state adopting properties of
Rydberg states [157±160]. Note, that this is not the eigenstate of the Hamiltonian with the
lowest energy, but its relevance appears in a later subsection of this chapter.
In experiments the detuning is usually comparable to or larger than the Rabi frequency
and we hereby approximate β ≈ Ω/(2∆) through |∆|/Ω ≳ 1 and define the squared
admixture

PRyd = β2 =
Ω2

(2|∆|)2
(2.53)

as a measure for the population of the Rydberg state in |g̃⟩. In the weakly-dressed limit
|∆|/Ω ≫ 1, the admixture of the Rydberg state is small and it is common to drop the
normalization factor. It is also worth mentioning that coupling the electronic ground to an
excited state induces a non-trivial AC Stark shift

UAC =
Ω2

4∆
, (2.54)

which even in the weakly-dressed limit is potentially large. As mentioned before the
Rydberg-dressed ground state acquires properties of the Rydberg state such as a overall
enhanced lifetime and the long-range van-der-Waals interaction, albeit modified in their
amplitude. Due to the finite admixing, the lifetime τ̃ of the dressed ground state is
enhanced

1

τ̃
= β2 1

τ
(2.55)

and the long-range interaction strength rescaled

VvdW ∝ β4 C6

R6
. (2.56)

Experimentally both the detuning and the Rabi frequency are tunable, although the Rabi
frequency inherits the scaling with the effective principal quantum number through the
dipole matrix element and its magnitude thus relies on the addressed Rydberg state. This
ability to tune the atoms and choose the resulting admixture is particularly useful, as
longer lifetimes of long-range interacting atoms are experimentally important.

The choice of coupling scheme has to be in accordance to the selection rules. For example,
for the commonly used ground state |g⟩ = |5S1/2⟩ we are able to use the convenient
two-level scheme to couple to |e⟩ = |nP3/2⟩. However since the transition from |g⟩ to
the excited state |e⟩ = |nS1/2⟩ is forbidden, it is necessary to use an intermediate state
|i⟩ = |n′P3/2⟩ (see Fig. 2.9). In the three-level coupling scheme, we thus require two
lasers with respective Rabi frequencies Ω1 and Ω2, which couple |g⟩ to |i⟩ with detuning
δ and |i⟩ to |e⟩ with detuning ∆. The corresponding three-level coupling Hamiltonian
can be mapped back to an effective two-level Hamiltonian by computing the parameter
regime in which the intermediate state possesses a vanishing population. This is called
adiabatic elimination and yields the effective Rabi frequency Ω = Ω1Ω2/δ [161±164].
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Figure 2.9: Schematic depiction of a three-level system involving a two-photon coupling
scheme for Potassium 39K. The electronic ground state |4S1/2⟩ is effectively coupled to a
Rydberg |nS1/2⟩ state, however due to selection rules it requires an intermediate |5P3/2⟩.
Through a large detuning of the intermediate state its population can be kept vanishingly
small. Reprinted figure with permission from [161]. © 2020 by the American Physical
Society.

Although the effective two-level system gives a good approximation of the three-level
system, the results deviate for larger values of Ω1/δ. Therefore several methods beyond
adiabatic elimination have thus been established, which give a more accurate reflection of
the three-level system [165±167]. In general these methods can be used to map various
multi-photon processes to single-photon transitions and thus we rely on the coupling
Hamiltonian Eq. (2.51) as an effective description of other coupling schemes.
The inclusion of intermediate states unfortunately yields several limitations. Since we
require the intermediate state to be only weakly populated, it is important to use a large
detuning to these states, i.e. δ/Ω1 ≫ 1, which consequently limits the effective Rabi
frequency [168]. Additionally the overall lifetime of the excited state is modified to take
into account the lifetime of the intermediate states, i.e. 1

τ → 1
τ +∑i β2

i
1
τi

, and thus generally
yields smaller values even for weakly admixed intermediate states, i.e. βi ≪ 1 [169±171].
Finally the strength of the overall AC Stark shift increases with the number of single-
photon transitions involved in the coupling scheme. Although all of these limitations can
be controlled to a certain degree through the experimental parameters, it is often more
beneficial to simply use a single-photon coupling scheme.
In order to understand the many-body physics of bosonic quantum gases dressed with
Rydberg states, we determine in the following the spatially dependent energy eigenstates
of only two atoms.
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Figure 2.10: Energies of the eigenstate of Hamiltonian Eq. (2.60) in a two-atom system
for Ω = 2π × 1 MHz, ∆ = 2π × 1 MHz and C6 = 100 MHz µm6. At large distances, the
eigenstate of the lowest energy is defined by two Rydberg atoms. Reducing the distance
leads to a transition to a superatomic state, where the ground state of only one of the
atoms is coupled to the Rydberg state.

2.4.2 Two-atom system and soft-core interaction

The Hamiltonian of a system consisting of N atoms coupled to Rydberg state within the
two-level picture is given by

Ĥ = Ĥcpl + ĤvdW

= −∆
N

∑
i=1

n̂e
i +

Ω

2

N

∑
i=1

((b̂
g
i )

²b̂e
i + h.c.) + C6

N

∑
i=1

N

∑
j>i

n̂e
i n̂

e
j

R6
ij

(2.57)

with the distance Rij between atoms i and j. A general product state of the system is given
by |Ψ⟩ = |ψ1, ψ2, ..., ψN⟩ with ψi ∈ {g, e} and the dimension of the corresponding Hilbert
space is thus dim(H) = 2N . For two atoms, i.e. N = 2, the matrix representation of the
Hamiltonian reads

Ĥ =









0 Ω/2 Ω/2 0
Ω/2 −∆ 0 Ω/2
Ω/2 0 −∆ Ω/2

0 Ω/2 Ω/2 −2∆ + C6/R6









(2.58)

Since we consider indistinguishable atoms, the states |g, e⟩ and |e, g⟩ are identical with
respect to their coupling to the two-atom ground state |g, g⟩ and the two-atom excited
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state |e, e⟩. We thus define a symmetric and anti-symmetric superposition of both states as

|±⟩ = 1√
2
(|g, e⟩ ± |e, g⟩). (2.59)

Through calculation of the corresponding adapted coupling strength Rabi frequency Ω+ =
⟨+| Ĥcpl |g, g⟩ = ⟨+| Ĥcpl |e, e⟩ =

√
2Ω and Ω− = ⟨−| Ĥcpl |g, g⟩ = ⟨−| Ĥcpl |e, e⟩ = 0, we

see that the antisymmetric wave function is not coupled to any state. |−⟩ can therefore be
eliminated, which yields

Ĥ =





0 Ω/
√

2 0

Ω/
√

2 −∆ Ω/
√

2

0 Ω/
√

2 −2∆ + C6/R6



 (2.60)

We compute the eigenstates and plot the respective energies versus the distance R for a
detuning ∆/Ω = 2π × 1 MHz and an interaction strength given by C6 = 100 MHz µm6

(see Fig. 2.10). Several of the energies diverge as we decrease the distance. The corre-
sponding eigenstates have a very large Rydberg admixture, which results in considerable
long-range repulsion for small distances. The lowest energy also increases with distance,
however saturates to a certain value in the limit R → 0. For large interatomic distances,
the eigenstate takes the form

|Ψ0⟩R→∞ = |e, e⟩ . (2.61)

Since both atoms are very far apart, they do not interact with each other and the overall
energy is given by the unperturbed energies of each atom. Decreasing the distance leads
to increasingly strong long-range repulsion between the Rydberg atoms. On the other
hand at small distances the eigenstate becomes

|Ψ0⟩R→0 =
1√
2
(|g, g⟩+ |+⟩). (2.62)

The eigenstate implies that only one of the two atoms is coupled to the Rydberg state,
while the other rests in its electronic ground state. The symmetric wave function |+⟩
appears due to the indistinguishability of both atoms. The eigenstate results from the
substantial long-range interaction, which greatly shifts |e, e⟩ to larger values and thus it is
energetically more favorable to have only one atom coupled to the Rydberg state.
The suppressed excitation of an atom in its ground state to the Rydberg state in the vicinity
of an already excited atom is known as the Rydberg blockade [172±175]. The characteristic
blockade radius is given by

Rb =
(C6

Ω

)
1
6
, (2.63)

and defines the volume around the excited atom, in which excitation to the Rydberg state
is inhibited. For N atoms, the wave function can be generalized to

∣

∣

∣
ΨN

0

〉

r≪Rb

= |g1, ..., gN⟩+
1√
N

N

∑
i=1

|g1, g2, ..., ei, ..., gN⟩ (2.64)
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(a) (b)

Figure 2.11: (a) Soft-core potential U(R) of two atoms coupled to the Rydberg state (blue
line) and total excited-state admixture of both atoms (orange line) obtained at Ω = 2π × 1
MHz, ∆ = 2π × 5 MHz and C6 = 100 MHz µm6. Reducing the distance between two
excited atoms leads to the characteristic van-der-Waals interaction. The transition from
the unperturbed pair state to the superatom regime occurs when the energy cost of the
interaction becomes larger than the energy loss of suppressing the coupling of one atom
to the Rydberg state. (b) For four atoms the transition from the unperturbed for large
interatomic distances to the superatom regime happens through an intermediate regime,
in which the four atoms collectively share two excitations. For larger system sizes of N
atoms it is possible for more such regimes at intermediate interatomic distances to arise.

An ensemble of many atoms within the volume given by the blockade radius with one
collective excitation is called a superatom [176, 177]. The superatom behaves similar to
a conventional Rydberg-dressed atom, although with modified properties such as an
enhanced Rabi driving Ω̃ =

√
NΩ [178].

Soft-core potential

The soft-core interaction potential defines the interaction between Rydberg-dressed atoms
also referred to as the dressed interaction [179±181]. The wave function of a system with N
Rydberg-dressed atom can be written as

∣

∣

∣Ψ
N
0

〉

= |g̃1, g̃2, ..., g̃N⟩ . (2.65)

For two atoms N = 2, the soft-core potential is directly given by lowest energy, which
takes the shape given by

U(R) =
U0

1 + ( R
Rc
)6

(2.66)
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with the potential height U0 and the characteristic length Rc =
(

C6

2|∆|

)
1
6
. Note, that the

characteristic length is not identical to the blockade radius and merely helps to define the
shape of the potential U(R).
In the limit of large distance, the tail of the soft-core potential follows the previously
defined rescaled van-der-Waals interaction strength U(R ≫ Rc) = β4C6/R6 (see Fig. 2.11
(a)). The potential height U0 can be obtained through the subspace of |g, g⟩ and |+⟩ in Eq.
(2.60), since the long-range interaction isolates |e, e⟩. The potential height is then given by

U0 =
1

2
(∆ −

√

∆2 + 2Ω2 +
√

∆2 + Ω2)

≈ 2|∆|β4 =
Ω4

(2|∆|)3

(2.67)

and as expected we find the dressed interaction to be dependent on the admixture ∝ β4.
Ultimately all properties of Rydberg-dressed atoms can be defined or tuned by the choice
of the Rydberg level, the coupling scheme, the Rabi frequency and the detuning.

Note, that in this section we focused on the case of both atoms coupled to the same
Rydberg level. While a two-atom excited state composed of two different Rydberg states,
i.e. |e, e′⟩, may exhibit similar physics, it is dependent on the addressed pair state. For
example, it is possible that the two-body ground state is resonantly coupled to a molecular
state if the distance R matches the molecular bond length (see Section 2.3.3).
Although in the two-atom system we obtain a transition between the unperturbed and the
superatom regime, N-atom system exhibit additional features at intermediate distances.
The four-atom system, arranged as a square with length R of the edges, possesses an
additional regime inbetween both previously-discussed limits. Before transitioning into a
superatom, it becomes energetically more favorable due to the long-range interaction to
only have two excited atoms, while the other two atoms are in their ground state (see Fig.
2.11 (b)). Due to the indistinguishability of the atoms, the two Rydberg excitations in the
intermediate regime are shared among the four atoms, similar to how a single excitation is
shared among all atoms within the superatom regime. Further decreasing the distance
leads to a superatom consisting of four atoms.

2.4.3 Rydberg ensembles

Although the few particle system has been well studied, albeit not completely understood,
a large focus lies on Rydberg ensembles. One of the major experimental accomplishments
in this field was the observation of crystalline structures in Rydberg gases [182, 183]. In an
experiment involving a Rubidium 87Rb gas trapped in a two-dimensional, square optical
lattice it was possible to create a few Rydberg-excited atoms through the appropriate
coupling scheme. The distribution of these excitations revealed the repulsive nature of
the van-der-Waals interaction, as the excitations emerged in a ring-like constellation with
equal distance to their neighbors (see Fig. 2.12). This experimental realization paved the
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Figure 2.12: (a) Fluorescence image of trapped bosonic quantum gas with few excitations,
e.g. Ne ∈ [2, 5] (blue spots). (b) Histogram of fluorescence images with equal number
of excited atoms. After centering and aligning of the images a clearer distribution of
the excitations is revealed. (c) Theoretical predictions of excitation distribution obtained
through the computation of the many-body ground state of Hamiltonian Eq. (2.57).
Reprinted figure with permission from [182]. © 2012 by the American Physical Society.

way towards further studies on Rydberg crystals such as anisotropic crystals [145] and
crystals in higher dimensions [184].
Another important research direction in the context of Rydberg-dressed quantum gases
is the engineering of spin lattices with high tunability [112, 113, 183]. Since the theoret-
ical study of spin systems are despite their simplicity at high computational cost, the
simulation of such system through quantum systems gained significant importance. Al-
though many potential candidates exist, the low energy scale of crucial mechanism, such
as superexchange processes available in these candidates does not allow for intensive
research of the hereby simulated spin systems [185]. However the van-der-Waals interac-
tion between Rydberg atoms vastly surpasses the spin-spin interactions engineered by
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Figure 2.13: (a) Exemplary two-photon excitation scheme including possible transition to
lower-lying and other Rydberg states. The atom can either decay radiatively to short-lived
state, which ultimately decay back to a ground state or occupy an energetically close
Rydberg state through blackbody transition. (b) Anomalous broadening of the excitation
spectra versus the detuning δ to the excited state for a electronic ground state occupation
fraction f = 0.35 and effective Rabi frequency Ω = 2π × 3 kHz (red markers) and f = 0.7
and Ω = 2π × 140 kHz (blue markers). In the single-atom limit the width of the Gaussian
distribution hints at the linewidth of the coupling laser and therefore only near-resonant
excitation (|δ| ≈ 0) leads to a vanishing occupation of the excited state. However for a
large fraction of the atoms coupled through this scheme the excitation to the Rydberg state
can also take place in the far off-resonant regime (|δ| ≫ 0) due to blackbody facilitated
excitations. Reprinted figure with permission from [190]. © 2016 by the American Physical
Society.

previous candidates, which makes Rydberg-dressed systems a promising platform for
simulating spin Hamiltonians. To this end we map the electronic ground state and a single
Rydberg-dressed state onto spin states and thus the physics of such quantum gases could
be effectively described by a spin Hamiltonian. Following the first experimental realiza-
tion, many theoretical and experimental studies on Rydberg-dressed spin lattices emerged
for the study of various phenomena such as quantum magnets [186,187] and Bloch oscilla-
tions [188]. Furthermore quantum information and computing by means of Rydberg atoms
became an increasingly growing research field in recent years [114±117, 189]. Through
previously discussed mechanism such as the Rydberg blockade and dipolar exchange
processes, quantum gates for quantum information processing can be realized.

Despite all advantages and uses of Rydberg-dressed systems several, there exist limitations
to their applicability. A major obstacle, and still in the focus of current research, is the
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often observed rapid, chain-like loss of coherence and even of Rydberg-dressed atoms
themselves referred to as avalanche dephasing [190±192]. The underlying cause of this
phenomenon is the spontaneous decay of an atom in a Rydberg state to an energetically
close Rydberg state, which is in this context often referred to as contaminant state (see
Fig. 2.13). As discussed in Subsection 2.2.3 an atom, initially in its electronic ground
state and subsequently excited to a Rydberg state, can decay either via radiative decay
or blackbody radiation. While radiative decay leads to the population of low lying states
with negligible lifetime, nearby Rydberg states can be accessed through the blackbody
radiation mechanism. Since these states possess similar lifetimes compared to the initially
adressed Rydberg state, it is able to interact with other atoms coupled to Rydberg states
and even facilitate the excitation to undesirable Rydberg states. The initial contamination
spreads through the system and leads to the population of many different Rydberg states
not involved in the coupling scheme, which only includes the electronic ground and target
Rydberg state. This leads to substantial decoherence in the system and potentially the loss
of atoms, since in these Rydberg states the atom is not coupled to the trapped ground state
anymore. The avalanche dephasing can already occur if only one blackbody transition
populates a contaminant state, which implies a lifetime of the system linearly decreasing
with the Rydberg fraction ne

i in the ensemble, e.g. τc ∝ τBBR/ ∑i ne
i . Thus results in a vastly

decreased lifetime of the overall system compared to the lifetime of a single atom.
The avalanche dephasing mechanism is of key importance. Different approaches to
overcome this obstacle have been proposed: By operating in cryogenic temperatures it
is possible to keep the blackbody transition rate at a minimum. Lowering the average
occupation of Rydberg state lengthens the typical lifetimes of the system as well [157, 193].
On the other hand it is also in principle possible to get rid of the contamination by either a
second coupling scheme which couples the contaminant state to a lower-lying, short-lived
state, hereby deexciting the atom to the electronic ground state before it is able to trigger
the avalanche dephasing. Additionally tailored-trapping techniques can be used to expel
any atoms not in the electronic ground or target Rydberg state from the system such
that interactions between the contamination and other atoms do not take place [194±196].
Finally another way to limit the population of contaminant states has been proposed,
which consists of using the spatial shape of the coupling laser [197]. In the bulk of a system
the admixture of the Rydberg state is marginal due to the strong, repulsive van-der-Waals
interaction, while the boundary is not as affected and thus possesses a overall larger
Rydberg admixture. However since the profile of the coupling laser can be engineered to
a certain degree, it is possible to also suppress the Rydberg admixture on the boundary,
hereby reducing the rate with which contaminant states are populated.
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Chapter 3

Numerical aspects and methods

In this chapter we review important theories, aspects and methods through which results
obtained within the scope of this thesis have been computed. In Section 3.2 we introduce
Gutzwiller theory, a mean-field theory allowing us to truncate the Hilbert space of the
considered system and hereby greatly reducing computational cost of the numerical
calculation. We then derive the different mean-fields obtained through the decoupling of
the non-local operators. Through some exemplary phase diagram calculations we review
the quality of the method with respect to the severity of the Hilbert space truncation. In
Section 3.3 we derive the Lindblad master equation, a generalized master equation for
open quantum systems that includes dissipative and decoherent processes. We start with
the von-Neumann equation, introduce the Born-Markov approximation and finally obtain
the Lindblad master equation. In the end we elaborate on quench-type and adiabatic time
evolutions and briefly discuss the adiabatic criteria.

3.1 Introduction

The computation of many-body ground states and their properties is no easy feat. The
most straightforward way to compute the ground state of an Hamiltonian is through the
time-independent SchrÈodinger equation, which would only require exact diagonalization
(ED) given an appropriate basis. However for many-body systems the Hilbert space of the
problem is usually immense and thus the computation of the corresponding many-body
ground states through ED too demanding. In order to reduce the computational effort and
cost of solving the problem, while achieving high accuracy of the result, several methods
established themselves in the context of quantum gases trapped in optical lattices over the
years.
Among these popular methods are the Quantum Monte Carlo (QMC) methods, used
to obtain phase transitions and simulate dynamical behavior of bosonic and fermionic
systems [198±203], and the dynamical mean-field theory (DMFT) with its many extensions,
with which band structures, distribution of local quantities and even nonequilibrium
systems can be investigated [204±208].
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Another significant method lies within Gutzwiller mean-field theory. Developed by
Martin Gutzwiller around 1963 this theory was original intended to provide a variational
wave function for strongly correlated electrons on a rigid lattice, which was later used to
compute ground states of fermionic systems trapped in optical lattices [209±212]. The idea
behind Gutzwiller mean-field theory for bosonic systems is simple: If the Hilbert space of
the full system, of which we want to compute the many-body ground state, is too large,
we divide the system into subsystems embedded in a mean-field given by the surrounding
subsystems. The dimension of the corresponding Hilbert spaces are thus reduced and
computation of the many-body ground state through becomes computationally feasible.
As Gutzwiller theory appeared to be a promising method for computing properties of
fermionic systems [213±215], a bosonic variant was developed [216, 217] and since then
successfully applied on plain and extended Bose-Hubbard models [218±220]. The many-
body ground states of mixtures of bosonic and fermionic atoms have also been hereby
obtained [221].
In what follows we discuss Gutzwiller mean-field theory, its variational wave function
and the mean-field decouplings necessary to adequately compute the ground state of a
subsystem.

3.2 Gutzwiller mean-field theory

For a lattice system with N sites and at most k ∈ N bosons per site, the size of the Hilbert
space H is given by dim(H) = kN and thus ED of the relevant Hamiltonian requires a high
computational effort. Within Gutzwiller theory however, we can introduce a variational
ansatz, also known as variational Gutzwiller approach or Gutzwiller ansatz, to the many-
body wave function by which we reduce the dimensionality of the system. For bosons
trapped in a periodic lattice, the lattice wave function thus factorizes as

|Ψ⟩ = ∏
C
|Ψ⟩C , (3.1)

where |Ψ⟩C is the wave function of a subsystem C of the lattice. Note that the Gutzwiller
variational wave function was originally given by a product of wave functions on single
sites and the generalization to non-trivial subsystems has been provided in a recent
work [222]. The computational power required for numerical calculations within the
subsystems is significantly smaller, as the dimension of the corresponding reduced Hilbert
space for N′ sites is dim(H) = kN′

with N ≫ N′. According to the variational ansatz
Eq. (3.1), the many-body ground state of the whole system can then be retrieved through
computation of the ground state wave function of each individual subsystem.
As each subsystem is treated individually within Gutzwiller theory, we need to derive
their respective Hamiltonians through the original Hamiltonian of the full system. To this
end, we decouple the Hamiltonian Ĥ as

Ĥ = ∑
C

ĤC , (3.2)
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with the subsystem Hamiltonians ĤC . The local terms of the Hamiltonian Ĥ are already
decoupled, since each subsystem possesses its own set of unique lattice sites. However,
decoupling non-local processes proves to be more challenging, since these terms connect
sites of different subsystems and therefore need to be dealt with in a different way. Note
that Eq. (3.2) is an approximation, since it already assumes the existence of decoupled and
hereby approximated non-local terms.
Gutzwiller theory however is a mean-field theory, through which we can view each
subsystem embedded in a mean-field, which is determined by the wave function of the
surrounding subsystems it was previously connected to. Each subsystem possesses its own
mean-field and effectively reproduces its coupling to previously connected subsystems.
In the following, we introduce the relevant mean-field approximations, through which we
are able to decouple the corresponding Hamiltonian terms and obtain the subsystem
Hamiltonians.

3.2.1 Mean-field decoupling and approximations

We expand an operator Ô ∈ {b̂, n̂} around its expectation value ⟨Ô⟩ = ⟨Ψ| Ô |Ψ⟩ as

Ô = ⟨Ô⟩+ δO (3.3)

with the quantum fluctuation δO = Ô − ⟨Ô⟩, which is the deviation from the expectation
value. Within the mean-field theory, we assume these quantum fluctuations to be small
enough such that they are vanishing in second order. This is the mean-field approximation
and reads

(δO)n ≈ 0 for n ≥ 2. (3.4)

Although the mean-field approximation can be applied to many different non-local terms
we use the approximation to decouple the kinetic hopping term and the long-range
interaction.
The hopping process connects two different sites i and j, in our case nearest neighbors.
If these two sites are from different subsystems C and C ′, i.e. i ∈ {1, ..., N′}C and j with
i ∈ {1, ..., N′}C ′ , the corresponding hopping term can be expanded and approximated
through Eq. (3.3) and Eq. (3.4) as

b̂²
i b̂j

(3.3)
= b̂²

i ⟨b̂⟩j + b̂j⟨b̂²⟩i − ⟨b̂⟩i⟨b̂²⟩j + δb̂²
j δb̂i

(3.4)≈ b̂²
i ⟨b̂j⟩+ b̂j⟨b̂²⟩i − ⟨b̂⟩i⟨b̂²⟩j.

(3.5)

Through the approximation we decouple terms coupling different sites and hereby obtain
local terms. By taking into account the sum over i and j, we can reorganize the terms and
simplify as

J ∑
⟨i,j⟩

b̂²
i b̂j =J ∑

⟨i,j⟩
(2b̂²

i ⟨b̂j⟩ − ⟨b̂⟩i⟨b̂²⟩j)

=J ∑
i

(b̂²
i ∑

j∈{NN(i)∩C ′}
⟨b̂j⟩ −

1

2
⟨b̂²

i ⟩ ∑
j∈{NN(i)∩C ′}

⟨b̂j⟩).
(3.6)
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Here we used the fact that the sum over the pair of sites i and j can be split as

∑
⟨i,j⟩

=
1

2 ∑
i

∑
j∈{NN(i)∩C ′}

, (3.7)

where the prefactor takes into account double counting and NN(i) denotes the nearest
neighboring sites of site i. At this step, we already see the influence of the surrounding
subsystem through the sum of the observable ⟨b̂j⟩ of the neighboring site j, which acts as
the mean-field for site i. We thus introduce the first mean-field parameter

ξi ≡ ∑
j∈{NN(i)∩C ′}

⟨b̂j⟩ (3.8)

and rewrite the complete kinetic energy term of the original Hamiltonian as

J ∑
⟨i,j⟩

(b̂²
i b̂j + b̂²

j b̂i) = J ∑
i

(b̂²
i ξi + b̂iξ

∗
i − E

hop
i ) (3.9)

with the energy offset E
hop
i = − 1

2 (⟨b̂²
i ⟩ξi + ⟨b̂i⟩ξ∗i ) resulting from the Gutzwiller approxi-

mation. We hereby obtain a local term effectively describing the hopping process at the
boundary of the cluster. Within this picture, the hopping of bosons between two neigh-
boring sites of different subsystems is described as the creation or annihilation of bosons,
with a rate depending on the surrounding mean-field. Although the kinetic term has
been hereby decoupled, the influence of neighboring sites appears within the mean-field
parameter through the expectation value of local observables.

In comparison to the kinetic term, the coupling due to long-range interaction is not
restricted to nearest or next-nearest neighboring sites. Although the distance between two
coupled sites is potentially seemingly infinite, e.g. in the case of van-der-Waals interaction,
we expand the long-range interaction term in a similar way

n̂in̂j
(3.3)
= n̂i⟨n̂⟩j + n̂j⟨n̂⟩i − ⟨n̂⟩i⟨n̂⟩j + δn̂jδn̂i

(3.4)≈ n̂i⟨n̂j⟩+ n̂j⟨n̂⟩i − ⟨n̂⟩i⟨n̂⟩j.

(3.10)

This type of approximation is referred to as the Hartree approximation. It was first intro-
duced in order to decouple complicated electron-electron interaction terms [223] and is
used in order to simplify various interaction processes through the introduction of single-
particle wave functions [224, 225]. Within this approximation, the sum of long-range
interaction processes, which couple two sites i ∈ C and j ∈ C ′ from different subsystems
can be written as

∑
i

∑
j ̸=i

Vijn̂in̂j = ∑
i

(2n̂i ∑
j∈C ′

Vij⟨n̂j⟩ − ⟨n̂i⟩ ∑
j∈C ′

Vij⟨n̂j⟩). (3.11)
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The long-range interaction now resembles an additional on-site potential, the depth of
which is given by the mean-field parameter

ηi ≡ 2 ∑
j∈C ′

Vij⟨n̂j⟩. (3.12)

The long-range interaction is then ultimately rewritten as

∑
i

∑
j ̸=i

= ∑
i

(ηin̂i − Eint
i ) (3.13)

with the energy offset Eint
i = − 1

2 ηi⟨n̂i⟩ of the interaction. The overall energy offset

Eoff
i = E

hop
i + Eint

i does not affect the many-body eigenstates, but becomes relevant again
for the calculation of the many-body ground state energies. Note that for homogeneous
and some inhomogeneous systems the observables on the previously coupled sites are
identical. For a single-site cluster, the mean-field parameters can be simplified to ξi = z⟨b̂i⟩
and ηi = zint⟨n̂i⟩ with the coordination numbers z, which describes the number of nearest
neighbors, and zint, which describes the number of sites coupled to site i through the long-
range interaction. These coordination numbers essentially rescale the hopping amplitude
J and the long-range interaction Vij.

We hereby obtain decoupled terms for the processes initially coupling two different sub-
systems and can now find the equilibrium ground state of the whole system through
numerical diagonalization of each subsystem. Through the mean-field parameters ξi and
ηi, each subsystem depends on the set of local observables of the subsystems they are con-
nected to and therefore, finding the equilibrium ground-state of one subsystem requires
all other subsystem to be already in their ground state. This is commonly handled through
a self-consistent method, in which an initial guess of the subsystem’s states converges to
the many-body ground state through an iterative procedure (see Appendix A.1). In case
different initial guesses lead to different converged many-body ground states, we choose
the true ground state through comparison of the corresponding ground state energies.

3.2.2 Single-site Gutzwiller versus Cluster Gutzwiller

One commonly differentiates between the single-site Gutzwiller approximation for a
subsystem of one site (|C| = 1) and the cluster Gutzwiller approximation for larger
subsystems (|C| > 1). With respect to computational effort required for computing the
many-body ground states of large, inhomogeneous systems, the single-site Gutzwiller has
the upper hand. The size of the corresponding Hamiltonians are solely given by the cutoff
of the bosonic Fock space k on each site, which is typically a few particles, and therefore
its initialization and diagonalization do not come at high computational cost. Suppose we
want to find the many-body ground state of a system consisting of N sites and a cutoff k
per site, the computational cost of ED through singular value decomposition would thus
be O(k3N). By splitting the system into at most M unique subsystems of N′ sites, such
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that M · N′ ≤ N, we are able to achieve a reduced complexity bound by O(Mk3N′
). In the

single-site Gutzwiller limit N′ → 1, the ratio O( N
N′ k3(N′−N)) converges to its lowest value

possible.
On the other hand, reduction of computational effort by decreasing the size of the individ-
ual subsystems leads to a loss of potentially important quantum fluctuations. We therefore
elaborate in what follows the impact of the mean-field decoupling on the many-body
ground state and its severity based on the cluster size.

Validity of the mean-field approximations

The drawback of reducing the sizes of the subsystems is the severity of the Gutzwiller
approximations. While quantum fluctuations at borders of subsystems are assumed to
be vanishing, they are still taken into account within the bulks. Therefore reducing the
subsystem size increases the ratio between border and bulk, ultimately leading to bulkless
subsystems when going to the single-site Gutzwiller. In order to determine the importance
of these quantum fluctuations, we compute the phase diagram of the Bose-Hubbard model
for various subsystem sizes (see Fig. 3.1). We observe that the MI regime extends as the
subsystem size increases. The MI phases close to the phase transition benefit from the
additional quantum fluctuations, as they reduce the ground state energy of the insulating
phase and therefore shifts the MI-SF phase transition to higher hopping amplitudes. The
shift ultimately converges towards a critical hopping amplitude, which was determined
through QMC to be (zJ/U)c ≈ 0.239 [198]. Although the shift is substantial, we obtain a
qualitatively correct phase diagram even with single-site and cluster Gutzwiller variational
ansatz of small subsystems, which are in agreement with phase diagrams obtained by
other methods, such as DMFT and QMC [198, 207, 208].

For checking the validity of the Hartree approximation, we determine the previously-
discussed soft-core potential through computation with the Hamiltonian given by Eq.
(2.57) after Hartree decoupling. For an atom i in the basis {|g⟩ , |e⟩} the decoupled Hamil-
tonian given by

ĤHrt
i =

(

0 Ω/2
Ω/2 −∆ + ηi

)

+ EHrt
i (3.14)

with the mean-field parameter ηi = C6 ∑j⟨n̂e
i ⟩/R6

ij and the energy offset Eint
i obtained

through the Hartree approximation. For N = 2, the mean-field parameter simplifies to
ηi = C6⟨n̂e

j ⟩/R6, where ⟨n̂e
j ⟩ is the excited-state admixture of the other atom j ̸= i and R

the interatomic distance between atoms i and j. We obtain the equilibrium ground state of
the system self-consistently (see Appendix A.1).

We find that the soft-core potential Uex(R) of the full Hamiltonian and the soft-core
potential Uap(R) calculated within the Hartree approximation match in shape, although
they differ by their amplitude U0 (see Fig. 3.2). While the ratio Uex/Uap is relatively
large for ∆/Ω > 0 and converges to one in the limit of large detunings, the mismatch
becomes substantial for negative detunings ∆/Ω < 0. On the other hand the strength
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Figure 3.1: Phase transition between the MIn=1 and the SF regime computed for different
cluster sizes. Larger clusters allow to incorporate more quantum fluctuations, which
reduce the energy of the MI phase close to the phase transition and hereby shifts the
boundary to larger hopping amplitudes. By further increasing the cluster size beyond the
considered clusters the tip of the lobe converges to a finite value obtained through QMC
calculations [198].

V/Ω of the long-range interaction does not influence the quality of the approximation,
but merely affects the extent of the soft-core potential. This is in agreement with the
analytic expression of the soft-core potential Eq. (2.66), as the long-range interaction only
affects the characteristic range Rc of the potential. While the ratio becomes substantial for
negative detunings, it is worth mentioning that the phases obtained for these values have
weak excited-state admixture, since the detuning acts as a repulsive on-site potential for
the excited state. Both soft-core potentials obtained might appear to be differing strongly
through the ratio Uex/Uap, but their amplitudes U0 are insignificantly small.
We further check the quality of the Hartree approximation for few atoms N > 2. As the

basis increases rapidly with growing atom number, we omit the matrix representation and
write the full Hamiltonian

ĤHrt
i = −∆n̂e

i +
Ω

2
((b̂e

i )
²b̂

g
i + h.c.) + ηin̂

e
i + Eint

i (3.15)

For N = 3 and N = 4 atoms, the geometry of the system starts to play a role. Since
in periodic systems we expect distributions of equidistant atoms to be resulting in the
equilibrium state with lowest energy, we consider a triangular constellation of three atoms
and a square of four atoms with length R of the edges. We have the possibility to treat
each atom individually, but since we have more atoms now, we can also split the system
into subsystems containing more than one atom. The various combinations of subsystem
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d or

Figure 3.2: The exact soft-core potentials Uex(R) (solid line) and soft-core potentials Uap(R)
obtained through the Hartree-approximation (dashed line) at (a) positive detunings and
(b) negative detunings for two atoms. For positive detunings the approximated soft-core
potential highly resembles the exact potential, although the difference becomes more
substantial at zero or negative detunings. While the absolute difference of their height U0

is not substantial for any detunings (c), the ratio shows the discrepancy at negative values
(see inset).

sizes allows to investigate the influence of quantum fluctuations further. Note that the
computed soft-core potentials for N > 2 are then the averaged soft-core potential between
all atoms of different subsystems. The soft-core potential between two atoms of the same
subsystem corresponds to the exact soft-core potential.
For both N = 3 and N = 4, we find an increasing match between the potentials of the
exact Hamiltonian and within the Hartree approximation for any subsystem combination
at higher detunings ∆/Ω (see Fig. 3.3 and 3.4). Similar to the results obtained for N = 2,
the potentials begin to differ strongly as we go to negative detunings. Now that we can
compare different subsystem combinations, we observe that larger subsystems improve
the quality of the Hartree approximation. The ratio Uex

0 /U
ap
0 determined for single-atom

subsystems does not seem to depend on the number of atoms.
We therefore conclude that the Hartree approximation gives adequate results for relevant
detunings. Although negative detunings appear to greatly overestimate the correct soft-
core potential height, the admixture of the excited state in this regime is vanishingly small
and thus we expect the physics of the electronic ground state to dominate.
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Figure 3.3: The exact soft-core potentials Uex(R) (solid line) and soft-core potentials Uap(R)
obtained through the Hartree-approximation (dashed line) at (a) positive detunings and
(b) negative detunings for three atoms, and (c) their height U0 versus detuning. The
system can be decoupled either in three subsystems of one atom or two subsystem with
one and two atoms. The latter provides a better approximation for any detunings as it
allows to incorporate more density fluctuations neglected in the three subsystem splitting.

In the end Gutzwiller mean-field theory provides qualitatively very good results and has
been used since its formulation for the computation of many-body ground states of many
different types of bosonic systems [218±220]. However it is important to acknowledge
that actual phase transitions may differ from the ones obtained through the variational
Gutzwiller ansatz and thus benchmark calculations can potentially become necessary in
the vicinity of boundaries in the phase diagram.

3.3 Master equation in Lindblad form

Besides calculating equilibrium ground states of systems, an Hamiltonian can be used to
determine dynamics as well. The parameters of each term within the Hamiltonian can not
only be seen as energies tied to certain quantum mechanical and physical processes, but
also as their amplitudes, with which they occur. Within the SchrÈodinger picture, in which
the state is time-dependent, the Hamiltonian is the generator of time-evolution through
the time-dependent SchrÈodinger equation

Ĥ |Ψ(t)⟩ = iÅh
d

dt
|Ψ(t)⟩ , (3.16)
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Figure 3.4: The exact soft-core potentials Uex(R) (solid line) and soft-core potentials Uap(R)
obtained through the Hartree-approximation (dashed line) at (a) positive detunings and
(b) negative detunings for four atoms, and (c) their height U0 versus detuning. For four
atoms there are more ways to decouple the system and the splitting into two subsystems
with one and three atoms yields the best approximation.

where |Ψ(t)⟩ is an arbitrary state at time t and Ĥ the Hamiltonian of the system. Its
solution yields the unitary time-evolution of the given state, with which the state at a
latter time t′ can be determined. It reads

∣

∣Ψ(t′)
〉

= U(t′, t) |Ψ(t)⟩ = e−
iĤ(t′−t)

Åh |Ψ(t)⟩ (3.17)

with the unitary time evolution operator U(t′, t′). If the current state of a system is an
eigenstate of the Hamiltonian, the time-dependent SchrÈodinger equation reveals the
time-independent equation

Ĥ |ΨGS(t)⟩ = iÅh
d

dt
|ΨGS(t)⟩

= iÅh
d

dt
e−

iĤt
Åh |ΨGS(0)⟩

= Ee−
iĤt

Åh |ΨGS(0)⟩
= E |ΨGS(t)⟩

(3.18)

and the state |ΨGS(t)⟩ = |ΨGS⟩ is thus considered stationary. Its time-evolution only
yields a phase

〈

Ψ(t)
∣

∣Ψ(t′)
〉

= ⟨Ψ(t)| e−
iĤ(t′−t)

Åh |Ψ(t)⟩ = e−
iE(t′−t)

Åh . (3.19)
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Another way to describe time-evolution given by an Hamiltonian is through the density
matrix ρ̂, which is also time-dependent within the SchrÈodinger picture through the time-
dependent states and its most general form reads

ρ̂(t) = ∑
l

pl |Ψl(t)⟩ ⟨Ψl(t)| (3.20)

where pl is the probability of the pure state |Ψl(t)⟩. The time-evolution of the density
matrix can be derived through the unitary time evolution of a pure state Eq. (3.16) as

d

dt
ρ(t) =

d

dt ∑
l

pl |Ψl(t)⟩ ⟨Ψl(t)| = ∑
l

pl
d

dt
(|Ψl(t)⟩ ⟨Ψl(t)|)

= − i

Åh ∑
l

pl(Ĥ |Ψl(t)⟩ ⟨Ψl(t)| − |Ψl(t)⟩ ⟨Ψl(t)| Ĥ)

= − i

Åh
(Ĥρ̂ − ρ̂Ĥ),

(3.21)

which finally yields
d

dt
ρ̂(t) = − i

Åh
[Ĥ, ρ̂(t)]. (3.22)

This formula is known as the von Neumann equation, the quantum mechanical analogue
to Liouville’s theorem. Analogous to the stationary state |ΨGS⟩ a density matrix diagonal
in the eigenbasis of the Hamiltonian does not evolve in time, since in this case the Hamil-
tonian and the density matrix commute, i.e. [Ĥ, ρ̂GS] = 0.
Although the unitary time-evolution is especially useful for numerical simulations of
quench dynamics, i.e. time-evolution of states, which are not eigenstates of the studied
Hamiltonian, the application is limited to system with reversible processes. Since the
Hamiltonian is hermitian by definition, non-unitary processes can not be included.

Master equation

A formalism commonly used in the context of time evolution of open quantum systems
are the so-called master equations. Since it was developed to model the time-evolution
of systems, with dynamics that can be described by a probabilistic, time-dependent
superposition of states, it possesses a high applicability in quantum physics. For a time-
dependent density matrix ρ(t), the master equation in its most general form yields

d

dt
ρ(t) = f (t, Ĥ, ρ̂(t)) (3.23)

In order to derive the master equation of a system with non-unitary time evolution, it is
important to understand its origin. To this end, we consider an isolated system composed
of two subsystems S and B with the corresponding Hamiltonian

Ĥ = ĤS + ĤB + ĤSB (3.24)
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with their most-general form of the coupling Hamiltonian

ĤC = Åh ∑
α

Ŝα ⊗ B̂α, (3.25)

where the operators Ŝα and B̂α acts on subsystem S and B respectively. If both subsystems
were not coupled, i.e. ĤSB = 0, they would exhibit unitary evolution in time. For finite
coupling however the exchange can lead to the loss of energy, which is referred to as
quantum dissipation, and the loss of coherence, which is coined as quantum decoherence [226].
Although these processes affect both subsystems individually, the dynamics of the whole
system however remain unitary.
Based on this notion we derive the master equation in Lindblad form also referred to as
Lindblad master equation. Non-unitary processes couple a subsystem S to the environ-
ment, which can be seen as a bath B. In order to derive the non-unitary description in
S, we consider the isolated system given by Ĥ and trace out the bath B. While the idea
sounds simple, it requires extensive derivations and heavily relies on the properties in the
bath.
The Lindblad master equation can be derived in various ways, such as with quantum
dynamical maps [227] or through the Born-Markov master equation [228], and offers
different insight based on the derivation. The derivation presented in this work is a
generalized version of [229] and yields despite the more generous approximations the
desired master equation.

Interaction picture

We consider the system containing both the subsystem S and the bath B. For no coupling
the subsystems are isolated and the systems eigenstates are given by the eigenstates
of S and B. For the sake of simplicity throughout the derivation, we thus define the
unperturbed Hamiltonian Ĥ0 = ĤS + ĤB. Since the coupling can be understood as a
perturbative term, it is useful to introduce the interaction picture, which is defined as

ÔI(t) = e
i
Åh Ĥ0tÔ(t)e−

i
Åh Ĥ0t (3.26)

For a time-dependent density matrix ρ̂(t) = e−
i
Åh Ĥtρ̂(0)e

i
Åh Ĥt of the isolated system, the

interaction picture yields

ρ̂I(t) = e
i
Åh Ĥ0tρ̂(t)e−

i
Åh Ĥ0t

= e
i
Åh Ĥ0te−

i
Åh Ĥtρ̂(0)e

i
Åh Ĥte−

i
Åh Ĥt.

(3.27)
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Taking the time-derivative, we obtain

d

dt
ρ̂I(t) =

i

Åh
[Ĥ0, ρ̂I(t)] + e

i
Åh Ĥ0t

( d

dt
ρ̂(t)

)

e−
i
Åh Ĥ0t

=
i

Åh
[Ĥ0, ρ̂I(t)]− i

Åh
e

i
Åh Ĥ0t[Ĥ, ρ̂(t)]e−

i
Åh Ĥ0t

=
i

Åh
[Ĥ0, ρ̂I(t)]− i

Åh
e

i
Åh Ĥ0t[Ĥ0 + ĤC, ρ̂(t)]e−

i
Åh Ĥ0t

=
i

Åh
([Ĥ0, ρ̂I(t)]− [Ĥ0, ρ̂I(t)]− [Ĥ I

C, ρ̂I(t)])

(3.28)

from which we obtain the von-Neumann equation in the interaction picture

d

dt
ρ̂I(t) = − i

Åh
[Ĥ I

C, ρ̂I(t)] (3.29)

Subsequent integration over time renders the expression iterative

ρ̂(t) = ρ̂(0)− i

Åh

∫ t

0
dt1[Ĥ

I
C(t1), ρ̂I(t1)], (3.30)

which can be written as a series expansion

ρ̂(t) = ρ̂(0) +
∞

∑
n>0

(− i

Åh
)n

∫ t

0
dt1...

∫ tn−1

0
dtn[Ĥ

I
C(t1), ..., [Ĥ I

C(tn), ρ̂I(0)]] (3.31)

While the expression is exact, a simplification is required for the sake of numerical compu-
tation.

Born approximation

The most intuitive approximation to be made is based on the assumption, that the pertur-
bation, i.e. the coupling between subsystem and bath, is vanishing for terms higher than
second order. We therefore only expand the series up to the second order

ρ̂(t) ≈ ρ̂(0)− i

Åh

∫ t

0
dt1[Ĥ

I
C(t1), ρ̂I(0)]

− 1

Åh2

∫ t

0
dt1

∫ t1

0
dt2[Ĥ

I
C(t1), [Ĥ

I
C(t2), ρ̂I(0)]]

(3.32)

and introduce this formula into the von-Neumann equation Eq. (3.29) and perform the
trace over B

d

dt
ρ̂S(t) ≡ tr

( d

dt
ρ̂(t)

)

= − i

Åh
tr([Ĥ I

C(t), ρ̂I(0)])− 1

Åh2

∫ t

0
dt1tr

([

Ĥ I
C(t), [Ĥ

I
C(t1), ρ̂I(t1)]

])

.

(3.33)
In order to perform the trace, let us first consider that the subsystem and the bath are
initially decoupled, i.e. ρ̂(t) = ρ̂S(t)⊗ ρ̂B(0). Since the bath merely exists to introduce
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and describe non-unitary processes in the system as a coupling of to environment, we
expect its initial state to be thermal

ρB(0) =
e

ĤB
kBT

Z
(3.34)

with the partition function Z = tr(e
ĤB
kBT ). We now assume the bath to be large and the

coupling weak enough, such that the initial state of the bath is not considerably changed
with time, i.e. ρ̂B(t) ≈ ρ̂B(0) ≡ ρ̂B. This yields the Born approximation, which reads

ρ̂(t) = ρ̂S(t)⊗ ρ̂B (3.35)

and states that the subsystem and the bath are at no point in time entangled and allows us
to simplify the series expansion. We thus calculate the first commutator on the right hand
side of the equation with the general definition of the coupling Hamiltonian

tr([Ĥ I
C(t), ρ̂I(0)]) = ∑

α

(Ŝα(t)ρ̂S(0)trB(B̂α(t)ρ̂B(0))− ρ̂S(0)Ŝα(t)trB(B̂α(t)ρ̂B(0))) (3.36)

Here it is safe to set the expectation value ⟨B̂α(t)⟩ = trB(B̂α(t)ρ̂B(0)) = 0, as it does not
change the underlying physics. However if we assume the expectation value to be finite,
we can simply reformulate the original coupling Hamiltonian HC and find, that the finite
expectation values of the bath operators simply shift the energies of the associated system
operators by a constant value. We thus rewrite

d

dt
ρ̂I

S(t) = − 1

Åh2

∫ t

0
dt1trB

([

Ĥ I
C(t), [Ĥ

I
C(t1), ρ̂S(t1)⊗ ρ̂B]

])

(3.37)

The time-evolution of the subsystem S now can be obtained from the integro-differential
equation, which is reduced in complexity but still requires computation over the Hilbert
space of the whole system and also expects the knowledge about the density matrix at all
previous times.

Markov approximation

Through substituting the integration variable t1 → t − t1 and extending the upper limit
we obtain the so-called Redfield equation given by

d

dt
ρ̂I

S(t) =
1

Åh2

∫ ∞

0
dt1trB

([

Ĥ I
C(t), [Ĥ

I
C(t − t1), ρ̂S(t − t1)⊗ ρ̂B]

])

. (3.38)

The reformulation allows us to understand the meaning of the integral better: The integra-
tion adds the weighted contributions of past density matrices to determine the current
matrix and thus, it is possible to rewrite the formula as a Nakajima-Zwanzig equation

d

dt
ρ̂I

S(t) =
1

Åh2

∫ ∞

0
dt1γ(t − t1)ρ̂S(t − t1). (3.39)
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Here, the memory kernel γ(t − t1) quantifies the memory of the system. For the sake of
estimation, we explicitly rewrite the Redfield equation with the definition of the coupling
Hamiltonian, which reads

d

dt
ρ̂I

S(t) =
1

Åh2 ∑
α,β

∫ ∞

0
dt1(Ŝβ(t − t1)ρ̂S(t − t1)Ŝα(t)− Ŝα(t)Ŝβ(t − t1)ρ̂S(t − t1))γ

′
α,β(t, t1).

(3.40)
The memory kernel γ′

α,β(t, t1) ≡ ⟨B̂α(t)B̂β(t − t1)⟩ = trB(B̂α(t)B̂β(t − t1)ρ̂B) is a two-point

correlation function and since we assumed the bath to be stationary, we can omit the
time-dependency and only keep the relative time, i.e. γ′

α,β(t, t1) → γ′
α,β(τ). As a two-

point correlation function, we expect its amplitude to decrease exponentially with time
|γ′

α,β(τ)| ∼ exp(−τ/τB) with the bath relaxation time τB. In accordance with the large

bath and weak coupling assumption, we expect the relaxation time to be much smaller
than the relevant timescales of the subsystem, which yields rapid decay of the two-point
correlation |γ′

α,β(τ)| ∝ δ(τ). We therefore apply the Markov approximation, which implies

that the time-evolution of the density matrix only depends on its current state. The
Markovian Redfield equation is then rewritten as

d

dt
ρ̂I

S(t) = − 1

Åh2

∫ ∞

0
dt1trB

([

Ĥ I
C(t), [Ĥ

I
C(t1), ρ̂S(t)⊗ ρ̂B]

])

(3.41)

The hereby obtained master equation is known as the Born-Markov equation based on the
necessary approximation.

Tracing out the bath

We now discuss the time-dependent operators Ŝα(t) and B̂α(t) of the coupling Hamiltonian.

In the SchrÈodinger picture of the subsystem we write Ŝα(t) = e−iĤSt/ÅhŜα(0)e−iĤSt/Åh and
expand Ŝα(0) = ∑ω Ŝα,ω(0) in the basis spanned by the eigenstates with energies Åhω of
the Hamiltonian ĤS. For the sake of simplicity, we denote the stationary operators simply
as Ŝα,ω(0) ≡ Ŝα,ω until mentioned otherwise. The coupling Hamiltonian becomes

ĤC = ∑
α,ω

e−iωtSα,ω ⊗ B̂α(t). (3.42)

We input the reformulated coupling Hamiltonian in Eq. (3.40) and evaluate the commuta-
tors

d

dt
ρ̂I

S(t) = ∑
α,β

ω,ω′

(

ei(ω′−ω)tΓω
α,β

[

Ŝα,ω ρ̂S(t), Ŝ²
β,ω′

]

+ ei(ω−ω′)t(Γω′
α,β)

∗
[

Ŝα,ω, ρ̂S(t)Ŝ
²
β,ω′

])

(3.43)

with the prefactors containing the memory kernel

Γω
α,β =

∫ ∞

0
dτeiωτγα,β(τ). (3.44)
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Chapter 3: Numerical aspects and methods

We now apply the rotating wave approximation on the exponentials ei(ω′−ω)t. As we
expect oscillation given by ω − ω′ to be way faster than the evolution of the subsystem
itself, we discard the off-resonant contributions, which simplifies the sum

d

dt
ρ̂I

S(t) = ∑
α,β,ω

(

Γω
α,β

[

Ŝα,ω ρ̂S(t), Ŝ²
β,ω

]

+ (Γω
α,β)

∗
[

Ŝα,ω, ρ̂S(t)Ŝ
²
β,ω

])

. (3.45)

In order to determine the factors Γω
α,β, we specify the properties of the bath even further.

We consider the bath to be given by bosons as

ĤB = Åh ∑
k

ωk b̂²
k b̂k (3.46)

with the annihilation operator b̂k of a boson in mode k with energy ωk. The coupling
operators B̂α can then be rewritten in terms of creation and annihilation of bosons in these
modes

B̂α = ∑
k

(gα,k b̂α
k + g∗α,k(b̂

²
k )

α), (3.47)

and the corresponding time-dependent operator

B̂α(t) = ∑
k

(gα,k b̂α
k e−iωkαt + g∗α,k(b̂

²
k )

αeiωkαt) (3.48)

Assuming the bath in its initial state is in thermal equilibrium, we can define the system
through a collection of bosons in the mode k = 0 as

ρ̂B = |00...⟩ ⊗ ⟨00...| (3.49)

The expectation value of an operator Ô given the density matrix reads

trB(Ôρ̂B) = ∑
l

⟨Ψl | Ô |00...⟩ ⟨00...|Ψl⟩

= ⟨00...| Ô |00...⟩
(3.50)

With these properties of the bath, we calculate the memory kernel through performing the
trace as mentioned above. After some non-trivial algebra the memory kernel yields

γ′
α,β(τ) = ∑

α,k

|g̃α,k|2e−iωkατδα,β (3.51)

with the rescaled coefficient g∗α,k = gα,k

√
α and the delta-kronecker δα,β, which breaks

down the sum in Eq. (3.45). The prefactors are thus further expressed through

Γω
α = ∑

α,k

|g̃α,k|2
∫ ∞

0
dτe−i(ω−ωα,k)τ = π ∑

α,k

|g̃α,k|2δ(ω − ωα,k), (3.52)
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which resembles the density of states Jω
α (ω̃) = ∑α,k |g̃α,k|2δ(ω̃ − (ω − ωα,k)) of the bath

bosons with eigenenergy ωα,k rescaled by the energy ω of subsystem S. We rewrite the
factor and finally arrive at

Γω
α =

∫ ∞

0
dω̃ Jω

α (ω̃)δ(ω̃). (3.53)

By application of δ(ω̃) obtained through the derivation of Γω
α and reversing the eigenvalue

decomposition performed in the beginning, Eq. (3.45) yields

d

dt
ρ̂S(t) = ∑

α

Γα

[

Ŝα(t)ρ̂S(t)Ŝ
²(t)α −

1

2
{Ŝ²

α(t)Ŝα(t), ρ̂S(t)}
]

(3.54)

In this form, we see that Γα gives the amplitude of a process α, which is defined through
the subsystem operators Ŝα. The bath is traced out and its effect on the subsystem is
defined within Γα. We conclude the extensive derivation by entering the SchrÈodinger
picture, which yields on the left hand side

d

dt
ρ̂I

S(t) =
d

dt
(e

i
Åh Ĥ0tρ̂S(t)e

− i
Åh Ĥ0t)

= e
i
Åh Ĥ0t

( d

dt
ρ̂S(t)

)

e−
i
Åh Ĥ0t +

i

Åh
e

i
Åh Ĥ0t

[

Ĥ0, ρ̂S(t)
]

e−
i
Åh Ĥ0t

(3.55)

and the right hand side

Γ
[

Ŝ(t)ρ̂I
S(t)Ŝ

²(t)− 1

2
{Ŝ²(t)Ŝ(t), ρ̂I

S(t)}
]

= e
i
Åh Ĥ0tΓ

[

Ŝρ̂S(t)Ŝ
² − 1

2
{Ŝ²Ŝ, ρ̂S(t)}

]

e−
i
Åh Ĥ0t

(3.56)

of the equation. Note that the Hamiltonian ĤB commutes with the density matrix ρ̂S(t),
i.e. [ĤB, ρS(t)] = 0. Through the transformation the master equation in Lindblad form
appears as

d

dt
ρ̂(t) = − i

Åh

[

Ĥ, ρ̂(t)
]

+ ∑
α

Γα

[

Ŝαρ̂(t)Ŝ²
α −

1

2
{Ŝ²

αŜα, ρ̂(t)}
]

(3.57)

with ρ̂S(t) ≡ ρ̂(t) and ĤS ≡ Ĥ. Without dissipation and decoherence Γα = 0, we retrieve
the unitary time-evolution given by the von-Neumann equation. The Lindblad master
equation allows for the description of dissipative and decoherent processes through the
operators Ŝα, also referred to as jump operators. These operators can be chosen to fit the
desired non-unitary process such as two-body losses or decoherence.
Given an initial state, it thus possible to simulate the time-evolution of a system through
its density matrix. Numerical calculations with this first-order differential equation can
be performed through the Euler or Runge-Kutta method among others. Although many
procedures exist with which first-order differential equations can be solved it is not
guaranteed that physically conserved quantities stay conserved throughout the time
evolution. To this end we employ the simplistic fourth-order Runge-Kutta method, which
ensures the conservation of physical quantities (see Appendix A.3).
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Decoupled master equation

Within Gutzwiller mean-field theory, the density matrix factorizes into density matrices
for each subsystem C as

ρ̂(t) = ∏
C

ρ̂C(t) (3.58)

This allows us to formulate a decoupled version of the Lindblad master equation, which
is compatible with the many-body ground state calculations, since both rely on the cluster
Hamiltonians ĤC . The cluster Lindblad master equation thus reads

d

dt
ρ̂C(t) = − i

Åh

[

ĤC , ρ̂C(t)
]

+ ∑
m

Γm

[

Ŝmρ̂C(t)Ŝ
²
m − 1

2
{Ŝ²

mŜm, ρ̂C(t)}
]

+ ∑
n

Γ̃n

[

R̂nρ̂C(t)R̂²
n −

1

2
{R̂²

nR̂n, ρ̂C(t)}
]

(3.59)

Note that the first sum only describes processes within the cluster. For non-local, dissipa-
tive and decoherent processes such as two-body atom loss of atoms at a specific distance,
a mean-field treatment becomes necessary at the boundary of the cluster and thus the
additional sum arises with the decoupled operators R̂n derived through the previously
discussed approximations.

3.3.1 Quench dynamics vs. adiabatic time evolution

Although generally an initial density matrix can be freely chosen as desired, we use
the combination between the many-body ground state computation and Lindblad mas-
ter equation to simulate experimentally realistic time evolutions. To this end, we com-
pute the initial state of the corresponding cluster Hamiltonian ĤC through the iterative
Gutzwiller procedure for a given set of parameters. The resulting many-body ground
state |Ψ0⟩ forms the initial state of the system at t = 0. We then define the density matrix
ρ̂(t = 0) = |Ψ0⟩ ⟨Ψ0|. Since the many-body ground state is also a steady state if the
Hamiltonian ĤC remains unchanged or no non-unitary processes are present, dynamics
are induced in the system by changing parameters of the Hamiltonian ĤC → ĤC(t) or the
rates Γm. Here, one commonly differentiates between quench type time evolutions [230±232]
or adiabatic time evolution [233±235] based on the time scale τvar within which the parame-
ters are varied: A quench type time evolution implies a sudden change of a parameter in
the Lindblad master equation, while adiabatic time evolution involves slowly changing
parameters over time. The underlying non-trivial difference is given by the adiabatic quan-
tum theorem [236, 237], which states that a system exhibits different time evolutions based
on the speed of the changing conditions. For slow, gradual variation of the parameters the
many-body system adapts to the change and thus stays in its ground state throughout
the complete time evolution. These time-dependent processes are referred to as adiabatic
passages. At the end of the parameter ramp at t = τ the many-body state

∣

∣Ψt=0
0

〉

, which

was initially the ground state of ĤC(t = 0), evolves into the ground state
∣

∣

∣
Ψ

t=τvar
0

〉

of

ĤC(t = τvar). On the other hand, the rapid variation of the parameters does not allow
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the many-body state to evolve and thus the wave function after the quench is still in
the ground state of the initial Hamiltonian, which is an excited state of the Hamiltonian
ĤC(t = τvar). The transfer of a many-body ground state to an excited state through a
quench is called diabatic passage.
For non-dissipative, coherent unitary time evolutions, the adiabatic criteria can be formu-
lated through

τ ≫ Åh

∆ĤC
(3.60)

with ∆ĤC = ⟨Ĥ2
C⟩ − ⟨ĤC⟩2. Note that this equation takes the time-energy variant of the

Heisenberg uncertainty principle. The formulation of the adiabatic criteria has been a
milestone in experiments involving almost complete population transfer of one ground-
state to another [238, 239]. However strong losses and decoherence have been observed
to impede such transfer processes [240, 241], which lead to the formulation of a modified
adiabatic criteria for open quantum systems [242].
In our work both the quench type as well as the adiabatic time evolutions have their
relevance. For the investigation of the existence of steady or long-lived states, quench type
time evolutions are reasonable as we expect the system to reorganize and converge towards
these states. Quench type time evolutions are also suitable for some experimental setups,
where a lattice parameter is suddenly changed [243]. On the other hand, the preparation of
a desired quantum phase given an initial many-body ground state requires adiabatic time
evolution, since population of a many-body excited states can potentially lead to various
problems such as increased temperatures or enhanced losses in an experiment [244].
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Chapter 4

Rydberg-dressed bosonic quantum
gases in optical lattices

This chapter presents the main results of the thesis. Based on the knowledge gained in
Chapter 1 and Chapter 2 we investigate the phase diagrams of two models describing
Rydberg-dressed trapped bosonic quantum gases. Although both models rely on the
properties of Rydberg states they rely on different coupling schemes and thus manifest
different features. In Section 4.2 we study a extended Bose-Hubbard model with two
coherently coupled species, in which one species corresponds to the electronic ground state
and the other to the excited state. The long-range interaction between the excited atoms is
given by a repulsive van-der-Waals interaction, which is either isotropic or anisotropic
based on the adressed Rydberg state. Additionally to the geometry of the interaction, we
also study the system on different lattice geometries and investigate their influence on the
quantum phases. To complete the picture we also investigate the effect of dissipation and
decoherence on the many-body ground state. We incorporate the finite lifetime given by
the spontaneous emission and the dephasing due to blackbody radiation through time
evolution simulation and discuss whether exotic phases as many-body ground states of
the extended Bose-Hubbard model are long-lived despite the dissipation and decoherence.
In Section 4.3 we investigate another trapped bosonic quantum gas dressed with Rydberg
states. However the atoms are pairwise dressed with macrodimer states arising from the
potential wells. Coupling atoms to such states induces an interaction only felt by atoms
separated by a distance matching the molecular bond length. Compared to the previous
section we focus much more on the experimental setup behind this system, and elaborate
on how to overcome previous limitations through the macrodimer dressing. We derive
the dressed interaction and analyze its strength in dependence on various aspects of the
addressed macrodimer states. After establishing the range of achievable experimental
parameters we analyze the many-body ground state of a macrodimer-dressed bosonic
quantum gas through the appropriate extended Bose-Hubbard model. Based on the
corresponding phase diagrams we establish a way to experimentally prepare macrodimer-
dressed systems. We elaborate on how to experimentally access the SS regime through an
adiabatic time evolution even in the presence of dissipation and decoherence.
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Chapter 4: Rydberg-dressed bosonic quantum gases in optical lattices

4.1 Introduction

Trapped quantum gases coupled to Rydberg states have been in the focus of many dif-
ferent studies, either as the subject itself or as a tool to simulate and study phenomena
otherwise inaccessible. However most of these study do not rely on the condensation of
the system and thus work in the so-called frozen limit, which is achieved by working in
very deep lattices [245±247]. The atoms are thus localized on each site and suitable for the
investigation of spin physics or for the realization of quantum gates.
While it is known that crystalline structures can emerged in such frozen systems, it is im-
portant to investigate the physics that lay beyond the frozen limit and study the interplay
between hopping processes and long-range interaction.

4.2 Rydberg-dressed atoms in two-dimensional lattices

The most general Hamiltonian, which describes a many-body system of atoms trapped in
a lattice coupled to a Rydberg state, is given by

Ĥ = ∑
ν∈{g,e}

(

− µν ∑
i

n̂ν
i − Jν ∑

⟨ij⟩
((b̂ν

i )
²b̂ν

j + (b̂ν
j )

²b̂ν
i ) +

Uν

2 ∑
i

n̂ν
i (n̂

ν
i − 1)

)

− ∆ ∑
i

n̂e
i +

Ω

2 ∑
i

((b̂
g
i )

²b̂e
i + (b̂e

i )
²b̂

g
i ) + ∑

i
∑
j ̸=i

C6

n̂e
i n̂

e
j

R6
ij

(4.1)

It consists of two Bose-Hubbard models (see Eq. (1.77)) for each species ν ∈ {g, e}, i.e.
the electronic ground and excited state, with their corresponding chemical potential µν,
the hopping amplitudes Jν and the on-site interactions Uν. Additionally it contains the
coupling Hamiltonian (see Eq. (2.57)), which includes the inter-species coupling through
the Rabi frequency Ω, the detuning of the excited state ∆ and the van-der-Waals interaction
C6. The Hamiltonian is treated in the grand-canonical ensemble and thus we do not fix
or physically limit the number of atoms in the system. Within the Cluster Gutzwiller
approach with a cluster consisting of N sites and a truncation of the Fock space defined
through the cut-offs sg and se for the ground and excited state respectively, the dimension
of the Hilbert space is given by dim(H) = (sgse)N . The rapid growth with increasing
cluster size is problematic for the Hamiltonian, as we expect the van-der-Waals interaction
to lead to crystalline structures with large superlattices. Since computation with clusters
matching these superlattices is not feasible, we opt for the single-site Gutzwiller approach
in this section. The corresponding single-site Hamiltonian derived through the mean-field
approximations introduced in 3.2.1 reads

Ĥi = ∑
ν∈{g,e}

(

− µνn̂ν
i − Jν((b̂

ν
i )

²ξν
i + b̂ν

i (ξ
ν
i )

∗) +
Uν

2
n̂ν

i (n̂
ν
i − 1)

)

− ∆n̂e
i +

Ω

2
((b̂

g
i )

²b̂e
i + (b̂e

i )
²b̂

g
i ) + n̂e

i ηi + E(ξi, νi)

(4.2)
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with the energy off-set E(ξi, νi). The van-der-Waals interaction may lead to inhomoge-
neous phases and thus the computation of the ground state through an iterative procedure
on a single site is not sufficient to provide the complete many-body ground state of the
system. We therefore define a superlattice, iteratively compute the ground state of all sites
and hereby determine the many-body ground state. Since the chosen superlattice might
not be preferred for a given set of Hamiltonian parameters, we repeat this procedure with
many, unique superlattice unit cells and select the true ground state through comparison
of their many-body ground state energy (see Appendix A.2).
Although the amount of parameters may be overwhelming, some are set by the intrinsic
properties of the coherent coupling and the Rydberg states themselves. We first assume
the coupling to dictate the relevant timescales of the Rydberg state, and thus expect the
Rydberg states to be essentially frozen in the system. This implies a vanishing hopping
amplitude of the excited state, i.e. Je/Ω = 0. Additionally beyond the weak dressing
regime, coupling to Rydberg states can lead to the formation of molecules composed of
at least one Rydberg-excited atom due to its large scattering cross section. In an optical
lattice these molecules emerge when the two involved atoms are on the same site. They
are not trapped and would be immediately lost upon formation. According to the Quan-
tum Zeno effect these strong losses are heavily impeded, the system exhibits a hard-core
behavior between the atoms potentially involved in the molecular formation [248±251].
The hard-core constraint can be modeled either by appropriate truncation of the Fock
space or through the limits Uge, Ue → ∞.

4.2.1 Many-body ground state phase diagrams

For the subsequent calculations we set the fixed parameters of the Hamiltonian to Ug/Ω =
0.1, Uge/Ω = 100 and Ue/Ω = 1000. The chemical potentials are merely a theoretical
tool to control the filling of both species, which we set µg = µe ≡ µ. For the sake of
simplicity, we denote the ground state hopping amplitude as Jg ≡ J. We consider isotropic
long-range interaction obtained through coupling the electronic ground state to a Rydberg
state |e⟩ = |nS1/2⟩ until mentioned otherwise. The corresponding C6-coefficient is then
independent of any angle and can be set to a constant. Here we choose C6/Ω = 100 unless
mentioned otherwise.
In order to obtain the following phase diagrams we computed spatially averaged order
parameters and the underlying superlattice unit cell area of the many-body ground states
resulting from the Hamiltonian Eq. (4.1). While in this chapter only the phase boundaries
are shown complementary phase diagrams of these quantities are displayed and discussed
in Appendix B.

Comparison to the Bose-Hubbard model

We first compute the many-body ground states of the Hamiltonian within the range
µ/Ug ∈ [−1, 3] and the hopping amplitude zJ/Ug ∈ [0, 0.1] at fixed detuning ∆/Ω = 2.
The resulting phase diagram exhibits features with striking similarity to the ones of the
plain Bose-Hubbard model, although all regimes are replaced by their broken lattice
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Figure 4.1: J − µ phase diagram and exemplary quantum phases for isotropic van-der-
Waals interaction on a two-dimensional square lattice at Je/Ω = 0, Ug/Ω = 0.1, Uge/Ω =
100, Ue/Ω = 1000, ∆/Ω = 2 and C6/Ω = 100. The shape of the phase boundary
resembles the one obtained for the Bose-Hubbard model (see Fig. 1.10). However the
MI lobes, the vacuum regime and SF regime are replaced by DW II lobes, a DW I regime
and a SS regime respectively. The indices denote the superlattice unit cell area ASL. The
crystalline structure of these phases does not vary throughout the phase diagram, which
is a consequence of fixed detuning and long-range interaction strength.

translational symmetry counterparts (see Fig. 4.1). The lobe-shaped phase transitions are
present, although the MI phases and the vacuum are exchanged with DW phases and
the SF regime becomes a SS regime. Through the local admixture of both the electronic
ground and the excited state of the DW phases, we find several interesting aspects: First,
all phases possess the same crystalline structure, which is caused by the fixed detuning
and the long-range interaction strength. Since neither the average filling of the excited
state nor the van-der-Waals interaction are varied, the system exhibits only one crystalline
structure (see Fig. 4.2). Although this is true within the parameter space considered, it is
possible that larger hopping amplitudes or chemical potential lead to a larger Rydberg
admixture due to the coherent coupling and thus force the system to change its crystalline
structure. Additionally, the DW phases exhibit two type of spatial distributions of the
electronic ground and Rydberg state admixtures. In phases of the first type (denoted by II)
the maximum value of both admixtures are found on the same sites, while the other sites
have weak admixtures and generally have a lower occupation. For a positive detuning
∆ > 0, these phases are found in the negative chemical potential regime µ < 0. Positive
detunings lead to a finite average filling of the excited state, which then induces a finite
occupation of the electronic ground state due to the coherent coupling despite the negative
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Figure 4.2: Exemplary DW and SS phases of the regimes found in the phase diagram
displayed in figure 4.1. Due to the fixed detuning and long-range interaction we observe
only one crystalline structure best described by a superlattice unit cell area ASL = 8.
We find two types of the spatial modulation of the electronic ground and Rydberg state
admixture, referred to as type I and type II.

chemical potential. On the other hand for positive chemical potentials µ > 0 phases of the
second type (denoted by I) arise, which have complementary distribution of the average
filling. This means that the sites with large admixture of one species usually possess a
small admixture of the other species. Usually the sites involved in the formation of the
crystalline structure have larger excited state admixture, while the sites inbetween are
filled with atoms in their ground state.
For finite hopping amplitudes both the DW I and II phases melt into a SS II regime with
identical crystalline structure. Similar to the Bose-Hubbard model the phase transition
between the insulating and condensed regime is of second-order [252].

We now compute the phase diagram obtained through variation of experimentally directly
tunable parameters. Since we expect the competition between the hopping process and
the long-range interaction to give rise to interesting quantum phases, we vary the hopping
amplitude J of the electronic ground state and the detuning ∆, computate the respective
many-body ground state and determine the corresponding ground state phase diagrams.
Although it appears to be more intuitive to vary the long-range interaction strength
through the C6-coefficient, we choose to vary the detuning because it is an experimentally
very well tunable parameter. Furthermore, the detuning appears in the Hamiltonian as an
additional chemical potential of the excited state, and we can thus control the interaction
strength through the average filling of the excited state. However it is always possible to
choose the magnitude of the C6-coefficient (see Section 2.3).
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Frozen limit

We first consider the frozen limit (J = 0). We set the chemical potential to µ/Ω = −0.25.
Within the frozen limit and due to the large on-site interactions a large filling is generally
prohibited and the system opts for a unit filling of the lattice. Given that at most one atom
occupies every site the only relevant parameters for the system are the chemical potential
µ, the detuning ∆, the Rabi frequency Ω and the C6-coefficient. However due to negative
chemical potential and the large repulsive, long-range interaction substantial occupation
of the system is energetically unfavorable. The detuning and the chemical potential thus
become the decisive parameters and it is possible to define a critical detuning ∆c/Ω for
which the system is either occupied or in a vacuum state. Its value can be obtained
analytically by considering the energy of a single atom within the above-mentioned
condition. Through the corresponding Hamiltonian we obtain the energy

ϵ+ = −µ − ∆ +
√

∆2 + Ω2

2
(4.3)

The transition between an occupied and vacuum state is then given by a vanishing energy
shift, i.e. when the adding or removing of an atom is associated to no energy cost. For ϵ+
we can define the critical detuning as

∆c/Ω =
1 − 4(µ/Ω)2

4(µ/Ω)
(4.4)

For the given chemical potential µ/Ω = −0.25 we obtain the critical detuning ∆c/Ω =
−0.75. Now it is possible to define a range of relevant detunings for which we determine
the many-body ground states and so we choose (∆ − ∆c)/Ω ∈ [0, 10].

We obtain a manifold of crystalline DW II phases, that we characterize through their
superlattice unit cell area ASL and the average filling Ånν of either species ν. These DW
phases consist of sparsely distributed atoms forming the crystalline structure with either
large or small excited state admixture. The sites inbetween these atoms are empty. The
superlattice unit cell area, which essentially quantifies how sparsely the atoms are packed,
increases as the detuning goes towards the transition to the vacuum state (see Fig. 4.3
(a)). Its scaling with the detuning can be analytically derived from the energy shift caused
by the van-der-Waals interaction. If we assume isotropic long-range interaction to lead
to equidistant atoms, we can define the average interatomic distance in a d-dimensional
system as Rd

a ∼ ASL. Through the definition of the average order parameters, we can
relate the average filling to the distance Rd

a ∼ Ån−1. Due to the characteristic decay of the
van-der-Waals interaction with the distance, the energy gain of having an atom in the
system is then given by

ϵvdW ∼ Ån
∫ Ra

∞
dR

Rd−1

R6
∝ ÅnRd−6

a ∼ Ån6/d (4.5)

Since this energy has to match the energy gain of adding the atom through the detuning,
i.e. ϵ+ ≈ ϵvdW, we obtain the scaling of the superlattice unit cell area with the detuning
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Figure 4.3: (a) Devil’s staircase of DW II phases and (b) electronic ground state (blue
markers) and excited state admixtures (green markers) of the atoms involved in the
formation of the crystalline structure determined versus the detuning ∆/Ω at J/Ω = 0,
Je/Ω = 0, Ug/Ω = 0.1, Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω ∈
[10, 100, 1000]. The devil’s staircase exhibits larger superlattice unit cells as the detuning
grows closer to its critical value ∆c. The superlattice unit cell area also increases with
stronger long-range interactions. On the other hand, the admixtures of both electronic
states do not depend on the long-range interaction strength. At large, positive detunings
the atoms are mostly in the excited state, i.e. ne = 1, while for decreasing detunings the
excited state admixture diminishes and converges towards a finite value.

ASL ∝ (∆ − ∆c)−d/6. We confirm the scaling in our two-dimensional system d = 2 through
an appropriate fit of the results.
Apart from increasing the interatomic distance, the system can also reduce its average
Rydberg admixture by decreasing the Rydberg admixture of each atom individually. We
plot the electronic ground state ng and Rydberg state admixture ne of the atoms involved
in the crystalline structure (see Fig. 4.3 (b)). In the regime of very large detunings the
atoms are all preferably in the excited state, i.e. ne = 1 for ∆/Ω → ∞. The long-range
interaction is energetically costly, but the large detuning compensates it. As anticipated,
the ratio between electronic ground and excited state grows as the detuning decreases,
however after an initial decrease the Rydberg admixture converges towards a constant.
This is caused by the coherent coupling, which prohibits a vanishing Rydberg admixture
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Figure 4.4: Exemplary DW phases, which form the devil’s staircase displayed in figure 4.1
for C6/Ω = 100. Decreasing the detuning ∆/Ω leads to a smaller overall admixture of the
Rydberg state to the system. As the detuning tends to its critical value ∆0 the crystalline
structures appearing become more sparse, while the Rydberg admixture of the occupied
site converges to a finite value. Reprinted figure adapted with permission from [253].
© 2022 by the American Physical Society.

in the system.

These results are in very good agreement with previous studies on crystalline phases
of Rydberg-dressed systems [182]. In these works the sequence of DW phases with
monotonously decreasing superlattice unit cell area were coined as devil’s staircases [254±
256].

Beyond the frozen limit

We now investigate the many-body ground states beyond the frozen limit and compute the
corresponding phase diagram. We therefore vary the hopping amplitude zJ/Ω ∈ [0, 0.2]
additionally to the detuning ∆/Ω ∈ [−2, 10]. The phase diagram exhibits four regimes,
namely a DW, a SS, a SF and a vacuum regime (see Fig. 4.5). The analytic description
of the phase boundary between the SF and vacuum regimes can be obtained in a similar
fashion as in Eq. (4.3). The energy shift of adding a delocalized atom to the system is
given by the hopping amplitude Jg, the chemical potential µ, the detuning ∆ and the Rabi
frequency Ω, and within the mean-field approximation the critical value of the hopping
amplitude for the vacuum phase transition reads

zJc =
∆2 + Ω2 − (2µ + ∆)2

4(µ + ∆)
(4.6)
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Figure 4.5: zJ − ∆ phase diagram and exemplary quantum phases for isotropic van-
der-Waals interaction on a two-dimensional square lattice at Je/Ω = 0, Ug/Ω = 0.1,
Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω = 100. We obtain a DW and a SS
regime consisting of different phases with unique superlattice unit cells. Furthermore
we find a SF and a vacuum regime. The red line represents the analytically obtained
SF-vac phase boundary given by Eq. (4.6). The subscript denotes the superlattice unit cell
area ASL. Note that we find two SS phases with unit cell area ASL = 8. Reprinted figure
adapted with permission from [257]. © 2019 by the American Physical Society.

with the coordination number z. In our two-dimensional square lattice, i.e. for z = 4, the
numerically obtained phase transition is remarkably close to the derived analytic formula.

The devil’s staircase of DW II phases does not immediately vanish beyond the frozen
limit and extends to a finite hopping amplitude. The transition of sparse DW phases with
weak Rydberg admixture to a condensed phase is obtained at lower hopping amplitudes,
while denser crystalline structures in the regime of high detunings require larger hopping
amplitudes. Beyond the critical value the DW II phases condense but keep their crystalline
structure, giving rise to a SS regime with similar structure. Similar to the distribution of
DW phases within the devil’s staircase, reducing the detuning towards a critical value
within the SS regime leads to a manifold of SS II phases with growing superlattice unit
cell area. However close to the phase transition to the SF regime a SS I phase emerges.
Additionally its superlattice unit cell area is the smallest possible and the phase exhibits
a checkerboard-type spatial modulation. Although the chemical potential is negative,
the moderate hopping amplitudes allow for a substantial admixture of the electronic
ground state. For large enough hopping amplitudes the homogeneous SF phase becomes
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Figure 4.6: Exemplary phases of the SS regime found in the phase diagram displayed
in figure 4.5. Decreasing the detuning ∆/Ω from the far off-resonant regime leads to
SS I phases with increasing superlattice unit cell areas. Reprinted figure adapted with
permission from [253]. © 2022 by the American Physical Society.

energetically more favorable and thus the SS I phase vanishes. The phase boundary
between the SS and the SF regime shifts to higher detunings with increasing hopping
amplitude due to the competition between hopping and long-range interaction.

Previous theoretical studies on weakly Rydberg-dressed systems beyond the frozen limit
have predicted a so-called two-stage melting of the DW phases through increase of the
hopping [258±260]. In these works the van-der-Waals interaction was simplified to nearest-
neighbor interaction, which is a reasonable approximation for weak dressing and therefore
weak long-range interaction. Thus the only crystalline structure that can potentially arise
from the interaction is checkerboard-ordered. By increasing the hopping amplitude the
checkerboard DW phase would melt into a checkerboard SS phase, i.e. start to exhibit finite
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Figure 4.7: Average condensate order parameter of the electronic ground state (blue line)
and excited state (red line) at fixed hopping amplitude J/Ω = 0.13 (upper diagram) and
fixed detuning ∆/Ω = 2.5 (lower diagram) at J − ∆ phase diagram obtained for Je/Ω = 0,
Ug/Ω = 0.1, Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω = 100. We identify
first order phase transitions through discontinuities (solid vertical line) and second order
phase transitions through kinks (dashed vertical line) of the order parameters.

condensation but retain its crystalline structure. Further increasing the hopping amplitude
then leads to the second melting from the SS phase into the homogeneous SF phase. In our
case, we find a modification to the two-stage melting due to our full implementation of the
van-der-Waals interaction: Given an initial DW phase within the frozen limit, the system
undergoes a transition to the corresponding SS phase with identical crystalline structure,
which represents the first melting. However before the second melting to a SF phase,
the system undergoes several phase transitions to SS phases with larger superlattice unit
cell area (see Fig. 4.7). The distribution of the atoms with larger excited state admixture
becomes more and more sparse, while the admixture itself becomes weaker, until the
system finally transitions into a SF phase. The phase transitions obtained are both first-
and second-order. Similar to the previously obtained results, we find a second-order
phase transition between the DW and the SS as only finite condensation distinguishes
both phases at the boundary. However all SS phases within the regime are separated by
first-order phase transitions. This is due to the discrete values of the superlattice unit
cell areas. Since the system reorders at the phase transitions, we observe discontinuities
of the average order parameters. In the end the transition from the last SS phase to the
SF phase is again of second-order. Upon increasing the hopping amplitude the spatial
distribution of the both admixtures vanishes and the observables on all site converge to
the same values. Furthermore the admixture of the excited state becomes marginal such

107



Chapter 4: Rydberg-dressed bosonic quantum gases in optical lattices

Figure 4.8: zJ − ∆ phase diagram and exemplary quantum phases for isotropic van-der-
Waals interaction on a two-dimensional triangular lattice at Je/Ω = 0, Ug/Ω = 0.1,
Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω = 100. The phase diagram strongly
resembles the one obtained for a square lattice (see Fig. 4.5), although the phase boundary
between the SS and the SF regime is shifted towards positive detunings at intermediate
hopping amplitudes. Reprinted figure adapted with permission from [261]. © 2019 by the
American Physical Society.

that the long-range interaction is not substantial enough for the emergence of a crystalline
structure.

We conclude that Rydberg-dressed quantum systems trapped in a two-dimensional square
optical lattice with isotropic van-der-Waals interaction exhibit various phase regimes and
interesting non-trivial phenomenon within the considered parameter space. In order to
obtain further understanding of the competition of the various processes in the system,
we investigate in the following the role of the lattice geometry by performing calculations
on a two-dimensional triangular lattice. Furthermore, we compute the phase diagram on
the square lattice but with anisotropic van-der-Waals interaction.

Importance of the lattice geometry

Computation of the phase diagram on the triangular lattice reveals similar features to its
square lattice counterpart (see Fig. 4.8). The DW regime exhibits various DW II phases with
distinct crystalline structures with corresponding SS II phase beyond a critical hopping
amplitude. At large amplitudes the slope of the phase boundary between SS and SF regime
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Figure 4.9: Exemplary phases of the DW regime found in the phase diagram displayed
in figure 4.8. Similar to the phase diagram computed on a square lattice the DW phases
on the triangular lattice are composed of equidistant atoms and the interatomic distance
becomes larger as the detuning decreases ∆/Ω.

is very similar to the one in the phase diagram for the square lattice. However the main,
albeit small, difference is found within the SS I phase at intermediate hopping amplitudes.
Within the corresponding parameter regime the system with isotropic interaction usually
exhibits its smallest, non-trivial crystalline structure of equidistant atoms with interatomic
distance d/alat = 2. On the square lattice this corresponds to the checkerboard-type
ordering with Amin

SL = 2, while on the triangular lattice the smallest, non-trivial crystalline
structure possesses the superlattice unit cell area Amin

SL = 3. Reducing the detuning in the
SS I phase diminishes the excited state admixture and thus the system favors crystalline
structures with smaller superlattice unit cell area. Therefore we find the checkerboard-type
SS I phase at detunings, where on the triangular lattice the system prefers to be a SF.

This was to be expected, since deep within the DW and SS regime at large, positive
detunings the large admixture of the excited state leads to interatomic distances far bigger
than the optical lattice constant, i.e. d ≫ alat, while close to the SF phase transition at
intermediate hoppings the interatomic distance becomes comparable, i.e. d ∼ alat. At
larger hopping amplitudes the SS phases close to the SS transition possess big superlattice
unit cells and thus the phase transition obtained on the square lattice is recovered.

We conclude that the geometry of the triangular lattice only plays a role at intermediate
hopping amplitudes, where the lattice symmetry becomes important due to the smaller
interatomic distances. We furthermore gather that the phase transition at large detunings
and hopping amplitudes is solely given by the geometry of the interaction. The latter
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Figure 4.10: Exemplary phases of the SS regime found in the phase diagram displayed
in figure 4.8. While most phases within this regime are of type I, we find a small region
in which the system prefers a densely packed SS II phase with superlattice unit cell area
ASL = 3, which represents the smallest possible inhomogeneous density modulation.

point is further established in the following, where we investigate the phase diagrams
obatined with anistropic interaction.

Importance of the interaction geometry

Through coherent coupling to an excited state |e⟩ = |nP1/2⟩ the CP
6 (ϑ, ϑ′)-coefficient

becomes angular dependent and the Rydberg-dressing yields anisotropic long-range in-
teraction. However since atoms with ℓ ̸= 0 possess a non-trivial angular wave function,
an orientation can be attributed to them. The van-der-Waals interaction between two
atoms then depends on the relative angle between the distance vector and both orienta-
tion axes. In principle, it would be possible to use then orientation of the atoms as an
additional degree of freedom, through which the energy of the many-body ground state
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Figure 4.11: J − ∆ phase diagram and exemplary quantum phases for anisotropic van-der-
Waals interaction on a two-dimensional square lattice at ϑ0 = 0, Je/Ω = 0, Ug/Ω = 0.1,
Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω = 100. The crystalline structures
of the DW and SS phases are striped and differ from one another through the distance
between the stripes. The phase boundary between the SS and the SF at large hopping
amplitudes is different from the one obtained for isotropic interaction. Reprinted figure
adapted with permission from [253]. © 2022 by the American Physical Society.

can be further lowered. But this is unnecessary, since it vastly increases the necessary
computational power required for the numerical procedure and also is experimentally
irrelevant, since the orientation of all atoms can be easily controlled through an external
magnetic field [262±264]. The two atoms the orient themselves along the field, which
reduces the degrees of freedom to only one relative angle. We thus write the corresponding
CP

6 (ϑ)-coefficient as CP
6 (ϑ) = C0

6sin4(ϑ) + C1
6 , where C1

6 ≪ C0
6 is the strength of the small

residual, isotropic interaction. Note that although there is an additional angle φ, we can
omit it since we perform our calculations on the two-dimensional lattice.

If we assume the magnetic field B = B · êB to be in plane, we can further define the
orientation of the magnetic field through êB · êx = (cos(ϑ0), sin(ϑ0)) with the relative
angle ϑ0 to the x-axis. We therefore gain an additional tunable parameter, through which
we redefine the angle between both atoms as ϑ → ϑ − ϑ0 (see Section 2.3). Due to the
angular dependence of the van-der-Waals interaction, we expect crystalline structures of
stripes parallel to the magnetic field to arise. The rotational symmetry of the optical lattice
allows us to restrict the relative angle ϑ0 ∈ [0, π/2) of the magnetic field.
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Figure 4.12: Exemplary phases of the DW regime found in the phase diagram displayed
in figure 4.11. The crystalline structures are defined by stripes of atoms, which distance
is given by the detuning ∆/Ω, due to the anisotropic long-range interaction.Reprinted
figure adapted with permission from [253]. © 2022 by the American Physical Society.

In the subsequent calculations we keep the parameters Ug/Ω = 0.1, Uge/Ω = 100,
Ue/Ω = 1000, µ/Ω = −0.25 and use the van-der-Waals interaction strengths C0

6/Ω = 100
and C1

6/Ω = 1. We for now set the relative angle ϑ0 = 0 obtained through application of
a magnetic field along the x-axis. We compute the many-body ground states within the
parameter space spanned by J/Ω ∈ [0, 0.2] and ∆/Ω ∈ [−2, 10]. The resulting phase dia-
gram consisting of various striped phases is very similar to the one obtained for isotropic
interaction, albeit less phases with distinct crystalline structure appear (see Fig. 4.11). This
is purely a geometric effect caused by the anisotropy of the van-der-Waals interaction. As
previously found isotropic long-range interaction leads to crystalline structures composed
of equidistant atoms with interatomic distances d/alat = {1,

√
2, 2,

√
5,
√

8, ...}. On the
other hand, striped crystalline structures emerging due to anisotropic interaction are only
described by the stripe distances d⊥/alat = {1, 2, ...}, while the distance between the atoms
within the stripe is typically d∥/alat = 1. The distance d∥ however can become larger in the
frozen limit close to the transition to the vacuum regime. Within the devil’s staircase for a
positive, vanishing (∆ − ∆0) ≳ 0 the residual isotropic interaction given by C1

6 becomes
visible and gives rise to crystalline structures with d∥/alat > 1, although d⊥ ≫ d∥. Such
crystalline phases are not visible beyond the frozen limit as phases close to the vacuum
transition in the frozen limit are highly susceptible and immediately condense at a finite
hopping amplitude.

Despite the obvious similarities, such as the appearance of the two-stage melting with
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Figure 4.13: Exemplary phases of the SS regime found in the phase diagram displayed in
figure 4.11. We obtain two SS phases of different types with identical crystalline structure,
separated by SS I phases with larger superlattice unit cell area. Reprinted figure adapted
with permission from [253]. © 2022 by the American Physical Society.

intermediate first-order transitions inbetween both melting points and the increasing
superlattice unit cell area for decreasing detuning, an important difference appears in the
SS regime. The phase boundary between the SS and the SF regime extends to larger hop-
ping amplitudes compared to the boundary obtained for isotropic long-range interaction.
Furthermore, the SS I phase does not vanish beyond a certain hopping amplitude, which
we attribute to the striped crystalline structure of the SS regime. Isotropic long-range
interaction, which favors crystallization of the system, is in direct competition to the delo-
calizing hopping process. This is especially apparent in the checkerboard-order SS I phase,
where the nearest-neighbor hopping is impeded due to the dense crystalline structure
and thus at large enough hopping amplitudes it becomes energetically more favorable to
discard the crystalline structure of the system and completely condense, hence the phase
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Figure 4.14: zJ − ∆ phase diagram and exemplary quantum phases for tilted anisotropic
van-der-Waals interaction on a two-dimensional square lattice at ϑ0 = π/4, Je/Ω = 0,
Ug/Ω = 0.1, Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25 and C6/Ω = 100. Due to
the tilted anisotropic interaction the inhomogeneous phases exhibit diagonal stripes.
Compared to all previous phase diagrams, the characteristic SS I phase at the phase
boundary to the SF regime at intermediate hopping amplitudes is missing. Reprinted
figure adapted with permission from [253]. © 2022 by the American Physical Society.

transition from the SS I phase to the SF regime. The anisotropic case, however, possesses
a highly non-trivial property beneficial for the coexistence between condensation and
spatial modulation: The direct competition between long-range interaction and hopping
depends on the relative angle of the atoms. Since the interaction is minimal along the
orientiation axis of the magnetic field, the atoms form striped structures and the hopping
process between the stripes is quasi unimpaired. The only present damping appears
through the atoms occupying the stripes, which are usually frozen due to their larger
excited state admixture. Although the atoms inbetween the stripes are mostly in their
electronic ground state the coherent coupling leads to a small, but finite admixture of the
excited state through which the long-range interaction impedes the coherent flow of atoms
to a certain extent. Since the system chooses its many-body ground states such that the
long-range interaction and hopping process are not in direct competition, we observe the
extended SS regime.

For a magnetic field oriented along θ0 = π/4, the anisotropic interaction is tilted and it is
energetically more favorable to form stripes of atoms with large excited state admixture
along the diagonals of the system. While the corresponding phase diagram is not too
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Figure 4.15: Exemplary phases of the DW regime found in the phase diagram displayed
in figure 4.11. Due to the tilt of the anisotropic long-range interaction DW phases with
crystalline structures composed of diagonal stripes becomes energetically more favorable.
Reprinted figure adapted with permission from [253]. © 2022 by the American Physical
Society.

different from the previously discussed again, the main difference is found within the
SS regime (see Fig. 4.14). Interestingly the SS I phase is missing in this regime and the
phase transition between the SS and SF regime is identical to the one for θ0 = 0 if we omit
the SS I phase there. The lack of SS I phase is due to the increased interatomic distances
d∥/lat =

√
2 within the stripes and the hopping process, which is only nearest neighbor.

It is therefore energetically unfavorable to have a SS I phase for the tilted anisotropic
interaction, especially since at smaller and negative detunings the crystalline structures of
the previously obtained SS I phases tend to have a dense distribution of the atoms with
larger excited-state admixture.

From comparison of all phase diagrams we see that the slope of the SS-SF phase boundary
only depends on the type of interaction (see Fig. 4.17). Furthermore in the case of isotropic
interaction the phase boundary between the homogeneous and inhomogeneous regimes
interaction at vanishing hopping amplitudes (zJ/Ω ≈ 0) and large hopping amplitudes
(zJ/Ω ≫ 1) appears to be independent on the lattice geometry. In these limits the system
tends to exhibit sparse distribution of Rydberg-dressed atoms, which make up the crys-
talline structure of the many-body ground state, and thus the interatomic distances are
typically much larger than the optical lattice constant. The geometry of the lattice hereby
becomes irrelevant and the phase boundaries overlap.
Additionally we find that the DW-SS phase boundary only slightly depends on the inter-
action and lattice geometry. The boundaries become more alike as the detuning tends to
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Figure 4.16: Exemplary phases of the SS regime found in the phase diagram displayed in
figure 4.11. All obtained SS phases are of type I and no type II SS phase borders the SF
regime. Reprinted figure adapted with permission from [253]. © 2022 by the American
Physical Society.

its critical value.

4.2.2 Time evolution simulation

We now analyze the role of dissipation and decoherence on phases with finite excited
state admixture, more specifically the DW and SS phases. Since their crystalline structure
arises through the repulsive long-range interaction between Rydberg atoms with finite
lifetime, it is possible that the experimentally relevant time scales for the observation of
density modulated states is thus strongly inhibited. We therefore include the finite lifetime
and blackbody radiation induced dephasing [265] in our system, which we incorporate
in its description through the Lindblad master equation (see Section 3.3). The transition
from the excited state to the electronic ground state is given by the Lindblad operator
L̂sp = ∑i

√
Γ(b̂

g
i )

²b̂e
i with the decay rate Γ. The operator corresponding to the dephasing

reads L̂dep = ∑i

√
κn̂e

i , since it is induced through additional interactions between the
excited state and energetically close Rydberg states. Thus κ quantifies the speed with
which these Rydberg states are populated. Since both these processes lead to dissipation
and decoherence, the goal of this section is to estimate their magnitude in dependence on
the Γ and κ. Note that we do not consider collective mechanism such as the avalanche
dephasing in the subsequent calculations.
We expect the non-unitary processes to affect the system in two ways: First the dissipation
leads to an overall decreasing excited state admixture and therefore potentially the loss of
a crystalline structure. Additionally the decoherence induces a depletion of the condensate
order parameter, since condensation occurs when atoms are phase coherent.
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Figure 4.17: The phase boundaries of all previously determined J − ∆ phase diagrams
at ϑ0 = π/4, Je/Ω = 0, Ug/Ω = 0.1, Uge/Ω = 100, Ue/Ω = 1000, µ/Ω = −0.25
and C6/Ω = 100. The average position of the phase boundary between the DW and
SS regime does not seem to depend on the lattice or interaction geometry, however we
find a more substantial difference between all results with respect to the SS-SF transition.
Non-tilted anisotropic interaction yields the largest SS regime. Reprinted figure adapted
with permission from [253]. © 2022 by the American Physical Society.

The simplest way to assess the influence of dissipation and decoherence on the system
is through quench-type time evolution (see Section 3.3.1). Using a many-body ground
state of the Hamiltonian Eq. (4.1) as an initial state, we suddenly switch on the dissipative
processes at a time t = 0 and simulate the time evolution, during which the local order
parameters are computed. For the sake of simplicity we limit the time evolution simula-
tion to an initial DW8 I and SS8 II obtained for isotropic interaction a square lattice. The
parameters of the Hamiltonians in these calculations are the ones used to obtain the phase
diagram in Fig. 4.5. We define the ranges of the decay rate as Γ/Ω ∈ [0.01, 20] and of the
dephasing rate as κ/Ω ∈ [0.01, 20], and perform time evolutions until a time Ωtmax = 40.
By investigating the time evolution of an initial DW phase it is possible to determine the
magnitude of the dissipation caused by both processes considered here. As the condensate
order parameter of either electronic state is vanishing in the DW regime and particle
conservation holds throughout the time evolution, i.e. ∑i,ν nν

i (t) = N ∀t, the we can
reduce complexity of the problem to the analysis of the total excited state occupation
number ne = ∑i∈SL ni

e in the superlattice. For a DW phase this essentially represents the
excited state occupation number on the occupied sites of the system.
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Figure 4.18: Total excited state occupation number ne of an initial DW8 II phase for
varying decay rate Γ (a) and dephasing rate κ (b). The opacity of the line represents the
strength of the active non-unitary process. The spontaneous emission leads to the almost
complete loss of admixture of the Rydberg state, while the excited state occupation number
converges towards a finite value through the dephasing independently on its rate.

The DW phase is obtained for a detuning ∆/Ω = 2.5 in the frozen limit. At a vanishing de-
phasing rate we see that a finite decay rate induces a decay of the excited state occupation
number (see Fig. 4.18 (a)). Although the system reaches a steady state with finite ne

i , its
value converges towards zero as the decay rate increases. Additionally an underlying os-
cillation with period T ≈ Ω/2 emerges, which disappears once the steady state is reached.
We therefore believe that the steady state and its associated finite excited state occupation
number is defined through the competition between spontaneous emission and coherent
coupling. On the other hand if we subject the system only to dephasing processes we do
not observe such a substantial reduction of the excited state admixture (see Fig. 4.18 (b)).
Since the dephasing is caused by additional interactions as mentioned before it acts as
an additional chemical potential for the excited state and thus causes the depletion. The
dephasing rate defines how fast the excited state occupation number decreases, however
we find that the steady state is always defined by ne = 0.5. The time until the steady state
is reached decreases as the dephasing rate becomes larger and surprisingly increases again
beyond a certain value. The slowing down of the dynamics due to substantial enough
dephasing rates is consistent to the Quantum-Zeno effect [248±251].
We now compute the time evolution of an initial SS phase obtained for a detuning
∆/Ω = 2.5 and hopping amplitude zJ/Ω = 0.2. Additionally to the total excited state oc-
cuption number we plot the total ground state condensate order parameter ϕg = ∑i∈SL ϕ

g
i .

For only spontaneous emission we observe a declining ground state order parameter
although not vanishing within the chosen time limit (see Fig.4.19 (a)). The excited state
occupation number exhibits a similar behavior compared to the ones obtained for an
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Figure 4.19: Total ground state condensate order parameter ϕg and total excited state
occupation number ne of an initial SS8 I phase for varying decay rate Γ (a) and dephasing
rate κ (b). The opacity of the line represents the strength of the active non-unitary process.

initial DW phase(see Fig.4.19 (c)). For intermediate and large decay rates however the
system exhibits fast dynamics followed by a time evolution in which the total excited
state occupation number fluctuates but does not decrease. The value around which ne

fluctuates is larger than the value of the steady states corresponding to the initial DW
phase and the strength of the fluctuation decreases with larger decay rates.

In order to understand how the finite condensate order parameter contributes to this phe-
nomenon we depict the local ground and excited state occupation numbers throughout
the time evolution for Γ/Ω = 2 and κ/Ω = 0 (see Fig. 4.20). Due to the finite hopping
amplitude the atoms are able to redistribute within the lattice. In combination with the
decreasing excited state admixture the atoms exhibit highly non-trivial dynamics in the
short time scales following the quench and finally converge towards an energetically
more favorable distribution. The fluctuations observed in the total excited state num-
ber only affect the local order parameters individually and does not modify the density
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Figure 4.20: Depiction of the local order parameters of an initial SS8 I phase induced
through spontaneous emission at different times Ωt = [0, 1, 2.5, 5, 10, 20]. The system
quickly loses a substantial amount of excited state admixture, although through redistri-
bution of the atoms transitions into a long-lived SS2 II phase.

modulation in the system. Interestingly not only does the crystalline structure change
but also the type of the SS phase. More specifically, the initial SS8 I phase transitioned
into a SS2 II phase. This is in agreement with the previously discussed phase diagrams
obtained in the many-body ground state calculation, through which we found that SS
phases associated with small excited state admixture were generally of type II. While in
these calculations the small admixture is caused by a detuning close to its critical value, it
is induced in the time evolution simulation through the spontaneous emission. Thus the
system loses a substantial amount of its excited state admixture and therefore redistributes.
Although this SS2 II phase appears to be metastable its total condensate order parameter
decreases constantly until the state becomes insulating. Thus the SS2 II phase appears
to be a long-lived intermediate state before the system ultimately converges towards its
steady state, the DW2 II phase. It is worth mentioning that for the initial SS8 I phase
and spontaneous emission we obtain the SS2 II phase as an intermediate state in the time
evolution simulation as long as the decay rate is not large enough to lead to a vanishing
excited state order parameter.
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Figure 4.21: Depiction of the local order parameters of an initial SS8 I phase induced
through dephasing at different times Ωt = [0, 5, 7.5, 15]. The atoms reorganize in such a
way, that the total excited state occupation number of the system is distributed on more
sites compared to the initial state, which allows the system to withstand the effect of the
dephasing.

In contrast to the spontaneous emission the dephasing process does not yield a substantial
loss of condensate (see Fig. 4.19 (b)). Additionally we find the initial dynamics of the
excited state occupation number to be comparable to the ones obtained for the initial
DW phase, albeit a large dephasing rate leads to non-monotonous behavior. Similar to
the case of only spontaneous emission the initial drop leads to a redistribution of the
local order parameters and the SS phase becomes of type II (see Fig. 4.21). Compared to
the previous density modulation this new configuration is characterized by atoms with
excited state admixture on more sites, although all sites possess a lower excited state
occupation number. The contribution of the long-range interaction to the system’s energy
is weaker than before the redistribution and thus subsequently the system allows for a
larger excited state admixture.
We thus conclude that the spontaneous emission is the dominant contribution in the dy-
namics of a dissipative and decoherent Rydberg-dressed system. We furthermore establish
that the many-body ground state beyond the frozen limit benefits from the ability of
the atoms to reorganize. Experimentally the SS2 phase appears to be promising as it is
long-lived despite large decay and dephasing rates. The limiting factor however is the
condensate, which depletes considerably for large decay rates. Luckily typical lifetimes
of the Rydberg state given by the spontaneous emission and blackbody radiation are
on the order of µs−1 (see Fig. 2.4) [128, 129, 132±134] and experimentally relevant Rabi
frequencies on the order of several hundred kHz [182, 266], which yields marginal decay
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and dephasing rates, i.e. Ω ≫ Γ, κ. On these relevant time scales the loss of condensation
would not be crucial and the intermediate long-lived SS2 phase in principle experimentally
observable.

The many-body ground state computation and time evolution simulation deliver a tremen-
dous insight on what quantum phases are expected for Rydberg-dressed bosonic quantum
gases trapped in two-dimensional optical lattices. Due to the extended SS regime in the
phase diagram we conclude that non-tilted, anisotropic van-der-Waals interaction is the
best candidate for the experimental realization of SS phases. Another experimental aspect
in favor of the anisotropic van-der-Waals interaction is the required coupling scheme for
dressing atoms with Rydberg p-states. Since due to selection rules it is possible to dress
through only one coupling laser, the achievable interaction strengths become larger and
the effective lifetime is enhanced thanks to the lack of an intermediate state within the
coupling scheme.
Unfortunately the experimentally accessible parameter space is usually strongly limited.
The hopping amplitudes of trapped bosons are usually capped by J ≈ 2π × 150 Hz, which
is considerably smaller than the typical Rabi frequencies in the order of MHz. Based on
the phase diagrams it appears to be beneficial to work close to resonance ∆ ≈ 0, but the
previously discussed AC Stark shift and avalanche dephasing mechanism (see Section
2.4) are particularly dominant in this regime, which strongly inhibits coherent hopping
processes and the overall lifetime of the system. Thus the experimental observation of
interesting quantum phases such as the checkerboard-ordered SS2 II phase becomes a
challenging task.
While several approaches to overcome the avalanche dephasing have been proposed, it is
possible to bypass the effect of the AC Stark shift to a certain degree. Larger hopping am-
plitudes can be achieved by choosing a lighter chemical element than the usual candidate
Rubidium 87Rb [267]. Through this notion it recently became possible to experimentally
access and study the finite hopping regime of Rydberg-dressed fermionic atoms [268].
These results may give cause for optimism regarding the realization of the discussed
Rydberg-dressed systems, but it does not seem to be an easy task. Since we believe in
the potential of coupling atoms to Rydberg-excited states, we establish another dressing
scheme based on the pair state potential of the Rydberg levels. In the following, we
illustrate the advantages of that dressing scheme with respect to the above-mentioned
challenges, compute the phase diagrams of the corresponding model and propose a way
to experimentally realize SS phases.

4.3 Macrodimer-dressed atoms in two-dimensional lattices

In the previous section the dressed interaction between two atoms was induced through
the coupling to pair states of excited states, which interact through the van-der-Waals
interaction. However interaction can also emerge in systems dressed with molecular
bound states (see Section 2.3.3). A recent theoretical work suggested that coupling the
ground state atoms to the potential wells of the pair potential landscape can lead to
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distance-specific dressed interaction with tunable strength and the improved ratio between
interaction strength and decoherence [269]. Additionally a recent experimental study has
observed the formation of macrodimer states in an optical lattice through coupling to the
corresponding potential well [107]. Within the experiment two atoms with interatomic
distance matching the bond length of the molecular bound state were excited to the
macrodimer state and lost upon formation, since they are not trapped by the lattice.
Motivated by the theoretical proposal and the experiment we establish a macrodimer-
dressing scheme. Through weak dressing the atoms coupled to the macrodimer state are
not lost, but benefit from a dressed interaction. Although similar to the dressing scheme
in [269], our proposed macrodimer-dressing completes the description of the potential
well dressing by including the properties of macrodimers such as vibrational modes and
modified lifetimes.
The model corresponding to macrodimer-dressed atoms in an optical lattice is an extended
Bose-Hubbard model and reads

Ĥ = −µ ∑
i

n̂i − J ∑
⟨ij⟩

(b̂²
i b̂j + b̂²

j b̂i) +
U

2 ∑
i

n̂i(n̂i − 1) + ∑
ij

Vijn̂in̂j. (4.7)

Contrary to the Hamiltonian Eq. (4.1) investigated in the first section of this chapter we
assume the atoms to be only weakly dressed and thus study an effective single-species
system. The creation and annihilation operators therefore do not create or annihilate atoms
in their electronic ground or excited state, but instead atoms in the macrodimer-dressed
ground state. The long-range interaction strength Vij depends on the adressed macrodimer
state and the corresponding bond length Re.
The goal of this section is to determine the advantages of the macrodimer-dressing scheme,
investigate the properties of the dressed interaction with respect to strength and bond
length, and determine the phase diagram of the Hamiltonian. We furthermore analyze
and illustrate the possibility of experimentally preparing inhomogeneous phases in a
realistic manner while taking the finite lifetime of the macrodimers into account.

4.3.1 Coupling to macrodimer states

As discussed in Section 2.3.3 macrodimer states arise through the avoided crossing of
various pair state energies. Similar to any molecular state the macrodimer states are
more specifically attributed a vibrational mode ν. We write the macrodimer state as a
superposition of all involved pair states

|Ψν
Mol⟩ = ∑

ij

cij(R)
∣

∣eiej

〉

, (4.8)

with the admixture coefficient cij of pair state
∣

∣eiej

〉

= |nℓ, n′ℓ′⟩. Note that the wave func-
tion of the molecular state is normalized, i.e. ∑ij |cij|2 = 1 In the two-atom picture coupling
the ground state |gg⟩ to a macrodimer state |ΨMol⟩ requires a two-photon transition with
an intermediate state (see Fig. 4.22 (a)). The intermediate state is not uniquely defined,
since each pair state

∣

∣eiej

〉

relevant in the avoided crossing possesses their own set of
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(b)

Figure 4.22: (a) Dressing scheme in the two-atom basis involving a ground state |gg⟩, an
intermediate state |ge⟩ or |eg⟩ and the excited state |ee⟩. Left coupling shows the single-
color scheme, where both transitions are driven by the same laser with Rabi frequency Ω.
Right coupling represents the two-color scheme, for which the first laser has a reduced
Rabi frequency εΩ with ε ≪ 1 compared to the second laser. The addressed potential well
is described by the potential well minimum Re, which corresponds to the bond length of
the molecular state and a potential shift U0 with respect to the asymptotic pair state |ee⟩.
(b) Schematic dressed interaction V versus distance R induced through the macrodimer-
dressing. The distance-specific interaction results from the distance-dependent coupling
of the two-atom ground state to the macrodimer state. The distance of the interaction
can be changed by addressing a molecular bound state with different bond length Re.
Reprinted figure adapted with permission from [270]. © 2021 by the American Physical
Society.

intermediate states |i⟩ = |gei⟩ and |j⟩ =
∣

∣gej

〉

. Going from the three level system to a two
level system, we obtain the effective Rabi coupling of the ground state |gg⟩ to the pair
state

∣

∣eiej

〉

defined by

Ω̃ij =
ΩiΩj

2

( 1

∆i
+

1

∆j

)

(4.9)

with the single-photon transition Rabi frequencies Ωi = ⟨ei| d̂E |g⟩ and the detuning ∆i of
the intermediate state |i⟩. The overall coupling to the vibrational mode ν of the molecular
state is related to the superposition of all contributing pair states and thus reads

Ω̃ν = ∑
ij

αij f ν
ijΩ̃ij (4.10)
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with the so-called Franck-Condon factors f ν
ij . The prefactor αij ∈ [0, 1] takes into account the

difference between the single particle Rabi frequencies coupling the ground state to the
intermediate states and the coupling of the intermediate to the macrodimer state [271].
The Franck-Condon factors further quantifies the coupling strength through the overlap
of the initial relative ground state wave function Φg(R) and the vibrational wave function
Φν(R) of the molecular state and reads

f ν
ij =

∫

dRΦ∗
ν(R)cij(R)Φg(R) (4.11)

with the full Franck-Condon factor given by fν = ∑ij f ν
ij . The Rabi frequency of the

coupling to the molecular state can be simplified in several ways without much loss
of generality. First it can be assumed that the coefficients do not vary strongly within
the region of the avoided crossing and can thus be seen as spatially independent, i.e.
cij(R) → cij. This allows to use the pair state independent, more general Franck-Condon
factor, which only depends on the overlap as

fν =
∫

dRΦ∗
ν(R)Φg(R). (4.12)

Furthermore through close detuning to a single intermediate state it is possible to couple
strongly off-resonant to all other intermediate states, which leads to vanishing effective
Rabi frequencies Ω̃ij = 0. We hereby greatly simplify the effective Rabi frequency of the
molecular coupling to

Ω̃ν ≈ α fν
Ω1Ω2

2∆
(4.13)

with the Rabi frequencies Ω1 and Ω2 of both relevant single-photon transitions and the
detuning ∆. Similar to the calculation of the soft-core potential, the dressed interaction
can be determined in the two-level picture composed of the ground state |gg⟩ and the
molecular state |Ψmol⟩ and yields

V = ∑
ν

Vν = ∑
ν

α2 f 2
ν

Ω2
1Ω2

2

4∆2δ
(4.14)

with the detuning δν to the vibrational mode ν of the molecular state. By working near-
resonantly to the lowest vibrational mode ν = 0 we expect the overall dressed interaction
V to be predominantly given by V0.

Even in its approximated form we see that the dressed interaction is dependent on many
tunable parameters. Since a large enough dressed interaction strength is crucial for the
emergence of inhomogeneous phases in trapped bosonic quantum system, it is important
to grasp the accessible interaction strengths. While the experimentally tunable parameters
are only restricted by the achievable range specific to the apparatus, the Franck-Condon
factors could potential become a limiting factor. Since the vibrational wave function Φν(R)
is substantially more narrow than the ground state wave function Φg(R), it is possible
that their overlap and thus the Franck-Condon factors become vanishingly small (see Fig.
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Figure 4.23: The three potential wells for (a) Rubidium 87Rb and (b) Potassium 39K
arising from avoided crossing energetically located within the fine splitting of the pair
states |nP1/2nP1/2⟩, |nP1/2nP3/2⟩ and |nP3/2nP3/2⟩. We investigate the properties of these
potential wells and the corresponding molecular bound states for n ∈ [25, 75]. Calculations
for these results were performed with the help of the package Pair Interaction [146].
Reprinted figure adapted with permission from [270]. © 2021 by the American Physical
Society.

4.22 (b)). However via the trapping frequency νtrap of the optical lattice the width of the
ground state wave function can be varied. Furthermore the vibrational wave function
strongly depends on the addressed macrodimer state, since in a pair potential landscape
many avoided crossings give rise to unique potential wells. The shape of each of these
potential wells changes through variation of the principal quantum numbers n and n′

of the relevant pair state. It is therefore important to understand the scaling behavior of
these potential wells and their vibrational modes before discussing the possible values of
the Franck-Condon factor.

Scaling properties of the potential wells

We analyze the properties of three potential wells appearing for Rubidium 87Rb and
Potassium 39K (see Fig. 4.23). The potential wells are energetically located between
the fine structure split states composed of |e⟩ ≡ |nP1/2⟩ and |e⟩′ ≡ |nP3/2⟩, since these
were found to be very prominent, deep enough wells. For a given effective principal
quantum number n∗ we compute the pair state potential and characterize the potential
wells through the position of its minimum Re, i.e. the bond length of the macrodimer, the
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depth De and the spacing ∆ν of the vibrational levels. While the first two properties are
determined by simply evaluating the pair state potentials, the calculation of the spacing
requires to fit a quantum harmonic oscillator in the well and subsequent calculations of
the levels. These three properties are determined for varied effective principal quantum
number n∗ ∈ [25, 75] in order to obtain the scaling behaviour. Note, that variation of the
effective principal quantum number n∗ is identical to variation of the principal quantum
number n, since the quantum defect δn,ℓ=1 is constant for these large values of n.
By fitting a power law, we find the position of the minimum to increase with the effective
principal quantum number as Re ∝ (n∗)8/3 and the depth to decrease with De ∝ (n∗)−3 +
ϵ(n∗)−4 with ϵ ≪ 1 (see Fig. 4.24). The decreasing depth can be easily understood in
the context of high lying Rydberg levels: As the principal quantum number increases,
the Rydberg levels become more densely packed. This also holds in the pair state basis,
since for infinite distances between both atoms the energy of the pair state is given by
the sum of the individual energies. As discussed in Section 2.2.1 the difference between
two energy levels decreases as (n∗)−3, which leads to more shallow depths with similar
scaling behaviour. We obtain a scaling behavoir of the spacing ∆ν ∝ (n∗)−3, which is
related to the decreasing depth of the potential well. The quantum harmonic oscillator
fitted becomes more wide and results in energetically closer vibrational modes.

Franck-Condon factors and dressed interaction

As mentioned before, the vibrational wave functions are determined within a quantum
harmonic oscillator fit of the potential well. Thus the vibrational wave functions are given
by the Hermite functions

Φν(R) =
1√

2ν ν!

(mωwell

πÅh

)1/4
e−

mωwellR2

2Åh Hν

(
√

mωwell

Åh
R

)

(4.15)

with the Hermite polynomials Hν

(√

mωwell
Åh R

)

. The angular frequency ωwell is obtained

through the harmonic fit of the potential well. Since we expect the lowest vibrational
mode ν = 0 to contribute the most to the overall dressed interaction, we focus for now
on the Franck-Condon factor f0 (see Appendix B). Therefore we first determine the
vibrational wave function Φ0(R) of the lowest mode given an effective principal quantum
number n∗ and the ground state wave function Φg(R), which consists of two Wannier
functions, separated by distance R obtained within the deep lattice approximation for a
given trapping frequency νtrap (see Section 1.4.3). Through the overlap integral Eq. (4.12)
we calculate the Franck-Condon factor f0. We then either vary n∗ or νtrap in order to
identify the scaling behavior of f0.
For a fixed trapping frequency νtrap = 40 kHz, we find the Franck-Condon factor to be
linearly proportional to the effective principal quantum number as f0 ∝ n∗ (see Fig. 4.25
(a)). The increasing Franck-Condon factor is in accordance with the potential depth De,
which becomes shallower and thus yields wider vibrational wave functions. The Franck-
Condon factor grows due to a larger overlap between both wave functions. Although
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Figure 4.24: (a) Position of the potential minimum Re, (b) shift U0, (c) potential depth De

and (d) spacing ∆ν versus effective principal quantum number n∗. The scaling properties of
the shift, the depth and the spacing are related to the dependence of the energy difference
between neighboring Rydberg levels on n∗ (see Section 2.2.1). Reprinted figure adapted
with permission from [270]. © 2021 by the American Physical Society.

not reached within the range of studied effective principal quantum numbers, the Franck-
Condon factor can reach the optimum f0 = 1 for larger n∗, which lead to a vibrational
wave function with a width comparable to the ground state wave function.

On the other hand, variation of the trapping frequency for a fixed effective principal

quantum number n∗ = 35 leads to a scaling of f0 ∝ ν1/4
trap (see Fig. 4.25 (b)-(c)), the origin of

which can be found in the scaling behavior of the width of the Wannier function. Higher
trapping frequencies lead to a more narrow Wannier function and for the studied potential
wells, it is possible to reach the optimum value f0 = 1 for very deep lattices. Within the
calculations at a larger effective principal quantum number n∗ = 65, the Franck-Condon
factor reaches the optimum at lower trapping frequencies compared to the previous case.

Furthermore, the Franck-Condon factor decreases beyond the optimum as f0 ∝ ν−1/4
trap . In

this case increasing the trapping frequency further leads to a Wannier function, which is
even more narrow than the vibrational wave function and thus decreases the overlap.

128



(a) (b)

Figure 4.25: (a) Franck-Condon factor f0 versus effective principal quantum number n∗ for
a fixed trapping frequency νtrap = 40 kHz. The Franck-Condon factor increases linearly
with n∗ independently of the chosen potential well. (b-c) Franck-Condon factor f0 versus
trapping frequency νtrap for fixed effective principal quantum number (b) n∗ = 35 and
(c) n∗ = 65. The scaling law can be derived from the Wannier function of the ground
state Φg(R) as its width possesses the same scaling with νtrap. For large n∗ the Franck-
Condon factor reaches its maximum value, i.e. f0 = 1, within the considered range of νtrap.
Reprinted figure adapted with permission from [270]. © 2021 by the American Physical
Society.

Although it thus appears to be more beneficial for the dressed interaction V0 to work with
larger effective principal quantum numbers, the scaling of the other parameters has to be
taken into account. While the single-photon Rabi frequencies Ω1 and Ω2 appear to be only
limited by the maximum power of the laser coupling, they additionally scale with the
effective principal quantum number as Ω ∝ (n∗)−3/2. The overall scaling of the dressed
interaction becomes V0 ∝ (n∗)−4 and it is therefore more convenient to work in the regime
of smaller n∗.

Tunability and lifetimes

Before discussing the tunability of the system and the lifetime of the dressed ground
state, we first elaborate the concepts of single-color and two-color dressing schemes. The
single-color dressing scheme implies that the laser coupling the ground and intermediate
state is also used for coupling the intermediate to the molecular state, i.e. Ω1 = Ω2 = Ω.
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(a) (c)

(b) (d)

Figure 4.26: (a) AC Stark shift U1C
AC obtained at the center of the laser beam for the single-

color dressing scheme versus the detuning δ. Inset: The Gaussian profile of the laser
causes an inhomogeneous AC Stark shift, which shifts neighboring sites out of resonance
given by the differential light shift. (b) AC Stark shift U2C

AC obtained at the center of the
laser beam for the two-color dressing scheme versus the intermediate state detuning ∆2C.
The additional tunability allows to cancel out the AC Stark shift of both lasers. (c) The
dressing quality |V|/Γ versus the Rabi frequency Ω. At the optimum δopt the quality
increases linearly with the frequency. (d) Dressed interaction strength V versus the Rabi
frequency Ω. The dressed interaction becomes substantial for large frequencies. Reprinted
figure adapted with permission from [270]. © 2021 by the American Physical Society.

We denote in this case the intermediate state detuning as ∆1C. Within the single-color
scheme it is not possible to choose the intermediate state detuning and the detuning of
the lowest vibrational mode freely and their relation is given by 2∆1C = U0 + δ. On the
other hand, within the two-color dressing scheme the two transitions are handled by two
different lasers, i.e. Ω2 = Ω and Ω1 = εΩ with ε < 1. This allows for the variation of the
corresponding intermediate state detuning ∆2C.
One major benefit of the two-color dressing scheme is the AC-Stark shift resulting from
the coupling laser. As discussed in Section 2.4 each laser generates an AC Stark shift and
due to the beam profile of the laser the shift is inhomogeneous. This is problematic since
the inhomogeneous beam shifts neighboring sites out of resonance and can thus lead to
the suppression of coherent hopping processes. The AC Stark shift in the single-color
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dressing scheme reads

U1C
AC(r) =

Ω2(r)

4∆1C
=

Ω2(r)

2(U0 + δ)
(4.16)

with the distance r to the beam center. The intensity profile of the laser beam with beam

waist w is defined by Ω(r) = Ω0e−r2/w2
. Since the detuning δ is much smaller than the

shift U0, the AC Stark shift is not tunable and instead given by the adressed potential well
and effective principal quantum number. The resulting AC Stark shift allows then only a
handful of lattice sites at the center of the beam to be in resonance, while the differential
light shift becomes to substantial already a couple of sites away from the beam center (see
Fig. 4.26 (a)). Within the two-color dressing scheme however, it is possible to address this
problem through the variation of the coupling laser Rabi frequency εΩ and the tunable
intermediate state detuning ∆2C. The corresponding AC Stark shift is then given by the
AC Stark shift of both coupling lasers

U2C
AC(r) =

Ω2(r)

4

( ε2

∆2C
+

1

U0 + δ − ∆2C

)

(4.17)

For a fixed value of ε it is possible to achieve a vanishing AC Stark shift through variation
of the intermediate state detuning ∆2C (see Fig 4.26 (b)). This allows to keep neighboring
sites in resonance throughout the whole lattice and thus enables coherent hopping to
occur.
The lifetimes of the macrodimer state are also of great importance for the experimental
realization of macrodimer-dressed systems. In general, the overall decoherence rate of the
dressed ground state due to the finite macrodimer lifetime is given by the intermediate
state decoherence rate ΓRyd and the molecular decoherence rate ΓMol as

Γ = ΓRyd + ΓMol = PRydγ + PMolγMol (4.18)

with the squared admixtures PRyd and PMol, and the scattering rates γ and γMol of the
bare Rydberg state and the molecular state respectively. The molecular scattering rate is
also given by the admixture of all possible pair states as γMol = ∑ij |cij|2(γi + γj) with
the scattering rate of the bare Rydberg state involved in the intermediate states |i⟩ and
|j⟩. However within the previously established approximations, it is fine to simplify
the molecular scattering rate as twice the scattering rate of the bare Rydberg state, i.e.
γMol = 2γ. The squared admixtures PRyd and PMol are given by Eq. (2.53) with their
respective detuning and Rabi frequency. For both dressing schemes, the decoherence rate
of the dressed state reads

Γ =
( Ω2

1

4∆2
+ α2 f 2

0

Ω2
1Ω2

2

2∆2δ2

)

γ (4.19)

We see that the decoherence can be controlled through the choice of the single-photon
Rabi frequencies, the detuning to the intermediate state and the detuning to the lowest
vibrational mode. Unfortunately the dressed interaction possesses a similar scaling and
tuning the parameters to reduce the decoherence rate would limit the dressed interaction
strength. Additionally the lifetime increases with the effective principal quantum number
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(see Section 2.2.3). The dressed interaction however decreases with the effective principal
quantum number n∗ as defined through the previously obtained scaling. In order to
investigate the optimal parameter regimes we introduce the so-called dressing quality as

|V|
Γ

=
[( δ

α2 f 2
0 Ω2

2

+
2

δ

)

γ
]−1

(4.20)

Interestingly the dressing quality does not depend on the intermediate state and thus
can be optimized through the coupling to the molecular state. The largest values of the
dressing quality are obtained through the optimum detuning δopt = α f0Ω2. The dressing
quality hereby simplifies to |V|/Γ = α f0Ω2/(2γ) and we see that the quality can be
increased by going to larger Rabi frequencies Ω2 (see Fig. 4.26 (c)). Note, that even
though the dressing quality does not depend on the intermediate state, both admixtures

are identical at the optimum detuning δopt, i.e. Pmol = Ω̃2
0/(4δ2)

δopt
= Ω2

1/(4∆2) = PRyd.
The overall scaling of the dressing quality with the effective principal quantum number
depends on the dominant contribution to the bare Rydberg scattering rate. For large n∗

the blackbody induced transitions lead to a decoherence rate ΓBBR ∝ (n∗)−2, while in
the regime of smaller n∗ the spontaneous decay dominates Γ0 ∝ (n∗)−3. The dressing
quality therefore decreases as |V|/Γ ∝ (n∗)−2 or |V|/Γ ∝ (n∗)−3 with increasing principal
quantum number in dependence on the dominant transitions, and working in the regime
of smaller effective principal quantum numbers is thus more favorable for the observation
of long-range interacting many-body ground states.
Since the two-color dressing scheme is more beneficial with respect to the AC Stark shift,
we finally compute the dressed interaction within the optimum detuning for realistic
parameters (see Fig. 4.26 (d)). For large, but experimentally achievable, Rabi frequencies
the dressed interaction is of the order of several kHz. Even smaller Rabi frequencies
yield reasonably significant dressed interactions of about several hundred Hz. These
values are comparable to the typical on-site interaction strengths and hopping amplitudes
and we therefore conclude that the dressed interaction induced by dressing atoms with
macrodimer states may possibly lead to quantum phases with spontaneously broken
lattice translational symmetry.

4.3.2 Many-body ground state phase diagram

We now study the phase diagram of the Hamiltonian Eq. (4.7) with the newly aquired
knowledge on the macrodimer-dressing. Since two atoms are only coupled to the molecu-
lar state if their distance matches the corresponding bond length Re, the dressed interaction
results in

Vij = Vδ(Rij − Re) (4.21)

with the interatomic distance Rij. Since the bond lengths of all studied potential wells
are very similar, we can select the bond length solely by choice of the effective principal
quantum number. For n∗ = 30 the bond length matches the typical lattice constant
Re ≈ alat = 532 nm and the resulting dressed interaction emerges between nearest
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neighboring (NN) lattice sites. On the other hand n∗ = 36 yields next-nearest neighbor
(NNN) interaction, since the bond length is approximately given by Re ≈

√
2alat. Although

it is possible to obtain interactions on longer spatial scales by going to higher effective
principal quantum numbers, the corresponding dressing quality is weaker and thus we
limit our choice to the two above-introduced values of n∗.
For the sake of experimental relevance, we investigate the phase diagram with fixed filling
Ån ∈ [0.5, 1]. Since the filling is rather small, we can limit the Fock states to a small subspace
and thus calculate the ground states within Cluster Gutzwiller theory. The single-cluster
Hamiltonian of the system reads

ĤC = −µ ∑
i∈C

n̂i − J ∑
⟨ij⟩∈C

(b̂²
i b̂j + b̂²

j b̂i) +
U

2 ∑
i∈C

n̂i(n̂i − 1) + V ∑
ij∈C

n̂in̂jδ(Rij − Re)

− J ∑
i∈∂C

(b̂²
i φi + b̂i φ

∗
i ) + V ∑

i∈∂C
n̂iηi + E(φ, η)

(4.22)

with the mean-fields ϕi, ηi and the energy offset E(ϕ, η).
For the calculation of the phase diagrams, we set the on-site interaction U = 2π × 0.5
kHz, the range of the hopping rate to J/2π ∈ [0, 100] Hz and the range of the dressed
interaction strength V/2π ∈ [0, 250] Hz, all of which are experimentally accessible. Note
that since we only possess one species in the dressed picture, we omit the type I and II
notation previously used to specify inhomogeneous phases. For a fixed filling Ån = 0.5,
we investigate and compare the phase diagrams obtained with NN and NNN interac-
tion (see Fig. 4.27 (a)). In both cases we find a DW and a SF regime seperated by a SS
regime. Although both diagrams exhibit a similar shape, the SS regime is much larger
for NNN interaction compared to its NN counterpart. The difference originates from the
type of inhomogeneous phases arising from the interaction. As discussed in Section 1.6
NN interaction yields a checkerboard-type structure of the DW and SS phases. Since the
hopping and the dressed interaction couple the same pair of sites, the direct competition
pushes the boundary between the DW and the SS to larger hopping amplitudes. On the
other hand NNN interaction yields striped phases, which exhibit a weakened competition
between the hopping and the dressed interaction. Within the SS regime, the atoms can
coherently tunnel within along the stripe with only little friction provided by the atoms in
the neighboring stripes through the interaction. Therefore it is possible to have coexisting
spatial modulation of the density and condensation in the system for a broader range of
the tunable parameters. We thus conclude that the NNN interaction is more favorable
with respect to the experimental realization of SS phases.

We now consider NNN interaction with varying filling Ån ∈ [0.5, 1], since the filling is also
experimentally adjustable (see Fig. 4.27 (b)). The boundary between the SS and the SF
regime changes significantly with increasing filling. While the boundary in the lower
hopping amplitude range shifts to larger dressed interaction strength, we observe a shift to
lower dressed interactions for higher hopping amplitudes. For unit filling Ån = 1, the phase
transition can be analytically computed. Since the competition between hopping and
interaction is of second-order, we can determine the phase transition through perturbation
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(a) (b)

Figure 4.27: (a) J − V phase diagram for fixed filling Ån = 0.5 and U = 2π × 500 Hz for NN
and NNN interaction. SS regime is extended for NNN interaction due to the advantages
of thus induced striped phases with respect to coexisting spatial modulation of the wave
function and finite condensation. (b) J − V phase diagram for various fillings Ån ∈ [0.5, 1].
Larger filling shifts the boundary between the SS and the SF regime to stronger dressed
interactions for lower hopping amplitudes, while at larger amplitudes the boundary is
shifted to weaker interactions. Reprinted figure adapted with permission from [270].
© 2021 by the American Physical Society.

theory [272]. The resulting phase transition is given by the relation Vc = U/4 + J2/U
and is in very good agreement with the numerically computed transition. This can be
understood through the proportionalities in the Hamiltonian Eq. (4.7). While the dressed
interaction term grows with the occuption number as ∝ n̂2, the hopping term only scales
linearly ∝ n̂. The simultaneous occupation of two neighboring sites becomes thus less ener-
getically favorable for higher densities and therefore extends the range of inhomogeneous
phases to larger hopping amplitudes and weaker dressed interactions. In the end the
choice of the filling depends on the hopping amplitude and has to be chosen appropriately.

4.3.3 Preparation of macrodimer-dressed systems

Although the Hamiltonian yields SS phases as ground states of the system, their prepa-
ration is a non-trivial task. Driving an initially homogeneous system to a phase with
spontaneously broken lattice translational symmetry requires an adiabatic parameter
protocol. Furthermore, the losses of bare Rydberg-excited atoms and of macrodimers
from the optical lattice limit the time scale during which SS phases can be observed.
In order to investigate possible preparations of SS phases through the macrodimer-
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dressing, we perform dissipative time-evolution simulations with realistic decoherence
rates. Given an initially homogeneous system in a SF phase we increase the coupling
to the macrodimer state, which translates to an adiabatic, linear ramp-up of the dressed
interaction V(t) = t/trampVmax given with the ramping time tramp and the final dressed
interaction Vmax for t ∈ [0, tramp]. During the time-evolution we include dissipative
processes through the Lindblad master equation Eq. (3.59). We take into account single-
body losses through the Lindblad operator L̂Ryd = ∑i

√

ΓRydb̂i and macrodimer losses as

L̂Mol = ∑ij

√
ΓMolb̂i b̂jδ(Rij − Re). Note, that the macrodimer loss affects two atoms, whose

distance matches the bond length. Although the scattering rates of these losses increase
as the coupling is ramped up, we take their full value already in the beginning of the
time-evolution. Furthermore, a numerical problem of the simulation is the absence of
density fluctuations through which spontaneous symmetry breaking can be facilitated.
Since phases with crystalline structure are degenerate with respect to translation and
rotation, a perfectly homogeneous SF phase does not favor any of these phases and thus
the breaking of the translational lattice symmetry is impeded until numerical fluctuations
allow for the a phase transition. Therefore in order to lift the degeneracy, we impose an
external, anisotropic harmonic confinement. Through the spatial choice of its minimum it
is possible to isolate only one phase with broken lattice translational symmetry and thus
enable the possibility of time evolution.
For the realization of the SS phases through NNN interaction it is more favorable to work
with higher hopping amplitudes as they speed up the dynamics and allow for faster prepa-
ration. According to the above-obtained knowledge, we therefore perform the simulations
with an average filling Ån = 1. We keep the on-site interaction U = 2π × 0.5 kHz, and
limit the range of the hopping amplitude to J/2π ∈ [50, 100] Hz and the range of the
maximum dressed interaction strength to Vmax ∈ [50, 200] Hz. For an effective principal
quantum number n∗ = 30, we obtain the bare Rydberg scattering rate ΓRyd = 4 s−1 and

the molecular scattering rate ΓMol = 8 s−1. Note, that these rates have been determined for
atoms at room temperature T = 300K and since the atoms in the experiments are vastly
cooler, these scattering rates present an upper bound of the experimentally relevant rates.
We perform time evolution simulations up to tmax = 500 ms for different values of the
ramping time tramp = [100, 400] ms given a set of Hamiltonian parameters. According to
the quantum adiabatic theorem, the adiabaticity of the time evolution is given for a ramp-
ing time of tramp for any of the dressed interactions considered during these calculations
(see Section 3.3.1).

In order to determine whether the lattice translational symmetry has been broken during
a time evolution simulation, we introduce the imbalance I = | Ånodd − Åneven|/N with the
number of sites N as a staggered order parameter. Since numerical fluctuations during the
time evolution could yield a finite imbalance even if the system stays in a SF phase, we
use a threshold value Ith to distinguish between time evolution with or without breaking
of the translational lattice symmetry.
We find that the critical dressed interaction Vc, which is the minimum dressed interaction
strength in order to have finite imbalance I > Ith during the time evolution, increases
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(a) (b)

Figure 4.28: (a) Parameter regime of spontaneously broken lattice translational symmetry
time evolution (I > Ith) and homogeneous time evolution (I < Ith) given by the critical
dressed interaction Vc versus the hopping rate J for different values of the ramping times
with Ith = 0.05. Longer ramping times require larger dressed interaction for the imbalance
I to become finite within the evolution times considered here. (b) Imbalance I versus
time t for an initial SF state for fixed parameters of the extended Bose-Hubbard model
U = 2π × 0.5 kHz, J = 2π × 75 Hz, V = 2π × 175 Hz, a bare Rydberg scattering rate
ΓRyd = 4 s-1 and a molecular scattering rate Γmol = 8 s-1 for different values of the ramping
times tramp ∈ [100, 400] ms. We find a finite imbalance emerging after ramping up the
coupling to the macrodimer state. The later onset of a finite imbalance occurs for longer
ramping times and its value decays due to the single particle and macrodimer losses. (c)
Exemplary depiction of the time evolution of (b) with ramping time tramp = 200 ms at
times t ∈ [0, 150, 300, 450] ms where the occupation number n at each site is shown. The
average filling Ån = 1 is determined at the center of the trap. Reprinted figure adapted
with permission from [270]. © 2021 by the American Physical Society.

with larger hopping amplitudes (see Fig. 4.28 (a)). For dressed interaction strengths
below the critical value Vc the time-evolution is not able to break the lattice translational
symmetry and the system stays SF. On the other hand, a large enough dressed interaction
allows for the system to transition to a SS phase. The critical dressed interaction Vc shifts
to larger values if we increase the ramping time tramp. Although the difference in ramping
times is quite substantial, the boundary only shifts a dozen Hz and stays in the range
of experimentally accessible dressed interactions. Note that variation of the numerical
threshold Ith shifts all boundaries, although not beyond the range of achievable dressed
interaction (see Appendix B).
For further understanding of the time evolution, we analyze the dynamically changing
imbalance for the different ramping times (see Fig. 4.28 (b)). In all cases the imbalance
grows fast and after reaching its maximum value it decays slowly. The maximum imbal-
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ance is achieved around the ramping time tramp. We also depict the spatially modulated
density for one of the ramping times to observe the spontaneous breaking of the lattice
translational symmetry (see Fig. 4.28 (c)). The initially homogeneously system loses atoms
as the coupling to the lossy Rydberg and macrodimer state is ramped up. Due to the
rapid growth of the imbalance, the system transitions to the SS phase in a fast manner and
depletes only slowly. Note, that the SS phase is not a perfectly striped phase but rather
exhibits domains with perpendicular stripes. These domains arise due to the symmetry
breaking occuring at different times in different places of the lattice due to the external,
anisotropic harmonic confinement. At the more narrow borders of the trap the potential is
steeper, which facilitates stripes perpendicular to the gradiant at earlier times.
Ultimately the experimental observation of SS phases in macrodimer-dressed systems
appears to be possible based on the results obtained within the time evolution calculations.
Even with the relatively large scattering rates considered in the computations, the system
was able to transition into a SS phase before substantial depletion of the particles. The
dressed interaction strengths necessary to access phases with spontaneously broken lattice
translational symmetry are well within the realm of the achievable dressed interactions.

137





Chapter 5

Summary and outlook

We studied bosonic quantum gases trapped in an optical lattice coupled to Rydberg states.
The associated model is described a two-component system consisting of atoms in the
electronic ground state and in the Rydberg state. The model also includes a coupling term
between the two components and the van der Waals interaction between the Rydberg
atoms. To gain as much insight into this model as possible, we determined the many-body
ground states for both isotropic and anisotropic van-der-Waals interactions. The calcu-
lations are performed for square optical lattices as well as for triangular optical lattices.
Regardless of the geometry of the long-range interaction and the optical lattice, we found
phase diagrams consisting of DW, SF and SS phases, with their parameter ranges depend-
ing on the geometries. The crystalline structures appearing in the DW and SS phases
exhibited a wide variety of interatomic distances between Rydberg atoms. We found
that anisotropic interaction leads to striped density modulations, which is particularly
beneficial for the coexistence of crystalline structure and finite condensation. The differ-
ence between a square and a triangular optical lattice was only relevant for parameters
through which the system exhibited dense density modulation and whose length scale
is comparable to the lattice constant. For parameters however, through which phases
consisting of Rydberg atoms with large interatomic distances appeared, the difference
between the lattice geometries is hardly noticeable in the phase diagram. Since these
results are promising for experimental realization, we completed the study by quanti-
fying the influence of dissipation and decoherence, which arose from the spontaneous
emission and blackbody radiation present for excited states. It was suspected that the
finite lifetime of the Rydberg states and dephasing processes are so detrimental to the
characteristic properties of SS phases, which would render SS phase of Rydberg-dressed
quantum gases experimentally undetectable. Using the Lindblad master equation, we
checked the strength of dissipation and decoherence in the context of time evolutions.
We took as initial states both a DW and a SS phase obtained in the scope of the previous
calculations and let these states evolve in time in the presence of the two mentioned
processes. We found that indeed dissipation and decoherence increase with increasing
rates of spontaneous emission and dephasing. Moreover, we observed that the SS phase
benefits from the associated finite hopping amplitude, since redistribution of atoms in
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the system allowed the system to be less affected by dissipation and decoherence. The
long-lived state after reorganization of the atoms possessed a finite condensate decreasing
with time, but for typical lifetimes and dephasing rates, this condensate did not disappear
completely within the time ranges considered, which is promising for the experimental
observation of such phases. We therefore conclude that bosonic quantum gases trapped in
optical lattices and coupled to Rydberg states is a promising candidate for the realization
of SS phases.
However, since collective phenomena and other experimental hurdles, such as the maxi-
mum realizable tunnel amplitude and coupling strength, could potentially pose difficulties,
we proposed another system, through which SS phases could be realized. In contrast to
the previous Rydberg-dressed bosonic quantum gas, the atoms in the electronic ground
state are now weakly coupled pairwise to macrodimer states. As a result, the atoms in
the ground state acquire an effective long-range interaction, however only if the distance
between the two atoms matches the molecular bond length. We presented the single-color
and two-color coupling schemes associated to the macrodimer dressing and discussed
their differences with regards to the effective dressed interaction, the total AC Stark shift
of the coupling lasers and the lifetime of such macrodimer states. For the calculation of the
dressed interaction we computed three potential landscapes of two chemical elements and
determined the coupling strength to the macrodimer states emerging from the avoided
crossings in these potentials. We found that the coupling strength generally increases with
larger principal quantum number or higher trapping frequencies. For trapping frequencies
relevant in systems with finite hopping amplitude the coupling strength did not reach
its optimal value, however the resulting dressed interaction becomes comparable to the
values typically used for the on-site interaction and hopping amplitude. Furthermore we
discovered that the magnitude of the dressed interaction did not depend on the type of
coupling scheme, while the total AC Stark shift can be tuned out for a two-color coupling
scheme. The vanishing differential light shift would then allow for coherent hopping
processes. We calculated and shown that the dressing quality, i.e. the ratio between
dressed interaction and decoherence, obtained through the macrodimer dressing is sig-
nificantly larger than the dressing quality associated with the usual Rydberg dressing.
Due to these promising aspects of the proposed system, we studied the phase diagram of
the corresponding extended Bose-Hubbard model. Since the distance-dependency of the
interaction can be changed based on the selection of the addressed macrodimer state, we
compared the phase diagram for both NN as well as NNN interaction. Within the range
of the determined dressed interaction strengths, the phase diagrams consisted DW, SF and
SS regimes. We found that NNN interactions lead to striped crystalline structures, which
is advantageous for SS phases. We furthermore varied the average filling of the lattice
and investigate the necessary dressed interaction strengths. Interestingly we computed
a lower necessary dressed interaction for lower fillings in the regime of small hopping
amplitudes, while larger amplitudes profit from a higher filling. Since these results were
particularly promising, we concluded the section with a proposal on how SS phases can
be adiabatically prepared in macrodimer-dressed systems. To this end we simulated the
slow ramp up of the coupling to the macrodimer states, while including the finite lifetime
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of these states throughout the time evolution. We determined critical dressed interaction
above which an initial SF phase exhibits spontaneously broken lattice translational sym-
metry. Since the admixture of the macrodimer state in the system decreases with time due
to their finite lifetime, we discovered that longer ramping times require a larger dressed
interaction. However even for long ramping times the necessary dressed interaction was
well within the range of calculated dressed interactions and we are thus confident, that
macrodimer-dressed systems could lead to the experimental realization and observation
of SS phases.

On a personal note, as these results have been in the making for a while it was interesting
to experience the ups and downs along the years as new insight about Rydberg ensembles
continuously emerged. On one hand the phase diagrams of Rydberg-dressed gases
displayed in the first part of Chapter 4 received ambiguous reactions as the concept
behind such systems seemed simple yet promising, however limiting phenomena such
as differential light shifts of the coupling laser impeding coherent hopping or lifetime
inhibiting avalanche dephasing processes were only recently observed at that time and not
fully understood yet. On the other hand through advances in technology and engineering
of innovative methods tremendous insight about these obstacles was gained, which
even allowed to overcome some of the previously limiting factors. A few years ago
for example it thus became possible to realize a Rydberg-dressed fermionic quantum
gas, in which dynamics given by the interplay of hopping and long-range interaction
were experimentally observed [268]. Due to the amount of effort invested in the field of
Rydberg ensembles, we are thus hopeful that in the future SS phases will be experimentally
observed in trapped Rydberg-dressed and macrodimer-dressed quantum bosonic systems.
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Appendix A

Numerical details

Between the application of the Gutzwiller mean-field approximations discussed in Section
3.2 and obtaining the different phase diagrams and time evolution simulation discussed in
Sections 1.6, 4.2 and 4.3, we require a non-trivial self-consistent procedure and additional
numerical methods.
In Section A.1 we elaborate on the core self-consistency procedure involved in the com-
putation of the many-body ground states within Gutzwiller theory and briefly discuss
the computational effort of the procedure based on the number and size of the clusters
introduced through the mean-field decoupling. We then explain in Section A.2 how to
construct and utilize superlattices in order to compute phase diagrams, in which the
spatial modulation varies from one regime to another. Finally in Section A.3 we review
the Runge-Kutta method, a method used to numerically solve the differential equation
given by the Lindblad master equation.

A.1 Gutzwiller self-consistency procedure

In the core of the Gutzwiller self-consistency procedure are the local order parameters
ϕν

i and nν
i on site i of species ν (see figure A.1) given a fixed set of system parameters.

After an initial guess of these parameters their values are updated each iterative loop until
convergence is reached. Each of these loops consists of the calculation of the mean-fields
ξν

i and ηi in a cluster C with N sites, through which the Hamiltonian ĤC is created. The
eigenvector |Ψ0⟩ corresponding to the lowest eigenvalue E0 is obtained through ED and
are subsequently used to determine the updated local order parameters ϕ̃ν

i and ñν
i through

O = ⟨Ψ0| Ô |Ψ0⟩ with Ô ∈ {b̂ν
i , n̂ν

i }. In order to check whether convergence is reached,
we check the difference between the non-updated and updated order parameters. If the
difference is below a numerical threshold ε, the calculation are treated as converged and
the eigenvector |Ψ0⟩ and eigenvalue E0 stored as the many-body ground state and its
energy.
While the procedure might seem simple, its complexity becomes apparent when consid-
ering a system split into M unique clusters with N sites, since all clusters are connected
through their respective mean fields. When performing the self-consistency procedure
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Figure A.1: Schematic representation of the self-consistency procedure in the core of the
numerical many-body ground state computation within Gutzwiller mean-field theory.
The local order parameters ϕν

i and nν
i serve as the convergence criteria of the procedure.

Their values are updated in a loop involving the computation of the mean-fields, of the
matrix representation of the Hamiltonian, of the eigenvectors and eigenvalues through
ED and finally of the new local order parameters ϕ̃ν

i and ñν
i . The convergence criteria is

more specifically defined by numerical thresholds εϕ and εn, which indicate whether the
update of the order parameters lead to a significant difference or not.

with several, interconnected clusters we randomly select which cluster to update through
the iterative loop. This allows all clusters to reach a converged state evenly and thus
reveals the correct many-body ground state of the whole system. Generally speaking the
number of sites N in a cluster defines the numerical complexity of a single loop, since the
Hilbert space of the Hamiltonian ĤC scales exponentially with N. On the other hand the
number of iterative loops within the procedure necessary for convergence scales approxi-
mately linearly with M. It is thus, from a computational point of view, more convenient to
work with a larger number of unique clusters with less sites, although important quantum
fluctuations are thereby lost (see Section 3.2).

A.2 Computing with superlattices

In this work we compute the many-body ground state of a finite system with periodic
boundary conditions (PBC) unless mentioned otherwise. This is especially important in
the context of ground states, which can potentially exhibit spontaneously broken lattice
translational symmetry, as the numerically determined density modulation is strongly
restricted by the geometry of the considered system. For the sake of clarity, let us focus
on an infinite system S in a two-dimensional optical lattice. For the computation of the
ground state we select a superlattice unit cell S ′ ∈ S , smaller system representative of the
whole system S due to the imposed PBC. This superlattice unit cell is defined through the
two spanning vectors a1, a2 ∈ Z2 in units of lattice constant alat and an area ASL = a1 × a2

(see figure A.2 (a)). As an example we consider a Hamiltonian, which for a given set
of its parameters we know that the many-body ground state is checkerboard-ordered.
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Figure A.2: (a) Schematic definition of a superlattice unit cell on an optical lattice defined
through the spanning vectors a1 and a2 and the corresponding superlattice unit cell area
ASL = a1 × a2. (b)-(d) Arbitrary superlattice unit cells with unique sets of spanning
vectors, which allow to obtain different kinds of density modulation during the numerical
computation of the many-body ground state. For the self-consistency procedure we
furthermore characterize each superlattice unit cell by the sites it includes and their
positions.

While it is possible to obtain checkerboard-ordered phases in a system with spanning
vectors a1 = (1, 1) and a2 = (0, 2) (see figure A.2 (c)), other set of spanning vectors such
as a1 = (2, 1) and a2 = (0, 2) geometrically prohibit this type of density modulation (see
figure A.2 (d)). Although the numerical computation of the many-body ground state
for these parameters might converge, the obtained many-body ground state differs from
the correct one. Luckily it is possible to determine the true ground state as the energy
of the geometrically frustrated many-body ground state is always larger and thus the
comparison reveals the preferred density modulation of the system.

The extended, single-species Bose-Hubbard models considered in this thesis possess NN
and NNN interaction terms and we can therefore conclude on the possible crystalline
structures of the many-body ground states. However in the case of the van-der-Waals
interaction appearing in the extended, two-species models the crystalline structure for
a given set of Hamiltonian parameters is unknown. As using an arbitrarily chosen
superlattice unit cell would potentially force the system into an energetically unfavorable
ground state, it is crucial to perform the computation with many, different unit cell
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(a) (b)

Figure A.3: (a) Superlattice unit cell area ASL and (b) unit cell index of the preferred unit
cell of the many-body ground state corresponding to the phase diagram in Fig. 4.5. While
not all phase boundaries between the different regimes can be obtained by mapping these
values, we are able to obtain the phase boundaries within the different regimes as the
crystalline structure of the many-body ground state varies within the DW and SS regime.

uniquely characterized by their spanning vectors. We hereby obtain various many-body
ground states and determine the true many-body ground state through comparison of
their energies. In the end we store the properties of the superlattice unit cell of the many-
body ground state, as in combination with the local observables within the unit cell allows
to reconstruct the density modulation. Especially the superlattice unit cell area ASL yields
valuable information about the many-body ground state, as it hints at the distribution of
the atoms with larger excited state admixture.
The superlattice unit cell area can furthermore be used to determine phase boundaries
(see figure A.3). While the phase boundaries between insulating and condensed regimes
does not become visible through the unit cell area if the underlying density modulation
remains the same upon the phase transition, it allows us to detect boundaries within
the regimes. Note that mapping the superlattice unit cell area is not sufficient in certain
cases, as two neighboring regimes may possess unique crystalline structures but with
equal superlattice unit cell area (see figure A.3 (right)). Thus indexing all unit cells used
in the numerical computation allows us to better distinguish between different, unique
density modulations. In combination with the mapping of average order parameters (see
Appendix B.1) the superlattice unit cell area provides important information through
which the different regimes in the phase diagram are recognized.

In the numerical computation used for calculating the phase diagrams displayed in
Section 4.2 we selected a set of 50 different superlattice unit cells. The constraint was

146



given through the maximum superlattice unit cell area Amax
SL = 16. The effect of including

larger superlattice unit cells would become visible if we zoom in at the DW-vacuum phase
transition and at the SS-SF phase transition for large hopping amplitudes. Note that for the
isotropic interaction the superlattice unit cell area in the SS2 II regime is not homogeneous,
but rather full of different values. This is because many superlattice unit cells are able
to reproduce the checkerboard-order observed in the phases within this regime. Thus in
the numerical computation all superlattice unit cell yield the same energy with the same
ordering and the energy comparison becomes prone to numerical fluctuations.
The computational effort linked to the self-consistency procedure of a single superlattice
unit cell depends on its area, as a bigger superlattice unit cell contains larger amount
of lattice sites. More specifically through Pick’s theorem the number of sites in a unit
cell is given by the area itself, e.g. ASL = NS ′ . Understandably prone to confusion, the
superlattice unit cell and the clusters used in the description within Gutzwiller theory
are not identical. Although it is possible to use the complete superlattice unit cell as the
cluster for the self-consistency procedure, it is often necessary to split the system into M
clusters of size N as the superlattice unit cell can become too big to be handled by a single
cluster. Under the condition NS ′ = M · N the unit cell can be split in any way as desired.

A.3 Solving ordinary differential equations

The various time evolutions computed in the scope of the thesis arise from the Lindblad
master equation given by Eq. (3.57) discussed in Section 3.3. As an ordinary differential
equation (ODE) of high complexity, it does not possess an exact solution and thus numerical
methods become necessary. Here specifically these methods are used to compute the
evolution of the time-dependent density matrix ρt of a system given an initial condition
ρt=0 = ρ0. The temporal discretization of the ODE allows us to track the change of ρt and
thus the time evolution of the whole system by computing local observables at every time
step through O = tr(ρÔ) with Ô ∈ {b̂ν

i , n̂ν
i }.

Many methods, such as the Euler method [273, 274], the Backward analysis [275, 276] and
the Richardson extrapolation [277±279], have been established to solve ODEs with initial
value problems. Among those exists a widely popular method called the Runge-Kutta method,
a multistep variation and thus generalization of the Euler method [280, 281]. In this thesis
all time evolution simulations are performed by means of a symplectic, fourth-order
Runge-Kutta method, which we discuss in the following.

Runge-Kutta methods

Runge-Kutta methods describe a class of s-step iterative methods, which expressed
through the relevant variables in this work read

ρt+∆t = ρt + ∆t
s

∑
i=1

biki. (A.1)
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Here ∆t describes the time step, and thus defines the temporal discretization, and bi ∈ [0, 1]
denotes the weight of the slope

ki = f (t + ci∆t, ρt + ∆t
s

∑
j=1

aijk j), (A.2)

where ci ∈ [0, 1] are known as the nodes and f (·) stands for the RHS of the Lindblad
master equation. aij form the Runge-Kutta matrix and are linked to the nodes ci = ∑j aij.
They are often visualized in the so-called Butcher tableau, which generally reads

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

with ∑i bi = 1. Each Runge-Kutta method is thus uniquely defined by the number of
steps s and Runge-Kutta matrix elements, the weights and the nodes as long as the above-
mentioned equations are fulfilled. The trivial choice s = 1 gives back the Euler method.
The fourth-order Runge-Kutta method (s = 4) is usually chosen as it yields marginal
errors in the order of O((∆t)5) for low computational cost. The values in the Butcher
tableau of the commonly used fourth-order Runge-Kutta method read tableau is

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

While this choice is valid for most applications of the Runge-Kutta method, it has been
discovered that its application to physical systems can potentially lead to fluctuation and
variation of otherwise conserved quantities [282]. Although in Section 4.3 we consider
particle loss, the non-unitary processes considered in the calculation in Section 4.2 does
not affect the average filling of the system and thus should be conversed throughout the
whole time evolution.
To this end a symplectic variation of the Runge-Kutta method has been developed [283±
285]. For this purpose the Butcher tableau has to be set such that the method preserves
the quadratic first integral due to its link to the symplectic nature of the method [286, 287].
Ultimately this leads to the symplectic condition given by

0 = (bibj − biaij − bjaji). (A.3)

This condition ensures that physically conserved quantities stay conserved and other
observables do not experience drastic changes due to numerical artifacts.
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Appendix B

Supplementary figures

In the following we provide additional phase diagrams and plots through which the
computed results of this thesis can be further understood. Section B.1 comprises comple-
mentary phase diagrams through the depiction of the mean observables. These figures
complement the phase diagrams determined through the plain Bose-Hubbard model and
the extended Bose-Hubbard model in Section 1.6.5 as well as the phase diagrams of the
extended, two-species Bose-Hubbard model discussed in Section 4.2. In Section B.2 we
display additional plots accompanying the results obtained for the macrodimer-dressing
studied in Section 4.3.

B.1 Order parameters in the phase diagrams

As discussed in Section we distinguish between different types of phases through computa-
tion of order parameters with their respective many-body ground state. When discussing
the phase diagram of the plain Bose-Hubbard model it is common to depict the two rele-
vant order parameters within the chosen parameter space, namely the local condensate
order parameter ϕ and the local occupation number n (see figure B.1). The vacuum regime
and the Mott lobes are identified through a vanishing condensate order parameter ϕ = 0,
while it is finite valued ϕ ∈ R in the SF regime. Additionally we observe an increasing
condensate order parameter as the hopping amplitude and the chemical potential become
larger. With respect to the hopping amplitude this is not too surprising, since the hopping
amplitude gives a measure of how delocalized the atoms are. On the other hand the
chemical potential dictates the filling of the system. A larger average occupation of the
system implies more atoms which can condense and subsequently leads to an increased
condensate order parameter. The occupation number n lets us distinguish between the
vacuum regime n = 0 and the different Mott lobes n ∈ N, while its value in the SF
regime indicates the average filling n ∈ R of each site. For non-condensed phases the
occupation number is integer-valued, as all atoms are highly localized, and each atom
can be attributed to a single site. Since there is no term within the Hamiltonian yielding
spontaneously broken lattice translational symmetry, the system is homogeneous and
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(a) (b)

Figure B.1: zJ − µ phase diagrams obtained through the local condensate order parameter
ϕ (a) and the occupation number n (b) corresponding to Fig. 1.10.

therefore well-described by these local order parameters.

The extended Bose-Hubbard model requires additional order parameters through which
homogeneous and inhomogeneous phases can be uniquely characterized. As the extended
Bose-Hubbard model discussed in this thesis possesses repulsive nearest neighbor interac-
tion, we expect checkerboard-ordered phases as possible many-body ground states. We
thus compute the staggered condensate order parameter ϕch

stag and the staggered occupa-

tion number nch
stag as defined in Section 1.6. For inhomogeneous phases it is not sufficient

to compute the local order parameters ϕi and ni only on one site i, which requires the
spatially averaged observables Åϕ and Ån.
For the extended Bose-Hubbard model at zV/U = 1 the spatially averaged condensate
order parameter and occupation number yield phase diagrams comparable to the ones
computed for the plain Bose-Hubbard model (see figure B.2). However the addition of the
staggered order parameters allow to differentiate between MI and DW phases in the insu-
lating regime Åϕ = 0, and SF and SS regimes in the condensed regime Åϕ ∈ R. Through the
staggered occupation number nch

stag ∈ R we identify two lobes of inhomogeneous phases,
each comprised of an insulating and condensed regime. The staggered condensate order
parameter more clearly exhibits the features of SS phases. Although these additional order
parameters are crucial for characterizing the various regimes of the phase diagrams, the
DW regimes can be potentially identified solely through the spatially averaged condensate
order parameter and occupation number. Since some of the insulating regimes exhibit
non-integer Ån ∈ Q, we can assume non-homogeneous distribution of the atoms within the
lattice and thus identify the DW lobes.

Similarly for a larger repulsive nearest neighbor interaction zV/U = 1.5 we identify the
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(a) (b)

(c) (d)

Figure B.2: zJ − µ phase diagrams obtained through the computation of the spatially
averaged condensate order parameter Åϕ (a) and the occupation number n (b) as well as
the staggered condensate order parameter ϕch

stag (c) and the staggered occupation number

nch
stag (d) at zV/U = 1 corresponding to Fig. 1.12(a).

insulating, condensed, homogeneous and inhomogeneous phases through the spatially
averaged and staggered order parameters (see figure B.3). However compared to the
previous phase diagram it is not possibly to distinguish between the MI and DW lobes
solely through the spatially averaged occupation number Ån. Within the phase diagram we
find a DW lobe with integer filling, which possesses identical spatially averaged order
parameters to its MI counterpart. This emphasizes the importance of staggered ordered
parameters for identifying the various regimes within the phase diagram.

A similar approach is used to determine the phase boundaries in the diagrams depicted
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(a) (b)

(c) (d)

Figure B.3: zJ − µ phase diagrams obtained through the spatially averaged condensate
order parameter Åϕ (a) and the occupation number Ån (b) as well as the staggered condensate
order parameter ϕch

stag (c) and the staggered occupation number nch
stag (d) at zV/U = 1.5

corresponding to Fig. 1.12(b).

and discussed in Section 4.3. Additionally to checkerboard-ordered many-body ground
states the extended Bose-Hubbard model relevant in that section yields striped phases if
the repulsive interaction occurs between next-nearest neighboring sites. Identification of
theses phases requires its own set of staggered order parameters as defined in Section 1.6.
Subsequent determination of the regimes follows the above-explained reasoning.
The model studied in Section 4.2 describes a system consisting of two species, an elec-
tronic ground |g⟩ and excited state |e⟩, and thus it is necessary to compute species-specific
order parameters in order to gain more information about the many-body ground states.
However here the computation of spatially averaged and staggered order parameters for
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(a) (b)

(c) (d)

Figure B.4: zJ − ∆ phase diagram obtained through the spatially averaged ground state
condensate order parameter Åϕg (a) and the occupation number Ång (b) as well as the excited
state condensate order parameter Åϕe (c) and the staggered occupation number Åne (d)
corresponding to Fig. 4.5. Reprinted figure adapted with permission from [257]. © 2019
by the American Physical Society.

the sake of identifying the various regimes is not favorable, as the long-range interaction
does not geometrically favor one type of ordering. In principal it would require us to
define staggered order parameters for any possible spatial modulation and even then, it is
likely that a many-body ground state with one type of ordering yields staggered order
parameters of different ordering finite. We therefore compute the many-body ground state
energy of many, unique orderings defined and determine the true many-body ground state
through comparison of their energies (see Appendix A.2). Additionally we compute the
spatially averaged order parameters in order to further understand the effect of hopping
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(a) (b)

(c) (d)

Figure B.5: zJ − ∆ phase diagram obtained through the spatially averaged ground state
condensate order parameter Åϕg (a) and the occupation number Ång (b) as well as the excited
state condensate order parameter Åϕe (c) and the staggered occupation number Åne (d)
corresponding to Fig. 4.11.

amplitude and detuning.
For isotropic interaction the spatially averaged ground state condensate order parameter
Åϕg and occupation number Ång increase as the hopping amplitude becomes larger, which is
in agreement with the previously obtained diagrams of the plain Bose-Hubbard model
(see figure B.4). Furthermore the detuning controls not only the spatially averaged excited
state occupation number Åne, but also slightly its ground state counterpart. Similar to the
devil’s staircase a detuning decreasing towards its critical value, which denotes the phase
transition between the homogeneous and inhomogeneous regimes, generally leads to
larger Ång and smaller Åne. Surprisingly the spatially averaged excited state condensate
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order parameter Åϕe does not show monotonic behavior as it peaks around the region,
where the system favors a checkerboard-ordered SS2 I phase. The initial growth of Åϕe

can be linked to the coherent coupling between the ground and excited state. Although
the excited atoms are considered frozen condensation can occur through their coupling
to the ground state, which become delocalized due to a finite hopping amplitude. Åϕe

thus increases with the hopping amplitude around ∆ ≈ 0 and decreases beyond a certain
hopping amplitude, as the system then prefers a completely homogeneous, delocalized
SF state. around At its maximum value increasing the detuning leads to larger Åne and
therefore more repulsive interaction, which yields stronger localization of the excited state
and thus a decreasing Åϕe. On the other hand decreasing the detuning simply yields a
smaller admixing of the excited state and therefore a vanishing Åϕe.
The phase boundaries between the insulating and condensed regimes are extracted from
these diagrams. Furthermore it is possible to identify the first-order phase transitions
within the DW and SS regime as the spatially averaged excited state occupation number
displays pronounced discontinuities upon variation of either the hopping amplitude or
the detuning. Unfortunately the phase transition between the SF and SS regimes is not
clearly visible, because it is of second-order (see figure 4.7). To this end investigating the
phase diagram of the preferred superlattice unit cell reveals the phase boundary.
Although these results are computed on the square lattice we find highly similar phase
diagrams for the triangular lattice.
For anisotropic interaction the phase diagrams possess comparable features. However
a major difference is the region in which the spatially averaged excited state condensate
order parameter takes its largest values (see figure B.5). Instead of a global maximum
we find Åϕe to take large values in the SS2 I phase regime. Due to the indirect competition
between the delocalized ground state and repulsively interacting excited state it is possible
to have a finite Åϕe even for large hopping amplitudes. Although no SS phase of type I
exists for tilted anisotropic interaction its phase diagrams also exhibit this feature. We
thus further confirm that the type of interaction has a larger impact on the many-body
ground state compared to the lattice geometry.

B.2 Additional plots to the macrodimer-dressing proposal

During the discussion of the Franck-Condon factors, the dressed interaction and the
dressing quality in Section 4.3, we focused on the Franck-Condon factor f0 of the lowest
vibrational mode of the studied potential wells. Although the coupling to a single higher
lying vibrational mode is weaker due to the larger detuning and the smaller overlap of
the corresponding wave function with the electronic ground state wave function, the
accumulated contribution of all higher lying modes can become important. As an example
we analyze the correction to dressed interaction computed solely with the Franck-Condon
factor f0 through inclusion of Franck-Condon factors fν of higher lying modes with
vibrational quantum number ν.
For the potential well Rb1 (see figure 4.23) at a principal quantum number n = 35 and
trapping frequency νtrap = 40 kHz, we see that the Franck-Condon factor fν decays as the
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Figure B.6: Franck-Condon factors fν (upper) and correction ∑
ν
ν′=0 Vν′/V0 to the dressed

interaction V0 versus vibrational quantum number ν for the potential well Rb1 at n = 35,
νtrap = 40 kHz and δ = 2π × 3 MHz. Reprinted figure adapted with permission from [270].
© 2021 by the American Physical Society.

vibrational quantum number ν increases (see figure B.6). Since the Wannier function of
the elecronic ground state is symmetric and the wave functions of the vibrational modes,
which are given by the Hermite functions (see Eq. (4.15)), are symmetric for even and
antisymmetric for odd values of ν, we obtain nearly vanishing Franck-Condon factors fν

for odd vibrational quantum numbers. The macrodimer bond length corresponding to
the Rb1 potential at n = 35 does not exactly match the distance between nearest neighbor
sites in an optical lattice with lattice constant alat = 532 nm and thus the center of the
Wannier function and the Hermite functions are shifted to one another, yielding the nearly
zero but finite Franck-Condon factor fν for odd values of ν. As discussed in section 4.3 the
weight distribution of the Franck-Condon factor f0 can be changed through variation of
the principal quantum number or the trapping frequency. Although not shown here the
Franck-Condon factors fν of higher lying vibrational modes behave opposite to f0. This
means that a larger value of f0 brings along small values of fν and vice versa.
Through the Franck-Condon factors fν we can determine the full dressed interaction
V = ∑ν Vν with the contribution Vν = ÅhΩ̃2

ν/4δν to the interaction through the coupling to
the vibrational mode ν. The detuning δν is given by the detuning to the lowest vibrational
mode and the spacing between different vibrational modes as δν = δ + ∆ν (see figure
4.24). We compute the correction ∑

ν
ν′=0 Vν′/V0 to the dressed interaction computed only

with the lowest vibrational mode up to a vibrational mode given by ν (see figure B.6).
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Figure B.7: Phase boundary between time evolution simulation leading to homogeneous
(I < Ith) and sponatenously broken lattice translational symmetry (I < Ith) phases for
two different values of the threshold Ith ∈ [0.05, 0.1]. Reprinted figure adapted with
permission from [270]. © 2021 by the American Physical Society.

While the correction appears to converge for the considered vibrational quantum numbers
we obtain overall a factor two as the correction. This means that the dressed interaction
displayed in Fig. 4.26 underestimates the correct dressed interaction achievable through
the proposed macrodimer coupling, which is favorable for our results.
In Section 4.3 we discuss the dynamical preparation of SS phases and make use of a
threshold Ith of the imbalance for the sake of distinguishing whether the system exhibits
pronounced features of inhomogeneous, spatial modulation of the many-body state.
This threshold value however is purely numerical and the phase boundaries displayed
in figure 4.28 is susceptible to this threshold value. In order to understand its impact
we determine the phase boundaries between homogeneous and sponatenously broken
lattice translational symmetry time evolution for a larger threshold (see figure B.7). As
expected the phase boundary between both regimes is shifted towards larger dressed
interaction strengths as we increase the threshold, since many-body states that exhibit
weak, inhomogeneous features fall under the threshold and thus the system requires
larger dressed interactions to give rise to more distinct features. However this shift is
only about a dozen Hz and thus not substantial. We therefore believe that phases with
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spontaneously broken lattice translational symmetry are achievable for reasonable values
of the dressed interaction.
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