GOETHE

UNIVERSITAT

FRANKFURT AM MAIN

DISSERTATION

Rydberg-dressed bosonic quantum
gases trapped in optical lattices

Mathieu Julien Gérard Barbier

Frankfurt am Main, 2022
(D30)






RYDBERG-DRESSED BOSONIC
QUANTUM GASES TRAPPED IN
OPTICAL LATTICES

DISSERTATION
zur Erlangung des Doktorgrades
der Naturwissenschaften

vorgelegt beim Fachbereich Physik
Johann Wolfgang Goethe-Universitat
in Frankfurt am Main

von
Mathieu Julien Gérard Barbier
geboren in Amiens, Frankreich

Frankfurt am Main, 2022
(D30)






vom Fachbereich Physik der Johann Wolfgang Goethe-Universitét als
Dissertation angenommen.

Dekan: Prof. Dr. Harald Appelshduser
Gutachter: Prof. Dr. Walter Hofstetter
Prof. Dr. Roser Valenti

Datum der Disputation: 11.07.2022






dédié a Souad Kabir, épouse Barbier
b b g S sl Blage







Zusammenfassung

“Kann ein Festkorper suprafluid sein?,” (orig.: “Can a solid be superfluid?”) lautet der Titel einer
von A.J. Leggett 1970 publizierten Arbeit und eine Frage, der sich diese Arbeit widmet.
Intuitiv scheint diese Fragestellung eine klare Antwort zu besitzen, da in der klassischen
Physik ein Festkorper und eine Fliissigkeit einer entgegengesetzter Natur sind und sich
dementsprechend gegenseitig ausschlieffen. Doch im Rahmen der Quantenmechanik
mag es fiir diese Frage keine offensichtliche Antwort geben. Deshalb kam es um 1970 zu
einer Welle von Publikationen, die sich mit der Theorie von Quantenphasen beschiftigte,
ein Zustand der sowohl Eigenschaften von Festkorpern und Suprafluiden besitzt. Die
Existenz dieser quantenmechanischen Phase, die als Suprasoliditit getauft wurde, schien
jahrzentelang ein Rétsel zu sein.

Die Suche nach einem experimentell realisierbarem System eroffnete viele weitere For-
schungszweige, doch im Grunde vereint sie ein Grundgedanke: Kondensierte System
aus langreichweitig wechselwirkenden Teilchen. Trotz dieser recht simplen Idee ergaben
sich eine Vielfalt von Kandidaten, mit denen eines Tages Suprasoliditdt experimentell
nachgewiesen werden soll. Eines dieser vielversprechenden Systeme, welches das zentrale
Thema dieser Arbeit bildet, sind Bose-Einstein Kondensate, dessen Atome an Rydberg-
Zustdnden gekoppelt sind.

Bose-Einstein Kondensation ist ein Phinomen, welches um 1924 von Albert Einstein
vorhergesagt wurde, der die Arbeiten von Satyendranath Bose iiber die Quantenstatis-
tik von Photonen auf den Fall von Atomen verallgemeinerte. Im Prinzip ldsst sich der
dazugehorige Aggregatzustand durch eine makroskopische Besetzung eines quanten-
mechanischen Zustandes charakterisieren, weshalb sich ein solches System aus unun-
terscheidbaren Atomen durch eine einzige Wellenfunktion beschreiben ldsst. Da meist
der besetzte Quantenzustand der energetisch geringste ist, wird mit der Kondensation
von Gasen meist ultrakalte Temperaturen im Nanokelvin-Bereich assoziert. Die ersten
experimentellen Realisierungen von einem Bose-Einstein Kondensat fanden erst 1995 statt
und die dafiir verantwortlichen Physiker wurden 2001 mit dem Nobelpreis ausgezeichnet.
Doch lang bevor wurde vermutet, dass die Bose-Einstein Kondensation teilweise hinter
dem Phdnomen der Suprafluiditét steckt, welches 1938 durch ultrakaltes Helium gefunden
wurde. Darauffolgende theoretische und experimentelle Arbeiten fanden heraus, dass in
Helium die Suprafluiditdt aus der Wechselwirkung zwischen den kondensierten Teilchen
stammt und somit entstand die Beziehung zwischen Bose-Einstein Kondensation und
Suprafluiditat.



Folgend auf den ersten Realisierungen von Bose-Einstein Kondensaten erschienen weitere
innovative Experimente, die sich in den optischen Gittern gefangenen Quantengasen
widmeten. In diesen zahlreichen, wissenschaftlichen Untersuchungen konnten die Eigen-
schaften von Bose-Einstein Kondensaten besser verstanden werden. Das Prinzip von
Vielteilchensystemen, gefangen in einem periodischen Potential, bot eine Plattform zur
Untersuchung weiterer Quantenphasen.

Eine konzeptionell einfache Modifikation von solchen Systemen erhélt man durch die
Kopplung der Grundzustdnde der gefangenen Teilchen an hoch angeregten Zustanden
mithilfe einer externen Lichtquelle. Im Falle dessen, dass diese Zustdnde nahe der Ionisa-
tionsgrenze des Atoms liegen, spricht man von Rydberg-Zustinden und Atome, welche
zu diesen Zustdnden angeregt werden, bezeichnet man als Rydberg-Atome. Eines der
vielen charakteristischen Eigenschaften von Rydberg-Atomen ist die Fahigkeit {iber grofie
Entfernungen jenseits der atomaren Langenskalen zu wechselwirken. Im Rahmen von Viel-
teilchensystemen wurden dementsprechend Kristallstrukturen aus gefangenen Rydberg-
Atomen experimentell beobachtet.

Nun stellt sich die Frage, was mit einem gefangenen Bose-Einstein Kondensat passiert,
dessen Teilchen an langreichweitig wechselwirkenden Zustdnden gekoppelt sind. Gibt es
ein Parameterregime, in dem sowohl Kristallstruktur als auch Suprafluiditit in solchen
Systemen koexistieren konnen? Dies ist die zentrale Frage dieser Arbeit, die sich mit der
Theorie von gefangenen Quantengasen gekoppelt an Rydberg-Zustdnden auseinander-
setzt. Die Arbeit ist in vier Teile gegliedert:

Kapitel 1 erortert die allgemeinen Konzepte hinter bosonischen Vielteilchensystemen
gefangen in optischen Gittern. Zunédchst werden in Abschnitt 1.2 die Kithlungsmeth-
oden vorgestellt, mit denen Quantengase ultrakalte Temperaturen erreichen koénnen.
Im Anschluss wird der physikalische Hintergrund von optischen Gittern diskutiert, in
denen diese gekiihlten Gase gefangen werden. Dabei wird das periodische Potential,
welches aus stehenden Wellen von Laserlicht resultiert, aus einer quantenmechanischen
und semiklassischen Sicht erldutert. Abhdngig von den Parametern des Laserlichts wer-
den die Teilchen entweder von den Knoten oder Bduchen angezogen. Diese periodisch
angeorgneten Potentialminima werden als Gitterpldtze bezeichnet. Aufgrund der Rel-
evanz in weiteren, wichtigen Herleitungen wird das Konzept des reziproken Gitters
ebenfalls vorgestellt. Ausgangspunkt bilden dabei die optischen Gitter fiir die Auseinan-
dersetzung mit der Theorie von Teilchen gefangen in periodischen Potentialen. Dabei
wird das in dem Kontext bekannte Bloch-Theorem eingefiihrt und die Bandstruktur des
Systems in Abhdngigkeit der Potentialparameter bestimmt,um Einblick in das Verhal-
ten der Teilchen zu gewinnen und mit der Wannier-Darstellung abgeschlossen, die als
Ortsraum-Wellenfunktion der Teilchen verstanden werden kann. Nachdem die Eigen-
schaften einzelner, gefangener Atome diskutiert wurden, widmet sich dieser Abschnitt
den Vielteilchensystemen. Zuerst wird das sogenannte Bose-Hubbard Modell vorgestellt,
mit dem sich bosonische Vielteilchensystem in der Zweiten Quantisierung beschreiben
lassen. Dieses Modell beinhaltet Tunnelprozesse und Kontaktwechselwirkung, d.h. Wech-
selwirkung zwischen zwei Teilchen am selben Gitterplatz. Zusétzlich besitzt das Modell
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einen theoretischen Parameter, das chemische Potential, mit denen sich in Berechnungen
von Grundzustinden die Teilchenanzahl im System regulieren ldsst. Da im Rahmen
dieser Arbeit langreichweitige Wechselwirkung auch eine wichtige Rolle spielt, wird
eine Erweiterung des Bose-Hubbard Modells mit Wechselwirkung zwischen Teilchen in
benachbarten Gitterpldtzen diskutiert. Durch das komplexe Zusammenspiel der Tun-
nelamplitude, der beiden Wechselwirkungsstarken und des chemischen Potentials ergeben
sich in dem System die moglichen Quantenphasen, die im darauffolgenden Abschnitt
diskutiert werden. Zuerst werden die moglichen Quantenphasen besprochen, die in
einem solchen System erwartet werden, namlich der Mott-Isolator, das Suprafluid, die
Ladungsdichtewelle und das Suprasolid. Im Falle, dass solche Zustdnde in bestimmten
Grenzfillen erhalten werden konnen, werden diese erortert und die dazugehorigen ana-
lytischen Wellenfunktionen diskutiert. Um die Quantenphase des Systems jenseits dieser
Grenzfille zu erhalten, werden die Phasendiagramme des Systems anhand numerischer
Rechnungen mit dem erweiterten Bose-Hubbard Modell bestimmt. Mithilfe von Ord-
nungsparametern lassen sich dann die Vielteilchengrundzustinde charakterisieren und
die Quantenphase identifizieren, womit Information iiber das Wechselspiel der Parameter
des Modells gewonnen werden Diesem Abschnitt folgend werden letzendlich experi-
mentelle Methoden diskutiert, mit denen diese Quantenphasen nachgewiesen werden
konnen. Eine dieser Methoden ist die Flugzeitmessung, bei der das Potential ausgeschaltet
wird und die Teilchenwolke aufgrund der Schwerkraft fallt. Wahrend der Expansion des
Gases kommt es moglicherweise zu Interferenzen zwischen den Teilchen, abhédngig von
der Quantenphase des Systems vor der Expansion. Nach einiger Zeit wird ein Bild der
Wolke geschossen, welches die Impulsverteilung des vorher gefangenen Systems offen-
bart, woraus die Quantenphase erschlossen werden kann. Eine weitere Methode bietet
das Quantengasmikroskop, mit welchem einzelne Teilchen abgebildet werden kénnen
und wodurch sich die genaue Ortsraumverteilung der Teilchen im System darstellen
lasst. Damit wurden die fiir diese Arbeit wichtigsten theoretischen und experimentellen
Aspekte von bosonischen Systemen gefangen in optischen Gittern besprochen.

In Kapitel 2 fithren wir den zweiten, essenziellen Aspekt dieser Arbeit ein, ndmlich
Rydberg-Zustdnde und Systeme aus Rydberg-Atome. Begonnen wird mit der Herleitung
der Wellenfunktion der Valenzelektronen, mit der sich die herausgehobenen Eigenschaften
von Rydberg-Atomen besser verstehen ldsst. In diesem Kontext wird die Hauptquan-
tenzahl eingefiihrt, mit der sich die Skalierung relevanter Eigenschaften beschreiben
lasst. Da der Rydberg-Zustand ein angeregter Zustand ist, besitzt dieser eine endliche
Lebensdauer, welche auf spontane Emission und Schwarzkoérperstrahlung zuriickgefiihrt
werden kann. Hierbei wird deren physikalischen Hintergriinde dargestellt und deren
Strahlungsraten in Abhéngigkeit der Hauptquantenzahl quantifizieren. Im Anschluss
wird die langreichweitige Wechselwirkung zwischen zwei Atomen im Rydberg-Zustand
erldutert, die aus der Dipol-Dipol-Wechselwirkung zwischen den Atomenkernen und den
entfernten Valenzelektronen stammt. Fiir zwei Atome im selben Rydberg-Zustand erhalt
man aus der Storungstheorie die charakteristische van-der-Waals Wechselwirkung, die
sowohl isotrop als auch anisotrop sein kann und als langreichweitige Wechselwirkung
im ersten Abschnitt von Kapitel 4 fungiert. Jedoch jenseits der Storungstheorie liefert die
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Dipol-Dipol-Wechselwirkung sogenannte Spagetthi-Potentiale, in denen nicht nur die
Wechselwirkung zwischen zwei Rydberg-Atomen ersichtlich werden, sondern auch die
Existenz von Molekiilen bestehend aus Rydberg-Atomen hervorgeht. Solche Molekiile
werden im Kontext der Rydberg-Physik auch Macrodimere genannt und bilden die Basis
tiir die langreichweitige Wechselwirkung im zweiten Abschnitt von Kapitel 4. Da sich
die Diskussion der Wechselwirkung auf Atome im Rydberg-Zustand einschrankt, wird
die Rolle der Wechselwirkung in Systemen aus wenigen Atomen, deren elektronischer
Grundzustand an einem Rydberg-Zustand gekoppelt ist, diskutiert. Dabei wird der
Vielteilchengrundzustand fiir verschiedene interatomare Distanzen im Bezug auf Kop-
plungsparameter und Wechselwirkungsstarke besprochen. Aus diesen Rechnungen wird
das Phdnomen der Rydberg-Blockade ersichtlich, in dem die Anregung aller Atome ener-
getisch ungiinstig ist, wenn die Atome nah genug beieinander sind. Fiir dichte Systeme
aus vielen, ununterscheidbaren Atomen bildet sich ein sogenanntes Superatom und das
System verhilt sich wie ein einziges Rydberg-Atom mit modifizierten Kopplungsparame-
tern. Dieses Kapitel schliefst ab mit dem jetzigen Stand der Rydberg-Physik in Bezug auf
Vielteilchensysteme. Dabei wird die experimentelle Realisierung von Kristallstrukturen
aus lokalisierten Atomen erwihnt, die in einem tiefen optischen Gitter gefangen sind und
dementsprechend nicht tunneln. Zusétzlich wird das sogenannte avalanche dephasing
diskutiert, ein kollektiver Effekt in dem durch Schwarzkorperstrahlung unerwiinschte
Rydberg-Zustdnde in einem System besetzt werden, was zu storenden Wechselwirkungen
und dem Verlust von Koherédnz fithren kann.

Vor den Hauptergebnissen dieser Arbeit werden in Kapitel 3 essenzielle numerische
Aspekte und Methoden zur Berechnung von Vielteilchensysteme und deren Zeiten-
twicklungen besprochen. Da der Hilbertraum von Vielteilchensysteme und damit der
dazugehorige numerische Rechenaufwand einfacher Operationen stark mit der Anzahl
der Teilchen und berticksichtigen Einteilchenzustdnde wéchst, wird eine Methode zur
Vereinfachung der Rechnungen unentbehrlich. In dieser Arbeit wird die Gutzwiller-
Theorie gewdhlt, in der sich mithilfe der Gutzwiller-Ndherung das System in Untersysteme
aufteilen lasst. Der Rechenaufwand, der mit der numerischen Berechnung Vielteilchen-
grundzustidnde assoziert wird, ist in diesen Untersystemen stark verringert und ermdoglicht
durch eine gescheite Wahl der Methodenparameter den Vielteilchengrundzustand des
gesamten Systems approximativ zu erhalten. In diesem Kapitel wird ebenfalls die Mas-
tergleichung in Lindblad-Form hergeleitet, mit der sich Dissipation und Dekohérenz im
System beschreiben ldsst. Der Einfluss dieser Prozesse wird aus nicht-unitdre Zeitentwick-
lungssimulationen ersichtlich.

In Kapitel 4 werden dann die Ergebnisse der zentralen Fragestellung dieser Arbeit
vorgestellt. Im ersten Abschnitt wird ein bosonisches Quantengas gefangen in einem
optischen Gitter gekoppelt an Rydberg-Zustdnden untersucht. Das dazugehorige Mod-
ell beschreibt ein zweikomponentiges System bestehend aus Atomen im elektronischen
Grundzustand und im Rydberg-Zustand. Das Modell beinhaltet zudem einen Kopplung-
sterm zwischen beiden Komponenten und der van-der-Waals Wechselwirkung zwischen
den Rydberg-Atomen. Um mdglichst viel Erkenntnis diesem Modell zu gewinnen werden
die Vielteilchengrundzustdnde sowohl fiir isotrope als auch fiir anisotrope van-der-Waals
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Wechselwirkung berechnet. Die Rechnungen werden fiir quadratische optische Gitter
ebenso wie fiir dreieckige optische Gitter durchgefiihrt. Unabhédngig der Geometrie der
langreichweitigen Wechselwirkung und des optischen Gitters werden Phasendiagramme
bestehend Ladungsdichtewellen, suprafluide und suprasolide Phasen entdeckt, wobei
deren Parameterbereiche von den Geometrien abhdngen. Die Kristallstrukturen, die in
den Ladungsdichtewellen und suprasoliden Phasen auftauchen, weisen unterschiedlich-
ste interatomare Abstdnde zwischen den Rydberg-Atomen. Dementsprechend kann
festegestellt werden, dass anisotrope Wechselwirkung zu streifenférmige Dichtemod-
ulation fiihrt, die fiir die Koexistenz von Kristallstruktur und endliche Kondensation
besonders vorteilhaft ist. Der Unterschied zwischen einem quadratischen und einem
dreieckigen optischen Gitter ist nur im Bereich des Phasendiagramms bemerkbar, in dem
das System eine dichte Dichtemodulation aufweist, dessen Langenskala vergleichbar
mit den Abstdnden zwischen benachbarten Gitterpldtzen ist. Fiir Parameterbereiche,
in denen die Phasen aus Rydberg-Atomen mit grofSer interatomarer Distanz bestehen,
ist der Unterschied zwischen den Gitter-Geometrien kaum bemerkbar. Da diese Ergeb-
nisse vielversprechend fiir die experimentelle Realisierung sind, wird die Untersuchung
durch das Einbeziehen von dissipative und dekohéirente Prozessen vervollstandigt. Da
suprasolide Phasen durch eine Kristallstruktur aus Rydberg-Atome und einem endlichen
Kondensat, welches aus der Phasenkohidrenz der Atome hervorkommt, auszeichnet, ist es
moglich, dass die endliche Lebenszeit der Rydberg-Zustande und Dephasierungsprozesse
diesen beiden Charakteristika so sehr schadet, sodass suprasolide Phasen nur theoretisch
existieren und experimentell in solchen Systemen nicht nachgewiesen werden kénnen.
Mithilfe der Mastergleichung in Lindblad-Form wird die Starke der Dissipation und
Dekohérenz im Kontext von Zeitentwicklungen tiberpriift. Dabei wird als Anfangszus-
tand sowohl eine Ladungsdichtewelle als auch eine suprasolide Phase genommen, welche
im Rahmen der vorherigen Rechnungen erhalten wurden, und in Anwesenheit der beiden
genannten Prozesse in der Zeit entwicklen lassen. Hierdurch wird festgestellt, dass in
der Tat Dissipation und Dekohédrenz mit wachsenden Raten der spontanen Emission und
Dephasierung zunimmt, jedoch selbst fiir hohe Raten das System langlebig ist. Zudem
wird beobachtet, dass die suprasolide Phase von dem endlichen Kondensat profitiert, da
die erlaubte Umverteilung der Atome in dieser Phase dazu fiihrt, dass das System weniger
Dissipation und Dekohédrenz erfahrt. Der erreichte langlebige Zustand besitzt zwar einen
mit der Zeit verschwindendes Kondensat, welches jedoch fiir typische Lebenszeiten und
Dephasierungs-Raten erst nach langer Zeit komplett verschwindet, sodass dieser Zustand
experimentell beobachtet werden kénnte. Wir kommen deshalb zum Schluss, dass bosonis-
che Quantengase gefangen in optischen Gittern und gekoppelt an Rydberg-Zustanden ein
vielversprechendes System fiir die Realisierung suprasolider Phasen ist.

Dajedoch kollektive Phanomene und weitere experimentelle Hiirden, wie zum Beispiel die
maximal realisierbare Tunnelamplitude und Kopplungsstarke, potentiell Schwierigkeiten
bereiten konnten, wird ein weiteres System vorgestellt, mit dem suprasolide Phasen re-
alisiert werden konnen. Im Gegensatz zum vorherigen System werden nun die Atome
im elektronischen Grundzustand jeweils paarweise schwach an Macrodimer-Zustinde
gekoppelt. Dadurch erlangen die Atome im Grundzustand die Fahigkeit langreichweitig




zu wechselwirken, jedoch nur wenn der Abstand zwischen zwei Atomen der molekularen
Bindungsldnge entspricht. Zuerst werden die Eigenschaften der dazugehorigen Kopplung
erldutert, die realisierbaren Wechselwirkungsstarken untersucht und den Einfluss von
Dekohirenz bestimmt. Es stellt sich heraus, dass der Quotient zwischen resultierende
Wechselwirkungsstarke und Dekohérenz besonders grofs ist, welches vorteilhaft fiir Ex-
perimente wére. Um herauszufinden, ob suprasolide Phasen tiberhaupt in einem solchen
System moglich ist, wird das Phasendiagramm des dazugehorigen erweiterten Bose-
Hubbard Modell berechnet. Da die Wechselwirkung anhand der Auswahl des gekop-
pelten Macrodimer-Zustandes verdndert werden kann, werden die Phasendiagramme
fiir Wechselwirkungen zwischen sowohl benachbarte als auch nichstnichste benach-
barte Gitterpldtze berechnet und verglichen. Fiir die vorher bestimmten, realistischen
Wechselwirkungsstiarken werden Ladungsdichtewellen, suprafluide und suprasolide
Phasen gefunden. Es wird festgestellt, dass die Wechselwirkung zwischen nachstnéchste
Nachbarn zu streifenférmige Kristallstrukturen fiihrt, welche vorteilhaft fiir suprasolide
Phasen ist. Da diese Ergebnisse besonders positiv sind, wird dieser Abschnitt mit einem
Vorschlag abgeschlossen, mit der in einem solchen System suprasolide Phasen realisiert
werden konnen. Dabei wird experimentell relevante Prozesse wie das Anschalten des
Kopplungslasers mithilfe Zeitentwicklungsrechnungen simuliert. Durch Bestimmung der
notigen Wechselwirkungsstiarke um aus einem anfanglichen suprafluiden System eine
suprasolide Phase zu erreichen und bilden eine Zeitentwicklung exemplarisch abgebildet.
Zusammenfassend wird festegestellt, dass bosonische Quantengase gekoppelt an Rydberg-
Zustdnden vielversprechende Systeme fiir die experimentelle Realisierung suprasolider
Phasen sind. Erhofft wird, dass in Zukunft relevante, kollektive Phinomene besser
ergriindet und neue Apparaturen entwickelt sein werden, um Experimente jenseits der
jetzigen Einschrankungen durchfiihren zu kénnen.
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Introduction

“Can a solid be superfluid” is the title of a paper published by A.]J. Leggett in 1970 and
a question to which this thesis is devoted. Intuitively, this question seems to have an
obvious answer, since in classical physics a solid and a liquid are opposite in nature and
accordingly mutually exclusive. But in the framework of quantum mechanics, there may
be no obvious answer to this question. Therefore, around 1970 rose a wave of publications
dealing with the theory of quantum phases possessing properties of both solids and
superfluids. This quantum mechanical state was coined supersolids and its existence
seemed to be a mystery for decades.

The search for an experimentally realizable system opened many branches of research, but
they are basically united by one basic idea: Condensed systems of interacting particles.
Despite this rather simple idea, a variety of candidates emerged through which super-
solidity were hoped to be experimentally realized. One of these promising candidates,
which forms the central theme of this thesis, are Bose-Einstein condensates whose atoms
are coupled to Rydberg states.

Bose-Einstein condensation is a phenomenon predicted around 1924 by Albert Einstein,
who generalized the work of Satyendranath Bose on the quantum statistics of photons
to the case of atoms. In principle, the associated state of matter can be characterized by
a macroscopic occupation of a quantum mechanical state, which is why such a system
of indistinguishable atoms can be described by a single wave function. Since usually
the occupied quantum state is the energetically lowest, ultracold temperatures in the
nanokelvin range are usually associated with the condensation of gases. The first ex-
perimental realizations of a Bose-Einstein condensate took place only in 1995 and the
physicists responsible for it were awarded the Nobel Prize in 2001. But long before that,
it was suspected that Bose-Einstein condensation was partly behind the phenomenon
of superfluidity, which was found for ultracold helium in 1938. Subsequent theoretical
and experimental work found that in helium the superfluidity arose from the interaction
between condensed particles, and thus the link between Bose-Einstein condensation and
superfluidity was established.

Following the first realizations of Bose-Einstein condensates, other innovative experiments
appeared dedicated to quantum gases trapped in optical lattices. In these numerous, scien-
tific investigations, the properties of Bose-Einstein condensates could be better understood
and many-particle systems trapped in a periodic potential provided a platform for the
investigation of many further quantum phases. A conceptually simple modification of
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such systems is obtained by coupling the ground states of trapped particles to highly
excited states using an external light source. Such states, energetically close to the energy
associated with the ionization of the atom, are called Rydberg states and atoms excited
to these states are called Rydberg atoms. One of the many characteristic properties of
Rydberg atoms is their ability to interact over large distances beyond the typical atomic
length scales. Accordingly, in the context of many-body systems, crystalline structures of
trapped Rydberg atoms have been observed experimentally.

The crucial question now arises as to what happens to a trapped Bose-Einstein condensate
whose particles are coupled to strongly, long-range interacting states. Is there a parameter
regime in which both crystalline structure and superfluidity can coexist in such systems?
This is the central issue of this thesis, which studies the theory of trapped bosonic quantum
gases coupled to Rydberg states. The work is divided into four chapters as follows:

¢ In Chapter 1 we discuss bosonic quantum gases trapped in optical lattices. We first
elaborate on the various cooling methods, followed by a derivation of the optical
lattice arising from the interference pattern of laser light. We then introduce the
Bloch theorem commonly used for particles trapped in periodical potentials and
examine the resulting Band structure. After the Wannier representation is presented,
we go from the single particle picture to many-body systems. In the context of
second quantization we derive the Bose-Hubbard model and an extension, through
which the quantum phases relevant in the scope of this thesis can be introduced and
discussed. We then conclude with experimental methods, by which these quantum
phases can be detected and observed.

* Chapter 2 focuses on properties of the Rydberg states, interaction between Rydberg
atoms and many-body ground states of atoms coupled to Rydberg states. We
investigate the processes limiting the lifetime of such Rydberg states and the scaling
of their magnitudes with the principal quantum number. We then derive the van-der-
Waals interaction resulting from the dipole-dipole interaction between two identical
Rydberg states through second-order perturbation theory and discuss the potential
landscape obtained beyond perturbation theory. In the context of these potential
landscapes we introduce macrodimer states, molecular bound states arising from
such potential landscapes. This chapter is wrapped up with the study of few atom
systems coupled to Rydberg states. We investigate the coupling scheme of such
systems, introduce the concept of Rydberg-dressing and discuss the many-body
phenomena of such systems, such as the Rydberg blockade and the superatom. We
tinalize this section with a recap of important many-body experiments, especially
with respect to the emergence of crystalline structures and the avalanche dephasing.

* Asanintegral part of the numerical calculations performed in the scope of this thesis
we devote the first part of Chapter 3 to Gutzwiller mean-field theory, through which
the computational cost of the studied problems are reduced and the computation
thus rendered feasible. We elaborate on the associated mean-field decoupling, and
discuss the difference between the single-site and Cluster Gutzwiller approximations
with respect to validity and computational effort. In the second part of the chapter




we derive the Lindblad master equation, which allows us to include dissipative and
decoherent processes in the system through time evolution simulations.

Chapter 4 contains the main results of this thesis. We first study a bosonic quan-
tum gas dressed with Rydberg states, which yields van-der-Waals interaction. We
investigate the phase diagrams, analyze the importance of the lattice and interaction
geometry and conclude with time evolution simulations to assess the strength of the
dissipation and decoherence arising from the finite lifetime of the Rydberg state and
blackbody induced transitions. We then focus on a bosonic quantum gas dressed
with macrodimer states. With respect to the associated coupling scheme we deter-
mine experimentally realizable dressed interaction strengths for macrodimer states
emerging from the potential landscape obtained for two chemical elements. After the
thorough investigation of more experimental aspects linked to the coupling scheme,
we compute the corresponding phase diagrams given the previously determined
dressed interaction strengths. We finally propose an adiabatic preparation of the
system in order to obtain phases with spontaneously broken lattice translational
symmetry.







Chapter 1

Ultracold quantum gases trapped in
optical lattices

In this chapter we discuss the fundamental aspects of bosonic quantum gases trapped
in optical lattices both from a theoretical as well as an experimental point of view. In
Section 1.2 we elaborate on the various cooling techniques through which atoms are
able to reach ultracold temperatures. We especially discuss the Doppler cooling and
mention notable other techniques allowing the atoms to reach temperatures below the
Doppler limit. In Section 1.3 the concept of optical lattices is reviewed. We examine
the effect of an electromagnetic wave on an atom and derive the corresponding periodic
potential arising through the light-atom interaction. As a useful notion we also introduce
the reciprocal space and comment on its role in the context of atoms in a lattice. In
Section 1.4 we study the properties of atoms in periodic potentials by means of the Bloch
theorem. We furthermore introduce useful wave functions and examine their behavior
with varying parameters of the periodic potential. In Section 1.5 we derive the plain
and extended Bose-Hubbard model obtained withing the second quantization formalism
and in section 1.6 we review the possible quantum phases of their corresponding many-
body ground states. After establishing a way to classify these phases we compute their
phase diagrams. Finally in Section 1.7 we review well-established methods to detect and
distinguish between the various previously-discussed quantum phases. We derive the
theoretical background behind time-of-flight measurements and explain the idea behind
the quantum gas microscope.

1.1 Introduction

The field of condensed matter physics flourishes and keeps growing, as many versatile
systems allow for the investigation of novel and exotic quantum phases. In the context of
bosonic quantum gases a landmark has been provided by Albert Einstein which predicted,
based on the work of Satyendranath Bose on quantum statistics [1], a quantum phase
defined by the macroscopic occupation of the energetically lowest quantum state at
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ultracold temperatures [2]. This state of matter, now known as Bose-Einstein condensate,
was many years later experimentally achieved with Rubidium 8 Rb [3] and has since then
been reproduced with other types of particles such as molecules [4] and photons [5].
The versatility of Bose-Einstein condensates is not limited to the type of particles involved
in the state of matter. By using different types of external confinements it is possible to
investigate different aspects of the quantum gas, further understand observed phenomena
and even simulate other many-body systems. In this context Bose-Einstein condensates
loaded in optical lattices became a strongly investigated field of research [6-9]. Thanks to
their high tunability and versatility trapped quantum gases in optical lattices are expected
to be an essential tool for the investigation of various phenomena [10-13] and a promising
platform for quantum computation [14,15].

As ultracold temperatures are a prerequisite for such systems we elaborate in what follows
on the most prominent cooling method, i.e. the Doppler cooling, and techniques, by which
the temperature can be subsequently cooled down even further.

1.2 Cooling atoms

The invention of laser cooling of atoms allowed for the investigation of many highly
relevant systems and phenomena, and the various methods to reach ultracold tempera-
tures have been studied both theoretically as well as experimentally. Among the most
prominent methods is the Doppler cooling, which has been developed for free [16,17] and
trapped atoms [18]. It consists of the controlled absorption and spontaneous emission of
photons, hereby reducing the kinetic energy and thus the velocity related temperature of
the atom. Although widely used, the effectiveness is limited due to continuous heating
induced by spontaneous emission. In order to reach temperatures below this limitation,
various techniques such as the Sisyphus cooling [19-23], the evaporative cooling [24-27] and
the Raman sideband cooling [28-31] have been established, by which temperatures close to
the one associated with the motional ground state of an atom are obtained.

In the following, we briefly discuss the physics behind Doppler cooling and elaborate
on the accessible range of temperatures. We then give an overview of the more popular
cooling methods to go beyond the Doppler-cooling.

1.2.1 Doppler cooling

The idea behind laser cooling is the momentum exchange between a moving atom and
a photon. The absorption of a photon with momentum k can be viewed as an inelastic
collision and for a photon coming towards the atom, i.e. with opposite directions of their
respective velocity, the momentum p’ of the thus excited atom with initial momentum p is
given by p’ = p — k. Although the subsequent spontaneous emission of a photon affects
the momentum of the atom, its contribution after many absorption-emission cycles is
averaged to zero, because the atom radiates the photon in a random direction, but with a
symmetric average distribution. The atom can thus theoretically be cooled down through
quantizied deceleration.
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Figure 1.1: Schematic experimental setup for the Doppler cooling of atomic clouds. The
atoms are prepared in the oven chamber and prepared into a beam. The beam is then
directed into the Zeeman slower in which the atoms encounter the counterpropagating
laser for the Doppler cooling. The Zeeman slower creates the magnetic field, which causes
the fine splitting necessary for the photonic absorption of the atoms. After being cooled
down the atoms are trapped in a magneto-optical trap (MOT), from where they can either
be further cooled by subdoppler cooling techniques or transferred to an optical lattice.
Reprinted figure with permission from [32]. © 2010 by the American Physical Society.

More realistically however, since the photonic absorption only happens if the energy of
the photon is equivalent to the transition energy between the electronic ground and an
excited state of the atom. Furthermore in an atomic cloud composed of identical atoms
with random motion, the relative velocity of the photon depends on each individual atom
and thus a single light source is not going to be able to cool down the atoms.

The latter issue can be partially solved by preparing the atoms in a directed beam (see
Fig. 1.1). Through an opposing laser beam, we thus limit the description of the system
to one spatial dimension. The direction of the motion is equal for all atoms, however a
sharp distribution of velocities is not guaranteed and therefore only part of the atomic
beam interacts with the incoming photons due to the persisting Doppler shift problem.
Additionally atoms slowed down by several absorption-emission cycles are not able to
absorb more photons beyond a certain point as relative energy the photon shifts out of
resonance.

The solution to these issues is the Zeeman slower, which applies an inhomogeneous mag-
netic field along the propagation of the atomic beam in order to make use of the Zeeman
effect [33-36] (see Fig. 1.2). The magnetic field splits degenerate states and shifts their
energies such that the transition frequencies match the relative energy of the incoming
atoms. As the atoms in the beam decelerate, the magnetic field is decreased to adapt to the
continuously changing relative velocity of the photons. The atoms are thus experiencing a
force opposite to their velocity and hereby cooled down. In order to guarantee that after
many absorption-emission cycles no atoms propagating in the direction of the incoming
photons are lost, a second laser beam with opposite direction to the first laser beam is used.




Chapter 1: Ultracold quantum gases trapped in optical lattices

L] I L]
a
a‘soo-() |
o |
|1
0 I L
—_— I LE I
0 b
g_soo-() I -
2 | I
5 —
] |
g \ o
AD Il I 1 1 Il
E L] L] L] L] L) T
. "]
go L ——
1 L] L] L] L] L] L]
0 —

100 80 60 40 20 0
Distance from MOT (cm)

Figure 1.2: (a) Overall magnetic field generated within the experimental setup (black) in
the oven chamber (green), the Zeeman slower (red) and the MOT chamber (blue). The
continuously increasing magnetic field guarantees that the decelerated atoms are still
in resonance with the optical transition frequency of the cooling laser. (b) The velocity
of the cooled atoms. In this experiment, the atomic cloud consisted of Rubidium (red)
and Lithium (blue) atoms. (c) The width of the atomic beam, which expands the further
it travels. (d) Dimensionless acceleration of the atoms throughout the cooling process.
Reprinted figure with permission from [32]. © 2010 by the American Physical Society.

Doppler limit

Due to the random nature of the spontaneous emission of a photon, the average velocity
gain of the atoms is zero. The root mean squared velocity /(v?) = 2/kgT/m however
is non zero and implies that the atom is constantly heated during the emission part of
the cycle. In the stationary state the cooling and heating rates of the atoms are equal,
which means that the limit of the Doppler cooling is determined by the decay rate I' of the
excited state involved in the Doppler cooling. The Doppler limit is then defined through
the lowest achievable temperature, the Doppler temperature Tp = hI'/(2kg). The validity
of this limit has been experimentally demonstrated [37,38]. The corresponding energy
Ep = m{v?) /2 is generally much larger than the energy gained through the momentum
kick of a single, radiated photon, indicating that temperatures below the Doppler limit are
in principle achievable given the appropriate technique. The Doppler cooling however
can achieve temperatures of about several hundred mK.
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Figure 1.3: Sinusoidal polarization potential for the two degenerate ground states. An
atom in one of the two ground states with residual velocity converts its kinetic energy
into potential energy and upon reaching the maximum of the potential, the light field
transfers the atom into the other ground state through optical pumping. The previously
felt maximum of the potential becomes a potential minimum and the atom hereby loses
the potential energy. This process is repeated until the kinetic energy is not sufficient to
reach the potential maximum and the atom is thus cooled down. Reprinted figure with
permission from [39]. © 1989 by the Optica Publishing Group.

1.2.2 Sub-Doppler cooling

Since the conception of Doppler cooling various techniques have been developed to go
below its limit and approach the recoil temperature kpTr = h’k2/ (2m). In contrast to the
Doppler cooling, which relies on a two-level system, several of these techniques utilize
the hyperfine structure of the atoms to achieve ultracold temperatures. Among these are
the Sisyphus, the evaporative and the Raman sideband cooling, which are apart from the
above-mentioned common feature vastly different.

Sisyphus cooling

Starting point of the Sisyphus cooling is an experimental setup consisting of two counter-
propagating laser beams with wavelength A and orthogonal linear polarization. The
resulting light field is then given by a polarization standing wave with period A/2 [40].
It exhibits an overall linear polarization at the nodes of the standing wave, while the
antinodes are characterized by alternating left-hand and right-hand circular polarized
light.

Due to the periodic light field a multi-level atom experiences a spatially dependent shift of
its energy level. For an atom with a twofold-degenerate electronic ground state a circular
polarized light induces an optical pumping to the preferred ground state. The atom
then experiences the light field with opposite circular polarization as repulsive, which
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renders the standing light wave a periodic potential. An atom in the other ground state
experiences a similar periodic potential, albeit shifted by A /4.

An atom at rest is optically pumped in one of the ground states in dependence on its
position in the light field and is then trapped due to the circular polarized light. A moving
atom however is optically pumped into one ground state, depending on the handedness
of circular polarization of the surrounding light field at that position, and then through
its kinetic energy climbs up the potential hill 1.3. If the kinetic energy is large enough
such that the atom reaches the top of the potential hill, it is optically pumped to the other
ground state due to the light with opposite circular light and its kinetic energy is converted
to potential energy, hereby losing velocity through the climb. This process is repeated
until the atom is not able to further climb the potential hill.

With the Sisyphus cooling it is hereby possible to reach the recoil temperature, which is
around a few mK and therefore much smaller than the Doppler cooling.

Evaporative cooling

We consider an atomic cloud trapped in an optical harmonic potential. As the atoms
collide and exchange momentum they thermalize and hereby collectively reach a uniform
temperature based on the principle of equilibration. By reducing the strength of the
potential it is possible to let fast atoms escape through their higher kinetic energy. In
magnetic traps however the lowering of the potential well is not as trivial and relies on the
Zeeman effect. In a two-level atom with F = 0 and F = 1, where the Zeeman shift splits
the threefold degenerate excited state into three states with |mp = —1,0, 1), the gradient
of the magnetic field B leads to forces AE o« —mpB relative to the center of the harmonic
potential. The force is attractive for one sublevel (my = —1), while the other sublevels
either do not feel the trap (mp = 0) or are expelled (mp = 1). The first state is referred
to as the trapped state, while the last state as the anti-trapped state. Assuming all the
trapped atoms in the trapped state, it is expected that faster atoms reside on the far edges
of the potential. Through a radiofrequency source, which matches the energy difference
between the trapped and anti-trapped state at the border of the potential, fast atoms are
excited to the anti-trapped state and hereby lost. Although the procedure appears to be
more complex than its optical trap counterpart, it is equivalent in its result as both method
rely on the loss of fast particles. The slower atoms left in the potential rethermalize and
reach a lower uniform temperature. The successive ramping down of the potential can be
understood as a rescaling of the Maxwell-Boltzmann distribution. Instead of becoming
more narrow, the peak of the distribution shifts to lower velocities and at the same time
the atom number decreases such that its shape is not altered greatly. Finally, through
evaporative cooling temperatures of a few nK can be achieved.

Raman sideband cooling

The basic idea of the Raman sideband cooling is the continuous optical pumping of parti-
cles into a low energy mode. For tightly-bound atoms theses energy modes are given by
the vibrational levels v, with the lowest energy mode v = 0, which results in unique states

10
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Figure 1.4: Left: Raman sideband cooling process, through which the kinetic energy
of an atom is reduced by optical pumping it from a higher lying vibrational level to a
lower lying level. Through an external magnetic field the different vibrational levels n
of different states |F, mp) are shifted such that they become degenerate, hereby allowing
Raman transition between these two levels. After several Raman transitions the atom is
optically pumped into an excited state, from which it decays to the initial state |F, mf),
albeit occupying a lower vibrational level. This repeated until a dark state is reached.
Reprinted figure with permission from [31]. © 2017 by the American Physical Society.

|F, mg,v) for the atom. Through an external magnetic field the Zeeman shift can lead
to two states |F, mp,v) and |F,mp — 1,v — 1) being degenerate and additionally coupled
through Raman transitions. Through several of these transitions the atom is transferred to
the state with the lowest mr, where it is optically pumped to an excited state. Subsequent
decay leads to the population of the state |F, mp, v — n), where n refers to the amount of
Raman transitions involved in one cycle. After many cycles the atom is transferred to the
lowest vibrational mode |F, mf,0) called the dark state, as it is only weakly coupled by
the coupling lasers.

As Raman sideband cooling relies on tight confinement of atoms, it became a strong
valuable asset in experiments with tunable optical traps. The limitation is only given by
the spectral resolution of the Raman transitions and thus makes ultracold temperatures
far below the Doppler limit of a few hundred nK accessible.

Atom cooling is an essential part of realizing degenerate quantum gases, as the phenomena
we are interested in depend on reaching ultracold temperatures through which bosonic
atoms are able to condense due to their enhanced de-Broglie wavelength. The subsequent
step is the trapping of these cold down atomic clouds.

11
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1.3 Optical lattices

Optical lattices belong to the category of optical dipole traps, which rely on the dipole
force of a light field acting on atoms, hence the name. The elegant idea behind the trapping
is based on the fact that neutral atoms immersed in a light field gain a finite, light-induced
dipole moment. The thus polarized atom is then able to interact with the surrounding
light field and feel a force, the strength of which depends on the intensity gradient of the
field.

In the following, we discuss the origin of the light-particle interaction and illustrate how
the dipole force can result in a periodic potential.

1.3.1 Light-atom interaction

The light-atom interaction is based on two properties: It couples the ground state of
the atom to higher lying hyperfine states, hereby gaining a finite dipole moment, and
simultaneously shifts the energy of these internal atomic states, such that the atom becomes
sensitive to the light field intensity. The resulting potential landscape felt by the atoms
can be obtained both through second-order perturbation theory and a classical oscillator
picture. Since the derivations of the potential offer a different view on the origin of the
interaction, we discuss both in the following.

Perturbation theory picture

A light field surrounding an atom induces transitions of its electronic ground state to
other hyperfine states and additionally shifts its energy levels. For an atom at position x at
time ¢, this shift, which is also known as the AC Stark shift [41-43], is determined through
second-order perturbation theory given by

[(i] do )
Upc = Y 102wl (1.1)
iz Ei—E

where d(x,t)w = peo (¥, t)Ew(x,t) is the dipole operator, and |i) and |j) denote the elec-
tronic ground state and a hyperfine state respectively, with E; and E; being their respective
energies. The dipole operator d,, describes the dipole transition matrix element pij be-
tween the states |i) and |j) through the light field with amplitude E, (x, t). If we set the
internal energy of the atom in the electronic ground state to zero, only the light field
consisting of n photons with energy w contributes to the energy as E; = nfiw. On the other
hand, a transition to |j) implies the absorption of a photon from the surrounding field.
The internal energy of the atom then is given by the optical transition frequency as hiw;;,
which yields E; = fiw;; + (n — 1)hw. The difference between both energies is then defined
as the detuning A;; = fi(w — wj;).

The higher lying hyperfine states have a finite lifetime and the corresponding decay rate
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back to the electronic ground state is given by [44]

3

[ — 2 1.2
i Breghcd i (12

w

It is useful to reformulate the dipole transition matrix through a transition coefficient
matrix c;; as

i = cijlpl, (1.3)
since the squared value clz]. also known as line strength is experimentally accessible and

theoretically determined for a given atom and its hyperfine structure. We thus arrive at
the most general form of the AC Stark shift

3epc®T  Cij
Une = Ty S g, (x, ), (14
wo i Bij

where I and wy denote the decay rate and the transition frequency to the hyperfine state
to which the ground state couples the strongest. Its strength not only depends on the
properties of the atom, but more importantly on the intensity |E2 (x, t)| of the light field
and the detunings A;; given by the chosen light field through w, which are experimentally
tunable parameters. In dependence of the sign of A;;, the atoms are either attracted
(Ajj < 0) or expelled (A;; > 0) by the maxima of the light field. If w is chosen such that the
signs of all detunings are not equal, further calculations are necessary to determine the
potential minima induced by the light field.

In the case of a simple hyperfine structure consisting of only two levels or in the far
off-resonant regime (A;; > 0), the sum drops out of the Eq. (1.4) and thus yields the
simplified form

Use = = — |Eo(x,t)?, (1.5)

where A is the detuning to the most relevant hyperfine state. Although being an approx-
imation, Eq. (1.5) delivers qualitatively good result [44]. In subsection 1.3.1, we further
discuss the difference between the approximated and the exact AC Stark shift based on an
example.

Classical oscillator picture

Compared to the perturbation theory aspect of the light shift, the oscillator model offers
a more classical view on the matter. Similar to the derivation of the AC Stark shift, the
interaction between atom and light is based on the dipolar interaction through

Vaip () = —%(dw(x,t)Ew(x,t»t (1.6)

with the previously defined dipole operator d,,(x, ) and where (-); signifies the time
averaged expectation value. The goal now is to define the dipole moment p,(x, t) based
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on an oscillator model. Classically the electron of an atom in its electronic ground can be
viewed as elastically bound to the nucleus and oscillating with undamped motion given
by frequency wy [45]. However in the presence of the additional light shift, the oscillation
deviates from the unperturbed motion which thus results in a finite dipole moment. Given
the deviation vector r;;,,(x,t), which describes the deviation of the electron from the
unperturbed oscillation, we can define the dipole moment as

:uw(xl t) = ezrij,w(xrt) (1.7)
J#

We thus need to determine the light field dependence of the deviation. Since we are
working in a classical picture, we can establish an equation of motion through the Lorentz’s
oscillator model, which yields

.. . E,(x,t
ri]‘,w(x, t) + erijlw(x, t) —+ w?jrijlw(x, t) = —ECZ.Z]. ‘4;51 )
e

(1.8)

The damping I', = (w/wjj)’T}; results from the finite lifetimes of the hyperfine states.
Through integration, the differential equation gives

e 1
tiolx, t) = — - E,(x,t 1.9
i (21) mew?j—wz—zwl“w W% 1) (19)

Via substitution of the prefactor as
e 6mepcTy,

1.10
e 2 (1.10)

and the decay rate I';;, we obtain the potential obtained through the dipole interaction

1
3

Vaip (%) = 3megc® )
i il

Tij Lij 2
E; (x,t))t. 1.11
R LACN (1.11)

Although the previously defined detunings A;; can be chosen to be large in the off-resonant
regime, it is reasonable to assume the detunings to be all smaller than the actual transition
frequencies w;; > A;;. With this assumption, the potential reads

36T 5,y
Vdip(X) = 732A7<Ew(x,t)>t (112)
Wy T B

resulting in the same potential as obtained with second-order perturbation theory, al-
though both derivations are different and provide complementary aspects to the under-
standing of the light shift induced potential.
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Figure 1.5: Fine and hyperfine states with fine state splitting Ags and hyperfine state
splittings Apps and Ajypg coupled through the external light source with frequency w
resulting in the trapping of an alkali atom. Even though the full substructure of the
alkali atom contributes to the trapping potential, the two-level approximation leads to an
accurate description. Reprinted figure with permission from [44]. © 1999 by Elsevier.

Significance of the two-level approximation

The two-level description, from which (1.5) arises, appears to disregard potentially im-
portant hyperfine levels, which are also coupled to by the external light field. However
alkali atoms typically used in optical lattice experiments, e.g. ’Li, #'Ka and 8’Rb, possess
a number of hyperfine states, which are involved in the dipole interaction (see Fig. 1.5).
The full substructure of such an alkali atom with nuclear spin | = 3/2 can be described by
the hyperfine structure of the levels |2S;,,), |*S1,2) and |*S1,2). The associated energies
of fine and hyperfine state are defined as iAgs, Aprps and fiALgs. In such a system the
interaction yields

3
_ meoe’l (24 Pgpmp 1 — Pgpmp 5
Vap (1) = = 5 ( At ) B (x, 1), (1.13)

with the polarization P of the light-field (P = 0 for linear and P = %1 for circular polarized
light), the Landé factor gr and the magnetic quantum number mr [44]. A1 and A,k refer
to the energetic difference between the lowest hyperfine state |2S; /,, F) and the center of
the hyperfine splitting of |2P; /») and |*P3,) respectively. Since the splitting between the
two levels are generally larger than the energies associated with the fine and hyperfine
splitting, i.e. |A1 |, |Aor| > |Ars|, |Aurs|, |Aurs|, we can define |Aq 5| =~ |Ayr| = |A] and

thus obtain 5
3megc’T 1 Arg >
Vdip(x) = wSA (1 + ngpmpT) (Ew(x, t))t. (1.14)
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The first term corresponds to the potential obtained within the two-level approximation,
while the residual term reflects the contribution of other fine and hyperfine states, which
is marginal due the considered limit Ags/A < 1. We thus conclude that for alkali atoms
the two-level picture is a qualitatively good approximation for calculating the potential
strength.

1.3.2 Atomic scattering

The interaction of the light field not only consists of the photon absorption of the atom,
but also the subsequent radiative emission of photons through spontaneous decay. The
power of the dipole radiation is given by

Prad(x) = <ﬂw(xrt)Ew(x/ t)>t- (1.15)
Given the photonic energy fiw, the corresponding photonic scattering rate reads [44]
2

_ Pag 31T CiiN2, o
Lic(x) = 724 = e Z(Aij) (B2 (x, 1)1, (1.16)

which possesses the same scaling of the light field intensity as the dipole interaction.
In the two-level approximation, direct comparison of the scattering rate and the dipole
interaction yields the relation

ATacx) = — Vg (0). (1.17)

Since strong dipole radiation could potentially hinder the trapping of the atoms, it is
important to decrease the ratio between photonic scattering rate I's. and dipole interaction
Viip, while maintaining a significant dipole interaction strength. Through the above-
derived relation, we find that large detunings A allow us to achieve this goal. Thus optical
dipole traps commonly work in the far off-resonant regime (JA| > 1), in order to achieve
low scattering rates and large enough interactions for the trapping.

1.3.3 Periodic lattices

Optical lattices are not only defined by their light-field induced trapping, but also through
their periodic structure. The periodic nature of the potential arises from a set of coun-
terpropagating laser beams, whose interference results in a standing wave with fixed
nodes. These nodes represent the minima of the light-field intensity and thus either repel
or attract the submerged atoms based on the detuning. The field of multiple lasers can be
written as

1 e o ot
Eo(r,t) = 5 Y Ereftriettivng, (1.18)
1

with the laser index [, their field amplitudes E; and phase shifts ¢;. The wave vector

k! = ki n; are given by their wave number k} and the normalized vectors n; = (n’, nly, nl),
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which indicate their direction (|n;| = 1). Note that we omit the Gaussian shape of the laser
perpendicular to the beam propagation for the sake of simplicity. Assuming that a set of
counterpropagating lasers are identical in their properties, the potential resulting from
their interference reads

V(r) =Y Vi'cos®(kI'(r - tm) + Pm), (1.19)

where m denotes the set of counterpropagating lasers. The dipole interaction strength
v = 37257363 ) %IEMZ is also known as the potential depth and is easily tunable by

variation of the light-field intensity. On the other hand, the wave number k' = 277 /A,
and thus the periodicity of the potential are directly related to the wavelength of the
laser A, which depend on the available lasers and can not be freely changed during an
experiment. While changing the relative angle between both counterpropagating lasers
might result in a standing wave with altered wave number, it can also lead to the loss of
interference between the lasers due to its high sensitivity to the relative phase between
both lasers. While several techniques to tune the periodicity of unloaded potentials in
real-time have been established in recent years [46,47], the continuous trapping of atoms
during the periodicity tuning remains an important experimental challenge.

The resulting potential Eq. (1.19) is known as the optical lattice and the potential minima,
in which the trapped atoms are most likely to be found, are called lattice sites. Through the
chosen spatial configuration of several laser beams, optical lattices with vastly different
geometries in one, two or three dimension are achievable. Since these optical lattices are
theoretically infinite, they can be regarded as Bravais lattices and described by a lattice
vector R = ) ; n;a;, where n; € Z and a; are the primitive translation vectors. Shifting the
potential V(r) by R would thus result in the same potential, i.e. V(r + R) = V(r).

Examples

Unless mentioned otherwise, we choose the potential depth and the wave number of all
lasers to be equal (Vé = Vand le = ki) and set the lasers to be phase coherent(¢; = 0).
For a single standing wave with n; = (1,0, 0), the resulting potential is simply given by

Vip(x) = Vgcos? (kpx). (1.20)

While in this form the optical lattice resembles a one-dimensional chain, the full potential
resembles stacked discs due to the Gaussian shape of the laser beams and thus reads

(y+2)?

Vip(r) = Vocos? (kpx)e™ o . (1.21)

with the beam waist radius ¢. The confinement along x-direction is usually sufficiently
strong for trapping due to the large potential depths, whereas the confinement within the
y, z-discs is weak and allows the atoms to be move more or less freely within the discs. For
a tighter confinement an additional, external potential is necessary, which then restricts the
movement within the discs and thus leads to a pure one-dimensional optical lattice [48].
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Figure 1.6: Set of exemplary two-dimensional optical lattices with different spatial geo-
metries created by lasers with optical lattice constant aj,; = A/2 = 532 nm. The most
commonly used two-dimensional optical lattices are (a) square, (b) triangular, (c) honey-
comb and (d) Kagome lattices. Through the inclusion of additional lasers and variation of
their respective phases other configurations such as (e) and (f) can be obtained. The at-
tractive and repulsive regions of the potential landscape of the lattice can be interchanged
through variation of the detuning.

A two-dimensional square lattice can be realized through two perpendicular standing
waves (n; = (1,0,0) and n, = (0,1,0)) and reads

2

VAU () = Vo (cos? (kpx) + cos? (kpy))e™ <, (1.22)
which can be understood as two-dimensional square distribution of one-dimensional
tubes, again due to the Gaussian beams involved in the creation of the potential. Although
most cold atoms experimental setups involving two-dimensional square optical lattices
also make use of an additional external confinement, the movement of the atoms within
these tubes can be used to create and investigate so-called quantum wires [49-51].
Another two-dimensional optical lattice is the honeycomb lattice, which is created through
the overlap of three standing waves with directions n; = (1,0,0) and n, = (cos(%F), sin(%-

and n3 = (cos(*F),sin(%f),0), and is given by the potential

VES(r) =V (cosz(ka) + cosz(%(x —V3y)) + cosz(%(x + \@y)))eft%. (1.23)
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Superimposing two honeycomb lattices with two different wave numbers (le = Zk%)
leads to an experimentally highly relevant lattice known as the Kagome lattice. While
a configuration of twelve laser beams with two different wavelengths can be used to
generate such a lattice [52], it is also possible to use three so-called superlaser beam with
equal wavelength, but different polarizations [53-55].

Three perpendicular standing waves (17 = (1,0,0) and n, = (0,1,0) and n3 = (0,0, 1))
generate a three-dimensional cubic optical lattice

VsEbe (1) = Vo(cos? (kpx) + cos?(kry) + cos?(kp.z)). (1.24)

In three-dimensional optical lattices no additional confinement is necessary as the potential
depth is larger than the weak Gaussian confinement. Note that for hypercubic lattices the
distance between nearest neighboring potential minima is referred to as the optical lattice
constant aj; = A/2.

1.3.4 Reciprocal space

Albeit difficult to visualize, momentum space offers an important physical insight on
the trapped atoms. Within the plane wave description of the electromagnetic field (see
Eq. (1.18)) lays the duality between space r and momentum k. Although in the previous
sections we considered the wave vector k to be fixed by the laser wavelength and the
space as a variable r, it is possible to view it the other way around. If we define r = Aé
and choose the momentum k to be a variable, we see that the plane wave behaves equally
in real and momentum space.

Similar to the plane wave, the optical lattice possesses a counterpart in momentum space,
which is called the reciprocal lattice. The corresponding lattice vector in momentum space
takes the form K = }; m;b; and is equivalent to the previously defined lattice vector R of
a Bravais lattice. In order to find their relation, we perform a Fourier decomposition of the
potential V(r) as

V(r+R) =Y Vie®r = Y VieKUHR) = Y ypelKReKr = v/ (7). (1.25)
K K K

For the equality to be true, the lattice vectors in real space and momentum space have to
fulfill the relation

KR = 27N (1.26)

with N € Z. Since R is given by the configuration of laser beams, K is chosen such that
a;b; = 276;;. We hereby see that the reciprocal lattice spacing given by 2k is inversely
proportional to the optical lattice constant aj,. For a hypercubic lattice the wave number
can be specified as k;, = 27t/ A.
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1.4 Atoms in periodic potentials

In order to understand the behavior of the atoms trapped in the optical lattice, we deter-

mine the single-particle spectrum. The Hamiltonian of an atom reads

Hv?
2m

A=- + V(r) (1.27)

and simply describes an atom with kinetic energy in an arbitrary potential. Commonly
used as a natural energy scale in an optical lattice, we introduce the so-called recoil energy,

which reads )
_ h k%

E
R 2m

(1.28)

and describes the gain in kinetic energy of an atom initially at rest through spontaneous
emission of a photon. In the following, we use the periodic nature of the potential in order
to determine the eigenfunction of trapped atoms.

1.4.1 Bloch theorem

We define the action of the lattice translation operator T on an arbitrary function f(r) as
Trf(r) = f(r + R). (1.29)
Through successive application of the operator
Tr, T, f(r) = f(r+ R1 + Ry) = Tr,4&,f(r) (1.30)
we can show its commutative property
Tr, Tr, = Tr, Tr, = TR, +R,- (1.31)

Since the periodic potential V(r) = V(r + R) is invariant under translation TrV (r) = V(r),
the Hamiltonian Eq. (1.27) must also be invariant under translation and thus commutes
with the operator

[Tr, H] = 0. (1.32)

Although it may seem trivial, the above commutation relation reveals that both operators
share a set of common eigenfunctions
HY(r) = E¥(r)

X (1.33)
TRT(1‘> CR‘II(I‘)

with eigenvalues E and cg. The commutative property of the translation operator implies

CR1CR2 = CR1+R2 (134)
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and thus the eigenvalues of the translational operator can be rewritten with the wave
vector k as ‘
cr = 'R, (1.35)

Finally, with the application of the translational operator and the definition of the eigen-
value cg we find that the wave function fulfills

¥(r+ R) = e R¥ (7). (1.36)

This is known as Bloch’s theorem and it states, that the wave function of a single atom
trapped in a periodic potential can be rewritten as

Y(r) = e*u(r) (1.37)
where ¢*" describes a plane wave and u(r) is a periodic function such that
u(r) = u(r+ R). (1.38)

The wave function ¥ (r) is commonly referred to as the Bloch state and can now be used in
order to determine the single-particle spectrum.

1.4.2 Band theory

Before applying the newly defined eigenfunction on the Hamiltonian Eq. (1.27), it is useful
to work in the momentum space and thus we perform a Fourier decomposition of the
periodic function with momentum space lattice vector K as

u(r) = ZuKeiK’, (1.39)
K

which leads to ' _
Y(r) = ZuKel(K“‘)’ =) upe'?". (1.40)
K 7

The Fourier decomposition of the periodic potential yields

V(r) =Y Vke®. (1.41)
K

Calculation of the eigenvalue equation of the Hamiltonian Eq. (1.27)

V2¥(r) = Y u,(VZe?) =Y pPupe?” (1.42)

P P
V(r)¥(r) =Y VkupeXe?" =y VKup/,Kei”,’ (1.43)

Kp Kp’

results in
ipr hz 2 _ ipr
Y e <%p Ug +2Vpu,,,1<) =Y ¢?""Eu, (1.44)
P 2 P
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Figure 1.7: (a) Energy bands calculated in a one-dimensional lattice through Eq. (1.46).
Each band corresponds to an energy level E,, which varies with quasimomentum k. For
no trapping potential Vj = 0, the energy band result from the overlap of the quadratic
dispersion relation of free electrons at different reciprocal lattice points given by K, = 2nky
with n € Z. A finite potential depth Vj/Er > 0 however leads to avoided crossings and
shifts the bands to higher energies. At large potential depths, the lowest band becomes
flat. (b) The width of the energy bands versus potential depth. The lowest band flattens
fast and the gap Eg,p between the lowest and second band becomes more important with
increasing potential depth.

and by substituting back the wave vector k and the reciprocal lattice vector K in

n 2
%<k—K> le_K—f—ZVK/_kuk_K/ = E(k—K)Mk_K (145)
K/

Although solving the equation in more than one dimension, we restrict the upcoming
discussion on the one dimensional case as it reduces the complexity and still provides
important insight on the physics at hand.

One dimensional optical lattice

By restricting the problem to one dimension, the Brillouin zone is simply given by k €
(—kg, k] with the center of the primitive cells separated by K,, = 2nk; with n € Z. For
the one-dimensional optical lattice given by Eq. (1.20), the Fourier decomposition yields
Vp=0 = Vo and V,_1; = —Vp/4, while all other components are zero, e.g. Vip|>2 = 0. We
introduce the quasi-momentum g, = k — K, and thus obtain the matrix representation of
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the Hamiltonian

W 2 Vo
amTn-1 2 0 Ug, Ug,
Vi W 2 Vi - = .
_ZO ﬂqi’l _ZO . uu%: E(k) uu‘/hl (1 46)
W ) .. In+1 n+1
0 1 omTu . .

The spectrum obtained through this eigenvalue problem is composed of energy bands
(see Fig. 1.7). In the case of no optical lattice (V) = 0), the lowest band corresponds to the
parabolic dispersion relation e(q) = 142 /2m of free particles with mass m. At the edges
and the center of the Brillouin zone the energy band touch due to the degeneracy of the
eigenstates at the corresponding values of g. A finite potential depth (V; > 0) however
flattens the bands and thus opens a gap, hereby lifting the degeneracy. The parabolic
shape of the lowest band still holds for small values of the quasi-momentum |g| < k;, and
reads 2
_ q

elg) =co+ o
with an energy offset ¢y and the effective mass m*. Through the modified dispersion
relation the trapped atom can be understood as a freely propagating particle with reduced
mass m* < m as long as the quasi-momentum is small enough.

(1.47)

Single-band approximation

For deep enough lattices, it is reasonable to assume that only the lowest band Ey(k) is
filled. This is called the single-band approximation and its validity is related to the band gap
width Eg,p, between the lowest and the second band. As the lattice depth increases, so
does the energy difference between both bands, which is given by

Egap = 21/ VoER (1.48)

Since interaction and kinetic processes could potentially excite atoms from the lowest
to the second band, it is important that all corresponding energies are below the band
gap width. In the upcoming sections, we use the single-band approximation to simplify
expressions.

1.4.3 Wannier function

The Bloch functions are useful to determine the energy eigenspectrum, yet it does not
provide a real space representation of the trapped atoms. To this end we make use of the
Wannier functions w, (r — R;), a set of orthogonal functions obtained through the Fourier
transform of the Bloch functions as

1

wn(r a Ri) - E keBZ

Y,k (r)e *Ridk. (1.49)
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Figure 1.8: The exact Wannier function wex(x) and the approximated Wannier function
wWap(x) of the lowest band at site R; = 0 for different lattice depths. The Wannier function
becomes more narrow as the depth increases, which indicates stronger localization of the
atoms within the lattice. The Wannier functions within the deep lattice approximation
give very reasonable results with larger deviation from the exact Wannier function for
shallow lattices. The differences can be seen at through logarithmic depiction of the tails
(see inset).

where R; is the position of lattice site i in real space. On a given lattice site, each band n
possesses its own Wannier function. We also define an inverse transformation

1\3 KR,
Y, k(r) = (@) %wn (r — R;)e'*Ri (1.50)

and given the orthogonality of the Bloch eigenfunctions, we derive the orthogonality
relation for the Wannier functions

/drw;‘n(r — R]-)wn (1" — Ri) = 5m,n5Rj,Rl- (151)

Due to the translation symmetry of the lattice, we obtain all Wannier functions within the
optical lattice after computation of the Wannier functions on one lattice site.

The Wannier functions are not invariant under global phase shifts of the Bloch functions,
e.g. ¥x — Y, e’ with 0 € R. This global phase shift does not yield a different energy
spectrum and therefore does not change the physics of the atom, but results in a vastly
different Wannier function. Although this arbitrariness appears to be inconvenient, it
provides us with an additional degree of freedom to shape the Wannier function to our
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liking. For example, it is possible to choose a global phase shift of the Bloch functions such
that the Wannier function is real, possesses a well defined parity and is highly localized
around the position R; with exponential decay away from the center.

Deep lattice

Usually the Wannier functions are numerically computed based on the Bloch functions
obtained through the eigenvalue equation Eq. (1.46). For deep enough lattices Vy/Eg >
1 the complexity of the problem can be reduced by assuming that the potential V(r)
decouples into disconnected harmonic wells given by

1
Vaip(r = Ry) = 5y (r = R;)? (1.52)
with the trapping frequency 7iwirap = 2+/VoEr. Within this limit the single-band approxi-
mation is valid as the resulting band gap in the energy eigenspectrum between the lowest
and the second band is large enough. Then the atom in lattice site i is described by the
Wannier function of the lowest band, which can be analytically calculated, and reads

1 _ <r—1§i>2
Wit (1.53)

—F=C
3/4,,3/2
/4o

In this limit the shape of the Wannier function is a Gaussian with width o = | /Ii/ mwirap.
As expected we find that for increasing lattice depths V{ the width ¢ decreases, which
implies a higher localization of the atom.

The numerically determined, exact Wannier function and the approximate analytical
Wannier function Eq. (1.53) are in good agreement for deep lattices: Both are localized
around the center of the lattice site and decay exponentially. The main difference is in the
tail of the decay, which is finite but small. We conclude that although the disconnected well
picture may not capture the full Wannier function, it is a simple and useful approximation.

w(r—R;) =

1.5 Bose-Hubbard model

While the previous sections focused on the single-particle case, we are interested in the
many-body eigenstates of the system. A useful formalism developed for describing
systems consisting of many atoms through wave functions is the second quantization, in
which many-body wave functions take the form

Y(ry, 1, ...) (1.54)

with the position r; of atom i. The underlying idea of these wave functions is the idea of
indistinguishability of the quantum particles, through which these wave functions become
invariant upon an exchange of the positions of two atoms up to a prefactor

T(, ti, ..., 1‘]', ) = g‘Ij(, 1‘]', e, 1, ) (155)
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The wave function is symmetric ( = 1) or antisymmetric ([ = —1), if the atoms are
bosonic or fermionic respectively. Since the relevant atoms in this work are bosonic, we
omit the fermionic descriptions in the following derivations.

Within second quantization, the many-body Hamiltonian in the many-body wave function
basis is given through

A= [art'() ( _ hZVZ V() ¥ ()

(1.56)
+ // drdr ¥ (r ( NU(r, v )¥(r)¥(r)

with the field operators ¥¥(r) (¥(r)), which add (remove) an atom in position r. The first

term describes atoms trapped in a potential V() and is known from the previous section.

We introduce an interaction term through U(r,#’) acting between two atoms at positions r

and 7. In order to deal with this Hamiltonian, we first need to specify the field operators.

An important algebraic construction of quantum states beyond the single-particle picture
is the so-called Fock space, which contains all states composed of identical particles with
variable particle number. Let us first consider an atom i in a state ¢; = {1, ..., pm}. The
states i; with j € M form the complete single-particle basis. The N-particle basis is then
spanned by the states

@) = [P102..-PN) = 1;[ |Px) - (1.57)

Due to their indistinguishability and therefore their common Hilbert space, it is useful to
work in the occupancy number basis. For 1; atoms in state ’l/]j>, we obtain

@) = [p1)™ [$2)™ ... [pm)™ = |ny, 112, ..., nm) (1.58)

with }; n; = N. These Fock states form a complete and orthogonal set of basis states such
that

(| @) = (ny, nh, ..., niy| m, m2, ..., npp) = Héni,n,’- (1.59)
i
Z |1, na, ..., ipm) (n1, n2, .., np| =1 (1.60)
Yin=N

Within the Fock space two operators of great importance are the creation operator ?J:r and
the annihilation operator b;. As the name suggests these operator create or remove one atom
in state ¢; as

Bi |TZ1,712, v, g, ..., I’lM> = \/E ’1’11,1’12, e, = 1, cery l’lM> (161)
E;r |1, na, o, My, oy ipg) = /1 + 1|0, n0,,n;+ 1, ., npp) (1.62)

These operators follow the commutation relation

[b;, ] = & (1.63)
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meaning that the result of the successive application of both operators on a state de-
pends on their order. In this context we introduce the number operator #1;, which is an
eigenoperator of the Fock states

i |11, N2, ey Ny vy M) = 1 |11, N, o, M,y e, L) (1.64)
and through the above-defined creation and annihilation operator can be written as
n; = bib; (1.65)

While these operators appear to be very basic, they can be used to define the field operators.
In the context of optical lattices occupancy of a state represents the number of atoms on a
lattice site. Thus the field operators are rewritten through the creation and annihilation
operators as

¥(r) = Y wa(r— Ry)b;. (1.66)

The application of field operators thus can be seen as adding or removing at an atom
on lattice site i for r ~ R; . For positions r not close to the center of any lattice site the
field operator has no effect due to the exponential decay of the highly localized Wannier
function. We thus rewrite the Hamiltonian with the newly defined field operators

A= Zz/drw:;(r— RZ-)(— h;zz + V(r))wn(r— R;)b}b;

mn . jj

+ ) Z// drdr'wy, (r — Ry)w;,(r' — Ry)U(r, 7" )w,(r — R)w, (' — RZ)ZAJZTA;I;klA)l
mnpq ijkl

The Hamiltonian can be split into the non-interacting, single-particle Hamiltonian Hy and
the interaction Hamiltonian Hjn. The first part reads

H() = Zeiﬁi + Z]l]l;;r?)] (1.68)
i i#]

and consists of an on-site term with energy

2%72
€ = ;/drw;(r —R)) < _ hzz + V(r))wn(r - R)), (1.69)

which in case of no external potential is equal for all lattice sites due to the periodicity of
the optical lattice, e.g. €; = €. As it merely changes the energy of each atom, it does not
contribute to the overall physics and can be set € = 0. The latter term removes an atom
from site j and creates it in site i with amplitude

22
Jij = ;/dfwfn(r —R;) ( - hzz + V(r))wn(r —Rj), (1.70)
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which effectively describes tunneling of an atom from site i to site j. The amplitude
Jij gives the likeliness of this process. Jj; is therefore referred to as tunneling or hopping
amplitude and can be calculated through

= — e i i dxYr L (r) | — + V()Y w(r
= o k() (= T+ V(1) ¥ (1)
1 . /
- E(k)e {(KRi—K'R;) / dx¥, (1) ¥ p (7) (1.71)
VBZ kk €BZ
1 ,
_ E (k)e—zk(R,-—Rj)
Vez 5 keZBZ !

with the energy bands E, (k) determined in section 1.4.2. Within the single-band approxi-
mation, calculation of J;; for various lattice depths reveals a decaying behavior. This can be
traced back to the narrowing of the Wannier functions, since J;; essentially describes over-
lap of Wannier functions at two different sites i and j. Quantum mechanically speaking, a
larger potential depth result in higher potential walls between atoms, which decreases
the tunneling probability. Additionally the amplitude greatly decreases for increasing
distances between these two sites as the overlap between the exponential tails of the
Wannier functions vanishes.

In a hypercubic lattice the so-called Mathieu equation [56-58] yields an analytic formula for
the hopping amplitude between neighboring sites

AL B
Joi ]N\/E(ER> e ViR E, (1.72)

with the recoil energy Eq. (1.28), which is in good agreement with the numerically com-
puted values of J;, even for more shallow lattices (see Fig. 1.9).

While long-range interactions can be incorporated into the many-body system, the in-
teraction U(r, ") usually describe s-wave scattering between two atoms and is given
by

- 47th’a

U(r,v') = S(r— lr —7'| (1.73)

, 0
r)a(r—r’)

with the scattering length a. The interaction Hamiltonian can thus be rewritten as

Hine =) Uijl;;rA}rE]'Ei (1.74)
i
with the interaction strength
drth’a
Uy = 20 [ drfwn(r = Ro) Pl (r = R)) . (1.75)
mn

Through calculation of the Wannier functions for various lattice depths, we are able to
compute Uj; (see Fig. 1.9). While we find that the interaction strength between two atoms
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Figure 1.9: (a) The hopping amplitude Jy; between lattice sites Rg and R; (solid lines). The
hopping amplitude decreases with increasing lattice depth, which is consistent with the
narrowing of the Wannier functions and the hereby resulting smaller overlap between
neighboring and far apart Wannier functions. Furthermore, the hopping amplitude is
considerably smaller between non-nearest neighboring lattice sites. The solution of the
Mathieu equation yields a qualitatively reasonable approximation of the nearest-neighbor
hopping amplitude through Eq. (1.72) (dashed line). (b) The on-site interaction between
to atoms either on the same site Uy or on different sites Uy; for various lattice depths
(solid lines). The on-site interaction between two atoms on the same site increases for
larger lattice depths due to higher localization of the atoms, while the initially already
weak interactions between distant atoms decay. The deep lattice approximated on-site
interaction given by Eq. (1.76) gives good results (dashed lines).

decreases rapidly with increasing distance, which is similar to the result obtained for Jj;,
we observe that the interaction strength between two atoms on the same site increases
with increasing potential depth. This is due to the higher localization of the Wannier
function, which is reflected in the overlap integral of U;;. The interaction between two
atoms on the same site is known as the on-site interaction.

Within the deep lattice approximation we obtain the analytical expression of the on-site

interaction ,
8 Vo1
U= /;kLa<§) Ex, (1.76)

which is also in good agreement with the on-site interaction obtained through calculation
of the exact Wannier functions.
The resulting Hamiltonian is known as the Bose-Hubbard model

N R A A u o
H=—p) ni—J) (b + ]J'rbi)JrEZ”i(ni—l) (1.77)
i (i) i
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and describes a bosonic many-body system trapped in an optical lattice, where atoms
tunnel between nearest neighboring sites with hopping amplitude | and interact with
other atoms on the same site with strength U [59]. Here (ij) denotes a pair of nearest
neighbors. Rather than an experimental parameter, the chemical potential y is a theoretical
tool to adjust the number of trapped atoms. Note that this Hamiltonian is obtained within
the single-band approximation. The inclusion of higher Bloch bands leads to a multiband
version of the model, which in some situations can be mapped back to an effective single-
band Hamiltonian [60-62]. The single-band approximation however is reasonable for the
range of parameters considered in this work as the band gap between the lowest and the
second band is sufficiently large compared to the parameters of the model, thus leaving
higher Bloch bands mostly unoccupied.

The Bose-Hubbard model possesses a high tunability of its parameters in cold atom realiza-
tions. The hopping amplitude is usually controlled through variation of the lattice depth,
while the on-site interaction can be tuned through Feshbach resonances, with which the
scattering length can be adjusted and the on-site interaction made attractive (U < 0) or
repulsive (U > 0) [63-65].

The Bose-Hubbard model with repulsive on-site interaction has been investigated in many
studies. Since the on-site interaction favors localized atoms in the lattice, while a large
hopping amplitude implies that the atoms are delocalized, the interplay between both
processes at various fillings of the lattice is a non-trivial problem.

Due to the intuitive nature of the Hamiltonian, it is easy to describe additional processes
present in the system through inclusion of appropriate expressions and simple modifica-
tion of already existing terms without tedious derivation. These variations of the model
are referred to as extended Bose-Hubbard model and allow to investigate novel quantum
phases not captured by the plain Bose-Hubbard model.

1.6 Phases of bosonic quantum gases

In this section, we discuss and understand the physics behind each of the quantum phases
arising due to the competition between the different processes in bosonic gases trapped in
hypercubic optical lattices. Some of these phases possess an exact analytical description
in limiting cases, while the many-body ground state of others can only be retrieved from
numerical computation with the corresponding Hamiltonian.

For the sake of introducing all quantum phases relevant for this work, we introduce a
simple extended Bose-Hubbard model. Since the Bose-Hubbard model does not break
lattice translation symmetry, i.e. translation of the system by a lattice vector does not
change the Hamiltonian, we include an additional repulsive, long-range interaction term.
The extended Bose-Hubbard model reads

. . ftp L ntg U, . AN
H = —yZni — ]Z(b:rb] —+ b;bl) + E Zi’li(ﬂ,’ — 1) -+ VZninj (1.78)
i (i) i (if)
with the additional nearest neighbor interaction term with strength V' > 0. Note that
V = 0 yields the plain Bose-Hubbard model. For a given set of parameters y, ], U and V
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we are able to compute the ground state, i.e. the eigenstate with the lowest energy, of the
system.

1.6.1 Mott insulator

In the limiting case J/U — 0, which is known as the atomic limit, and no long-range
interaction V = 0, the system is best described by a homogeneous distribution of highly
localized atoms. These states are known as the Mott insulators (MI) and further described
by their filling 1, i.e. the amount of atoms per site, and for N lattice sites thus read

Y 2 N(E:'r)nO 1.79
() = [T =m =TT 10 (179

Due to the localization of the atoms, the filling only takes integer values n € Z. The energy
of a MI can be calculated through the Hamiltonian Eq. (1.78)

. u
Evi(n) = (Ym(n)| H [¥m(n)) = —N(pun — —n(n —1)) (1.80)
and through comparison of the energies for different fillings, we find the parameter regime
for which a MI with filling n represents the ground state of the system
[Faa(n)) = n—1< % <n (1.81)
The Ml is phase incoherent, i.e. the state is invariant under a global phase shift. This is not
too surprising as the original Hamiltonian itself possesses a U(1) symmetry meaning that
the transformation b; — b;e’¥ and bt — bTe=% does not change the Hamiltonian.
As a way to further understand and classify the quantum phases, we introduce the
single-particle density matrix
pij = (¥|b{b;[Y) (1.82)

for a general many-body state [¥), which gives a measure of the correlation between two
lattice sites i and j in the system. For the MI the density matrix becomes

pu = (Paa| bbr [Yam) = [ T (mlbby [n),;
ij
= H \/m\/ﬁ](m — 1|n — 1>i5i15jk
ij
= [ [ vVmv/néundijoudix
ij

(1.83)

= nékl

The density matrix becomes diagonal with 7 as its only elements. This alludes to the fact
that the atoms are highly localized and thus do not influence lattice sites away from their
own.
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1.6.2 Superfluid

In the opposite limiting case U/] — 0, the atoms are delocalized and condensed into the
lowest single-particle state, forming a Bose-Einstein condensate. The exact wave-function
reads in this limit

N n
[¥sp) = \/%(jﬁilb*) 0) (1.84)

where the filling can take non-integer values n € IR. These phases are called superfluid (SF)
and the state of each site is given by a superposition of Fock states. Compared to the MI
for which the filling represents the amount of atoms on a lattice site, SF phases do not
possess well-defined atom numbers on each site and thus only the probability distribution
of atom numbers can be determined. The probability p(n;) of finding n; atoms on a lattice
site for a SF phase is given by

p(n;) = | (ni| ¥sp) > (1.85)

By using the multinomial formula

N \n N! N
br) = —TT1@hH™ (1.86)
<1221 ! ) ZI;N Hi n; ];I
we rewrite the wave function of the SF phase as
b ¢ 1.87
’ SF Z N”Hﬂ%‘ l> ( 8)

Zz ni=
Using the rewritten wave function for the probability distribution

[ (N—1)" " 1
pn) =1 i Yer) P = 2 (189

and applying the Stirling formula n! ~ v/27nn"e™" leads us to

p(n;) =e"— (1.89)

We see that the probability distribution of the atom number is given by a Poisson distri-
bution in the limiting case. Other quantum states with the same distribution are coherent
states and using their definition, we obtain an alternative form of the condensate wave

function
Yoe) =[Je 2 )

i 7’11‘:0

j;\”ﬁ =] la) (1.90)

with the coefficient & = /ne’?, which is the eigenvalue of the eigenvalue equation b; |a;) =
a |a;). The single-particle density matrix can now be easily determined through the
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coherent state description and
o = (Ysr| bfby [Ysr)
= [ el b o)
if
= H (o] af v |aj)
ol

=n

(1.91)

Through the derivation we gain several important insights on SF phases. First, since
the wave function can be written as a coherent state, the delocalized atoms are phase-
coherent and each SF phase can be uniquely identified by the common phase of each
boson. Furthermore, SF phases do not have a U(1) symmetry and hence are not invariant
under a global phase shift. This is unexpected as the Hamiltonian itself is U (1)-symmetric.
The broken symmetry of the SF phase can also be understood in the context of particle
number conservation [66]. As a conserved atom number in a system is a consequence of
U(1) symmetry and the coherent state violates this conservation law, since it is invariant
to adding or removing a particle, the U(1) symmetry has to be broken. As the SF phase
breaks a symmetry otherwise present in the Hamiltonian, we refer to this as spontaneous
symmetry breaking.

Another intriguing aspect of SF phases is the single-particle density matrix, which has
non-vanishing off-diagonal terms. The density matrix element p;; can be understood as a
measure of phase coherence between two atoms on lattice site i and j and in SF systems
does not diminish with distance between these two lattice sites. The presence of non-zero
off-diagonal terms is called off-diagonal long-range order (ODLRO) and is related to the
single-particle wave functions of each atom: At the temperatures typical for optical lattice
experiments their de-Broglie wavelength increases and the atoms hereby delocalize over
many lattice sites. Through the overlap of all waves the atom become phase coherent over
long distances, which reflects in ODLRO.

Note that while in the limiting case the condensate wave function Eq. (1.90) represents
the SF phase well, condensation and superfluidity imply different properties of a system.
While a BEC is characterized by the macroscopic occupation of the energetically lowest
quantum state at vanishing temperatures T' ~ 0, superfluidity refers to the frictionless
flow of particles. Thus they are generally not directly related to one another and therefore
neither mutually exclusive nor inclusive [67]. In the context of bosonic quantum gases
however the Landau criterion establishes a link between both physical phenomena [68-70].
To this end we consider an impurity in a BEC moving with a certain velocity. In order
for the movement of the impurity to be frictionless its velocity has to be below the
Landau critical velocity given by the energy of a single elementary excitation €, with BEC
momentum p as v, = miny(e,/p) [71,72]. In layman’s terms it means that flow of an
impurity without any loss of kinetic energy is only achievable if the velocity does not
excite the underlying BEC and thus depends on the energy of these elementary excitations.
For an interacting BEC with small momentum the dispersion relation of these elementary
excitations can be approximately given by the Bogoliubov phonons and thus scales as
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€p U'/2. This implies that in the limit of a non-interacting BEC U — 0 the critical velocity
vanishes and hereby the system does not possess any superfluidity. Therefore even though
we consider the limit U/] — 0 we always require a finite interaction strength in order to
call the obtained phase a SF. Experimentally the critical velocity was observed by moving
a laser through a BEC and measurement of heating in dependence on the velocity [73]. We
thus conclude that while ODLRO is a characteristic feature of a condensate it serves also
as a property of the SF phase in combination with a finite interaction strength.

Note that the above-defined many-body wave function Eq. (1.90) is only exact in the
limiting case U /] — 0 and therefore the experimentally accessible single-particle density
matrix may exhibit features of the ML

1.6.3 Density wave

We consider the previously discussed atomic limit J/U — 0, but with finite long-range
interaction J/V — 0. Similar to the M, the ground state is given by highly localized atoms,
although the repulsive long-range interaction leads to an inhomogeneous distribution of
the atoms within the optical lattice. The corresponding wave function reads
N N (Ef)ni
[Yow) = [ ][n);i=11"—"7=10) (1.92)
ig . g Vni!

and the quantum phase is referred to as a density wave (DW). These DW phases exhibit
unique crystalline order given by the type of long-range interaction and have thus to
be characterized their spatial modulation. In the case of nearest neighbor interaction,
the long-range interaction leads to a checkerboard-type distribution of two integer atom
numbers [74,75].

The single-particle density matrix is obtained through

i = (Yow| bfb; [Fpw) = Hj<mj|i?;§?71 ;)
)

=11 Vmiey/ny [ (m —1|n —1)i030j
ij

= [ [ v/ m18mndijdudix
ij

= 1y

(1.93)

and reflects the inhomogeneous distribution of localized atoms. Since the Hamiltonian
itself is invariant under translation by a lattice vector, the DW phase has so-called sponta-
neously broken lattice translational symmetry. Due to the periodic density modulation of DW
phases they are often defined by a finite (diagonal) long-range order (LRO) [76,77].

1.6.4 Supersolids

The most peculiar quantum phase discussed in this work is not obtained by any if the
above-mentioned limiting case. The supersolid (SS) combines the crystalline properties of
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the DW phase and the finite condensation of the SE, and intuitively is given when the long-
range interaction strength and hopping amplitude are in the same order of magnitude.
Although no exact wave function has been formulated yet, these phases are characterized
by a spontaneously broken U(1)-symmetry as well as a translational symmetry.

Whether SS phases exist or not has been an intensively researched field in the last decades.
After the initial theoretical speculations and descriptions of phases exhibiting both LRO
and ODLRO [78-81], a long time passed until SS phases were finally experimentally ob-
served. In recent years SS phases have finally been appeared in first experiments involving
either quantum gases with cavity-mediated long-range interaction in the continuum [82]
and on the lattice [83,84], and with dipolar BECs [85-87] and therefore definite proof of
their existence. Subsequently the study of SS phases became popular and lead to many
further research on their properties such as the ability to form quantized vortices [88] and
their phase rigidity [89,90].

Note that in the scope of this thesis all subsequent discussions about and mentions of
SS phases refer to many-body states, which spontaneously break the lattice translational
symmetry, and are therefore called lattice supersolids [91]. This specification is important,
since lattice supersolids may not exhibit spontaneously broken translational symmetry
in a continuous system and benefits from the discretization of real-space through the
trapping an optical lattices.

Classification of phases

These quantum phases are unique in their physics and can thus be provided with distinct
quantities, through which their identification becomes possible. We first define a set of
local order parameters, namely the condensate order parameter ¢; = |(b;)| and the occupation
number n; = (b;). Since we are also expecting inhomogeneous phases to be many-body
ground states, it is necessary to introduce the corresponding spatially averaged order
parameters ¢ = 1/N YN, ¢;and /i = 1/N YN, n; for a system with N sites. Another im-
portant quantities in the context of inhomogeneous phases are staggered order parameters
Pstag and nsrag. However no general expression for these order parameters exist, since they
are individually defined by the expected density modulation in the system.

Through the average condensate order parameter we identify whether a many-body
state exhibits insulating or SF properties. We can further differentiate between the ho-
mogeneous and inhomogeneous phases through the staggered occupation number, as it
becomes finite if a crystalline structure is present. The culmination of these properties,
with which a many-body state can be classified, are written in Tab. 1.1.

Note that for homogeneous systems the local order parameters are equal to their averaged
counterparts. Although the staggered order parameters are in theory very useful, the
expected superlattice unit cell of the crystalline structure has to be known beforehand.
For example, a checkerboard-type ordering of local order parameters can be determined

through a finite staggered occupation number defined as oggg =1/NYN, (-1,
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|Phase | i ¢ Nstag  Pstag |
MI |IN O 0 0
SF R R 0 0
DW |Q 0 Q 0
SS R R R R

Table 1.1: Classification table for the identification of quantum phases in the plain and
extended Bose-Hubbard model. These phases Mott-insulating (MI), superfluid (SF),
density wave (DW) and supersolid (SS) phases.

while striped configurations would be identified through ogg;g = 1/NYN,(-1)*00;
with O € {¢, n}. For the computation of phase diagrams, which can possibly exhibit many
unique crystalline structures, it becomes necessary to check the spatial distribution of the

local order parameters.

1.6.5 Phase diagrams

The phase diagrams of the plain and extended Bose-Hubbard model are obtained through
computation of the ground state wave function (see Appendix A.1) and subsequent identi-
fication of the quantum phase based on order parameters (see Appendix B.1). This allows
to investigate the interplay between the different terms contained in the Hamiltonian
beyond the limiting cases. In the following, we introduce the coordination number z
through which we are able to depict the phase diagrams independently on the dimension
of the optical lattice. The coordination number refers to the number of neighbors and in a
hypercubic lattice simplifies to z = 2d, where d is the dimension of the lattice (see Section
3.2).

For V = 0, we obtain the well-known phase diagram of the Bose-Hubbard model (see
Fig. 1.10). The domains of MI phases of different fillings are called Mott lobes. Their
shape can be understood through the degeneracy of two MI phases at integer values of
u/U € N and vanishing hopping: In the atomic limit an excitation of a MI with filling
n is gapped due to the energy cost of adding a particle E; = Un — u or removing a
particle E_ = U(n — 1) + p. This also implies that the energy associated with adding
a particle in a MI phase with filling 7 is equal to the energy of removing a particle in a
MI with filling n + 1. Beyond the atomic limit however the energy gap can be bridged
through a finite hopping, which the results in condensation of the system. Since the gap
is marginally small around integer values of /U, only a small hopping amplitude | is
necessary. Larger hopping amplitudes are necessary between two integer values of u/U,
where the energy gap reaches its largest values. We therefore obtain the lobe shaped phase
transitions between the MI and SF regimes.

While the phase diagram was determined without any external potential, most optical
lattice experiments work with an additional harmonic confinement. In our numerical
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Figure 1.10: (a) Phase diagram of the Bose-Hubbard model for various hopping amplitudes
zJ /U and chemical potentials p/U. The phase diagram consists of integer-filling MI
phases, a SF regime and a vacuum regime. The boundary between the Mott-insulator
phases and the SF regime is lobe-shaped. (b) The occupation probability P(n) = |(n|¥)|?
of a Fock state n for different ratios zJ /U for fixed filling 77 = 1. For on-site interactions
larger than the hopping amplitude the probability P(n = 1) = 1 hints at the integer-filling
of the system, which indicates a Mott-insulating phase. Increasing the hopping amplitude
leads to a more spread distribution of the propabilities P(n). For very large hopping
amplitudes the probability distribution is close to the Poisson distribution, consistent with
a SF phase.

calculations, we take the harmonic potential into account by making the chemical potential
site dependent, i.e. u — ;. The chemical potential of a given site decreases in dependence
on the distance to the center of the harmonic confinement, which ultimately leads to a
vanishing population of the sites far away from the center. For given parameters we
determine the ground state inside the potential and visualize the results through the
expectation values (1;) and (b;). We observe ring-like shells with either constant filling
and no condensation or decreasing filling and finite condensation, implying that the
shell-structure is given by alternating MI and SF phases. This result is reflected in the
phase diagram, since for a finite hopping amplitude a variation of the chemical potential
leads to various quantum phase transitions between both types of phases. Due to its shape
this result is known as the wedding cake (see Fig. 1.11) and has been observed in many
experiments.

Now we consider the extended Bose-Hubbard model with finite long-range interaction
strength V' > 0. Through computation of the phase diagram at different values of zV /U,
we investigate the additional competition in the system (see Figure 1.12). AtzV /U =1
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Figure 1.11: The well-known wedding cake shape of the density n(x,y) for a system
with external harmonic confinement given by u; = po + fi(x? + y2). Each plateau of the
wedding cake distribution corresponds to a Mott-insulator. These are commonly referred
to as Mott-insulator shells due to their ring-shape. Calculation of the condensate order
parameter ¢ hints at the presence of SF regions between various Mott-insulating shells.
The width of these regions depends on the hopping amplitude zJ /U and vanishes in the
atomic limit. The alternating shells of Mott-insulating and SF phases reflect the shape of
the phase boundaries (see Fig. 1.10).

the on-site and the long-range interaction are of equal strength, which is reflected in the
phase diagram through the lobes alternating between MI and checkerboard DW phase.
The occupation numbers of the two different sublattices are n and n — 1, which results
in DW phases of average filling i = n — 1/2 between a MI wit