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Abstract The relativistic treatment of spin is a fundamen-
tal subject which has an old history. In various physical con-
texts it is necessary to separate the relativistic total angular
momentum into an orbital and spin contribution. However,
such decomposition is affected by ambiguities since one can
always redefine the orbital and spin part through the so-called
pseudo-gauge transformations. We analyze this problem in
detail by discussing the most common choices of energy-
momentum and spin tensors with an emphasis on their phys-
ical implications, and study the spin vector which is a pseudo-
gauge invariant operator. We review the angular momentum
decomposition as a crucial ingredient for the formulation of
relativistic spin hydrodynamics and quantum kinetic theory
with a focus on relativistic nuclear collisions, where spin
physics has recently attracted significant attention. Further-
more, we point out the connection between pseudo-gauge
transformations and the different definitions of the relativis-
tic center of inertia. Finally, we consider the Einstein—Cartan
theory, an extension of conventional general relativity, which
allows for a natural definition of the spin tensor.
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1 Introduction

The decomposition of the relativistic total angular momen-
tum into an orbital and spin part is a long-standing prob-
lem both in quantum field theory and gravitational physics
[1]. The definitions of the energy-momentum and spin ten-
sors used to construct the total angular momentum density
suffer from ambiguities. In fact, one can always redefine
them through the so-called pseudo-gauge transformations
such that the total charges (i.e., the total energy, momentum
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and angular momentum) do not change. As long as one is
only interested in the total charges, this ambiguity is clearly
of no importance. However, in many physical contexts, it is
important to separate the orbital and spin angular momentum
of the system. The question we would like to address can be
stated as follows: is there a particular choice for the angu-
lar momentum decomposition for a specific system which
gives a “physical” local distribution of energy, momentum
and spin? Here, by “physical” we mean that such decompo-
sition can have some consequences on experimental observ-
ables. Although in conventional Einstein’s general relativity
the answer to this question is that the energy-momentum
density is measurable through geometry, this issue is cur-
rently debated in quantum field theory where spin degrees of
freedom are considered. We stress that, in this paper, we do
not aim at finding a physical decomposition which is valid
for all possible systems. Rather, we address this problem
by studying different contexts, indicating for each of them
the implications of various pseudo-gauge choices and which
decomposition appears to be a physical one.

The paper is structured as follows. In Sect. 2 we introduce
the basic concepts: the spin tensor and pseudo-gauge trans-
formations, and discuss some of the most common choices
in the literature. In Sect. 3, we generalize the concept of
nonrelativistic spin vector to the relativistic case, discussing
the Frenkel theory and the Pauli-Lubanski pseudovector. In
Sect. 4 we consider the Wigner-operator formalism. Further-
more, in Sect. 5 we study the effect of different pseudo-gauge
choices in thermodynamics using the method of Zubarev to
construct the statistical operator. We show that the local equi-
librium state is in general pseudo-gauge dependent, unlike
the global equilibrium one. This leads to the consequence
that expectation values of observables are in general sen-
sitive to different pseudo-gauges for many-body systems
away from global equilibrium. In relativistic heavy-ion colli-
sions, spin-polarization phenomena related to medium rota-
tion have recently attracted significant interest. This is due
to experimental observations showing that certain hadrons
emitted in noncentral collisions are indeed produced with a
finite spin polarization [2]. The Wigner operator turns out
to be particularly suitable to study spin effects in heavy-ion
collisions and a brief review on some recent applications
in the field is given in Sect. 6. In Sect. 7 we make a con-
nection between pseudo-gauges and the relativistic center of
mass which, unlike in the nonrelativistic case, suffers from
ambiguities in the definition. In particular, we show that the
redefinition of the center of inertia can be related to a differ-
ent decomposition of orbital and spin angular momentum of
arelativistic system which, in turn, is associated to a specific
spin vector [3]. In the end, in Sect. 8 the physical mean-
ing of the energy-momentum tensor in general relativity is
discussed. We outline an extension of conventional general
relativity, called Einstein-Cartan theory, where a natural def-
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inition of spin tensor arises by allowing the spacetime to a
have a nonvanishing torsion. Brief conclusions are given in
Sect. 9.

We use the following notation and conventions: a - b =
atby, apby) = aub, — ayby, g = diag(+, —, —, —) for
the Minkowski metric, and €913 = —¢(1p3 = 1.

2 Spin tensor and pseudo-gauge transformations

The spin tensor is one of the fundamental quantities we will
consider in this paper. In this section we give a definition
starting from Noether’s theorem and discuss the pseudo-
gauge transformations which allow a redefinition of energy-
momentum and spin tensors. We review some of the most
commonly used pseudo-gauge choices in the literature and
explore their physical implications. In this paper we will
focus on the Dirac theory.

2.1 Canonical currents

Let us consider the Lagrangian density for the free Dirac field
¥ (x) with mass m

ih - <> _
Lp(x) = > Y)y" 9, (x) —my(0)y(x), 2.1

<> — <~ . .
where 0 * = 9#* — 0" and y* are the Dirac matrices.
The corresponding action is given by

A= / d*x Lp(x). (2.2)

The equations of motion associated to the Lagrangian (2.1)
are the Dirac equation for the field and its adjoint

(ihy" 8, — m)Y (x) =0,
TRy D +m) =0,

(2.3a)
(2.3b)

respectively. Consider the infinitesimal spacetime transla-
tions

xt = XM= xt R 2.4

with £# a constant parameter. The canonical energy-mo-
mentum tensor féw(x) is defined as the conserved current
obtained using Noether’s theorem by requiring the invariance
of the action under the transformations in Eq. (2.4) [4,5]: 1

0, T =0, @.5)
where
N oL - AL
T = 22 vy 4 vy —2 — gtvgy
(0, v) ()

1 For the sake of ease of notation we will omit the x dependence when
there is no risk of confusion.



Eur. Phys. J. A (2021) 57:155

Page 3 of 25 155

ih- <
= Elﬁy“ "y —g"Lp. (2.6)
Note that 7" is not symmetric. Equation (2.5) implies that,
for any three-dimensional space-like hypersurface X, the
total four-momentum operator is given by

pH = /E Az, T =in / dxyiary 2.7
where we assumed that boundary terms vanish and used the
Dirac equation in Eq. (2.3). In the second equality we chose
the hyperplane at constant x°. Since f"g " is conserved, the
total charge is independent of the choice of the hypersurface
integration and it transforms properly as a four-vector under
Lorentz transformations, for the proof see App. A. Itis worth
mentioning that the four components of PH coincide with
the four generators of the spacetime translations [5]. The
operatorial structure of PH derives from the creation and
annihilation operators inside the quantized fields v and .
The action of P* on a one-particle state |p, s), p being the
particle four-momentum and s the spin projection, is such
that?

P p,s) = p”Ip, s) (2.8)

(we use the symbol p* for the particle momentum to dis-
tinguish it from the momentum variable p* of the Wigner
operator discussed in Sect. 4).

Under the action of infinitesimal Lorentz four-rotations

xt— = x4y, (2.9)
with ¢*Y = —¢"# constant, the total variation of the spinor
reads

rod 1 v
Sty =9 (x) —¢(x) = Eé“,wf ¥ (x), (2.10)
with f*V = —£o" and
oM = [yt Y, @.11)

2
Using Noether’s theorem, the invariance of the action under
the transformations (2.9) yields the conservation of the
canonical total angular momentum tensor Jé’” v [4,5],

RIM =o0. 2.12)

where

TEHY = TR — VT 4 S (2.13)
C - C C C : :

The tensor S'é“ " is called canonical spin tensor and it is
defined as
S = 5D vy g v OED_

(0 V) 9(0v)

2 In order to avoid divergences due to the vacuum expectation values,
we implicitly assume the normal ordering of the operators.

(2.14)

Inserting Eq. (2.13) into (2.12), we obtain a (non)conservation
law for the spin tensor

RSEH = T, (2.15)

Note that, since fg " is not symmetric, the spin tensor is not
conserved. The conserved charge associated to Eq. (2.12) is
the total angular momentum

Jm :/ Az, I
X

= /d3x A |:ih(x“8" —x"9") + 26’”} v, (2.16)

where the hypersurface integration at constant x° was used.
Since J2"" is conserved, the quantity J*" is independent
of the hypersurface and it transforms as a rank-two antisym-
metric tensor (see App. A). Moreover, the six independent
components of JHV are the generators of the Lorentz trans-
formations [5].

By looking at Egs. (2.13) and (2.16), it would be sugges-
tive to identify the terms involving f‘g " as the orbital angular

momentum density and S‘é’“ " as the spin density. In fact, for
a scalar field the spin tensor vanishes and we are left only
with an orbital angular momentum-like contribution, so that
this intuitive interpretation of S‘é“ " as a spin density would
seem to work. However, there are two reasons why this iden-
tification cannot be done straightforwardly. The first reason
is that the quantity that we call global spin defined as
SE = /2 dz; SEt (2.17)
is not a Lorentz tensor since, as can be seen from Eq. (2.15),
S’é’“ " is not conserved (see App. A). This also means that the
canonical global spin is not independent of the choice of the
hypersurface. Hence, the usage of the canonical spin tensor
does not lead to a covariant description of spin for free fields
which, instead, is something one would like to require. We
will discuss a solution to this problem in Sects. 2.3, 2.5 and
2.4. The second reason is that the decomposition of orbital
and spin angular momentum in Eq. (2.13) is ambiguous. It is

indeed always possible to define a new pair of tensors f"p’gt}

and S‘ng " connected to the canonical currents through the

so-called pseudo-gauge transformations [1,6-8]
A A 1 ~ ~ ~
Tl =TM + Eak(cp*v/” + OV L @V (2.18a)

SIAY = S — Y 4, ZIVP, (2.18b)

pgt
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The quantities ¢*#¥ and Z*"* are arbitrary differentiable
operators called superpotentials satisfying @4V = —@r-vi
and Z1M = —2”“ Moo — 7Pk Tt is easy to check that
the new tensors 7" pat . and JA Y=k T“ - )c"Tpgt + S;”giw
defined through Eqs. (2. 18) lead to the same total charges as
in Egs. (2.7) and (2.16), but in general different global spin,
once integrated over some hypersurface and provided that
boundary terms vanish. In the case of pseudo-gauge trans-
formations with the same ®**" and different Z*"**, the
new global spins coincide. Furthermore, the new currents
are also conserved,

a)\ A;w:(l

3. Th =0, ot

P (2.19)

like for the canonical currents in Egs. (2.5) and (2.12). We
note that, if we consider a pseudo-gauge transformation lead-

ing to a symmetric energy-momentum tensotr, i.e. Tpgtv =0,

the superpotential @™V is not completely arbitrary, but con-
strained by the relation

ph = T, (2.20)

as can be seen from Eq. (2.18a).

Following Ref. [1], the viewpoint adopted in this paper is
to assign the physical meaning of energy, momentum and
spin densities to the energy-momentum and spin tensors.
Moreover, we assume that such densities can in principle
be measurable quantities. The act of performing the pseudo-
gauge transformations can be understood as “relocalization”
of energy, momentum and spin. The goal is then to find out
which choice of the superpotentials gives a “physical” pair of
tensors to be used in a specific context. In the next subsections
we discuss several choices of pseudo-gauge transformations.

2.2 Belinfante—Rosenfeld currents

As mentioned above, the canonical energy-momentum ten-
sor (2.6) is not symmetric. This inevitably leads to a con-
ceptual problem in conventional general relativity where
the energy-momentum tensor is assumed to be symmetric
because defined as the variation of the action with respect to
the metric, see a related discussion in Sect. 8. This issue was
overcome by Belinfante and Rosenfeld [6-8]. It is possible
to perform a pseudo-gauge transformation (2.18) with the
superpotentials given by

BRI = S, 7 =, 221)

such that the new energy-momentum tensor is symmetric
(corresponding to the symmetric part of the canonical energy-

QAL v : :
momentum tensor S c ) and the new spin tensor vanishes,
i.e.,

~ ih -

Ig" = v D4y T My — gL, (2.22)

@ Springer

§pM =0, (2.23)
Consequently, the angular momentum tensor can be cast in
a purely orbital-like form.

We report in passing that in the original works by Belin-
fante [6,7] the approach is slightly dlfferent One can actu-

ally define a Belinfante spin tensor S """ by decomposing
the Belinfante angular momentum in the following way

fg‘“v = x“f‘é‘” - x"f"g“
= XMTE — VTHE 4 S, (2.24)
with
2 1 N ~
Shm = E(xﬂa,,sg’“ _ x”a,,sg’”‘). (2.25)

However, in this paper, by Belinfante spin tensor we always
mean the vanishing one (2.23).

2.3 Hilgevoord—Wouthuysen currents

In this section we show a different decomposition between
spin and orbital angular momentum first propsed by Hilgevo-
ord and Wouthuysen (HW) such that the global spin trans-
forms properly as a tensor under Lorentz transformations,
unlike the canonical one [9-11]. The idea is based on the
fact that the Dirac spinor is also a solution of the Klein-
Gordon equation. The strategy is to start from the Klein-
Gordon Lagrangian, derive the currents through Noether’s
theorem and use the Dirac equation as a subsidiary condi-
tion. It follows that these currents will also be conserved for
the Dirac theory.
The Klein—Gordon Lagrangian for the spinor reads

1 - -

Lxc = 2—(?‘128“1#8“1# —m?yy) (2.26)
m

and the corresponding equations of motion are

(R*0,0" +mH Yy =0, (A*9,0" +mHY =0.  (2.27)

By requiring the invariance of the action under spacetime
translations and Lorentz four-rotations, we obtain the Klein-
Gordon canonical energy-momentum and spin tensors using
Noether’s theorem. These are respectively given by the cur-
rent defined in the first line of Eq. (2.6), with L ¢ instead of
Lp, and by Eq. (2.14):

. 12 . _

Thi = 5 (0“90"¥ +0"Y9"y) — "' Lxc.  (2.28)
Yy th v

Suw = —W“ 2 (2.28b)

Notice that, in contrast to the canonical energy-momentum
tensor derived from the Dirac Lagrangian, 7', is symmetric,
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then

RSpL =0, (2.29)

which also follows after using the Klein—-Gordon Eq. (2.27).
We now require that v is also a solution of the Dirac equation.
Multiplying (2.3a) and (2.3b) by y* on the left and on the
right, respectively, and using the identity y*y# = g** —
io** the Dirac equations can be written as

iy = —ha“‘i),ﬂﬂ +my™y,
—ihd*y = —hd, Yo + myy*.

(2.30a)
(2.30b)

Using Eqs. (2.30) one can easily derive the Gordon decom-
position [12]

Py = [Ty — i (Fo oy — ai0™y)].

231

With the help of Egs. (2.30) and (2.31), the HW currents in
Egs. (2.28a) and (2.28b) become

|- _
Thy = T8 + l—m(a”wo“ﬁaﬂw T 3, U oY)
ih? _
- ;—mg“vax(lﬂﬂm KR%) (2.32a)
2
S?—I%v _ SA N 4_ (1&0"”0')”’03/;1# + 3,01;0)"00“”1#) )
m

(2.32b)

Equations (2.32) make apparent the connection between the
canonical and the HW spin tensor. In the language of relo-
calization, Eqs. (2.32) tell us that the HW currents can be
obtained from the canonical ones through a pseudo-gauge
transformation with the superpotentials [13, 14]

Grrv — pyluvix g?»[MMpV]ﬂ, (2.33)

N h -

AL - _8_1#(6#1)0—)‘/’ + o')‘pO'Pw)lﬂ, (2.34)
m

where

. ih?

M)Ly.v = l“-_wall" ?)\w (235)

m

Since *§?1 W isconserved, the global HW spin defined from
Eq. (2.32b) as

g = / 03, Sk — f P S0

hi 1>
— —/d3x vioMy + —/d3x yiyltavly,
2 2m
(2.36)

is a tensor, which is what we were searching for. In Eq. (2.36)
we used Eq. (2.17) and chose the hyperplane at constant x°.

2.4 de Groot-van Leeuwen-van Weert currents

Here we discuss another pair of currents which leads to
the same global spin as in the HW formulation, but differ-
ent energy-momentum and spin tensors. These currents are
derived by de Groot, van Leeuwen and van Weert (GLW) in
Ref. [4] by performing the pseudo-gauge transformation

R n2

Hrov — ;—w(akﬂ DV oMY By, (2.37)
m

ZHvAe — (. (2.38)

Thus, we obtain

A n? Dy

Torw=—7 Vv a " 97, (2.39)

. o -

Sty = 5 (Do T H = a0y Sy) . 240)
m

where we used the Gordon decomposition (2.31). We note
that Eq. (2.40) differs from Eq. (2.28b) only by a total dlver-
gence, hence for the global spin we have SKy GLW = S

2.5 Alternative Klein—Gordon currents

There is a possible choice of currents where the energy-
momentum tensor is the same as in the GLW case and the
spin tensor is the same as in the HW formulation. To find
such currents we follow the same idea as HW, but we now
consider the Klein—Gordon Lagrangian for spinors built with
second-order derivatives of the fields

2

) 1 ( & _ _ _
KG =5 {—7 (@ 0" Y)Y + ¥9, 0"y ] —mZI/N/f} -

(2.41)
Since L and Lkg in Eq. (2.26) differ only by a total

divergence, they yield the same equations of motion, namely
Egs. (2.27). If we apply Noether’s theorem using L ., we

@ Springer
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obtain the following energy-momentum and spin tensors>
LV - T uHv v pr
Tyg= — Elﬂ ooy —g" Lk, (2.42a)
g LI GGy (2.42b)
= — o . .
KG 4m
Since using the equations of motion Ly, = 0, we have

f",’;g = f“gzw, as can be seen ferm Eq. (%.39). Furthermore,
from Eq. (2.28b), we see that S?(’gv = SKH’%V. The pseudo-
gauge transformation to obtain Eqs. (2.42) is given by

ék,uv

.hz B
= ;—w(aw?” — oMY Yy, (2.43)
m

. 12 .
2 = ;—mewpwﬁ/f. (2.44)

3 Spin vector

In nonrelativistic quantum mechanics, the spin vector oper-
ator S, in first quantization is simply given by

3.1

where 0 = (01, 02, 03) are the Pauli matrices [15]. In this
section we examine two approaches to generalize the defini-
tion above to a covariant expression in quantum field theory:
the first one is based on the Frenkel theory and the second one
on the Pauli-Lubanski vector. Furthermore, we show how the
spin vectors in these approaches can be related to the various
spin tensors introduced in Sect. 2.

3.1 Frenkel theory

Following the idea of Frenkel [16] we introduce an anti-
symmetric tensor SH which depends on the total four-
momentum P* in Eq. (2.7). In the particle rest frame,
the spatial components of the four-momentum vanish, i.e.,
pi [Py, s) = 0, where p’f = (m, 0) is the momentum of the

3 For a Lagrangian with second-order derivatives of spinorial fields,
the energy-momentum and spin tensors derived by applying Noether’s
theorem are given by [4]

! !
T — 8LZKG avw+(8v&)‘a£1(£?
(0. ) 9(0u )
E)E/KG <> _ <> oL
+ 9 avw_(avw) 9 KG __ ,mvpr ,
30,09 " @00y . TKG
AKICY) (0 y)
oL <> <> oL
" oMY+ 6“”7_].
@p0y) R TCR )

@ Springer

particle at rest. Furthermore, the components of SV are such
that

(Pas 51 8% Ipa, 5) = 0,
(Pes 51 8 |py, 5) = €75 (p,, 51 8%, Ipa, ),

(3.2)
(3.3)

where the operator on the right-hand side of Eq. (3.3) is also
expressed in second quantization. Thus, we establish a rela-
tion between the components of SV in the particle rest frame
and those of the nonrelativistic spin vector (3.1). In a compact
form, for a particle state in a general frame, we write

(p, 5| P,S" |p, s) = 0. (3.4)

The equation above is called the Frenkel condition.

Now we want to relate the Frenkel theory to the pseudo-
gauges discussed in the previous sections. In particular, we
want to find for which pseudo-gauge choice the tensor Suy
introduced in this section can be identified with the global
spin. Consider first the canonical global spin in Eq. (2.17).
We note that, S‘gi = 0and

SY = ek k. (3.5)
with

ok 3 Th k

S¢= [ dxyiisty. (3.6)

where the integration over the hypersurface is performed
choosing a hyperplane with constant x°, and

k
k_ o 0
e_<00k).

If we take the expectation value of a one-particle state at
rest, Eq. (3.6) is the expression in second quantization of the
nonrelativistic spin operator (3.1). We see again that S’g” is
not a tensor and it is clearly not compatible with the Frenkel
condition since, in this case, Eq. (3.4) holds only when taking
the expectation value of a state of particle at rest.

Let us now turn to the HW (or equivalently the GLW
or KG) global spin # in Eq. (2.36). In a general frame the
components SQ}W do not vanish and

(3.7)

A

Sy = €ksk (3.8)

with

Sk = /d3x al <E€5" + h—zek’"yla") V. (3.9)
2 2m

One can check by an explicit calculation using similar steps
as those outlined in App. B that, for a particle at rest,

(Pas 51 S% 0 Ipws 5) =0, (3.10)

4 In the following, since S“Z‘;,V = ngw = S‘zvc, we will only use the
HW subscript for the sake of ease of notation.
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the second addend in Eq. (3.9) vanishes and, from Eq. (3.6),
we see that

(e S| 82 10ar ) = (Par 51 8 [pas 5) . (.11)

This means that the space components of the HW global
spin reduce to the nonrelativistic spin vector and that SZ‘;)V
behaves as a tensor in accordance with the Frenkel theory
(3.4),1ie.,

(p. s PuShyy Ip.s) = 0. (3.12)

Thus, the HW global spin gives a covariant generalization of
the nonrelativistic spin operator.

3.2 Pauli-Lubanski vector

In this subsection, we generalize the nonrelativistic spin oper-
ator in Eq. (3.1) to a covariant vector S* (even though strictly
speaking it is a pseudovector, we will use the term vector for
simplicity). This vector is such that, in the particle rest frame,
it reduces to the form

(Pas S| 8 [Py ) = (0, (Pus 51 Sr [P, 5)) (3.13)
or, covariantly,
(p, s| P.S* |p,s) = 0. (3.14)

In order to define the relativistic spin operator, we introduce
the Pauli-Lubanski vector [15,17]
A 1 vafp 7

wh = —56“ P, Jog (3.15)
where j/ .v 18 the total angular momentum in Eq. (2.16). Using

the commutation relations of the Poincaré algebra we obtain
(15]
[0, ©"] = —ih P, Py. (3.16)

If we consider the action of the commutator on states at rest,
then for the spatial components we have

[, w1 = —ih e O%m. (3.17)

Therefore, the relativistic spin operator can be defined as
DM

SH— w-
m

) (3.18)

since its spatial components follow the usual commutation
relations for spin operators
[S,',Sj] =ih6iijk, (3.]9)
provided that they act onto states at rest.

We note that, since the total charges are pseudo-gauge
invariant by construction, it follows that the relativistic spin
vector is also a pseudo-gauge invariant quantity. Inserting

Eq. (2.16) in Egs. (3.15) and (3.18), and taking the matrix
element of one-particle states, one obtains

(0, s'| $" |p, s)
1

= - %e“”aﬂ (', s PuSc.ap Ip, 5)

1 A A
= — %e“”“ﬁ ' 5"l PuSaw.ap Ip, s)

1 /7 T h
- - —e’”"‘ﬂpu/d% 0510 S0 () b 5)

2m
(3.20)

for the details of the derivation see App. B. The equation
above shows that the contribution of the orbital parts of the
canonical and HW pseudo-gauge vanish when one-particle
states are considered. For a related discussion, see Refs. [18,
19]. Finally, we note that the inverse relation involving the
expectation value of one-particle states of the form

. 1 .
{p, 5| Sk Ip.s) = —;6‘“’“’3 (b, s| PuSp Ip, s) (3.21)

is only valid for the HW, GLW and KG (and not for the
canonical) pseudo-gauge since in this case Eq. (3.12) holds.
We can thus write

(0, 51 SV |p, 5) = —€""P (p, 5| v Sp Ip, 5) (3.22)

where 8" = SE” for v* = (1,0) and S} = §i\, for
v = ﬁ”/ m.

We conclude this section with a brief remark about mass-
less particles. It is clear that the spin vector in Eq. (3.18) is
not defined for particles with vanishing mass. We note that
the action of the commutator of the Pauli-Lubanski vectors
(3.16) on a massless one-particle state cannot be reduced to
the conventional commutation relations for spin operators
(3.19), since the physical quantum number is now the parti-
cle helicity [15]. It is possible to show that the action of the
Pauli-Lubanski vector on a massless one-particle state |p, 1)
with helicity A = £1/2, is given by [15,20]

W [p, A) = AAP™ |p, ). (3.23)

Equation (3.23) shows that for massless particles the spin is
slaved to the momentum.

4 Wigner operator

Quantum mechanics can be equivalently formulated with
the so-called Wigner function [21], namely a distribution
function in phase-space which can be alternatively used to
calculate expectation values of operators. In this sense, the
Wigner function generalizes the concept of classical distri-
bution function to the quantum case. However, caution must
be taken when making this identification, since the Wigner
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function can in general take on complex values. In quantum
field theory the Wigner operator for the Dirac field is defined
as [4,22-24]

A d4y gy
Wxx(x,P)Z/ (27Th)4e hp}l//X (x1) ¥ (x2), “.1)
with x; = x 4+ y/2, xo = x — y/2 and «, x denote here
Dirac indices. Using the Dirac equation for free fields (2.3a)
and (2.3b), one derives the equation of motion for the Wigner
operator [4,23,24]

|:J/'(p+i§8>—m:|W(x,p)=O,

Applying the operator [y - (p +i %8) + m] to Eq. (4.2) and
separating real and imaginary part we obtain

4.2)

K2 A
<p2 —m? - Zaz) W(x, p) =0,

p-daW(x, p) =0,

4.3)
(4.4)

respectively. We recognize in Eq. (4.3) the modification of
the on-shell condition defining the particle spectrum and in
Eq. (4.4) a Boltzmann-like equation.

Itis convenient to decompose the Wigner operator in terms
of a basis of the generators of the Clifford algebra

W= % (]:"—i- iy’P+ y"fiu + )/5)/“./21“ + %G’“’S,w) ,
(4.5)
with the coefficients given by
F =Te(W), (4.62)
P = —iTr(y W), (4.6b)
PR = Tr(y* W), (4.6¢)
A = Tr(y"y W), (4.6d)
SHY = Tr(c™W), (4.6¢)

where the traces are meant over the Dirac indices. We substi-
tute Eq. (4.5) into Eq. (4.2) and decompose real and imagi-
nary part to obtain the equations of motion for the coefficient
functions. We write here only the two equations we will use
in this section (for the complete set of equations of motion
for the coefficients when also interactions are considered see
Sect. 6.1)

p-V—mF= (472)
pHF — g WS — mPH =0, (4.7b)

= DP 4 LB, Gy 4 m At =0 (4.7¢)
p-A=0 (4.7d)
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h o~ A
58“]—'—}- nS"H = 0. (4.7¢)
The energy-momentum and spin tensors discussed in Sect. 2
can be easily expressed in terms of the functions (4.6). In
particular, Egs. (2.6), (2.22), (2.28a) and (2.39) can be written
as

P = / d*p pir, 48)
~ 1 ~ N
Ty' =3 f d*p (p" V' + pHVY), 4.9)
. 1 12 .
v o 4 w mav _  pva2
THW_m/dp[pp—i- (aa g8>:|.7-',
(4.10)
6w ="Tie = — f d*p p*p*F, @.11)

respectively. In the equations above, the free equation of
motion (4.7a) and the on-shell condition (4.3) were used to
eliminate the term proportional to g"” with the Dirac and the
Klein—Gordon Lagrangian in the energy-momentum tensors
(4.8), (4.9) and (4.11). We note that for the HW energy-
momentum tensor, the term proportional to g"” cannot be
eliminated with the equations of motion. The spin tensors in
Egs. (2.14), (2.28b), (2.40) can be now expressed as

A /] A

Séz“” = _Eek“”/’fd‘*p A, 4.12)

A A h N

Siiw = Sx6" = —/d“p P&, 4.13)
A /] N

Skl = — / d*p (;ﬂsw — Eewaaw) . (414

We now want to relate the spin vector to the Wigner oper-
ator. In accordance with Ref. [18], we define the spin vector
as

. 1 .
" (p) = —%e“wﬁ Pvjep(P) (4.15)

where faﬂ is related to the total angular momentum in
Eq. (2.16) through Jus = [ d*p jup. Letus justify Eq. (4.15)
using the Frenkel theory. To do so we define the quantity

i " .
S = o /E 45, p 8" (x, p)

0
- hp—/d3x SH(x, p). (4.16)
2m
It is easy to check that §};y, is a Lorentz tensor, since
p 3,8"” = 0 which, in turn, is a consequence of Eq. (4.4).
The global spin can be written as

Shw = / d*p $i (p). 4.17)



Eur. Phys. J. A (2021) 57:155

Page 9 of 25 155

From Eq. (4.7¢) we get

. K2 .
Pushw = —2—p0 / dxd'F =0, (4.18)
m
where boundary terms were neglected, and
0 h* A
Pushw = —2—/d3x p-dF =0, (4.19)
m

which follows again from Eq. (4.4). Therefore, we deduce
that

pulew =0. (4.20)
Equation (4.20) shows that, for free fields, §;}, satisfies a
form of the Frenkel condition. The difference with Eq. (3.4)
is that here p* is the conjugate variable of y* in the Wigner
transform (4.1) and not in general the total momentum of
the system (or of the particle). In other words the spin in
the rest frame of the momentum operator is equivalent to
defining the spin in the rest frame of the momentum variable
p*. Therefore, we can define the spin vector based on the
variable p* and the HW spin tensor (4.13) as

~ 1 .
m*(p) = —%e“”’f’ PSaw.as(P)

h A
= —Wel“’“ﬁpv/ dx* Pr.Sap(x, p)
z

p’ 5
= —h—ze“”“ﬂpv/d3x Sup(x, p),

i 421

where in the last line we chose the hypersurface integration
at constant x°. We stress that, although expressed in terms of
the HW spin tensor, Eq. (4.21) is pseudo-gauge invariant and
is equal to Eq. (4.15). To show this, we only need to prove
that the HW orbital part of the spin vector obtained using
Eq. (4.10),

1 . h?
— Wé“mﬂpv |:/ d3x X[ PB1POF + Zlaﬁ] , (4.22)

vanishes, where

lop = /d3x X[ (3,3]30 — gﬁ]oaz) .7}

Note that both terms in Eq. (4.22) inside the square brackets
are tensors. The first one vanishes when contracted with the
Levi—Civita tensor. For the second one, we have [, = 0,
which is what must hold, since the HW and GLW pseudo-
gauges have the same global orbital angular momentum
[compare, e.g., Egs. (4.10) and (4.11)]. To see this, let us con-
sider each component of /g separately. Fora = 0, 8 =1,
we have

(4.23)

loi = /d3x (x0000; — xiag +xi82).7:"

=x030/d3x Biﬁ+/d3xx,-8jaj]t‘

= 8ij / dx 3 F =0, (4.24)
where we integrated by parts the second integral in the second
line and neglected boundary terms. Foro = i, 8 = j we have
lij = 30/d3x (xid; — x;0)F =0, (4.25)
which follows after again integration by parts of both terms.

Using the canonical currents (4.8) and (4.12), Eq. (4.15)
can also be written as

. 1 .
m*(p) = —%e“”“ﬂ PuSc.ap(p)
h n
= %/ dXx PAAM(X, P)
P

0
_ hp—/d3xfl“(x, ). (4.26)
2m
where from the first to the second step we used Eq. (4.7d).
It is possible to show that Egs. (4.26) and (4.21) are equal
by using the equation of motion (4.7¢c) and the Boltzmann
equation p - 3P = 0 which follows from Eq. (4.4). Note that,
however, the inverse relation

. 1 R
St (p) = —n—;’”"‘ﬁ Pallg(p) (4.27)

is only valid for the HW, GLW and KG (but not canonical)
spin tensor. Finally, if we use the Belinfante pseudo-gauge
in Eq. (4.15), the spin vector has only the contribution of
the orbital part of the angular momentum, since the spin ten-
sor vanishes. Thus, using the Belinfante energy-momentum
tensor (4.9), we can express the spin vector (4.15) as

. 1 .
" (p) = —Ee’”“ﬁpu/ d X" puxie Vg (x, p)
)

P° -
= ——eﬂuaﬂpvfd3x xo Vg (x, p),

. (4.28)

which can be shown to be equal to Eqgs. (4.21) and (4.28)
after employing Eq. (4.7b), integrating by parts, and utilizing
p - 38"V = 0 which follows from Eq. (4.4).

Asaconcluding remark of this section, we mention that the
operator I1"(p) should not be confused with the spin vector
defined in Sect. 3. In fact, one can see that | d*p G (p) is
in general different from SH in Eq. (3.18). However, when
taking the matrix element on one-particle states, we obtain
the relation

(0, s'| 8" |p, s) = / d*p (0, | T*(p) Ip,s) . (4.29)

We emphasize that Eq. (4.29) is only valid for free fields. In
this case one can prove that the momentum of the Wigner
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function is set on-shell by the spacetime integration [18,19].
For more details see Appendix. B.

5 Pseudo-gauges and statistical operator

So far, we have only dealt with operators and their matrix
element of one-particle states. A natural question we can
now ask is how different pseudo-gauges affect the thermo-
dynamic description of a system [25-28]. To address this
question, in this section we study the consequences of the
pseudo-gauge transformations on the statistical operator p
[27]. In statistical quantum field theory a possible way to
determine p is by using the method proposed by Zubarev
[29] and later rediscussed in Refs. [30-33]. The local equi-
librium density operator ppg is obtained by maximizing
the entropy s = —tr(plog ) imposing constraints on the
energy-momentum and total angular momentum to be equal
to the actual ones. Let us first start with the Belinfante case
in which the constraints are given by

Nutr(pp Th") = N, T, (5.1)

Nutr(pp J5™) = Nuulp P T — < T = N a7,
(5.2)

where on the right-hand sides the quantities Tg "and J g v
are the actual densities. The vector N in Eqs. (5.1) and (5.2)
is the normal to some hypersurface X that we defined by
a proper foliation of the spacetime. Notice that Eq. (5.1)
implies that Eq. (5.2) is redundant: once we have the con-
straint on the energy-momentum tensor we automatically
have that on the total angular momentum. Thus, the local
equilibrium density operator reads

PBLE = Lexp [—/ dzﬁg‘”ﬂg,v} , (5.3)
Zp b

where Zp = Trpp g and Bp,, is the Lagrange multiplier
associated to momentum conservation. We stress that the
Lagrange multiplier depends on the choice of the pseudo-
gauge because it has to be a solution of the constraint at local
equilibrium

N e po e Be) T | = N TS (B, (5:4)
which are four equations for the four unknowns B ,. The
operator (5.3), however, being time dependent, is not the real
density operator in the Heisenberg picture. The true statistical
operator fpg,o is assumed to be the one in Eq. (5.3) evaluated
at some specific time with corresponding hypersurface X
where the system is known to be in local thermodynamic
equilibrium [29]. The true statistical operator is what one
needs for the calculation of the ensemble average of any

@ Springer

operator é,
0 = (0) = Tr(preo O). (5.5)

Let us now follow the same steps to construct the density
operator using the canonical currents. We immediately see
that the constraint on the angular momentum is not redundant
anymore because we have a nonvanishing spin tensor, i.e.,

Nputr(pe Ty = N 1L, (5.6)
Nutr(pe M) = Nyl pe P TE — xVTE + 8§57

= N B (5.7)
Therefore, Eq. (5.7) reduces to the effective independent con-
straint on the spin tensor
Nutr(pe SEM) = N, SE™, (5.8)
and the canonical local equilibrium density operator is given
by
~ 1 YAy 1 QLAY
PCLE = ——€Xp| — dX, (Te Bew — =8¢ Lcw) |

Zc ) 2
5.9

with Z¢ = Trpc Lg. The quantity .Qé” is called spin potential
and corresponds to the Lagrange multiplier related to the
conservation of the total angular momentum. The fields ¢
and £2¢ are solutions of the equations

Ny T pere(Be. 20) TE | = NuTE (Be. 20), - (5.10)

N pee(Be, 20) SE™ | = NuSE™ (Be, 20). (5.11)

It is clear that, in general, Egs. (5.3) and (5.9) are not
equal. In order to compare the two density operators, we
perform in Eq. (5.9) the pseudo-gauge transformation with
the superpotentials in Eq. (2.21) and we obtain

A 1 YA
PC,LE = Z_C eXp| — 5 dEM(TB ﬂC,v
1 A 1 A N
- E(Qc,xu - wc,xu)SlCL’M + EXC,AU(Sé’Iw + SE’M)>:|,
(5.12)

where we made use of the integration by parts and neglected
boundary terms. Furthermore we defined
AV 1 A Qv VoA
(X! 2—5(8 ,3(:_8 ﬁc)» (513)
1
X = 5(aAﬂg + 3" BL). (5.14)

The tensor in Eq. (5.13) is called thermal vorticity. We note
that, since the canonical spin tensor (2.14) is antisymmetric
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under the exchange of all indices, then 3’?}“ Y4+ S'Z“ —
and the last term in the exponent in Eq. (5.12) vanishes. By
comparing the two statistical operators (5.12) and (5.9), we
infer that they are equal if B¢ = B, and
Y =™, (5.15)

where we removed the subscript C, since the 8" fields in the

different pseudo-gauges have to be the same.

We can generalize what discussed so far by considering
a generic pseudo-gauge transformation. If we start from the
canonical statistical operator in Eq. (5.9) and perform the
transformation in Eq. (2.18), we obtain

lgu,lv

2 pgt QC,)L\)

. 1 .
PeLE = 7 exp [ - _/Ed‘v#(Tplfg‘t)ﬁc,u -

1 R 1 . R
— 5 ¢~ @) P + EXC,)LU(@}L’MU + VI

- @p2ca) 20| (5.16)

After comparing with the statistical operator constructed with

LY QM AV
the currents 7, and ;.

A 1 AUV
Ppet LE = —— €Xp —/dE (T“ﬂ "
pg Zoat [ 5 4o\ Tpet Poety

L apan
— > ”ngt,w)], (5.17)

where Zpgr = Tr,épgt,LE, we can readily get the conditions
for the equivalence of the states, namely: B¢ = B, 2¢" =

pgt>
QI’}g"t, Eq. (5.15) has to hold, and
x"=0, 9°Q" =0. (5.18)

Equation (5.15) together with Eq. (5.18) are the conditions
for global equilibrium [34]. Therefore, we conclude that, in
general, the local equilibrium statistical operator is a pseudo-
gauge dependent quantity. Only in global equilibrium the
statistical operators derived with different pseudo-gauges
are equal, provided that the thermodynamic fields are the
same. An important consequence of what showed in this sec-
tion is that the expectation value of a generic operator (0)
will depend on the pseudo-gauge if the statistical operator
describes a many-body state away from global equilibrium.
Only in global equilibrium the expectation values calculated
with different pseudo-gauges will be the same. Therefore,
studying the expectation values of observables away from
global equilibrium is in principle a possible way to under-
stand which pseudo-gauge best describes the system.

6 Spin-polarization effects in relativistic nuclear
collisions

The formalism discussed so far is a powerful tool to study
spin dynamics of relativistic many-body systems. In this
section we will focus on applications to the physics of
relativistic heavy-ion collisions (HICs). In HICs strongly-
interacting matter is created by colliding atomic nuclei at
energies much higher than the nuclear mass rest energies.
Under such extreme conditions, quarks and gluons are decon-
fined and form a new phase of quantum chromodynamics
(QCD) matter called the quark-gluon plasma (QGP). An
extremely important feature of the QGP produced in HICs is
that it shows a strong collective behavior and its spacetime
evolution can be very accurately described using relativistic
hydrodynamics, see, e.g., [35]. Besides being a nearly perfect
relativistic fluid, the QGP exhibits other surprising properties
connected to its fluid nature.

Noncentral HICs have large global angular momentum
which is estimated to be on the order of thousands of 7. It is
expected that part of it is transferred to the QGP as vorticity
which, in turn, generates particle spin polarization [36-39].
This mechanism resembles the Barnett effect, where a ferro-
magnet gets magnetized when spinning around an axis [40].
Recent experimental studies showed that some hadrons emit-
ted in noncentral collisions (e.g., Lambda baryons) exhibit
a spin alignment along the direction of the global angu-
lar momentum. This gives the evidence that the QGP has
a strong vortical structure [2,41,42]. The global polarization
(namely the polarization along the global angular momen-
tum) turns out to be in very good agreement with models
proposed in Refs. [39,43-49]. For recent reviews see, e.g.,
[50,51]. The assumption of these models is that local ther-
modynamic equilibrium is reached at some early stage of the
process (QGP formation) and kept until hadronization, where
the fluid becomes a kinetic hadronic system. At freeze-out,
when scatterings cease, particles become polarized only if
the thermal vorticity defined in Eq. (5.13) (computed with
relativistic hydrodynamics) is different from zero. The for-
mula for the spin vector used to describe the Lambda global
polarization is based on an educated ansatz for the distribu-
tion function [44]. Such formula is given by the expectation
value of Eq. (4.26) [or equivalently Eq. (4.21)] with respect
to the local equilibrium state. After carrying out an expansion
in gradients, one obtains at first order [44]

2 A _
iy = T, Jopo 45 P* fr( = fr)map(x).
8m IEFO LZ'Z‘)L p)‘fp

6.1)
where the integration is carried out over the freeze-out hyper-

surface o, fr is the Fermi—Dirac distribution and @ ®?
the thermal vorticity (5.13).
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The models which were able to describe so accurately
the data [50,52], however, fail when it comes to explain
the longitudinal Lambda polarization, i.e., the projection
of the spin along the beam direction [53]. More specifi-
cally, the Lambda longitudinal polarization is measured as
a function of the azimuthal angle of the transverse momen-
tum and it exhibits a very similar pattern to that of the
elliptic flow of the azimuthal particle spectra [35]. The
predictions of Ref. [52] for the longitudinal polarization
show a correct sin(2¢) behavior, where ¢ is the azimuthal
angle, but with an opposite sign in the amplitude with
respect to the experimental data [53]. Unfortunately, this
mismatch between theory and experiments, which we will
call “sign puzzle”, does not yet have a definitive theoreti-
cal explanation, although many attempts have been recently
made [54-61]. A crucial feature of the models in Refs.
[39,43-49] is that they assume local equilibrium also of
spin degrees of freedom. However, the “spin puzzle” sug-
gests that spin degrees of freedom may undergo a non-
trivial dynamics related to the conversion between orbital
and spin angular momentum which is not well understood
yet.

In the past few years, the study of spin dynamics has
attracted considerable attention. Many works have focused
on spin hydrodynamics, an extension of relativistic hydrody-
namics where spin degrees of freedom are included. There are
several approaches in the literature which, actually, were not
specifically developed to address the “spin puzzle”: one can
promote the total angular momentum conservation as a new
hydrodynamic equation of motion with a suitable definition
of the spin tensor [27,62-68], use the Lagrangian formal-
ism [69-72] or the holographic duality [73]. There has been
intense activity also on the description of nonequilibrium
dynamics of spin polarization during the collision process
using the Wigner-function formalism in the free-streaming
case [74-81], and including particle collisions [68,82,83].
It is worth to mention that the Wigner-function fomalism
has been widely used also for the description of anomalous
chiral transport in the QGP, see, e.g., Refs. [84-94]. An
important question to be addressed is also whether spin equi-
librates fast enough for the time scales of HICs. Calculations
of spin equilibration time were recently carried out using per-
turbative QCD [95,96], Nambu-Jona—Lasinio model [97],
and effective vertex for the interaction with thermal vortic-
ity [98,99]. In the rest of this section we will discuss the
newly developed spin hydrodynamics and quantum kinetic
theory as promising approaches for a solution of the “spin
puzzle” and for a deeper understanding of spin effects in
HICs. In particular, we will focus on the impact of different
pseudo-gauge choices on the formulation of spin hydrody-
namics.
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6.1 Spin hydrodynamics and quantum kinetic theory

The equations of motion of conventional relativistic hydro-
dynamics are the conservation of energy and momentum

8,TH" = 0. 6.2)

The main idea to extend hydrodynamics to include the
dynamics of spin degrees of freedom is by promoting the
conservation of the total angular momentum

. 8M 1 = Tl (6.3)

as a new equation of motion, where the spin tensor plays
the role of spin density, in the same logic as the energy-
momentum tensor is related to energy and momentum den-
sity [27,62—-68]. Relativistic hydrodynamics is in principle a
classical theory, while spin is inherently a quantum feature of
matter. Therefore, the natural starting point for a consistent
treatment of spin in hydrodynamics is quantum field theory.
In practice, we establish a connection to quantum field theory
by defining our densities 7%¥ and $***¥ as ensemble average
of quantum operators

T = (TH),  Sh = (§MY), (6.4)

The set of Egs. (6.2) and (6.3) is called spin hydrodynam-
ics. The unknowns of this system of equations will be the
Lagrange multipliers associated to energy and momentum
conservation 8* = u* /T (u* is the fluid velocity and T the
temperature), and to the total angular momentum conserva-
tion, the spin potential £2/*V, introduced in Sect. 5. More-
over, if dissipation effects are considered, extra equations
of motion for the dissipative quantities should be provided.
In order to compute Eq. (6.4), one has to choose a specific
pseudo-gauge.

Relativistic hydrodynamics can be derived, for example,
from the Boltzmann equation by applying the method of
moments [100]. Therefore, having a quantum kinetic theory
framework is important to derive spin hydrodynamics. On a
microscopic level, angular momentum conservation implies
that the conversion between orbital and spin angular momen-
tum can occur only if particles collide with a finite impact
parameter. Hence, we need a kinetic picture where the non-
locality of the collisions is consistently taken into account.
In order to formulate a transport theory from quantum field
theory, we use the Wigner-function formalism. We define the
Wigner function as the normal-ordered ensemble average of
the Wigner operator (4.1) [4,22-24],

W(x, p) = (W(x, p)).

Since we need to introduce collisions, the right-hand side of
Eq. (4.2) will be modified as [4]

|:y~(p+i§8)—m]W:hC,

(6.5)

(6.6)
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where

e= [ Y by (g in) ©.7)
= (271?1)46 X)) (x1 .

and J = —(1/h)dL;/dv, with £; being the interaction

Lagrangian. Applying the decomposition (4.5) to Eq. (6.6)
and separating real and imaginary part, we obtain the equa-
tions of motion for the coefficient functions. Thus, we get

p-V—mF=hDr, (6.82)
i
29 - A+ mP = —hDp, (6.8b)
hi
pHF — Eavsvﬂ —mV* = DY, (6.8¢)
hi 1
_Eal/-']) + zéuvaﬁpusaﬁ +mA* = —hD.l;‘, (6.8d)
i
Ea“*vvl — e py Ag —mS" = 1D’ (6.8¢)
for the real part, and
19 -V = 2hCr, (6.92)
p-A=hCp, (6.9b)
i
Eaﬂ}‘ + pyS™M = hCy, (6.9¢)
h
PP+ Ze“”“ﬁ 0Sup = —RC'y, (6.9d)
i
plryvl 4 Eeﬂwﬁawzlﬁ = —hCh’ (6.9¢)

for the imaginary part, where we defined D; = Re Tr (3;C),
Ci=ImTr(,C),i =F,P.V,A S, vr=1,pp = —ivys,
o= v* 74 = y*y>, Js = o™’ Following Ref. [68],
we employ an expansion in powers of & for the coefficient
functions of the Wigner function and the collision term in
Egs. (6.8) and (6.9), e.g., for the scalar part we write

F=FO 4D 1 0%, (6.10)

We stress that, since in the equations of motion (6.6) a gradi-
ent is always accompanied by a factor of 7, this is effectively
also a gradient expansion. We now make the assumption that
spin effects are at least of first order in the /-gradient expan-
sion. As a consequence it can be shown that [68]

PH = n%p“f + O1h%9?), (6.11)
where we defined

F=F-— h p"Dy,. (6.12)
The relevant Boltzmann equations then read
p-dF=mCp, p-dA* =mCV, (6.13)

with Cp = 2Cx and C! = —(1/m)e"*P p, Cg 4. In order
to obtain a more intuitive understanding of spin-related quan-
tities, we introduce spin as an additional variable in phase
space [65,67,68,101-103]. We define the distribution func-
tion

1.-

f(xspv5)5z[]:(x»P)_5‘~A(va)]v (614)
and the integration measure

/dS(p) = % d458(5~5+3)8(p~5), (6.15)
with k (p) = \/gn/\/? such that

F= /dS(p) f(x, p, ), (6.16a)
AP = /dS(p) s*f(x, p, 5). (6.16b)
The distribution (6.14) can be parameterized as

f(x, p,s) = m8(p* —m?> — hdm?) f (x, p, 5), (6.17)

where f(x, p,s) is a function without singularity at p?> =
m? + hém? and Sm?(x, p,s) is a correction to the mass-
shell condition for free particles arising from interactions.
The final Boltzmann equation to be solved is thus given by

p-3f=melfl, 6.18)

where €[f] = %(C r—5-Cy4). The collision term €[f] contains
both local and nonlocal contributions and has been recently
explicitly calculated in Ref. [68]. It was demonstrated that,
using the standard form of the equilibrium distribution func-
tion [44,62,65]

1 h v
feq(xa D,5) = WCXP |:—/3(X) -p+ Z-Q;/.v(x)zg ] s
(6.19)

and the total angular momentum conservation in binary scat-
terings, the conditions under which the collision term van-
ishes are indeed those of global equilibrium discussed in
Sect. 5. In Eq. (6.19) we defined the spin-dipole-moment
tensor X4 = —(1/m)e"* pysp.

Once the quantum kinetic theory is established, one can
evaluate the hydrodynamic quantities (6.4). To do so, a
pseudo-gauge choice has to be made. Let us first consider
the canonical currents. Substituting Eq. (6.11) into Eq. (4.8)
and Eq. (6.16b) into Eq. (4.12), we obtain 5

T = /dP ds p"p” f(x, p,s) + O(H*d?), (6.20)

3 The term —g"’(Lp + L) in the energy-momentum tensor does not
in general vanish when using the equations of motion, but it is propor-
tional to an interaction term. However, we study kinetic theory of dilute
systems where such contribution to the energy-momentum tensor can
be neglected [4].
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m
Sé’l‘“) = —haekuva/dpdssaf(xv p,ﬁ)

2
1
= h—”; /dP as (P28 4+ pr it 4 p st

x f(x, p,s), (6.21)

where dP = d*ps(p> — m?). Note that Eq. (6.21) is
indeed exact. ® Using the Boltzmann Eq. (6.18), the hydro-
dynamic equations of motion corresponding to the tensors in
Egs. (6.20) and (6.21) are given by

T = / dPdS(p) p* €[f1=0, (6.22)

h .
RS = /deS(p) 5 (zé‘” CLf1+ p 220, £ (x, p,s))

=T/, (6.23)
respectively. Equation (6.22) relates the conservation of
energy and momentum to the collisional invariant p/”. On
the other hand, from Eq. (6.23), which can be viewed as the
definition of the antisymmetric part of the energy-momentum
tensor, the relation of the divergence of the spin tensor to a
collisional invariant is not apparent. Furthermore, in global
equilibrium, after expanding Eq. (6.19) up to O(%d) and
recalling that €[f] = 0, Eq. (6.23) becomes

1 A2

[puv] [ in —B 3.3

Cea ™ Qmh)? 7/‘”)1’ Yt plmpe PP+ O ).
(6.24)

We see from Egs. (6.23) and (6.24) that the antisymmetric
part of the canonical energy-momentum tensor is different
from zero, and hence the spin tensor is not conserved, even in
the case of vanishing collisions or global equilibrium. Since
the physical picture is that spin changes only due to particle
scatterings until global equilibrium is reached, the interpre-
tation of S;>"” as a spin density is not consistent.

In Ref. [68], it was shown that the HW choice carries
interesting physical implications. Starting from the canonical
currents and performing the pseudo-gauge transformations
in Egs. (2.33) and (2.34), one obtains up to first order in the
h-gradient expansion

Thy = /deS(p)p“p”f(x,p,s)-‘r(’)(hzaz), (6.25)

n
7217[#8‘)]> f(xv 17»5)

2 4m
(6.26)

[
Shiw =h / dPdS(p)p* <72é‘ -

+ OH%%).

6 1In Ref. [68] the spin tensor is defined as the spin tensor in this paper
divided by % such that the total angular momentum reads J»*’ =
XHTH — xVTH 4 1 S»H_ This implies that the / factor in Eq. (6.21)
should not be counted in the 7-gradient expansion since it is not accom-
panied by a gradient.
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Notice from Egs. (6.20) and (6.25) that, under our assumption
of spin as a first order quantity, the canonical and HW energy-
momentum tensor at O(f9) are equal. The HW hydrody-
namic equations of motion can be written with the help of
the Boltzmann Eq. (6.18) as

3Ty =/deS(p) p’Cf1=0, (6.27)

h
nsity = [apasm s en=mi. ©29)

Equation (6.28) shows the relation between the antisymmet-
ric part of the HW energy-momentum tensor and the collision
kernel of the Boltzmann equation. When only local collisions
are considered then Eﬁ Y is a collisional invariant, leading to
aconserved spin tensor and a vanishing antisymmetric part of
the HW energy-momentum tensor in Eq. (6.28). In general,
when we take into account the nonlocality of the collisions,
the spin tensor is not conserved and orbital angular momen-
tum can be converted into spin through the antisymmetric
part of the HW energy-momentum tensor which arises at
O(h?3?). In global equilibrium, the HW energy-momentum
tensor is again symmetric and the spin tensor is conserved.
Therefore, the HW pseudo-gauge turns out to be a consis-
tent choice to describe the conversion between orbital and
spin angular momentum of a relativistic fluid. Finally, since
the HW and KG spin tensors are the same and, moreover,
they differ from the GLW spin tensor by a divergenceless
term [see Eqgs. (4.13) and (4.14)], the antisymmetric parts of
the HW, KG and GLW energy-momentum tensors are also
equal. The differences between these three pseudo-gauges
arise at O(h%92), as can be seen from Egs. (4.10), (4.11),
(4.13) and (4.14) (note that P© = 0 [68]). The physical
implications of these differences require further investiga-
tion. As a final remark for this section, we mention that in
Ref. [68] it was shown that, in the nonrelativistic limit, the
equations of motion with the HW pseudo-gauge reduce to the
well-known form of hydrodynamics with internal degrees of
freedom [104].

7 Pseudo-gauge transformations and the relativistic
center of inertia

In Newtonian mechanics the center of mass has an unam-
biguous definition: it is the unique point obtained by the
mean of all points weighted by the local mass. However
this is not true anymore for a relativistic system, since the
energy (or inertial mass) depends on the velocity. Follow-
ing Ref. [3], we discuss several possible definitions for the
relativistic center of mass and study their physical meanings
when internal angular-momentum degrees of freedom are
included (see also a recent related work Ref. [105]). In par-
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ticular, we show that, since a pseudo-gauge transformation
can be seen as a rearrangement of the splitting between spin
and orbital angular momentum, the different choices of spin
tensors discussed in the previous sections can be related to
different definitions of the relativistic center of mass.

7.1 External and internal components of angular
momentum

Let us consider for simplicity classical fields. In special rel-
ativity, any angular momentum can be decomposed into an
internal and external part with respect to a reference point
XH,

I =LE" + 8%, (7.1)
where the external component is given by
LY = xlwpV] (7.2)

and the internal component § ;v describes the rotation about
X*". The term S;w is not necessarily related to spin in the
corresponding quantum theory. On the other hand, we can
also decompose the total angular momentum into generators
of boosts K/ and generators of rotation J.* depending on
the four-velocity n* of the frame in which the generators are

defined,
JW = Kl — B g, (7.3)

with K} = J*n, and J}' =
Egs. (7.1) and (7.3) we obtain

— %el‘vaﬁnv Jop. Combining

I = (K A K on" = g Uy g+ dniyp)s (T4)

where

Ky, = (P-mX"—(X-nP", (7.52)

Ky 5 = Sy ny, (7.5b)

I, ==X, Pyng, (7.5¢)
1

e = _zeﬂvaﬂnvsx,aﬁ. (7.5d)

Consequently, if we want to identify the internal angular
momentum with the generators of rotation in the frame char-
acterized by the four-velocity n**, we should impose the con-
dition

S, = 0 (7.6)

in order to remove the contribution from the boost generators
to the internal part in Egs. (7.5). In this case, Eq. (7.5d) can
be inverted to obtain the internal angular momentum in terms
of the rotation generators

Sk’ = —e"Png sy p- (1.7)

7.2 Center of inertia and centroids

A natural definition of the center of inertia of a system is the
mean of all points weighted by the local energy. Given an
energy-momentum tensor 7"V in a certain pseudo-gauge we
define the center of inertia as

1 1
" = =5 f dPx xH T = E(xopﬂ + LMy, (7.8)
where LI = J* — S* and P* = [ d>xT*. The defini-
tion above implies ¢° = x°. Using the conservation of the
energy-momentum tensor, we obtain for the time derivative
of the center of inertia
1

dogh = =5 / d3x THO, (7.9)
provided that, as usual, boundary terms can be neglected. If
we require that the center of inertia moves along a straight
line, then we need to impose

9,TH" =0, (7.10)
since in this case

1
(80)%g" = E/cﬁx 8,TH" = 0. (7.11)

We call Eq. (7.9) together with Eq. (7.10) the relativistic
center-of-mass theorem. The condition (7.10) is trivially ful-
filled for symmetric energy-momentum tensors, e.g., for the
Belinfante, HW, GLW and KG pseudo-gauge. We note from
Eq. (2.15) that the condition (7.10) is also fulfilled for the
canonical case, since the canonical spin tensor is totally anti-
symmetric. Hence, all energy-momentum tensors discussed
in this paper are consistent with the relativistic center-of-
mass theorem.

Obviously the center of inertia (7.8) is not covariant. It
can be generalized in a covariant way by introducing the so-
called centroid ¢/* which is identical to the center of inertia
in a generic frame moving with four velocity n*,

(x,?P“ + L*n),

at =5 (7.12)
where x! = x - n is the time in the given frame. Notice also
that ¢, - n = x?.

Now we want to express the orbital angular momentum as

LW = gl pvl, (7.13)

which implies the choice of the centroid as reference point,
X" = ¢l, and hence, from Eq. (7.2), L" = LZ:. As a
consequence, from Eq. (7.1), we identify the global spin with
the internal angular momentum S#*¥ = S,’fnv . We also note that
the condition (7.6) for the spin tensor is needed to ensure the
validity of the center-of-mass theorem (7.11) and to make
the centroid a Lorentz vector, since it allows us to write it in
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terms of conserved quantities

1 0
gl = 2 'n(x”P” + J*n). (7.14)
Requiring ¢0 = ¢° = x°, we obtain x? = xo% — ﬁLO”nv
and thus

0 v0 v

P*  L"n, Pt LF
gr="2 -2 v, (7.15)

PO PO(P-n)  P-n

in order to obtain the worldline of g, parametrized by the
original time coordinate x° and to compare to Eq. (7.8).

We stress that writing the orbital part in terms of the cen-
troid as in Eq. (7.13) is not possible for all pseudo-gauges.
In the next subsections we will study whether we can estab-
lish a correspondence between different choices of n** and
different expressions for S*".

7.3 Belinfante pseudo-gauge

Since in the Belinfante case the spin tensor vanishes, we have
L’gv = J*' Thus

1

g = S OPE 4 1) .16
and

1
q# = P -n(xr(z)Pu + J*ny). (7.17)

7.4 Center of inertia as reference point: canonical
pseudo-gauge

The canonical global spin fulfills the condition (7.6) in the
frame specified by n* = (1, 0), i.e., we have §9 — 0 (see
Sect. 3). We can then use the canonical currents to evaluate
Eq. (7.8) and obtain

1 1
g" = E(xopﬂ + LY = E(xOP“ + JH0). (7.18)
We can now define the global spin
Sk = g — gl p! (7.19)

which, as the canonical spin, fulfills S;O = 0 in any frame
and is not a tensor. We stress that S,’f Y is different from ng
as L’év cannot be expressed in terms of the center of inertia
q", even though the canonical currents were used to calcu-
late g**. Defining the spatial components of the total angular
momentum J = /% J¥ we obtain

Sq=J—qxP. (7.20)

If we want to go from a classical to a quantum framework
where P as well as g/ are promoted to be operators, then
Eq. (7.20) is given by [3]

S, = /d3x 2(:0)2W [*& +imp xy+ (p-S)ply, (7.21)
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provided that the operators act on a single-particle state with
momentum p* and with & defined in Eq. (3.7).

7.5 Center of mass as reference point: HW, GLW and KG
pseudo-gauges

For a system with finite mass m there is a preferred reference
frame for defining physical quantities in a covariant way in
terms of the Poincaré generators. This frame is given by the
comoving frame of the system, denoted by the four-velocity
nl = P /m (the subscript x indicates that the corresponding
quantities are evaluated in the rest frame). Clearly, in this

frame the mass is given by
m=P’=P.n,. (7.22)

The corresponding centroid, that we call the center of mass,
is obtained by using n%’ in Eq. (7.12), i.e.,

1 1

qe = — <rP“ + —J“”Pv) , (7.23)
m m

where we defined the proper time v = x? and already

imposed P, S} " = 0 in accordance with Eq. (7.6). Note that
g is a Lorentz vector. In a similar way, the spin of a massive
particle is defined as the proper internal angular momentum,
i.e., choosing the reference vector ny and the reference point
g4 in Eqs. (7.5). This leads to

K:L =mql — tPH, (7.24a)

K!¢=0, (7.24b)

Jl, =0, (7.24c)
1

Jhe = —%e“””‘ﬂ Py Suap- (7.24d)

In the last equation, we identify the Pauli-Lubanski vector
wh = mJ*’fS (cf. with Sect. 3.2), and we verify that it is
indeed identical to the generator of rotations defined in the
center-of-mass frame.

One can show that the HW (hence the GLW and KG)
global spin (2.36) is obtained as the difference between the
total angular momentum and the orbital angular momentum
with respect to the center of mass, i.e.,

Sty = S = g — gl pvl, (7.25)
which is clearly a Lorentz tensor. The HW spin vector is then
given by

Saw =J —q. x P, (7.26)
which corresponds to Eq. (3.9) and, in the rest frame,
Sawx=J=Sc, (7.27)

consistently with Eq. (3.11) [3].
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It is worth mentioning that there is another option for the
reference point, namely the mean position [3]

g = (POq" + mgl), (7.28)

PO+ m
which is not a vector. The internal angular momentum with

respect to this point corresponds to the internal angular
momentum

Syt =g — gy, (7.29)
with spin vector
S;=J—qxP (7.30)

After quantizing by promoting P* and g** to operators [3],
the spin vector reads

A

Sq:/d3x—1ﬂ[m6+lpxy

+ (7.31)

TP 6)1:] v
where p is again the three-momentum of the one-particle
state. Equation (7.31) corresponds to the spin vector derived
by Foldy and Wouthuysen in Ref. [106].

We conclude this subsection with a physical remark.
The canonical currents describe position and spin emerging
directly from the Dirac equation and thus contain the rapid
oscillation (‘“Zitterbewegung”) in the motion of a Dirac par-
ticle. However, this oscillation is not measurable [107-109]
and should be removed to obtain physical quantities. Equa-
tions (7.21),(3.9) and (7.31) are expressions calculated from
various definitions of the relativistic center of mass. As these
definitions are mean positions, the spin vectors (7.21), (7.26)
and (7.31) do not contain the rapid oscillation [3].

7.6 Massless particles and side jumps
We summarize the results obtained in this section for the

massive case as follows: the splitting of the total angular
momentum into orbital and spin part

JHY — q,[zMPv] + SHv (7.32)
can be fixed by requiring
n,S* =0 (7.33)

as a supplementary condition, which determines g/ accord-
ing to Eq. (7.14). For finite mass, choosing n* = n} as a
frame vector yields a unique covariant decomposition corre-
sponding to the HW pseudo-gauge.

For vanishing mass, however, the absence of a rest frame
leads to additional complications. As P> = 0, imposing the
condition (7.33) with n** oc P*, P, S*¥ = 0, does not deter-

mine the splitting uniquely. Consider a redefinition of the

position gl — G = g} + A" with a shift A, then we need
to redefine a new global spinas SV — SHV = StV — Ali pvl
in order for the total angular momentum to be the same.
The condition on the new global spin PMS’“" = 0 holds if
P, A" = 0. A solution to this condition can be found such
that A is not proportional to P* leading to Al* PVl £ 0.
This implies that the definition of orbital and spin angular
momentum is ambiguous [110-113]. Thus, in contrast to the
massive case, there is no possibility to determine the spin in
a frame-independent way. In other words, the HW pseudo-
gauge, which is related to the particle rest frame, does not
exist. This fact is also apparent from Eqs. (2.28b) and (3.9)
as a factor of m is present in the denominator. It may seem
natural to use the canonical spin tensor instead. However,
Eq. (3.6) does not yield a familiar definition for the spin
of a massless state since it should be slaved to the particle
momentum. Interestingly, we note that the quantum spin vec-
tor in Eq. (7.21) has a smooth massless limit which yields
the familiar form related to the particle helicity

A p-&p P
S, me :/ T~ _
am=0 I” wl e e

where we considered the expectation value of a one-particle
state |p, A) with helicity A = +1/2. Hence, we can generalize

(7.34)

St g =" A—ﬁe“”aﬁp iig, (7.35)
where n** = (1,0) in any frame. This coincides with the

global spin used in Ref. [111] and, as pointed out in Sect. 7.4,
corresponds to defining the position as the center of iner-
tia g*, which is not a Lorentz vector. As a consequence, a
Lorentz transformation leads to a shift in the position known
as the side-jump effect [110-115]. Consider a Lorentz trans-
formation A, the total angular momentum is a tensor and will
transform as

T = = A AR TP, (7.36)
On the other hand, the spin (7.35) transforms as
1 _
Sl o S;’j;:o = mp, _eMoBy! ig
=i e Py — Aty
= ALAYSY _— Altp”] (7.37)

B q,m=0

with p’* = Al'pY and n’* = Al'in¥. Here the term Al#p/"]

is an anomalous contribution to the Lorentz transformation

of the global spin for Eq. (7.35) to be preserved after the

Lorentz transformation. In order to ensure Eq. (7.36),

J/,uv — q/[up/v] + S’l“)_O
q,m=

= Al ARJP (7.38)
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the center of inertia g* has to transform as

g — g™ = Alg + AF. (7.39)
The anomalous contribution of a Lorentz transformation for
the center of inertia A* can be found by contracting Eq. (7.37)
with 7,,. Choosing A" to be purely spatial in the frame at
rest with the observer after the Lorentz transformation, i.e.,
n - A =0, we obtain in this frame

nvafs o =
N L

= hA = .
(" -n)p"-n')

The physical implications of the anomalous shift A* can
be seen in a binary particle scattering py; + p2; — p1s +
p2 r. Consider first the frame, called “no-jump frame”, which
we assume to coincide with the center-of-momentum frame,
where the two initial particles collide in one point and the
final particles are emitted from the same point. If we see the
scattering in a boosted frame in a direction parallel to the
initial momenta, then we have to compute the shift A* in
Eq. (7.40) for each particle. For the two incoming particles,
since the spatial components of n'# are parallel to the three-
momenta, then A’fi = A’;i = 0. For the final particles, since
the momenta are not parallel to the spatial components of n'*
anymore, we have that A‘IL I and Ag | are different from zero.
This means that the particles in the final state are emitted in
a position shifted by an amount Aﬁ‘ and AZL Iz respectively,
from the point where the initial particles collided. This is the
side-jump effect.

We stress that the side jump effect occurs for massless
particles due to the absence of a covariant definition of the
center of mass and, hence, of a covariant spin. For massive
particles, instead, it is always possible to define a covariant
center of mass which leads to the HW, GLW or KG spin (at
least for free fields or in case of local interactions). Therefore,
in the massive case it is natural to use the HW, GLW or KG
pseudo-gauge where the spin is defined in the particle rest
frame and no anomalous shift has to be taken into account. In
the case of nonlocal interactions, the HW spin tensor turns out
not to be conserved anymore [see Eq. (6.28)] and the situation
might be different. However, for a full understanding of this
issue, further studies are needed.

(7.40)

8 Einstein—Cartan theory

So far, we have studied different energy-momentum and spin
tensors in flat spacetime. However, as in gravitational physics
the energy-momentum tensor is directly measurable through
geometry, it is also interesting to review the role of the den-
sities in curved spacetime. In conventional general relativity
the energy-momentum tensor is defined following Belinfante
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and Rosenfeld as [6-8]

1 8Ay
ny — g ng5 (8~1)
where the matter action Ay = f d*x Ly, with Ly the

Lagrangian, g"" is the metric tensor and g = /—det(g"").
In the literature, the expression for the energy-momentum
tensor above is often considered to be the fundamental one
because it is defined as the source of the gravitational field.
It is important to note that since g"" is a symmetric tensor,
T,y in Eq. (8.1) is also symmetric and indeed reduces in
special relativity to the energy-momentum tensor discussed
in Sect. 2.2. Following these considerations, it is usually
claimed that the “physical” energy-momentum tensor must
be symmetric. However, we observe that in conventional gen-
eral relativity spinorial degrees of freedom are not taken into
account and we can regard the absence of an antisymmetric
part of the energy-momentum tensor as the consequence of
this fact. In the following we shall briefly review an extension
of general relativity called Einstein—Cartan theory, where one
allows the spacetime geometry to have a nonvanishing tor-
sion, an additional property of the manifold geometry which
couples to spin. In such theory the energy-momentum tensor
can gain an antisymmetric part [116-118].

8.1 Riemann—Cartan geometry

The Einstein—Cartan theory is based on the so-called Riemann—
Cartan spacetime [116—120]. Let us consider a four-dimensi-
onal differentiable manifold, whose spacetime points are
labeled with x*. In order to specify the geometrical struc-
ture, we introduce a spacetime dependent symmetric metric
g™ = g"’(x) (such that g"“g,, = 8\, with 8} the Kro-
necker delta) and the notion of parallel transport of vectors.
Consider an infinitesimal displacement x* + dx* from the
point x*, then a vector B* changes by

dB" =Tl (x)B%dxP, (8.2)
where f/g‘ is the affine connection. In contrast to conven-
tional Einstein’s general relativity, we allow the affine con-
nection to have an antisymmetric part of the form

F =

p F[gﬁ]’ (8.3)

1
2
which is called torsion tensor. If we constrain the affine con-
nection in such a way that the covariant derivative vanishes
(metric compatibility), i.e., impose local Minkowski struc-
ture, we can write the affine connection as

Ty =Ty — K, 4", (8.4)
where

1
Foﬁjg = Egﬂv(aagﬁv + 088av — v&ap)
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is the conventional Christoffel symbol and

no_ 5 5 w
K, =-F ' +F" —F

B ap ap
is the contorsion tensor. Obviously, if torsion vanishes we
recover the usual Riemann spacetime. While curvature can
be regarded as a “rotation field strength” connected to the loss
of parallelism of parallel transported vectors, torsion can be
interpreted as a “translation field strength” which is manifest
in the closure failure of parallelograms [120].

(8.5)

8.2 Tetrads and spinors in curved spacetime

Given the metric g,,, defined on the manifold, we can always
define a tangent space at each spacetime point and establish
alocal flat orthonormal coordinate system e, (x) = e, (x) O
which are called tetrads or vierbein. / Hence, their compo-
nents ¢’, and the reciprocal e .. are such that

e =8l elel =45, (8.6)
and
g =¢, ¢, gap, 8.7

where g, = (+1, —1, —1, —1) is the Minkowski metric.
Spacetime indices are raised or lowered with gV, tetrad
indices with g,5, and transvection is done by appropriate
contraction with the tetrads, e.g., for a vector B,,, we define
B, = €', B,,. The intuitive picture is that we are assigning
at each spacetime point an observer which measures lengths
and time with respect to the local flat coordinate system e, .

‘We now introduce a classical spinor ¥ which will play the
role of matter field. In the locally flat spacetime all the famil-
iar properties of the spinors hold, in particular they transform
under a Lorentz transformation of the tetrads e’, — A e,
asy — U(A)y withU~1y?U = A“byb and all the conven-
tional relations of the Dirac y-matrices apply. The covariant
derivative of a spinor is defined as

1 ab
Dyy =9, — 5% Jab | ¥, (8.8)
where f;p = —%aab and oy is given by Eq. (2.11). The
quantity a)u“b = —a)ub“ is the spin connection

1
oud =5 (~2ud + 20— Q- KoL) B9)
with £, = 9ue,| and K, being the contorsion in
Eq. (8.5). The commutator of the covariant derivatives is
given by

[D,, D,y (8.10)

1
= _ER;,wabfabws

7 We use the Greek letters to denote the conventional holonomic space-
time indices and the Latin letters a, b, ... = 0, 1, 2, 3 for the anholo-
nomic tangent-space indices.

where R W‘”’ is the Riemann-Cartan tensor

ab __ ab ab b . ac
R, =00, —dho,” +to, 0" —o

CJw,0 (811

Vi

The inclusion of torsion will also lead to a modification of
the field equations [116].

8.3 Local Poincaré transformations and conservation laws

The fundamental idea of the Einstein-Cartan theory is to
promote the global Poincaré symmetry of the action to a
gauge symmetry [116—118]. This approach is analogous to
the Yang-Mills formulation of gauge theory.

In order to give as an intuitive explanation as possible of
the Einstein—Cartan theory, we will start by considering a flat
Minkowski spacetime. In this case, the tetrads will simply be

L —
ea_aa

(8.12)

and what is discussed in Sect. 2 holds, expect here we restrict
to classical fields. The global Poincaré transformations (2.4)
and (2.9), which we write in a compact form

xt — x"* = x4 cMx, +EH, (8.13)

will induce a functional variation of the spinor
’ 1 ab —a
W =90 =y @) =50 fa = E0 ) Y (x), (8.14)

with 84 = &4 + {”bSZx“. Using Eq. (8.14) we obtain
through Noether’s theorem the canonical currents. Let us
now promote the (4 4 6) infinitesimal parameters of the
Poincaré transformations to be functions of spacetime, £ (x)
and {“b(x). If we now calculate the variation of the action
(2.2), 8A, with respect to these new local Poincaré transfor-
mations and make use of the spinor variation in Eq. (8.14),
we obtain [116]

A = /d4x [%(aﬂgab)‘]cuab - (a/iga)TCMa]

1
- / a' [Mc“"wc"ab — (0,5 - c“baﬁﬁcﬂa} ’
(8.15)

where we made use of the conservation laws for the canonical
currents (2.5) and (2.12). In order to make §A vanish and
thus obtain local Poincaré invariance, we introduce e, (x)
and a)u“b (x) as gauge fields in the Lagrangian and couple
them to the spinors such that

L
e =T S, ~ 0,8 — ¢80,
"
a1 (8.16)

—_g M

~ ab ab
Se b  25C ab Sa)u >~ 09,87,
"
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The relations above are supposed to be valid only in the case
of weak fields, as a coupling of this form will necessarily
modify the canonical currents and their conservation laws
which have were used to obtain Eq. (8.15). From this dis-
cussion we deduce an important result: if we demand local
Poincaré invariance, then we see that special relativity is
not adequate anymore and a deformation of the flat space-
time due to ¢",(x) and a)u“b (x) is needed to compensate
the change of the action due to the variation of the spinor
field. As a consequence, we also have to adjust the derivative
operator by replacing it with the covariant derivative. These
new fields encode geometrical properties of the spacetime
and they indeed represent the gravitational interaction. Such
geometry turns out to be the Riemann—Cartan geometry.

We can now relax the assumption of weak gravitational
field limit implied in the derivation above. In order to do so,
let us assume that in general the Lagrangian density has the
following functional dependence

ab]

L = L[ga}n Va» VS, Illv 8;ﬂﬂ, eﬂaa (1)# ’ (817)

where the Minkowski metric g, and the Dirac matrices
Ya, Y5 are constant and defined in the local orthonormal
frame. For simplicity in the Lagrangian (8.17) we omit to
write the dependence on the adjoint spinor field. In order
for the action corresponding to the Lagrangian (8.17) to be
invariant under local Poincaré transformations, the following
condition has to hold [116-118]:

(8.18)

L
oo ol

) E*L) =0,
50,02 " )

where O = (¥, elf, a)ﬂ“b). It is possible to prove that the
general variations of the spinor and gauge fields read

1
8y = <§§“”fab - E“Da> v, (8.19)
Se, ! = DuE" —t%e,l+E"F, 1 (8.20)
8w,"" = Dut“"+E°R . (8.21)

(cf. with Egs. (8.14) and (8.16)). From Eq. (8.18), requir-
ing that the functions multiplying the independent quantities
D, E4, ,Lg““b, g9, ;”b vanish, after using the equations of
motion for ¥ we obtain

oL oL
eTh = — = Dy — e* L, (8.22)
de, & A(Ouv)
L L
SHto=2 = - % 8.23
eScw =25, = 5,4 " (8.23)
1
Du(eT) =F,le T, + 5wafe S e (8.24)
Dy(e S ) = eTc by, (8.25)

@ Springer

respectively, where e = det(e M“). We can ensure the validity
of Egs. (8.22)—(8.25) by applying the so-called minimal cou-
pling when generalizing the special-relativistic Lagrangian to
the Einstein—Cartan theory

L, 880,4) — e LY, e¥, D).

We stress that in the Einstein—Cartan theory the currents
which arise by taking the variations with respect to the gauge
fields e,,* and a)lfb reduce in flat spacetime to the canonical
currents.

We conclude this section by mentioning that it is in princi-
ple possible to generalize also quadratic Lagrangians (such
as the squared Dirac Lagrangian) to curved spacetime and
thus connect the HW tensors to the Einstein—Cartan theory
[121,122].

(8.26)

9 Conclusions

The relativistic decomposition of the total angular momen-
tum is an old problem which embraces many branches of
physics. In this review we focused on some formal aspects
and applications which are decades old and on some oth-
ers which have recently attracted considerable attention. We
showed in different contexts which choice appears to be a
physical one. In particular, we reviewed some of the latest
results regarding the description of spin dynamics in relativis-
tic fluids in relation to the physics of the QGP in heavy-ion
collisions. In this case, the HW pseudo-gauge has important
advantages, namely the spin tensor is not conserved only
when nonlocal particle scatterings are considered, and orbital
angular momentum can be converted into spin through the
antisymmetric part of the energy-momentum tensor. Eventu-
ally, when global equilibrium is reached, the HW spin tensor
is conserved and no orbital-to-spin angular momentum con-
version can occur. Moreover, we discussed how different def-
initions of the relativistic center of inertia are related to the
pseudo-gauge transformations. In this context, we showed
that, unlike in the massless case, for massive particles it is
always possible to define the spin in a covariant way using
the HW, GLW or KG global spin (at least for free fields or
in the case of local interactions). The fact that the defini-
tion of the spin of a massless particle is inherently nonco-
variant leads to the side-jump effect. Finally, we discussed
the Einstein-Cartan theory, an extension of general relativ-
ity which allows a physical definition through geometry of
an asymmetric energy-momentum tensor and a spin tensor
which reduce to the conventional canonical currents in flat
spacetime.

The ultimate question one would like to address is how
to extract information from experiments on which pseudo-
gauge describes the system and whether it is unique. A pos-
sible answer can be found exploiting the fact that, in gen-
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eral, the expectation value of an observable onto a state for
which local equilibrium can be defined, does depend on the
pseudo-gauge. Furthermore, in relativistic spin hydrodynam-
ics the values of the fields may be different with respect to
which pseudo-gauge one uses to decompose the total angular
momentum. In particular, in the Belinfante case, one does not
need to introduce the spin potential as an additional dynam-
ical field and the spin dynamics may be different than in
other pseudo-gauges. On the other hand, in the context of
gravitational physics, the way one is supposed to measure
energy, momentum and spin densities is through spacetime
geometry.

One may expect that the formalism and the problems cov-
ered in the present review will be relevant in the near future
since they are shared in different fields, some of which are and
will be under active experimental investigation. In heavy-ion
collisions the development of dissipative spin hydrodynam-
ics and quantum kinetic theory appears to be an urgent task
in order to understand the nontrivial dynamics of polariza-
tion, especially in light of the recent and future experimental
program [50]. Some important questions one would like to
address are whether spin can equilibrate fast enough for time
scales relevant to nuclear collisions and how this nonequilib-
rium dynamics can modify the expression for spin polariza-
tion commonly used to describe the Lambda global polariza-
tion data.

Understanding how angular momentum can be split into
an orbital and spin part is also crucial for the description
of gauge fields. In addition to the complications discussed
in this paper, there is the question of whether it is possible
to find a gauge-invariant way to decompose the total angu-
lar momentum. A fundamental description of the spin and
orbital angular momentum of light is still controversial, see,
e.g., works related to optics in Refs. [123,124]. Recently,
a gauge-invariant measure of the spin of the photon called
zilch current has been studied also in the context of quan-
tum kinetic theory and nuclear collisions [94, 125]. Further-
more, in hadron physics, the angular momentum decompo-
sition is of utmost importance to understand the contribution
of quarks and gluons to the spin of the nucleon [126]. For
related works about the angular momentum decomposition
with a focus on chiral physics, see Refs. [127,128] in which
connections to nuclear collisions are also discussed. Address-
ing the problem of the nucleon spin will also be at the core
of the experimental effort of the future electron—ion collider
[129,130]. Finally, we would like to mention applications
of spin dynamics in cosmology, where the Einstein-Cartan
theory is often taken as a starting point [131,132], and in
condensed matter systems like, e.g., spintronics [133].
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A Lorentz transformation properties of
hyper-surface-integrated quantities

In this appendix we show that, given a generic rank-(n + 1)
tensor B*41°*1n (x), the quantity defined as

A

Bt =f d 5 BM i (x) (A.1)
X

transforms as a rank-n tensor only if Bt (x) is a con-
served quantity, i.e., 0, B (x) = 0, and suitable bound-
ary conditions are fulfilled. This also means that the quantity
in Eq. (A.1) is independent of the choice of the hypersurface
integration. The correct properties under Lorentz transfor-
mations are not in general guaranteed because, in the inte-
grated quantity Bt only the fields in the integrand have
to be transformed and the integration hypersurface must be
unchanged. In other words, the experimenter is not trans-
formed. This is the point of view of an active transformation
which we will adopt in the proof below. We could instead per-
form a passive transformation, namely change the observer,
i.e., the hypersurface, and leave the fields unchanged. The
proof is independent of whether we do an active or passive
transformation. Since Eq. (A.1) is expressed in a covariant
way in terms of a scalar product, if we changed both the fields
and the hypersurface together, it would look like it has the
proper transformation behavior. However, this is not what
one would demand from a Lorentz transformation, as either
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the fields or the observer should be changed. To show this,
we closely follow the proof given in Ref. [134] and we stress
that it is valid for both quantum and classical fields.

Let us choose a hypersurface at x” = 0, hence d %) =
d*x 8(N-x)N,,where N, = (1, 0).Thus, Eq. (A.1) becomes

Bﬂl“'u«n Z/d3x B\OP«I"'U«n(x)
= /d4x S(N - x)N; B 1 (x)

= / d*x [3,0(N - x)] B 1 (x), (A.2)

where we introduced the step function such that 6 (N -x) = 1
for N-x >0and O(N - x) =0 for N - x < 0 and used the
relation

N;8(N - x) = 3,0(N - x). (A.3)

Note that in Eq. (A.2) we clearly cannot neglect boundary
terms in the temporal direction after integrating by parts,
as (N - x) = 1 when x° — 400. We now study how
BH1Hn transforms under a Lorentz transformation Al As
previously discussed, we perform a transformation of the
fields under the integral. Since BMin(x) is a tensor, it
will transform as

DALY _4A _— Oy —1

B/ (x) = ApAfjll .uAﬁn BPOUon (AT x). (A.4)

Therefore, the act of the Lorentz transformation on Eq. (A.2)

is given by

Bt = / d*x S(N - )Ny AG ALY - Al BP0 (A7 ).
(A.5)

We now change the integration variable x’ = A~'x and
define N' = A~!'N sothat N -x = N’-x’. Hence, Eq. (A.5)
becomes
Bt — /d4x/ AmN“’Af,Agf -~-Ag:épol""’” )
x §(N' - x")
n 4 D On
= ALl AL /d x 8(N’ ~x’)N/’,BP"1 on (x)
n 4 A Oy
= All... AL /d X 8(N"- x)N, B 1" (x),
(A.6)

where in the first equality we made use of the invariance of
d*x under the transformation A, in the second one A )\aAi; =
8ap» and in the last one we only relabeled the integration
variable by dropping the prime index. On the other hand, if
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N

B/ #1Hn transforms like a rank-n tensor, we must also have

AR A BOn = ART L AR /d4x 8(N - x)

x N, B (x). (A7)
Therefore, to conclude the proof, we only need to find the
conditions for which Egs. (A.6) and (A.7) are equal, which is
the same as requiring that the following difference vanishes:

Bﬂl"'ﬂn _ (A*l)gll .. (Afl)g:l;)/oj...an

= /d4x dp[O(N - x) —O(N’ - x)]BPR R (x)

:—/d4x[9(N~x)—9(N/~x)]8pép“"““"(x), (A.8)

where we used the relation (A.3) and, in the last step, we
integrated by parts and safely neglected boundary terms in
the spatial as well as in the temporal direction, since in the
far future or far past we have O(N - x) = (N’ - x). Finally,
Eq. (A.8) vanishes only if

d B (x) = 0, (A.9)

which is what we wanted to proof. Note that what we also
showed is that the integral in Eq. (A.2) is independent of
the choice of the hypersurface using the divergence theo-
rem, provided that Eq. (A.9) holds and suitable boundary
conditions are fulfilled. In fact, the second line of Eq. (A.8)
is the difference of the integral of BPwi-hn (x) calculated
at two different hypersurfaces with normal vectors N, and
N l/t’ respectively, which is transformed to a volume integral
in the last line. What discussed in this section is clearly not
restricted to the form of the hypersurface chosen for the proof
and can be easily generalized to a generic shape. Consider a
region of spacetime enclosed between two space-like hyper-
surfaces X'y, X» corresponding to two different values of the
parameter t used for the foliation of the spacetime, t;, t2,
respectively (t can be, e.g., x°). Using the divergence theo-
rem and the fact that we can neglect terms at the boundaries,
we have

/ dz‘kékﬂl“'ﬂn _/
X P2}

- / 4V iy B,
Vv

dzkélul~“un

(A.10)

where V is the four-dimensional volume. The right-hand side
of the equation above vanishes if (A.9) is valid.

We conclude that, since the energy-momentum and total
angular momentum tensors are conserved quantities, the
associated charges in Egs. (2.7) and (2.16) transform prop-
erly as tensors under Lorentz transformations. On the other
hand, since the canonical spin tensor is not conserved [see
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Eq. (2.15)], the associated global spin in Eq. (2.17) will not
transform as a tensor.

B Matrix element of the Pauli-Lubanski vector

In the first part of this appendix we show the details of the
derivation of Eq. (3.20). We first introduce the plane-wave
expansion of the Dirac field

Y = s Kre™ 7% a, k)

1 3 / d?
V2@rn3 =) K
+v,(k)ehkbe(k)] (B.1)
where u,(k) and v, (k) are the standard spinors for parti-
cles and antiparticles, respectively. Moreover, a, (k) is the
annihilation operator and bI (k) is the creation operator of
respectively a particle and antiparticle state with momentum

k* and spin projection r. We start by proving that

(p',s"1 8" Ip, 5)
1 A
= — — P 5| Pydag I, s)

2m
= - ﬁe“”"‘ﬂm/d% <p’7s’|¢*(x)§oaw(x) p,s).
(B.2)
where
lp,s) =al(p)0). (B.3)

is the one-particle state of momentum p and spin projection s
(for antiparticle states the proof would follow similar steps).
It is convenient to note that

"B Py Jup = " Jop Py, (B.4)
since the total charges obey the Poincaré algebra
[ﬁu,-iaﬂ] :i(gﬂvﬁa _gauﬁﬂ)- (B.5)

Using Egs. (2.16), (B.4) and pr Ip, s) = pH|p, s), we get

(p, 5| " Ip, 5)

1 ¥
- _ ﬁeuuaﬁpvdeX <p/’sl| Iﬂ'

x [mhxaaﬁ + gaaﬁ} v lp,s). (B.6)

We now calculate the orbital part

ih
- Le“wﬁpufd%c 0, s () xe 89 (x) Ip, )

(v /d3 / d3kdK’
= X
2m(2nh)* Py kok{, ak

X u, (k/)u e €0 ' 0 (k) () [, 5)
3k 3 /

— ;wa/S 3
2m(2nh)* p”fd / koky

x e E R0t 5O (k — )5 (K — p')38,y
=0. (B.7)

xakﬂu (k Yu, (k)

In deriving the result above we made use of Eq. (B.1), the
antisymmetry of the Levi-Civita tensor together with the rela-
tion

(p's'la),(Kar (k) [p, s)
= (0l ay (p)a, (K)ay (k)a] (p) |0)

= poppd® (k — )8 (K — p)8:58,7, (B.8)
which follows from
{a,(k), a] (p)} = p°8(k — p),s (B.9)

and a,(k)|0) = 0. Using Eq. (B.7), (B.6) simplifies to
Eq. (B.2).

Consider now the Pauli-Lubanski vector written in terms
of the canonical and HW pseudo-gauge. Using Egs. (2.6) and
(2.28a) and following similar steps which lead to Eq. (B.7),
one can prove that the orbital parts cancel when taking
the matrix element of one-particle states. For the canonical
global spin contribution, from Eq. (2.14) we have

§i0 =0,

S¢ = [d3x W(x)%a"f'w(x), (B.10)

where we performed the spacetime integration at constant
x0. Using i, (k)y"u, (k) = 2k"8,,/, one can prove that the
contribution to Eq. (B.2) with « = I, 8 = 0 vanishes (I =
1, 2, 3), which in turn implies

1 A A
- ‘ﬁé*‘wﬁ (0.5’ PySc.ap Ip. 5) -
(B.11)

(0, s'| $" |p, s)

Furthermore, following similar steps as in Eq. (B.7), one can
show that the contribution to the Pauli-Lubanski vector given
by the expectation value of the second term in the last line
of Eq. (2.36) cancels when taking the matrix element. Thus,
we also have

| .
— "B (p' 5| PySuw.ap Ip, s) -
m
(B.12)

(', s'| 8" |p, s) —

We conclude the appendix by proving Eq. (4.29). Using
Eq. (4.4) and plugging Eq. (B.1) into Eq. (4.1), we obtain
[18,19]

@ Springer



155 Page 24 of 25 Eur. Phys. J. A (2021) 57:155
/-dEA p)LWKX (x, p) 31. F. Becattini, L. Bucciantini, E. Grossi, L. Tinti, Eur. Phys. J. C75,
191 (2015). arXiv:1403.6265
R 32. M. Hongo, Ann. Phys. 383, 1 (2017). arXiv:1611.07074
= / d®x p°"Wey (x, p) 33. F. Becattini, M. Buzzegoli, E. Grossi, Particles 2, 197 (2019).
arXiv:1902.01089
— 8(p2 _ m2) Z [9 (pO)ar{ (p)ar/ (p)ul(,r’ (p)ux’r (p) 34. EFXIE?EQS:II;12,78PhyS Rev. Lett. 108, 244502 (2012)
rr! 35. U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013).
Oy, T -~ arXiv:1301.2826
+6(—p )b,,(—p)br(—p)vk,r/(—p)vx,r(—p)] (B-13) 56 77T Liang, X.N. Wang, Phys. Rev. Lett. 94, 102301 (2005), [Erra-
tum: Phys. Rev. Lett.96,039901(2006)], arXiv:nucl-th/0410079
which shows that the momentum p* is on-shell. After taking ~ 37- S.A. Voloshin, (2004), arXiv:nucl-th/04 10089
the matrix element on one-particle states and using Eq.(B 8) 38. B.Betz, M. Gyulassy, G. Torrieri, Phys. Rev. C 76,044901 (2007).
AR arXiv:0708.0035
we get Eq. (4.29). 39. F.Becattini, F. Piccinini, J. Rizzo, Phys. Rev. C 77, 024906 (2008).
arXiv:0711.1253
40. S.J. Barnett, Rev. Mod. Phys. 7, 129 (1935)
41. J. Adam et al. (STAR), Phys. Rev. C98, 014910 (2018),
References arXiv:1805.04400
42. S. Acharya et al., (ALICE) (2019), arXiv:1910.14408
1. EW. Hehl, Rept. Math. Phys. 9, 55 (1976) 43. F. Becattini, L. Csernai, D.J. Wang, Phys. Rev. C 88,
2. L. Adamczyk et al. (STAR), Nature 548, 62 (2017), 034905 (2013), [Erratum: Phys. Rev.C 93(6), 069901 (2016)],
arXiv:1701.06657 arXiv:1304.4427
3. M.H.L. Pryce, Proc. Roy. Soc. Lond. A195, 62 (1948) 44. F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338,
4. S.R. De Groot, W.A. Van Leeuwen, C.G. Van Weert, Relativis- 32 (2013). arXiv:1303.3431
tic Kinetic Theory. Principles and Applications (North-Holland, 45. F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna,
1980) A. De Pace, M. Nardi, G. Pagliara, V. Chandra, Eur. Phys. J.
5. S. Weinberg, The quantum theory of fields. Vol. 1: Foundations C 75, 406 (2015), [Erratum: Eur. Phys. J.C78,n0.5,354(2018)],
(Cambridge University Press, Cambridge, 1995) arXiv:1501.04468
6. FJ. Belinfante, Physica 6, 887 (1939) 46. F. Becattini, I. Karpenko, M. Lisa, I. Upsal, S. Voloshin, Phys.
7. FJ. Belinfante, Physica 7, 449 (1940) Rev. C 95, 054902 (2017). arXiv:1610.02506
8. L. Rosenfeld, Mém. Acad. Roy. Belg. 18, 1 (1940) 47. 1. Karpenko, F. Becattini, Eur. Phys. J. C 77, 213 (2017).
9. J. Hilgevoord, S.A. Wouthuysen, Nucl. Phys. 40, 1 (1963) arXiv:1610.04717
10. J. Hilgevoord, E. De Kerf, Physica 31, 1002 (1965) 48. L.G. Pang, H. Petersen, Q. Wang, X.N. Wang, Phys. Rev. Lett.
11. D. Fradkin, R.H. Good, Il Nuovo Cimento (1955-1965) 22, 643 117, 192301 (2016). arXiv:1605.04024
(1961) 49. Y. Xie, D. Wang, L.P. Csernai, Phys. Rev. C 95, 031901 (2017).
12. W. Gordon, Zeitschrift fiir Physik 50, 630 (1928) arXiv:1703.03770
13. EW. Hehl, A. Macias, E.W. Mielke, Yu.N. Obukhov, On the 50. F. Becattini, M.A. Lisa, (2020), arXiv:2003.03640
structure of the energy - momentum and the spin currents 51. Y.C. Liu, X.G. Huang, Nucl. Sci. Tech. 31, 56 (2020).
in Dirac’s electron theory, in Symposium to honor Engelbert arXiv:2003.12482
Schucking New York, New York, December 12-13, 1996 (1997), 52. F Becattini, I. Karpenko, Phys. Rev. Lett. 120, 012302 (2018).
arXiv:gr-qc/9706009 arXiv:1707.07984
14. 1. Kirsch, L.H. Ryder, EW. Hehl, (2001), arXiv:hep-th/0102102 53. J. Adam et al., (STAR), Phys. Rev. Lett. 123, 132301 (2019),
15. E. Leader, Spin in Particle Physics (Cambridge University Press, arXiv:1905.11917
Cambridge, 2001) 54. W. Florkowski, A. Kumar, R. Ryblewski, R. Singh, Phys. Rev. C
16. J. Frenkel, Zeitschrift fiir Physik 37, 243 (1926) 99, 044910 (2019). arXiv:1901.09655
17. C. Itzykson, J.B. Zuber, Quantum field theory (Courier Corpora- 55. W. Florkowski, A. Kumar, R. Ryblewski, A. Mazeliauskas, Phys.
tion, North Chelmsford, 2012) Rev. C 100, 054907 (2019). arXiv:1904.00002
18. F. Becattini, (2020), arXiv:2004.04050 56. Jj Zhang, Rh. Fang, Q. Wang, X.N. Wang, Phys. Rev. C 100,
19. L. Tinti, W. Florkowski, (2020), arXiv:2007.04029 064904 (2019). arXiv:1904.09152
20. M. Atre, A. Balachandran, T. Govindarajan, Int. J. Mod. Phys. A 57. F. Becattini, G. Cao, E. Speranza, Eur. Phys. J. C 79, 741 (2019).
2,453 (1987) arXiv:1905.03123
21. E.P. Wigner, Phys. Rev. 40, 749 (1932) 58. X.L. Xia, H. Li, X.G. Huang, H.Z. Huang, Phys. Rev. C 100,
22. U.W. Heinz, Phys. Rev. Lett. 51, 351 (1983) 014913 (2019). arXiv:1905.03120
23. H.T. Elze, M. Gyulassy, D. Vasak, Nucl. Phys. B 276, 706 (1986) 59. H.Z. Wu, L.G. Pang, X.G. Huang, Q. Wang, Phys. Rev. Res. 1,
24. D. Vasak, M. Gyulassy, H.T. Elze, Ann. Phys. 173, 462 (1987) 033058 (2019). arXiv:1906.09385
25. F. Becattini, L. Tinti, Phys. Rev. D 84, 025013 (2011). 60. Y. Sun, CM. Ko, Phys. Rev. C 99, 011903 (2019).
arXiv:1101.5251 arXiv:1810.10359
26. F. Becattini, L. Tinti, Phys. Rev. D 87, 025029 (2013). 61. S.Y.F Liu, Y. Sun, C.M. Ko, (2019), arXiv:910.06774
arXiv:1209.6212 62. W. Florkowski, B. Friman, A. Jaiswal, E. Speranza, Phys. Rev. C
27. F. Becattini, W. Florkowski, E. Speranza, Phys. Lett. B 789, 419 97, 041901 (2018). arXiv:1705.00587
(2019). arXiv:1807.10994 63. W.Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, E. Speranza,
28. F. Becattini, in 28th International Conference on Ultrarelativistic Phys. Rev. D 97, 116017 (2018). arXiv:1712.07676
Nucleus—Nucleus Collisions (2020), arXiv:2003.01406 64. W. Florkowski, E. Speranza, F. Becattini, Acta Phys. Polon. B 49,
29. D.N. Zubarev, Sov. Phys. Doklady 10, 850 (1966) 1409 (2018). arXiv:1803.11098
30. C.G. Van Weert, Ann. Phys. 140, 133 (1982)

@ Springer


http://arxiv.org/abs/1701.06657
http://arxiv.org/abs/gr-qc/9706009
http://arxiv.org/abs/hep-th/0102102
http://arxiv.org/abs/2004.04050
http://arxiv.org/abs/2007.04029
http://arxiv.org/abs/1101.5251
http://arxiv.org/abs/1209.6212
http://arxiv.org/abs/1807.10994
http://arxiv.org/abs/2003.01406
http://arxiv.org/abs/1403.6265
http://arxiv.org/abs/1611.07074
http://arxiv.org/abs/1902.01089
http://arxiv.org/abs/1201.5278
http://arxiv.org/abs/1301.2826
http://arxiv.org/abs/nucl-th/0410079
http://arxiv.org/abs/nucl-th/0410089
http://arxiv.org/abs/0708.0035
http://arxiv.org/abs/0711.1253
http://arxiv.org/abs/1805.04400
http://arxiv.org/abs/1910.14408
http://arxiv.org/abs/1304.4427
http://arxiv.org/abs/1303.3431
http://arxiv.org/abs/1501.04468
http://arxiv.org/abs/1610.02506
http://arxiv.org/abs/1610.04717
http://arxiv.org/abs/1605.04024
http://arxiv.org/abs/1703.03770
http://arxiv.org/abs/2003.03640
http://arxiv.org/abs/2003.12482
http://arxiv.org/abs/1707.07984
http://arxiv.org/abs/1905.11917
http://arxiv.org/abs/1901.09655
http://arxiv.org/abs/1904.00002
http://arxiv.org/abs/1904.09152
http://arxiv.org/abs/1905.03123
http://arxiv.org/abs/1905.03120
http://arxiv.org/abs/1906.09385
http://arxiv.org/abs/1810.10359
http://arxiv.org/abs/910.06774
http://arxiv.org/abs/1705.00587
http://arxiv.org/abs/1712.07676
http://arxiv.org/abs/1803.11098

. Phys. J. A (2021) 57:155

Page 25 of 25 155

65

66.

67.

68.

69.

70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.

83.
84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.
97.

98.

99.

100.

. W. Florkowski, R. Ryblewski, A. Kumar, Prog. Part. Nucl. Phys.
108, 103709 (2019). arXiv:1811.04409

K. Hattori, M. Hongo, X.G. Huang, M. Matsuo, H. Taya, Phys.
Lett. B 795, 100 (2019). arXiv:1901.06615

S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. Ryblewski,
(2020), arXiv:2002.03937

N. Weickgenannt, E. Speranza, X.l. Sheng, Q. Wang, D.H.
Rischke, (2020), arXiv:2005.01506

D. Montenegro, L. Tinti, G. Torrieri, Phys. Rev. D 96,
056012 (2017), [Addendum: Phys.Rev.D 96, 079901 (2017)],
arXiv:1701.08263

D. Montenegro, L. Tinti, G. Torrieri, Phys. Rev. D 96, 076016
(2017). arXiv:1703.03079

D. Montenegro, G. Torrieri, Phys. Rev. D 100, 056011 (2019).
arXiv:1807.02796

D. Montenegro, G. Torrieri, (2020), arXiv:2004.10195

A. Gallegos, U. Giirsoy, (2020), arXiv:2004.05148

Rh. Fang, Lg Pang, Q. Wang, Xn Wang, Phys. Rev. C 94, 024904
(2016). arXiv:1604.04036

W. Florkowski, A. Kumar, R. Ryblewski, Phys. Rev. C 98, 044906
(2018). arXiv:1806.02616

N. Weickgenannt, X.L. Sheng, E. Speranza, Q. Wang, D.H.
Rischke, Phys. Rev. D 100, 056018 (2019). arXiv:1902.06513
J.H. Gao, Z.T. Liang, Phys. Rev. D 100, 056021 (2019).
arXiv:1902.06510

K. Hattori, Y. Hidaka, D.L. Yang, Phys. Rev. D 100, 096011
(2019). arXiv:1903.01653

Z. Wang, X. Guo, S. Shi, P. Zhuang, (2019), arXiv:1903.03461
Y.C. Liu, K. Mameda, X.G. Huang, (2020), arXiv:2002.03753
X.L. Sheng, Q. Wang, X.G. Huang, Phys. Rev. D 102, 025019
(2020). arXiv:2005.00204
S. Li, H.U. Yee, Phys.
arXiv:1905.10463

D.L. Yang, K. Hattori, Y. Hidaka, (2020), arXiv:2002.02612
D.T. Son, N. Yamamoto, Phys. Rev. D 87, 085016 (2013).
arXiv:1210.8158

Y. Hidaka, S. Pu, D.L. Yang, Phys. Rev. D 95, 091901 (2017).
arXiv:1612.04630

Y. Hidaka, S. Pu, D.L. Yang, Phys. Rev. D 97, 016004 (2018).
arXiv:1710.00278

A. Huang, S. Shi, Y. Jiang, J. Liao, P. Zhuang, Phys. Rev. D 98,
036010 (2018). arXiv:1801.03640

J.H. Gao, Z.T. Liang, Q. Wang, X.N. Wang, Phys. Rev. D 98,
036019 (2018). arXiv:1802.06216

D.L. Yang, Phys. Rev. D 98, 076019 (2018). arXiv:1807.02395
J.h. Gao, J.y. Pang, Q. Wang, (2018), arXiv:1810.02028

G. Prokhorov, O. Teryaev, V. Zakharov, Phys. Rev. D 98, 071901
(2018). arXiv:1805.12029

S. Carignano, C. Manuel, J.M. Torres-Rincon, Phys. Rev. D 98,
076005 (2018). arXiv:1806.01684

G.Y. Prokhorov, O.V. Teryaev, V.I. Zakharov, JHEP 02, 146
(2019). arXiv:1807.03584

X.G. Huang, P. Mitkin, A.V. Sadofyev, E. Speranza, (2020),
arXiv:2006.03591

J.I. Kapusta, E. Rrapaj, S. Rudaz, Phys. Rev. C 101, 024907
(2020). arXiv:1907.10750

J.I. Kapusta, E. Rrapaj, S. Rudaz, (2020), arXiv:2004.14807

J.I. Kapusta, E. Rrapaj, S. Rudaz, Phys. Rev. C 101, 031901
(2020). arXiv:1910.12759

A. Ayala, D. De La Cruz, S. Hernandez-Ortiz, L. Herndndez, J.
Salinas, Phys. Lett. B 801, 135169 (2020). arXiv:1909.00274

A. Ayala, D. de la Cruz, L. Hernandez, J. Salinas, (2020),
arXiv:2003.06545

G. Denicol, H. Niemi, E. Molnar, D. Rischke, Phys. Rev. D
85, 114047 (2012), [Erratum: Phys.Rev.D 91, 039902 (2015)],
arXiv:1202.4551

Rev. D 100, 056022 (2019).

101.
102.
103.
104.
105.

106.
107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.
120.

121.
122.

123.

124.
125.

126.
127.
128.
129.
130.
131.
132.

133.

134.

J. Zamanian, M. Marklund, G. Brodin, New J. Phys. 12, 043019
(2010)

R. Ekman, F.A. Asenjo, J. Zamanian, Phys. Rev. E 96, 023207
(2017). arXiv:1702.00722

R. Ekman, H. Al-Naseri, J. Zamanian, G. Brodin, Phys. Rev. E
100, 023201 (2019). arXiv:1904.08727

G. Lukaszewicz, Micropolar Fluids, Theory and Applications
(Birkhéuser, Boston, 1999)

C. Lorcé, Eur. Phys. J. C 78, 785 (2018). arXiv:1805.05284
L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

E. Schrédinger, Uber Die Kriiftefreie Bewegung in Der Relativis-
tischen Quantenmechanik (Akademie der wissenschaften in kom-
mission bei W. de Gruyter u, Company, 1930)

E. Schrodinger, Zur Quantendynamik des Elektrons (1931)
P.A.M. Dirac, The principles of quantum mechanics (Oxford Uni-
versity Press, Oxford, 1930)

J.Y. Chen, D.T. Son, M.A. Stephanov, H.U. Yee, Y. Yin, Phys.
Rev. Lett. 113, 182302 (2014). arXiv:1404.5963

J.Y. Chen, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 115,
021601 (2015). arXiv:1502.06966

M. Stone, V. Dwivedi, T. Zhou, Phys. Rev. D 91, 025004 (2015).
arXiv:1406.0354

M. Stone, V. Dwivedi, T. Zhou, Phys. Rev. Lett. 114, 210402
(2015). arXiv:1501.04586

C. Duval, PA. Horvathy, Phys. Rev. D 91, 045013 (2015).
arXiv:1406.0718

X.G. Huang, A.V. Sadofyev,
arXiv:1805.08779

F.W. Hehl, P. Von der Heyde, G.D. Kerlick, J.M. Nester, Rev.
Modern Phys. 48, 393 (1976)

FE.W. Hehl, Proceedings of the 6th course of the school of cosmol-
ogy and gravitation on spin, torsion, rotation, and supergravity,
held at Erice, Italy, 1979 (Plenum, New York, 1980)

M. Blagojevic, Gravitation and gauge symmetries (CRC Press,
Boca Raton, 2001)

F.W. Hehl, Found. Phys. 15, 451 (1985)

F.W. Hehl, Y.N. Obukhov, Ann. Fond. Broglie 32, 157 (2007).
arXiv:0711.1535

M. Seitz, Class. Quant. Grav. 3, 175 (1986)

Y.N. Obukhov, A.J. Silenko, O.V. Teryaev, Phys. Rev. D 90,
124068 (2014). arXiv:1410.6197

R.P. Cameron, S.M. Barnett, A.M. Yao, New Journal of Physics
14, 053050 (2012)

K.Y. Bliokh, J. Dressel, F. Nori, New J. Phys. 16, 093037 (2014)
M. Chernodub, A. Cortijo, K. Landsteiner, Phys. Rev. D 98,
065016 (2018). arXiv:1807.10705
E. Leader, C. Lorcé, Phys.
arXiv:1309.4235

K. Fukushima, S. Pu, Z. Qiu, Phys. Rev. A 99, 032105 (2019).
arXiv:1808.08016

K. Fukushima, S. Pu, (2020), arXiv:2001.00359

D. Boer et al. (2011), arXiv:1108.1713

A. Accardi et al., Eur. Phys. J. A 52,268 (2016). arXiv:1212.1701
Y. Obukhov, V. Korotkii, Class. Quant. Grav. 4, 1633 (1987)
N.J. Popt awski, Phys. Lett. B 694, 181 (2010), [Erratum:
Phys.Lett.B 701, 672 (2011)], arXiv:1007.0587

R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S.
Okayasu, J. Ieda, S. Takahashi, S. Maekawa, E. Saitoh, Nat. Phys.
12, 52 (2016)

B. Chen, D. Derbes, D. Griffiths, B. Hill, R. Sohn, Y.S. Ting,
Quantum field theory lectures of Sidney Coleman (World Scien-
tific, Singapore, 2018)

JHEP 03, 084 (2019).

Rept. 541, 163 (2014).

@ Springer


http://arxiv.org/abs/1811.04409
http://arxiv.org/abs/1901.06615
http://arxiv.org/abs/2002.03937
http://arxiv.org/abs/2005.01506
http://arxiv.org/abs/1701.08263
http://arxiv.org/abs/1703.03079
http://arxiv.org/abs/1807.02796
http://arxiv.org/abs/2004.10195
http://arxiv.org/abs/2004.05148
http://arxiv.org/abs/1604.04036
http://arxiv.org/abs/1806.02616
http://arxiv.org/abs/1902.06513
http://arxiv.org/abs/1902.06510
http://arxiv.org/abs/1903.01653
http://arxiv.org/abs/1903.03461
http://arxiv.org/abs/2002.03753
http://arxiv.org/abs/2005.00204
http://arxiv.org/abs/1905.10463
http://arxiv.org/abs/2002.02612
http://arxiv.org/abs/1210.8158
http://arxiv.org/abs/1612.04630
http://arxiv.org/abs/1710.00278
http://arxiv.org/abs/1801.03640
http://arxiv.org/abs/1802.06216
http://arxiv.org/abs/1807.02395
http://arxiv.org/abs/1810.02028
http://arxiv.org/abs/1805.12029
http://arxiv.org/abs/1806.01684
http://arxiv.org/abs/1807.03584
http://arxiv.org/abs/2006.03591
http://arxiv.org/abs/1907.10750
http://arxiv.org/abs/2004.14807
http://arxiv.org/abs/1910.12759
http://arxiv.org/abs/1909.00274
http://arxiv.org/abs/2003.06545
http://arxiv.org/abs/1202.4551
http://arxiv.org/abs/1702.00722
http://arxiv.org/abs/1904.08727
http://arxiv.org/abs/1805.05284
http://arxiv.org/abs/1404.5963
http://arxiv.org/abs/1502.06966
http://arxiv.org/abs/1406.0354
http://arxiv.org/abs/1501.04586
http://arxiv.org/abs/1406.0718
http://arxiv.org/abs/1805.08779
http://arxiv.org/abs/0711.1535
http://arxiv.org/abs/1410.6197
http://arxiv.org/abs/1807.10705
http://arxiv.org/abs/1309.4235
http://arxiv.org/abs/1808.08016
http://arxiv.org/abs/2001.00359
http://arxiv.org/abs/1108.1713
http://arxiv.org/abs/1212.1701
http://arxiv.org/abs/1007.0587

	Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics
	Abstract 
	1 Introduction
	2 Spin tensor and pseudo-gauge transformations
	2.1 Canonical currents
	2.2 Belinfante–Rosenfeld currents
	2.3 Hilgevoord–Wouthuysen currents
	2.4 de Groot-van Leeuwen-van Weert currents
	2.5 Alternative Klein–Gordon currents

	3 Spin vector
	3.1 Frenkel theory
	3.2 Pauli–Lubanski vector

	4 Wigner operator
	5 Pseudo-gauges and statistical operator
	6 Spin-polarization effects in relativistic nuclear collisions
	6.1 Spin hydrodynamics and quantum kinetic theory

	7 Pseudo-gauge transformations and the relativistic center of inertia
	7.1 External and internal components of angular momentum
	7.2 Center of inertia and centroids
	7.3 Belinfante pseudo-gauge
	7.4 Center of inertia as reference point: canonical pseudo-gauge
	7.5 Center of mass as reference point: HW, GLW and KG pseudo-gauges
	7.6 Massless particles and side jumps

	8 Einstein–Cartan theory
	8.1 Riemann–Cartan geometry
	8.2 Tetrads and spinors in curved spacetime
	8.3 Local Poincaré transformations and conservation laws

	9 Conclusions
	Acknowledgements
	A Lorentz transformation properties of hyper-surface-integrated quantities
	B Matrix element of the Pauli–Lubanski vector
	References





