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Abstract
We show that the metrisability of an oriented projective surface is equivalent to the existence
of pseudo-holomorphic curves. A projective structure p and a volume form σ on an oriented
surface M equip the total space of a certain disk bundle Z → M with a pair (Jp, Jp,σ ) of
almost complex structures. A conformal structure on M corresponds to a section of Z → M
and p is metrisable by the metric g if and only if [g] : M → Z is a pseudo-holomorphic
curve with respect to Jp and Jp,d Ag .

1 Introduction

A projective structure on a smooth manifold consists of an equivalence class p of torsion-free
connections on its tangent bundle, where two such connections are called equivalent if they
have the same geodesics up to parametrisation. A projective structure p is calledmetrisable if
it contains the Levi-Civita connection of some Riemannian metric. The problem of (locally)
characterising the projective structures that are metrisable was first studied in the work of
R. Liouville [17] in 1889, but was solved only relatively recently by Bryant, Dunajski and
Eastwood for the case of two dimensions [2]. Since then, there has been renewed interest in
the problem, see [5,6,8,10,11,13,14,25,27] for related recent work.

The purpose of this short note is to show that in the case of an oriented projective surface
(M, p), the metrisability of p is equivalent to the existence of certain pseudo-holomorphic
curves.

An orientation compatible complex structure on M corresponds to a section of the bundle
π : Z → M whose fibre at x ∈ M consists of the orientation compatible linear complex
structures on TxM . The choice of a torsion-free connection ∇ on T M equips Z with an
almost complex structure J [7,26]. Namely, at j ∈ Z we lift j horizontally and take a natural
complex structure on each fibre vertically. It turns out that J is always integrable and does
only depend on the projective equivalence class p of ∇, we thus denote it by Jp. Reversing
the orientation on each fibre yields another almost complex structure J which is however
never integrable and is not projectively invariant. Fixing a volume form σ on the projective
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70 T. Mettler

surface (M, p) determines a unique representative connection σ ∇ ∈ p which preserves σ .
We will write Jp,σ for the non-integrable almost complex structure arising from σ ∇ ∈ p.

The choice of a conformal structure [g] on an oriented surface M defines an orientation
compatible complex structure by rotating a tangent vector counterclockwise by π/2 with
respect to [g]. Thus, we may think of a conformal structure as a section [g] : M → Z .
Denoting the area form of a Riemannian metric g by d Ag , we show:

Theorem 1 An oriented projective surface (M, p) is metrisable by the metric g on M if
and only if [g] : M → (Z , Jp) is a holomorphic curve and [g] : M → (Z , Jp,d Ag ) is a
pseudo-holomorphic curve.

Applying a general existence result for pseudo-holomorphic curves [24, Theorem III] it
follows that locally we can always find a Riemannian metric g so that [g] : M → (Z , Jp)
is a holomorphic curve or so that [g] : M → (Z , Jp,d Ag ) is a pseudo-holomorphic curve.
The geometric significance of the existence of such (pseudo-)holomorphic curves is given in
Proposition 9 below.

The construction of the (integrable) almost complex structure Jp on Z given in [7,26] is
adapted from the construction of an almost complex structure J on the twistor space Y → N
of an oriented Riemannian 4-manifold (N , g), see [1]. In the Riemannian setting the almost
complex structure J is integrable if and only if g is self-dual. In [12], Eells–Salamon observe
that reversing the orientation on each fibre of Y → N associates another almost complex
structure J on Y to (N , g)which is never integrable. Thus, the non-integrable almost complex
structure J used here may be thought of as the affine analogue of the non-integrable almost
complex structure in oriented Riemannian 4-manifold geometry.

2 Pseudo-holomorphic curves andmetrisability

Recall that the set of torsion-free connections on the tangent bundle of a surfaceM is an affine
space modelled on the smooth sections of the vector bundle V = S2(T ∗M)⊗ T M . We have
a natural trace mapping tr : V → T ∗M , given in abstract index notation by Ai

jk �→ Ak
ik ,

as well as an inclusion Sym : T ∗M → V , given by bi �→ δij bk + δikb j . The bundle V thus
decomposes as V = V0 ⊕T ∗M , where V0 denotes the trace-free part of V . We have (Cartan,
Eisenhart, Weyl)—the reader may also consult [9] for a modern reference:

Lemma 2 Two torsion-free connections ∇ and ∇′ on T M are projectively equivalent if and
only if there exists a 1-form ξ on M so that ∇ − ∇′ = Sym(ξ).

This gives immediately:

Lemma 3 Let (M, p) be an oriented projective surface and σ a volume form on M. Then
there exists a unique representative connection σ ∇ ∈ p preserving σ .

Proof Let ∇ ∈ p be a representative connection. Since σ is a volume form there exists a
unique 1-form α on M such that ∇σ = α ⊗ σ . An elementary computation shows that the
connection ∇ + Sym(ξ) satisfies

(∇ + Sym(ξ)) σ = ∇σ − 3ξ ⊗ σ,

for all ξ ∈ �1(M). Thus the connection σ ∇ = ∇ + 1
3Sym(α) preserves σ and clearly is the

only connection in p doing so. 
�
We also have:
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Lemma 4 Let ϕ ∈ 	(V0) and ∇ be a torsion-free connection on T M. Then ∇ + ϕ preserves
a volume form σ on M if and only if ∇ preserves the volume form σ .

Proof Since ϕ ∈ 	(V0), an elementary computation shows that the connections∇ and∇ +ϕ

induce the same connection on the bundle 
2(T ∗M) whose non-vanishing sections are the
volume forms. 
�

For our purposes it is convenient to construct the almost complex structures (J , J) asso-
ciated to ∇ in terms of the connection form θ on the oriented frame bundle of M . The
oriented frame bundle F of the oriented surface M is the bundle υ : F → M whose fibre
at x ∈ M consists of the linear isomorphisms u : R2 → TxM that are orientation preserv-
ing with respect to the standard orientation on R

2 and the given orientation on TxM . The
group GL+(2,R) acts transitively from the right on each fibre by the rule Ra(u) = u ◦ a
for all a ∈ GL+(2,R), u ∈ F and this action turns υ : F → M into a principal right
GL+(2,R)-bundle. The total space F carries a tautological R2-valued 1-form ω defined by
ωu = u−1 ◦ υ ′

u and ω satisfies the equivariance property

R∗
aω = a−1ω (1)

for all a ∈ GL+(2,R). We may embed GL(1,C) as the subgroup of GL+(2,R) consisting
of matrices that commute with the standard linear complex structure on R

2. Note that may
think of the oriented frame bundle υ : F → M as a principal GL(1,C)-bundle over Z =
F/GL(1,C). We may describe an almost complex structure on Z by describing the pullback
of its (1,0)-forms to F . The pullback of a 1-form on Z to F is semi-basic for the projection
ν : F → Z , that is, it vanishes when evaluated on vector fields that are tangent to the fibres
of ν. For y ∈ gl(2,R) we denote by Yy the vector field on F that is generated by the flow
Rexp(t y). Clearly, the vector fields Yy for y ∈ gl(1,C) span the vector fields on F that are
tangent to the fibres of ν.

Let ∇ be a torsion-free connection on T M with connection form θ = (θ ij ) on F . Recall
that θ satisfies the equivariance property

R∗
aθ = a−1θa (2)

for all a ∈ GL+(2,R) and the structure equations

dωi = −θ ij ∧ ω j ,

dθ ij = −θ ik ∧ θkj + �i
j ,

(3)

where � = (�i
j ) denotes the curvature form of θ . Since θ is a principal connection on F it

also satisfies θ(Yy) = y for all y ∈ gl(2,R). Since the Lie algebra of GL(1,C) is spanned
by the matrices of the form

(
z −w

w z

)

for (z, w) ∈ R
2, the complex-valued 1-forms on F that are semi-basic for the projection

ν : F → Z are spanned by the forms ω = ω1 + iω2 and

ζ = (θ11 − θ22 ) + i
(
θ12 + θ21

)
and their complex conjugates. We now have:
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72 T. Mettler

Proposition 5 Let ∇ be a torsion-free connection on T M with connection form θ = (θ ij ) on
F. Then there exists a unique pair (J , J) of almost complex structures on Z whose (1,0)-
forms pull back to become linear combinations of the forms (ω, ζ ) in the case of J and
to (ω, ζ ) in the case of J. Moreover, the almost complex structure J is always integrable,
whereas J is never integrable.

Proof Writing

reiφ �
(
r cosφ −r sin φ

r sin φ r cosφ

)

for the elements of GL(1,C), the equivariance property (1) of ω and (2) of θ implies

(Rreiφ )∗ω = 1

r
eiφω and (Rreiφ )∗ζ = e−2iφζ. (4)

It follows that there exists a unique almost complex structure J on Z whose (1,0)-forms
pull back to F to become linear combinations of the forms ω, ζ . Likewise there exists
a unique almost complex structure J on Z whose (1,0)-forms pull back to F to become
linear combinations of the forms ω, ζ . Furthermore, simple computations using the structure
equations (3) imply that

0 = dζ ∧ ω ∧ ζ = dω ∧ ω ∧ ζ.

Consequently, the Newlander–Nirenberg theorem [23] implies that J is integrable. On the
other hand, we get

dω ∧ ω ∧ ζ = 1

2
ω ∧ ω ∧ ζ ∧ ζ

so that J is never integrable. 
�
Remark 6 The equivariance properties (4) imply that the bundles

H = ν′ {Re(ζ ) = 0, Im(ζ ) = 0} and V = ν′{Re(ω) = 0, Im(ω) = 0}
are well-defined distributions on Z that are invariant with respect to J (and J). Hence we
have T Z = H ⊕ V .

For the convenience of the reader, we also show [7,26]:

Proposition 7 Suppose the torsion-free connections∇ and∇′ on T M are projectively equiv-
alent, then they induce the same integrable almost complex structure J on Z.

Proof The connections ∇ and ∇′ are projectively equivalent if and only if there exists a
1-form ξ on M such that ∇′ = ∇ + Sym(ξ). Writing θ = (θ ij ) for the connection form of

∇ on F and υ∗ξ = xiωi for real-valued functions xi on F , the connection form θ ′ of ∇′
becomes

θ ′ = θ +
(
2x1ω1 + x2ω2 x2ω1

x1ω2 x1ω1 + 2x2ω2

)
.

Consequently, we obtain

ζ ′ = ζ + (x1ω
1 − x2ω

2) + i(x2ω
1 + x1ω

2) = ζ + (x1 + ix2)ω

which shows that the complex span of ω, ζ is the same as the one of ω, ζ ′ and hence the two
integrable almost complex structures are the same. 
�
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Remark 8 For a projective structure p onM wewillwrite Jp for the integrable almost complex
structure defined by any representative connection ∇ ∈ p. For a projective structure p and
a volume form σ on M we will write Jp,σ for the non-integrable almost complex structure
definedby the representative connection σ ∇ ∈ p.Note that the non-integrable almost complex
structure is not projectively invariant.

Recall that a Weyl connection for a conformal structure [g] is a torsion-free connection
[g]∇ on T M which preserves [g]. Fixing a Riemannian metric g ∈ [g], the Weyl connections
for [g] can be written as [g]∇ = g∇ + g ⊗ B − Sym(β) for some 1-form β on M and where
B denotes the g-dual vector field to β. In [20] and in the language of thermostats in [22],
it was observed that for every choice of a conformal structure [g] on a projective surface
(M, p), there exists a unique Weyl connection [g]∇ for [g] and a unique 1-form ϕ ∈ 	(V0)
so that [g]∇ + ϕ is a representative connection of p. Moreover the endomorphism ϕ(X) is
symmetric with respect to [g] for every vector field X onM .We call [g]∇ theWeyl connection
determined by [g]. Explicitly, if ∇ is any representative connection of p, g ∈ [g] and if we
define a vector field B = 3

4 tr
(
g� ⊗ (∇ − g∇)0

)
, then

ϕ = (∇ − g∇ − g ⊗ B
)
0 and [g]∇ = g∇ + g ⊗ B − Sym(β),

where A0 denotes the trace-free part of a tensor field A ∈ 	(S2(T ∗M) ⊗ T M). We refer the
reader to [20,22] for a proof that [g]∇ and ϕ do satisfy the claimed properties.

Proposition 9 Let (M, p) be an oriented projective surface and g a Riemannian metric on
M. Then we have:

(i) p contains a Weyl connection for [g] if and only if [g] : M → (Z , Jp) is a holomorphic
curve;

(ii) the Weyl connection determined by [g] is the Levi-Civita connection of g if and only if
[g] : M → (Z , Jp,d Ag ) is a pseudo-holomorphic curve.

Remark 10 Here we say [g] : M → (Z , J) is a (pseudo-)holomorphic curve if the image
� = [g](M) ⊂ Z admits the structure of a (pseudo-)holomorphic curve. By admitting the
structure of (pseudo-)holomorphic curve, we mean that � can be equipped with a complex
structure J , so that the inclusion ι : � → Z is (J , J)-linear, that is, satisfies J ◦ ι′ = ι′ ◦ J .

As an immediate consequence, we obtain the Theorem 1:

Proof of Theorem 1 The projective structure p is metrisable by g if and only if the Weyl
connection determined by [g] is the Levi-Civita connection of g and the 1-form ϕ vanishes
identically. The claim follows by applying Proposition 9. 
�
For the proof of Proposition 9 we also need the following Lemma:

Lemma 11 Let (Z , J) be an almost complex four-manifold and ω, χ ∈ �1(Z ,C) a basis
for the (1,0)-forms of Z. Suppose ι : � → Z is an immersed surface so that ι∗(ω ∧ ω) is
non-vanishing on �. Then � admits the structure of a pseudo-holomorphic curve if and only
if ι∗(ω ∧ χ) vanishes identically on �.

Proof Since ι∗(ω∧ω) is non-vanishing on�, the forms ι∗ω and ι∗ω span the complex-valued
1-forms on �. Recall that ι : � → Z is ( j, J)-linear if and only if the pullback of every
(1,0)-form on Z is a (1,0)-form on �, the claim follows. 
�
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74 T. Mettler

Proof of Proposition 9 Let g be aRiemannianmetric on the oriented projective surface (M, p).
Without losing generality we can assume that the projective structure p arises from a con-
nection of the form [g]∇ + ϕ. The Weyl connection [g]∇ satisfies

[g]∇d Ag = 2β ⊗ d Ag

for some 1-form β on M and hence can be written as [g]∇ = g∇ + g ⊗ β� − Sym(β).
Now suppose ∇ ∈ p preserves the volume form d Ag of g. Then, by Lemma 4 it must be

of the form

∇ = [g]∇ + ϕ + 2

3
Sym(β) = g∇ + g ⊗ β� − 1

3
Sym(β) + ϕ. (5)

Proposition 5 and Lemma 11 imply that the condition that [g] : M → Z defines a pseudo-
holomorphic curve with respect to Jp respectively Jp,d Ag is equivalent to the condition that
on the pullback bundle [g]∗F → M the form ω ∧ ζ , respectively ω ∧ ζ vanishes identically,
where ζ is computed from the connection form of∇ and where we think of F as fibering over
Z . Keeping this in mind we now compute the pullback of the forms ζ and ζ to [g]∗F . Recall
that the semi-basic 1-forms on F are spanned by the components of ω, hence there exist
unique real-valued functions gi j = g ji on F so that υ∗g = gi jωi ⊗ω j . Likewise, there exist
unique real-valued functions bi on F so that υ∗β = biωi and unique real-valued function
Ai
jk = Ai

k j on F so that (υ∗ϕ)ij = Ai
jkω

k . The functions Ai
jk satisfy furthermore Ak

ki = 0

and gik Ak
jl = g jk Ak

il since ϕ takes values in the endomorphisms of T M that are trace-free

and symmetric with respect to g. The Levi-Civita connection (ψ i
j ) of g is the unique principal

GL+(2,R)-connection on F that satisfies

dωi = −ψ i
j ∧ ω j ,

dgi j = gikψ
k
j + gkjψ

k
i .

The pullback bundle P := [g]∗F is cut out by the equations g11 = g22 and g12 = 0. On P
we have

0 = dg12 = g11ψ
1
2 + g22ψ

2
1 = g11(ψ

1
2 + ψ2

1 ),

0 = dg11 − dg22 = 2g11ψ
1
1 − 2g22ψ

2
2 = g11(ψ

1
1 − ψ2

2 )

On P the condition gik Ak
jl = g jk Ak

il implies A2
11 = −A2

22 and A1
22 = −A1

11. Writing

A1
11 = a1 and A2

22 = a2 and using (5), the connection form θ of ∇ thus becomes

θ =
(

ψ1
1 −ψ2

1
ψ2
1 ψ1

1

)
+

(
b1ω1 b1ω2

b2ω1 b2ω2

)
− 1

3

(
2b1ω1 + b2ω2 b2ω1

b1ω2 b1ω1 + 2b2ω2

)

+
(

a1ω1 − a2ω2 −a2ω1 − a1ω2

−a2ω1 − a1ω2 −a1ω1 + a2ω2

)

Introducing the complex notation a = a1+ ia2 and b = 1
2 (b1− ib2), we obtain from a simple

calculation

ζ = (θ11 − θ22 ) + i(θ12 + θ21 ) = 4

3
bω + 2aω,

where we write ω = ω1 + iω2.
Finally, since [g] : M → (Z , Jp) is a holomorphic curve if and only if ω ∧ ζ vanishes

identically on P , it follows that [g] : M → (Z , Jp) is a holomorphic curve if and only if

0 = ω ∧ ζ = 2aω ∧ ω
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which is equivalent to ϕ vanishing identically. This shows (i).
Likewise [g] : M → (Z , Jp,d Ag ) is a pseudo-holomorphic curve if and only if

0 = ω ∧ ζ = 4

3
bω ∧ ω

on P . This is equivalent to β vanishing identically. This shows (ii). 
�
As a corollary we obtain:

Corollary 12 Let (M, p) be a projective surface. Then locally p contains

(i) a Weyl connection [g]∇ for some conformal structure [g];
(ii) a connection of the form g̃∇ + ϕ for some Riemannian metric g̃ and some ϕ ∈ 	(V0)

with ϕ taking values in the endomorphisms that are g̃-symmetric.

Remark 13 The first statement of Proposition 9 and Corollary 12 was previously obtained in
[19].

Proof of Corollary 12 We first consider the case (ii). We fix a volume form σ on M . We need
to show that in a neighbourhood Ux of every point x ∈ M there exists a conformal structure
[g] which is a pseudo-holomorphic curve into the total space of the bundle π : Z → M ,
where we equip Z with the almost complex structure Jp,σ . Choose j ∈ Z with π( j) = x .
Recall from Remark 6 that the subspace Hj ⊂ Tj Z is invariant under Jp,σ . Now [24,
Theorem III] implies that there exists a pseudo-holomorphic curve � ⊂ (Z , Jp,σ ) which
contains j and has Hj as its tangent space at j . Since Hj ⊂ Tj Z is horizontal, the restriction
π ′
j |Hj : Hj → TxM is an isomorphism. Therefore, the restriction of π to � is a local

diffeomorphism in some neighbourhood of j . Hence there exists a neighbourhood Ux of
x ∈ M and a section [g] : Ux → Z so that [g](Ux ) ⊂ �. Thus, [g] : Ux → (Z , Jp,σ ) is a
pseudo-holomorphic curve in the sense of Remark 10. Taking g̃ to be the unique metric in [g]
with volume form σ and applying Proposition 9 shows the claim. The case (i) follows in the
same fashion, except that [24] is not needed, as Jp is integrable and hence the construction
of a holomorphic curve realising a prescribed Jp-invariant tangent plane is an elementary
exercise. 
�
Remark 14 Locallywe can always find a holomorphic curve [g] : M → (Z , Jp), but globally
this is not always possible. A properly convex projective structure p on a closed surface M
with χ(M) < 0 admits a holomorphic curve [g] : M → (Z , Jp) if and only if p is hyperbolic
[22]. One would expect that a corresponding global non-existence result should also hold in
the pseudo-holomorphic setting for a suitable class of projective surfaces.

Remark 15 If (M, p) is a closed oriented projective surface of with χ(M) < 0, then there
exists at most one holomorphic curve [g] : M → (Z , Jp), see [21].

Remark 16 Hitchin [15] gave a twistorial construction of (complex) two-dimensional holo-
morphic projective structures. In the holomorphic category such a projective structure
corresponds to a complex surface Z having a family of rational curves with self-intersection
number one. Denoting the canonical bundle of Z by KZ , such a holomorphic projective sur-
face is metrisable if and only if K−2/3

Z admits a holomorphic section which intersects each
rational curve in Z at two points [2,3,16].

Remark 17 The notion of a projective structure also makes sense in the complex setting and
such structures are referred to as c-projective, see [4]. Correspondingly, there is a Kähler
metrisability problem of c-projective structures. Some obstructions to Kähler metrisability
of a (complex) two-dimensional c-projective structure have been obtained in [18].
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76 T. Mettler

We conclude by describing the holomorphic curves for the standard projective structure p0
on the 2-sphere whose geodesics are the great circles.

Example 18 Let S2 denote the sphere of radius 1 centered at the origin inR3 and g its induced
round metric of constant Gauss curvature 1 whose geodesics are the great circles. We equip
S2 with its standard orientation.

Recall that the unit tangent bundle λ : T1S2 → S2 of (S2, g) carries a canonical coframing
(ω1, ω2, ψ), where ω1, ω2 span the 1-forms on T1S2 that are semi-basic for the projection
λ and ψ denotes the Levi-Civita connection form of g. The 1-forms (ω1, ω2, ψ) satisfy the
structure equations

dω1 = −ω2 ∧ ψ and dω2 = −ψ ∧ ω1 and dψ = −ω1 ∧ ω2. (6)

Let ĝ be a Riemannian metric on S2 and write λ∗ĝ = ĝi jωi ⊗ ω j for unique real-valued
functions ĝi j = ĝ j i on T1S2. Phrased in modern language (c.f. [2]) and applied to the case
of the 2-sphere, Liouville’s result [17] implies that if the metrics ĝ and g have the same
unparametrised geodesics then the functions hi j := ĝi j (ĝ11ĝ22 − ĝ212)

−2/3 satisfy the linear
differential equations

dh11 = −2h1ω2 + 2h12ψ,

dh12 = h1ω1 − h2ω2 − (h11 − h22)ψ,

dh22 = 2h2ω1 − 2h12ψ,

(7)

for some smooth real-valued functions hi on T1S2. Conversely, a solution to (7) on T1S2

satisfying h11h22 − h212 �= 0 gives a Riemannian metric ĝ on S2 with λ∗ĝ = (hi j (h11h22 −
h212)

−2)ωi ⊗ ω j and that has the same unparametrised geodesics as g.
Applying the exterior derivative to the above system of equations implies the existence of

a unique real-valued function h on T1S2 such that

dh1 = −h12ω1 + (h11 + h)ω2 + h2ψ,

dh2 = −(h22 + h)ω1 + h12ω2 − h1ψ.

Taking yet another exterior derivative gives that

dh = −2h1ω1 + 2h2ω2.

Writing

ϑ =
⎛
⎝ 0 −ω1 −ω2

ω1 0 −ψ

ω2 ψ 0

⎞
⎠ and H =

⎛
⎝ h h2 −h1

h2 −h22 h12
−h1 h12 −h11

⎞
⎠

the above system of differential equations can be expressed as

dH + ϑH + Hϑ t = 0.

The structure equations (6) imply that dϑ + ϑ ∧ ϑ = 0, hence we may write ϑ = �−1d�
for some diffeomorphism � : T1S2 → SO(3). It follows that the solutions are of the form
H = �−1C(�−1)t for some constant symmetric 3-by-3 matrix C . In particular, taking
C = AAt for some A ∈ SL(3,R), we obtain a solution HA providing a metric ĝA on S2

having the great circles as its geodesics.
Finally, in order to construct the holomorphic curve [ĝA] : S2 → Z from HA, we interpret

Z as an associated bundle to T1S2. We will only give a sketch of the construction and
refer the reader to [22, §4] for additional details. The orientation and metric turn S2 into
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a Riemann surface and hence a conformal structure on S2 is given in terms of a Beltrami
differential. Denoting the canonical bundle of S2 by KS2 , a Beltrami differential is a section
μ of KS2 ⊗ K−1

S2
satisfying |μ(x)| < 1 for all x ∈ S2, where | · | denotes the norm induced

by the natural Hermitian bundle metric on KS2 ⊗ K−1
S2

. The Riemannian metric g gives an

isomorphism KS2 ⊗ K−1
S2

� K−2
S2

and thus Z may be identified with T1S2 ×S1 D, where

S1 acts by usual rotation on T1S2 and by z · eiφ = ze−2iφ on the open unit disk D ⊂ C.
A holomorphic curve [ĝ] : S2 → Z is therefore represented by a map μ : T1S2 → D.
Explicitly, the conformal structure arising from a Riemannian metric ĝ on S2 is represented
by the map

μ = p − q + 2ir

p + q + 2
√
pq − r2

,

where we write λ∗ĝ = pω1 ⊗ ω1 + 2rω1 ◦ ω2 + qω2 ⊗ ω2 for unique real-valued functions
p, q, r on T1S2. In our case, the holomorphic curve [ĝA] : S2 → Z is thus represented by μ

with

p = h11
(h11h22 − h212)

2
, r = h12

(h11h22 − h212)
2
, q = h22

(h11h22 − h212)
2

and where the functions hi j arise from HA as above.

Remark 19 In the case of the standard projective structure on S2 the complex surface (Z , Jp0)
is biholomorphic toCP2\RP2 andmoreover, the image of a holomorphic curve [g] : S2 → Z
is a smooth quadric, see [19]. Trying to explicitly relate the holomorphic curve [ĝA] to its
image quadric does in general however not seem to give manageable expressions.
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