1	Fast automated detection of COVID-19 from medical images using
2	convolutional neural networks
3 4	Shuang Liang ¹ , Huixiang Liu ¹ , Yu Gu ^{2,3,4,*} , Xiuhua Guo ^{5,6} , Hongjun Li ⁷ , Li Li ⁷ , Zhiyuan Wu ^{5,6} , Mengyang Liu ^{5,6} , and Lixin Tao ^{5,6}
5	¹ School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
7	² Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing
8 9	³ School of AutoMation, Guangdong University of Petrochemical Technology, Maoming
10	525000, Guangdong, China.
11	⁴ Department of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe-University, 60438 Frankfurt, Germany
12	⁵ Department of Epidemiology and Health Statistics, School of Public Health, Capital
14	Medical University, Beijing, China.
15	⁶ Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University,
16 17	Beijing, China. ⁷ Beijing Youan Hospital, Capital Medical University, Beijing, China.
18	*Corresponding author: Yu Gu:guyu@mail.buct.edu.cn

¹⁹ Supplementary information

²⁰ Supplementary Note 1: Explaination of the expert groups

In China, medical education starts after high school and ranges from three to six years at the undergraduate 21 level, followed by 3 years at the graduate level[1]. The 3-year postgraduate medical education is called 22 standardized residency training (SRT) and is aimed at equiping medical graduates with practical clinical 23 skills to enable them to become application-oriented, multi-skilled professionals serving in the national health 24 system^[2]. After passing the SRT, resident physicians can become a specialists. Students majoring in medical 25 imaging discipline can enter the department of radiology as residents after 5-7 years of study at a college[3]. 26 In our manuscript, the expert group is consisted of five members including a 7th-year respiratory resident, a 27 3rd-year emergency resident, a 1st-year respiratory intern, a 5th-year radiologist and a 3rd-year radiologist. 28 Here, the 7th-year respiratory resident is a doctor that has passed the SRT and has 7 years of experience in 29 the clinical work of respiratory diseases. The 3rd-year emergency resident is a doctor that has passed the 30 SRT and has 3 years of experience in an emergency department. The 1st-year respiratory intern is a doctor 31 that has passed the SRT and has started clinical work in respiratory diseases. The 5th-year radiologist has 32 5 years of experience in the department of radiology and the 3rd-year radiologist has 3 years of experience 33

³⁴ in the department of radiology.

39

40

42

44

³⁵ Supplementary Note 2: Equations of the five metrics

The Kappa score (Kappa), sensitivity (Sen), specificity (Spe), precision (Pr), and F1-score metrics derived from the confusion matrix were used to determine the performance of the CNNCF. The equations are as follows:

$$pe = ((TN + FN) * (TN + FP) + (TP + FP) * (TP + FN))/(N * N)$$
(1)

$$p0 = (TP + TN)/N \tag{2}$$

$$Kappa = (p0 - pe)/(1 - pe)$$
(3)

$$Sen = TP/(TP + FN) \tag{4}$$

$$Spe = TN/(TN + FP)$$
⁴³

$$Pr = (TP)/(TP + FP) \tag{6}$$

$$F1 - Score = 2 * Pr * Sen/(Pr + Sen)$$
⁽⁷⁾

⁴⁵ where True positive (TP) represents the number of COVID-19 lung images correctly classified as COVID-⁴⁶ 19 cases and TN represents the number of *Normal lung images correctly classified as the *Normal lung ⁴⁷ cases. FP represents the number of *Normal lung images incorrectly classified as COVID-19 cases and FN ⁴⁸ represents the number of COVID-19 lung images misclassified as *Normal lung cases. N represents the ⁴⁹ number of cases in the test dataset.

50 Supplementary Figures

Supplementary Figure 1: The overall pipeline of the annotation

Supplementary Figure 2: Boxplots of precision and sensitivity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CI indicates that the positive case is COVID-19, and the negative case is influenza. Bootstrapping is used to generate 1000 resampled validation sets for XPVS, CTPVS and CTHVS.

⁵¹ Supplementary Experiments and Tables

	CNNCF	/Respira.	CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	$\operatorname{statistic}$	p-value	statistic
F1	1.0000	0.9725	1.0000	0.9323	1.0000	0.8421	1.0000	0.9667	1.0000	0.8308
Kappa	1.0000	0.8852	1.0000	0.9477	1.0000	0.6896	1.0000	0.9535	1.0000	0.7576
Specificity	1.0000	0.9625	1.0000	0.9371	1.0000	0.8859	1.0000	0.9934	1.0000	0.8774
Sensitivity	1.0000	0.9701	1.0000	0.9701	1.0000	0.9138	1.0000	0.9508	1.0000	0.9474
Precision	1.0000	0.9103	1.0000	0.8701	1.0000	0.8052	1.0000	0.9808	1.0000	0.7397

Supplementary Table 1: Results of McNemar's test for the CNNCF and expert results for COVID-19 and *Normal cases for the X-data collected from CCD and RSNA datasets

Supplementary Table 2: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and *Normal cases by means of CT-data collected from Youan hospital and the LUNA-16 dataset

	CNNCF	CNNCF/Respira.		/Emerg.	CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	1.0000	1.0000	1.0000	1.0000	0.9710	1.0000	1.0000	1.0000	0.9333
Kappa	1.0000	1.0000	1.0000	1.0000	1.0000	0.9149	1.0000	1.0000	1.0000	0.8477
Specificity	1.0000	1.0000	1.0000	1.0000	1.0000	0.9630	1.0000	1.0000	1.0000	0.9412
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	0.9223	1.0000	1.0000	1.0000	0.9130
Precision	1.0000	1.0000	1.0000	1.0000	1.0000	0.9532	1.0000	1.0000	1.0000	0.9545

Supplementary Table 3: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and influenza cases by means of CT-data collected from Youan hospital

	CNNCF	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		/Rad-3rd.
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	1.0000	1.0000	0.8841	1.0000	0.8427	1.0000	0.9333	1.0000	0.8333
Kappa	1.0000	1.0000	1.0000	0.8551	1.0000	0.6260	1.0000	0.8837	1.0000	0.7473
Specificity	1.0000	1.0000	1.0000	0.9371	1.0000	0.8859	1.0000	0.9048	1.0000	0.9545
Sensitivity	1.0000	1.0000	1.0000	0.9506	1.0000	0.8022	1.0000	1.0000	1.0000	0.7692
Precision	1.0000	1.0000	1.0000	0.8541	1.0000	0.7327	1.0000	0.8750	1.0000	0.9091

a. Experiment-E. The results of the five evaluation indicators for the comparison of the COVID-19 cases and *Normal cases of the CTHVS are shown in Supplementary Table 1. The CNNCF exhibits good performance for the five evaluation indices, which are similar to that of the Respire., the Emerg. and the Rad-5th, and higher than that of the Intern and the Rad-3rd. The ROC scores are plotted in Supplementary Fig. 1-a; the AUROC of the CNNCF is 1.0. The precision-recall scores are shown in Supplementary Fig. 1-c; the AUPRC of the CNNCF is 1.0.

b. Experiment-F. The results of the five evaluation indicators for the comparison of the COVID-19 cases and pneumonia cases of the CTHVS are shown in Supplementary Table 1 where the *Normal cases are from CTPVS and the COVID-19 cases are from the CTHVS. The CNNCF exhibits good performance for the five evaluation indices, which are similar to that of the Respire. and higher than that of the Intern, the Emerg, the Rad-5th and the Rad-3rd. The ROC scores are plotted in Supplementary Fig. 1-b; the AUROC of the CNNCF is 1.0. The precision-recall scores are shown in Supplementary Fig. 1-d; the

⁶⁴ AUPRC of the CNNCF is 1.0.

c. Experiment-G. The boxplots of the five evaluation indicators, the F1 score, the kappa coefficient, and the

specificity of experiment E-F are shown in Supplementary Fig. 2, and the precision and sensitivity are

- shown in the supplementary Supplementary Fig. 3. Bootstrapping method as introduced in the main
- manuscript was used to calculate the empirical distributions, and McNemar's test as introduced in the
- ⁶⁹ main manuscript was used to analyze the differences between the CNNCF and the experts. The p-values of the McNemar's test (Supplementary Table 2-3) for the five evaluation indicators were all 1.0.

Supplementary Table 4: Performance indices of the classification framework (CNNCF) of the experiments E-F and the average performance of the 7th year respiratory resident (Respira.), the 3rd year emergency resident (Emerg.), the 1st year respiratory intern (Intern), the 5th year radiologist(Rad-5th) and the 3rd year radiologist(Rad-3rd).

		CT(*Norma	al and COVID-19	9 cases from You	an hospital)	
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
F1(05%CI)	1.0000	1.0000	1.0000	0.9268	1.0000	0.9744
$\Gamma 1(95/001)$	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8292, 1.0000)	(1.0000, 1.0000)	(0.9143, 1.0000)
Vanna (OF OZ CI)	1.0000	1.0000	1.0000	0.8500	1.0000	0.9500
Kappa(9570C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.6700, 1.0000)	(1.0000, 1.0000)	(0.8429, 1.0000)
Smooth other (0507 CI)	1.0000	1.0000	1.0000	0.9000	1.0000	1.0000
Specificity (95%C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7497, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)
C =	1.0000	1.0000	1.0000	0.9500	1.0000	0.9500
Sensitivity(95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)	(1.0000, 1.0000)	(0.8421, 1.0000)
Precision(95%CI)	1.0000	1.0000	1.0000	0.9048	1.0000	1.0000
	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7646, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)
		CT(Pneumor	nia and COVID-	19 cases from Yo	ouan hospital)	
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(0507 CI)	1.0000	1.0000	0.9048	0.8000	0.9744	0.7391
F1(95/0C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7907, 0.9787)	(0.6521, 0.9143)	(0.9129, 1.0000)	(0.5714, 0.8627)
Kappa (05% CI)	1.0000	1.0000	0.8678	0.7158	0.9654	0.6266
Kappa(95%C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7283, 0.9703)	(0.5357, 0.8752)	(0.8846, 1.0000)	(0.4398, 0.8031)
Specificity (05% CI)	1.0000	1.0000	0.9455	0.8727	1.0000	0.8364
Specificity (9576C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8823, 1.0000)	(0.7800, 0.9592)	(1.0000, 1.0000)	(0.7451, 0.9299)
\mathbf{C}_{opp}	1.0000	1.0000	0.9500	0.9000	0.9500	0.8500
Sensitivity (95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)	(0.7598, 1.0000)	(0.8398, 1.0000)	(0.6842, 1.0000)
Drasision (0507 CI)	1.0000	1.0000	0.8636	0.7200	1.0000	0.6538
P recision(95%C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7000, 1.0000)	(0.5357, 0.8890)	(1.0000, 1.0000)	(0.4686, 0.8335)

70

Supplementary Figure 3: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for CTHVS.

Supplementary Figure 4: Boxplots of f1-score, kappa score and specificity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for CTHVS.

Supplementary Figure 5: Boxplots of precision and sensitivity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for CTHVS.

	CNNCF/Respira.		CNNCE	CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	
F1	1.0000	1.0000	1.0000	1.0000	1.0000	0.9200	1.0000	1.0000	1.0000	0.9778	
Kappa	1.0000	1.0000	1.0000	1.0000	1.0000	0.7872	1.0000	1.0000	1.0000	0.9492	
Specificity	1.0000	1.0000	1.0000	1.0000	1.0000	0.9286	1.0000	1.0000	1.0000	1.0000	
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	0.8846	1.0000	1.0000	1.0000	0.9565	
Precision	1.0000	1.0000	1.0000	1.0000	1.0000	0.9583	1.0000	1.0000	1.0000	1.0000	

Supplementary Table 5: Results of McNemar's test for the CNNCF and expert results for COVID-19 and *Normal cases for the CT-data collected from Youan hospital

Supplementary Table 6: Results of McNemar's test for the CNNCF and expert results for COVID-19 and pneumonia cases for the CT-data collected from Youan hospital

	CNNCF/Respira.		CNNCE	F/Emerg.	CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	1.0000	1.0000	0.9200	1.0000	0.7879	1.0000	1.0000	1.0000	0.8135
Kappa	1.0000	1.0000	1.0000	0.8801	1.0000	0.7298	1.0000	0.9683	1.0000	0.6954
Specificity	1.0000	1.0000	1.0000	0.9412	1.0000	0.9016	1.0000	1.0000	1.0000	0.8163
Sensitivity	1.0000	1.0000	1.0000	0.9583	1.0000	0.9286	1.0000	0.9565	1.0000	0.9231
Precision	1.0000	1.0000	1.0000	0.8846	1.0000	0.6842	1.0000	1.0000	1.0000	0.7273

⁷¹ d. Experiment-H. The results of the five evaluation indicators for the comparison of the COVID-19 cases and

⁷² *Normal cases of the XHVS are shown in supplementery Table 4. The CNNCF exhibits good performance

with the best score of specificity of 96.00% which was similar to that of the Respire. (96.00%) and the Rad-

5th(96.00%), and higher than that of the Emerg.(88.00%), the Intern.(80.00%) and the Rad-3rd(84.00%). 74 The F1 score was 90.00%, which was similar to that of the Rad-5th(90.00%), higher than that of the 75 Emerg.(81.82%), the Intern (69.57%) and the Rad-3rd (72.73%), and lower than that of the Respire. 76 (95.24%). The kappa score was 86.00%, which was similar to that of the Rad-5th(86.00%), higher than 77 that of the Emerg. (73.58%), the Intern (55.05%) and the Rad-3rd (60.38%), and lower than that of the 78 Respire (93.20%). The sensitivity index was 90.00%, which was similar to that of the Emerg. (90.00%) and 79 the Rad-5th (90.00%), higher than that of the Intern (80.00%) and the Rad-3rd (80.00%), and lower than 80 that of the Respire. (100%). The Precision index was 90.00\%, which was similar to that of the Rad-81 5th(90.00%), higher than that of the Emerg.(75.00%), the Intern (61.54%) and the Rad-3rd (66.67%), 82 and lower than that of the Respire. (90.91%). The ROC scores are plotted in Supplementary Fig. 4-a; 83 the AUROC of the CNNCF is 0.9920. The precision-recall scores are shown in Supplementary Fig. 4-d; 84 the AUPRC of the CNNCF is 0.9799. 85

e. Experiment-I. The results of the five evaluation indicators for the comparison of the COVID-19 cases 86 and influenza cases of the XHVS are shown in Supplementary Table 4. The CNNCF exhibits good 87 performance with the best score of specificity of 95.56%, and a precision of 81.82%. The F1 score was 88 85.71%, which was higher than that of the Rad-5th(81.82%), the Emerg. (80.00%), the Rad-3rd(64.00%)89 and the Intern. (59.26%) and lower than that of the Respire. (86.96%). The kappa score was 82.35%, 90 which was higher than that of the Rad-5th(77.32%), the Emerg.(74.42%), the Rad-3rd(53.95%) and the 91 Intern.(47.16%) and lower than that of the Respire.(83.58%). The sensitivity index was 90.00\%, which was 92 similar to that of the Rad-5th(90.00%), higher than that of the Rad-3rd(80.00%) and the Intern.(80.00%), 93 and lower than that of the Respire (100.00%) and the Emerg (100.00%). The ROC scores are plotted in 94 Supplementary Fig. 4-b; the AUROC of the CNNCF is 0.9956. The precision-recall scores are shown in 95

⁹⁶ Supplementary Fig. 4-e; the AUPRC of the CNNCF is 0.9799.

f. Experiment-J. The results of the five evaluation indicators for the comparison of the COVID-19 cases
 and pneumonia cases of the XHVS are shown in Supplementary Table 4. The CNNCF exhibits good

performance with the best score of specificity of 96.33%, and a precision of 81.82%. The F1 score was 99 85.71%, which was higher than that of the Emerg. (80.00%), the Rad-3rd(64.00%) and the Intern. (61.54%) 100 and lower than that of the Respire. (86.96%) and the Rad-5th (86.96%). The kappa score was 82.97%, 101 which was higher than that of the Emerg. (75.47%), the Rad-3rd(55.85%) and the Intern. (52.55%) and 102 lower than that of the Respire (84.21%) and the Rad-5th (84.21%). The sensitivity index was 90.00\%, 103 which was higher than that of the Rad-3rd(80.00%) and the Intern.(80.00%), and lower than that of 104 the Respire (100.00%), the Rad-5th (100.00%) and the Emerg (100.00%). The ROC scores are plotted in 105 Supplementary Fig. 4-c; the AUROC of the CNNCF is 0.9964. The precision-recall scores are shown in 106 Supplementary Fig. 4-f; the AUPRC of the CNNCF is 0.9799. 107

g. Experiment-K. The boxplots of the five evaluation indicators, the F1 score, the kappa coefficient, and the specificity of experiment H-J are shown in Supplementary Fig. 5, and the precision and sensitivity are shown in the supplementary Supplementary Fig. 6. Bootstrapping method as introduced in the main manuscript was used to calculate the empirical distributions, and McNemar's test as introduced in the main manuscript was used to analyze the differences between the CNNCF and the experts. The p-values

of the McNemar's test (Supplementary Table 5-7) for the five evaluation indicators were all 1.0.

Supplementary Table 7: Performance indices of the classification framework (CNNCF) of the experiments H-J and the average performance of the 7th year respiratory resident (Respira.), the 3rd year emergency resident (Emerg.), the 1st year respiratory intern (Intern), the 5th year radiologist(Rad-5th) and the 3rd year radiologist(Rad-3rd).

		X-data(*Norm	al and COVID-	19 cases from Yo	ouan hospital)	
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(05%CI)	0.9000	0.9524	0.8182	0.6957	0.9000	0.7273
$\Gamma 1(95/001)$	(0.7143, 1.0000)	(0.8182, 1.0000)	(0.5882, 0.9600)	(0.4286, 0.8889)	(0.7143, 1.0000)	(0.4346, 0.9032)
Kappa (05% CI)	0.8600	0.9320	0.7358	0.5505	0.8600	0.6038
Kappa(9570C1)	(0.6181, 1.0000)	(0.7586, 1.0000)	(0.4615, 0.9398)	(0.2553, 0.8248)	(0.6390, 1.0000)	(0.6390, 1.0000)
Specificity (05% CI)	0.9600	0.9600	0.8800	0.8000	0.9600	0.8400
Specificity (95%C1)	(0.8636, 1.0000)	(0.8750, 1.0000)	(0.7407, 1.0000)	(0.6400, 0.9525)	(0.8636, 1.0000)	(0.6667, 0.9643)
Compitionity (050% CI)	0.9000	1.0000	0.9000	0.8000	0.9000	0.8000
Sensitivity (95%CI)	(0.6667, 1.0000)	(1.0000, 1.0000)	(0.6667, 1.0000)	(0.5325, 1.0000)	(0.6667, 1.0000)	(0.5000, 1.0000)
Precision(95%CI)	0.9000	0.9091	0.7500	0.6154	0.9000	0.6667
	(0.6667, 1.0000)	(0.6923, 1.0000)	(0.5000, 1.0000)	(0.3525, 0.8750)	(0.6917, 1.0000)	(0.3747, 0.9231)
		X-data(Influen	za and COVID-	19 cases from Y	ouan hospital)	
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
F1(05%CI)	0.8571	0.8696	0.8000	0.5926	0.8182	0.6400
$\Gamma 1(95/001)$	(0.6154, 1.0000))	(0.6667, 1.0000)	(0.5881, 0.9524)	(0.3222, 0.8000)	(0.6000, 0.9600)	(0.3529, 0.8333)
Kappa (05% CI)	0.8235	0.8358	0.7442	0.4716	0.7732	0.5395
Kappa(9570C1)	(0.5611, 1.0000)	(0.6099, 1.0000)	(0.5244, 0.9412)	(0.1828, 0.7176)	(0.5154, 0.9483)	(0.2325, 0.7732)
Specificity (05% CI)	0.9556	0.9333	0.8889	0.8000	0.9333	0.8444
specificity (9576C1)	(0.8863, 1.0000)	(0.8478, 1.0000)	(0.7857, 0.9773)	(0.6665, 0.9091)	(0.8511, 1.0000)	(0.7380, 0.9375)
Songitivity (05% CI)	0.9000	1.0000	1.0000	0.8000	0.9000	0.8000
Sensitivity (95%CI)	(0.6667, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.5000, 1.0000)	(0.6667, 1.0000)	(0.5000, 1.0000)
Draging (0507 CI)	0.8182	0.7692	0.6667	0.4706	0.7500	0.5333
Precision(95%C1)	(0.5333, 1.0000)	(0.5000, 1.0000)	(0.4167, 0.9091)	(0.2143, 0.7143)	(0.5000, 1.0000)	(0.2500, 0.7827)
	· · · ·	X-data(Pneumo	onia and COVID	-19 cases from Y	Youan hospital)	
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
F1(05%CI)	0.8571	0.8696	0.8000	0.6154	0.8696	0.6400
$\Gamma 1(95/001)$	(0.6316, 1.0000)	(0.6956, 1.0000)	(0.5881, 0.9524)	(0.3199, 0.8000)	(0.6667, 1.0000)	(0.3636, 0.8389)
Kappa (05% CI)	0.8297	0.8421	0.7547	0.5255	0.8421	0.5585
Kappa(957001)	(0.5761, 1.0000)	(0.6448, 1.0000)	(0.5301, 0.9472)	(0.2169, 0.7405)	(0.6242, 1.0000)	(0.2687, 0.7979)
Specificity (05% CI)	0.9636	0.9455	0.9091	0.8545	0.9455	0.8727
specificity (9576C1)	(0.9074, 1.0000)	(0.8800, 1.0000)	(0.8302, 0.9815)	(0.7500, 0.9376)	(0.8813, 1.0000)	(0.7736, 0.9608)
Compitionity (050% CI)	0.9000	1.0000	1.0000	0.8000	1.0000	0.8000
Sensitivity(95%CI)	(0.6667, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.5000, 1.0000)	(1.0000, 1.0000)	(0.5000, 1.0000)
Drasician (050/OI)	0.8182	0.7692	0.6667	0.5000	0.7692	0.5333
r recision(93%CI)	(0.5556, 1.0000)	(0.5332, 1.0000)	(0.4165, 0.9091)	(0.2220, 0.7333)	(0.5000, 1.0000)	(0.2777, 0.8000)

Supplementary Figure 6: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CI indicates that the positive case is COVID-19, and the negative case is influenza. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for XHVS.

Supplementary Figure 7: Boxplots of f1-score, kappa score and specificity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CI indicates that the positive case is COVID-19, and the negative case is influenza. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for XHVS.

Supplementary Figure 8: Boxplots of precision and sensitivity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. CI indicates that the positive case is COVID-19, and the negative case is influenza. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. H indicated that the cases are collected from Youan hospital. Bootstrapping is used to generate 1000 resampled validation sets for XHVS.

	CNNCF/Respira.		CNNCE	F/Emerg.	CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	0.8750	1.0000	0.7778	1.0000	0.8125	1.0000	0.8889	1.0000	0.8148
Kappa	1.0000	0.8387	1.0000	0.7059	1.0000	0.6557	1.0000	0.8511	1.0000	0.7009
Specificity	1.0000	0.9286	1.0000	0.8571	1.0000	0.8000	1.0000	1.0000	1.0000	0.8261
Sensitivity	1.0000	0.8333	1.0000	0.8333	1.0000	0.8333	1.0000	0.8333	1.0000	0.8333
Precision	1.0000	0.7778	1.0000	0.6364	1.0000	0.7647	1.0000	1.0000	1.0000	0.7333

Supplementary Table 8: Results of McNemar's test for the CNNCF and expert results for COVID-19 and *Normal cases for the X-data collected from Youan hospital

Supplementary Table 9: Results of McNemar's test for the CNNCF and expert results for COVID-19 and influenza cases for the X-data collected from Youan hospital

	CNNCF	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	$\operatorname{statistic}$	
F1	1.0000	0.8571	1.0000	0.7200	1.0000	0.5600	1.0000	0.7692	1.0000	0.7273	
Kappa	1.0000	0.8243	1.0000	0.6458	1.0000	0.4434	1.0000	0.6984	1.0000	0.6598	
Specificity	1.0000	0.9348	1.0000	0.8478	1.0000	0.8043	1.0000	0.9070	1.0000	0.9111	
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	0.7778	1.0000	0.8333	1.0000	0.8000	
Precision	1.0000	0.7500	1.0000	0.5625	1.0000	0.4375	1.0000	0.7143	1.0000	0.6667	

Supplementary Table 10: Results of McNemar's test for the CNNCF and expert results for COVID-19 and pneumonia cases for the X-data collected from Youan hospital

	CNNCF	/Respira.	CNNCE	CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	
F1	1.0000	0.8889	1.0000	0.7778	1.0000	0.7143	1.0000	0.8333	1.0000	0.5926	
Kappa	1.0000	0.8713	1.0000	0.7441	1.0000	0.6404	1.0000	0.7969	1.0000	0.4874	
Specificity	1.0000	0.9636	1.0000	0.9310	1.0000	0.8704	1.0000	0.9273	1.0000	0.8679	
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	0.9091	1.0000	1.0000	1.0000	0.6667	
Precision	1.0000	0.8000	1.0000	0.6364	1.0000	0.5882	1.0000	0.7143	1.0000	0.5333	

h. Experiment-L. The results of the five evaluation indicators for the comparison of the pneumonia cases 114 and the *Normal cases of the XPVS are shown in Supplementary Table 8. The CNNCF exhibits good 115 performance with the best score of F1 score of 97.49%, a kappa score of 95.00%, a specificity of 98.00% 116 and a precision of 97.98%. The sensitivity index was 97.00%, which was similar to that of the Rad-117 5th(97.00%), higher than that of the Emerg. (96.04%), Rad-3rd(94.00%) and the Intern. (93.00%), and 118 lower than that of the Respire. (98.00%). The ROC scores are plotted in Supplementary Fig. 7-a; the 119 AUROC of the CNNCF is 0.9970. The precision-recall scores are shown in Supplementary Fig. 7-c; the 120 AUPRC of the CNNCF is 0.9964. 121

i. Experiment-M. The results of the five evaluation indicators for the comparison of the *Normal cases and the pneumonia cases of the CTPVS are shown in Supplementary Table 8. The CNNCF exhibits good performance for the five evaluation indices, which are similar to that of the Respire., the Emerg. and the Rad-5th and higher than that of the Intern and the Rad-3rd. The ROC scores are plotted in Supplementary Fig. 7-b; the AUROC of the CNNCF is 1.0. The precision-recall scores are shown in Supplementary Fig. 7-d; the AUPRC of the CNNCF is 1.0.

j. Experiment-N. The boxplots of the five evaluation indicators, the F1 score, the kappa coefficient, and the specificity of experiment L-M are shown in supplementary Fig. 8, and the precision and sensitivity are shown in the supplementary Fig. 9. Bootstrapping method as introduced in the main manuscript was used to calculate the empirical distributions, and McNemar's test as introduced in the main manuscript was used to analyze the differences between the CNNCF and the experts. The p-values of the McNemar's test (Supplementary Table 9-10) for the five evaluation indicators were all 1.0.

Supplementary Table 11: Performance indices of the classification framework (CNNCF) of the experiments L-M and the average performance of the 7th year respiratory resident (Respira.), the 3rd year emergency resident (Emerg.), the 1st year respiratory intern (Intern), the 5th year radiologist(Rad-5th) and the 3rd year radiologist(Rad-3rd).

			/-			()	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			X-data(Pneur	nonia and *Norr	nal cases from F	asnA dataset)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
$ \begin{split} F1(95\% C1) & (0.9508, 0.9951) & (0.9442, 0.9905) & (0.9159, 0.9792) & (0.8764, 0.9540) & (0.9456, 0.9901) & (0.8950, 0.9622) \\ \\ happa(95\% C1) & (0.9500) & 0.9400 & 0.9091 & 0.8300 & 0.9400 & 0.8600 \\ (0.8999, 0.9899) & (0.8896, 0.9800) & (0.8387, 0.9595) & (0.7500, 0.9004) & (0.8900, 0.9800) & (0.7899, 0.9200) \\ \\ happa(95\% C1) & (0.9400, 1.0000) & (0.9174, 0.9909) & (0.8900, 0.9810) & (0.8381, 0.9550) & (0.9346, 1.0000) & (0.8627, 0.9700) \\ \\ happa(95\% C1) & (0.9700) & 0.9800 & 0.9604 & 0.9300 & 0.9700 & 0.9400 \\ (0.9327, 1.0000) & (0.9490, 1.0000) & (0.9175, 0.9904) & (0.8735, 0.9727) & (0.9314, 1.0000) & (0.8925, 0.9806) \\ \\ happa(95\% C1) & (0.9798) & 0.9608 & 0.9417 & 0.9029 & (0.9340, 1.0000) & (0.8667, 0.9688) \\ \hline \\ happa(95\% C1) & (0.9478, 1.0000) & (0.9216, 0.9907) & (0.8952, 0.8815) & (0.8400, 0.9529) & (0.9340, 1.0000) & (0.9216 \\ \hline \\ happa(95\% C1) & (1.0000) & 1.0000 & 1.0000 & 0.9268 & 1.0000 & 0.9756 \\ \hline \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (1.0000, 1.0000) & (0.8500) & (1.0000, 1.0000) & (0.9500 \\ \hline \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (1.0000, 1.0000) & (0.8387, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.0500, 1.0000) & (1.0000, 1.0000) & (0.8337, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8337, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8337, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8333, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8333, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8333, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8333, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (0.8333, 1.0000) \\ happa(95\% C1) & (1.0000) & (1.0000, 1.0000) & (0.7500, 1.0000) & (1.0000, 1.0000) & (0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9504 & 0.9$	E1(0507CI)	0.9749	0.9703	0.9510	0.9163	0.9700	0.9307
$ \begin{split} {\rm Kappa(95\%Cl)} & \begin{array}{c} 0.9500 & 0.9400 & 0.9091 & 0.8300 & 0.9400 & 0.8600 \\ (0.8999,0.9899) & (0.8896,0.9800) & (0.8387,0.9595) & (0.7500,0.9004) & (0.8900,0.9800) & (0.7899,0.9200) \\ 0.9800 & 0.9600 & 0.9400 & 0.9000 & 0.9700 & 0.9200 \\ (0.9490,1.0000) & (0.9174,0.9909) & (0.8900,0.9810) & (0.8381,0.9550) & (0.9346,1.000) & (0.8627,0.9700) \\ 0.9700 & 0.9800 & 0.9604 & 0.9300 & 0.9700 & 0.9400 \\ (0.9327,1.000) & (0.9490,1.0000) & (0.9175,0.9904) & (0.8735,0.9727) & (0.9314,1.0000) & (0.8925,0.9806) \\ 0.9798 & 0.9608 & 0.9417 & 0.9029 & 0.9700 & 0.9216 \\ 0.9798 & 0.9608 & 0.9417 & 0.9029 & 0.9700 & 0.9216 \\ (0.9478,1.000) & (0.9216,0.9907) & (0.8952,0.9815) & (0.8400,0.9529) & (0.9340,1.0000) & (0.8667,0.9688) \\ \hline \\ & \hline \\ & \hline \\ & \hline \\ F1(95\%Cl) & 1.0000 & 1.0000 & 1.0000 & 0.9268 & 1.0000 & 0.9756 \\ (1.000,1.0000) & (1.0000,1.0000) & (1.0000,1.0000) & (0.8500) & 1.0000, 1.0000) & (0.9143,1.0000) \\ \hline \\ & F1(95\%Cl) & 1.0000 & 1.0000 & 1.0000 & 0.8500 & 1.0000 & 0.9500 \\ (1.0000,1.0000) & (1.0000,1.0000) & (0.5501,1.0000) & (1.0000,1.0000) & (0.8387,1.0000) \\ \hline \\ & F1(95\%Cl) & 1.0000 & 1.0000 & 1.0000 & 0.9000 & 1.0000 & 0.9500 \\ \hline \\ & f1(000,1.0000) & (1.0000,1.0000) & (1.0000,1.0000) & (0.5501,1.0000) & (0.8333,1.0000) \\ \hline \\ & Specificity(95\%Cl) & 1.0000 & 1.0000 & 1.0000 & 0.9500 & 1.0000 & 0.9500 \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (1.0000,1.0000) & (1.0000,1.0000) & (0.8333,1.0000) \\ \hline \\ & Specificity(95\%Cl) & 1.0000 & 1.0000 & 1.0000 & 0.9500 & 1.0000 & 0.9500 \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (1.0000,1.0000) & (0.9048) & 1.0000 & 0.9524 \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (0.0001,0.0000) & (0.8421,1.0000) \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (0.7725,1.0000) & (1.0001,1.0000) & (0.8421,1.0000) \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (0.7725,1.0000) & (1.0000,1.0000) & (0.8421,1.0000) \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (0.000,0.0000) & (0.9725,0.000) & (0.9244) \\ \hline \\ & f1(0000,1.0000) & (1.0000,1.0000) & (0.0000,0.0000) & (0.9725,0.000) & (0.9244) \\ \hline \\ & f1($	F1(95%01)	(0.9508, 0.9951)	(0.9442, 0.9905)	(0.9159, 0.9792)	(0.8764, 0.9540)	(0.9456, 0.9901)	(0.8950, 0.9622)
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Vanna (0507 CI)	0.9500	0.9400	0.9091	0.8300	0.9400	0.8600
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Kappa(95%CI)	(0.8999, 0.9899)	(0.8896, 0.9800)	(0.8387, 0.9595)	(0.7500, 0.9004)	(0.8900, 0.9800)	(0.7899, 0.9200)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Specificity (05% CI)	0.9800	0.9600	0.9400	0.9000	0.9700	0.9200
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	specificity (9570C1)	(0.9490, 1.0000)	(0.9174, 0.9909)	(0.8900, 0.9810)	(0.8381, 0.9550)	(0.9346, 1.0000)	(0.8627, 0.9700)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Congitization (0E07 CI)	0.9700	0.9800	0.9604	0.9300	0.9700	0.9400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sensitivity (95%C1)	(0.9327, 1.0000)	(0.9490, 1.0000)	(0.9175, 0.9904)	(0.8735, 0.9727)	(0.9314, 1.0000)	(0.8925, 0.9806)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Precision(95% CI)	0.9798	0.9608	0.9417	0.9029	0.9700	0.9216
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.9478, 1.0000)	(0.9216, 0.9907)	(0.8952, 0.9815)	(0.8400, 0.9529)	(0.9340, 1.0000)	(0.8667, 0.9688)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CT(Pneumonia	and *Normal ca	ses from ICPNF	and LUNA-16)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
F1(95%C1) (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) (0.9143,1.0000) Kappa(95%CI) 1.0000 1.0000 1.0000 0.8500 1.0000 0.9500 Specificity(95%CI) 1.0000 1.0000 1.0000 0.9000 1.0000 0.9500 Sensitivity(95%CI) 1.0000 1.0000 1.0000 0.9000 1.0000 0.9500 Sensitivity(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 0.9500 Precision(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 0.9500 Precision(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 Precision(95%CI) 1.0000 1.0000 1.0000 0.9048 1.0000 0.9524 (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) 0.9725,1.0000) (1.0000,1.0000) 0.8421,1.0000	E1(05%CI)	1.0000	1.0000	1.0000	0.9268	1.0000	0.9756
Kappa(95%CI) 1.0000 1.0000 1.0000 0.8500 1.0000 0.9500 Specificity(95%CI) (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) (0.6500,1.0000) (1.0000,1.0000) (0.8387,1.0000) Specificity(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 0.9500 Sensitivity(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 Precision(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 Precision(95%CI) 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 Precision(95%CI) 1.0000 1.0000 1.0000 0.9048 1.0000 0.9524 (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) 0.9725,1.0000) (1.0000,1.0000) 0.8421,1.0000	F1(957001)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8204, 1.0000)	(1.0000, 1.0000)	(0.9143, 1.0000)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Kappa (05%CI)	1.0000	1.0000	1.0000	0.8500	1.0000	0.9500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kappa(957001)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.6500, 1.0000)	(1.0000, 1.0000)	(0.8387, 1.0000)
Specificity(95%CI) (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) (0.7500,1.0000) (1.0000,1.0000) (0.8333,1.0000) Sensitivity(95%CI) 1.0000 1.0000 1.0000 (0.8333,1.0000) (1.0000,1.0000) (1.0000,1.0000) Precision(95%CI) 1.0000 1.0000 1.0000 (0.8333,1.0000) (1.0000,1.0000) (1.0000,1.0000) Precision(95%CI) 1.0000 1.0000 1.0000 0.9048 1.0000 0.9524 (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) (0.7725,1.0000) (1.0000,1.0000) (0.8421,1.0000)	Specificity (05% CI)	1.0000	1.0000	1.0000	0.9000	1.0000	0.9500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Specificity (957001)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7500, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)
Sensitivity(9570C1) (1.0000,1.0000) (1.0000,1.0000) (0.8333,1.0000) (1.0000,1.0000) Precision(95%CI) 1.0000 1.0000 1.0000 0.9048 1.0000 0.9524 (1.0000,1.0000) (1.0000,1.0000) (1.0000,1.0000) (0.7725,1.0000) (1.0000,1.0000) (0.8421,1.0000)	Songitivity (05% CI)	1.0000	1.0000	1.0000	0.9500	1.0000	1.0000
Precision(95%CI) 1.0000 1.0000 1.0000 0.9048 1.0000 0.9524 (1.0000,1.0000) (1.0000,1.0000) (0.7725,1.0000) (1.0000,1.0000) (0.8421,1.0000)	Sensitivity (957001)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)
(1.0000, 1.0000) $(1.0000, 1.0000)$ $(1.0000, 1.0000)$ $(0.7725, 1.0000)$ $(1.0000, 1.0000)$ $(0.8421, 1.0000)$	Precision(95%CI)	1.0000	1.0000	1.0000	0.9048	1.0000	0.9524
		(1,0000,1,0000)	(1,0000,1,0000)	(1,0000,1,0000)	(0.7725.1.0000)	(1,0000,1,0000)	(0.8421.1.0000)

Supplementary Figure 9: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification. NP indicates that the positive case is a pneumonia case, and the negative case is *Normal. CP indicates that the positive case is COVID-19, and the negative case is pneumonia. P indicated that the cases are collected from public datasets. Bootstrapping is used to generate 1000 resampled validation sets for XPVS and CTPVS.

Supplementary Figure 10: Boxplots of f1-score, kappa score and specificity for the CNNCF and expert results for pneumonia identification. NP indicates that the positive case is a pneumonia case, and the negative case is *Normal. P indicated that the cases are collected from public datasets. Bootstrapping is used to generate 1000 resampled validation sets for XPVS and CTPVS.

Supplementary Figure 11: Boxplots of precision and sensitivity for the CNNCF and expert results for pneumonia identification. NP indicates that the positive case is a pneumonia case, and the negative case is *Normal. P indicated that the cases are collected from public datasets. Bootstrapping is used to generate 1000 resampled validation sets for XPVS and CTPVS.

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	0.9770	1.0000	0.9359	1.0000	0.8854	1.0000	0.9738	1.0000	0.9458
Kappa	1.0000	0.9593	1.0000	0.8701	1.0000	0.7798	1.0000	0.9499	1.0000	0.8901
Specificity	1.0000	0.9911	1.0000	0.9109	1.0000	0.9208	1.0000	0.9808	1.0000	0.9029
Sensitivity	1.0000	0.9659	1.0000	0.9596	1.0000	0.8586	1.0000	0.9659	1.0000	0.9659
Precision	1.0000	0.9884	1.0000	0.9135	1.0000	0.9140	1.0000	0.9789	1.0000	0.9057

Supplementary Table 12: Results of McNemar's test for the CNNCF and expert results for pneumonia and *Normal cases for the X-data collected from RSNA dataset

Supplementary Table 13: Results of McNemar's test for the CNNCF and expert results for pneumonia and *Normal cases for the CT-data collected from ICNP and LUNA-16 dataset

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	1.0000	1.0000	1.0000	1.0000	0.8947	1.0000	1.0000	1.0000	0.9756
Kappa	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000	1.0000	1.0000	0.9500
Specificity	1.0000	1.0000	1.0000	1.0000	1.0000	0.8636	1.0000	1.0000	1.0000	0.9500
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	0.9444	1.0000	1.0000	1.0000	1.0000
Precision	1.0000	1.0000	1.0000	1.0000	1.0000	0.8500	1.0000	1.0000	1.0000	1.0000

¹³⁴ k. Experiment-O. The results of the five evaluation indicators for the comparison of the pneumonia cases,

the *Normal cases and the COVID-19 cases of the XMVS are shown in Supplementary Table 11. The 135 CNNCF exhibits good performance on distinct of *Normal and COVID-19 cases with the best score of 136 specificity of 98.86% and a precision of 97.14%. The F1 score was 95.77%, which was similar to that of 137 the Respire (96.00%), higher than that of the Emerg (92.21%), Rad-3rd(84.08%) and the Intern (82.50%), 138 and lower than that of the Rad-5th(97.26%). The kappa score was 94.07%, which was similar to that of 139 the Respire (94.26%), higher than that of the Emerg (88.70%), Rad-3rd(76.73%) and the Intern (74.24%), 140 and lower than that of the Rad-5th(96.11%). The specificity of 98.00% The sensitivity index was 94.44%, 141 which was higher than that of Rad-3rd(91.67%) and the Intern.(91.67\%), and lower than that of the 142 Rad-5th(98.61%), the Emerg. (98.61%), and the Respire. (100.00%). Similar performance of the CNNCF 143 was aslo achieved on distinct of Pneumonia and COVID-19 cases which was also shown in Table 11. The 144 ROC scores for distinguishing COVID-19 from *Normal cases are plotted in Supplementary Fig. 10-a; the 145 AUROC of the CNNCF is 0.9972. The precision-recall scores for distinguishing COVID-19 from *Normal 146 cases are shown in Supplementary Fig. 10-c; the AUPRC of the CNNCF is 0.9948. The ROC scores for 147 distinguishing COVID-19 from Pneumonia cases are plotted in Supplementary Fig. 10-b; the AUROC 148 of the CNNCF is 0.9943. The precision-recall scores for distinguishing COVID-19 from Pneumonia cases 149 are shown in Supplementary Fig. 10-d; the AUPRC of the CNNCF is 0.9899. 150

1. Experiment-P. The results of the five evaluation indicators for the comparison of the pneumonia cases. 151 the *Normal cases and the COVID-19 cases of the CTMVS are shown in Supplementary Table 14. The 152 CNNCF exhibits good performance on distinct of *Normal and COVID-19 cases for the five evaluation 153 indices, which are similar to that of the Respire., the Emerg. and the Rad-5th and higher than that of the 154 Intern and the Rad-3rd. Similar performance of the CNNCF was also achieved on distinct of Pneumonia 155 and COVID-19 cases which was also shown in Table 14. The ROC scores for distinguishing COVID-19 156 from *Normal cases are plotted in Supplementary Fig. 11-a; the AUROC of the CNNCF is 1.0. The 157 precision-recall scores for distinguishing COVID-19 from *Normal cases are shown in Supplementary Fig. 158 11-c; the AUPRC of the CNNCF is 1.0. The ROC scores for distinguishing COVID-19 from Pneumonia 159 cases are plotted in Supplementary Fig. 11-b; the AUROC of the CNNCF is 0.9991. The precision-recall 160 scores for distinguishing COVID-19 from Pneumonia cases are shown in Supplementary Fig. 11-d; the 161

¹⁶² AUPRC of the CNNCF is 0.9997.

m. Experiment-Q. The boxplots of the five evaluation indicators, the F1 score, the kappa coefficient, and the specificity of experiment O-P are shown in supplementary Fig. 12 and Fig. 13, and the precision and sensitivity are shown in the supplementary Fig. 14 and Fig. 15. Bootstrapping method as introduced in the main manuscript was used to calculate the empirical distributions, and McNemar's test as introduced in the main manuscript was used to analyze the differences between the CNNCF and the experts. The

¹⁶⁸ p-values of the McNemar's test (Supplementary Table 12,13,15 and 16) for the five evaluation indicators

¹⁶⁹ were all 1.0.

Supplementary Table 14: Performance indices of the classification framework (CNNCF) of the experiment O and the average performance of the 7th year respiratory resident (Respira.), the 3rd year emergency resident (Emerg.), the 1st year respiratory intern (Intern), the 5th year radiologist(Rad-5th) and the 3rd year radiologist(Rad-3rd).

	X-data	(*Normal and C)	COVID-19 cases	from RSNA, CC	CD and Youan He	ospital)
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(0507CI)	0.9577	0.9600	0.9221	0.8250	0.9726	0.8408
F1(9570C1)	(0.9189, 0.9857)	(0.9206, 0.9878)	(0.8740, 0.9618)	(0.7612, 0.8861)	(0.9427, 0.9934))	(0.7702, 0.9000)
Kappa (05% CI)	0.9407	0.9426	0.8870	0.7424	0.9611	0.7673
Kappa(9570CI)	(0.8851, 0.9801)	(0.8871, 0.9817)	(0.8199, 0.9434)	(0.6573, 0.8302)	(0.9188, 0.9905)	(0.6730, 0.8513)
C	0.9886	0.9657	0.9371	0.8743	0.9829	0.8914
Specificity (95%CI)	(0.9714, 1.0000)	(0.9349, 0.9884)	(0.9000, 0.9718)	(0.8239, 0.9226)	(0.9605, 1.0000)	(0.8424, 0.9368)
C:+::+(0F07 CI)	0.9444	1.0000	0.9861	0.9167	0.9861	0.9167
Sensitivity (95%C1)	(0.8857, 0.9877)	(1.0000, 1.0000)	(0.9529, 1.0000)	(0.8511, 0.9726)	(0.9487, 1.0000)	(0.8450, 0.9769)
Precision(95%CI)	0.9714	0.9231	0.8659	0.7500	0.9595	0.7765
	(0.9259, 1.0000)	(0.8529, 0.9759)	(0.7867, 0.9342)	(0.6667, 0.8427)	(0.9103, 1.0000)	(0.6818, 0.8605)
	X-da	ta(Pneumonia a	and COVID-19 c	ases from RSNA	and Youan Hos	pital)
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(05%CI)	0.9636	0.9600	0.9345	0.8821	0.9596	0.8987
$\Gamma 1(957001)$	(0.9368, 0.9862)	(0.9314, 0.9831)	(0.8981, 0.9655)	(0.8354, 0.9223)	(0.9302, 0.9846)	(0.8550, 0.9372)
Kappa (05% CI)	0.9378	0.9305	0.8915	0.7926	0.9303	0.8229
Kappa(9570CI)	(0.8927, 0.9766)	(0.8831, 0.9694)	(0.8252, 0.9387)	(0.7140, 0.8633)	(0.8828, 0.9757)	(0.7500, 0.8864)
Specificity (05% CI)	0.9742	0.9548	0.9290	0.8839	0.9613	0.9032
Specificity (9576CI)	(0.9480, 0.9940)	(0.9195, 0.9857)	(0.8854, 0.9660)	(0.8333, 0.9299)	(0.9308, 0.9929)	(0.8581, 0.9497)
Songitivity (05% CI)	0.9636	0.9818	0.9640	0.9182	0.9727	0.9273
Sensitivity (957001)	(0.9262, 0.9913)	(0.9524, 1.0000)	(0.9259, 0.9915)	(0.8627, 0.9646)	(0.9380, 1.0000)	(0.8738, 0.9712)
Precision(95% CI)	0.9636	0.9391	0.9068	0.8487	0.9469	0.8718
	(0.9266, 0.9917)	(0.8916, 0.9802)	(0.8509, 0.9565)	(0.7788, 0.9068)	(0.9038, 0.9904)	(0.8087, 0.9280)

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	$\operatorname{statistic}$	p-value	statistic
F1	1.0000	0.9375	1.0000	0.9156	1.0000	0.9770	1.0000	0.9231	1.0000	0.9481
Kappa	1.0000	0.9259	1.0000	0.8901	1.0000	0.9302	1.0000	0.9231	1.0000	0.8621
Specificity	1.0000	0.7943	1.0000	0.7152	1.0000	0.8617	1.0000	0.9231	1.0000	0.6829
Sensitivity	1.0000	0.9375	1.0000	0.9148	1.0000	0.9708	1.0000	0.9231	1.0000	0.9351
Precision	1.0000	0.8800	1.0000	0.8282	1.0000	0.9157	1.0000	0.9231	1.0000	0.8148

Supplementary Table 15: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and *Normal cases by means of X-data collected from RSNA, CCD datasets and Youan Hospital

Supplementary Table 16: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and Pneumonia cases by means of X-data collected from RSNA dataset and Youan Hospital)

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	0.9498	1.0000	0.9144	1.0000	0.9494	1.0000	0.9720	1.0000	0.9286
Kappa	1.0000	0.9333	1.0000	0.8843	1.0000	0.9236	1.0000	0.9722	1.0000	0.8974
Specificity	1.0000	0.8559	1.0000	0.7408	1.0000	0.8497	1.0000	0.9018	1.0000	0.8145
Sensitivity	1.0000	0.9440	1.0000	0.8940	1.0000	0.9366	1.0000	0.9593	1.0000	0.9291
Precision	1.0000	0.9151	1.0000	0.8585	1.0000	0.9375	1.0000	0.9238	1.0000	0.9065

Supplementary Table 17: Performance indices of the classification framework (CNNCF) of the experiment P and the average performance of the 7th year respiratory resident (Respira.), the 3rd year emergency resident (Emerg.), the 1st year respiratory intern (Intern), the 5th year radiologist(Rad-5th) and the 3rd year radiologist(Rad-3rd).

	CT-	data(*Normal ar	nd COVID- $1\overline{9}$ cas	ses from LUNA	and Youan Hosp	oital)
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(05%CI)	1.0000	1.0000	1.0000	0.9048	1.0000	0.9500
F1(9570C1)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8000, 0.9796)	(1.0000, 1.0000)	(0.8649, 1.0000)
	1.0000	1.0000	1.0000	0.8537	1.0000	0.9250
Kappa(95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7015, 0.9655)	(1.0000, 1.0000)	(0.8052, 1.0000)
$Q_{-1} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$	1.0000	1.0000	1.0000	0.9250	1.0000	0.9750
Specificity(95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)	(1.0000, 1.0000)	(0.9117, 1.0000)
	1.0000	1.0000	1.0000	0.9500	1.0000	0.9500
Sensitivity(95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8180, 1.0000)	(1.0000, 1.0000)	(0.8462, 1.0000)
Precision(95%CI)	1.0000	1.0000	1.0000	0.8636	1.0000	0.9500
· · · · ·	(1.0000, 1.0000)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.7058, 1.0000)	(1.0000, 1.0000)	(0.8333, 1.0000)
	CT-d	ata(Pneumonia	and COVID-19 c	cases from ICNP	and Youan Hos	pital)
	CNNCF	Respire.	Emerg.	Intern.	Rad-5th	Rad-3rd
E1(05%CI)	0.9756	1.0000	0.9048	0.8000	0.9744	0.7391
F1(9570C1)	(0.9129, 1.0000)	(1.0000, 1.0000)	(0.7856, 0.9787)	(0.6471, 0.9091)	(0.9143, 1.0000)	(0.5599, 0.8627)
Vanna (0507 CI)	0.9664	1.0000	0.8678	0.7158	0.9654	0.8229
Kappa(95%CI)	(0.8837, 1.0000)	(1.0000, 1.0000)	(0.7079, 0.9690)	(0.5356, 0.8683)	(0.8837, 1.0000)	(0.4069, 0.7931)
$Q_{-1} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$	0.9818	1.0000	0.9455	0.8727	1.0000	0.8364
Specificity (95%CI)	(0.9375, 1.0000)	(1.0000, 1.0000)	(0.8793, 1.0000))	(0.7826, 0.9584)	(1.0000, 1.0000)	(0.7414, 0.9259)
$C = -:+:=:+=-(0 \times 0 \times$	1.0000	1.0000	0.9500	0.9000	0.9500	0.8500
Sensitivity(95%CI)	(1.0000, 1.0000)	(1.0000, 1.0000)	(0.8260, 1.0000)	(0.7500, 1.0000)	(0.8421, 1.0000)	(0.6667, 1.0000)
Precision(95%CI)	0.9524	1.0000	0.8636	0.7200	1.0000	0.6538
	(0.8398, 1.0000)	(1.0000, 1.0000)	(0.6923, 1.0000)	(0.5263, 0.8966)	(1.0000, 1.0000)	(0.4583, 0.8422)

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	$\operatorname{statistic}$	p-value	statistic
F1	1.0000	0.9000	1.0000	0.8502	1.0000	0.9268	1.0000	0.9474	1.0000	0.8571
Kappa	1.0000	0.9000	1.0000	0.8502	1.0000	0.9268	1.0000	0.9473	1.0000	0.8571
Specificity	1.0000	0.9000	1.0000	0.8502	1.0000	0.9268	1.0000	0.9048	1.0000	0.8571
Sensitivity	1.0000	0.9000	1.0000	0.8502	1.0000	0.9268	1.0000	0.9474	1.0000	0.8571
Precision	1.0000	0.7857	1.0000	0.7222	1.0000	0.8958	1.0000	0.9167	1.0000	0.6875

Supplementary Table 18: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and *Normal cases by means of CT-data collected from LUNA dataset and Youan Hospital

Supplementary Table 19: Results of McNemar's Test for CNNCF and experts on distinct of COVID-19 and Pneumonia cases by means of CT-data collected from ICNP dataset and Youan Hospital)

	CNNCF/Respira.		CNNCF/Emerg.		CNNCF/Intern.		CNNCF/Rad-5th.		CNNCF/Rad-3rd.	
	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic	p-value	statistic
F1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Kappa	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Specificity	1.0000	0.8484	1.0000	0.7911	1.0000	0.9318	1.0000	0.8750	1.0000	0.8235
Sensitivity	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	1.0000	0.9730	1.0000	0.9609	1.0000	1.0000	1.0000	0.9474	1.0000	1.0000

Supplementary Figure 12: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification using XMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is pneumonia. *Normal cases, pneumonia cases and COVID-19 cases used for evaluation were collected from both public data and Youan hospital data.

Supplementary Figure 13: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification using CTMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is pneumonia. *Normal cases and pneumonia cases used for evaluation were collected from both public data and Youan hospital data.

Supplementary Figure 14: Boxplots of F1 score, Kappa score and specificity for the CNNCF and expert results for COVID-19 identification on XMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is Pneumonia. Bootstrapping is used to generate 1000 resampled validation sets for both XMVS and CTMVS.

Supplementary Figure 15: Boxplots of F1 score, Kappa score and specificity for the CNNCF and expert results for COVID-19 identification on CTMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is Pneumonia. Bootstrapping is used to generate 1000 resampled validation sets for both XMVS and CTMVS.

Supplementary Figure 16: Boxplots of precision and sensitivity for the CNNCF and expert results for COVID-19 identification on XMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is Pneumonia. Bootstrapping is used to generate 1000 resampled validation sets for both XMVS and CTMVS.

Supplementary Figure 17: Boxplots of precision and sensitivity for the CNNCF and expert results for COVID-19 identification on CTMVS. NC indicates that the positive case is a COVID-19 case, and the negative case is *Normal. PC indicates that the positive case is COVID-19, and the negative case is Pneumonia. Bootstrapping is used to generate 1000 resampled validation sets for both XMVS and CTMVS.

n. Experiment-R. In order to obtain a more comprehensive evaluation of the CNNCF while further improv-170 ing the usability in clinical practice, the CNNCF was used to distinguish the COVID-19, pneumonia and 171 *Normal cases simultaneously. The ROC scores for distinguishing COVID-19 from *Normal and pneu-172 monia cases using XMVS are plotted in Supplementary Fig. 16-a; the AUROC of the CNNCF is 0.9714. 173 The precision-recall scores for distinguishing COVID-19 from *Normal and pneumonia cases using X-data 174 are shown in Supplementary Fig. 16-c; the AUPRC of the CNNCF is 0.9551. The ROC scores for dis-175 tinguishing COVID-19 from *Normal and pneumonia cases using CTMVS are plotted in Supplementary 176 Fig. 16-b; the AUROC of the CNNCF is 1.0. The precision-recall scores for distinguishing COVID-19 177 from *Normal and pneumonia cases are shown in Supplementary Fig. 16-d; the AUPRC of the CNNCF 178 is 1.0. 179

a X-RAY-NPC

Supplementary Figure 18: ROC and PRC curves for the CNNCF and expert results for COVID-19 identification using XMVS and CTMVS. NPC indicates that the positive case is a COVID-19 case, and the negative case is *Normal and pneumonia. *Normal cases, pneumonia cases and COVID-19 cases used for evaluation were collected from both public data and Youan hospital data.

Clinical indicators	COVID-19(n=95)
White blood cell $(10^9/L)$	4.26[3.50, 5.82]
Neutrophil (%)	63.50[51.50, 72.00]
Lymphocyte (%)	26.10[18.80, 34.55]
Procalcitonin (mg/L)	0.12[0.10, 0.15]
C-reactive protein (mg/L)	16.30[3.79, 39.95]

Supplementary Table 20: Five clinical indicators of COVID-19

Supplementary Methods

TS4

3

Supplementary Figure 19: Details of control Gate Block.

			RT-PCR testing		
	ResBlock-A	ResBlock-B	Control Gate Block	ResBlock-A	ResBlock-B
TS1	2	1	1	3	1
TS2	2	2	1	2	1
TS3	3	1	1	2	1

1

 $\mathbf{2}$

1

2

Supplementary Table 21: Hyper parameters of four teacher networks(TS)

Supplementary Table 22: Comparision of RT-PCR test results using throat specimen and the CNNCF results using CT data for COVID-19 and *Normal cases

	CNNCF	RT-PCR
F1(95%CI)	$1.0000 \ (1.0000, 1.0000)$	$0.9502 \ (0.9068, 0.9790)$
Kappa(95%CI)	$1.0000 \ (1.0000, 1.0000)$	$0.9229 \ (0.8574, 0.9664)$
Specificity(95%CI)	$1.0000 \ (1.0000, 1.0000)$	$1.0000 \ (1.0000, 1.0000)$
Sensitivity(95%CI)	$1.0000 \ (1.0000, 1.0000)$	$0.8947 \ (0.8295, 0.9588)$
Precision(95%CI)	1.0000 (1.0000, 1.0000)	1.0000(1.0000, 1.0000)

Supplementary Figure 20: Details of knowledge distilling method.

		True	condition				
	Total population	Condition positive	Condition negative	$= \frac{\sum \text{Condition positive}}{\sum \text{Total population}}$			
Predicted	Predicted condition positive	True positive , Power	False positive , Type error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	False discov = $\frac{\sum Fals}{\sum Predicted c}$	ery rate (FDR) se positive condition negative	
condition Predicte condition negativ		False negative , Type error	True negative	False omission rate (FOR) = $\frac{\sum False negative}{\sum Predicted condition negative}$	Negative predictive value $(NPV) = \frac{\sum \text{True negative}}{\sum \text{Predivted condition negative}}$		
		$\begin{array}{c} \mbox{True positive rate} \\ (TPR), Recall, \\ \mbox{Sensitivity, probability} \\ \mbox{of detection =} \\ \underline{\sum \mbox{True positive}} \\ \underline{\sum \mbox{Condition positive}} \end{array}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False positive}{\sum Condition negative}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio	F1 score =	Accuracy (ACC) = ∑True positive+∑True negative
		False negative rate (FNR), Miss rate = \sum False negative \sum Condition positive	True negative rate (TNR), Specificity (SPC) = $\frac{\sum \text{True negative}}{\sum \text{Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$	1 Recall + 1 Precision	∑ Total population

Supplementary Figure 21: The equations of the statistical indices.

¹⁸¹ Supplementary Abbreviations

Supplementary	Table	23:	Abbreviations

Abbreviations	Words and Phrases	Abbreviations	Words and Phrases
COVID-19	Coronavirus Disease 2019	CT	Computed Tomography
CNN	Convolutional Neural Network	WHO	World Health Organization
rRT-PCR	real-time Reverse TranscriptasePolymerase Chain Reaction	SOPs	Standard Operating Procedures
BSL-3	BioSafety Level 3	RNA	RiboNucleic Acid
ILI	Influenza-Like Illness	SARI	Severe Acute Respiratory Infection
CXR	Chest RadiogRaphy	DL	Deep Learning
SIFT	Scale-Invariant Feature Transform	RANSAC	Random Sample Consensus
PCA	Principal Component Analysis	Grad-CAM	Gradient-weighted Class Activation Mapping
TTSF	Train-Test-Split Function	DICOM	Digital Imaging and Communications in Medicine
OpenCV	Open Source Computer Vision Library	CNNCF	Convolutional Neural Network based Classification Framework
CNNRF	Convolutional Neural Network based Regression Framework	XPDS	X-ray Public DataSet
XPTS	X-ray Public Training Set	XPVS	X-ray Public Test Set
XHDS	X-ray Hospital DataSet	XHTS	X-ray Hospital Training Set
XHVS	X-ray Hospital Test Set	CTPDS	CT Public DataSet
CTPTS	CT Public Training Set	CTPVS	CT Public Test Set
CTHDS	CT Hospital DataSet	CTHTS	CT Hospital Training Set
CTHVS	CT Hospital Test Set	CADS	Correlation Analysis DataSet
CATS	Correlation Analysis Training Set	CAVS	Correlation Analysis Test Set
SAs	Suspected Areas with inflammatory lesions	XMTS	X-ray Mixed Training Set
XMVS	X-ray Mixed Test Set	CTMTS	CT Mixed Training Set
CTMVS	CT Mixed Test Set	CCD	COVID CXR Dataset
ROC	Receiver Operating Characteristic	AUROC	the Area Under the ROC curve
AUPRC	the Area Under the Precision-Recall Curve	DBSCAN	Density-Based Spatial Clustering of Applications with Noise
CPC	Center Pixel Coordinates	ST	Significance Test
MSE	Mean Square Error	MAE	Mean Absolute Error
BMSE	Boot Mean Square Error	r	correlation coefficient
p2	coefficient of determination	PCC	Perman Convelation Coefficient
SCD	Steehestia Cradient Descent	IPC	Joint Photographic Exports Croup
PNG	Portable Network Graphics	TIFF	Tag Image File Format
TPR	True Positive Bate	FPR	False Positive Bate
TP	Two Positivo	TN	True Negative
EN	False Negative	DDV	Positivo Prodictivo Valuo
VNDDS	Y data of the *Normal argos in YPDS	VDDDS	Y data of the Proymonia gages in YPDS
XCPDS	X data of the COVID 10 areas in XPDS	XNUDS	X data of the *Normal areas in XPUS
VPPDS	X data of the Provmonia gages in XPUS	VCPDS	X data of the COVID 10 anges in XPHS
CTNDDS	CT data of the *Nameal asses in CTDDS	CTDDDC	CT data of the Drawnania man in CTDDS
CINFDS	CT data of the COVID 10 serves in CTPDS	CIFFDS	CT data of the "Nerreal second in CTPDS
CTUPDS	CT data of the Dreverseis mass in CTPDS	CINHDS	CT data of the COVID 10 serves in CTPHS
CIFFDS	C1-data of the Fleumonia cases in C1FH5	CICFDS	Carrier Connected Values
JEON	Jon Conint a biost notation	Mar Basling	Man Dalia - Laura
JSON	JavaScript object notation	Max-roomig	Max-rooning Layer
BN	batch horm layer	SAL	Standardized Residency Training
карра	Kappa score	Sen	Sensitivity
Spe	Specificity	Pr	Precision
Normal cases	cases where the lungs are not manifest evidence of COVID-19	, pneumonia or influenza or	i imaging and the KT-PCK testing of the COVID-19 is negative.
COVID-19 cases	cases where the lungs are manifest evidence of COVID-19 on	imaging and the KI-PCR	testing of the COVID-19 is postive.
Innuenza cases	cases where the lungs are manifest evidence of Influenza on	imaging and the RT-PCR	testing of the COVID-19 is negative.
Pneumonia case:	s cases where the lungs are manifest evidence of Pneumonia on	imaging and the RT-PCR	testing of the COVID-19 is negative.

¹⁸² Supplementary References

- [1] Zhu, J., Li, W. & Chen, L. Doctors in china: improving quality through modernisation of residency
 education. *The Lancet* 388, 1922–1929 (2016).
- [2] Huang, S.-L., Chen, Q. & Liu, Y. Medical resident training in china. International Journal of Medical Education 9, 108 (2018).
- ¹⁸⁷ [3] Zeng, M. S. et al. Current status of radiology in china. World journal of gastroenterology 6, 193 (2000).