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Abstract
The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) 
demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The 
covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA 
elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called 
non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide 
chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The 
Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus 
target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. 
Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and 
drugability besides the classical virus’ proteases. We here report the near-complete NMR backbone chemical shifts of the 
putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based 
investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.

Keywords SARS-CoV-2 · Non-structural protein · Nucleic acid-binding domain · Solution NMR-spectroscopy · Protein 
drugability · Covid19-NMR

Biological context

SARS-CoV-2, the cause of the early 2020 pandemic accom-
panied by the respiratory disease called COVID-19, is the 
latest representative of the coronaviridae family, which 
also comprises the 2002 first generation SARS-CoV and 
the Middle East Respiratory Syndrome (MERS)-CoV. The 
severe velocity of virus spread, based on its unexpectedly 
high infectivity, demands for a rapid action towards both 
the development of a vaccine and potent viral inhibitors to 
weaken or eliminate symptoms that are a major life-thread, 
especially to older generations worldwide.

The almost 30-kb enveloped positive-sense single-
stranded RNA of SARS-CoV-2 represents one of the larg-
est known viral genomes. Contained therein are possible 
14 open reading frames (ORFs) that encode for up to 30 
transcripts, the majority of which have been proven at 
protein level (Gordon et al. 2020). Within the highly con-
served proteins of Betacoronaviruses (Yoshimoto 2020), 
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the ORF1a/b-encoded non-structural proteins (Nsp) 1–16 
assemble the replication/transcription complex which com-
prises an incompletely understood network of viral-viral 
and host-viral protein-protein and RNA-protein interac-
tions. Besides the structural Spike protein, important for 
viral entry, it is a set of non-structural proteins that rep-
resent the canonical protein drug targets, among them the 
two proteases Nsp5 (Mpro) and Nsp3d (PLpro), the Nsp3b 
ADP-ribose-phosphatase macrodomain, and the Nsp7/8/12 
RNA-dependent RNA polymerase complex.

Nsp3, the largest Nsp (Snijder et al. 2003), is one of the 
most enigmatic coronavirus proteins as it is composed of a 
plethora of functionally related, yet independent subunits. 
After cleavage of Nsp3 from the full-length ORF1-encoded 
polypeptide chain, it displays a 1945-residue multi-domain 
protein, with individual functional entities that are sub-
classified from Nsp3a to Nsp3e followed by the ectodomain 
embedded in two transmembrane regions and the very C-ter-
minal CoV-Y domain. Nsp3e is unique to Betacoronaviruses 
and consists of a nucleic acid-binding domain (NAB) and 
the so-called group 2-specific marker (G2M) (Neuman et al. 
2008). Structural information is rare; while the G2M is pre-
dicted to be intrinsically disordered (Lei et al. 2018), the 
only available experimental structure of the Nsp3e NAB was 
solved from SARS-CoV by the Wüthrich lab using solution 
NMR (Serrano et al. 2009). The SARS-CoV Nsp3e NAB 
was shown to bind G-rich ssRNA and to possess DNA-
unwinding capability (Neuman et al. 2008), while its precise 
function and well-defined consensus target sequences have 
remained unknown. Seeing its specific appearance, Nsp3e 
thus represents a potential drug target for both the current 
as well as potential future Betacoronavirus epidemic waves.

The 2020 founded research consortium covid19-nmr 
seeks to rapidly and publicly support the search for anti-
viral drugs using an NMR-based screening approach which 
requires the broad production of all drugable proteins and 
RNAs and their as comprehensive as possible assignment of 
NMR resonances, and eventually the determination of struc-
tures to be used in rational drug design. We here provide 
the near-complete backbone assignment of the SARS-CoV-2 
Nsp3e NAB and thereby enable its exploitability in follow-
up applications, such as residue-resolved drug screening and 
interaction mapping.

Methods and experiments

Construct design

This study uses the SARS-CoV-2 NCBI reference 
genome entry NC_045512.2, identical to GenBank entry 
MN908947.3 (Wu et al. 2020). The definition of domain 
boundaries for the Nsp3e NAB was guided by the available 

NMR structure (PDB 2K87) of its closest homologue, i.e. 
Nsp3e from the 2002 first generation SARS-CoV (Serrano 
et al. 2009), sharing 82% sequence identity. Based on the 
sequence alignment of the entire SARS-CoV-2 Nsp3e with 
SARS-CoV Nsp3e and consideration of flexible overhangs 
observed in the structure, we defined our expression con-
struct to span amino acids 1088–1203 counting the over-
all Nsp3 primary sequence. A codon-optimized expression 
construct of SARS-CoV-2 Nsp3e NAB was obtained from 
GenScript Biotech (Netherlands), inserted into the pET3b-
based vector pKM263, containing an N-terminal  His6-tag, a 
GST-tag and a tobacco etch virus (TEV) cleavage site. Due 
to the nature of the TEV cleavage site, the produced protein 
contained four artificial N-terminal residues (Gly-3, Ala-2, 
Met-1 and Gly0) after cleavage, before the original protein 
sequence starts with Tyr1 according to Tyr1088 in the full-
length Nsp3 sequence.

Sample preparation

Uniformly 13C,15N-labelled Nsp3e NAB protein was 
expressed in E. coli strain BL21 (DE3) in M9 minimal 
medium containing 1 g/L 15NH4Cl (Cambridge Isotope Lab-
oratories), 2 g/L 13C6-d-glucose (Eurisotop) and 100 µg/mL 
ampicillin. Protein expression was induced at O.D.  600nm 
of 0.7 with 1 mM isopropyl-beta-thiogalactopyranoside for 
18 h at room temperature. The cell pellet was resuspended 
in 50 mM sodium phosphate, 300 mM sodium chloride, 
10 mM imidazole, 2 mM Tris-(2-carboxyethyl)-phosphine 
(TCEP) and 100 µL protease inhibitor mix (SERVA) per 1 L 
of culture, pH 6.5. Cells were disrupted by sonication. The 
supernatant was cleared by centrifugation (20 min, 7000×g, 
4 °C). The cleared supernatant was passed over a  Ni2+-NTA 
gravity flow column (Sigma-Aldrich) and the  His6-GST-tag 
was cleaved over night at 4 °C with 0.5 mg of TEV protease 
per 1 L of culture, while dialyzing into size exclusion buffer 
(25 mM sodium phosphate, 150 mM sodium chloride, 2 mM 
DTT, 0.02%  NaN3, pH 7.0). TEV protease and the cleaved 
tag were removed via a second  Ni2+-NTA gravity flow col-
umn and Nsp3e was further purified via size exclusion on 
a HiLoad 16/600 SD 75 (GE Healthcare). Fractions con-
taining pure Nsp3e were determined by SDS-PAGE, pooled 
and concentrated using Amicon centrifugal concentrators 
(molecular weight cutoff 3 kDa). NMR samples were pre-
pared in 25 mM sodium phosphate pH 7.0, 150 mM sodium 
chloride, 2 mM TCEP, 0.02%  NaN3, 10% (v/v)  D2O, 300 µM 
4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) as internal 
chemical shift standard at Nsp3e concentrations of 0.6 to 
1.1 mM.
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NMR experiments

The Nsp3e NAB backbone assignment was performed by 
analyzing  [15N,1H]-HSQC and  [15N,1H]-TROSY experi-
ments, the triple-resonance experiments HNCACB and 
HN(CO)CACB, and verified by the HN(CA)CO/HNCO pair 
of spectra. Semi-constant-time (15N) triple-resonance pulse 
sequences applied in this study were  [15N,1H]-TROSY-based 
(Pervushin et al. 1997; Salzmann et al. 1998) and used sen-
sitivity-enhanced gradient echo/antiecho coherence selec-
tion (Czisch and Boelens 1998; Schulte-Herbrüggen and 
Sorensen 2000). Acceleration of longitudinal 1H relaxation 
between scans was achieved in the Band-Selective Excitation 
Short-Transient (BEST) (Lescop et al. 2007; Schanda et al. 
2006; Solyom et al. 2013) manner using exclusively shaped 
proton pulses with bandwidths/offsets of 4.8/8.3 ppm and the 
inter-scan delay set to 0.3 or 0.4 s. A 3D NOESY-[15N,1H]-
HSQC (Marion et al. 1989; Zuiderweg and Fesik 1989) with 
water suppression using a WATERGATE sequence (Piotto 
et al. 1992) was recorded to complete backbone assignments 
and also provided Gln/Asn  NH2 group assignments.

Sequence-specific assignments of tryptophan side 
chain 1Hε1/15Nε1 resonances were obtained with a 
 [15N,1H]-BEST-TROSY version of the HN(CDCG)CB 
experiment (Lohr and Ruterjans 2002) with proton pulses 
centered at 10 ppm and covering a bandwidth of 4 ppm. 
A slowly exchanging histidine imidazole 1HNε2 resonance 
was assigned using a 2D BEST-TROSY-H(NCDCG)CB 
version with the magnetization transfer pathway adapted to 
histidine side chains and proton pulses centered at 12 ppm 
(Andersson et al. 1998). The 15N heteronuclear NOE experi-
ment was performed as an interleaved pseudo-3D TROSY 
version (Lakomek et al. 2012) using 256 indirect complex 

points. All NMR experiments were carried out at a sample 
temperature of 25 °C using Bruker Avance spectrometers of 
600, 700 and 950 MHz proton Larmor frequency, equipped 
with cryogenic z-axis gradient probes. Data acquisition and 
processing was undertaken using Topspin versions 3 and 4. 
Cosine-squared window functions were applied for apodiza-
tion in all dimensions. Spectra were referenced with respect 
to internal DSS and for 13C and 15N as described in (Wishart 
et al. 1995).

Assignments and data deposition

All assignments of the Nsp3e NAB were performed using 
the CCPNMR analysis 2.4 software suite (Vranken et al. 
2005) and the program Sparky (Lee et al. 2015).

The Nsp3e NAB 1H,15N-HSQC shown in Fig. 1 shows 
an excellent peak dispersion. Of note, we obtained a yet bet-
ter resolved amide correlation spectrum at 950 MHz proton 
frequency; however, we found some resonances exchange 
broadened and only visible at lower field strength, e.g. 
Phe23. For convenience, residues were numbered starting 
with 1 on Tyr1088. The overall high quality of all spectra 
allowed the assignment of > 98% of all backbone amides 
within the natural sequence (Tyr1-Thr116, according to 
Tyr1088-Thr1203), all Trp and Gln sidechain amides, and 
3 out of 10 Asn sidechain amides (17, 90, 101). The assign-
ments are in good agreement with the previously published 
assignments of the 2002 SARS-CoV Nsp3e  NAB1066 − 1181 
(Serrano et al. 2008), which reflects the high sequence simi-
larity (Yoshimoto 2020). Only two residues of the natural 
sequence (Asn22 and Ser73, both likely in flexible loop 
regions) could not be assigned in their backbone amides 
due to obvious line-broadening beyond detectability, which 

Fig. 1  1H, 15N-HSQC spectrum 
of the 13C, 15N-labelled SARS-
CoV-2 Nsp3e NAB at 1.1 mM 
concentration in 25 mM sodium 
phosphate pH 7, 150 mM NaCl, 
2 mM TCEP, 0.02%  NaN3, and 
0.3 mM DSS collected at 298 K 
on a 600 MHz Bruker Avance 
II spectrometer equipped with a 
triple-resonance TCI cryogenic 
probe. Backbone NH peaks are 
labelled with their assignments. 
Trp, Gln and Asn sidechain 
amides are indicated by W-sc, 
Q-sc and N-sc, respectively
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notably had also been observed for the SARS-CoV Nsp3e 
(Serrano et al. 2008). For amino acids Glu5, Ile7, Asn8, 
Asp57, Leu58, and Val114 we observed a second, minor 
conformation based on the preceding prolines with both cis 
and trans isomers present.

To assess the overall compactness of the NAB and inter-
nal dynamics, we recorded hetNOE data (Fig. 2a) as a func-
tion of the primary sequence. For residues 8-109, hetNOE 
values of 0.65 or higher were measured indicating an overall 
rigid structure of the protein. No regions of increased flex-
ibility were observed except for the two termini (residues 
1–7 and 110–116). We also calculated carbon secondary 
chemical shifts based on the chemical shifts of  Cα and  Cβ 
(Fig. 2b bottom) relative to random coil values essentially 
as described by (Wishart and Sykes 1994). Four consecu-
tive residues with significant negative or positive shifts were 
used to define either β-strands or α-helices, respectively. Our 
data suggest a ββαββαββα-fold, which is in agreement with 
the structure of its homologue from SARS-CoV (Fig. 2b 
top). While all secondary structure elements well align 
between the two homologues, helix-2 - according to our data 
- is shorter and directly connects to β-strand 4. The very 

terminal residues do not display secondary structure content, 
which is in line with the increased flexibility observed in the 
hetNOE experiment. Our data thus suggest that the NAB 
of SARS-CoV-2 Nsp3e resembles a similar structure as the 
SARS-CoV Nsp3e (Serrano et al. 2009). Our determined 
NMR resonance assignments and spectral quality clearly 
prove the Nsp3e NAB drugability and will now pave the way 
towards a solution structure, RNA- and protein interaction 
studies, and residue-resolved high-throughput drug screen-
ing as a crucial contribution to the initiative of screening all 
potential SARS-CoV-2 proteins.
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Data availability The chemical shift values for the 1H, 13C and 
15N resonances of SARS-CoV-2 Nsp3e have been deposited at the 
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Fig. 2  Display of {{1H}}15N heteronuclear NOE values (a) and 
combined Cα/Cβ carbon secondary chemical shift (SCS) values of 
the SARS-CoV-2 Nsp3e NAB plotted against the protein primary 
sequence (b). a hetNOE values are shown with errors as derived from 
the program CCPNMR Analysis 2.4 (Vranken et al. 2005) based on 
the respective signal-to-noise of spectra. No values are shown for 
Asn22 and Ser73 (missing assignments) and Phe23, His82 and Lys95 
due to large relative errors based on the overall low peak intensities of 

these amides. Additional gaps derive from prolines. b SCS are inter-
preted towards their underlying secondary structure as shown above 
the panel (experimental) and when compared to the SARS-CoV 
Nsp3e homologue structure (Serrano et  al. 2008, 2009) from PDB 
entry 2K87. α-helices are shown with red bars, β-strands with blue 
arrows, respectively. Light colors indicate the presence of elements 
with imperfect geometry in the structure or merely tentative second-
ary chemical shifts
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BioMagResBank (https ://www.bmrb.wisc.edu) under accession num-
ber 50334. Spectral raw data (upon request) and assignments are also 
accessible through https ://covid 19-nmr.de.
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