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Abstract 

Background:  Data transformations are commonly used in bioinformatics data 
processing in the context of data projection and clustering. The most used Euclidean 
metric is not scale invariant and therefore occasionally inappropriate for complex, 
e.g., multimodal distributed variables and may negatively affect the results of cluster 
analysis. Specifically, the squaring function in the definition of the Euclidean distance 
as the square root of the sum of squared differences between data points has the con-
sequence that the value 1 implicitly defines a limit for distances within clusters versus 
distances between (inter-) clusters.

Methods:  The Euclidean distances within a standard normal distribution (N(0,1)) 
follow a N(0,

√
2 ) distribution. The EDO-transformation of a variable X is proposed as 

EDO = X/(
√
2 · s) following modeling of the standard deviation s by a mixture of 

Gaussians and selecting the dominant modes via item categorization. The method was 
compared in artificial and biomedical datasets with clustering of untransformed data, 
z-transformed data, and the recently proposed pooled variable scaling.

Results:  A simulation study and applications to known real data examples showed 
that the proposed EDO scaling method is generally useful. The clustering results in 
terms of cluster accuracy, adjusted Rand index and Dunn’s index outperformed the 
classical alternatives. Finally, the EDO transformation was applied to cluster a high-
dimensional genomic dataset consisting of gene expression data for multiple samples 
of breast cancer tissues, and the proposed approach gave better results than classical 
methods and was compared with pooled variable scaling.

Conclusions:  For multivariate procedures of data analysis, it is proposed to use the 
EDO transformation as a better alternative to the established z-standardization, espe-
cially for nontrivially distributed data. The “EDOtrans” R package is available at https://​
cran.r-​proje​ct.​org/​packa​ge=​EDOtr​ans.

Keywords:  Data science, Machine-learning, Biomedical informatics, Data 
preprocessing

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Ultsch and Lötsch ﻿BMC Bioinformatics          (2022) 23:233  
https://doi.org/10.1186/s12859-022-04769-w BMC Bioinformatics

*Correspondence:   
j.loetsch@em.uni-frankfurt.de

1 DataBionics Research 
Group, University of Marburg, 
Hans ‑ Meerwein ‑ Straße, 
35032 Marburg, Germany
2 Institute of Clinical 
Pharmacology, Goethe - 
University, Theodor Stern Kai 
7, 60590 Frankfurt am Main, 
Germany
3 Fraunhofer Institute 
for Translational Medicine 
and Pharmacology ITMP, 
Theodor‑Stern‑Kai 7, 
60596 Frankfurt am Main, 
Germany

https://cran.r-project.org/package=EDOtrans
https://cran.r-project.org/package=EDOtrans
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04769-w&domain=pdf


Page 2 of 18Ultsch and Lötsch ﻿BMC Bioinformatics          (2022) 23:233 

Introduction
Biomedical data often contain subgroup structures that are identified by data projection 
and clustering. For this purpose, informatic methods of data projection [1] and cluster 
identification [2] are available. Clustering is widely used in biomedical research. The 
quality of clustering plays a critical role in biomedical research and depends on the dis-
tance metrics used to quantify similarities and dissimilarities between data points [3], 
which allows the integration of the different dimensions into a measure of (dis-)similar-
ity. Two problems must be solved for a definition of a valid distance function on the data. 
First, the dispersions, e.g., the variances respectively standard deviations, of the differ-
ent variables in the data set must be made comparable. Therefore, standard workflows 
include data transformation. Second, the design of this transformation must consider 
the specifics of the distance function used. The importance of similarity metrics on the 
clustering of biomedical data has been recognized [4]. In many projects, Euclidean dis-
tance to z-standardized data is the default approach [5].

A particular problem with Euclidean distance is that it is not scale invariant, i.e., multi-
plying the data by a common factor changes the distance. Recognizing this potential pit-
fall in clustering approaches, adapted scaling methods have been proposed that take into 
account the scale dependence of the Euclidean distance, such as pooled variable scaling 
(PVS) [6]. In this report, an alternative to the standard z-transform of biomedical data is 
proposed as a more appropriate approach for clustering biomedical data. The "Euclid-
ean Distance Optimized" (EDO) data transformation addresses the scale dependence 
of Euclidean distance, but treats each variable separately and therefore does not intro-
duce clustering at the transformation level as alternative approaches do [6]. It specifi-
cally takes into account that the squaring function in the definition of Euclidean distance 
results a breakpoint for distances within (inner)clusters versus distances between (inter)
clusters at a value of 1. Thus, while in [6] the goal is to make the scales of different varia-
bles comparable, the present approach aims at minimizing differences within classes and 
maximizing differences between classes. It is therefore more focused on finding clusters 
in the data. The present work is concerned with numerical data, in particular data vari-
ables with an interval scale level of measurement. Fusion of heterogeneous data such as 
strings or images is not considered. For integration of such data into a single path, see, 
e.g., [7].

Methods
Distributions within and between classes in data sets

Defining a meaningful distance requires expert knowledge, which in many projects is 
replaced by the "usual procedure" of applying the Euclidean distance to standardized 
(z-standardized) data [5]. The Euclidean distance is the most intuitive distance metric 
as it corresponds to the everyday perception of distances. The Euclidean distance d of 
two data cases (x1, x2) is defined as the square root of the sum of squared differences 
d
(

x, y
)

=

√

∑

∣

∣xi − yi
∣

∣

2 . The Euclidean metric is translation invariant, i.e., it does 
not change when a common value is added to each variable of the data; however, the 
Euclidian distance is not scale invariant, i.e., multiplying the data with a common fac-
tor changes the distance! That is, using the squaring function (d2) on d =

∣

∣xi − yi
∣

∣ has 
the effect that differences < 1 become smaller and differences > 1 result in larger values 
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of d2. For class or cluster problems, the squaring function in Euclidean distance (see 
above) has therefore the consequence of implicitly defining 1 as the limit for inner class 
distances and between (inter) class distances. While this may be appropriate for simple 
distributions of a variable, such as normal (Gaussian) distributions, it may be inappro-
priate for more complex variables, such as characteristics with bimodal or multimodal 
distributions.

In data mining and knowledge discovery in multivariate data, the first step is to ana-
lyze the distribution of the individual variables. Let XinRd be a multivariate, i.e., 
d-dimensional data set representing a finite |X|= n number of outcomes (cases) of an 
experiment. This is typically described as drawn at random from a process that generates 
the data according to some probability distribution function (pdf(X)). Distributions are 
called simple, if the standard deviation s(x) = 1

n

√

∑n
i=1 (m− xi)

2 , for all xi in X with 
where m denotes the arithmetic mean value of in X, is an appropriate measure of the dis-
persion of the variable. Normal or Gaussian distributions are the most encountered 
types of simple distributions and often serve as standard model. If the values x of a given 
variable are normally distributed, then an application of the z-standardization 
z = (x − m)/s, where m denotes the mean of the values in the variable and s the standard 
deviation, yields a standard normal distribution z ~ N(0, 1). The Euclidean dis-
tances = (zi − zj) in N(0, 1) follow an N(0, 

√
2 ) distribution [8]. This implicitly defines 

innerclass distances as distances < 1 and interclass distances as distances > 1 (see the first 
panel in Fig. 1).

Algorithm

Considering the distribution parameters, this means that the intraclass versus interclass 
relevant limit for the distance of a data point from the center is 1 /

√
2 . Hence, the EDO 

transformation, provided that a suitable estimate of s is available, is defined as

This increases the innerclass range from that for raw data or z-standardized data, i.e., 
more data points around the arithmetic mean fall within the defined Euclidian distance 
of < 1 (Fig. 1).

Distributions are called complex if the data generating process produces multimodal 
distributions that have two or more local maxima (modes, peaks) in their probability 
distribution function. The reason for such modes may be that the data-generating pro-
cess operates in different states, e.g., "healthy" versus "sick." Such complex distributions 
are common in nature and especially in biology. A generative process underlying such 
multimodal distributed data can be described by a Gaussian mixture model (GMM), 
which generates data using a sum (i.e., mixture) of conditional probabilities:

where N(x|mi, si) (components) denote Gaussian probability densities with means mi and 
standard deviations si. M is the number of components in the mixture. The weights wi 

(1)EDO =
X

√
2 · s

(2)p(x) =
∑M

i=0
wiN (x|mi, si) =

∑M

i=1
wi ·

1
√
2πsi

· e
−
(x−mi)

2

2s2
i ,



Page 4 of 18Ultsch and Lötsch ﻿BMC Bioinformatics          (2022) 23:233 

denote the relative contribution of each Gaussian component to the overall distribution 
and add up to a value of 1. The most important or dominant subsets or modes within 
the data set are those with the largest weights, i.e., the largest prior probability. Which 
modes belong to this category can be determined using computed ABC analysis [12]. 
This divides the weights of the Gaussian mixture components into three non-overlap-
ping subsets named “A”, “B”, and “C” [13]. Subset “A” contains the “important few,” i.e., the 
weights that place the particular Gaussian mode in the “dominant” category. The com-
bined variances within this dominant set of components provide a more adequate meas-
ure of the dispersion of the data than the z-standardization. This will be discussed in 
more detail later in this report. When there is no dominant mode, e.g., when all classes 

Fig. 1  Implicit definition of instances within a class (innerclass instances) in an exemplary distribution 
using the Euclidean distance. Properties of the Euclidian distance relevant to innerclass and interclass 
distances. A The problem addressed by the EDO transformation has its origin in the behavior of the squared 
differences function,f (x) = x

2 . Here x2 < x holds for x values in the interval [1, 1] and x2 > x for x values 
outside this interval, which affects the analogous behavior of the Euclidean distance based on the sum 
of the squared single differences. The value of x = 1 at which the change occurs is marked by a red solid 
line. The dashed dark gray lines indicate the identity x2 = x. B Behavior of Euclidean distances compared 
to distances computed without using the square of individual distances, again indicating a break from ≤ 1 
to > 1 at a distance of d = 1 (solid red line). The identity between the two implementations of the distances 
is shown as a (horizontal) dashed dark gray line. C–E Limits on the assignment of a data point to the inner 
center of a distribution. The green lines mark the distance of one standard deviation from the mean in a 
normally distributed data set with distribution N(4,3). The red vertical lines mark the boundaries between 
which a data point has a Euclidean distance ≤ 1 from the center. Data points located within the innerclass 
rage are colored black, while data points located at greater distances from the center are colored gold. C For 
untransformed raw data, this innerclass range is much narrower than the usual mean ± standard deviation 
range. D When z-standardization is applied, the innerclass range becomes wider. The graph again shows 
the original data, but the innerclass limits were calculated for z-standardized data and transformed back to 
the original data range. E With the EDO transformation, the innerclass angel finally fulfills the desire to cover 
the usual mean +—normalization range. Again, the graph shows the original data, but the innerclass limits 
were calculated for EDO-transformed data and transformed back to the original data range. The figure has 
been created using the R software package (version 4.1.2 for Linux; https://​CRAN.R-​proje​ct.​org/ [9]) and the 
R libraries “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 [10]) and “ggthemes” (https://​cran.r-​proje​ct.​
org/​packa​ge=​ggthe​mes [11])

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes
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are equally weighted, the median of the standard deviations of the modes in ABC set “B” 
is used in the EDO transformation.

The standard deviation relevant for the EDO transformation is that of the dominant 
modes. In the case where more than one mode has been assigned to the dominant 
category, the combined standard deviation scombined is calculated as

where ni = wi · n is the relative number of data in mode i and mw =
∑M

1 (wi ·mi) the 
weighted mean in the GMM. The EDO transformation on multimodally distributed one-
dimensional data is then defined as

It is often known that the data is generated by a data generating process that oper-
ates in different states (e.g., healthy or sick), i.e., a prior classification of the data is 
given. The EDO transformation could then be calculated using this prior classifica-
tion. The distribution of the distances of the data points can be divided into innerclass 
and interclass according to the previous classification: If two cases x and y are from 
the same prior class, the distance is an innerclass distance, otherwise x and y are from 
two different classes and therefore their distance is classified as interclass distance. 
Based on these considerations, applying the EDO transformation to a three-class data 
set with three variables distributed according to Gaussian mixtures with M = 3 modes 
resulted in the expected improvement in k-means based clustering [14] (Fig. 2).

However, the underlying assumption that the pre-classification structure is reflected in 
the Euclidean distance structures may not always be valid. Assume a measured variable 
X that after statistical testing can be assumed to be normal Gaussian distributed. Let the 
pre-classification into healthy versus sick be such that if x ≤ mean(X), the diagnosis is 
that x is healthy, if x > mean(X), the diagnosis is that x is sick. In this type of pre-classifi-
cation, the distance structures between healthy and sick are indistinguishable. Therefore, 
it is advisable to base the EDO transformation on the observed modes of the distribution 
of the variable rather than on the pre-classification structure.

Experimentation

The programming work for this report was performed in the R language [17] using 
the R software package [9] (version 4.1.2 for Linux), which is available free of charge 
in the Comprehensive R Archive Network at https://​CRAN.R-​proje​ct.​org/. Consider-
ing the goal of EDO data transformation to improve subgroup separation, e.g., clus-
tering, the experiments were performed with artificial datasets created to have the 
required subgroup structure, or with biomedical data for which a subgroup structure 
was known. Clustering results were compared between the use of raw data, standard 
z-transformed data, and EDO-transformed data. The EDO transformation was per-
formed following the analysis of each variable for the modal distribution using the 

(3)scombined =

√

(
∑M

i=1

(

(ni − 1) · s2i + ni· ·mi
2
)

− n ·mw
2

n− 1

(4)EDO =
X

√
2 · scombined

https://CRAN.R-project.org/
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automated Gaussian mixture modeling implemented in the R library “opGMMassess-
ment” (https://​cran.r-​proje​ct.​org/​packa​ge=​opGMM​asses​sment).

Partitioning based clustering was mainly implemented as k-means clustering [14]; 
however, partitioning around medoids (PAM) was used for comparison [18]. Hierar-
chical clustering with Ward’s linkage [19] was used; however, average and complete 
linkage were used for comparison in analogy to the choice made in [6]. The Euclidean 
distance was used as the target of the transformation method presented here. Cluster-
ing was done using the R package “cluster” (https://​cran.r-​proje​ct.​org/​packa​ge=​clust​
er [20]). Cluster quality and stability were assessed by calculating the cluster accuracy 
and the adjusted Rand index [21] against the prior classification of the data, and as 
Dunn’s index [22], calculated using the R packages “fossil” (https://​cran.r-​proje​ct.​org/​

Fig. 2  Effects of EDO transformation on innerclass and interclass distances and clustering of multivariate 
datasets. K-means clustering of an artificial data set that represented a three-class scenario with values 
generated by Gaussian mixture models with four different variables with increasing means, various standard 
deviations with a total of 3000 instances with class weights = [0.7, 0.2, 0.1] in each variable. The clustering 
was performed on untransformed (raw) data (panels A–D), on z-standardized data (panels E–H), and on EDO 
transformed data (panels I–L). For each kind of data transformation, four panels are shown. The left panels A, 
E, I show the original data that consist of three variables that are distributed according to a Gaussian mixture 
containing three modes. The sinaplot [15] shows the individual data points of the three subgroups dithering 
along the x-axis to create a contour indicating the probability density of the distribution of the data points. 
Panels B, F, J show the distribution of innerclass and interclass distances as histograms. Panels C, G, H show 
factorial plots of the individual data points on a principal component analysis projection colored according to 
a k-means clustering. The borders of the colored areas visualize the cluster separation. The right panels D, H, 
L show Silhouette plots for the three clusters. Positive values indicate that the sample is within a cluster while 
negative values indicate that those samples might have been assigned to the wrong cluster because they are 
closer to neighboring than to their own cluster. The figure has been created using the R software package 
(version 4.1.2 for Linux; https://​CRAN.R-​proje​ct.​org/ [9]) and the R packages “ggplot2” (https://​cran.r-​proje​
ct.​org/​packa​ge=​ggplo​t2 [10]), and “FactoMineR” (https://​cran.r-​proje​ct.​org/​packa​ge=​Facto​MineR [16]). 
The colors were selected from the “colorblind_pal” palette provided with the R library “ggthemes” (https://​
cran.r-​proje​ct.​org/​packa​ge=​ggthe​mes [11])

https://cran.r-project.org/package=opGMMassessment
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=fossil
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes


Page 7 of 18Ultsch and Lötsch ﻿BMC Bioinformatics          (2022) 23:233 	

packa​ge=​fossil [23]) and “clValid” (https://​cran.r-​proje​ct.​org/​packa​ge=​clVal​id [24]). 
Clustering was compared to a modern alternative scaling approach targeting Euclid-
ean distance boundaries, recently proposed as pooled variable scaling (PVS) [6], in 
which, unlike the present method, scaling assumes a k-means clustering analysis of 
the entire dataset.

Implementation

The EDO data transformation method proposed here has been implemented in the R 
package “EDOtrans”, which is available at https://​cran.r-​proje​ct.​org/​packa​ge=​EDOtr​ans. 
The transformation process of a one-dimensional variable can be called with the func-
tion "EDOtrans(Data, Cls, PlotIt = FALSE, FitAlg = "normalmixEM", Criterion = "LR", 
MaxModes = 8, MaxCores = getOption("mc.cores", 2L), Seed)". At least one data vector 
("Data") is expected as input (1). If available, class information (2) per instance ("Cls") 
can be entered, which is then used as the basis for EDO transformation. The class infor-
mation can be the prior classification as used in the proof-of-concept in this report, 
or it can be obtained in any way, e.g., through interactive Gaussian mixture modeling 
with the R library "AdaptGauss" (https://​cran.r-​proje​ct.​org/​packa​ge=​Adapt​Gauss [25]), 
which allows data analysis under visual control which may capture the entire modal 
structure in more complicated cases better than fully automated solutions. However, as 
used in the experiments in this report, the class information can be omitted and then be 
created internally in the “EDOtrans” library, using Gaussian mixture modeling imported 
from the R package “opGMMassessment” (https://​cran.r-​proje​ct.​org/​packa​ge=​opGMM​
asses​sment). In this case, subsequent parameters such as the fitting algorithm, "FitAlg", 
the criterion for determining the number of modes in the mixture, "Criterion", and the 
maximum number of modes, “MaxModes”, are forwarded to that library. More detailed 
hyperparameter settings are beyond the scope of this report and are provided via the R 
library help function.

Results
Proof of concept study

A three-dimensional data set was created with 3000 instances drawn from three nor-
mal distributions with different probabilities, resulting in three-modal data (M = 3 
modes). For the three variables of which each followed a three-modal distribution, the 
class weights were always wi = [0.7, 0.2, 0.1] for classes 1 to 3. However, the means and 
standard deviations differed for the Gaussian mixtures, with parameter values for mix-
ture no. 1 were means = [0, 5, 15] and standard deviations = [2, 2, 3], for mixture no. 2 
were means = [4, 5, 6] and standard deviations = [4, 4, 3], and for mixture no. 3 were 
means = [3, 11, 15] and standard deviations = [0.5, 0.1, 0.4].

For this data set, standard clustering with k-means failed on the raw data, although at 
least variables #1 and #3 appeared to break into three groups (Fig. 2 top row of panels). 
The distribution of distances separately by class membership showed that there was a 
large overlap between within-class and between-class distances. This was little changed 
by z-standardization, which improved clustering only slightly by 1% accuracy (Fig.  2 
middle row of panels). The EDO transformation was performed based on the previous 

https://cran.r-project.org/package=fossil
https://cran.r-project.org/package=clValid
https://cran.r-project.org/package=EDOtrans
https://cran.r-project.org/package=AdaptGauss
https://cran.r-project.org/package=opGMMassessment
https://cran.r-project.org/package=opGMMassessment
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classification. After the EDO transformation of each variable, the clustering solution 
appeared almost perfect in this sample data set (Fig. 2 bottom row of panels). Replacing 
k-means with PAM clustering did not change these observations (Additional file 1: Fig. 
S1).

Simulation study

A four-dimensional data set with 1,000 instances drawn from three normal distributions 
each with different probabilities resulting in a three-modal distribution (M = 3 modes) 
in a Gaussian mixture model (GMM). Each of the three normal distributions is charac-
terized by its expected value mi and standard deviation si. The probability that an event 
is drawn from a certain normal distribution is described by a weighting parameter wi so 
that 

∑M
i=1 wi = 1 . Specifically, parameters mi, si, and wi, of the Gaussian mixtures M1, …, 

M4 were M1: mi = [− 9, − 3, 10], si = [3, 4, 5], wi = [0.12, 0.05, 0.83], M2: mi = [− 2, 0, 5], 
si = [2, 4, 2], wi = [0.39, 0.48, 0.13], M3: mi = [− 2, 0, 5], si = [2, 4, 2], wi = [0.39, 0.48, 0.13], 
and M4: mi = [− 6, 0, 2], si = [3, 1, 5], wi = [0.27, 0.06, 0.67]. This data set is available in 

Fig. 3  Results of hierarchical cluster analysis of a four-dimensional data set with 1,000 instances created 
from Gaussian mixtures with M = 3 modes (“GMMartificialData”). A The original and transformed data 
(z-transformation, EDO transformation, and PVS transformation [6]) are shown as a probability density 
function (PDF) estimated using the Pareto density estimation (PDE [27]), which was developed as a 
nonparametric kernel density estimator to improve subgroup separation in mixtures. B Cluster quality and 
stability assessed a as cluster accuracy and adjusted Rand index [21] against the prior classification of the 
data, and as Dunn’s index [22]. The boxes were constructed using minimum, quartiles, median (solid line 
inside the box) and maximum. The whiskers add 1.5 times the inter-quartile range (IQR) to the 75th percentile 
or subtract 1.5 times the IQR from the 25th percentile. The figure has been created using the R software 
package (version 4.1.2 for Linux; https://​CRAN.R-​proje​ct.​org/ [9]) and the R packages “ggplot2” (https://​
cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 [10]), and “FactoMineR” (https://​cran.r-​proje​ct.​org/​packa​ge=​Facto​
MineR [16]). The colors were selected from the “colorblind_pal” palette provided with the R library “ggthemes” 
(https://​cran.r-​proje​ct.​org/​packa​ge=​ggthe​mes [11])

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
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the R library "EDOtrans" as “GMMartificialData”. Seven classes were obtained via com-
bining the GMM decisions for all individual variables.

In a tenfold cross-validation scenario, random samples of n = 1000 instances were 
drawn from the original dataset with replacement by bootstrap resampling [26]. Each 
variable (Fig. 3 A) was the used untransformed, z-transformed, EDO-transformed after 
automatic detection of the number of modes using the R package "EDOtrans" described 
above, and PVS-transformed using the R script provided with the original publication 
of this method [6]. Internally, this uses majority voting among several methods to deter-
mine the number of modes, was imported from the R package "NbClust" (https://​cran.r-​
proje​ct.​org/​packa​ge=​NbClu​st), and then performs standard k-means clustering with 
100 initial random seeds to determine the center of the initial clusters, and the results 
are then used to perform the PVS transformation.

The results of hierarchical clustering using Ward’s method showed that the cluster-
ing compared to the prior classification was best when EDO-transformed variables were 
used (Fig. 3B). For this dataset, the z-transformation and the PVS-transformation gave 
the poorest results. However, in the bootstrap scenario, the clustering solutions were 
generally modest, as indicated by the relatively low values of cluster accuracy and the 
Rand and Dunn’s indices. Replacing Ward’s linkage with average or complete linkage did 
not change the results in terms of the relative impact of the data transformation meth-
ods used on the cluster quality (see Additional file 1: Figs. S1–S7).

Application of EDO transformation for clustering of further artificial and real datasets

Artificial data example

The “Lsun” dataset belongs to the so-called “Fundamental Clustering and Projection 
Suite” (FCPS), occasionally also referred to as “Fundamental Clustering Problems Suite”,  
of which the most comprehensive description has been published in [28]. The data set 
consists of three well-separated data classes, but with different convex hulls: a sphere 
and two "bricks" of different size (insert C in Fig. 4). This structural property raises the 
problem of different variances or densities in the cluster. The original data set consists of 
n = 400 instances with d = 2 variables and k = 3 classes. To make the task slightly more 
difficult, in the present experiments the variables were included twice, one in the origi-
nal version and again after random permutation.

The results of hierarchical clustering using Ward’s method showed that the best cluster 
accuracy and adjusted Rand index when the PVS-transformation was used, while the 
best Dunn’s index provided the EDO transformation (Fig.  4). Both innovative meth-
ods outperformed the classical methods of z-transformation or using untransformed 
variables.

Flow cytometric data example

Biomedical empirical data from flow cytometry using fluorescence-activated cell sorting 
(FACS) were available from a hematologic data set. For the present experiments, d = 4 
variables including the value of the forward scatter (FS) and cytological makers (CD) 
called for nondisclosure reasons a, b and d, which were downsampled from originally 
n = 111,686 cells obtained from 100 patients with chronic lymphocytic leukemia and 100 

https://cran.r-project.org/package=NbClust
https://cran.r-project.org/package=NbClust
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healthy control subjects to n = 3,000 instances. This data set (Fig. 5A) is available in the 
R library "EDOtrans" as “FACSdata” and consist of a subsample of a larger data set pub-
lished at https://​data.​mende​ley.​com/​datas​ets/​jk4dt​6wprv/1, (accessed March 1, 2022) 
[29]. The original study followed the Declaration of Helsinki and was approved by the 
Ethics Committee of Medical Faculty of the Phillips University of Marburg, Germany.

The results of hierarchical clustering using Ward’s method showed that the cluster-
ing compared to the prior classification was again best when EDO-transformed variables 
were used (Fig. 5B). Z-transforming the individual variables resulted in poorer clustering 
results in terms of accuracy and Rand or Dunn’s indices than using the original, untrans-
formed variables, while PVS-transforming resulted in clustering results comparable to 
those obtained with the untransformed dataset.

Fig. 4  Results of hierarchical cluster analysis of a modified version of the “Lsun” dataset form the 
“Fundamental Clustering and Projection Suite” (FCPS) [28]. The data set n = 400 instances with d = 4 variables 
(X1–X4), of which 2 variables are original and two were the same variables but randomly permuted, and 
k = 3 classes (see insert C). A The original and transformed data (z-transformation, EDO transformation, 
and PVS transformation [6]) are shown as a probability density function (PDF) estimated using the Pareto 
density estimation (PDE [27]), which was developed as a nonparametric kernel density estimator to 
improve subgroup separation in mixtures. B Cluster quality and stability assessed a as cluster accuracy and 
adjusted Rand index [21] against the prior classification of the data, and as Dunn’s index [22]. The boxes 
were constructed using minimum, quartiles, median (solid line inside the box) and maximum. The whiskers 
add 1.5 times the inter-quartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 
25th percentile. The figure has been created using the R software package (version 4.1.2 for Linux; https://​
CRAN.R-​proje​ct.​org/ [9]) and the R packages “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 [10]), 
and “FactoMineR” (https://​cran.r-​proje​ct.​org/​packa​ge=​Facto​MineR [16]). The colors were selected from the 
“colorblind_pal” palette provided with the R library “ggthemes” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggthe​
mes [11])

https://data.mendeley.com/datasets/jk4dt6wprv/1
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes


Page 11 of 18Ultsch and Lötsch ﻿BMC Bioinformatics          (2022) 23:233 	

Iris flower data example

The Iris flower data set was included for its wide use in statistics for testing of methods 
and because it was also used for the introductory simulation study in the report on the 
PVS method, which serves here as a comparative method [6]. The Iris data set gives the 
measurements in centimeters of the four variables sepal length and width or petal length 
and width for 50 flowers each of the three species Iris setosa, versicolor and virginica. As 
there are apparently at least half a dozen different versions of this data set, it is necessary 
to specify that in the present analysis, the version implemented in R software package 
as “data(iris)” was used. Table 1 illustrates the effect of scaling with the proposed EDO 
transformation on this data and compares it with the SD and the range.

The results of hierarchical clustering using Ward’s method (Fig.  6) resulted in an 
inverse ranking between EDO and PVS transformations as observed for the FACS data-
set. The PVS method provided the best preprocessing when judged by cluster accuracy, 
the Rand index calculated against the prior classification and Dunn’s index. Neverthe-
less, both the EDO and PVS transforms outperformed the classical approaches, espe-
cially the z-transform before clustering.

Fig. 5  Results of hierarchical cluster analysis of a four-dimensional data set with 3,000 instances of flow 
cytometric (FACS) measurements modes (“FACSData”). A The original and transformed data (z-transformation, 
EDO transformation, and PVS transformation [6]) are shown as a probability density function (PDF) estimated 
using the Pareto density estimation (PDE [27]), which was developed as a nonparametric kernel density 
estimator to improve subgroup separation in mixtures. B Cluster quality and stability assessed a as cluster 
accuracy and adjusted Rand index [21] against the prior classification of the data, and as Dunn’s index [22]. 
The boxes were constructed using minimum, quartiles, median (solid line inside the box) and maximum. 
The whiskers add 1.5 times the inter-quartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR 
from the 25th percentile. The figure has been created using the R software package (version 4.1.2 for Linux; 
https://​CRAN.R-​proje​ct.​org/ [9]) and the R packages “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 
[10]), and “FactoMineR” (https://​cran.r-​proje​ct.​org/​packa​ge=​Facto​MineR [16]). The colors were selected from 
the “colorblind_pal” palette provided with the R library “ggthemes” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggthe​
mes [11])

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes
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Gene expression example

Another set of biomedical empirical data were the gene expression patterns of 65 
surgical samples of human breast tumors provided in the supplementary materi-
als of [6]. The data originate from a publication of patterns in 496 intrinsic genes 
that showed significantly greater variation between different tumors than variation 
between paired samples of the same tumor, resulting in four distinct tumor types by 
applying hierarchical clustering, including (1) ER+/luminal-like, (2) basal-like, (3) 
hereditary B2+, and (4) normal breast [32]. The dataset was used in a replication of 
the experiment conducted by Raymaekers and Zamar [6], using their R script availa-
ble at https://​wis.​kuleu​ven.​be/​statd​atasc​ience/​robust/​Progr​ams/​poole​dVari​ableS​cal-
ing/​pvs-r.​zip to compare the effects of different data transformations on the results 
of hierarchical clustering with average, complete, and Ward linkage. Figure 7 shows 
the resulting dendrograms when applying each of these clustering algorithms to the 
dataset after different scaling. For average linkage, EDO scaling outperformed clas-
sical transformations or non-transformations, and its results were at the same level 
as PVS scaling. For complete linkage, EDO scaling misclassified three observations, 
PVS scaling was wrong for five observations, while range scaling yielded only two 
errors. This was reversed for Ward clustering, as the EDO transformation produced 
two more errors than the PVS, but both outperformed the other options.

Using the clustering algorithms chosen by [6] for the previous datasets (Gaussian 
mixture, "Lsun," FACS data, and iris flower data) also revealed a heterogeneous pic-
ture, although a tendency for clustering to improve over classical methods also pre-
vailed for average and complete linkage when all three measures of cluster quality, 
i.e., cluster accuracy, Rand index, and Dunn’s index, were considered (see Additional 

Table 1  The effect of variable scaling on the Iris flower data set

Variable Standard deviation Range EDO factor

0.83 3.6 1.04

0.44 2.4 0.53

1.77 5.9 1.16

0.76 2.4 0.37

Compare Table 1 in [6]

https://wis.kuleuven.be/statdatascience/robust/Programs/pooledVariableScaling/pvs-r.zip
https://wis.kuleuven.be/statdatascience/robust/Programs/pooledVariableScaling/pvs-r.zip
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file  1: Figures). It should be noted, however, that average and complete linkage 
seemed to benefit less from the EDO or PVS transformation than Ward’s linkage.

Discussion
The present experiments have shown that a data transformation that takes into account 
the inherent properties of the Euclidean distance metric by addressing the inflection 
point at 1 from distance decreasing to distance increasing effects, as well as the N(0,

√
2 ) 

distribution of innerclass distances, can improve the clustering of multidimensional 
data. Since Euclidean distance is by far the most used distance metric for data projec-
tion and subgroup assessment, it is virtually the standard implemented by default in 
statistical software and rarely specifically mentioned in scientific reports. Therefore, the 
present proposal of an improved data transformation adapted to this distance metric is 
relevant for the analysis of biomedical or other data sets.

All non-trivial analyses of multivariate (high-dimensional) data require a distance 
function (metric) to allow the comparison of cases. There are more than a thousand 

Fig. 6  Results of hierarchical cluster analysis of a four-dimensional data set with 150 instances of 
three species of Iris flower [30, 31] (“Iris”). A The original and transformed data (z-transformation, EDO 
transformation, and PVS transformation [6]) are shown as a probability density function (PDF) estimated using 
the Pareto density estimation (PDE [27]), which was developed as a nonparametric kernel density estimator 
to improve subgroup separation in mixtures. B Cluster quality and stability assessed a as cluster accuracy, 
adjusted Rand index [21] against the prior classification of the data, and as Dunn’s index [22]. The boxes 
were constructed using minimum, quartiles, median (solid line inside the box) and maximum. The whiskers 
add 1.5 times the inter-quartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 
25th percentile. The figure has been created using the R software package (version 4.1.2 for Linux; https://​
CRAN.R-​proje​ct.​org/ [9]) and the R packages “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 [10]), 
and “FactoMineR” (https://​cran.r-​proje​ct.​org/​packa​ge=​Facto​MineR [16]). The colors were selected from the 
“colorblind_pal” palette provided with the R library “ggthemes” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggthe​
mes [11])

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
https://cran.r-project.org/package=ggthemes
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different distance functions besides the Euclidean metric (for an overview, see [33]). 
Selecting a suitable distance function is crucial for visualizing the data, i.e., projecting 
the high-dimensional data into two or three dimensions, and for identifying subgroups 
or clusters in the data (clustering). Clustering aims to group the cases into a finite num-
ber of clusters, in such a way that the objects in one cluster are more similar to each 
other and more dissimilar to the cases in other clusters. Similarities and dissimilarities 
are determined by the distance function. The selection of a meaningful and appropri-
ate distance function is therefore the key issue in the analysis of complex multivariate 
data. Unfortunately, there are few theoretical properties that can be used to identify an 
appropriate distance function. Moreover, if too many seemingly simple properties such 
as "identity of indistinguishable data" and "scale invariance" are required of the metric, 
it can even be shown that subsequent data analysis such as clustering is impossible [34].

However, some requirements for a distance function are essential. The first 
is translation invariance. That is, it should not matter where the origin of the 

Fig. 7  The effect of variable scaling on the gene expression data. The data set comprised 65 surgical samples 
of human breast tumors in which hierarchical clustering of the expression of 496 intrinsic genes that showed 
significantly greater variation between different tumors than variation between paired samples of the 
same tumor had resulted in four distinct tumor types [32]. The dendrogram colors correspond to the tumor 
type: basal-like in red, Erb-B2þ in green, normal-breast-like in dark blue and luminal epithelial/ERþ in cyan. 
The EDO transformation generally yields superior recovery of the true clusters, comparable with the PVS 
transformation. The experiment is a re-run of the experiment performed for Fig. 3 in [6], using the R script  
available at https://​wis.​kuleu​ven.​be/​statd​atasc​ience/​robust/​Progr​ams/​poole​dVari​ableS​caling/​pvs-r.​zip with 
addition of code implementing the present EDO transformation

https://wis.kuleuven.be/statdatascience/robust/Programs/pooledVariableScaling/pvs-r.zip
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high-dimensional data space lies. This is equivalent to the requirement that the addi-
tion or subtraction of a constant to any of the dimensions of the data should not 
change the (dis-)similarities within the data. For metric distances, three axioms must 
be satisfied for this to happen: Identity of indiscernibles (= non-negativity), symme-
try, and the triangle inequality. The postulation of segment additivity [35] reduces the 
admissible distance functions d(x,y) between data points x and y to Minkowski dis-
tances [36]. These have the general formula:

Among these Minkowski distances, the Euclidean distance, with m = 2, is the only 
metric invariant to orthogonal rotations of the coordinate system. Moreover, the 
Euclidean distance is experienced in the everyday 3-dimensional world. However, it is 
often ignored that Euclidean distance has a property that is critical to the success or 
failure of clustering: it is not invariant to the scaling of the data. As explained above, 
this means that the similarity or dissimilarity of cases in the data depends on whether 
the Euclidean distance was applied to the data in its original form or to variables that 
were transformed (scaled), even if a common scaling factor was used for all variables.

Furthermore, for any comparison of different dimensions, the dispersion, also called 
scatter or variance, of the variables is important, i.e., a measure of how different the 
data are within the respective dimension. A key issue in choosing an appropriate dis-
tance function is to make a rational choice of this comparison between the differ-
ent scatters. The standard choice for this is to z-standardize the data. The implicit 
assumption in using the z-standardization as a scaling prior to applying the Euclidean 
distance is that the standard deviation (variance) is an appropriate description of the 
dispersion of the variables. This is valid for simple distributions, i.e., Gaussian-like 
distributions. However, it encounters problems when the data are less simply distrib-
uted, such as multimodal data. For example, an 80/20 (weights = [0.8, 0.2]) bimodally 
distributed variable with means = [− 5, 5] and small standard deviations of 0.5 for 
both modes indicates two separate groups that are in themselves quite homogene-
ous. However, their joint standard division is 4.0 compared to 0.5 for the two sepa-
rate modes. Therefore, the z-standardization uses a large span, resulting in low values 
that may become relevant in subsequent projections of the data, considering the scale 
sensitivity of the Euclidean distance metric. Here, the EDO transformation, by using 
only the dispersion of the dominant variable, i.e., a standard deviation of 0.5 multi-
plied with the value of 

√
2 , leads to larger transformed data, which has consequences 

for the subsequent application of Euclidean distances in projecting and clustering 
procedures.

It should be noted that for empirical data with skewed distributions such as expo-
nential or lognormal distributions, it is recommended to transform the data towards 
normality before applying the EDO algorithm. An example of such a transformation 
is the Box-Cox transformation [37]. Such a transformation also often eliminates outli-
ers in the original distributions. The EDO transformation is likely to be susceptible to 
outliers. Treatment of outliers should also be done before applying the EDO method 
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or any other range transformation. To keep this paper short and sweet, we assume 
that skewed distributions and outliers are part of "pre-processing" before applying a 
transformation such as the Z or EDO transformation.

The presently proposed EDO transform can be considered as an alternative to the 
also recently proposed PVS transformation [6], which was developed with a simi-
lar goal of adapting the data transformation during preprocessing for clustering to 
the scale dependence of the Euclidean distance. Neither transformation was always 
ranked first in the present cluster experiments, while in most cases of the present 
experimentation both methods were superior to using untransformed data or z-stand-
ardization as a preprocessing approach. However, the PVS and EDO transforms differ 
in their underlying theoretical considerations. That is, PVS assumes that the k-means 
algorithm yields a valid clustering of the high-dimensional data. This is equivalent to 
assuming that all such clusters are in the form of hyperspheres and that their deci-
sion boundaries are hyperplanes [38]. K-means is a gradient descent algorithm and is 
therefore sensitive to the specification of points and any local minimal solutions. In 
practical situations, it is impossible to confirm or falsify this model assumption. EDO 
exploits the often-overlooked fundamental property of Euclidean distances d within 
(d < 1) and between classes (d > 1). For high-dimensional data, it is assumed that a 
valid classification of the data can be modeled as independent Bayesian models using 
Gaussian mixtures (GMM) [39]. The resulting model for the decision boundaries of 
the high-dimensional classes are conic sections. Algorithms for fitting the GMM in 
each dimension, such as expectation maximization, are typically also gradient descent 
methods but their results can be confirmed or falsified for each variable.

Conclusions
The Euclidean distance has a peculiarity that is well known but less considered in 
practice. Namely, the Euclidean distance is not invariant to the scaling of the vari-
ables of the data set. The reason for this is the squaring of the differences of the data 
when calculating the Euclidean distance. The squaring function has the property that 
it changes its behavior exactly at the value 1: Differences smaller than 1 are reduced, 
differences larger than 1 are overemphasized quadratically. The EDO transformation 
takes advantage of this particularity: The scaling of the data is adjusted to map dif-
ferences of data points within the same group (mode, clustering) to a range smaller 
than 1. EDO itself is neither a distance nor a clustering algorithm, but is intended as 
a more reasonable transformation than, for example usual standardization (Z-trans-
formation). The EDO transformation is especially recommended when the Euclidean 
distance is used in later steps of multivariate data analysis, such as projections, visu-
alizations, or clustering.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04769-w.
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