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Abstract
We present a symmetry result to solutions of equations involving the fractional 
Laplacian in a domain with at least two perpendicular symmetries. We show that if 
the solution is continuous, bounded, and odd in one direction such that it has a fixed 
sign on one side, then it will be symmetric in the perpendicular direction. Moreover, 
the solution will be monotonic in the part where it is of fixed sign. In addition, we 
present also a class of examples in which our result can be applied.
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1  Introduction

In the following, we study symmetries of odd solutions to the nonlinear problem

where Ω ⊂ ℝ
N is an open set, f ∈ C(Ω ×ℝ) , and (−Δ)s , s ∈ (0, 1) is the fractional 

Laplacian given for � ∈ C∞
c
(ℝN) by

(1.1)
{

(−Δ)su = f (x, u) in Ω

u = 0 in ℝN ⧵Ω

(−Δ)s�(x) =
cN,s

2 ∫
ℝN

2�(x) − �(x + y) − �(x − y)

|y|N+2s dy,
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with a normalization constant cN,s > 0.
Symmetries of nonnegative solutions to problem (1.1) have been studied in detail 

by various authors (see [3, 11, 16, 17]), where f satisfies some monotonicity and 
symmetry in x1 and Ω is symmetric in x1 . Here, we aim at investigating (1.1), where 
Ω has two perpendicular symmetries and the solution u is odd in one of these direc-
tions. For the variational framework, see also [1, 2, 24, 25] and the references in 
there. To give a precise framework of our statements, we assume the following: 

	(D)	 Ω ⊂ ℝ
N with N ∈ ℕ , N ≥ 2 is open and bounded and, moreover, convex and 

symmetric in the directions x1 and xN . That is, for every (x1,… , xN) ∈ Ω , 
t, � ∈ [−1, 1] we have (tx1, x2 … , xN−1, �xN) ∈ Ω.

	(F1)	 f ∈ C(Ω ×ℝ) and for every bounded set K ⊂ ℝ there is L = L(K) > 0 such that 

	(F2)	 f is symmetric in x1 and monotone in |x1| . That is, for every u ∈ ℝ , x ∈ Ω , and 
t ∈ [−1, 1] we have f (tx1, x2,… , xN , u) ≥ f (x, u).

In this work, we consider weak solutions of (1.1), i.e., 
u ∈ H

s

0
(Ω) ∶= {v ∈ Hs(ℝN) ∶ u = 0 onℝN ⧵Ω} is called a (weak) solution of (1.1), if

whenever the right-hand side exists, where

is the bilinearform associated to (−Δ)s . Here, Hs(ℝN) = {u ∈ L2(ℝN) ∶ Es(u, u) < ∞} 
is the usual fractional Hilbert space of order s (see e.g. [1, 5, 7]).

Denote ei ∶= (�ij)1≤j≤N ∈ ℝ
N , where �ij = 1 if j = i and 0 otherwise is the usual 

Kronecker Delta. Moreover, for � ∈ ℝ , consider the halfspace

and denote by

the reflection of x at �Hi,�(�) . Note that r1,0(Ω) = rN,0(Ω) = Ω , if assumption (D) is 
satisfied.

We call u ∶ ℝ
N → ℝ symmetric with respect to Hi,� , if u◦ri,� = u and we call u 

antisymmetric with respect to Hi,� , if u◦ri,� = −u.

Theorem  1.1  Let Ω ⊂ ℝ
N satisfy (D), f ∈ C(Ω ×ℝ) satisfy (F1) and (F2), and 

let u ∈ H
s

0
(Ω) be a continuous bounded solution of (1.1), which is antisymmetric 

with respect to HN,0 and u ≥ 0 in HN,0 ∩ Ω . Then u is symmetric with respect to H1,0 

sup
x∈Ω

|f (x, u) − f (x, v)| ≤ L|u − v| for all u, v ∈ K.

Es(u, v) = ∫
Ω

f (x, u(x))v(x) dx for all v ∈ H
s

0
(Ω),

(1.2)Es(u, v) =
cN,s

2 ∫
ℝN

∫
ℝN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

(1.3)Hi,𝜆 ∶= {x ∈ ℝ
N ∶ x ⋅ ei > 𝜆} = {x ∈ ℝ

N ∶ xi > 𝜆}

(1.4)ri,� ∶ ℝ
N → ℝ

N , ri,�(x) = 2(� − x ⋅ ei)ei + x
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and either u ≡ 0 in Ω or u|Ω∩H1,0∩HN,0
 is strictly decreasing in x1 , that is, for every 

x, y ∈ Ω ∩ H1,0 ∩ HN,0 with x1 < y1 we have u(x) > u(y).

We note that Theorem 1.1 is not surprising in the local case, where (−Δ)s is consid-
ered with s = 1 , if we have u > 0 in HN,0 ∩ Ω . In this case, the conclusion follows by 
simply considering the solution restricted to its part of nonnegativity and apply the usual 
symmetry result due to [13]. We emphasize however, that if this positivity assumption 
is reduced to a nonnegativity assumption, then in general the claimed monotonicity is 
not true in the local case and presents a purely nonlocal feature. Moreover, in the nonlo-
cal setting, we are not able to simply restrict the solution to its set of nonnegativity. Due 
to this, we present in Sect. 2 below new maximum principles for doubly antisymmetric 
functions to certain linear problems, which we believe are of independent interest.

Let us emphasize that if u ∈ L∞(ℝN) is antisymmetric with respect to HN,0 , it follows 
that for any x ∈ HN,0 , such that u is regular enough at x, we have with a change of variables

where (−Δ|HN,0
)s denotes the so-called spectral fractional Laplacian (c.f. [6] for 

s = 1∕2 ). In particular, this difference of the kernel function does not meet the 
assumptions needed to conclude the symmetry result by a restriction to HN,0 and 
applying statements of [17].

In the particular case, where Ω = B1(0) is the unitary ball, it was shown in [10] 
that the second eigenfunction of the fractional Laplacian in B1(0) , denoted by �2 , is 
odd and can be chosen to be positive in {xN > 0} . Due to the regularity of �2 , Theo-
rem 1.1 yields that for i = 1,… ,N − 1 we have 

1.	 �2 is symmetric with respect to Hi,0 (see also [15]) and
2.	 𝜙2|{x1>0} is decreasing in xi > 0.

We emphasize that such a statement already follows due to [10] combined with [8], 
since thus the second eigenfunction can be written as a product of the first eigen-
function with a homogeneous function.

To give a more generalized application of our results to a class of nonlinear prob-
lems, we consider for 1 < p <

2N

N−2s
 the minimization problem

Clearly, the minimizer exists and is a solution of (1.1) with f (x, u) = |u|p−2u (see 
e.g. [24, 25]) and, since Es(|u|, |u|) ≤ Es(u, u) it can be chosen to be positive. For 
more information about the minimization problem (1.5) we refer to [21]. In the local 
case s = 1 , this is a well known problem, see e.g. [12, 20]. If Ω satisfies (D), then 
it follows that this minimizer is also symmetric with respect to the symmetries of 

(−Δ)su(x) = cN,s lim
�→0+ ∫

HN,0⧵B�(x)

(u(x) − u(y))
(

1

|x − y|N+2s

−
1

|x − rN,0(y)|N+2s
)
dy = (−Δ|HN,0

)su(x),

(1.5)
�1,p(Ω) ∶= min

u∈H s
0
(Ω)

u≠0

Es(u, u)( ∫
Ω

|u(x)|p dx
)2∕p

.
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Ω (see [16]). In this case, we can also consider the minimizer in the set of H s

0
(Ω)

-functions, which satisfy u = −u◦rN,0 , that is

In the next theorem, we prove that minimizers of (1.6) have constant sign in Ω ∩ HN,0 
and in the particular case p = 2 we also prove a simplicity result for �−

1,p
(Ω).

Theorem  1.2  Let 1 < p <
2N

N−2s
 with N ≥ 2 and let Ω ⊂ ℝ

N satisfy (D) with �Ω of 
class C1,1 . Then there is a nontrivial solution u ∈ H

s

0
(Ω) of

which is continuous, bounded, and antisymmetric with respect to HN,0 . Moreo-
ver, u is of one sign in Ω ∩ HN,0 and hence it is symmetric with respect to H1,0 and 
u|Ω∩H1,0∩HN,0

 is strictly decreasing in x1 . In particular, u can be chosen to be positive 
in HN ∩ Ω . Furthermore, if p = 2 , then the minimizer is unique up to a sign.

The existence, as mentioned above, follows immediately from a minimization 
problem. Moreover, by the known regularity theory it follows that indeed we have 
u ∈ C∞(Ω) ∩ Cs(ℝN) , see e.g. [14, 23]. We show here that this minimizer can actually be 
chosen to be nonnegative in Ω ∩ HN and thus the conclusion follows from Theorem 1.1.

This work is organized as follows. In Sect. 2 we give the framework for superso-
lutions and maximum principles used later on. Section 3 is devoted to prove Theo-
rem 1.1 and in Sect. 4 we show Theorem 1.2.

Notation  The following notation is used. For subsets D,U ⊂ ℝ
N we write 

dist(D,U) ∶= inf{|x − y| ∶ x ∈ D, y ∈ U} . If D = {x} is a singleton, we 
write dist(x,U) in place of dist(x,U) . For U ⊂ ℝ

N and r > 0 we consider 
Br(U) ∶= {x ∈ ℝ

N ∶ dist(x,U) < r} , and we let, as usual Br(x) = Br({x}) be the 
open ball in ℝN centered at x ∈ ℝ

N with radius r > 0 . For any subset M ⊂ ℝ
N , we 

denote by 1M ∶ ℝ
N → ℝ the characteristic function of M and by diam(M) the diam-

eter of M. If M is measurable, |M| denotes the Lebesgue measure of M. Moreover, 
if w ∶ M → ℝ is a function, we let w+ = max{w, 0} resp. w− = −min{w, 0} denote 
the positive and negative part of w, respectively, so that w = w+ − w− . Finally, Hi,� 
and ri,� are as defined in (1.3) and resp. (1.4) for i ∈ {1,… ,N} and � ∈ ℝ . Finally, 
Ω ⊂ ℝ

N is always an open set satisfying (D).

2 � A linear problem

For this section, we fix �,� ∈ ℝ and denote H1 ∶= H1,� and H2 ∶= HN,� . Similarly, 
r1 ∶= r1,� and r2 ∶= rN,� . We call w ∶ ℝ

N → ℝ doubly antisymmetric (with respect to 
H1 and H2 ), if

(1.6)
�−
1,p
(Ω) ∶= min

u ∈ H
s

0
(Ω)

u ≠ 0

u = −u◦rN,0

Es(u, u)( ∫
Ω

|u(x)|p dx
)2∕p

.

(1.7)
{

(−Δ)su = �−
1,p
(Ω)|u|p−2u in Ω

u = 0 in ℝN ⧵Ω
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Moreover, if U ⊂ ℝ
N is open, we let

Note that clearly H s

0
(U) ⊂ Hs(ℝN) ⊂ V

s(ℝN) ⊂ V
s(U) . In the following Lemma 

we collect some statements corresponding to the space V s(U) . The proofs can be 
found e.g. in [17–19].

Lemma 2.1  Let U ⊂ ℝ
N open and bounded. Then the following hold. 

1.	 Es is well defined on V s(U) ×H
s

0
(U).

2.	 If w ∈ V
s(U) , then also w±, |w| ∈ V

s(U) . Moreover, if w ≥ 0 in ℝN ⧵ U , then 
w− ∈ H

s

0
(U) and we have 

3.	 Let i = 1 or i = 2 and U ⊂ Hi . If w ∈ V
s(U) is antisymmetric in xi , then 

w1Hi
∈ V

s(U) . Moreover, if w ≥ 0 in Hi ⧵ U  , then w−1Hi
∈ H

s

0
(U) and 

Es(w
−1Hi

,w−1Hi
) ≤ −Es(w,w

−1Hi
).

The following Lemma gives an extension of Lemma 2.1. 3 to the case of doubly 
antisymmetric functions.

Lemma 2.2  Let U ⊂ H1 ∩ H2 and w ∈ V
s(U1,2) be doubly antisymmetric, where 

U1,2 = U ∪ r1(U) ∪ r2(U) ∪ r1(r2(U)) . Then v = w
−1H1

1H2
− w

+1Hc

1
1H2

∈ H
s

0
(U ∪ r1(U)) 

and we have

where equality can only hold if v ≡ 0 , that is, if w ≥ 0 in H1 ∩ H2.

Proof  First note that since w is antisymmetric with respect to Hi , i = 1, 2 , Lemma 
2.1 and its proof imply wi ∶= w1Hi

∈ V
s(U ∪ rj(U)) , i, j = 1, 2 , i ≠ j and

Similarly, also w2 is antisymmetric with respect to H1 (resp. w1 with respect to H2 ) 
and thus also w1,2 ∶= w11H2

= w21H1
∈ V

s(U) with

and it holds

Similarly, we also have wr1,2
= w21Hc

1

∈ V
s(r1(U)) with

w◦ri = −w in ℝN for i = 1, 2.

V
s(U) =

{
u ∈ L2

loc
(ℝN) ∶ 𝜌s(w,U) ∶= ∫

U

∫
ℝN

(w(x) − w(y))2

|x − y|N+2s dxdy < ∞
}
.

Es(w
−,w−) ≤ −Es(w,w

−).

Es(w, v) + Es(v, v) ≤ 0,

�s(wi,U ∪ rj(U)) ≤ �s(w,U1,2) and Es(w
−
i
,w−

i
) ≤ −Es(w,w

−
i
) for i, j = 1, 2, i ≠ j.

�s(w1,2,U) ≤ min
{
�s(w1,U ∪ r2(U)), �s(w2,U ∪ r1(U))

}

Es(w
−
1,2
,w−

1,2
) ≤ −max

{
Es(w1,w

−
1,2
),Es(w2,w

−
1,2
)
}
.



214	 S. M. Djitte, S. Jarohs 

1 3

It thus follows that v = w−1H1
1H2

− w+1Hc
1
1H2

= w−
1,2

− w+
r1,2

∈ H
s

0
(U ∪ r1(U)) . 

Using the monotonicity of | ⋅ | and the antisymmetry of w and denoting 
r1,2 ∶= r1◦r2 = r2◦r1 we have by several rearrangements and substitutions

�s(wr1,2
, r1(U)) ≤ �s(w2,U ∪ r1(U)).

2

cN,s

(
Es(w, v) + Es(v, v)

)

= ∫
H2

∫
H2

[(w + v)(x) − (w + v)(y)][v(x) − v(y)]

|x − y|N+2s dxdy + ∫
Hc
2

∫
Hc
2

…+ 2∫
H2

∫
Hc
2

…

= ∫
H2

∫
H2

[(w + v)(x) − (w + v)(y)][v(x) − v(y)]

|x − y|N+2s dxdy

− 2∫
H2

∫
H2

[w(r2(x)) − (w + v)(y)]v(y)

|r2(x) − y|N+2s dxdy

= ∫
H2

∫
H2

[(w + v)(x) − (w + v)(y)][v(x) − v(y)]

|x − y|N+2s dxdy

− 2∫
H2

∫
H2

[−w(x) − (w + v)(y)]v(y)

|r2(x) − y|N+2s dxdy

= ∫
H1∩H2

∫
H1∩H2

[(w + v)(x) − (w + v)(y)][v(x) − v(y)]

|x − y|N+2s dxdy

+ ∫
H2⧵H1

∫
H2⧵H1

…+ 2 ∫
H2∩H1

∫
H2⧵H1

…

− 2 ∫
H2∩H1

∫
H2∩H1

[−w(x) − (w + v)(y)]v(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

…− 2 ∫
H2∩H1

∫
H2⧵H1

…− 2 ∫
H2⧵H1

∫
H2∩H1

…

= ∫
H1∩H2

∫
H1∩H2

[(w + w−)(x) − (w + w−)(y)][w−(x) − w−(y)]

|x − y|N+2s dxdy

− ∫
H2⧵H1

∫
H2⧵H1

[(w − w+)(x) − (w − w+)(y)][w+(x) − w+(y)]

|x − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2⧵H1

[(w − w+)(x) − (w + w−)(y)][w+(x) + w−(y)]

|x − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

[−w(x) − (w + w−)(y)]w−(y)

|r2(x) − y|N+2s dxdy

+ 2 ∫
H2⧵H1

∫
H2⧵H1

[−w(x) − (w − w+)(y)]w+(y)

|r2(x) − y|N+2s dxdy

+ 2 ∫
H2⧵H1

∫
H2∩H1

[−w(x) − (w − w+)(y)]w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2⧵H1

[−w(x) − (w + w−)(y)]w−(y)

|r2(x) − y|N+2s dxdy
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= ∫
H1∩H2

∫
H1∩H2

[w+(x) − w+(y)][w−(x) − w−(y)]

|x − y|N+2s dxdy

− ∫
H2⧵H1

∫
H2⧵H1

[−w−(x) + w−(y)][w+(x) − w+(y)]

|x − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2⧵H1

[−w−(x) − w+(y)][w+(x) + w−(y)]

|x − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

[−w(x) − w+(y)]w−(y)

|r2(x) − y|N+2s dxdy

+ 2 ∫
H2⧵H1

∫
H2⧵H1

[−w(x) + w−(y)]w+(y)

|r2(x) − y|N+2s dxdy

+ 2 ∫
H2⧵H1

∫
H2∩H1

[−w(x) + w−(y)]w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2⧵H1

[−w(x) − w+(y)]w−(y)

|r2(x) − y|N+2s dxdy

= − ∫
H1∩H2

∫
H1∩H2

w+(x)w−(y) + w+(y)w−(x)

|x − y|N+2s dxdy

− ∫
H2⧵H1

∫
H2⧵H1

w−(x)w+(y) + w−(y)w+(x)

|x − y|N+2s dxdy

+ 2 ∫
H2∩H1

∫
H2⧵H1

w−(x)w−(y) + w+(y)w+(x)

|x − y|N+2s dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w(x)w−(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

w(x)w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2∩H1

w(x)w+(y)

|r2(x) − y|N+2s dxdy + 2 ∫
H2∩H1

∫
H2⧵H1

w(x)w−(y)

|r2(x) − y|N+2s dxdy

= −2 ∫
H1∩H2

∫
H1∩H2

w+(x)w−(y)

|x − y|N+2s dxdy − 2 ∫
H2⧵H1

∫
H2⧵H1

w−(x)w+(y)

|x − y|N+2s dxdy
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+ 2 ∫
H2∩H1

∫
H2⧵H1

w−(x)w−(y) + w+(y)w+(x)

|x − y|N+2s dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) − w−(x)w−(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

w+(x)w+(y) − w−(x)w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2∩H1

w+(x)w+(y) − w−(x)w+(y)

|r2(x) − y|N+2s dxdy

+ 2 ∫
H2∩H1

∫
H2⧵H1

w+(x)w−(y) − w−(x)w−(y)

|r2(x) − y|N+2s dxdy

= −2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r2(x) − y|N+2s dxdy − 2 ∫
H2⧵H1

∫
H2⧵H1

w+(x)w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

w−(x)w+(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w−(r1(x))w
−(y) + w+(y)w+(r1(x))

|r1(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w+(r1(y)) − w−(x)w+(r1(y))

|r2(x) − r1(y)|N+2s
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w+(r1(x))w
−(y) − w−(r1(x))w

−(y)

|r1,2(x) − y|N+2s dxdy

= −2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

w+(x)w+(y)

|r2(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

− 2 ∫
H2⧵H1

∫
H2⧵H1

w−(x)w+(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) + w+(y)w−(x)

|r1(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) − w−(x)w−(y)

|r2(x) − r1(y)|N+2s
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y) − w+(x)w−(y)

|r1,2(x) − y|N+2s dxdy
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From here the statement of the Lemma follows, once we show the following claim:

= −2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r2(x) − y|N+2s dxdy − 2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r1,2(x) − r1(y)|N+2s
dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r1,2(x) − r1(y)|N+2s
)
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) + w+(y)w−(x)

|r1(x) − y|N+2s dxdy

− 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) − w−(x)w−(y)

|r2(x) − r1(y)|N+2s
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y) − w+(x)w−(y)

|r1,2(x) − y|N+2s dxdy

= −4 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r2(x) − y|N+2s dxdy

− 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

+ 2 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y) + w+(y)w−(x)

|r1(x) − y|N+2s dxdy

− 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)

|r1,2(x) − y|N+2s dxdy + 4 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)

|r1,2(x) − y|N+2s dxdy

= −4 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)
(

1

|r2(x) − y|N+2s −
1

|r1,2(x) − y|N+2s
)
dxdy

− 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
)
dxdy

+ 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)

|r1(x) − y|N+2s dxdy − 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)

|r1,2(x) − y|N+2s dxdy

= −4 ∫
H2∩H1

∫
H2∩H1

w−(x)w−(y)
(

1

|r2(x) − y|N+2s −
1

|r1,2(x) − y|N+2s
)
dxdy

− 4 ∫
H2∩H1

∫
H2∩H1

w+(x)w−(y)
(

1

|x − y|N+2s −
1

|r2(x) − y|N+2s

−
1

|r1(x) − y|N+2s +
1

|r1,2(x) − y|N+2s
)
dxdy.
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We write

and

In the following, fix x, y ∈ H1 ∩ H2 and without loss we may assume 
e1 = (1, 0,… , 0) and e2 = (0, 1, 0,… , 0) . Indeed, otherwise we may rotate the half 
spaces and since Es is invariant under rotations the situation remains the same. Then 
with D ∶=

∑N

k=2
(xk − yk)

2

Thus with M ∶= |x − y|2 we have

Using the notation a = 4x1y1 > 0 and b = 4x2y2 > 0 , we may consider for fixed 
M > 0 the map

(2.1)
Claim:

1

|x − y|N+2s −
1

|r2(x) − y|N+2s
−

1

|r1(x) − y|N+2s +
1

|r1,2(x) − y|N+2s ≥ 0, x, y ∈ H1 ∩ H2

1

|x − y|N+2s −
1

|r2(x) − y|N+2s =
1

|x − y|N+2s
(
1 −

( |x − y|2
|r2(x) − y|2

) N

2
+s
)

1

|r1(x) − y|N+2s −
1

|r1,2(x) − y|N+2s =
1

|r1(x) − y|N+2s
(
1 −

( |r1(x) − y|2
|r1,2(x) − y|2

) N

2
+s
)
.

|r1(x) − y|2 = (x1 + y1)
2 + (x2 − y2)

2 + D = 4x1y1

+ (x1 − y1)
2 + (x2 − y2)

2 + D = 4x1y1 + |x − y|2
|r2(x) − y|2 = (x1 − y1)

2 + (x2 + y2)
2 + D = 4x2y2

+ (x1 − y1)
2 + (x2 − y2)

2 + D = 4x2y2 + |x − y|2
|r1,2(x) − y|2 = (x1 + y1)

2 + (x2 + y2)
2 + D = 4x1y1 + 4x2y2

+ (x1 − y1)
2 + (x2 − y2)

2 + D = 4x1y1 + 4x2y2 + |x − y|2

1

M
N

2
+s

−
1

|r2(x) − y|N+2s −
1

|r1(x) − y|N+2s +
1

|r1,2(x) − y|N+2s

=
1

M
N

2
+s

(
1 −

(
M

|r2(x) − y|2
) N

2
+s

−
(

M

|r1(x) − y|2
) N

2
+s
(
1 −

( |r1(x) − y|2
|r1(x) − r2(y)|2

) N

2
+s
))

=
1

M
N

2
+s

(
1 −

(
M

|r2(x) − y|2
) N

2
+s

−
(

M

|r1(x) − y|2
) N

2
+s

+
(

M

|r1,2(x) − y|2
) N

2
+s
)

=
1

M
N

2
+s

(
1 +

(
M

4x1y1 + 4x2y2 +M

) N

2
+s

−
(

M

4x1y1 +M

) N

2
+s

−
(

M

4x2y2 +M

) N

2
+s
)
.

f ∶ [0,∞)2 → ℝ, (a, b) ↦ 1 +
(

M

a + b +M

) N

2
+s

−
(

M

a +M

) N

2
+s

−
(

M

b +M

) N

2
+s

.
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Then (2.1) follows once f ≥ 0 . Note that

Clearly, f has a saddle node at (0, 0), but note that for any (c, d) ∈ [0,∞)2 we have

so that f is increasing in any direction (c, d). In particular, since f (0, 0) = 0 , it fol-
lows that f (a, b) ≥ 0 for a, b ≥ 0 . Hence (2.1) follows, which implies the assertion 
of the lemma. 	�  ◻

In view of Lemma 2.1 we may define doubly antisymmetric supersolutions as fol-
lows. Let U ⊂ H1 ∩ H2 and c ∈ L∞(U) . Then w ∈ V

s(U) is called a doubly antisym-
metric supersolution of

if w is doubly antisymmetric and satisfies

In the following, for an open set U ⊂ H1 ∩ H2 let

We emphasize that 𝜆−
1
(U) > 𝜆1(U ∪ r1(U)) , where �1(D) denotes the first Dirichlet 

eigenvalue of (−Δ)s in D. Since (see e.g. [17, Lemma 2.1])

it follows also that

∇f (a, b) = −
�
N

2
+ s

�
M

N

2
+s

⎛
⎜⎜⎜⎝

�
1

a+b+M

� N

2
+1+s

−
�

1

a+M

� N

2
+1+s

�
1

a+b+M

� N

2
+1+s

−
�

1

b+M

� N

2
+1+s

⎞
⎟⎟⎟⎠
.

∇f (a, b)

(
c

d

)
> 0,

(2.2)
{

(−Δ)sw ≥ c(x)w in U,

w ≥ 0 in H1 ∩ H2 ⧵ U,

Es(w,�) ≥ �
U

c(x)w(x)�(x) dx for all nonnegative � ∈ H
s

0
(U).

�−
1
(U) ∶= min

u ∈ H
s

0
(U ∪ r1(U))

u ≠ 0

u◦r1 ≡ −u

Es(u, u)

‖u‖2
L2(U∪r1(U))

.

sup

D ⊂ ℝ
N open

|D| ≤ 𝛿

𝜆1(D) → ∞ as 𝛿 → 0,

(2.3)
sup

U ⊂ ℝ
N open

|U| ≤ 𝛿

𝜆−
1
(U) → ∞ as |U| → 0.
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We thus can show the following version of a small volume maximum principle for 
doubly antisymmetric supersolutions.

Proposition 2.3  Let c∞ > 0 . Then there is 𝛿 > 0 such that the following is true. For 
all U ⊂ H1 ∩ H2 open with |U| ≤ � , c ∈ L∞(U) with c ≤ c∞ , and all doubly antisym-
metric supersolutions w of (2.2) it follows that w ≥ 0 in H1 ∩ H2.

Proof  Let c∞ > 0 . By (2.3), we may fix 𝛿 > 0 such that c∞ ≤ �−
1
(U) for all open sets 

U ⊂ H1 ∩ H2 with |U| ≤ � . Fix such an open set U and let c ∈ L∞(U) . Then note 
that we may reflect c evenly across �H1 and denote V = U ∪ r1(U) . Then for any 
� ∈ H

s

0
(V) , which is antisymmetric with respect to �H1 and with � ≥ 0 in U, we 

have

Here, we have used the antisymmetry of w and � with respect to �H1 and Lemma 2.1 
to have 1U� ∈ H

s

0
(U) , 1r1(U)� ∈ H

s

0
(r1(U)) , and

since we extended c evenly across �H1 . Then 
v = w−1H1

1H2
− w+1Hc

1
1H2

∈ H
s

0
(U ∪ r1(U)) by Lemma 2.2 and we have by 

symmetry

Hence with Lemma 2.2 we have 0 ≤ Es(w, v) + Es(v, v) ≤ 0 and this can only be true 
if v ≡ 0 . 	� ◻

Es(w,�) = Es(w, 1U�) + Es(w, 1r1(U)�) ≥ �
U

c(x)w(x)�(x)

+ �
r1(U)

c(x)w(x)�(x) dx = �
V

c(x)w(x)�(x) dx.

Es(w, 1r1(U)�) = Es(w◦r1, 1U�◦r1) = Es(w, 1U�) ≥ �
U

c(x)w(x)�(x) dx

= �
r1(U)

c(x)w(x)�(x) dx,

Es(w, v) = �
U

c(x)w(x)w−(x) dx − �
r1(U)

c(x)w(x)w+(x) dx

= −�
U

c(x)(w−(x))2 dx − �
r1(U)

c(x)(w+(x))2 dx

≥ −�−
1,s

�
�
U

(w−(x))2 dx + �
r1(U)

(w+(x))2 dx

�
= −�−

1,s
‖v‖2

L2(V)
≥ −Es(v, v).
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In the next statement, we give a Hopf type lemma for Eq. (2.2) similar to [9, 
Proposition 3.3].

Proposition 2.4  Let U ⊂ H1 ∩ H2 open. Furthermore, let c ∈ L∞(U) and let 
u ∈ V s(U) be a doubly antisymmetric supersolution of (2.2). Assume u ≥ 0 in 
H1 ∩ H2 . Then either u ≡ 0 or u > 0 in U in the sense that

Moreover, if there is x0 ∈ �U ⧵ [�H1 ∪ �H2] such that 

1.	 there exists a ball B ⊂ U with �B ∩ �U = {x0} and �−
1,s
(B) ≥ c and

2.	 u(x0) = 0,

then there exists C > 0 such that

where �B denote the distance to boundary of B, and, in particular, if u ∈ C(B) , then

Proof  Assume u ≢ 0 . Then there exists a set K ⊂ H1 ∩ H2 such that |K| > 0 and such 
that

Let B ⊂ U be an open ball such that dist(B,K) > 0 and �B ∩ �Hi = � for i = 1, 2 . By 
making B smaller if necessary, we may assume

Let �B ∈ H
s

0
(B) be the solution to

Recall that there exists ci = ci(N, s,B) > 0 , i = 1, 2 such that c1�sB ≤ �B ≤ c2�
s
B
 . For 

any 𝛼 > 0 , we define

It is clear that w◦r1 = −w = w◦r2 , that is, w is doubly antisymmetric. Let 
� ∈ H

s

0
(B) with � ≥ 0 . Then, we have

infKu > 0 for all compact sets K ⊂ U.

u ≥ C�s
B

in B,

lim inf
t↓0

u(x0 − t𝜈(x0))

ts
> 0.

(2.4)𝜖 ∶= infKu > 0.

(2.5)�−
1,s
(B) ≥ c

(−Δ)s�B = 1 in B

u ∶= �B + �1K − �r1(B)
− �1r1(K) and w ∶= u − u◦r2
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with

where we have used that the boundary of B does not touch �H1 ∪ �H2 . Since B and 
K are compactly contained in H1 ∩ H2 , it follows that

(2.6)

Es(w,�) = Es(u,�) − Es(u◦r2,�)

= �
B

�(x) dx − �cN,s �
B

�(x)�
K

dy

�x − y�N+2s dx + �cN,s �
B

�(x) �
r1(K)

dy

�x − y�N+2s dx

+ cN,s �
B

�(x) �
r1(B)

�B(y)

�x − y�N+2s dy dx

+ cN,s �
B×B

�B(x)�(y)

�x − r2(y)�N+2s
dx dy + �cN,s �

K

�
B

�(y)

�x − r2(y)�N+2s
dy dx

− �cN,s �
r1(K)×r2(B)

�(r2(y))

�x − y�N+2s dx dy − cN,s �
r1(B)×r2(B)

�r1(B)
(x)�(r2(y))

�x − y�N+2s dx dy

= �
B

�(x)
�
1 − �cN,s �

K

�
1

�x − y�N+2s −
1

�x − r1(y)�N+2s

−
1

�x − r2(y)�N+2s
+

1

�x − r1,2(y)�N+2s
�
dy

+ cN,s �
B

�B(r1(y))

�x − r1(y)�N+2s
dy + cN,s �

B

�B(y)

�x − r2(y)�N+2s
dy

− cN,s �
B

�r1(B)
(r1(y))

�x − r1,2(y)�N+2s
dy
�

≤ �
B

�(x)
�
1 − �cN,s �

K

�
1

�x − y�N+2s −
1

�x − r1(y)�N+2s

−
1

�x − r2(y)�N+2s
+

1

�x − r1,2(y)�N+2s
�
dy

+ cN,s‖�B‖L∞(ℝN ) �
B

�
1

�x − r1(y)�N+2s
+

1

�x − r2(y)�N+2s
+

1

�x − r1,2(y)�N+2s
�
dy
�

≤ �
B

�(x)
�
� − �cN,s �

K

�
1

�x − y�N+2s −
1

�x − r1(y)�N+2s

−
1

�x − r2(y)�N+2s
+

1

�x − r1,2(y)�N+2s
�
dy
�
,

𝜅 ∶= 1 + cN,s‖𝜓B‖L∞(ℝN ) ∫
B

�
1

�x − r1(y)�N+2s

+
1

�x − r2(y)�N+2s
+

1

�x − r1,2(y)�N+2s
�
dy < ∞,
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Since c,�B ∈ L∞(U) , we may hence choose � large enough so that

Consequently, equation (2.6) gives

Therefore −w satisfies in weak sense

Next, consider u� ∶= u −
�

�
w with � given in (2.4). Then u� also satisfies in weak 

sense (2.7) where the nonlocal boundary condition is satisfied by the choice of 
� . By (2.5) and Lemma 2.3 we conclude that u ≥ �

�
�B ≥ �

�
c1�

s
B
 in B. Since B is 

chosen arbitrary, the above implies that u > 0 in U as stated. If in addition there 
is x0 ∈ �U ⧵ [�H1 ∪ �H2] with the given properties, the above argument yields in 
particular

This finishes the proof. 	�  ◻

Remark 2.5  To put the Hopf type statement in Proposition 2.4 into perspective, 
consider in Problem (1.1) the nonlinearity f (x, u) = |u|2∗s−2u with 2∗

s
∶=

2N

N−2s
 , the 

critical fractional exponent. It was shown in [22] that there is no positive bounded 
solution if Ω is starshaped. Up to our knowledge, it remains an open question, if 
there is a sign-changing solution to this problem. Assuming that Ω is bounded and 
starshaped with C1,1 boundary and there exists a bounded solution of (1.1) with 
f (x, u) = |u|2∗s−2u , it first follows that u ∈ Cs(ℝN) ∩ C∞(Ω) (see e.g. [23]) and the 
fractional Pohozaev identity from [22] implies

C ∶= inf
x∈B, y∈K

(
1

|x − y|N+2s −
1

|x − r1(y)|N+2s

−
1

|x − r2(y)|N+2s
+

1

|x − r1,2(y)|N+2s
)

> 0.

� − �cN,s �
K

[
1

|x − y|N+2s −
1

|x − r1(y)|N+2s

−
1

|x − r2(y)|N+2s
+

1

|x − r1,2(y)|N + 2s

]
dy ≤ c(x)�B(x) ∀ x ∈ B.

Es(w,�) ≤ �
B

c(x)�(x)�B(x) dx for all nonnegative� ∈ H
s

0
(B).

(2.7)

⎧⎪⎨⎪⎩

(−Δ)s(−w) ≥ c(x)(−w) in B,

(−w) ≥ 0 in H1 ∩ H2 ⧵ B,

−w◦ri = w in ℝN for i = 1, 2.

lim inf
t↓0

u(x0 − t𝜈(x0))

ts
≥ 𝜖 lim

t↓0

𝜓B(x0 − t𝜈(x0))

ts
> 0.
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However, by [9, Proposition 3.3] it then follows that if Ω has additionally a symme-
try hyperplane T and u is odd with respect to reflections across this hyperplane and 
of one sign on one side of the hyperplane, then 

(
u

dist(⋅,𝜕Ω)s

)2

> 0 on �Ω ⧵ T  . Whence, 
there cannot be such an odd solution of the problem. Similarly, using instead Propo-
sition 2.4, it follows that there can also be no doubly antisymmetric solution of this 
problem if Ω satisfies (D).

3 � Symmetry of solutions

In the following, we use the notation from Sect. 2 and assume Ω ⊂ ℝ
N satisfies (D). 

Moreover, f ∈ C(Ω ×ℝ) satisfies (F1) and (F2) and let u ∈ L∞(U) ∩H
s

0
(Ω) be a 

solution of problem (1.1) which satisfies u◦rN,0 = −u . Note that by (F1) and [23] it 
follows that u ∈ Cs(ℝN) . For � ∈ ℝ we may than define

Then it follows that v� is antisymmetric with respect to HN,0 and H1,� , hence doubly 
antisymmetric, and it satisfies due to (F2)

where

Note that by assumption (F1) we have

Finally, let �1 ∶= supx∈Ω x1.

Proof of Theorem  1.1  Assume that u is nontrivial. We apply the moving plane 
method to then prove that u is symmetric with respect to H1,0 and decreasing in x1 . 
For this let

∫
�Ω

(
u

dist(⋅, �Ω)s

)2

(x ⋅ �) d� = 0.

v�(x) = u(r�,1(x)) − u(x).

(3.1)
{

(−Δ)sv� ≥ c�(x)v� in Ω� ∶= Ω ∩ HN,0 ∩ H1,�,

v� ≥ 0 in HN,0 ∩ H1,� ⧵Ω�,

c�(x) =

⎧
⎪⎨⎪⎩

f (x, u(r�,1(x))) − f (x, u(x))

u(r�,1(x)) − u(x)
u(r�,1(x)) ≠ u(x)

0 u(r�,1(x)) = u(x)

sup
𝜆∈ℝ

sup
x∈Ω𝜆

|c𝜆(x)| =∶ c∞ < ∞.

𝜆0 ∶= inf{𝜆 ∈ (0, 𝜆1) ∶ v𝜇 > 0 in Ω𝜇 for all𝜇 ∈ (𝜆, 𝜆1)}
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Next note that by (D) and Proposition 2.3 it follows that there is 𝜖 > 0 such that 
v� ≥ 0 for all � ∈ (�1 − �, �1) and thus by Proposition 2.4 we have �0 ≤ �1 − � . 
Assume next by contradiction that 𝜆0 > 0 . Then by continuity v�0 ≥ 0 in HN,0 ∩ H1,�0

 . 
By Proposition 2.4 it follows that either v�0 ≡ 0 or v𝜆0 > 0.

If v�0 ≡ 0 , this implies that we have u ≡ 0 in Ω ⧵ H1,�0−�1
 . But then, we can also 

start moving the hyperplane from the left (working instead with ℝN ⧵ H1,� ), up to 
the same �0 . It then follows that u has two different parallel symmetry hyperplanes, 
but since u vanishes outside of Ω , this implies u ≡ 0 , which cannot be the case.

If v𝜆0 > 0 , let 𝛿 > 0 be given by Proposition 2.3 according to c∞ . Then by conti-
nuity there is 𝜇 > 0 such that and a compact set K ⊂ Ω𝜆0

 such that |Ω�0
⧵ K| ≤ �

2
 and 

v�0 ≥ 2� in K. Again, by continuity, we can find � ∈ (0, �1 − �0) such that v� ≥ � 
for all � ∈ [�0 − �, �0] . Let U𝜆 ∶= {x ∈ Ω𝜆 ∶ v𝜆 < 0} . Then, by making � smaller if 
necessary, we may also assume |U�| ≤ � for all � ∈ [�0 − �, �0] . A combination of 
Proposition 2.3 and 2.4 gives a contradiction to the definition of �0.

Whence, 𝜆0 > 0 is not possible. Thus �0 = 0 and this finishes the proof. 	�  ◻

4 � A symmetric sign‑changing solution

Let Ω ⊂ ℝ
N open and bounded and consider the functional

Let M ∶= {u ∈ H
s

0
(Ω) ∶ u = −u◦rN , ∫

Ω

|u(x)|p dx = 1} with 1 < p <
2N

N−2s
 . Then by 

a constraint minimization argument using the framework as explained e.g. in [24, 
25], see also [4], it follows that there exists such a minimizer u of J|M . That is, the 
minimum

is attained. Similar to [4, Theorem  3.1], it can be shown that this minimizer is 
bounded and then, by an iteration of the results of [14, 23], we have u ∈ C∞(Ω) . If 
in addition �Ω is of class C1,1 , then [14, 23] also imply that u ∈ Cs(ℝN).

Proof of Theorem 1.2  Let �−
1,p

 be as in (4.1) and let u be the minimizer as explained in 
the above remarks. In view of Theorem 1.1 it remains to show that u can be chosen 
of one sign in Ω+ ∶= Ω ∩ HN,0 . In the following Ω− = Ω ⧵Ω+ . Assume by contra-
diction that u changes sign in Ω+ and let Ω+

1
∶= {x ∈ Ω+ ∶ u(x) > 0} and 

Ω+
2
∶= {x ∈ Ω+ ∶ u(x) ≤ 0} . We also let Ω−

1
= rN,0(Ω

+
1
) , and Ω−

2
= rN,0(Ω

+
2
) . By the 

property of u, it is clear that u < 0 in Ω−
1
 and u ≥ 0 in Ω−

2
 . Now let u be defined by

Then u ∈ M , that is u ∈ H
s

0
(Ω) satisfies u◦rN,0 = −u and

J ∶ H
s

0
(Ω) → ℝ, J(u) = Es(u, u).

(4.1)�−
1,p

= min
u∈M

Es(u, u)

(4.2)u = 1Ω+ |u| − 1Ω− |u|.
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Moreover, we have

Using the notation above, we rewrite

(4.3)

∫
Ω

|u|pdx = ∫
Ω

(|u|2)p∕2dx = ∫
Ω

(1Ω+ |u|2 + 1Ω− |u|2)p∕2dx = ∫
Ω

|u|pdx = 1.

(4.4)

2

CN,s

Es(u, u) = ∫
ℝN×ℝN

(
u(x) − u(y)

)2
|x − y|N+2s dxdy = ∫

Ω×Ω

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 2∫
Ω

u
2
(x) ∫

ℝN⧵Ω

dy

|x − y|N+2s dx

= ∫
Ω+×Ω

(
u(x) − u(y)

)2
|x − y|N+2s dxdy + ∫

Ω−×Ω

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 4∫
Ω+

∫
ℝN⧵Ω

u2(x)dy

|x − y|N+2s dx

= ∫
Ω+×Ω+

(|u(x)| − |u(y)|)2
|x − y|N+2s dxdy + ∫

Ω−×Ω−

(|u(x)| − |u(y)|)2
|x − y|N+2s dxdy

+ 2 ∫
Ω−×Ω+

(|u|(x) + |u|(y))2
|x − y|N+2s dxdy

+ 4∫
Ω+

u2(x) ∫
ℝN⧵Ω

dy

|x − y|N+2s dx.

(4.5)

∫
Ω+×Ω+

(|u(x)| − |u(y)|)2
|x − y|N+2s dxdy = ∫

Ω+×Ω+

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 2 ∫
Ω+

1
×Ω+

2

(u(x) + u(y))2 − (u(x) − u(y))2

|x − y|N+2s dxdy

= ∫
Ω+×Ω+

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 4 ∫
Ω+

1
×Ω+

2

u(x)u(y)

|x − y|N+2s dxdy.
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Similarly we have

Now using that Ω−
j
= rN(Ω

+
j
) , j = 1, 2 we get

Summing up (4.5), (4.6) and (4.7), and taking into account (4.4), we obtain

(4.6)

∫
Ω−×Ω−

(|u(x)| − |u(y)|)2
|x − y|N+2s dxdy = ∫

Ω−×Ω−

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 4 ∫
Ω−

1
×Ω−

2

u(x)u(y)

|x − y|N+2s dxdy

= ∫
Ω−×Ω−

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 4 ∫
Ω+

1
×Ω+

2

u(x)u(y)

|x − y|N+2s dxdy.

(4.7)

∫
Ω−×Ω+

(|u(x)| − |u(y)|)2
|x − y|N+2s dxdy = ∫

Ω−×Ω+

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ ∫
Ω−

2
×Ω+

1

(u(x) + u(y))2 − (u(x) − u(y))2

|x − y|N+2s dxdy

+ ∫
Ω−

1
×Ω+

2

(u(x) + u(y))2 − (u(x) − u(y))2

|x − y|N+2s dxdy

= ∫
Ω−×Ω+

(
u(x) − u(y)

)2
|x − y|N+2s dxdy

+ 2 ∫
Ω−

2
×Ω+

1

u(x)u(y)

|x − y|N+2s dxdy + 2 ∫
Ω−

1
×Ω+

2

u(x)u(y)

|x − y|N+2s dxdy

= ∫
Ω−×Ω+

(
u(x) − u(y)

)2
|x − y|N+2s dxdy − 4 ∫

Ω+
1
×Ω+

2

u(x)u(y)

|rN,0(x) − y|N+2s dxdy.
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By a change of variable it is clear that

Putting that into (4.8) gives

Now since u◦rN = −u , it follows from the variational characterization of �−
1,p
(Ω) in 

(4.1) with (4.9) and (4.3) that

That is

Whence u ≡ 0 in Ω+
2
 and therefore u ≥ 0 in Ω+ . This is in contradiction with the 

hypothesis. It follows that u does not change sign in Ω+ and, without loss of gener-
ality, we may assume u ≥ 0 in Ω+ . By the strong maximum principle [9, Corollary 
3.4] we have u > 0 in Ω+.

(4.8)

2

CN,s

Es(u, u) − 4∫
Ω+

u2(x) ∫
ℝN⧵Ω

dy

|x − y|N+2s dx = ∫
ℝN×ℝN

(u(x) − u(y))2

|x − y|N+2s dxdy

− 2∫
Ω

u2(x) ∫
ℝN⧵Ω

dy

|x − y|N+2s

+ 8 ∫
Ω+

1
×Ω+

2

u(x)u(y)

|x − y|N+2s dxdy − 8 ∫
Ω+

2
×Ω+

1

u(x)u(y)

|rN,0(x) − y|N+2s dxdy.

2∫
Ω

u2(x) ∫
ℝN⧵Ω

dy

|x − y|N+2s dx = 4∫
Ω+

u2(x) ∫
ℝN⧵Ω

dy

|x − y|N+2s dx.

(4.9)

2

CN,s

Es(u, u) = ∫
ℝN×ℝN

(u(x) − u(y))2

|x − y|N+2s dxdy

+ 8 ∫
Ω+

1
×Ω+

2

u(x)u(y)
[

1

|x − y|N+2s −
1

|rN,0(x) − y|N+2s
]
dxdy.

�−
1,p
(Ω) ≤ Es(u, u) = Es(u, u) + 4CN,s �

Ω+
1
×Ω+

2

u(x)u(y)
[

1

|x − y|N+2s

−
1

|rN,0(x) − y|N+2s
]
dxdy

= �−
1,p
(Ω) + 4CN,s �

Ω+
1
×Ω+

2

u(x)u(y)
[

1

|x − y|N+2s −
1

|rN,0(x) − y|N+2s
]
dxdy.

0 ≤ �
Ω+

1
×Ω+

2

u(x)u(y)
[

1

|x − y|N+2s −
1

|rN,0(x) − y|N+2s
]
dxdy ≤ 0.
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For the additional statement let p = 2 and let u, v be two normalized minimizers 
for �−

1,2
(Ω) . Assume further they satisfy the sign property in Theorem 1.2, i.e. they 

are of one sign in Ω ∩ HN,0 . Then, if u − v is not identically zero, it must change sign 
in Ω ∩ HN,0 . Indeed, if not, we may assume u − v > 0 in Ω ∩ HN,0 by [9, Corollary 
3.4]. Therefore 1 = ∫

Ω

u2dx = 2 ∫
Ω∩HN,0

u2dx > 2 ∫
Ω∩HN,0

v2dx = 1 a contradiction. Note 

that if u ≢ v , then also (u − v)∕‖u − v‖L2(Ω) is a minimizer. But by the above argu-
ment, u − v cannot change sign in Ω ∩ HN,0 . Whence u ≡ v as claimed. 	�  ◻
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