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   Abstract.  Specimens of  Deuteraphorura  collected in 11 Georgian caves were analysed morphologically 
and molecularly based on the COI gene barcode region. Two molecular delimitation methods revealed 
four species (MOTUs); however, only two of them were distinguished morphologically and are described 
in this paper as new to science. Both new species,  D. colchisi   sp. nov. and  D. kozmani   sp. nov., belong to 
the group with a pseudocellus on the fi rst thoracic tergum; the differential diagnosis table to this species 
group is provided. The potential of the Caucasus as a hotspot region of subterranean biodiversity and 
evolution centre of subterranean animals is discussed. 
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     Introduction 
 The biodiversity of caves has been one of the main topics of subterranean biology for decades. Within 
the Palearctic region, “hotspot areas” were defi ned in the mountains of southern Europe based on the 
diversity of obligate cave-dwellers (troglobionts and stygobionts) (Culver  et al.  2004, 2006; Reboleira 
 et al.  2011). Europe is traditionally a centre of speleobiological research, resulting in rich data on karst 
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regions and their subterranean fauna. It has been observed that areas of maximum diversity occur in the 
range of ca 42°–46° in Europe and 34° in the North America, but potential hotspots were also expected 
in the karst regions of the western Caucasus in Georgia (Culver  et al.  2006) and in South-East Asia, with 
a high level of endemism in troglobiotic taxa (Deharveng & Bedos 2000). The last mentioned has been 
confi rmed, and the region of southern China is recently the richest in troglobiotic Trechini beetles (e.g., 
Tian  et al.  2016, 2017). Biodiversity-rich areas were also identifi ed in Brazil (Souza-Silva & Ferreira 
2016). 

 Caves in the Caspian territory of the Palearctic have been almost neglected in terms of biospeleology. 
Recent studies have made a signifi cant contribution to revealing the subterranean diversity and 
documenting the great potential of this area for the discovery of the new taxa. Caucasian subterranean 
fauna has been intensively studied mostly in Georgia, resulting in regularly annotated lists of cave 
fauna (Barjadze & Djanashvili 2008; Barjadze  et al.  2012, 2015) with a total of 86 troglobiotic and 
stygobiotic species as of 2019 (Barjadze  et al.  2019). In the last decade, new species of   Collembola    
have been described in the genera     Deuteraphorura     Absolon, 1901  (Jordana  et al.  2012),    Arrhopalites     
Börner, 1906 and     Pygmarrhopalites     Vargovitsh, 2009  (Vargovitsh 2012, 2013, 2017, 2022), and 
   Plutomurus    Yosii, 1956 (Barjadze  et al.  2022)     and the new genus    Troglaphorura    , with highly 
troglomorphic species (Vargovitsh 2019). Unexpected diversity was documented in Diplopoda 
(Antić & Makarov 2016; Antić & Reip 2020), and new troglomorphic taxa were described in 
Isopoda (Gongalski & Taiti 2014) and Opilionida, with the highly specialised species in the genus 
   Nemaspela      (Martens  et al.  2021)     and Pseudoscorpionida of the genus    Globochtonius      (Zaragoza 
 et al.  2021)    . 

 In the present contribution, we describe two new collembolan species of the genus    Deuteraphorura     
discovered during recent biological investigations in the caves of western Georgia, and discuss the 
diversity indicated by molecular analyses. We emphasise the signifi cance of caves in the Caucasian 
Mountains and consider this important mountain range to be a hotspot area of subterranean biodiversity. 

   Material and methods 
  Study area 
 In Georgia, the total area of the karstic rock outcrop occupies 4475 km 2  with more than 1500 caves 
(Asanidze et al. 2019). 

 Specimens of    Deuteraphorura     from 11 relatively warm horizontal caves of low altitudes in Georgia 
were morphologically studied and molecularly analysed (Table 1). We called the cave close to 
Prometheus and Datvi Cave as Sakadzhia Cave; however, there are doubts about the real location of this 
cave (Barbakadze pers. com.). In this study, populations were defi ned as individuals collected in caves 
located in different karst areas of Georgia with a minimum distance of ca 2.5 km between the closest 
caves (Motena–Inchkhuri) and maximum distance of ca 85 km (Motena–Kozmani) (Fig. 1). 

     Morphological examination 

 For morphological study, specimens were separately mounted on permanent slides in Swann medium 
(Liquido de Swann) modifi ed after Rusek (1975) and studied in phase-contrast Carl Zeiss Axio 5 
microscope and Leica DM 2500 microscope equipped with DIL optics (differential interference 
contrast), a measuring eyepiece (micrometric ocular) and a drawing arm. The images were taken with 
an Axiocam 208 color (Carl Zeiss) camera with ZEN imaging software. Drawings were edited using 
Adobe Photoshop CS6. Chaetotaxy of the tibiotarsus is presented after Deharveng (1983), and of the 
labium after Fjellberg (1999). 
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   Molecular data analysis and species delimitation methods 
 One to three specimens from each population were analysed in the molecular laboratory of the Department 
of Zoology, IBE FS UPJS, Košice, Slovakia. 

 To prevent contamination, all DNA laboratory work was conducted under sterile conditions with the use 
of barrier tips. Total DNA was extracted with the Machrey-Nagel NucleoSpin Tissue Kit according to 
the modifi ed manufacturer´s protocol with 50 μL of elution buffer twice. A polymerase chain reaction 
(PCR) (Saiki  et al.  1988) was carried out using a 12.5 μL reaction volume consisting of 1 μL of template 
DNA (not quantifi ed), 10× PCR Buffer (TopBio), 12.5 mM of dNTP mix, 5 μM of each primer and 0.125 
units of Taq polymerase (TopBio) on a GenePro (Bioer Co. Ltd, China) thermal cycler. A fragment of the 
COI gene (588 bp) was amplifi ed using the primers LCO1490_JJ (5’ cha cwa ayc ata aag ata tyg g-3’) 
and HCO2198_JJ (5’- awa ctt cvg grt gvc caa ara atc a -3’; Astrin & Stüben 2008). Thermal cycling 
conditions were as follows: 94°C for 3 min followed by 5 cycles of 94°C for 30 sec., 45°C for 1 min 
30 sec. and 72°C for 1 min, followed by 35 cycles of 94°C for 30 sec., 51°C for 1 min 30 sec. and 72°C 
for 1 min followed by 1 min in 72°C. After verifi cation on agarose electrophoresis, reaction products 
were purifi ed using Exo I/FastAP (Thermo Fisher Scientifi c). The sequencing of the purifi ed products 
was performed using LCO1490_JJ by the Sanger method (Eurofi ns Genomics, Ebersberg, Germany). 
In cases when the primer failed to produce high quality chromatogram, reverse primer sequencing was 
employed. Sequences were edited and trimmed of unreadable short stretches (ca 30 bp at the 5’ and 3’ 
ends) with Geneious Prime ver. 2022.1.1 (Copyright © 2005–2022 Biomatters Ltd). 

 Since none of the sequences contained stop codons or indels in ORF, all were considered to be true 
mitochondrial and not nuclear copies. All the sequences were verifi ed as consistent with   Onychiuridae    
congeners using the GenBank BLASTn search (the Mega Blast algorithm with the default setting). 
Sequences were aligned with the Geneious Prime ver. 2022.1.1 (Copyright © 2005–2022 Biomatters 
Ltd) software by Muscle (Codons) algorithm using the Invertebrate Mitochondrial GeneCode and 

  Fig.   1  .  Locations of studied caves in Georgia. For cave abbreviations see Table 1. 
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default parameters. Standard DNA barcoding distance analysis was conducted in MEGA X (Kumar 
 et al.  2018) F using the Tamura-3 parameter method (Tamura 1992). A neighbour-joining tree (Saitou & 
Nei 1987) with Tamura-3 parameter method (Tamura 1992) was constructed and the robustness of the 
tree nodes was assessed by bootstrap analysis with 1000 replications, values under 60 are not shown. 

 Both barcoding gap- and evolutionary models were applied for COI marker. Assemble Species by 
Automatic Partitioning (ASAP) method (Puillandre  et al.  2021) used genetic distances to propose species 
hypotheses. The Kimura (K2P) model with default parameters was used to merge sequences into groups. 

 The Poisson tree processes (PTP) model, used for species delimitation based on the number of 
substitutions, was performed using on-line software (Zhang  et al.  2013). A maximum likelihood (ML) 
tree was inferred using Auto substitution model and 1000 Ultrafast bootstrap analysis (Hoang  et al.  
2018) in IQ-TREE software (Nguyen  et al.  2015). 

 Correlation between geographical and genetic distances (Tamura-3 parameter model, pairwise deletion 
option) of populations was evaluated by Mantel test (999 permutations) using the GenAlEx 6.5 program. 

 All new sequences are available in GenBank (accession numbers: OQ271838–OQ271861). 

   Abbreviations 
 Ant. = antennal segment 
Abd. = abdominal tergum 
AOIII = antennal organ of the third antennal segment 

  Table 1.  List of caves with their characteristics, and administrative and geographic location in Georgia. 
Cave characteristics according to Tatashidze  et al.  (2009) and Tsikarishvili & Bolashvili (2013). Names 
of tourist caves are bolded. Abbreviations: AK = Askhi karst massif; Ch = Chiatura; EE = entrance 
elevation; et = eutrophic; IM = Imereti; Kg = Kharagauli; Kh = Khoni; Ma = Martvili; mt = mesotrophic; 
OP = Odishi Plateau; ot = oligotrophic; SAM = Samegrelo; ST = Sataplia-Tskaltubo; Ts = Tskaltubo; 
 X  = site of air temperature measurements in caves is unclear;  Y  = elevation between the entrance and the 
deepest site of the cave; ZI = Zemo-Imereti Plateau; * trophic level estimation is based on presence of 
organic material in internal parts of the cave; – = not measured. 

Abb. Cave name EE 
(m a.s.l.)

Cave 
length (m)

Cave 
temp.  X  
(°C)

Cave 
depth  Y  
(m)

Trophic 
level*

Region District Karst 
area

Xom Khomuli 95 70 13.5–14 2 mt IM Ts ST
Mel Melouri 424 5300 12–13 15 ot IM Ts ST
Sak Sakadzhia 141 – – – mt IM Ts ST
Ssb  Satsurblia 305 125 11.7 20 mt IM Ts ST
Pro  Prometheus 147 2900 13.5–14.5 – et IM Ts ST
Dat Datvi 140 56 – – mt IM Ts ST
Sat Satevzia 215 250 – 0 mt IM Kh ST
Koz Kozmani 652 200 – – mt IM Kg ZI
Shv Shvilobisa 730 1000 12.3 10 ot IM Ch ZI
Mot Motena 570 95 13–13.6 14 ot SAM Ma AK
Ink Inchkhuri 380 65 – – et SAM Ma OP
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IBE FS UPJS = Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University,  
  Košice, Slovakia 
IZISU = Institute of Zoology, Ilia State University, Tbilisi, Georgia 
ms = microsensillum 
MVO = male ventral organ 
PAO = postantennal organ 
pso = pseudocellus 
psx = parapseudocellus 
Tita = tibiotarsus 
Th. = thoracic tergum 
VT = ventral tube 

    Results 
  Molecular species delimitation 
 We employed delimitation methods based on the COI mitochondrial gene to defi ne the molecular 
operational taxonomic units (MOTUs) and assess their congruence with the current species level based 
on morphology and geographic distribution. 

 We obtained alignment of 24 COI sequences with a length of 605 bp. 

Fig.  2  .  A neighbour-joining tree (NJ) with species delimitation of Georgian cave populations of 
   Deuteraphorura     Absolon, 1901    based on COI molecular marker, morphology and geographic location 
in karst areas. Numbers and coloured columns indicate groups (species) identifi ed by particular methods 
ASAP (Assemble Species by Automatic Partitioning) and bPTP (Bayesian Poisson tree processes). 
The question mark (?) indicates ambiguous result in Shvilobisa Cave due to low number of studied 
specimens. For abbreviations of caves in the NJ tree see Table 1.
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 The ASAP method delimited four species, and the best partition had an ASAP score of 2.0 (p <0.05). 
The bPTP method estimated four groups (species) with support from 0.519 to 1.0, thus corresponding 
to the ASAP delimitation (Fig. 2). 

 The distribution of K2P distances revealed a clear barcode gap. As determined with ASAP, specimens 
diverging at a K2P distance above 3% belong to different species (Fig. 3). 

 Species 1 comprised specimens from most of the Sataplia-Tskaltubo Karst caves: Khomuli, Satsurblia, 
Melouri, Prometheus, Datvi and Sakadzhia. Species 2 contained specimens from caves of three karst 
areas represented by Satevzia Cave, Motena Cave and Inchkhuri Cave. Species 3 comprised only a 
single specimen from Shvilobisa Cave, and species 4 consisted exclusively of specimens from   Kozmani 
 Cave    (Fig. 2). 

     Morphological character analysis was able to confi rm the species status of only two of the four MOTUs 
revealed by molecular delimitation methods; these two species have been given scientifi c names and are 
described taxonomically below. 

Fig.  3  .  Histogram of COI K2P distances between specimens of    Deuteraphorura     Absolon, 1901   . The 
red line indicates the threshold distance above which specimens are considered to belong to different 
species, according to ASAP method.
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 Taxonomy 
  Phylum     Arthropoda    von Siebold,  1848   
  Subphylum     Hexapoda    Blainville,  1816   

  Class     Collembola    Lubbock,  1870   
  Order     Poduromorpha    Börner,  1913   

  Family     Onychiuridae    Lubbock    (in Börner, 1913) 
  Subfamily     Onychiurinae    Börner,  1901   
  Genus      Deuteraphorura     Absolon, 1901 

          Deuteraphorura           colchisi      Parimuchová, Barjadze & Kováč     sp. nov.   
   urn:lsid:zoobank.org:act:AAC4848A-79D3-4A5C-8458-A8CB7BB2EA8F   

 Fig. 4, Table 2 

    Deuteraphorura     sp. – Zaragoza  et al.  2021. 

  Etymology 
 The name is derived from ‘ Colchis ’ – the historical geographical, ethnical and political entity of Georgia 
which today is located in the west of the country. 

    Type  material 
   Holotype  

   GEORGIA  •  ♀ ;  Imereti ,  Tskaltubo ,  Satsurblia Cave ;  42.38805000° N ,  42.60626700° E ;  12 Mar. 2020 ; 
 Eter Maghradze  leg.; hand collecting on wood; IBE FS UPJS.   

    Paratypes  
   GEORGIA  –   Imereti ,  Tskaltubo   •  3 ♀♀ ;  Khomuli Cave ;  42.31562° N ,  42.63613° E ;  11 Apr. 2020 ;  Eter 
Maghradze  leg.; hand collecting on wood, guano, water surface   •   1 ♀ ,  3 ♂♂ ;  Melouri Cave ;  42.38752° N , 
 42.62819° E ;  28 May 2019 ;  Eter Maghradze  leg.; pitfall traps with pork liver, hand collecting on guano 
and speleothems; IBE FS UPJS   •   3 ♀♀ ;  Prometheus Cave ;  42.37716° N ,  42.60086° E ;  13 Feb. 2018 ;  Eter 
Maghradze  leg.; pitfall traps with pork liver, hand collecting on wood, guano and speleothems; IBE FS 
UPJS   •   1 ♀ ;  Datvi Cave ;  42.37444° N ,  42.59583° E ;  27 Dec. 2019 ;  Eter Maghradze  leg.; pitfall traps with 
pork liver;  IZISU   • 1 ♀; same collection data as preceding; IBE FS UPJS   • 2 ♀♀ ;  Satsurblia Cave ; same 
collection data as for holotype;  IBE FS UPJS   • 1 ♂; same collection data as preceding; IZISU   • 1 ♀ ,  1 ♂ ; 
 Sakadzhia Cave ;  42.36756387° N ,  42.59123348° E ;  28 Dec. 2020 ;  Eter Maghradze  leg.; hand collecting 
on guano and detritus   •   3 ♀♀ ,  3 ♂♂ ;  Imereti ,  Khoni ,  Satevzia Cave ;  42.43153377° N ,  42.56590444° E ; 
 10 Feb. 2020 ;  Eter Maghradze  leg.; hand collecting on guano and water surface; •    10 ♀♀ ,  2 ♂♂ ; same 
collection data as preceding; IZISU   IBE FS UPJS •   1 ♀ ,  1 ♂ ;  Imereti ,  Chiatura ,  Shvilobisa Cave ;  42.3254° 
N ,  43.26786° E ;  8 Oct. 2021 ;  Eter Magradze ,  Shalva Barjadze ,  Lado Shavadze ,  Mariam Gogshelidze  leg.; 
hand collecting on guano, wood and detritus; IBE FS UPJS   •   3 ♀♀ ;  Samegrelo ,  Martvili ,  Inchkhuri Cave ; 
 42.45678637°N ,  42.40425674°E ;  18 Jul. 2020 ;  10 Jul. 2021 ;  Eter Maghradze ,  Shalva Barjadze ,  Lado 
Shavadze ,  Mariam Gogshelidze  leg.; hand collecting guano, wood, water surface and walls;  IZISU •  5 ♀♀ ; 
same collection data as preceding; IBE FS UPJS   •   1 ♀ ;  Motena Cave ;  42.47657295° N ,  42.39126228° E ; 
 10 Jul. 2021 ;  Shalva Barjadze ,  Lado Shavadze ,  Mariam Gogshelidze  leg.; hand collecting on walls; IBE 
FS UPJS  . 

      Description 
 Body length 1.3–2.3 mm in females, 1.85–2.1 in males (average 1.78 mm; n = 46), shape cylindrical 
(Fig. 4a). Colour white to pale brownish in ethyl alcohol. Cuticular granulation fi ne and uniform, slightly 
dense around pseudocelli. Antennae almost as long as head, area antennalis relatively well marked. PAO 
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Fig.  4  .     Deuteraphorura    colchisi      Parimuchová, Barjadze & Kováč sp. nov.     a . Dorsal chaetotaxy (the 
same scale as in Fig. 4b).  b . Ventral chaetotaxy of abdomen.  c . PAO.  d . MVO in adult specimen (other 
than in Fig. 4b).
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with 10–14 compound vesicles (Fig. 4c). Ant. I with 8–9 chaetae in one row, Ant. II with 14–15 chaetae. 
AOIII with 5 papillae, 5 guard chaetae, 2 sensory rods almost as long as papillae, 2 rough sensory 
clubs and lateral ms (as in Fig. 5b). Lateral ms on Ant. IV placed basally at the level of second row of 
chaetae. Apical organite simple in unprotected cavity. Maxillary outer lobe simple with 1 basal chaeta 
and 2 sublobal hairs. Labium of AB-type, with 6 proximal chaetae. Basomedian fi eld with 4 chaetae, 
basolateral fi eld with 5 chaetae. Head ventrally with 4 postlabial chaetae. 

 Pso formula dorsally as 33/133/3(4)3(4)4(3)5(6)3-4 (Fig. 4a) (2 pso on Th. I sometimes appear); ventrally 
as 12/011/3212 (Fig. 4b for abdominal ventral pso formula); head ventrally with 1 anterior 1 postero-
medial and 1 postero-lateral pso. Psx weakly visible. Subcoxae 1 of I–III pairs leg with 2,2,2 pso. 

 Dorsal body chaetae only weakly differentiated into macro and mesochaetae. Th. I with 7 chaetae per 
half. ThII–AbdIII with 3 + 3 medial chaetae respectively. VT with 5–7 chaetae per half, basal chaetae 

Table 2. List of species with 3 pso on hind margin of the head and 1 pso on Th. I. Abbreviations: abs = 
absent; f = forked; l = long; MVO = number of setae in male ventral organ; s = simple; t = thick.

Species Distribution Habitat Body length 
(mm)

PAO Dorsal pso Ventral 
pso

Subcoxae 
1 pso

MVO

D. akelaris 
Jordana & 
Beruete, 1983

Spain 
(Navarra) 

cave 1.2 12–14 33/133/45454 3/011/
2211

? 2t/8t

D. arminiaria 
(Gisin, 1961)

Austria cave 1.5–2.2 12 33/133/33354 3/011/
2112

2,2,2 ? 4t/6t

D. bizkaiensis 
Beruete, Arbea & 
Jordana in Beruete 
et al. 2021

Spain 
(Basque)

cave 0.8–1.06 12–13 33/133/33353 3/011/
3111

2,2,2 2t/8t

D. closanica 
Gruia, 1965

Romania caves 1.25–1.8 12 33-
4/133/33353

3/011/41-
21-22

1,1,1 4s/35-40s

D. dashtenazensis 
Arbea, 
Yahyapour & 
Shayanmehr in 
Yahyapour et al. 
2020

Iran soil, 
litter

1.4–1.9 13-15 33/133/33353 3/000/
1221

2,2,2 -/8t

D. galani Beruete, 
Arbea & Jordana, 
2001

Spain 
(Navarra)

cave 1.0–1.2 12–14 33/133/3-443-
454

3/011/
4212

? 2t/8t

D. harrobiensis 
Beruete, Arbea & 
Jordana, 2001

Spain 
(Navarra) 

cave 1.1.–1.3 12–15 33/133/3-
44464

3/011/
4111

? 2t/8t

D. jitkae 
(Rusek, 1964)

Slovakia soil, 
forest

2.1 21 33/133/33342 1/???/2-
321-22

1,1,1 2/
numerous 
s,f

D. kosarovi 
(Zonev, 1973)

? ? ? 15 33/133/33354 3/011/
4222

? ?

D. trisilvaria 
(Gisin, 1962)

Austria cave 1.6–2.4 18 33/133/33354 3/011/
3211

2,2,2 abs

D. colchisi 
sp. nov.

Georgia cave 1.1–2.3 10–14 33/133/3(4)
3(4)4(3)5(6)3-4

3/011/
3212

2,2,2 -/20-25 
t, s 

D. kozmani 
sp. nov

Georgia cave 1.5–2.6 14–16 33/133/4(3)4
(5)3-45(6)3(4)

3/011/
3222

2,2,2 -/ 20-25 
l, t, f
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Fig.  5  .     Deuteraphorura    kozmani      Parimuchová, Barjadze & Kováč sp. nov.    a . Dorsal chaetotaxy. 
 b . AOIII.  c . MVO (enlargment of modifi ed chaeta).  d . Tita and claw of leg III (DIC contrast image; 
chaeta in C-row not visible from this view).
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absent. Chaetae on Th. I–III sterna absent. Furca remnant with 2 + 2 thin chaetae in one row. MVO 
present only in fully adult males in form of 10–20 thickened, short and bent spine-like chaetae only on 
Abd. III sternum (Fig. 4d). Subcoxae 1 of legs I–III 4,4,4 chaetae, subcoxae 2 with 3, 13–14, 14–16 
chaetae, trochanters with 8–9 chaetae each and femora with 15, 13–15, 13–15 chaetae, respectively. 
Tita I–III with 18, 19, 17 chaetae including 9 chaetae in distal whorl. Tita I with 6 + M chaetae in B row 
and 2 chaetae in C row, Tita II with 7 + M chaetae in B-row and 2 chaetae in C-row, Tita III with 6 + 
M chaetae in B row and 1 chaeta in C row. Claw without teeth. Empodium with basal lamella, tip of 
fi lament reaching two-thirds of the claw length (as in Fig. 5d). 

   Ecology and distribution 

 The species is known only from caves in western Georgia where it inhabits warm caves at low altitudes. 
By its morphology, it does not display any obvious troglomorphic adaptations. 

   Remarks 

 See remarks for    D.    kozmani      sp. nov.   

                Deuteraphorura           kozmani      Parimuchová, Barjadze & Kováč     sp. nov.   
   urn:lsid:zoobank.org:act:BD48C182-8833-4537-9C44-024938DC47CD   

 Fig. 5, Table 2 

  Etymology 

 The species was named after the type locality,   the Kozmani  Cave    in Georgia. 

    Type  material 

   Holotype  
   GEORGIA  •  ♂ ;  Imereti ,  Kharagauli ,   Kozmani  Cave   ;  42.10092528° N ,  43.28852625° E ;  14 Sept. 2021 ; 
 Eter Maghradze  leg.; hand collecting on detritus; IBE FS UPJS.   

    Paratypes  
   GEORGIA  •  6 ♀♀ ,  2 ♂♂ ; same collection data as for  holotype ; IZISU  •  8 ♀♀ ,  1 ♂ ; same collection 
data as for  holotype ; IBE FS UPJS . 

    Description 

 Body length 1.8–2.6 mm in females, 1.5–2.0 in males (average 2.0 mm; n = 18), shape cylindrical 
(Fig. 5a). Colour white to pale brownish in ethyl alcohol. Cuticular granulation fi ne and uniform, slightly 
dense around pseudocelli. Antennae almost as long as head, area antennalis relatively well marked. PAO 
with 14–16 compound vesicles. Ant. I with 8 chaetae in one row, Ant. II with 14–15 chaetae. AOIII with 
5 papillae, 5 guard chaetae, 2 sensory rods almost as long as papillae, 2 rough sensory clubs and lateral 
ms (Fig. 5b). Lateral ms on Ant. IV placed basally at the level of second row of chaetae. Apical organite 
simple in unprotected cavity. Maxillary outer lobe simple with 1 basal chaeta and 2 sublobal hairs. 
Labium of AB-type, with 6 proximal chaetae. Basomedian fi eld with 4 chaetae, basolateral fi eld with 5 
chaetae. Head ventrally with 5 postlabial chaetae. 

 Pso formula dorsally as 33/133/4(3)4(5)3-45(6)3(4) (Fig. 5a); ventrally as 12/011/3222; head ventrally 
with 1 anterior, 1 postero-medial and 1 postero-lateral pso. Psx weakly visible. Subcoxae 1 of I–III pairs 
leg with 2,2,2 pso. 
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 Dorsal body chaetae only weakly differentiated into macro and mesochaetae. Th. I with 6–7 chaetae per 
half. ThII–AbdIII with 3 + 3 medial chaetae respectively. VT with 5–6 chaetae per half, basal chaetae 
mostly absent. Chaetae on Th. I–III sterna absent. Furca remnant with 2 + 2 thin chaetae in one row. 

 MVO present only in fully adult males in form of 20–25 thickened, long and forked chaetae only on 
Abd. III sternum (Fig. 5c). Subcoxae 1 of legs I–III with 4, 4, 4 chaetae, subcoxae 2 with 3,14–17, 15–17 
chaetae, trochanters with 8–10 chaetae each and femora with 14–15, 13–15, 13–15 chaetae, respectively. 
Tita I–III with 18, 19, 17 chaetae including 9 chaetae in distal whorl. Tita I with 6 + M chaetae in B row 
and 2 chaetae in C row, Tita II with 7 + M chaetae in B-row and 2 chaetae in C-row, Tita III with 6 + 
M chaetae in B row and 1 chaeta in C row. Claw without teeth. Empodium with basal lamella, tip of 
fi lament reaching two-thirds of the claw length (Fig. 5d). 

   Ecology and distribution 
 The species is known only from the type locality, occurring on guano and decaying organic material. It 
does not display any obvious troglomorphic adaptations. 

   Remarks 
 Both species belong to the species group of    Deuteraphorura     with 3 pso on hind margin of the head 
and possessing the pso on the fi rst thoracic tergum. The vast majority of these species occupy caves 
in southern and central Europe. As morphological characters vary within both new species, reliable 
distinguishing from each other is possible only by ventral pseudocellar formula and shape of MVO in 
matured males.    Deuteraphorura    colchisi      sp. nov.   has simple thickened chaetae in MVO, while modifi ed 
chaetae in    D.    kozmani      sp. nov.   are longer and weakly forked at the tip. Similar to the new species, 
   D.   dashtenazensis     Arbea, Yahyapour & Shayanmehr, 2020    has MVO only on Abd. III, but it differs in 
number of chaetae on this organ. Diagnostic morphological characters of both new species and other 
species of this group are listed in Table 2. 

          Discussion 
 Only a few species of    Deuteraphorura     have been registered in Georgia to date:    D.    variabilis     (Stach, 
1954)   ,    D.    kruberaensis     Jordana & Baquero, 2012    (Barjadze  et al.  2012, 2015) and    D.    inermis     (Tullberg, 
1869)   ; however, the occurrence of the last species in Georgian caves is doubtful (Barjadze  et al.  2012). 
Intensive cave sampling using an integrative approach reveals a greater diversity of cave    Deuteraphorura     
in Georgia than previously thought. 

 Delimitation methods indicated the presence of several distinct molecular lineages (MOTUs) within 
the (morpho)species    colchisi    , while only one in    kozmani    . Three groups within the species of    colchisi     
point to recent speciation of    Deuteraphorura     in Georgian caves, as revealed in    Deuteraphorura     and 
   Protaphorura     from the Western Carpathians (Parimuchová  et al.  2017, 2020). Three approaches to species 
delimitation (morphological, molecular and geographical) contradict one another in the population from 
Shvilobisa Cave. Molecularly, specimens from this cave represent unique species; however, it is located 
in the same karst area as  Kozmani  Cave   –Zemo-Imereti Plateau. Geography was considered a reliable 
delimitation tool in   Onychiuridae     (Sun  et al.  2017)   , but the in the case of such a complex karst area as 
Zemo-Imereti, particular structural plateaus have a different geological history (Lezhava  et al . 2019; 
Tielidze  et al . 2019), which may have a decisive impact on the isolation of subterranean populations 
within this area and the evolution of independent phyletic lineages of    Deuteraphorura    . Morphologically, 
specimens from Shvilobisa Cave are similar to those from the geologically similar Sataplia-Tskaltubo 
karst area. But due to the relatively small number of specimens for morphological and molecular study, 
the population from Shvilobisa Cave needs further examination. The Satevzia, Motena and Inchkhuri 
caves are located in different karst areas, but they are geographically relatively close; they share the 
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same cryptic species, which is documented by a positive correlation between geographic and genetic 
distance. 

 As the family   Onychiuridae    refl ects a high level of morphological variability and the left-right 
asymmetry in chaetotaxy and pseudocellar patterns (e.g., Jordana  et al.  2012; Kaprus'  et al . 2014; Sun & 
Wu 2014; Parimuchová  et al.  2017, 2020; Vargovitsh 2019), identifi cation of species-specifi c characters, 
corresponding to molecular delimitation, is very problematic. Inadequacies in the morphological 
taxonomy of   Onychiuridae    are caused by a lack of suffi cient morphological characters and thus a high 
level of cryptic diversity in this family (Sun  et al.  2017). 

  Subterranean biodiversity of the Caucasus Mts – a hotspot area 
 Areas of the highest subterranean biodiversity (hotspots) were defi ned based on the number of species 
adapted to subterranean life per cave (Culver & Sket 2000; Reboleira  et al.  2011). Regarding the number 
of troglobiotic species, we have to return to the defi nition of troglobiont/troglobite as a species that 
exclusively inhabits a subterranean environment with a preference for its deep parts, and eventually 
also showing morphological adaptations to subterranean life (Sket 2008; Trajano & Carvalho 2017; 
Howarth & Moldovan 2018). The degree of troglomorphism is not correlated with occupied cave depths, 
as documented by non-adapted animals occurring in the deepest parts of caves (Sendra & Reboleira 
2012). To distinguish troglobionts based only on the level of morphological adaptations to the cave 
environment is very ambiguous, particularly in pre-adapted groups of invertebrates living in deeper 
soil horizons. Moreover, recent speciation could be a reason for the low development of troglomorphic 
characters in   Onychiuridae    (e.g., Fiera  et al.  2021). Thus, the real species richness of a given area could 
be underestimated in this family when considering only morphological traits. 

 It is known that troglomorphic adaptations are not universal in all cave-adapted species. The level of 
troglomorphy could be correlated with evolutionary age, showing up well in ‛old’ troglobionts and 
weakly to moderately in ‛young’ ones (Kováč  et al.  2016). Guanobionts regularly contradict the generally 
accepted morphological traits of obligate cave-dwellers (e.g., Culver & Pipan 2009, 2015). In troglobiotic 
  Onychiuridae   , a rather edaphomorphic appearance without progressive troglomorphic adaptations has 
been documented in a large number of cave-dwelling species from the Romanian Carpathians (Fiera  et 
al.  2021). On the other hand, the highly troglomorphic    Troglaphorura    gladiator     Vargovitsh, 2019   , from 
Georgia in the Caucasus, and    Deuteraphorura    muranensis     Parimuchová & Kováč, 2020   , distributed 
at the northernmost distribution limit of troglobionts in Europe (Parimuchová  et al.  2020), show an 
extremely high level of troglomorphy, as much as the species of the genus    Ongulonychiurus     from Spain 
and Croatia, respectively (Thibaud & Massoud 1986; Sun  et al.  2019), and    Pilonychiurus     from Algeria 
(Pomorski 2007). In contrast,    Absolonia    gigantea     (Absolon, 1901)    from Dinarides, of an unusually 
large size, lacks distinct troglomorphy similar to    Protaphorura    janosik     Weiner, 1990   , and    P.   cykini   
  Parimuchová & Kováč    in Parimuchová  et al ., 2017a, from the Western Carpathians and Siberia, 
respectively, and    Megaphorura    arctica     (Tullberg, 1877)   , which is abundant in the substrate at the foot 
of bird cliffs in the Arctic. These discrepancies suggest that the microhabitat (or the trophic niche that a 
species occupies) determines the level of troglomorphy to a greater extent than geographic distribution 
in a biodiversity hotspot or evolutionary origin in terms of young and old troglobionts. Based on the 
category of troglomorphisms (length of antennae, claws and furca), four life forms were distinguished in 
troglobiotic   Arrhopalitidae   , including neustonic, atmobiotic, intermediate and intrasubstrate troglobionts 
(Vargovitsh 2022). A similar approach could be applied to representatives of the family of   Onychiuridae   , 
whose species living exclusively on the water surface have a clearly elongated claw, while species living 
in guano and sediments generally have a short claw. 

 The occurrence of highly troglomorphic species is thus possible everywhere in the subterranean 
environment where the microhabitat character requires specifi c adaptations; however, there are 
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environmental indicators to a higher incidence. Aside from hypotheses considering habitat heterogeneity, 
historical circumstances and habitat productivity, a high terrestrial species richness is also enhanced by 
the west-east orientation of mountains, which historically reduced the migration potential of invertebrates 
and increased their invasion rate via subterranean habitats (Culver  et al.  2006; Deharveng  et al.  2012). 
Similar to the geographic characteristics seen in mountain ranges in southern Europe, the Caucasus is 
predestined to be a hotspot of subterranean biodiversity and potential evolution centre. The relatively 
large extent and connectivity of the karst, especially in Abkhazia, Georgia, may enable subterranean 
species to disperse more widely and access various microhabitats inside the karst, the pattern revealed in 
Dinarides (Bregović & Zagmajster 2016). The length of passages and surface productivity as a variable 
of subterranean species richness (Culver  et al.  2004, 2006) point in favour of the Caucasus as a hotspot, 
as well. The long-term stable areas of high precipitation are important for subterranean terrestrial 
diversity, while productive energy is important only on a global scale (Bregović & Zagmajster 2016). 

 The fauna of the Western Caucasian caves importantly contributes to global subterranean diversity, as 
was documented across multiple arthropod taxa (e.g., Sendra & Reboleira 2012; Antić & Makarov 2016; 
Barjadze  et al.  2019; Antić & Reip 2020; Martens  et al.  2021; Zaragoza  et al.  2021). The Caucasus 
as a signifi cant hotspot of subterranean biodiversity is well documented in Diplopoda, with a high 
level of endemism and a high proportion of troglobiotic species, especially in the orders Julida and 
Chordeumatida (Antić & Makarov 2016; Antić & Reip 2020). Altogether, the 19 troglobiotic species 
known from a single cave in Georgia (Fiera  et al.  2021) are almost equal to the threshold of 20 troglobiotic 
and stygobiotic species in the hotspot caves (Culver & Sket 2000). Thus, it is herein documented that the 
Western Caucasus is a centre of speciation in the   Collembola    genera of    Arrhopalites ,   Pygmarrhopalietes     
(  Arrhopalitidae   ) and    Plutomurus     (  Tomoceridae   ) (Fiera  et al.  2021), and based on the present results, 
potentially also in the genus    Deuteraphorura     (  Onychiuridae   ). 
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