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Pázmány P.s. 1/A, H-1117, Budapest, Hungary
cInstitute for Nuclear Research of the Hungarian Academy of Sciences,

Bem tér 18/c, H-4026 Debrecen, Hungary
dHISKP(Theory), University of Bonn,

Nussallee 14-16, D-53115 Bonn, Germany

E-mail: endrodi@th.physik.uni-frankfurt.de, giordano@bodri.elte.hu,

katz@bodri.elte.hu, kgt@atomki.mta.hu, pittler@hiskp.uni-bonn.de
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the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis
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(reduction of the condensate) in the transition region. While the former is known to be

robust and independent of the details of the interactions, inverse catalysis arises as a result

of a delicate competition, effective only for light quarks. By performing simulations at

different quark masses, we determine the pion mass above which inverse catalysis does not

take place in the transition region anymore. Even for pions heavier than this limiting value

— where the quark condensate undergoes magnetic catalysis — our results are consistent

with the notion that the transition temperature is reduced by the magnetic field. These

findings will be useful to guide low-energy models and effective theories of QCD.
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1 Introduction

Strongly interacting matter at finite temperature in the presence of external magnetic

fields has been the subject of intense research in recent years (see, e.g., refs. [1–4] for re-

cent reviews). Besides physical applications in the study of heavy ion collisions, neutron

stars, and the early Universe, this topic is of considerable interest for a better theoretical

understanding of Quantum Chromodynamics (QCD) in the presence of external sources.

In this respect, nonperturbative studies by means of numerical calculations on the lattice

have shown a richer variety of effects than initially expected. Perturbative and model

calculations led one to expect that, regardless of the temperature, one would find an in-

crease of the quark condensate as the magnitude B of the magnetic field was increased,

a phenomenon called magnetic catalysis (MC) [5], and a corresponding increase of the

(pseudo)critical temperature Tc. This was initially confirmed by lattice studies [6], but

the situation changed as the numerical calculations were made more precise. For physical

quark masses and on fine lattices, it turned out that while MC is displayed away from

the critical region, near Tc the quark condensate decreases with B, i.e., inverse magnetic

catalysis (IMC) is found, and correspondingly Tc decreases [7, 8]. This behavior, originally

observed for B < 1 GeV2, was later found to persist for stronger magnetic fields and it was

argued that Tc(B) monotonically decreases up to asymptotically large magnetic fields [9].

Results supporting IMC were also obtained by further lattice simulations [10–12]. It was

then believed that MC and IMC corresponded to Tc being respectively an increasing or

decreasing function of B, but a recent study has shown that as the pion mass is increased,

the behavior near Tc crosses over from IMC to MC, while Tc remains a decreasing function

of B all along [13].

On the theoretical side, a full understanding of the microscopic mechanism responsible

for these effects is still lacking. In this respect, it is useful to recall, following refs. [14, 15],

that the magnetic field enters the calculation of the condensate both directly through the

observable, and indirectly through the fermion determinant contributing to the weight of
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the gauge configurations. The corresponding effects are called valence effect and sea effect,

respectively. As a matter of fact, the magnetic field has a catalytic effect on the spectrum of

the Dirac operator in a given gauge configuration, increasing the density of low modes and

therefore the condensate. The valence effect therefore always acts in the direction of MC: in

particular, the valence condensate, obtained by averaging over configurations with B = 0

in the fermionic determinant, increases with B at all temperatures. When reweighting

the valence condensate to the full one, including a nonzero B in the determinant, those

configurations with a larger change in the spectral density near the origin will be suppressed

more: this is the sea effect, which is expected to act in the direction of IMC. In the end,

it is the balance between the two effects that determines whether MC or IMC will take

place. Since the magnetic field couples to the gauge field only indirectly through the

fermionic determinant, it is the sea effect which is responsible for the observed changes in

the confining properties of the theory — like the Polyakov loop expectation value [15] or

the static quark-antiquark potential [16].

It is clear from the discussion above that there are two main issues that need to be

clarified to fully explain the effect of an external magnetic field in QCD. The first issue is the

detailed mechanism that leads to an enhanced density of low modes of the Dirac operator

when B is nonzero. While for free quarks the degeneracy of the Landau levels is responsible

for this enhancement [17], in strongly interacting QCD these levels are in general not well

defined anymore. Remarkably, the lowest Landau level can still be meaningfully identified

and was shown to quantitatively explain the increase of the quark condensate for strong

magnetic fields on the lattice [18].

The second issue is the delicate balance between the catalytic drive of the valence

effect and the anticatalytic drive of the sea effect. This amounts to investigating the cir-

cumstances under which IMC is realized around the transition temperature. This is par-

ticularly relevant for the interpretation of the IMC phenomenon. Recently, a multitude of

low-energy models and effective theories have been employed to explain the lattice findings

about IMC (see, e.g., refs. [19–39]). In most of these settings magnetic catalysis arises nat-

urally, but to reproduce inverse catalysis around Tc turned out to require a tuning of model

parameters as functions of the magnetic field (see, e.g., refs. [40–43]). In several cases such

a reparameterization only sufficed to achieve a reduction in Tc(B) for low magnetic fields,

whereas for higher B an increasing transition temperature was observed, see for example

refs. [44–47]. In summary, in recent years the magnetic field-temperature phase diagram

grew out to be a highly non-trivial testing ground for QCD models. The determination

of additional details of this phase diagram — like the effect of changing the quark masses

— will therefore further contribute to a better understanding of the limitations of such

effective descriptions.

In this paper we will make a step towards a better understanding of this second issue.

Our purpose is to study how the catalytic or anticatalytic effect of the magnetic field

depends on the pion mass, or equivalently on the mass m of the light quarks, pinning

down the limiting value at which IMC turns into MC. For each m, we do this at the

corresponding critical temperature Tc = Tc(m), and at a fixed value of the magnetic field

in physical units. The dependence on the pion mass was also the subject of ref. [13]. Here
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we employ a larger set of pion masses to follow more closely the transition from IMC to

MC. Moreover, we employ a different, mass-independent scale-setting procedure to assess

the robustness of the qualitative picture obtained in ref. [13] against different ways to build

QCD for unphysical pion masses.

The plan of the paper is the following. In section 2 we give the details of our calculation,

including the determination of Tc and setting of the physical scale. In section 3 we specify

our observables. In section 4 we discuss our numerical results. Finally, in section 5 we

draw our conclusions and show our prospects for the future.

2 Numerical setup and methods

We perform our numerical calculations on N3
s ×Nt lattices using the tree-level Symanzik

improved gauge action with three flavors of stout improved rooted staggered quarks. We

fix the strange quark mass to its physical value and vary the light quark mass m = mud

between its physical value and the strange quark mass, i.e., between the physical and the

Nf = 3 flavor symmetric point, using the values m/mphys ∈ {1, 4, 8, 12, 16, 18, 20, 28.15}.
The details of our lattice ensembles, the line of constant physics and the lattice scale a(β)

are described in refs. [7, 48, 49]. We adopt a mass-independent scale-setting scheme, using

the results of ref. [49] for the lattice scale determined at the physical point. In order to

estimate the size of finite-spacing effects in the scale setting, we have alternatively set the

lattice spacing using the w0 scale [50] computed in the Nf = 3 system, making use of

the continuum value w0 = 0.153 fm [51]. Notice that both procedures rely on a mass-

independent scale setting, and are expected to lead to the same continuum results. We

remark furthermore that the lattice scale could also be set in a mass-dependent manner

— this approach was followed in ref. [13], which employs w0 at the physical point and

assumes that it is independent of m. Since there is no preferred choice when dealing with

physics off the real world, a comparison between different scale-setting procedures does not

assess a systematic error, but rather the robustness of the resulting qualitative pictures. A

comparison to the results of ref. [13] will be provided below.

For our analysis both zero-temperature runs as well as finite-temperature simulations

were necessary. We generated T ≈ 0 configurations at B = 0 using four different values

of the gauge coupling β summarized in table 1. These configurations are used for the

determination of the additive renormalization of the condensate and of the lattice scale. The

finite-temperature simulations were performed at fixed lattice spatial volume and temporal

extension (Ns = 24 and Nt = 6). This translates approximately to lattice spacings between

0.15 fm and 0.29 fm with our two-level stout improved action. All of our finite temperature

simulation points are summarized on figure 1. For each ensemble we generated O (200) well

thermalized configurations separated by 10 HMC trajectories. In the analysis we compute

the statistical error by the bootstrap procedure with 2000 bootstrap samples. We are

performing fully correlated fits when it is necessary.

To fulfill the periodic boundary conditions, we need to use a quantized magnetic flux

Nb in our simulations. The quantization condition reads

(Nsa)2 · qdB = 2πNb, Nb ∈ Z, 0 ≤ Nb < N2
s , (2.1)
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β Ns Nt

3.450 24 32

3.555 24 32

3.625 28 40

3.670 32 48

Table 1. Bare parameters of our T ≈ 0 ensembles.
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Figure 1. The points on the T −m plane used for configuration generation in this work.

where the smallest of the quark electric charges enters, that of the down quark |qd| = e/3,

with e > 0 being the elementary charge. In order to be able to resolve it, the magnetic

field on our discretized lattice has to be very small in lattice units, i.e., a2qB � 1, which

translates to Nb/N
2
s � 1 in terms of the magnetic flux. In this work we use Nb ∈ [11, 18],

which results in Nb/N
2
s < 5%, thus in small discretization errors for B.

3 Observables

Our central observable is the light quark condensate 〈ψ̄ψ〉 = 〈ūu + d̄d〉/2. Here we follow

the normalization introduced in ref. [8],

Σ(B, T,m) =
2mphys

M2
πF

2

[
〈ψ̄ψ〉B,T,m − 〈ψ̄ψ〉0,0,m

]
+ 1, (3.1)

which contains the physical pion mass (Mπ = 135 MeV) and the chiral limit of the pion

decay constant (F = 86 MeV) at B = 0. The so defined combination is free of additive

and multiplicative divergences and is normalized such that it equals unity for T = B = 0

and (according to leading-order chiral perturbation theory) approaches zero for high tem-

peratures. Using eq. (3.1), the change of the condensate due to the magnetic field reads

∆Σ(B, T,m) = Σ(B, T,m)− Σ(0, T,m) =
2mphys

M2
πF

2

[
〈ψ̄ψ〉B,T,m − 〈ψ̄ψ〉0,T,m

]
. (3.2)
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Note that here we take into account both (a) the sea effect by generating configurations

at several values of the (quantized) magnetic flux, and (b) the valence effect by using the

Dirac operator at B > 0 in the measurement.

Magnetic catalysis and inverse catalysis are distinguished by the sign of ∆Σ(B, T,m).

Instead of mapping out the complete three-dimensional parameter space, in this work we

concentrate on a one-dimensional subspace

∆Σ̃(m) ≡ ∆Σ(B0, Tc(m,B = 0),m) . (3.3)

Thus, we follow the line of pseudo-critical temperatures T = Tc (m,B = 0) on the T −m
plane. Since at Tc the system is maximally sensitive to the fermionic determinant, in this

way we expect anticatalytic effects to be at their strongest for each value of the light quark

mass that we simulate. For the magnetic field we choose eB0 = 0.6 GeV2, which is a

typical value where the IMC phenomenon occurs [8]. On Nt = 6 lattices at the physical

point, the system exhibits IMC, i.e. ∆Σ̃(mphys) < 0, see ref. [8]. We will see below that

increasing m increases ∆Σ̃, eventually turning it positive. The limiting quark mass m̃ is

defined implicitly by ∆Σ̃(m̃) = 0.1

Besides the quark condensate, we also determined the average Polyakov loop, which

has already been identified as the most relevant gluonic observable for the response of QCD

matter to a background magnetic field [15]. It is defined as the average product of time-like

links U4 along a closed temporal loop of minimal length,

P =
1

V

〈∑
x

Re Tr

Nt−1∏
t=0

U4(x, t)

〉
. (3.4)

We also consider the ratio

LR = P (B, T,m)
/
P (0, T,m) , (3.5)

in which the multiplicative divergences cancel (since those are independent of the magnetic

field [15]).

4 Results

To determine m̃, we first performed B = 0 simulations to calculate Tc (m,B = 0) as a

function of m. The pseudo-critical temperature was computed as the inflection point of

Σ(0, T,m), by means of an arctangent fit to the data, separately for each quark mass

represented in figure 1. For illustration, we show in figure 2 our results for Σ at the three-

flavor symmetric point with the arctan fits included. The two data sets correspond to two

independent scale settings: (a) using fK at the physical point [49], (b) using w0 at the

1In general, the set ∆Σ(B, T,m) < 0 is a domain in the T − B plane for each value of the quark mass.

For physical quark masses, m = mphys, this domain includes the point p = [eB = 0.6 GeV2, T = Tc(m)].

As the quark mass is increased, the domain shrinks. According to our definition, m̃ is the limiting mass,

where the point p crosses the border of the domain. Choosing p differently will change our result slightly

but will not affect the emerging picture qualitatively.
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Figure 2. Comparison of the two scale setting procedures described in the text. Red circles

indicate the results using the w0 scale at the Nf = 3 point, while the green squares correspond to

the 2 + 1-flavor LCP [49].

Nf = 3 point. From the figure it is apparent that the uncertainty coming from the scale

setting is tiny. This is also reflected by the extracted inflection points, which agree with each

other within one standard deviation. At the physical point we find on our Nt = 6 lattices

that Tc (mphys, B = 0) = 149.9(9) MeV, only a few percent away from the continuum limit

T cont
c = 157(4) MeV [52]. We take this as an indication of small finite-spacing effects.

From the Tc(m) data we can determine the complete pseudo-critical trajectory using

an interpolation in the quark mass. We have tried fits with several functional forms, namely

the “rational” function

Tc(m) = Tc(0)
1 + amc

1 + bmc
, (4.1)

and the power-law behavior

Tc(m) = Tc(0) + amu(1 + bm2 + cm4) , (4.2)

where we set u = 1
βδ with β and δ the critical exponents of the O(4) or the O(2) universality

classes (see, e.g., ref. [53]). We plot our results in figure 3 against the respective pion masses

(for their determination, see below), and list our resulting fit parameters in tables 2 and 3.

The errors of Tc(m) used in the fits include the statistical error and the systematic error

related to the choice of fitting range in the determination of the inflection point. In the

plot a further 2% uncertainty due to the determination of the physical scale (see ref. [52])

is also included.

In figure 3 we include also the results of the Pisa group (figure 6 of ref. [13]) for

comparison. While the different scale-setting procedure obviously leads to quantitatively

different results from ours, the qualitative behaviors match nicely.

As an interesting side result, we determine the critical temperature in the chiral limit

as Tc(m = 0) = 138(4) MeV. The central value is obtained averaging the three best fits in
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“rational”

Tc(0) [MeV] 140(4)

a 0.17(4)

b 0.09(1)

c 0.8(2)

χ2/d.o.f. 0.6

Table 2. The parameters of a fit to the Tc(m) data using the function of eq. (4.1).

O(4) O(2)

Tc(0) [MeV] 138(1) 135(1)

a [MeV] 12.2(5) 14.5(6)

b −6(1) · 10−4 −4(1) · 10−4

c 4(1) · 10−7 3(1) · 10−7

χ2/d.o.f. 0.4 0.4

Table 3. The parameters of a fit to the Tc(m) data using the function of eq. (4.2), with u chosen

according to the indicated critical behavior.
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M
π
 [MeV]

rational
O(4) scaling
O(2) scaling

this work
Pisa group

Figure 3. The pseudo-critical trajectory, together with the results of fits performed according to

eqs. (4.1) and (4.2). The extended error bars include the systematic effect due to scale setting.

Data from ref. [13] are also included for comparison.

tables 2 and 3, while the error is obtained by averaging in quadrature the corresponding

statistical errors and the deviation of the three central values from the mean.

Due to the quantization condition, eq. (2.1), we are not able to perform simulations at

the same physical magnetic field on all points of the pseudo-critical trajectory. In order to

correct for this, we perform for each quark mass several simulations near eB0 = 0.6 GeV2

and Tc(m) and interpolate linearly in the magnetic field and in the temperature. For

illustration we show our results for the interpolation at a particular light quark mass

on figure 4.
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Figure 4. Visualization of our interpolation scheme for m/mphys = 18. The pseudo-critical

temperature is Tc = 197.3(5) MeV. The lines indicate the results of the interpolation in B to

eB0 = 0.6 GeV2 at a fixed temperature, and the black filled circle represents the result of the final

interpolation in the temperature.
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Figure 5. The squared pion mass as a function of the light quark mass. The dashed line indicates

the linear dependence predicted by chiral perturbation theory.

In order to interpret our results in terms of physical parameters, we also determined

the pion mass Mπ using our zero temperature ensembles for several quark masses. We

show our results in figure 5, which agree well with the prediction of chiral perturbation

theory for the pion mass. We find M2
π = M2

0 · (m/mphys) with M0 = 132.62(4) MeV, in

good agreement with the physical pion mass. This dependence is used to interpolate the

pion mass for intermediate values of m.

The main result of this paper is shown in figure 6, where we plot the change of the

renormalized chiral condensate ∆Σ̃ of eq. (3.3) against the quark mass (and, equivalently,

against the pion mass). Remember that this quantity measures the change in the conden-

sate when switching on a magnetic field of magnitude eB0 = 0.6 GeV2 at the pseudo-critical

temperature Tc(m). The sign of ∆Σ̃ changes from negative to positive at the limiting quark
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Figure 6. The change in the condensate due to the magnetic field eB0 = 0.6 GeV2 along the

pseudo-critical trajectory in terms of the pion mass. The green vertical line indicates the limiting

pion mass, which separates the IMC and MC regions.

mass m̃ = 14.07(55)mphys. The corresponding pion mass equals M̃π = 497(4) MeV. We

obtain this value using a linear interpolation in the interval Mπ ∈ [450, 570] MeV with

reduced χ2 ' 1. These results show that a change from IMC to MC in the response of

strongly interacting matter to a background magnetic field takes place for sufficiently heavy

pions, as already observed in ref. [13], and allow us to quantify how heavy pions have to be.

Finally, in figure 7 we show the Polyakov loop ratio (3.5), which clearly shows that the

renormalized Polyakov loop increases monotonically for all quark masses in the transition

region. This finding is in line with the recent results of ref. [13], where also the inflection

point of P was determined and Tc(B) was shown to be a decreasing function of B for

pion masses up to Mπ ≈ 660 MeV, independently of whether MC or IMC takes place.2

This can perhaps be understood in terms of the inverse correlation between the Polyakov

loop and the reweighting factor of a gauge configuration due to switching on a magnetic

field, observed in ref. [15]. Such a correlation implies that configurations with larger values

of the average Polyakov loop are favored in the presence of a magnetic field, compared

to the typical configurations at B = 0. This pushes the system towards the ordered

phase, thus anticipating the transition and lowering the pseudocritical temperature for

B 6= 0. Whether this leads to MC or IMC at Tc depends instead on the correlation

between the chiral condensate and the reweighting factor. The results of ref. [13] and of

this paper suggest that while there is always inverse correlation between the Polyakov loop

and the reweighting factor, the sign of the correlation between the chiral condensate and

the reweighting factor depends on the quark mass.

2The Polyakov loop is expected to be independent of the magnetic field both for sufficiently low and

for sufficiently high temperatures. Thus, the implicit condition P (Tc) = const. is a feasible alternative

definition for the transition temperature Tc. An increase in P (B) for all temperatures therefore results

in a decreasing Tc(B). Note that an analogous construction does not capture the behavior of the quark

condensate, since Σ depends on B even at T = 0.
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Figure 7. The Polyakov loop ratio (3.5) around the point where inverse magnetic catalysis turns

into magnetic catalysis.

5 Conclusions

In this paper we have determined the limiting light quark mass (or equivalently the pion

mass) above which QCD does not exhibit inverse magnetic catalysis anymore in the transi-

tion region. Specifically, we considered a fixed magnetic field eB0 = 0.6 GeV2 and evaluated

the quark condensate along the pseudo-critical temperature trajectory Tc(m,B = 0). This

choice was made so that the sea effect due to the fermion determinant was as strong as

possible. Our results agree with the general findings of the Pisa group, reported in ref. [13],

namely that IMC turns into MC for large enough pion masses, and also allow to pinpoint

the particular value at which this happens for our choice of magnetic field. In our setting,

we found that the system turns from displaying IMC to MC at Mπ ≈ 3.7 ·Mπ,phys. This

value is consistent with the results of ref. [13], although a quantitative comparison would

require to take into account their use of a different scale-setting procedure. Our results

are also consistent with the preliminary results reported in ref. [54]. The results of this

paper were obtained at a single lattice spacing, but we found indications that finite-spacing

effects are small. While an extrapolation to the continuum is expected to give (slightly)

different quantitative results, we believe that the qualitative picture of a change from MC

to IMC is robust. Being based on a first-principles calculation on the lattice, our results

provide a nontrivial testing ground for effective models aiming at the description of the

inverse magnetic catalysis phenomenon.
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