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Abstract The pseudorapidity density of charged particles,
dNch/dη, in p–Pb collisions has been measured at a centre-
of-mass energy per nucleon–nucleon pair of

√
sNN = 8.16

TeV at mid-pseudorapidity for non-single-diffractive events.
The results cover 3.6 units of pseudorapidity, |η| < 1.8. The
dNch/dη value is 19.1 ± 0.7 at |η| < 0.5. This quantity
divided by 〈Npart〉/2 is 4.73±0.20, where 〈Npart〉is the aver-
age number of participating nucleons, is 9.5% higher than
the corresponding value for p–Pb collisions at

√
sNN = 5.02

TeV. Measurements are compared with models based on dif-
ferent mechanisms for particle production. All models agree
within uncertainties with data in the Pb-going side, while
HIJING overestimates, showing a symmetric behaviour, and
EPOS underestimates the p-going side of the dNch/dη dis-
tribution. Saturation-based models reproduce the distribu-
tions well for η > −1.3. The dNch/dη is also measured for
different centrality estimators, based both on the charged-
particle multiplicity and on the energy deposited in the Zero-
Degree Calorimeters. A study of the implications of the large
multiplicity fluctuations due to the small number of partic-
ipants for systems like p–Pb in the centrality calculation
for multiplicity-based estimators is discussed, demonstrat-
ing the advantages of determining the centrality with energy
deposited near beam rapidity.

1 Introduction

Particle production in proton–nucleus (pA) collisions is influ-
enced by nuclear effects in the initial state. In particular, p–Pb
collisions are a valuable tool to study initial-state effects,
which are present as a consequence of the nucleons being
bound into nuclei. Additionally, the particle multiplicity is
an important tool to study the various theoretical models
of gluon saturation, which contain different treatments of
the upper limit in the growth of the parton density. There-
fore, pseudorapidity density measurements can provide con-
straints to the modelling of the initial state at small Bjorken-
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x . Moreover, evidence for collective phenomena have been
observed in p–Pb collisions, with the magnitude of the effects
increasing with event multiplicity [1–9]. Proton–nucleus col-
lisions serve as a tool to study also final-state effects that are
sensitive to the formation of a Quark–Gluon Plasma in heavy-
ion collisions, under active scrutiny by the community [10].
For these reasons, it is important to understand the collision
geometry and the global properties of the system produced
in p–Pb collisions.

This paper presents a measurement of the primary charged-
particle density in p–Pb collisions, dNch/dηlab, at a nucleon–
nucleon centre-of-mass energy of

√
sNN = 8.16 TeV for pseu-

dorapidities |ηlab| < 1.8 in the laboratory system. A primary
charged particle is defined as a charged particle with a mean
proper lifetime τ larger than 1 cm/c, which is either produced
directly in the interaction, or from decays of particles with τ

smaller than 1 cm/c, excluding particles produced in interac-
tions with the beam pipe, material of the subdetectors, cables
and support structures [11]. The dominant processes in p–Pb
collisions are the non-diffractive ones. Diffractive events
can be single-, double- or central-diffractive and results are
presented for non-single-diffractive (NSD) events. Data are
compared to other experimental measurements available in
pp, p–Pb, d–Au and AA collisions. Results are compared
also with simulations (performed with HIJING 2.1 [12,13],
EPOS 3 [14–16] and EPOS LHC [17]) and calculations incor-
porating the saturation of the gluon density in the colliding
hadrons (MC-rcBK [18,19] and KLN [20,21]).

The rest of this article is organised in the following way:
Sect. 2 describes the experimental conditions and the detec-
tors used to measure the centrality of the event and the pseu-
dorapidity density of charged particles. In Sect. 3, the cen-
trality determination methodologies are described, both the
ones using the multiplicity distributions of charged parti-
cles and the alternative one that relies on the energy col-
lected in the neutron Zero-Degree Calorimeters (ZDCs). Sec-
tion 4 explains, in detail, the analysis procedure to measure
the dNch/dη. The systematic uncertainties are described in
Sect. 5, and the results along with comparisons to models are
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presented in Sect. 6. A brief summary and conclusions are
given in Sect. 7.

2 Experimental setup

The p–Pb data were provided by the Large Hadron Collider
(LHC) in December 2016. There were two configurations
that were exploited: in one, denoted by p–Pb below, the pro-
ton beam circulated towards the negative z direction in the
ALICE laboratory system, while 208Pb ions circulated in the
opposite direction; in the second configuration, denoted by
Pb–p, the direction of both beams was reversed. The total
luminosity was 0.06 nb−1, corresponding to around 120 mil-
lion minimum-bias (MB) events in the p–Pb and Pb–p con-
figurations. The beams in both rings have the same mag-
netic rigidity. The nucleon–nucleon centre-of-mass energy
was

√
sNN = 8.16 TeV, with both p and Pb beams at 6.5 TeV

per proton charge. Due to the asymmetric collision system,
there is a shift in the centre-of-mass rapidity of �y = 0.465
in the direction of the proton beam.

Full details of the ALICE detector are given elsewhere [22,
23]. The main element used for the analysis was the Silicon
Pixel Detector (SPD): the two innermost cylindrical layers
of the ALICE Inner Tracking System [22], made of hybrid
silicon pixel chips. The SPD is located inside a solenoidal
magnet that provides a magnetic field of 0.5 T. The first layer
covers |ηlab| < 2.0 for collisions at the nominal Interaction
Point (IP), while the second covers |ηlab| < 1.4. The layers
have full azimuthal coverage and radii of 3.9 cm and 7.6 cm,
respectively. In total, the SPD has 9.8 × 106 silicon pixels,
each of size 50 × 425 mm2.

The MB trigger signal is given by a hit in both the
V0 hodoscopes [24]. The V0 detector is composed of two
arrays of 32 scintillators positioned at 3.3 m (V0A) and -
0.90 m (V0C) from the nominal IP along the beam axis.
Each array has a ring structure segmented into 4 radial and
8 azimuthal sectors. The detector has full azimuthal cov-
erage in the pseudorapidity ranges 2.8 < ηlab < 5.1 and
−3.7 < ηlab < −1.7. The signal amplitudes and parti-
cle arrival times are recorded for each of the 64 scintil-
lators. The V0 is well suited for triggering thanks to its
good timing resolution (below 1 ns) and its large angular
acceptance. The timing is used to discriminate the beam–
beam collisions from background events, like beam–gas and
beam–halo events, produced outside the interaction region.
The neutron ZDCs [25] are likewise utilised for background
rejection. The neutron calorimeters, ZNs, are quartz-fibre
spaghetti calorimeters placed at zero degrees with respect to
the LHC beam axis, positioned at 112.5 m (ZNA) and −112.5
m (ZNC) from the nominal IP. ZNs detect neutral particles
emitted at pseudorapidities |ηlab| > 8.7 and have an energy
resolution of around 18% for neutron energies of 2.56 TeV.

ALICE is equipped also with the proton calorimeters, ZPs,
which are not used in the analysis.

A subsample of 6.8 million events is analysed for p–Pb
collisions, with an average number of interactions per bunch
crossing, 〈μ〉 of 0.004. A subsample of 2.7 million events is
analysed for Pb–p collisions, with 〈μ〉 = 0.007. The com-
parison of p–Pb and Pb–p results is used to assess the system-
atic uncertainties. The hardware MB trigger is configured to
have high efficiency for hadronic events, requiring a signal in
both V0A and V0C. Beam–gas and beam–halo interactions
are suppressed in the analysis by requiring offline the arrival
time of particles in the V0 and ZN detectors to be compati-
ble with collisions from the nominal IP. The contamination
from background is estimated to be negligible through con-
trol triggers on non-colliding bunches.

The event sample after trigger and timing selection con-
sisted of NSD, single-diffractive (SD), and electromagnetic
(EM) interactions. The MB trigger efficiency for NSD events
is estimated to be 99.2% using the DPMJet Monte Carlo event
generator [26], and 99.5% using HIJING 1.36 [27]. HIJING
1.36 combines perturbative-QCD processes with soft interac-
tions, and includes a strong impact parameter dependence of
parton shadowing. DPMJet is based on the Gribov-Glauber
approach and treats soft and hard scattering processes in a
unified way. It includes incoherent SD collisions of the pro-
jectile proton with target nucleons; these interactions are con-
centrated mainly on the surface of the nucleus. The gener-
ated particles are transported through the experimental setup
using the GEANT3 [28] software package. SD collisions are
removed in DPMJet by requiring that at least one of the binary
nucleon–nucleon interactions is NSD. The SD and EM con-
taminations are estimated from Monte Carlo simulation stud-
ies to be around 0.03% and below 0.3%, respectively.

Among the selected events in data, 99% had a primary
interaction vertex. In DPMJet this fraction was 99.6% (99.8%
for HIJING 1.36), with a trigger and selection efficiency for
events without a primary vertex of 28% (23.1%). Taking into
account the difference of the fraction of events without a
vertex in the data and the simulation, the overall selection
efficiency for NSD events in the analysis is estimated to be
97.0% (96.2%) according to DPMJet (HIJING 1.36).

3 Centrality determination

The Glauber model [29,30] is used to calculate the num-
ber of participating nucleons (participants), Npart, and the
corresponding number of nucleon–nucleon collisions, Ncoll,
which depend on the collision impact parameter, b. Indeed,
the number of produced particles changes with the variation
of the amount of matter overlapping in the collision region;
Npart and Ncoll describe quantitatively this variation. In pA
collisions, Ncoll = Npart −1. Using the Glauber model, it is
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possible to calculate the probability distributions of the rele-
vant parameters, Npart and Ncoll, which for pA collisions are
loosely correlated to b. Centrality classes are defined as per-
centile intervals of the visible cross section, which determines
the event sample after the selections described in Sect. 2.
The number of participating nucleons and nucleon–nucleon
collisions are calculated, accordingly, for the visible cross
section.

The centrality is determined for three different estimators,
two of which are based on observables well separated in pseu-
dorapidity to limit the effect of short-range correlations in the
collision region. The method founded on multiplicity-based
estimators is derived by fitting the measured charged-particle
multiplicity distributions with an Ncoll distribution obtained
from the Glauber model convoluted with a Negative Bino-
mial Distribution (NBD) to model the multiplicity produced
in a single collision. Multiplicity fluctuations play an impor-
tant role in pA collisions. The range of multiplicities used
to define a centrality class in the case of pA collisions is
of the same order of magnitude as the multiplicity fluctu-
ations width [31]. Therefore, a biased sample of nucleon–
nucleon collisions is selected using multiplicity. Samples of
high-multiplicity events select not only a class with larger
than average 〈Npart〉, but also one which is widely spread in
Ncoll and that leads to deviations from the scaling of hard
processes with Multiple Parton Interactions (MPI). These
high-multiplicity nucleon–nucleon collisions have a higher
particle mean transverse momentum pT, and are collisions
where MPI are more likely [4]. The opposite happens for
low-multiplicity events.

The centrality determined from the hybrid method, descri-
bed in Sect. 3.2 using the energy deposited in the ZDCs, on
the contrary, minimises biases on the binary scaling of hard
processes. Indeed, the ZDCs detect, at large η separation
from the central region, the nucleons produced in the interac-
tion through the nuclear de-excitation process or knocked out
by participants (called slow nucleons). A heuristic approach
based on extrapolation from low-energy data is discussed in
a previous publication [31].

3.1 Centrality from charged-particle distributions

In the method based on multiplicity estimators [31], the
events are classified into centrality classes using either the
number of clusters in the outer layer of the SPD (CL1 estima-
tor) with acceptance ηlab < 1.4, or the amplitude measured
by the V0 in the Pb-remnant side, A-side, for p–Pb (V0A esti-
mator) or in the C-side for Pb–p (V0C estimator) collisions.
The amplitudes are fitted with a Monte Carlo implementation
of the Glauber model assuming that the number of sources is
given by the Npart/2 convoluted with an NBD, which is the
assumed particle production per source, parametrised with
μ and k, where μ is the mean multiplicity per source and

Fig. 1 Distribution of the sum of amplitudes in V0A (Pb-going side)
and the NBD-Glauber fit in red. Centrality classes are indicated by
vertical lines and the inset shows the most peripheral events in more
detail

k controls the contribution at high multiplicity. The nuclear
density for Pb is modelled by a Woods–Saxon distribution for
a spherical nucleus with a radius of 6.62±0.06 fm and a skin
thickness of 0.55 ± 0.01 fm [32]. The hard-sphere exclusion
distance between nucleons is 0.40 ± 0.40 fm. For

√
sNN =

8.16 TeV collisions, an inelastic nucleon–nucleon cross sec-
tion of 72.5 ± 0.5 mb is used, obtained by interpolation of
cross section experimental values [32].

The measured V0A distribution with the NBD-Glauber
fit is shown in Fig. 1. A similar fit has been performed for
the CL1 estimator. The failure of the chosen fit function for
amplitudes smaller than about 10 is due to trigger inefficien-
cies in peripheral collisions. The average number of partici-
pants, collisions and nuclear overlap function, 〈TpPb〉, are cal-
culated from the NBD-Glauber simulation for every defined
centrality class. The values for the different estimators are
given in Table 1. The systematic uncertainties are obtained
by repeating the fit, varying the Glauber parameters (radius,
skin thickness and hard-sphere exclusion) within their uncer-
tainties. The number of participants for all selected events is
on average Npart = 8.09 ± 0.17. The increase in the aver-
age Npart, when calculated for NSD collisions only, is of
around 2% and within systematic uncertainties. The geomet-
rical properties determined with the NBD-Glauber model are
robust and approximately independent of the centrality esti-
mator used, within the model assumptions of this approach.

3.2 Centrality from Zero degree Calorimeter and the hybrid
method

The ZNs detect the slow neutrons produced in the interaction.
The multiplicity of slow nucleons is monotonically related
to Ncoll, and can, therefore, be used to determine the cen-
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Table 1 Mean values of Npart , Ncoll and TpPb of p–Pb collisions for MB and centrality classes defined by slices in CL1 and V0A. The values are
obtained with a Glauber Monte Carlo calculation coupled to an NBD to fit CL1 and V0A distributions

Centrality (%) 〈Npart〉 RMS Syst. 〈Ncoll〉 RMS Syst. 〈TpPb〉 (mb−1) RMS (mb−1) Syst. (mb−1)

0–100 8.09 5.3 0.17 7.09 5.3 0.16 0.0978 0.073 0.0021

CL1 Estimator

0–5 17.0 3.6 0.6 16.0 3.6 0.6 0.220 0.050 0.008

5–10 15.0 3.5 0.4 14.0 3.5 0.4 0.193 0.048 0.006

10–20 13.4 3.5 0.4 12.4 3.5 0.4 0.172 0.048 0.004

20–40 10.9 3.6 0.2 9.9 3.6 0.2 0.136 0.050 0.003

40–60 7.47 3.3 0.15 6.47 3.3 0.15 0.0893 0.046 0.0022

60–80 4.53 2.4 0.09 3.53 2.4 0.09 0.0487 0.033 0.0013

80–100 2.76 1.2 0.03 1.76 1.2 0.03 0.0242 0.016 0.0004

V0A Estimator

0–5 16.5 3.8 0.6 15.5 3.8 0.6 0.213 0.052 0.008

5–10 14.6 3.7 0.4 13.6 3.7 0.4 0.188 0.052 0.006

10–20 13.1 3.9 0.4 12.1 3.9 0.4 0.167 0.053 0.004

20–40 10.7 4.0 0.2 9.7 4.0 0.2 0.134 0.055 0.003

40–60 7.64 3.7 0.16 6.64 3.7 0.16 0.0916 0.051 0.0023

60–80 4.80 2.7 0.10 3.80 2.7 0.10 0.0525 0.037 0.0013

80–100 2.88 1.4 0.03 1.88 1.4 0.03 0.0260 0.019 0.0004

Fig. 2 Distribution of the neutron energy spectrum measured in the
Pb-going side (ZNA). Centrality classes are indicated by vertical lines
and the inset shows the most peripheral events in more detail

trality of the collision [31]. The ZPs are not used, since the
uncertainty on Ncoll would be much larger. The experimen-
tal distribution of the neutron energy spectrum measured in
the Pb-going side, EZNA, is shown in Fig. 2 and it is used
for the hybrid method, which aims to provide an unbiased
centrality estimator. It is based on two assumptions, the first
is that the event selection based on the energy deposited in
the ZDCs is free from the multiplicity fluctuation biases in
the particle production at mid-rapidity. The second assump-
tion is that the wounded nucleon model holds [33] and that
some observables, defined below, scale linearly with Ncoll

Table 2 Average number of hadronic nucleon collisions for the ZNA
estimator, with the assumption of charged-particle multiplicity at mid-
rapidity proportional to Npart , 〈Ncoll〉mult , and assuming the signal in
V0 proportional to Ncoll, 〈Ncoll〉Pb−side

Centrality (%) 〈Ncoll〉mult 〈Ncoll〉Pb−side Syst. (%)

0–5 13.4 14.2 6.4

5–10 12.5 12.9 3.9

10–20 11.5 11.8 3.4

20–40 9.81 9.77 2.3

40–60 7.09 6.83 4.3

60–80 4.28 4.09 4.9

80–100 2.08 2.13 3.3

and Npart allowing one to establish a relationship to the col-
lision geometry. Two sets of 〈Ncoll〉 are calculated: Nmult

coll
and NPb−side

coll for each centrality bin i estimated using ZN.
The first set is computed assuming that the charged-particle
multiplicity at mid-rapidity is proportional to the Npart:
〈Npart〉mult

i = 〈Npart〉MB · (〈dNch/dηlab〉i/〈dNch/dηlab〉MB),
where 〈Npart〉MB is the average number of participating
nucleons in MB collisions reported in Table 1, and, con-
sequently: 〈Ncoll〉mult

i = 〈Npart〉mult
i − 1. The second set is

calculated using the Pb-side multiplicity: 〈Ncoll〉Pb−side
i =

〈Ncoll〉MB · (〈S〉i/〈S〉MB), where S is the raw signal of the
innermost ring of V0A for p–Pb (4.5 < ηlab < 5.1) and
V0C for Pb–p collisions (−3.7 < ηlab < −3.2). A compari-
son of the Ncoll values obtained for the various estimators is
reported in Table 2 for p–Pb collisions. The two different sets
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are consistent among each other and with the values calcu-
lated for Pb–p. The systematic uncertainties come from the
uncertainty on the Ncoll for 0–100% in Table 1 summed with
the maximum difference between the Nmult

coll and NPb−side
coll .

4 Analysis procedure

The technique for the dNch/dηlab measurement is the same as
the one employed at

√
sNN = 5.02 TeV [31,34]. The pseudo-

rapidity acceptance in the laboratory system depends on the
position of the primary interaction vertex along the beamline,
zvtx. The position of the primary vertex is obtained by corre-
lating hits in the two silicon-pixel layers (SPD vertex). The
selection of a reconstructed vertex within |zvtx| < 15 cm
allows a range of |ηlab| < 1.8 to be covered. In order to
maximise the pseudorapidity coverage, instead of tracks we
use tracklets (short track segments) formed using two hits
in the SPD, one in the first and one in the second layer.
In order to select combinations corresponding to charged
particles, the angular difference in the azimuthal direction,
�ϕ, and in the polar direction, �θ , of the inner and outer
layer hit with respect to the reconstructed primary vertex
is determined for each pair of hits. Afterwards, the sum of
the squares of the weighted differences in azimuth and polar
angles δ2 = (�ϕ/σϕ)2 + (�θ/σθ )

2 is required to be less
than 1.5, where σϕ = 60 mrad and σθ = 25 sin2 θ mrad,
where the sin2 factor takes the dependence of the pointing
resolution on θ into account. With such a requirement, track-
lets corresponding to charged particles with pT > 50 MeV/c
are effectively selected. Particles with lower pT are mostly
absorbed by the detector material or lost due to the bending in
the magnetic field. A cross check utilising pp collisions [35]
has shown full compatibility of analyses using tracklets and
tracks, where the tracks have been reconstructed in the Time
Projection Chamber matched with clusters in the Inner Track-
ing System.

The raw multiplicity measured by tracklets needs to be
corrected for (i) the acceptance and efficiency of a primary
track to be reconstructed as a tracklet, (ii) the contribution
from combinatorial tracklets, i.e. those whose two hits do not
originate from the same primary particle, (iii) the difference
between the fraction of events without a vertex in the data and
in the simulation and (iv) the secondary-particle contamina-
tion. The first three corrections are computed using simulated
data from the HIJING 1.36 or DPMJet event generators. The
centrality definition in the simulated data is adjusted such
that the particle density is similar to that in real data for
the same centrality classes. The correction factors (i) and
(ii), determined as a function of z and ηlab, are on average
around 1.5 for the acceptance and reconstruction efficiency,
and around 0.02 for the combinatorial background removal in
MB and centrality-dependent measurements at mid-rapidity,

independently of the estimator selected and the centrality
class. At |ηlab| = 1.8 the combinatorial background contri-
bution reaches a maximum value of 0.07. We further correct
the measurement by the difference in the fraction of events
without a vertex observed in data and simulation. The cor-
rection for MB dNch/dηlab amounts to 2.2% (3.4%) when
using DPMJet (HIJING 1.36). Since the centrality classes
are defined as percentiles of the visible cross section, the
centrality-dependent measurements are not corrected for the
trigger inefficiencies. Differences in strange-particle content
observed at lower beam energies [6,36] have been used for a
data-driven correction applied to the generator output, giving
rise to a correction factor of −0.6%, independent of central-
ity.

5 Systematic uncertainties

Several sources of systematic uncertainties were investi-
gated. The uncertainty coming from the selection of the track-
let quality value δ2 is negligible at mid-rapidity and amounts
to 0.5% at |ηlab| = 1.8. The other uncertainties associated to
the MB dNch/dηlab are independent of the pseudorapidity.
The uncertainty resulting from the subtraction of the con-
tamination from weak decays of strange hadrons is estimated
to be about 1.3%. It is estimated by varying the amount of
strange particles except kaons by ±50%. The uncertainty
in detector acceptance and reconstruction efficiency is esti-
mated to be 2.2% by carrying out the analysis for different
slices of the zvtx position distribution and with subsamples
in azimuth. The measurement for Pb–p collisions gives rise
to an additional contribution of 1.8%, when reflected in ηlab,
for the most peripheral centrality bins (80–100%), and 1.1%
for 60–80% at |ηlab| = 1.8, and is added to the systematic
uncertainty for acceptance. For the other centrality bins and
the MB result the difference among p–Pb and Pb–p is negli-
gible and already accounted for in the acceptance and recon-
struction efficiency uncertainty. The uncertainty related to the
trigger and event selection efficiency for NSD collisions is
estimated to be 0.8% by taking into account the differences
in the efficiency obtained with HIJING 1.36 and DPMJet.
An additional 1.2% uncertainty comes from the difference in
the scaling factors due to the events without vertex using the
two event generators, as discussed in Sect. 4. A Monte Carlo
test was also carried out with DPMJet to check the differ-
ence in the results obtained from NSD generated events and
from selected events, resulting in a difference of 0.2% for the
MB result, absorbed in the trigger efficiency uncertainty, and
of 1.7% (0.2%) for 80–100% (60–80%) centrality bins. The
contribution due to the subtraction of the background is stud-
ied using an alternative method where fake hits are injected
into real events and it gives rise to a 0.3% uncertainty. The
uncertainty from the material budget is 0.1%, while the uncer-
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Table 3 Overview of the sources of systematic uncertainties

Source Uncertainty (%)

0–100% 0–5% 80–100%

η = 0 |η| = 1.8 η = 0 |η| = 1.8 η = 0 |η| = 1.8

Tracklet selection criteria Negligible 0.5 Negligible 0.5 Negligible 0.5

Weak-decay contamination 1.3 1.3 1.3 1.3 1.3 1.3

Detector acceptance and efficiency 2.2 2.2 2.2 2.2 2.2 2.8

Trigger efficiency 0.8 0.8 – – 1.7 1.7

Event-generator dependence 1.2 1.2 – – – –

Background subtraction 0.3 0.3 0.3 0.3 0.3 0.3

Material budget 0.1 0.1 0.1 0.1 0.1 0.1

Particle composition 0.3 0.3 0.3 0.3 0.3 0.3

Zero-pT extrapolation Negligible Negligible Negligible Negligible Negligible Negligible

Pileup Negligible Negligible Negligible Negligible Negligible Negligible

Total 3.0 3.0 2.6 2.6 3.1 3.6

tainty due to the particle composition amounts to 0.3%. The
contributions from the extrapolation down to zero pT and
from the pileup are found to be negligible.

The final systematic uncertainties assigned to the mea-
surements are the quadratic sums of the individual contri-
butions. An overview of the systematic uncertainties is pre-
sented in Table 3. For MB dNch/dηlab, they amount to 3.0%.
For centrality-dependent measurements the total uncertainty
for central events is 2.6%. For the most peripheral events
it is 3.1% at mid-rapidity and 3.6% for |ηlab| = 1.8. The
difference in uncertainty between the MB and the centrality-
dependent measurement is mostly due to the contributions
from the selection efficiency for NSD, which are not included
in the centrality-dependent measurement, and to the differ-
ence among p–Pb and Pb–p collisions, which is more relevant
for the most peripheral events at |ηlab| = 1.8.

6 Results

The pseudorapidity density as a function of ηlab is presented
in Fig. 3 for |ηlab| < 1.8. An asymmetry between the pro-
ton and the lead hemispheres is observed, and the number of
charged particles is higher in the Pb-going side (positive ηlab).
The ALICE measurement is compared with the pseudorapid-
ity density measured by CMS [37] showing very good agree-
ment within systematic uncertainties, although CMS results
exclude prompt leptons. The result is also compared with sev-
eral models with different descriptions of particle production,
all shifted by ηlab = 0.465 to take into account the shift to the
laboratory system. In the improved HIJING 2.1 [12,13] ver-
sion the Cronin effect is included, as well as a strong nuclear
shadowing effect (sg = 0.28) in order to explain the global
properties of the final hadron system in p–Pb collisions [34].

Fig. 3 Red squares show the measured pseudorapidity density of
charged particles in p–Pb NSD collisions at

√
sNN = 8.16 TeV in

ALICE, with total systematic uncertainties shown as bands, compared
with CMS results [37] and theoretical predictions shifted to the labo-
ratory system [12,14,17,18,20]. The bottom panel shows the ratio to
ALICE data

The model describes well both the normalisation and the
shape of the distribution for the Pb-going side, while it over-
estimates the p-going side, showing a symmetric behaviour,
as for the p–Pb collisions at 5.02 TeV. The dNch/dηlab versus
ηlab is compared with two different versions of EPOS. EPOS
LHC [17] is a tune of EPOS 1.99 based on LHC data. It is
designed to describe all bulk properties of hadronic inter-
actions and based on Gribov-Regge theory for partons. It
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incorporates collective effects with a separation of the initial
state into a core and a corona. EPOS LHC reproduces the
Pb-going side, although it underestimates the p-going side
of the distribution, showing a stronger asymmetry than data.
EPOS 1.99 contains collective flow parametrised at freeze-
out, while EPOS 3 [14–16] includes a full viscous hydrody-
namical simulation. It starts from flux tube initial conditions,
which are generated in the Gribov–Regge multiple scattering
framework. It reproduces the most forward part of the dis-
tribution in the Pb-going side, but underestimates both the
normalisation, the mid-rapidity part and the p-going side of
the dNch/dηlab distribution. Finally, the distribution is com-
pared with two saturation-based models: MC-rcBK [18,19]
and KLN [20,21], which contain a mechanism to limit the
number of partons and particles produced. The MC-rcBK
results are obtained using the McLerran-Venugopalan model
(γ = 1) [59] for the Albacete–Armesto–Milhano–Quiroga–
Salgado initial conditions [60]. Saturation-based models are
the ones which perform better, underlining the necessity of a
mechanism to limit the number of partons produced. Indeed,
both MC-rcBK and KLN reproduce the distribution well,
within the uncertainties of data, and start to deviate in the
region ηlab < −1.3. The MC-rcBK model better predicts the
p–Pb collisions at 8.16 TeV than the distribution at 5.02 TeV.
The shadowing mechanism used by HIJING is not sufficient
to limit the partons produced in the p-going side. Both EPOS
and HIJING contain final-state effects, and the performance
is worse than for models based on initial-state effects only,
like MC-rcBK and KLN. This means that for the dNch/dη

observable final-state effects do not play a role, for the mod-
els considered. Nevertheless, all models lie within about 10%
when compared with data, and reproduce within systematic
uncertainties the Pb-going side.

The charged-particle pseudorapidity density in the lab-
oratory system for |ηlab| < 0.5 is dNch/dηlab = 20.08 ±
0.01 (stat.) ± 0.61 (syst.). In the following, the statistical
uncertainty is considered to be negligible. The data are inte-
grated in the range −0.965 < ηlab < 0.035 and corrected
for the effect of the rapidity shift to retrieve the dNch/dη

in the centre-of-mass system. The correction for the pseu-
dorapidity shift is estimated from HIJING 1.36 [27] to be
−3.7% ± 1.9%. The resulting pseudorapidity density in the
centre of mass is dNch/dη = 19.1 ± 0.7.

The charged-particle production is scaled by Npart/2, cal-
culated with a Glauber model as explained in Sect. 3, in
order to compare the bulk particle production in differ-
ent collision systems. The number of participants for MB
events is 8.09 ± 0.17. The value normalised to the number
of participants divided by 2 gives dNch/dη ×(2/Npart) =
4.73 ± 0.20. In Fig. 4, this quantity is compared with lower
energy p–Pb measurements by ALICE [34] as well as by
CMS [37] and d–Au measurements at RHIC [38], show-
ing that the values overlap with dNch/dη measurements

Fig. 4 Values of 2
〈Npart〉 〈dNch/dη〉 for pA [34,37,38], pp and pp [35,

39–47] along with those from central AA collisions [48–58] as a func-
tion of

√
sNN are shown, for |η| < 0.5. All values of 〈Npart〉 used for

normalisation of data are the results of Glauber model calculations.
The s-dependencies of the pp (pp) inelastic (INEL) and p–Pb collisions
data are proportional to s0.103

NN (solid line), while pp (pp) NSD are pro-
portional to s0.114

NN (dashed middle line). AA are proportional to s0.152
NN

(dashed upper line). The bands show the uncertainties on the extracted
power-law dependencies

for inelastic pp collisions [35,46,47]. The dependence of
〈dNch/dη〉 on the centre-of-mass energy can be fitted with a
power-law function of the form α · sβ . This gives an expo-
nent, under the assumption of uncorrelated uncertainties, of
β = 0.103±0.002. It is a much weaker s-dependence than for
AA collisions [48–58], where a value of β = 0.152 ± 0.003
is obtained. The fit results are plotted with their uncertain-
ties shown as shaded bands. The result at

√
sNN = 8.16 TeV

confirms the trend established by lower energy data since
the exponent β is not significantly different when the new
point is excluded from the fit. The values for p–Pb and d–Au
collisions fall on the inelastic pp curve, indicating that the
strong rise in AA might not be solely related to the multiple
collisions undergone by the participants since the proton in
pA collisions also encounters multiple nucleons. As the con-
tribution of diffractive processes to the selected p–Pb sample
is negligible, it is expected that the NSD and inelastic selec-
tion belong to the same curve for p–Pb, and that this slope
corresponds to the one obtained from the inelastic pp curve.

The pseudorapidity density as a function of ηlab is pre-
sented in Fig. 5 for |ηlab| < 1.8 for different centrality inter-
vals, from most central 0–5% to most peripheral 80–100%
events. The results for the CL1 estimator have a strong bias
due to the complete overlap with the tracking region. V0A has
a small multiplicity fluctuation bias due to the enhanced con-
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Fig. 5 Pseudorapidity density of charged particles in p–Pb NSD collisions at
√
sNN = 8.16 TeV for various centrality classes and estimators: CL1

(top left), V0A (top right) and ZNA (bottom left)

tribution from the Pb-fragmentation region. Finally, the ZNA
measurement based on the energy deposited in the ZN does
not have multiplicity bias. The CL1 (ZNA) estimator pro-
duces the largest (lowest) values for the most central events
and the lowest (largest) values for the most peripheral events.
It is worth noting that for all the estimators used to select
centrality the asymmetry is evident for most central events,
while the results for 60–80% and 80–100% classes, where
the 〈Npart〉 are around 4.5 and 3, respectively, are symmetric.

The left panel of Fig. 6 shows 2
〈Npart〉 〈dNch/dηlab〉 as a

function of 〈Npart〉 for various centrality estimators. For CL1
and V0A the 〈Npart〉 from the Glauber model are used and
the resulting 2

〈Npart〉 〈dNch/dηlab〉 has a steep increase for most
central events (higher 〈Npart〉) due to the strong multiplicity
bias discussed in Sect. 3. The rise is steeper for CL1, where

the overlap of the centrality selection region with the tracking
region is maximal. For the ZNA estimator, two sets of 〈Npart〉
are used corresponding to the two different hybrid method
selections. For both Nmult

part and NPb−side
part the trend is similar

and extrapolates to the pp point at
√
s = 8 TeV. The overall

〈Npart〉 dependence of 2
〈Npart〉 〈dNch/dηlab〉 for the ZNA esti-

mator is flat and the 〈Npart〉 range is more limited when the
selection is made in a well separated pseudorapidity region,
rather than for multiplicity-based estimators (CL1 and V0A).

A Glauber Monte Carlo calculation based on single quark
scattering is also performed [61,62], as it was done for AA
collisions [48,49]. Quark constituents are located around the
nucleon centre, where the proton density is modelled by a
function of the proton radius. To account for effective par-
tonic degrees of freedom, Nc = 5 quark constituents have
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Fig. 6 Left: 2
〈Npart〉 〈dNch/dηlab〉 in p–Pb collisions at

√
sNN = 8.16 TeV and pp at 8 TeV [35] as a function of 〈Npart〉 for different centrality

estimators. Right: μ
〈Nq−part〉 〈dNch/dηlab〉 for Nc = 5, open points, with μ = 4.44

been selected, since this number of constituents was tested
for AA collisions and resulted in a constant charged-particle
production rate per constituent quark. The effective inelastic
cross section for constituent-quark collisions is set to 11.0
mb for 5 constituent quarks to match the 72.5 mb nucleon
cross section for p–Pb interactions at 8.16 TeV [30]. The
effective cross sections are constrained using nuclear reac-
tion cross sections [62]. The right panel of Fig. 6 shows the

μ
〈Nq−part〉 〈dNch/dηlab〉 scaled by the average number of par-
ticipating quarks, μ, in pp collisions, which is 4.44 out of 10
participating quarks for Nc = 5, as a function of Npart (open
points). For the multiplicity-based estimators, CL1 and V0A,
there is an increase for the most central and decrease for the
most peripheral events with a trend that resembles the one
for Npart scaling (full points) but with decreased slope. This
fact suggests that nuclear-geometrical effects are represented
in terms of constituent participant quarks, but not as well
as observed for AA collisions [48,49,63], meaning that the
multiplicity-fluctuation bias might influence also the quark
participants scaling. The μ

〈Nq−part〉 〈dNch/dηlab〉 has been mea-
sured also for 3 constituent quarks, with an inelastic cross
section of 22.5 mb and μ = 3.54, showing a distribution in
between the Npart and Nq−part points.

7 Summary and conclusions

Summarising, the charged-particle pseudorapidity density in
|ηlab| < 1.8 in NSD p–Pb collisions at

√
sNN = 8.16 TeV

is presented. A value of dNch/dη = 19.1 ± 0.7 is measured
at mid-rapidity, corresponding to 4.73 ± 0.20 charged parti-
cles per unit of pseudorapidity per participant pair, 〈Npart〉/2,

calculated with the Glauber model. The new measurement is
9.5% higher than the value at

√
sNN = 5.02 TeV. The depen-

dence of 〈dNch/dη〉 on the centre-of-mass energy is fitted
with a power-law function, which gives a much weaker s-
dependence than for AA collisions. The MB dNch/dηlab dis-
tribution as a function of ηlab is compared with CMS results,
showing good agreement within uncertainties, and to differ-
ent models: HIJING 2.1, EPOS (versions LHC and 3) and
two saturation-based models, MC-rcBK and KLN. All mod-
els can reproduce the data within about 10%, which is a sound
achievement given the complexity in describing soft-QCD
processes. The best performance comes from saturation-
based models, and final-state effects seem not to improve
the description of dNch/dη. Nevertheless, the results provide
further constraints for models describing high-energy hadron
collisions. The pseudorapidity density for various centrality
estimators has been shown and the asymmetry, typical of
asymmetric collision systems like p–Pb, is evident for most
central events, while results for 60–80% and 80–100% cen-
trality classes are symmetric. The methods to select centrality
in p–Pb collisions based on multiplicity measurements have
been presented and they induce a multiplicity-fluctuation
bias. Results with a selection based on multiplicity estima-
tors at mid-rapidity or within a few units of pseudorapidity
and 〈Npart〉 from the Glauber model are lower for periph-
eral values of 2

〈Npart〉 〈dNch/dη〉 and higher for most central
collisions than the pp value. On the contrary, with centrality
selected by the energy deposited in the ZDC, and assuming
that the multiplicity in the Pb-going direction is proportional
to NPb−side

part , the overall behaviour of 2
〈Npart〉 〈dNch/dη〉 as a

function of 〈Npart〉 is flat, and agrees with the pp measure-
ment at 8 TeV.
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E. Perez Lezama69, V. Peskov69, Y. Pestov4, V. Petráček37, M. Petrovici47, R. P. Pezzi71, S. Piano59, M. Pikna14, P. Pillot113,
L. O. D. L. Pimentel88, O. Pinazza34,53, L. Pinsky125, S. Pisano51, D. B. Piyarathna125, M. Płoskoń79, M. Planinic97,
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