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ABSTRACT

Industry classification groups firms into finer partitions to help investments and empir-
ical analysis. To overcome the well-documented limitations of existing industry defini-
tions, like their stale nature and coarse categories for firms with multiple operations,
we employ a clustering approach on 69 firm characteristics and allocate companies to
novel economic sectors maximizing the within-group explained variation. Such sectors
are dynamic yet stable, and represent a superior investment set compared to stan-
dard classification schemes for portfolio optimization and for trading strategies based
on within-industry mean-reversion, which give rise to a latent risk factor significantly
priced in the cross-section. We provide a new metric to quantify feature importance for
clustering methods, finding that size drives differences across classical industries while
book-to-market and financial liquidity variables matter for clustering-based sectors.
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1 Introduction

Classification, i.e. the grouping of objects into categories that share similarities, is one of

main mechanisms of human thought (Rosch and Lloyd, 1978) that extends its influence into

the realm of financial markets. In the domain of portfolio allocation, many investors adopt a

“top-down” approach where they first identify broad asset classes and only afterwards decide

how to allocate their funds among assets within a class (Barberis and Shleifer, 2003). Within

this framework, the formation of economic sectors or industries holds paramount significance,

dating back to the 1930s with the introduction of the Standard Industrial Classification (SIC)

codes in the U.S. for statistical purposes across governmental agencies. Since then, this topic

has been subject of intense scrutiny by both data vendors and academics. The sheer number

of alternative classifications that have been proposed is a testament to the fact that existing

ones either present substantial limitations or do not satisfy everybody’s needs.

In this paper, we revisit the long-standing problem of assigning firms to homogeneous

groups with the help of clustering methods in order to provide economic sectors that represent

a better investment set for mean-variance investors and that fully exploit the mean-reversion

of stock returns within the same group. We focus on sector investing because it makes it

easier for market participants to optimize their portfolio choices by reducing the universe of

individual stocks to a tractable number of assets.

Industries represent the focal point of several investors’ trading strategies as they offer an

off-the-shelf classification of firms into groups that share similar products. For each year from

1998 to 2010, industry knowledge was the most crucial research attribute of equity analysts

according to Institutional Investor Magazine. Analysts often specialize in industries, issu-

ing industry-level forecasts and recommendations (Kadan et al., 2012). Some institutions

offer sector-oriented mutual funds like “Vanguard Information Technology” or “Vanguard

Commodity Strategy Fund”. Investment decisions are influenced by industry categorization

both at the institutional (Busse and Tong, 2012) and at the retail level (Jame and Tong,

2014). Furthermore, some financial phenomena often have a relevant industry-wide com-

ponent, such as the dot-com bubble and the momentum effect (Moskowitz and Grinblatt,

1999). Industries are critical also in research: between 1995 and 2003 they have been used

for different purposes in 70 papers in the Journal of Finance and 467 in the Journal of Finan-

cial Economics (Weiner, 2005). In Asset Pricing, economic sectors are useful for empirical

analysis and modelling. For example, Fama and French (1997) industry portfolios represent

a notoriously hard set of test assets that can inform about a model’s validity.1

1For instance, for the period July 1984 - June 2019, Fama and French (1993) model explains well above 80% of the variation
of 25 portfolios sorted on size and book-to-market or on size and momentum, whereas it achieves only 59% for 30 industry
portfolios. Data are from Prof. Kenneth French’s website at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.
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What can market participants expect to earn by investing at the industry level? Figure

1 shows standard deviation and average excess return for 48 industries obtained using Fama

and French (1997) categories for a large sample of firms between 1984 and 2019, where lighter

colors denote higher Sharpe Ratios (SR).2 To summarize their investment performance, we

focus on the maximum SR portfolio built using industries as base assets. During the period

considered, it earns a monthly average excess return of 1.3% and an annualized SR of 1.26. As

a benchmark, the market factor has a mean of 0.7% and an annualized SR of 0.58. Economic

sectors have therefore a strong potential to deliver profitable investment strategies out of a

contained number of assets.

Firms are usually classified according to four main systems: SIC, North America Indus-

trial Classification System (NAICS), the industries provided by Fama and French (1997)

(henceforth FF) and the Global Industrial Classification Standard (GICS). The literature

has highlighted several drawbacks affecting these schemes. For example, SIC codes often do

not coincide across different data vendors (Guenther and Rosman, 1994; Kahle and Walkling,

1996) and struggle to identify firms with similar characteristics (Clarke, 1989). Despite being

designed to research purposes, Fama and French (1997) document imprecise cost of equity

estimates for their industries. Furthermore, managers might be able to manipulate industry

categories to realize tangible benefits (Chen et al., 2016). More recent studies suggest the

GICS classification outperforms the other systems. A prominent example is Bhojraj et al.

(2003), who show that GICS codes are significantly better at explaining stock return co-

movements and cross-sectional variation in key valuation ratios using S&P 1500 firms. The

reason for this improved performance is due to a more sophisticated categorization of firms

into sectors. More dated classifications mainly focus on a company’s largest product line.

As such, they are inherently static (except for sporadic revisions carried out by the provider)

and inevitably coarse for firms active in multiple areas. In contrast, GICS codes account

for information from financial statements and investment research reports to assign firms to

economic sectors that better satisfy the needs of investment professionals.

In our work, we follow and develop further this logic using firm characteristics to find

economic sectors that offer better investment perspectives compared to existing systems.

More in detail, we use bisecting K-means clustering on a large number of well-known return

predictors from the literature (Gu et al., 2020) to find the groups that maximize the within-

cluster explained variation. The average R2 that a cluster portfolio achieves in explaining

the returns of firms in that cluster is a natural metric to judge the validity of industry

groups (Bhojraj et al., 2003), similar also to the approach used in the return comovement

literature (Piotroski and Roulstone, 2004). This approach, which is the main responsible for

2Further details about the data used can be found later in Section 4.
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our findings beyond the specific clustering algorithm employed, allows us to interpret our

clusters as new economic sectors. Said differently, using firm characteristics as a starting

point for the clustering exercise, we build a bridge between the anomaly literature and

the industry classification issue. If characteristics predict returns, sectors constructed using

this information have a tighter link with portfolio performance and improve investment

profitability. To help interpreting our new clustering-based sectors, we design a metric to

describe how their structure changes over time and introduce a novel approach to quantify

the relative importance of features in determining differences across clusters.

Our results are five-fold. First, clustering-based classification delivers sizeable improve-

ments with respect to standard industries in the task of creating groups whose returns

comove tightly. The average in-sample R2 of 10 cluster sectors, obtained regressing each

firm i’s CAPM residuals in cluster k on the corresponding cluster portfolio k, is 9.31%. As

a comparison, SIC codes explain only 5.98% and FF 10 industries 8.51%. For any number

of sectors K ranging from 5 to 48, cluster portfolios are better than any other standard

classification scheme. In other words, firm characteristics contain information that leads to

more homogeneous economic sectors.

Second, cluster sectors deliver more attractive assets for mean-variance investors. The

maximum Out-Of-Sample (OOS) SR portfolio from K = 10 sectors earns an annualized SR

of 1.23, outperforming what one can obtain investing in any other set of industries (e.g.

0.81 with SIC codes, 0.73 with FF industries and 0.84 with GICS codes). This holds for all

Ks considered. By creating more uniform firm groups, our method finds portfolios whose

returns spread much more widely, resulting in better investment opportunities.

Third, trading strategies based on the mean-reversion of stock returns belonging to the

same group are remarkably profitable for cluster sectors and give rise to a new risk factor

that is priced in the cross-section. Averaging mean-reversion portfolios across 10 clusters

delivers a monthly mean excess return of 0.46% and an alpha of 0.39% with respect to Fama

and French (2015) plus momentum, both of which are highly statistically significant. The

market price of risk of the corresponding factor portfolio estimated on individual stocks

is 0.24%, i.e. roughly half the one of the market factor. Similar strategies based on any

other industrial classification exhibit instead average returns close to zero and statistically

insignificant. Clustering-based classification has therefore both a practical investment appeal

and important implications for pricing.

Fourth, clustering-based sectors strike a good compromise between variability and sta-

bility. We propose a Stability Index aimed at describing changes over time in the relations

linking firms across clusters and find that with 10 groups the factor structure remains sta-

ble roughly three quarters of the time. Existing industries, instead, are completely stale, a
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feature that reveals responsible for their disappointing performance at capturing the return

variation of firms belonging to the same economic sector.

Fifth, we provide a new metric that quantifies the contribution of firm characteristics to

distinguishing clusters from each other, the Proportion of (A)Cross-Clusters Feature Spread

(PAC-FS). The PAC-FS captures the percentage of variation across clusters and features

that is due to a certain covariate. We find that while classical industries mostly differ in

terms of size, the main drivers of differences across clusters are book-to-market and financial

liquidity variables (quick and current ratio). These characteristics are likely responsible for

the better investment performance of cluster sectors.

The rest of the paper is organized as follows. After reviewing the literature in Section 2,

we give an overview of the existent classification schemes in Section 3. Section 4 illustrates

our data sample and Section 5 explains the method we use. Section 6 presents the empirical

findings. Robustness tests are carried out in Section 7. Section 8 concludes.

2 Relation to the Literature

Our paper relates to various strands of literature. One concerns the validity and the goodness

of different industry classification schemes. Hrazdil et al. (2013) document the superiority of

GICS codes for NYSE and NASDAQ firms following the approach in Bhojraj et al. (2003).

Chan et al. (2007) find similar results regarding return covariation at increasingly finer levels

of industry partitioning. Kile and Phillips (2009) argue GICS codes deliver improvements

over SIC and NAICS in identifying technology firms. We treasure the result that a classifi-

cation scheme that goes beyond mere product considerations like GICS offers better perfor-

mance, and we extend this approach by considering 69 firm characteristics with predictive

power for expected returns from the literature to inform the classification algorithm.

The role of economic sectors for investment purposes has attracted the interest of several

academics. Moskowitz and Grinblatt (1999) find that the bulk of the momentum effect, one

of the most famous investment anomalies, can be attributed to momentum at the industry

level. Hameed and Mian (2015) document strong intra-industry reversal effects due to order

imbalances and non-informational shocks. Busse and Tong (2012) show that roughly one

third of fund performance can be accounted for by industry selection while the rest is due

to the performance of individual stocks relative to their own industry. Jame and Tong

(2014) suggest that industry-wide categorization influences the investment decisions of retail

investors, with market participants chasing past winning industries.

Our work fits well the emerging literature that applies Machine Learning (ML) in As-
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set Pricing.3 A benchmark in this context is given by Gu et al. (2020), who compare a

large number of different ML techniques for predictions purposes. Freyberger et al. (2020)

attempt at establishing which firm characteristics deliver independent information for the

cross-section of expected returns using a method called adaptive group LASSO. Bryzgalova

et al. (2020) suggest to use Asset Pricing restrictions to guide the pruning procedure while

using random forest. Goodarzi et al. (2022) use fused LASSO to perform dynamic model

selection. In our work we apply a classical unsupervised learning algorithm like bisecting

K-means to find those groups of firms whose returns comove as tightly as possible, thereby

engineering a pseudo-supervised classification technique.

Lastly, our research question is linked to cluster analysis, which has been recently applied

also in Asset Pricing. Greengard et al. (2020) employ t-distributed stochastic neighborhood

embedding (t-SNE) to cluster risk factors into 6 groups. In similar spirit, Geertsema and

Lu (2020) use agglomerative clustering to group anomalies based on correlation-based dis-

similarity. In the context of industrial organization, Hoberg and Phillips (2016) group firms

into industries using a clustering algorithm on the text of 10-K product descriptions, and

Hoberg and Phillips (2018) document momentum effects using text-based industries. Differ-

ently from ours, their method does not account for firm characteristics. von den Hoff (2022)

proposes a technique to quantify the economic value of clustering that helps uncovering pat-

terns in the data that are due to investors’ limited attention. Kakushadze et al. (2016) use

information contained only in past returns to group stocks into clusters similar to industries.

Weiner (2005) carries out an extensive comparison across different classification schemes and

suggests that a cluster analysis may provide better results in terms of financial multiples.

Evgeniou et al. (2021) assign firms to clusters to enhance the performance of a two-stage

econometric model for individual firm predictions.

Our contribution differs from others as we provide a novel firm classification that repre-

sents an attractive set of investment assets accounting for the information contained in many

firm characteristics. Specifically, we do not look for an optimal number of clusters based on

prediction performance; rather, we fix K to match the number of sectors in standard clas-

sification systems and we select as optimal cluster configuration the one that maximizes

the within-cluster explained variation, which is a natural valuation metric for industrial

categories. Furthermore, we benchmark our cluster sectors against every major classifi-

cation scheme, and not only against SIC codes, which have been documented to exhibit

several drawbacks. Finally, instead of individual stocks, we focus on economic sectors for

investment purposes, as they represent the asset universe for many market participants and

3For a comprehensive review of the methods employed in this area, see Giglio et al. (2022). Bagnara (2022) offers a thorough
review of the empirical results.
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analysts (Kadan et al., 2012; Busse and Tong, 2012).

3 Standard Classification Schemes

3.1 An Overview

Firms are usually assigned to economic sectors according to four main classification schemes.

The oldest and most notorious is the SIC, established in the 1930s by the Interdepart-

mental Committee on Industrial Classification under the Central Statistical Board. Its con-

struction was aimed at providing the Federal Government with a standard classification to

be adopted for statistical purposes. SIC codes are integers of 4 digits and follow a top-down

approach, where the first 2, 3 and 4 digits define major industry groups, industry groups

and industries, respectively. The first digit is defined by the product line representing the

largest percentage of sales in the 10-K filing. SIC classification was lastly revised in 1987 as

later on a new scheme, the NAICS, would have replaced it.

The NAICS was introduced in 1999 under joint development by Canada, Mexico and

United States to offer a system that would reorganize “industry groups to better reflect

the dynamics of our economy, [...], allowing first-ever industry comparability across North

America” (Saunders (1999), p.37). After their introduction, SIC codes were not discontinued

and are still reported by several data vendors like CRSP and Compustat even nowadays.

SIC and NAICS share many commonalities, including being issued by governmental agencies

and following a hierarchical lineage. NAICS codes are in fact 6-digit long, where the first

2, 3, 4, 5 and 6 digits identify general categories of economic activity, subsectors, industry

groups, NAICS industries and national industries, respectively. Another feature in common

with SIC codes is that NAICS codes are product-oriented and far from concerns that can

affect financial research and practice (Bhojraj et al., 2003).

The Fama-French industries (FF) were instead developed by academics “to have a man-

ageable number of distinct industries that cover all NYSE, AMEX and NASDAQ stocks”

(Fama and French (1997), p. 156), although they crucially hinge on SIC codes.4 They were

constructed, in fact, by reorganizing the existing SIC code-based industries into a total of 48

new groups that provide groups more likely to share common risk characteristics. As such,

FF industries are also product-based although it is clear that research was trying to develop

a classification system that could go beyond mere product considerations. The FF groups

have been vastly used in the literature and have become the reference point for several works

concerning economic sectors (e.g. Hameed and Mian (2015)).

4The classification was introduced in Appendix A of the article and it is available at https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html
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The latest classification scheme is the GICS, born in 1999 from the collaboration between

Morgan Stanley Capital International (MSCI) and Standard & Poor’s (S&P). It significantly

departs from the other supply-based approaches, as the industry assignments take into ac-

count a firm’s principal business activity but are also informed by annual reports, financial

statements and investment research reports which reflect market participants’ perceptions.

The goal of GICS code is to “enhance the investment research and asset management process

for financial professionals worldwide” (S&P and MSCI, 2002). Furthermore, firms can be as-

signed to the Industrial Conglomerates subindustry (Industrial Sector) or to the Multi-sector

Holdings subindustry (Financial Sector) if they do not fall neatly into a single category.5

GICS code consists of up to 8 digits, where the first 2, 4, 6 and 8 digits identify sectors,

industry groups, industries and sub-industries, respectively.6

3.2 Limitations of Standard Classification Schemes

The classification schemes discussed above present several drawbacks. First of all, there

might be some discrepancies across different databases. Guenther and Rosman (1994) find

that the primary two-digit SIC codes from CRSP and Compustat do not coincide 38% of

the time. Weiner (2005) argues that the concordance of SIC codes across different data

vendors decreases over time. Second, SIC codes have hard times at identifying firms with

similar characteristics like sales changes, profit rates or stock price changes (Clarke, 1989).

The shortcut of designating a primary industry for conglomerates determined by the prod-

uct segment with the highest percentage of sales, which is also used by the Securities and

Exchange Commission (SEC), lead investors to neglect a relevant part of firms’ underlying

economic operations, and managers exploit this fact to get into more “favorable” indus-

tries (Chen et al., 2016). The introduction of newer industry codes over time has aimed at

sidestepping some of these issues. For example, Krishnan and Press (2003) find that NAICS

deliver some improvement for certain industries compared to SIC in terms of intra-industry

variation in financial ratios. However, the degree of success strongly depends on the frame-

work considered. Although designed for academics, Fama and French (1997) industries are

still dependent on SIC codes and thus on their shortcomings. More recently, evidence sug-

gests that the GICS system stands out among the standard classification schemes (Bhojraj

et al., 2003; Hrazdil et al., 2013), and should be used as benchmark by both academics, reg-

ulators and practitioners. We propose a new classification algorithm that uses information

5If the company is engaged in at least two business categories, none of which constitutes at least 60% of the total revenues, a
more extensive analysis is carried out to determine the appropriate classification.

6In Compustat, GICS codes are available even before 1980 for some companies. We do not find information about back-filling
for data points, but it is likely that the data vendor has extended the first available code to some previous years in some cases.
This, however, seems not worrisome as only a small percentage of firms had a change in their GICS code assignment in recent
years (Bhojraj et al., 2003).
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contained in a large number of return predictors from the “factor zoo” literature (Cochrane,

2011), de facto treasuring the results that classification schemes based merely on the firm’s

primary line of business are inherently static and coarse, and inevitably perform worse than

other systems which update more frequently and that pay attention to information coming

from financial markets.7

4 Data

Our dataset coincides with the updated version of Gu et al. (2020).8 The original data

includes 94 firm characteristics for CRSP stocks in the NYSE, AMEX and NASDAQ, that

we merge with CRSP monthly return data. To avoid artificial influence to the time-series

fluctuation (Chen et al., 2020), we do not impute the cross-sectional mean to the missing

values. Instead, we include covariates with not more than 37.5% of missing values in the

full sample, which leaves us with 69 characteristics.9 Then, we require to have at least 1000

stocks per month, retaining only those that have data for all characteristics and at least 60

months of available return data.10 The sample spans July 1984 to June 2019 for a total

of 7052 firms. On average, there are 2822 firms per month and 3016 per year. SIC codes

are obtained from CRSP because changes over time are not covered by other data vendors.

NAICS and GICS codes are acquired from Compustat.

Similarly to Kozak et al. (2020), firm characteristics are cross-sectionally rank-transformed

and mapped into the unit interval to make the results insensitive to outliers. Finally, char-

acteristics are cross-sectionally standardized so that they are all on the same scale.

To keep the comparison as precise as possible, industry portfolios are replicated applying

each classification scheme to the firms contained in our data sample. Using the first digit of

the SIC codes delivers 9 industries; the first digit of NAICS 18; the first two and the first

four digits of GICS result in 11 and 24 sectors, respectively.1112 Finally, Kenneth French’s

website offers 5, 10, 12, 17, 30 and 48 industries, which are arbitrary numbers without a

clear economic motivation. We keep 48 as the maximum number of potential industries

and thus rule out using further digits of other codes both to ensure comparability across

7MSCI and S&P claim that GICS codes are revised annually.
8We thank the authors to make the data available at https://dachxiu.chicagobooth.edu/#research.
9See Appendix A for a detailed description of the variables included.
10As we repeat our procedure every 12 months, in this way we ensure that we can track the behavior of each firm for a
non-negligible amount of the time across different model estimations.

11Missing data can cause the number of industries we obtain to be smaller than what the classification system should deliver.
While there are 10 1-digit-SIC industries and 20 1-digit-NAICS industries, we have 9 and 18, respectively.

12Notice that some studies report an outdated number of industries for 2-digit GICS codes. For example, in Bhojraj et al.
(2003) there are only 10 industries while there are now 11 (see https://www.msci.com/our-solutions/indexes/gics). We
also take care of the revisions to the GICS structure that took place in 2016 and 2018.
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all the methods considered and to avoid having groups with very few firms.13 Below, we

use abbreviations of the type “SIC9” to denote industries formed following the classification

given by the letters (here: SIC) that results in a number of groups indicated by the digits

(here: 9).

5 Methodology

We group firms into clusters using bisecting K-means, choosing the optimal clusters based

on within-cluster commonality. Further, we design a measure to describe how much clusters

change over time and develop a new metric to quantify feature importance for clustering

methods. We illustrate our approach in what follows.

5.1 Clustering Algorithms

Our technique is based on bisecting K-means, an improvement over the basic K-means. To

help the reader who is not familiar with clustering analysis, we provide here a quick overview

of the standard algorithm.

5.1.1 K-means

Cluster analysis aims at grouping a sample of data points into a user-specified number of

subsets or “clusters” K such that the dissimilarity of observations within a cluster is min-

imized. Let xi be a vector containing P different features (characteristics) for observation

i. Assuming the data points have already been assigned to a certain cluster, one straight-

forward way to formalize the notion of similarity between two observations is to use the

Euclidean distance over all P features (Hastie et al., 2009):

d(xi, xj) = ||xi − xj||2 =
P∑

p=1

(xi
p − xj

p)
2 (1)

where xi
p denotes the p-th characteristic for the i-th observation. In cluster analysis, it is

customary to compute cluster dissimilarity as the average of the Euclidean distance between

every point belonging to a cluster and its centre (or centroid). This such measure is often

called Within-Cluster Sum of Squares (WCSS) or inertia, and the objective is to minimize

it. Said it differently, clusters are formed in order to contain data points that are very

13For example, 2-digit SIC codes result in 67 industries; 2-digit NAICS 97 and 3-digit GICS 76. Notice that K. French provides
a classification into 49 industries, too. We stop at 48 as this is the original categorization provided in Fama and French (1997)
and thus likely the most frequently used one among the two. Adding one further industry does not convey any new finding
and only exacerbates the problem of having few firms in some industries. Results are available on request.
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close to each other in the P -dimensional feature space. Hastie et al. (2009) show that

minimizing the WCSS is equivalent to maximize the between-cluster dissimilarity. But how

does one assign observations to clusters in the first place? The ideal approach would be using

combinatorial optimization, which evaluates every possible arrangement of the data into K

clusters. Operationally, this is infeasible unless the dataset is very small. Therefore, more

parsimonious strategies based on “iterative greedy descent” are needed. These algorithms

specify a (random) initial configuration of data points into clusters, and at each iteration the

cluster assignments are changed in order to reduce the WCSS. When no further improvement

is possible, the algorithm stops. In this way, only a limited fraction of all the possible

assignments is examined, ensuring computational feasibility. To avoid getting stuck on local

optima and ensure robustness, changing the initial cluster configuration becomes pivotal.

Among these iterative descent strategies, the K-means is one of the most popular. Figure

2 illustrates a simple example in a two-dimensional space. Assume the data points belong

to K = 3 unknown groups, identified by different colors, that we want to uncover with

K-means. To initialize the algorithm, K initial guesses for the centroids are needed. These

can simply be random numbers or, instead, be determined by the user’s expert judgment.

In the first panel, centroids are depicted as fully colored circles. The second step consists

in computing the Euclidean distance for all observations in the sample with respect to all

centroids, and clusters are determined assigning data points to the closest centroid such that

the pre-specified number K of groups is formed. These clusters or partitions are delimited

with black lines in the second panel. Then, the WCSS is computed and new centroids for

each cluster are obtained as the average of all observations belonging to the same clusters.

In the third panel, one can in fact see that the centroids corresponding to each region have

changed. The last two steps are repeated until the WCSS does not change anymore. At that

point, K-means provides the clusters that minimize the WCSS.

5.1.2 Bisecting K-means

Bisecting K-means is a hybrid approach between divisive clustering (i.e. top-down recursive

clustering, Hastie et al. (2009)) and K-means clustering. While standard K-means partition

the dataset into K clusters at each iteration, bisecting K-means recursively splits one cluster

into 2 sub-clusters at each step of the algorithm usingK-means, untilK clusters are obtained.

More specifically, the user specifies a desired number of clusters K. In the first step,

K-means is used to partition the data into 2 clusters, such that the resulting intra-cluster

similarity is maximized. This corresponds to the first panel in Figure 3. Then, one of the

two clusters is split again into 2 sub-clusters with K-means. To choose which cluster to split

further, one can select either the cluster with the highest WCSS or the one with the most
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data points. We follow the first strategy which resembles the classical minimization of a

loss function.14 The result is depicted in the second panel. Regardless the guiding criterion,

the splitting procedure always provides 2 sub-groups each time, and this is where the term

“bisecting” comes from. After the second split, the algorithm continues splitting the cluster

with the highest WCSS at each step (like in the bottom panel), until K clusters are found.

Bisecting K-means presents several advantages over simple K-means. First, it is more

efficient when K is large, because at each step it utilizes the data points and the centroids

within only one cluster instead of the whole sample. This reduces the computation time.

Second, it is prone to deliver clusters of more similar sizes, while K-means is more likely to

produce groups with wildly different numbers of observations. This is likely to be the reason

why overall bisecting K-means outperforms K-means under several metrics (Steinbach et al.,

2000). Third, it can identify clusters of any shape, while K-means can uncover only spherical

ones. Fourth, the intuition behind the method is very similar to that of conditional portfolio

sorts or regression trees, which facilitates its interpretation.

5.2 Clustering Firms Using Firm Characteristics

We cluster firms into K clusters at the end of June of each year t, for t = 1984, ..., 2019.

Depending on their nature (e.g. accounting versus return-based), characteristics change

over time but bisecting K-means requires a one-dimensional vector of inputs for each firm

(column). To comply with this restriction, we aggregate the information using time-series

average over the past year at the firm level. By repeating the clustering exercise every 12

months, we are able to track potential changes over time to a reasonable degree, whereas

traditional classification schemes are updated only sporadically and are essentially static.15

As an alternative to average characteristics over the period considered, one could use the

entire matrix of characteristics pooled together as input, but this would result in repeated

observations of the same firm belonging to either the same or potentially different clusters,

which is difficult to interpret.16 To initialize the calculation of the cluster centroids, we use

the “k-means++” method, which uses the information contained in the empirical probability

distribution to sample and initialize the cluster centroids, thereby speeding up the process.

We run the algorithm for 1000 different initial random states (“seeds”). To make sure results

are robust, for each seed the algorithm is run starting from 5 different random initial choices

14Results obtained with both approaches are usually very similar, especially when there are many data points available.
15We address this point later in Section 5.3.
16While the frequency with which the procedure is repeated could be matter for discussion as it might disregard information
contained in relatively fast-changing variables like short-term reversal, we believe that 12 months is a reasonable time window
considering that most of the variables used have a low frequency, such as operating profitability, book-to-market and in
general those derived from balance sheet information.
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for the centroids, and the one producing the best outcome in terms of inertia is chosen for

the model, as is customary with clustering methods. Next, we describe the procedure we

follow to choose the optimal clusters among the 1000 different seeds.

We start by computing the CAPM residuals of each stock i over the past year:

rit,τ = αi + βirMkt
t,τ + εit,τ

ε̂i,t,τ = rit,τ − α̂i − β̂irMkt
t,τ

where ˆ denotes OLS estimates of the coefficient of interest, t represents the year, τ the

month in year t, rit,τ are returns are in excess of the risk-free rate, and rMkt
i,t,τ is the return

to the market factor.17 For a given random seed and for cluster k, k = 1, ..., K, we regress

the CAPM residuals of each stock belonging to that cluster, ε̂i,k, on the CAPM residuals

of k-th “cluster portfolio”, which is the value-weighted average of all stocks in cluster k:

ε̂k =
∑

i∈Ck
wiε̂i,k, where Ck denotes the set of firms in cluster k and wi are value weights.18

We record the average R2 across the firms in Ck. Finally, we use the average fit across all

the K clusters to pick the best cluster configuration from the 1000 random seeds. By adding

this Asset Pricing criterion to inform cluster selection, we build a bridge between Machine

Learning and Finance with a simple and clear economic interpretation. Since the average

within-cluster R2 provides a measure of commonality in the cluster, which is the ultimate

goal of industry classification in terms of research-related purposes (Bhojraj et al., 2003),

the resulting clusters can be thought of as new economic sectors.19

The classification algorithm is repeated for K = 5, 9, 10, 11, 17, 18, 24, 30, 48. We use

these numbers to closely match the number of industries provided by other schemes that we

list in Section 4. When calculating the within-industry R2, we follow Bhojraj et al. (2003)

and consider only “functional” groups, i.e. those with at least 5 firms. The same requirement

is employed also elsewhere, such as in Berger and Ofek (1995) and Villalonga (2004).

Before moving on, a remark is necessary. Clustering algorithms like K-means and bi-

secting K-means assign observations to clusters based on a measure of inertia, as mentioned

above. The label that is given to clusters has no meaning, i.e. the clusters are not ordered

according to some measure. Therefore, if one repeats the clustering procedure more than

once on the same sample, the clusters to which firms are assigned to will remain the same,

17Available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. For the rest of the section,
we remove the time index for readibility and use just ε̂i.

18While seeking the best cluster configuration, we look at CAPM residuals, but elsewhere in the text “cluster portfolios” denotes
excess returns to portfolios formed aggregating the excess returns of stocks belonging to the same cluster.

19Differently from Bhojraj et al. (2003), we maximize over the intra-cluster R2 of the residuals rather than of the overall returns.
In this way, we remove the component of returns that is due to the exposure to the market factor, which would interfere with
the construction of groups of firms similar to each other. A similar procedure is used in the return comovement literature,
e.g. Piotroski and Roulstone (2004) and Drake et al. (2017).
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but not necessarily the labels assigned to the clusters. For instance, consider splitting a

sample of 4 firms into 2 clusters, C1 and C2, such that firms 1 and 2 belong to C1 and firms

3 and 4 belong to C2. If the clustering is repeated, we will obtain again two clusters with

same shape and size as C1 and C2, but it could happen that now firms 1 and 2 belong to C2

whereas firms 3 and 4 belong to C1. To sidestep this issue, we assess our clustering method

using several tests which refer to the year in which the algorithm is run, as better explained

below. In this way, not only we make sure that the issue of changing labels does not impact

the results, but also provide a more transparent set of evaluation metrics that model users

can look at each time they utilize our algorithm.

5.3 Cluster Time-stability

In this Section we address the stability of clustering-based sectors over time. Do clusters

change substantially in terms of composition from one period to another, i.e. do firms jump

in and out of different clusters frequently or do the groups remain similar?20

While standard industry systems are known to be stale, we perform classification every

year t based on firm characteristics known up to that point. A priori there is no strong

statistical argument to assert whether clusters should remain very similar or change wildly

over time. From an economic perspective, a case can be made that, if there exists persistent

relations linking firms to each other, meaningful economic sectors should be relatively stable.

We have reason to believe this holds for clusters based on the nature of the optimization

process for determining the optimal cluster configuration. First, using a comprehensive set of

69 firm characteristics ensures that the algorithm is consistently based on features with the

strongest association with returns, even if the predictive power of some covariates is time-

varying, ceteribus paribus. Second, clusters are chosen in order to maximize the average

within-cluster R2, a well-established criterion for assessing the effectiveness of classifications

systems that allows clusters to be interpreted as economic sectors. Therefore, we expect our

approach to be able to uncover persistent latent structures over different iterations.

Beyond its economic meaning, investigating cluster time-stability is interesting also from

a purely statistical point of view. To the best of our knowledge, no method has been proposed

to measure it, mainly because clustering is per se an algorithm that abstracts from the time

dimension.21 Therefore, the technique we illustrate in the following is another relevant

20In cluster analysis, cluster stability refers stability to input randomization (Ben-David et al., 2006), i.e. the ability of an
algorithm to provide groups that do not change much from one sample to another provided the data belong to the same
latent clusters. In this paper, we focus instead on the temporal evolution of clusters.

21Clustering for time-series data makes use of methods such as dynamic time warping (Aghabozorgi et al., 2015). Applications to
panel data have a much shorter history in the literature, with approaches that require a considerable amount of model structure
compared to classical unsupervised methods (e.g. Ando and Bai (2017)). Rather than employing more intricate techniques,
we opt for the conventional cluster analysis due to its comprehensibility, but we enhance its efficacy by introducing novel
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contribution of this paper.

A challenge to face when investigating time-stability is the fact that cluster labels are

inconsistent when the method is repeated, with no clear way to track them, as we explained

above. Imagine the case where clusters have comparable compositions across time but dif-

ferent sizes, such that when 10% of firms in cluster C1 move to cluster C2 without C1 gaining

any new firms. Comparing the list of firms within C1 between the two periods is impractical

because of the change in size. To address this, we should fix a specific point in time to decide

which is the “right” dimension of each cluster and make assumptions about the development

of this unobservable quantity, which would be very arbitrary. We propose instead to focus

on a stability measure that accounts for how strong is the relation linking one firm to the

others across clusters.

Each year, when clusters are formed, we build all potential pairs among the firms in our

sample, which amounts to (N2 − N)/2. For each couple (i, j), for i, j = 1, ..., N and i ̸= j,

we create a variable St(i, j)

St(i, j) =

{
+1, if i and j belong to the same cluster

−1, otherwise
(2)

Since clustering is performed annually, St(i, j) does not change within the same year, hence

we use only the year-index t. Then, we average this over time, and take its absolute value,

|S̄(i, j)| = |1/T
∑T

t=1 St(i, j)|. In this way, the resulting variable ranges between 0 and 1,

with 1 indicating perfect stability (always together, St(i, j) = +1 ∀ t = 1, ..., T or never

together, St(i, j) = −1 ∀ t = 1, ..., T ) and 0 total instability (on average, half the time

together and half the time not together). For each firm i = 1, ..., N , we take the average

across all firms j = 1, ..., N , j ̸= i, obtaining S i = 1/N
∑N

j ̸=i,j=1 |S̄(i, j)|. Notice that since

to measure stability being always together or never together is equally good, S i measures

how strong is the relation between i and the rest of the cross-section over time. The cross-

sectional average of S i also varies between 0 and 1 and captures the overall stability across

all firms and clusters. We refer to this as Stability Index (SI): SI = 1/N
∑N

i=1 S i.22

Let us consider a simple example to understand how the stability index works. Consider

approaches to explain its underlying mechanics, such as a measure for cluster time-stability and metric for feature importance
as we show later on.

22The stability index could be computed also taking the average over all |S̄(i, j)|, for i ̸= j, i, j = 1, ..., N . We prefer to average
this at the firm i level so we are able to assign a measure to each stock, thus preserving the dimensionality of our cross-section.
We believe this feature makes Si easier to interpret.
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there are N = 5 firms, 2 clusters C1, C2 and 2 time periods, t = 1, 2. At t = 1,

cluster1 = {firm1, firm2}

cluster2 = {firm3, firm4 firm5}

For t = 2, imagine the following scenarios.

1. In scenario 1, the clusters remain exactly the same:

cluster1 = {firm1, firm2}

cluster2 = {firm3, firm4 firm5}

We have perfectly stable clusters, hence SI = 1.

2. In scenario 2, the clusters change considerably as firm2 moves to C2 and firm3 to C1:

cluster1 = {firm1, firm3}

cluster2 = {firm2, firm4 firm5}

In this case, SI will be indeed lower: 0.4.

3. In the third scenario both firm1 and firm2 move to C2 and firm3, firm4 move to C1:

cluster1 = {firm3, firm4}

cluster2 = {firm1, firm2 firm5}

In this case SI = 0.8. Although at first we would be tempted to conclude that

the migration of two couples represents great instability, the final result is that the

two migrating firms are still together in the respective couple: even if clusters have

“reshuffled”, in scenario 3 they are more similar to the clusters at t = 1 than those

of scenario 2. In fact, SI is lower in the second case than in the third case, because

single-firm migrations are more disruptive when considering the relation across firms

than seeing couple of firms migrating together.23

This example shows that SI is a simple and easy-to-grasp metric that nonetheless is sensitive

enough to precisely describe a wide range of situations.

23Triplets or quadruplets could also be used. We prefer pairs as they represent the smallest group possible involving more than
one firm, which is also appealing for interpretation.
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An alternative way to capture stability of clustering methods is looking at how many

times the relation between pairs of firms changes. Imagine the case where firm1 and firm2

are in the same cluster for, say, 5 years, and then not anymore for the following 5 years.

Here |S̄(1, 2)| = 0, but one might argue that even if the link between the two firms breaks

down after the first 5-year period for example due to structural changes affecting one firm,

clusters are again perfectly stable afterwards. This looks very different from the situation in

which firm1 and firm2 are in the same cluster only every other year, i.e. their relation keeps

changing, where |S̄(1, 2)| = 0, too. Therefore, to complement SI we build another measure

aimed at capturing changes in the relation among firms or “instability”. For every couple

(i, j), for i ̸= j, i, j = 1, ..., N we compute

Gt(i, j) =

{
1, if St(i, j)− St−1(i, j) ̸= 0

0, if St(i, j)− St−1(i, j) = 0
(3)

The quantity St(i, j) − St−1(i, j) can assume three values: 0 if firm i and j remain in the

same cluster between t − 1 and t; 2 (from not together to together) or -2 (from together

to not together). The normalization in (3) maps Gt(i, j) back to the [0, 1] interval, with

0 denoting stability and 1 instability. Then, we follow the same procedure used for the

previous stability measure, which means we first compute the time-average of Gt(i, j) for

every couple and after that, for each firm i, we take the average across all other firms

obtaining Gi = 1/N
∑N

j ̸=i,j=1

(
1/(T − 1)

∑T
t=2 Gt(i, j)

)
. Finally, the cross-sectional average

of Gi is an overall measure of instability in the relations among firms, that we call Instability

Index (II): II = 1/N
∑N

i=1 Gi.

5.4 Feature Importance in Clustering: A novel Metric

We introduce a novel evaluation metric to gauge feature importance in the context of clus-

tering algorithms. Clustering finds homogeneous groups in order to minimize the WCSS, as

explained above. All features contribute equally to the WCSS, and that is why normally

there is no such thing as feature importance for cluster analysis, in contrast to other un-

supervised ML paradigms like dimension reduction (e.g. Principal Component Analysis).

Nonetheless, we can still measure the contribution of each feature to determining differences

across clusters. After all, if the WCSS is minimized in the optimal cluster configuration,

we can expect meaningful differences related to features only across clusters and not within

one. We measure this dimension with what we call Proportion of (A)Cross-Cluster Feature

Spread (PAC-FS).

The computation of this metric goes as follows. First, we calculate xk
p, the value-weighted
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mean of the firms in cluster k, k = 1, ...K, for each feature p, p = 1, ..., P : xk
p =

∑
i∈Ck

wixi,k
p .

This resembles value-weighted portfolios returns at the characteristic level. Second, we

compute the range of variation for each characteristic across custers, i.e. the spread between

the cluster with the highest and the lowest feature value:

Sp = max
k=1,...,K

{
xk
p

}
− min

k=1,...,K

{
xk
p

}
PAC-FSp is the ratio between the spread of a characteristic and the sum of spreads over all

characteristics P :

PAC-FSp =
Sp∑P
p=1 Sp

(4)

PAC-FSp captures the proportion of variation across clusters and features that is due to

feature p. Exactly like K-means considers the Euclidean distance across all feature when

minimizing the WCSS, PAC-FS accounts for the spread over all characteristics, too. It

quantifies how much of the differences across clusters, characteristic-wise, are driven by each

feature. This is a novel metric to assess feature importance for clustering methods and thus

belongs to the contributions of our paper.

6 Empirical Results

We now illustrate the results of the empirical analysis we carry out applying the methods

discussed above.

6.1 Descriptive Statistics

We begin by presenting descriptive statistics concerning the number of firms in each economic

sector. Table 1 follows Bhojraj et al. (2003) and reports information regarding the distri-

bution of firms divided into three groups of classification schemes. The left panel reports

the results for SIC9, FF10, GICS11 and K = 10 clusters (Cluster10). The middle panel

shows figures for FF17, NAICS18, and K = 18 (Cluster18) clusters, and the right panel

refers to GICS24 and 24 clusters (Cluster24). We group the various methods in this way

such that the number of industries is comparable, because different standard classification

schemes provide unequal numbers of industries. Throughout the paper, whenever possible,

we compute the results for each other intermediate K for clusters to make the comparisons

more precise. Notice that the statistics refer to the “functional” sectors (N ≥ 5 firms), like

when computing the within-cluster explained variation. Hence, we can expect to observe un-

equal average number of firms across different methods. In all three panels, the distribution
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appears very similar across all approaches. The average number of firms varies between 271

for GICS11 and 331 for SIC9 in the left panel, and decreases with more industries, reaching

126 for GICS24 and 124 for Cluster24. The standard deviation is high in all cases, being

close to the mean. Distributions are all right-skewed, and the kurtosis is relatively high for

FF17 and NAICS18. Overall, clustering-based sectors share common patterns with other

classification schemes in terms of number of firms per industry.

6.2 Within-cluster Explained Variation

We compute the average within-group R2 for economic sectors formed with SIC and NAICS

codes, Fama and French (1997) industries, GICS codes and from our clustering algorithm at

the end of June of each year (i.e. when clusters are formed), and report time-series averages

over the entire sample for different K in Table 2. When calculating the within-sector R2,

only firms with at least 10 available observations over the past 12 months are included to

ensure meaningful statistics. Furthermore, only “functional” industries are considered.

The table shows that clustering outperforms all other classification methods for every

K. With 5 sectors, the average cluster portfolio alone is able to explain 7.92% of the

variation in CAPM-adjusted firm residuals in the same group, while FF capture slightly

above 4%. With K = 10, clustering achieves an R2 of 9.31% against 5.98% for SIC9,

8.51% for FF10 and 8.80% for GICS11.24 When K is higher, all classification schemes are

better at summarizing the within-industry variation, as one might expect. The R2 related to

Cluster18 is 10.10%, for NAICS18 it is 8.90% and for FF17 it is 9.98%. With K = 24, the R2

for clustering is 10.40% whereas for GICS24 it is 9%. Among standard industrial schemes,

the best results are achieved by GICS, both with K close to 10 and with K close to 24, a

finding in line with previous literature (e.g. Hrazdil et al. (2013)). Further expanding the

number of industries, we observe that the variation captured by our approach in excess of

existing industries (“incremental variation”) diminishes: for K sufficiently high, the groups

of firms become so small and so homogeneous that differences among algorithms are less

crucial than with fewer clusters. Nonetheless, the main takeaway is that informing the

clustering procedure based on firm characteristics deliver tremendous improvements over

static product-based classifications that overlook valuable firm-level information, yielding

more accurate and nuanced economic sectors.

24Since clustering is more flexible, we report here the results also for intermediate K which show that varying K by a few units
does not change much the results.

18

Electronic copy available at: https://ssrn.com/abstract=4528879



6.3 Investment Perspective

A distinctive trait of our clustering approach is that clusters are determined based on a clear

objective, i.e. the maximization of the explained variation within each sector. Our analy-

sis has demonstrated that firms comove more tightly within clustering-based sectors than

within classical industries. Additionally, our cluster formation relies on a substantial number

of return predictors from the literature. Incorporating characteristics with predictive power

for stock returns offers a closer link to portfolio performance, suggesting potential improve-

ments in investment profitability relative to standard classification schemes that are mainly

product-oriented and are not designed to meet financial professionals’ needs. As mentioned

earlier, sector investing is a key activity for both retail and institutional investors, and we

aim at enhancing it through our method. We now illustrate two investment applications

in which clustering-based sectors are particularly appealing, namely the construction of the

maximum SR portfolio and a trading strategy that exploits within-cluster mean-reversion.

6.3.1 Maximum Sharpe Ratio portfolio

In the spirit of using economic sectors as a reduced asset space from which market partici-

pants can pick, as it often happens in practice (Kadan et al., 2012), we perform a classical

mean-variance optimization to find the maximum SR portfolio using industries or clusters

as base assets. More formally, we solve the problem:

max
δ

{
δ′µ√
δ′Σδ

}
s.t. δ′1 = 1

0 ≤ δi ≤ 1 ∀ i = 1, ..., K

(5)

where µ represents aK×1 vector of expected excess returns, Σ is the corresponding variance-

covariance matrix, δ = (δ1, ..., δN) is a vector of portfolios weights for the K available assets

and 1 is a K × 1 vector of ones.25 The second constraint imposes short-sale restrictions

to avoid trading strategies with extreme positions that might be infeasible in practice. We

solve the optimization problem each year after performing the clustering. In Table 3 we

report OOS results for both standard industrial classifications and clustering-based sectors,

where maximum SR portfolio returns are calculated over the next 12 months keeping the

classification and the optimal weights δ unchanged as of the end of June of year t. This is an

important exercise as it represents the outcome of feasible investment strategies beyond mere

backtesting. Clustering surpasses all other standard industries for any number of sectors K.

25From here on we use excess returns of cluster portfolios, not CAPM residuals.
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For instance, with K = 10, clustering-based sectors can be combined into a maximum SR

portfolio that earns an annualized SR of 1.23, against 0.81, 0.73 and 0.84 for SIC9, FF10

and GICS11, respectively. Economic intuition would suggest that the portfolio SR should

increase in K thanks to a larger investment universe. However, while this should be the case

in-sample, it need not be necessarily so OOS due to estimation errors. It is comforting to

acknowledge that the performance of clustering-based sector is strikingly stable with respect

to K, varying between 1.20 (K = 30) and 1.36 (K = 48), whereas for example FF industries

it varies more wildly (between 0.59 and 1 for K = 30 and K = 5, respectively). Even

the maximum SR attainable using any set of classical industries is only 1, well below the

minimum SR from clustering-based sectors.

Thanks to the tighter intra-cluster return commonality, clustering provides economic

sectors that represent a better investment set for mean-variance investors relative to the

existent industries, thereby revealing potential for the financial industry.

6.3.2 Within-cluster Mean-Reversion Strategy

A second way in which an investor can take advantage of industry classification is by using a

mean-reversion argument (Kakushadze, 2015). If we believe that returns of firms within an

economic sector k are linked together and comove, we expect that stocks that temporarily

underperform the mean-sector return will outperform it in the future, and vice-versa for

stocks that are currently outperforming. This idea is similar to that of pairs trading (Gatev

et al., 2006) with the difference that the trading signal is built at the cluster level instead of

at the pair level. Our conjecture is that such strategy is particularly profitable for clustering-

based sectors as they capture higher within-cluster commonality as shown above. Hence,

we design a trading strategy that, for each cluster k, goes long stocks whose average excess

return over the last year t, r̄it, is below the corresponding value-weighted cluster excess return

r̄kt and that shorts stocks with returns above it. In other words, we form a value-weighted

portfolio of the type

rk,MR
t+1,τ =

∑
i∈Ck

wiDt(i, k)r
i,k
t+1,τ (6)

where

Dt(i, k) =

{
+1, if r̄it < r̄kt

−1, otherwise
(7)

and MR stands for Mean-Reversion. As before, τ denotes the month and t the year. Eq.

(6) says that the portfolios uses the mean-reversion signal built at the end of the previous

year, i.e. it is an implementable strategy.

Operationally, this strategy is formed at the end of June of each year for all industry
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classifications and all K reported previously, for each cluster k. To summarize its perfor-

mance, we take an equal-weighted average of the K mean-reversion portfolios in each case.

Figure 4 illustrates three different valuation metrics, where standard industry systems are

represented by red bars and clustering-based ones by blue bars. Table 4 reports the actual

figures with corresponding statistical tests. The first panel shows mean excess returns. While

no mean-reversion strategy based on existing industries provide more than 0.1% per month

on average, using clustering-based sectors yields between 0.42% and 0.51%. From Table 4,

average excess returns for mean-reversion strategies are significant only for clusters (all well

below the 1% significance level) and never for other classification schemes. Noteworthy, the

magnitude tends to increase with K, confirming that a higher within-cluster commonality

(which rises in K as per Table 2) is beneficial for trading strategies that exploit within-group

mean-reversion.

The second panel shows annualized Sharpe Ratios. Clustering-based strategies are much

more attractive than industry-based ones in terms of remuneration per unit of total risk.

The fourth column of Table 4 reports the t-statistic for Sharpe Ratios based on Bailey and

Lopez de Prado (2012), who show that this is standard-normally distributed. Hence, the

values can be compared to classical critical values. Sharpe ratios are statistically different

from zero at any conventional significance level for clustering-based sectors.

Finally, the third panel shows the alpha of each strategy with respect to the Fama and

French (2015) model plus momentum. Even controlling for several important risk factors,

mean-reversion strategies that use clusters instead of standard industry classification remain

highly profitable with alphas that generally increase in K and are very similar to the full

average returns. Said differently, such mean-reversion portfolios are largely unspanned by

traditional risk factors, as captured by the adjusted R2 in the last column of Table 4. Alphas

are not significant for mean-reversion strategies based on standard industries.

Mean-reversion strategies exploit the comovements among stocks belonging to a certain

group. As clustering is particularly powerful in providing sectors where the constituents

are tightly linked, it represents a much more valuable investment tool compared to existing

industrial classifications.

6.3.3 A within-cluster Mean-Reversion Risk Factor: WMR

Empirical evidence shows that the strategy described in Section 6.3.2 produces large and

significant excess returns that cannot be explained by traditional Asset Pricing factors when

built using the information contained in characteristics-based clusters. In this section, we

take one step further and test the hypothesis that the within-cluster mean-reversion strategy

represents a new risk factor that impacts the cross-section of stock returns. Since the strategy
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is proxied by a single portfolio (the equal-weighted average of single-sector mean-reversion

portfolios), we refer to this as a “factor”, more specifically theWithin-cluster Mean-Reversion

(WMR) factor.

As test assets, we use the entire universe of individual stocks employed to construct

economic sectors. Individual stock returns are among the highest hurdles for Asset Pricing

models.26 We have reason to believe that WMR is priced even among single stocks because

it relies on a firm-level signal, i.e. the variable Dt(i, k). This covariate measures whether firm

i is relatively “cheap” or “expensive” if we interpret returns simply as firm i’s appreciation

from the previous period.27 By leveraging stock i’s position relative to its peers in the same

economic sector, Dt(i, k) encapsulates a potential large amount of information and simplifies

it into a directional trading signal. This signal remains agnostic about the strength of the

temporary deviation of firm i’s performance in its industry, which is advantageous considering

that individual stock returns typically exhibit low signal-to-noise ratios. Since WMR is the

average mean-reversion strategy over all clusters, it essentially represents a portfolio that goes

long all the stocks that are temporarily outperforming and short those that are momentarily

underperforming. As such, WMR encompasses signals coming from the entire economy and

thus potentially relevant for each firm, in similar spirit to what happens for the industry

momentum (Moskowitz and Grinblatt, 1999), which is widely accepted as a robust anomaly.

To test our hypothesis, we perform Fama-MacBeth regressions (Fama and MacBeth

(1973), FMB) on all stocks in our sample. The exercise is repeated for different indus-

trial classification systems and different K, as in the previous section. Fama and French

(2015) factors plus momentum are included as controls. In the first FMB step, we estimate

factor betas using rolling windows of 60 months to reflect potential changes over time in

the risk profiles of the stocks considered. We report the market price of risk (mpr) and the

corresponding FMB t-statistic in Table 5. The second-to-last column refers to the WMR

factor built from the economic sectors on the rows. The last column indicates the average

adjusted R2 for the second FMB step, i.e. the cross-sectional regressions. Among tradi-

tional factors, the market (Mkt-RF) and the size factors (SMB) are consistently priced in all

the cases considered. The value (HML), the investment (CMA) and the momentum factors

(MOM) are never priced, while the profitability factor (RMW) exhibits a negative mpr which

is barely significant only in few cases. The column of interest regards WMR: similarly to

what happens for the trading strategies in Section 6.3.2, the factor is never priced if built

26Typically, empirical Asset Pricing factors are tested against well-known groups of portfolios such as the 25 size-and-book-to-
market-sorted portfolios from Fama and French (1992), which are known to have a strong factor structure. Individual stocks
are instead rarely used as test assets. Modern methods often perform poorly in this case compared to portfolios, such as in
Lettau and Pelger (2020). We use individual stocks to set a higher hurdle to test the WMR factor.

27Which is trivially the case if there are no dividends paid. Another advantage of using returns instead of prices to measure if
a stock is cheap or expensive is that it mitigates the effect of upward drifts in prices and already existing price discrepancies
among stocks belonging to the same group (Kakushadze, 2015).

22

Electronic copy available at: https://ssrn.com/abstract=4528879



from standard industry codes (the only exception is FF48, where it is significant just at the

10% level) but has always a significant mpr for clustering-based sectors. More specifically,

this generally rises with K, ranging from 0.24% (Cluster10) to 0.33% (Cluster24), with a

t-statistic always significant at the 5% level and significant at the 1% in 4 cases. The mpr

reaches economically significant levels as high as 60% of the mpr of the market factor (0.52)

and 70% of the size factor (0.44).

This Section shows that clustering-based economic sectors that exploit information from

firm characteristics are relevant not only for investment purposes but also from a broader

economic perspective. The WMR factor represents an aggregate measure of within-group

relative performance that captures a novel risk factor relevant at the individual firm level.

6.4 Stability and Instability Index

What is the optimal outcome regarding the stability index described in Section 5.3? One

the one hand, total instability would imply excessive dynamism: if firms were constantly

shifting groups, we would conclude that there exists no strong link among firms over time,

rendering clustering interpretation cumbersome. On the other hand, perfect stability is not

desirable either because it would lead to staleness, which is one of the limitations of existing

classification schemes. As there is a trade-off between the two extremes, the ideal outcome

would be clusters that exhibit some variation over time, but not too much, because it would

indicate that we achieved the goal of uncovering stable latent relations among firms akin

to traditional industries. We expect this to happen because our clustering approach is not

completely unsupervised but rather guided by the maximization of the explained variation

within economic sectors, a strong indicator of “good” industries. We show that this is indeed

what occurs in the subsequent analysis.

We calculate the variable S i for each firm in the sample for each number of clusters K

used in the previous exercises. Figure 5 shows the respective empirical density in a histogram.

The red vertical dashed bar is the mean of the distribution, i.e. the stability index SI and

the black bar refers to existing industries. In our sample, firms always belong to the same

classical industry, such that the distribution of S i collapses to 1. This happens for every

classification different from clusters. The top-left panel illustrates the case K = 5. The

stability index is 0.58 with a standard deviation of 0.11. On average, the relation between

firm i and the rest of the cross-section remains the same more between half and two thirds

of the time, which means that clustering-based sectors are quite dynamic but also far from

being completely unstable. Increasing the number of clusters K shifts the entire density

to the right towards one with a contemporaneous decrease in the dispersion around the
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mean. With K = 10, SI = 0.72 (0.08 standard deviation). With K = 24, SI = 0.87 (0.04

standard deviation). The maximum occurs at K = 48, where SI = 0.93 (0.02 standard

deviation). Intuitively, this pattern is easy to understand: when K rises, clusters become

smaller and thus more homogeneous, such that the relations linking firms with each other

also get stronger and it is less likely that firm couples are split during the cluster assignment.

This development is also in line with the increase in the within-cluster R2 documented in

Table 2, which tended to converge across classification systems for large K, similarly to

what the stability index does in Figure 5. These two results together hint at an interesting

finding: the evolution of stability is inversely related to the incremental explained variation

of our approach, because larger R2 differences between clustering-based sectors and existing

industries occur with more dynamic (i.e. less stable) clusters, e.g. with K = 5. Hence, the

ideal level of stability that one wishes to achieve is eventually influenced by the number of

clusters used, too.28

To complement these results, Figure 6 shows the empirical density of Gi. The red vertical

line is once again the average, i.e. the instability index II and the black line at zero represents

any other existing classification system. For K = 5, II = 0.29 with 0.08 standard deviation,

which means the relation between firm i and the rest of the cross-section changes sign

around one fourth of the times. For K = 48, II = 0.06 with 0.02 standard deviation.

The distribution shifts to the left towards zero and tightens up around the mean when K

increases, for the same reasons that result in the shift to the right in the previous figure. The

instability measure Gi is not the simple complement to 1 of the stability measure S i, as we

explained in detailed above in the text. It is therefore comforting to observe patterns that

can be interpreted in the same way, i.e. cluster instability decreases when the number of

clusters increases, as within-cluster explained variation in excess of existing industries does.

Overall, the findings of this Section shows that clusters provide a favorable equilibrium

between variability and stability, offering a level of time-variation that is meaningful but not

excessive. This characteristic contributes to the perception of clusters as reliable represen-

tations of economic sectors.

6.5 Characteristics Importance

We use the new metric we develop, the PAC-FS, to identify which firm characteristics help

to distinguish one economic sector from another one. In Figure 7 we report the time-series

average of the PAC-FSp for the twenty variables with the largest values, in descending order.

Following the same approach as above, we compare the results across different industry

28Notice that clustering-based sectors retain a certain level of dynamism even for the highest K. In that case, SI is high but
still statistically significant from 1.
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classifications for comparable K.29 Size (mvel1) is the first most important characteristic for

both SIC9 and GICS11 and the second one for FF10. Its industry-adjusted version (mve ia)

belongs to the top-6 features in all three cases. The amount of overall cross-cluster cross-

feature spread these two characteristics determine together varies from around 8% (FF10)

to 11% (SIC9). Market capitalization is therefore a distinctive trait for industries that are

formed mainly looking at the firm’s product lines. sin is the most important feature for

FF10, which is not ideal as a binary categorization into sin and non-sin industries is a very

coarse metric to distinguish many sectors from each other. Other variables that are important

across the three systems are industry-adjusted change in profit margin (chpmia), industry

momentum (indmom) and industry sales concentration (herf): although their relative rank

varies, they all belong to the top-8 features.

A different pattern emerges for Cluster10. The book-to-market ratio (with the industry-

adjusted variant) explain the highest portion of cross-cluster differences, i.e. more than 12%.

The two next most important characteristics are financial liquidity ratios, in particular quick

and current ratio (quick and currat). The importance of size is considerably downsized

compared to standard classification systems. Furthermore, it is noteworthy that after the

9th characteristic, the PAC-FSp flattens out almost completely, which means that even if all

69 covariates play the same role in forming the clusters as they enter with the same weight in

the WCSS, only 9 of them can meaningfully be used to distinguish one cluster from another.

This demonstrates that PAC − FS is useful in uncovering interesting patterns related to

feature importance.

Do similar findings hold also for higher K? In Figure 8 we show results for FF17,

NAICS18, GICS24 and Cluster24.30 Once again, size (and its industry-adjusted version)

plays one of the biggest roles in the cross-cluster cross-feature spread for existing industrial

classifications, taking the first, third and second place for FF17, NAICS18 and GICS24,

respectively. The first characteristic for NAICS18 is sin, similar to FF10 but, interestingly,

this is much less important for FF17. In fact, the first 5 positions for the latter change

evidently with a larger number of industries. Something similar can be observed for GICS24

compared to GICS11. Now leverage (lev) becomes the most important feature, followed by

size, sin and industry-adjusted size. A remarkable change happens for industry-adjusted

book-to-market, which is now the third most important feature whereas it did not even ap-

pear in Figure 7. chpmia, indmom and herf remain relevant, in some cases more than in the

case with K = 10 (e.g. herf for FF17). The situation, instead, remains substantially un-

changed for clustering-based sectors: once again, book-to-market is the most crucial feature,

29Of course, firm characteristics do not impact existing industries which are product-oriented. However, PAC-FS is still a
useful metric to pin down distinguishing traits among economic sectors regardless the way in which they are formed.

30Results for Cluster18 are very similar and thus we omit them for clarity of exposition.
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followed by quick-and current ratio. Focusing on these 4 features, after which the PAC-FSp

drops considerably and flattens out, one can conclude that clustering-based sectors are more

stable to increases in K than other classification schemes where, besides size, differences are

mainly determined by a rotating groups of features that varies with the number of industries

considered. It is interesting that this happens in spite of the fact that classical industry

codes are more static than cluster-based ones: as we argued above, firm characteristics are a

major source of comovement across individual firms and should be considered when grouping

firms into economic sectors.

Another noteworthy phenomenon that emerges from Figure 8 is that the most salient

features do not necessarily have lower PAC-FSp for higher K, i.e. the role they play in the

overall characteristic-spread does not change substantially. Said differently, with higher K

it is not more difficult to disentangle clusters from each other even if they become more

“similar”. Notice that this result does not go against the idea that smaller clusters are more

homogeneous: PAC-FS measures the weight that each feature has in the differences across

clusters and across features. Hence, it can well be that more homogeneous clusters differ

more in terms of the same characteristic among each other, but the relative importance

that each feature has with respect to other variables remains unaltered. PAC-FS is thus a

suitable measure to capture differences across clusters that is not sensitive to the number of

groups used.

To sum up, differences across sectors identified by standard classification schemes tend

to be driven first by variables related to the equity portion of the balance sheet (size), and

second by elements connected to profitability (changes in profit margin) or to the recent

market performance and the level of competition in an industry (industry momentum and

sales concentration). In contrast, the main determinants of differences across clusters refer

to a firm’s “value” (book-to-market) or to its ability to meet its short-term obligations with

its most liquid assets. Together with the time-varying nature illustrated in the previous

sections, these marked discrepancies are potentially responsible for the superior performance

of cluster sectors relative to standard industries, which means our clustering algorithm can

be useful to identify candidate variables that enhance the performance of trading strategies

at the economic-sector level.
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7 Robustness Tests

7.1 Short-term reversal, Long-term Reversal and Industry Mo-

mentum

One might be concerned that the trading strategy we describe in Section 6.3.2 might at least

partially overlap with three well-known risk factors: short-term reversal, long-term reversal

and industry momentum (Moskowitz and Grinblatt, 1999). We show here that this is not

the case.

We augment the Fama and French (2015) model plus momentum with the short-term and

long-term reversal factors from K. French’s webpage together with the industry-momentum

factor from Chen and Zimmermann (Forthcoming).31 We thus obtain a 9-factor model,

against which we regress the equally-weighted average of the within-cluster mean-reversion

portfolios of above. We report alphas and adjusted R2 in Table B.1 in the Appendix B.

The results remain essentially unchanged compared to before, with significant alphas arising

only with clustering-based sectors. Moreover, the magnitude increases with K, as economic

intuition would suggest. Trading strategies that exploit within-cluster mean-reversion cap-

ture an effect that cannot be explained even adding three additional factors that specifically

control for phenomena of reversal or momentum at the industry level.

We repeat the same test for the FMB regressions. We report the results in Table B.2

in the Appendix. The increase in the average cross-sectional R2 compared to the previous

case (from 25% to 30%) shows that including the additional controls helps capturing a

higher portion of the return variation in the cross-section. The market and the size factors

remain strongly significant in all the cases considered, with mpr of around 0.50% and 0.40%,

respectively. The other factors, including the newly added ones, are not priced over the

period considered, except for WMR. The latter has a significant mpr only for clustering-

based sectors, as above, that tend to increase with K and is between 0.2% and 0.3%, an

economically important value when compared to other factors.

In sum, controlling for short- and long-term reversal and industry momentum confirms

the results observed earlier that within-cluster mean-reversion strategies are profitable only

for clustering-based sectors and the corresponding WMR factor is priced in the cross-section.

7.2 Standard K-means

We have provided empirical evidence that our clustering technique boosts sector-investing

profitability for both mean-variance investors (Section 6.3.1) and within-cluster mean rever-

31We thank the authors for making the data available at https://www.openassetpricing.com/data/.
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sion strategies (Section 6.3.2). We attribute these improvements to the fact that we enhance

an unsupervised ML technique (clustering) with the objective of finding the clusters that

explain the highest proportion of return variation of the constituent firms. To support this

claim, in this Section we conduct the same analysis as before using the standard K-means

algorithm instead of bisecting K-means. If our pseudo-supervised clustering approach is the

main driver of high sector-investing performance, we expect that changing the clustering al-

gorithm will not change substantially the profitability of the investment strategies introduced

earlier. We show that this is indeed the case.

Except for using K-means instead of bisecting K-means, every other choice concerning

the data remains the same, including the firm characteristics, the frequency of cluster for-

mation and so on. We start by reporting descriptive statistics related to the distribution

of the number of firms per cluster in Table B.3. For comparability with Table 1, we show

results for the same K and repeat the figures for classical industries. The average number

of firms for Cluster10, Cluster18 and Cluster24 is 306, 172 and 130, respectively, which is

quite similar to the average of the other classification systems with comparable number of

sectors. Compared to bisecting K-means, the distribution now is more skewed to the right

(e.g. skewness is 1.66 for Cluster10 against 1.14 for bisecting K-means) and the kurtosis is

also higher, which dovetails with the known fact that bisecting K-means tends to produce

clusters of more similar sizes. However, as in the previous case, all industrial classifications

share a high degree of similarity regarding the number of firms per economic sector.

Table B.4 shows average within-cluster R2 for different K. Also here we report results for

standard industries for ease of comparison. Clustering achieves the highest R2 regardless the

number of industries. For instance, with K = 10, the average R2 is 10.73%, which is even

slightly higher than for bisecting K-means (9.31%). For larger K, the performance of the

two clustering algorithms is nearly indistinguishable. Moreover, as with bisecting K-means,

the amount explained rises with K and the incremental explanatory power over existing

industries shrinks. Firm characteristics contain relevant information to build meaningful

economic sectors beyond the specific the clustering algorithm used.

Let us now evaluate the investment performance of clusters formed using standard K-

means. In Table B.5 we show the annualized OOS SR of the maximum SR portfolio built

using economic sectors as base assets. Also in this case, clustering consistently outmatches

existing industries across all K, with results that are very close to the bisecting K-means

case: for example, the annualized SR for Cluster5 is 1.29 (1.23 for bisecting K-means)

whereas it is 1.08 for Cluster30 (1.20 for bisecting K-means).

The second investment strategy we propose exploits within-cluster mean-reversion, as

illustrated in Section 6.3.2. Table B.6 presents results for standard K-means for several
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number of clusters. The tradings strategy is profitable in all cases, with average excess re-

turns that are sizeable, ranging from 0.26% (Cluster5) to 0.49% (Cluster10), and strongly

statistically significant. Mean-reversion strategies grow in K at first, peak at Cluster10, and

afterwards alternate between increase and decrease, differently from the bisecting K-means

case where average returns display a more pronounced growing pattern in K. Moreover,

bisecting K-means tend to earn higher average returns overall. Similar patterns occur also

for the annualized SR, which varies from 0.44 for K = 5 to 0.79 for K = 48, reaching its

apex at 0.83 for K = 30, and for alphas with respect to Fama and French (2015) model plus

momentum: the bisecting K-means is overall slightly better for these two metrics, too. Table

B.7 shows mpr for the WMR factors corresponding to each mean-reversion strategy. Unsur-

prisingly, the conclusion are once again similar to those for the other clustering algorithm:

standard K-means produces a risk factor that is priced in the cross-section, with an mpr that

is roughly 0.30% per month, very similar to the bisecting K-means case, and that rises with

K at first but then decreases and increases again. Here, the factor based on K = 5 sectors

is not priced. Adding short-term and long-term reversal plus industry momentum to the

model leaves the results substantially unchanged (see Table B.8). Together with Table B.5,

the fact that all results are strongly significant and close in values to the bisecting K-means

case brings solid support for the claim that it is not the clustering algorithm that matters

for sector-investing, but rather the choice of guiding the approach through the objective of

maximizing the within-cluster R2.

As a final step to confirm this conjecture, we also investigate whether the choice of the

clustering algorithm impacts cluster time-stability and feature importance.

Figure B.1 and B.2 report the distribution of the stability measure S i and the instability

measure Gi, respectively, for differentK. As above, the red dashed vertical line represents the

mean, which is the Stability (Instability) index, and the black vertical line denotes existing

industries, which are completely stale and thus collapse onto 1 (0). It is quite clear that

there are no striking differences between the two clustering algorithm: the distribution of

the stability (instability) measure shifts to the right (left) towards 1 (0) and tightens up as

the number of economic sectors increases, in accordance to economic rationale. For instance,

for K = 5, SI = 0.58 (II = 0.29) and for K = 48, SI = 0.93 (II = 0.06). The only

noticeable fact is that now the stability (instability) measure can become essentially 1 (0)

for a few firms, which did not happen for bisecting K-means. In other words, the latter

offer clusters that are more dynamic than K-means. Overall, however, the main message

remains unchanged: clustering-based economic sectors are relatively stable but at the same

time offer variation that is absent in other classification systems.

Figure B.3 shows the time-series average of the PAC−FSp relative to the twenty features
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with the highest values, in descending order. Results are displayed for the same K used in

the bisecting K-means case. Two facts are worth noticing. First, for Cluster 10, the most

important features are book-to-market (with its industry-adjusted version), which explains

alone almost 7% of cross-cluster differences, and financial liquidity ratios (quick and current

ratio). The top-4 features are the same as for bisecting K-means. Second, the main drivers

of differences across clusters are remarkably stable when K = 18, a feature that was not

found for classical industries. From Figure B.3 we can therefore conclude that the algorithm

used to form clusters does not impact the role played by firm characteristics in differentiating

clusters among each other.

In conclusion, using K-means instead of bisecting K-means generate very modest dif-

ferences regarding the within-cluster return variation that can be explained by cluster-

portfolios, the performance of maximum SR portfolios and mean-reversion-based strategies

and factors, cluster time-stability and feature importance. As mentioned earlier in the text,

bisecting K-means is often considered an improvement over the standard K-means for a

variety of reasons. Our analysis finds indeed a marginally better performance in terms of

investments strategies and cluster time-stability. However, the takeaway of this Section is

that when we are interested in creating new economic sectors using return predictors, the

mathematical approach employed to cluster firms is not decisive. Instead, the pivotal in-

gredient to the impressive results we document is the idea of augmenting cluster analysis

with the objective of maximizing a standard measure for the goodness of industries, the

within-cluster R2.

8 Conclusion

Existing industry classifications present several drawbacks that have led the profession to

look for new schemes over time. We treasure the result from the literature that indus-

try codes accounting for the market perception of firms outperform those that are solely

product-oriented. Using the information contained in a large number of stock return pre-

dictors, we propose a new classification method that links the power of clustering analysis

with an easy-to-interpret Asset Pricing criterion, namely the maximum within-cluster ex-

plained variation, a natural metric to asses the effectiveness of industry assignments. This

paradigm permits interpreting the resulting clusters as new economic sectors regardless the

specific clustering algorithm employed. Results reveal strong potential both for research and

investment purposes. Clustering surpasses all existent classification schemes in capturing

the return variation of stocks in the same cluster, for every number of industries considered.

Clustering-based sectors offer better investment opportunities for mean-variance investors
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willing to simplify the decision process from the entire universe of individual stocks to a

tractable number of groups. Significant gains from clustering classification arise also when

exploiting mean-reversion trading strategies, which deliver a latent risk factor that captures

firms’ performance relative to their peers and is significantly priced in the cross-section. We

develop a simple yet effective measure to describe how the cluster structure evolves with each

iteration, and show that clustering-based sectors strike a great balance between dynamism

and time-stability. Equipped with a new metric developed to quantify feature importance

for clustering methods, we find that classical industries mainly differ in terms of size while

book-to-market and financial liquidity variables are useful to distinguish clusters from each

other.
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Tables

Table 1: Number of Firms per Sector: Descriptive Statistics

This table reports the distribution of the number of firms within each economic sector for different classification methods. Only
“functional” sectors with N ≥ 5 firms are considered. The first panel groups schemes that yield between 9 and 11 sectors; the
second one between 17 and 18; the third refers to 24 sectors. Ordinal numbers denote distribution percentiles. Data refer to
the period July 1984 - June 2019.

SIC9 FF10 GICS11 Cluster10 FF17 NAICS18 Cluster18 GICS24 Cluster24

Mean 331 298 271 300 186 164 171 126 128

Std. dev. 275 209 195 277 274 331 154 90 117

Skewness 1.48 0.73 0.81 1.14 3.1 3.76 1.14 1.01 1.2

Kurtosis 1.81 -0.74 -0.43 0.6 9.18 13.4 0.84 0.39 1.04

Min 7 28 21 5 22 5 5 5 5

1st 9 41 22 5 24 6 5 10 5

50th 248 237 196 211 103 76 131 104 97

99th 1180 784 740 1073 1383 1686 640 384 488

Max 1209 830 805 1193 1438 1832 719 404 559
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Table 2: Within-sector Explained Variation

This table reports the average within-sector R2 obtained by regressing the CAPM residuals of each firm i in cluster k on the
cluster portfolio k, for different K corresponding to each industry classification. Data refer to the period July 1984 - June 2019.

K SIC NAICS FF GICS Clustering

5 - - 4.17% - 7.92%

9 5.98% - - - 9.04%

10 - - 8.51% - 9.31%

11 - - - 8.80% 9.40%

12 - - 8.00% - 9.58%

17 - - 9.98% - 10.02%

18 - 8.90% - - 10.10%

24 - - - 9.00% 10.40%

30 - - 9.88% - 10.77%

48 - - 11.20% - 11.75%
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Table 3: Sector Investing: Out-of-sample SR

This table shows the OOS Sharpe Ratio of the maximum SR portfolio obtained using economic sectors as base assets for
different K corresponding to each industry classification. Portfolio weights are computed at the end of June of each yearand
the classification into clusters is kept fixed over the next 12 months. Data refer to the period July 1984 - June 2019.

K SIC NAICS FF GICS Clustering

5 - - 1.00 - 1.23

9 0.81 - - - 1.25

10 - - 0.73 - 1.23

11 - - - 0.84 1.21

12 - - 0.83 - 1.34

17 - - 0.74 - 1.27

18 - 0.98 - - 1.27

24 - - - 0.82 1.24

30 - - 0.59 - 1.20

48 - - 0.79 - 1.36
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Table 4: Sector Investing: Mean-Reversion strategies

This table shows average excess returns (in percent), annualized Sharpe Ratios and alphas (in percent) with respect to the Fama
and French (2015) plus momentum (“FF6”) for equal-weighted mean-reversion strategies for different industrial classification
schemes and different number of industries K. The corresponding t-statistic is reported on the right next to each metric, with
bold numbers for values above conventional significance levels. The t-statistic for the Sharpe Ratio is computed following Bailey
and Lopez de Prado (2012). The last column refers to the FF6 model. Strategies are rebalanced at the end of June of each
year between 1984 and 2019.

Avg. Excess Ret. (%) t-stat Ann. SR t-stat Alpha (%) t-stat Adj. R2

FF5 0.03 0.58 0.1 0.59 -0.01 -0.4 0.5

SIC9 0 -0.08 -0.01 -0.09 -0.03 -0.78 0.46

FF10 0.02 0.39 0.07 0.39 -0.04 -1.28 0.55

GICS11 0.05 1.17 0.2 1.2 0.03 0.86 0.38

FF12 0.01 0.22 0.04 0.23 -0.04 -1.18 0.55

FF17 0.03 0.63 0.11 0.64 -0.01 -0.29 0.43

NAICS18 -0.06 -1.17 -0.2 -1.19 -0.05 -1.19 0.34

GICS24 0.03 0.82 0.14 0.84 0.01 0.45 0.4

FF30 0.01 0.24 0.04 0.25 -0.03 -0.72 0.38

FF48 0.03 0.54 0.09 0.56 -0.03 -0.63 0.42

Cluster5 0.42 3.9 0.67 4.3 0.37 4.12 0.38

Cluster9 0.46 4.41 0.76 4.67 0.39 4.38 0.35

Cluster10 0.46 4.86 0.83 5.12 0.39 4.61 0.3

Cluster11 0.51 5.65 0.97 6 0.44 5.58 0.31

Cluster12 0.5 4.72 0.81 5.39 0.47 5.36 0.38

Cluster17 0.49 5.14 0.88 5.85 0.48 6.09 0.41

Cluster18 0.52 5.71 0.98 6.28 0.49 6.46 0.41

Cluster24 0.42 4.19 0.72 4.68 0.4 5.1 0.46

Cluster30 0.48 4.6 0.79 5.26 0.42 5.35 0.48

Cluster48 0.47 4.87 0.83 5.44 0.45 6.38 0.52
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Table 5: Sector Investing: WMR factor

This table shows market prices of risk (in percent) estimated through FMB regressions (Fama and MacBeth, 1973) for the
five Fama and French (2015) plus momentum plus WMR, the within-cluster mean-reversion portfolio, for different industrial
classification schemes and different number of industries K. The corresponding t-statistic is reported in brackets, with bold
numbers for values above conventional significance levels. The second-to-last column refers to the WMR factors built from the
economic sectors on the rows. The last column refers to the average adjusted R2 from the second step of the FMB regressions.
WMR factors are rebalanced at the end of June of each year between 1984 and 2019.

Mkt-RF SMB HML RMW CMA Mom WMR Adj.R2

FF5 0.53 (2.29) 0.43 (2.6) -0.04 (-0.24) -0.24 (-1.69) 0 (-0.05) -0.13 (-0.47) 0.03 (0.57) 0.25

SIC9 0.52 (2.26) 0.43 (2.57) -0.04 (-0.25) -0.24 (-1.66) -0.01 (-0.05) -0.15 (-0.57) 0.02 (0.29) 0.24

FF10 0.53 (2.28) 0.42 (2.55) -0.04 (-0.22) -0.24 (-1.7) 0 (0.04) -0.15 (-0.55) 0.06 (1.11) 0.25

GICS11 0.52 (2.26) 0.42 (2.55) -0.04 (-0.27) -0.23 (-1.63) 0 (0.01) -0.13 (-0.46) 0.05 (1.01) 0.25

FF12 0.52 (2.25) 0.43 (2.59) -0.04 (-0.23) -0.24 (-1.68) 0 (0.01) -0.16 (-0.59) 0.06 (1.14) 0.25

FF17 0.52 (2.28) 0.43 (2.58) -0.04 (-0.23) -0.24 (-1.7) -0.01 (-0.09) -0.16 (-0.61) 0.09 (1.54) 0.25

NAICS18 0.52 (2.25) 0.44 (2.63) -0.05 (-0.29) -0.25 (-1.74) 0 (0) -0.14 (-0.5) 0.04 (0.57) 0.24

GICS24 0.51 (2.24) 0.43 (2.6) -0.05 (-0.28) -0.23 (-1.62) 0 (-0.01) -0.15 (-0.57) 0.06 (1.29) 0.25

FF30 0.52 (2.27) 0.42 (2.51) -0.05 (-0.28) -0.22 (-1.54) 0 (-0.01) -0.16 (-0.58) 0.07 (1.29) 0.25

FF48 0.53 (2.29) 0.43 (2.56) -0.05 (-0.32) -0.23 (-1.63) -0.01 (-0.05) -0.16 (-0.59) 0.1 (1.73) 0.25

Cluster5 0.52 (2.25) 0.43 (2.57) -0.04 (-0.26) -0.22 (-1.59) 0 (-0.04) -0.16 (-0.57) 0.28 (2.06) 0.25

Cluster9 0.53 (2.3) 0.42 (2.51) -0.05 (-0.33) -0.25 (-1.71) -0.01 (-0.12) -0.15 (-0.55) 0.33 (2.65) 0.25

Cluster10 0.52 (2.27) 0.43 (2.54) -0.05 (-0.32) -0.24 (-1.69) -0.01 (-0.09) -0.15 (-0.56) 0.24 (2.11) 0.25

Cluster11 0.51 (2.23) 0.44 (2.59) -0.05 (-0.33) -0.24 (-1.67) -0.02 (-0.14) -0.14 (-0.51) 0.24 (2.17) 0.25

Cluster12 0.51 (2.24) 0.43 (2.57) -0.05 (-0.31) -0.23 (-1.63) -0.01 (-0.08) -0.14 (-0.53) 0.3 (2.31) 0.25

Clusetr17 0.51 (2.22) 0.42 (2.49) -0.06 (-0.33) -0.21 (-1.5) 0 (-0.03) -0.12 (-0.44) 0.3 (2.69) 0.25

Cluster18 0.51 (2.22) 0.42 (2.51) -0.05 (-0.28) -0.22 (-1.56) 0 (0.04) -0.13 (-0.48) 0.24 (2.11) 0.25

Cluster24 0.52 (2.29) 0.41 (2.46) -0.07 (-0.39) -0.23 (-1.63) 0 (-0.04) -0.12 (-0.45) 0.33 (2.67) 0.25

Cluster30 0.52 (2.27) 0.42 (2.5) -0.06 (-0.38) -0.24 (-1.66) -0.01 (-0.09) -0.15 (-0.54) 0.31 (2.44) 0.25

Cluster48 0.52 (2.24) 0.4 (2.41) -0.04 (-0.25) -0.22 (-1.55) 0 (0.04) -0.12 (-0.44) 0.31 (2.65) 0.25
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Figures

Figure 1: Average Excess Returns and Standard Deviation, replicated Fama and
French (1997) Industries
This figure shows the average excess returns and the standard deviation for 48 industries built
following Fama and French (1997). Lighter colors indicate higher Sharpe Ratios, as illustrated
from the colored bar on the right. The star denotes the maximum SR portfolio that results from
using the industries as base assets. Data refer to the period July 1984 - June 2019.
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Figure 2: Example of K-means Clustering
This figure is adapted from Hastie et al. (2009) and shows an example of clustering through the
K-means algorithm in a two-dimensional space, broken down into different steps.
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Figure 3: Example of Bisecting K-means Clustering
This figure shows an example of clustering through the bisecting K-means algorithm in a two-
dimensional space, broken down into different steps.
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Figure 4: Mean-reversion strategies
This figure shows average excess returns, annualized Sharpe Ratios and the alpha with respect to
the Fama and French (2015) plus momentum (“FF6”) for mean-reversion strategies for different
industrial classification schemes and different number of industries K. Data refer to the period
July 1984 - June 2019.
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Figure 5: Cluster Time-stability and Stability Index
This figure shows the empirical density of the firm-level stability measure Si for i = 1, ..., N for
different number of clusters K. The red vertical bar denotes the cross-sectional mean, i.e. the
stability index SI. The black bar refers to any other classification systems (the density collapses
onto the value 1). Data refer to the period July 1984 - June 2019.
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Figure 6: Cluster Time-Instability and Instability Index
This figure shows the empirical density of the firm-level instability measure Gi for i = 1, ..., N for
different number of clusters K. The red vertical bar denotes the cross-sectional mean, i.e. the
instability index II. The black bar refers to any other classification systems (the density collapses
onto the value 0). Data refer to the period July 1984 - June 2019.
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Figure 7: Feature Importance, K = 10
This figure shows the time-series average PAC-FSp for the twenty characteristics with the highest
values, in descending order, for different K corresponding to each industry classification that yields
a number of economic sectors between 9 and 11, as report in the titles above each panel. Data refer
to the period July 1984 - June 2019.
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Figure 8: Feature Importance, K = 18, 24
This figure shows the time-series average PAC-FSp for the twenty characteristics with the highest
values, in descending order, for different K corresponding to each industry classification that yields
a number of economic sectors between 17 and 24, as report in the titles above each panel. Data
refer to the period July 1984 - June 2019.
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A Further Data Details

Table A.1: Firm characteristics

The table reports the 69 firm characteristics employed in the clustering algorithm. Data are obtained from Dacheng xiu’s
website (https://dachxiu.chicagobooth.edu/#research). Data refer to the period July 1984 - June 2019.

Acronym Full name Paper

absacc Absolute accruals Bandyopadhyay, Huang and Wirjanto (2010)
acc Working capital accruals Sloan (1996)
age # years since first Compustat coverage Jiang, Lee and Zhang (2005)
agr Asset growth Cooper, Gulen and Schill (2008)
baspread Bid-ask spread Amihud and Mendelson (1989)
beta Beta Fama and MacBeth (1973)
betasq Beta squared Fama and MacBeth (1973)
bm Book-to-market Rosenberg, Reid and Lanstein (1985)
bm ia Industry-adjusted book to market Asness, Porter and Stevens (2000)
cashdebt Cash flow to debt Ou and Penman (1989)
cashpr Cash productivity Chandrashekar and Rao (2009)
cfp Cash flow to price ratio Desai, Rajgopal and Venkatachalam (2004)
cfp ia Industry-adjusted cash flow to price ratio Asness, Porter and Stevens (2000)
chatoia Industry-adjusted change in asset turnover Soliman (2008)
chcsho Change in shares outstanding Pontiff and Woodgate (2008)
chempia Industry-adjusted change in employees Asness, Porter and Stevens (1994)
chinv Change in inventory Thomas and Zhang (2002)
chmom Change in 6-month momentum Gettleman and Marks (2006)
chpmia Industry-adjusted change in profit margin Soliman (2008)
convind Convertible debt indicator Valta (2016)
currat Current ratio Ou and Penman (1989)
depr Depreciation / PP&E Holthausen and Larcker (1992)
divi Dividend initiation Michaely, Thaler and Womack (1995)
divo Dividend omission Michaely, Thaler and Womack (1995)
dolvol Dollar trading volume Chordia, Subrahmanyam and Anshuman (2001)
dy Dividend to price Litzenberger and Ramaswamy (1982)
egr Growth in common shareholder equity Richardson, Sloan, Soliman and Tuna (2005)
ep Earnings to price Basu (1977)
gma Gross profitability Novy-Marx (2013)
herf Industry sales concentration Hou and Robinson (2006)
hire Employee growth rate Bazdresch, Belo and Lin (2014)
idiovol Idiosyncratic return volatility Ali, Hwang and Trombley (2003)
ill Illiquidity Amihud (2002)
indmom Industry momentum Moskowitz and Grinblatt (1999)
invest Capital expenditures and inventory Chen and Zhang (2010)
lev Leverage Bhandari (1988)
lgr Growth in long-term debt Richardson, Sloan, Soliman and Tuna (2005)
maxret Maximum daily return Bali, Cakici and Whitelaw (2011)
mom12m 12-month momentum Jegadeesh (1990)
mom1m 1-month momentum Jegadeesh and Titman (1993)
mom36m 36-month momentum Jegadeesh and Titman (1993)
mom6m 6-month momentum Jegadeesh and Titman (1993)
mvel1 Size Banz (1981)
mve ia Industry-adjusted size Asness, Porter and Stevens (2000)
operprof Operating profitability Fama and French (2015)
pchcapx ia Industry adjusted % change in capital expenditures Abarbanell and Bushee (1998)
pchcurrat % change in current ratio Ou and Penman (1989)
pchdepr % change in depreciation Holthausen and Larcker (1992)
pchgm pchsale % change in gross margin - % change in sales Abarbanell and Bushee (1998)
pchquick % change in quick ratio Ou and Penman (1989)
pchsale pchrect % change in sales - % change in A/R Abarbanell and Bushee (1998)
pctacc Percent accruals Hafzalla, Lundholm and Van Winkle (2011)
pricedelay Price delay Hou and Moskowitz (2005)
ps Financial statements score Piotroski (2000)
quick Quick ratio Ou and Penman (1989)
rd R&D increase Eberhart, Maxwell and Siddique (2004)
retvol Return volatility Ang, Hodrick, Xing and Zhang (2006)
roic Return on invested capital Brown and Rowe (2007)
salecash Sales to cash Ou and Penman (1989)
salerec Sales to receivables Ou and Penman (1989)
sgr Sales growth Lakonishok, Shleifer and Vishny (1994)
sin Sin stocks Hong and Kacperczyk (2009)
sp Sales to price Barbee, Mukherji, and Raines (1996)
std dolvol Volatility of liquidity (dollar trading volume) Chordia, Subrahmanyam and Anshuman (2001)
std turn Volatility of liquidity (share turnover) Chordia, Subrahmanyam, andAnshuman (2001)
tang Debt capacity/firm tangibility Almeida and Campello (2007)
tb Tax income to book income Lev and Nissim (2004)
turn Share turnover Datar, Naik and Radcliffe (1998)
zerotrade Zero trading days Liu (2006)
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B Robustness Tests

Table B.1: Mean-Reversion strategies with additional controls

This table shows alphas (in percent) with respect to the Fama and French (2015) plus momentum plus short-term and long-term
reversal plus industry-momentum (Moskowitz and Grinblatt, 1999) for equal-weighted mean-reversion strategies for different
industrial classification schemes and different number of industries K. The corresponding t-statistic is reported on the right
next to each metric, with bold numbers for values above conventional significance levels. The adjusted R2 is reported in the
last column. Strategies are rebalanced at the end of June of each year between 1984 and 2019.

Alpha (%) t-stat Adj. R2

FF5 -0.02 -0.46 0.5

SIC9 -0.04 -0.89 0.46

FF10 -0.04 -1.32 0.55

GICS11 0.03 0.76 0.38

FF12 -0.04 -1.2 0.55

FF17 -0.01 -0.27 0.43

NAICS18 -0.05 -1.1 0.34

GICS24 0.01 0.45 0.4

FF30 -0.03 -0.67 0.38

FF48 -0.02 -0.6 0.41

Cluster5 0.39 4.27 0.38

Cluster9 0.41 4.68 0.37

Cluster10 0.4 4.83 0.32

Cluster11 0.46 5.86 0.33

Cluster12 0.49 5.52 0.39

Cluster17 0.48 6.18 0.41

Cluster18 0.49 6.42 0.41

Cluster24 0.4 5.06 0.46

Cluster30 0.43 5.4 0.49

Cluster48 0.45 6.39 0.53
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Table B.2: Sector Investing: WMR factor with additional controls

This table shows market prices of risk (in percent) estimated through FMB regressions (Fama and MacBeth, 1973) for the
five Fama and French (2015) plus momentum plus short-term and long-term reversal plus industry momentum (Moskowitz
and Grinblatt, 1999) plus WMR, the within-cluster mean-reversion portfolio, for different industrial classification schemes and
different number of industries K. The corresponding t-statistic is reported in brackets, with bold numbers for values above
conventional significance levels. The second-to-last column refers to the WMR factors built from the economic sectors on the
rows. The last column refers to the average adjusted R2 from the second step of the FMB regressions. WMR factors are
rebalanced at the end of June of each year between 1984 and 2019.

Mkt-RF SMB HML RMW CMA Mom STR LTR INDMOM Ind Adj. R2

FF5 0.54 (2.39) 0.41 (2.45) -0.02 (-0.1) -0.22 (-1.56) 0.01 (0.12) -0.06 (-0.24) 0.13 (0.69) 0.2 (1.47) 0.24 (1.08) 0.03 (0.54) 0.3

SIC9 0.53 (2.34) 0.4 (2.43) -0.02 (-0.09) -0.22 (-1.55) 0.01 (0.12) -0.08 (-0.29) 0.14 (0.71) 0.19 (1.46) 0.23 (1.04) 0.02 (0.36) 0.3

FF10 0.54 (2.37) 0.4 (2.42) -0.02 (-0.11) -0.23 (-1.57) 0.02 (0.16) -0.08 (-0.28) 0.13 (0.65) 0.19 (1.47) 0.24 (1.08) 0.05 (0.99) 0.3

GICS11 0.54 (2.37) 0.4 (2.39) -0.02 (-0.15) -0.22 (-1.53) 0.01 (0.1) -0.06 (-0.21) 0.1 (0.54) 0.18 (1.34) 0.25 (1.13) 0.05 (0.98) 0.3

FF12 0.54 (2.37) 0.41 (2.45) -0.02 (-0.11) -0.23 (-1.59) 0.02 (0.14) -0.08 (-0.3) 0.12 (0.64) 0.2 (1.49) 0.23 (1.06) 0.05 (1.05) 0.3

FF17 0.55 (2.41) 0.4 (2.41) -0.02 (-0.1) -0.22 (-1.56) 0.01 (0.1) -0.07 (-0.28) 0.12 (0.6) 0.19 (1.42) 0.24 (1.12) 0.08 (1.48) 0.3

NAICS18 0.54 (2.35) 0.42 (2.5) -0.03 (-0.17) -0.23 (-1.61) 0.02 (0.14) -0.06 (-0.24) 0.12 (0.64) 0.19 (1.45) 0.24 (1.1) 0.02 (0.38) 0.3

GICS24 0.53 (2.32) 0.41 (2.47) -0.03 (-0.18) -0.22 (-1.56) 0.01 (0.08) -0.08 (-0.29) 0.11 (0.56) 0.18 (1.37) 0.23 (1.08) 0.05 (1.1) 0.3

FF30 0.54 (2.37) 0.39 (2.37) -0.02 (-0.14) -0.21 (-1.45) 0.02 (0.14) -0.08 (-0.29) 0.11 (0.56) 0.18 (1.39) 0.22 (1) 0.07 (1.24) 0.3

FF48 0.54 (2.37) 0.4 (2.4) -0.03 (-0.19) -0.21 (-1.49) 0.01 (0.1) -0.07 (-0.25) 0.12 (0.65) 0.19 (1.43) 0.23 (1.05) 0.09 (1.51) 0.3

Cluster5 0.54 (2.34) 0.41 (2.46) -0.03 (-0.17) -0.21 (-1.5) 0.01 (0.06) -0.06 (-0.23) 0.11 (0.6) 0.19 (1.44) 0.22 (0.98) 0.26 (1.95) 0.3

Cluster9 0.55 (2.38) 0.41 (2.43) -0.03 (-0.21) -0.24 (-1.63) 0 (-0.02) -0.06 (-0.23) 0.12 (0.61) 0.17 (1.31) 0.25 (1.13) 0.3 (2.54) 0.3

Cluster10 0.54 (2.37) 0.41 (2.43) -0.03 (-0.21) -0.23 (-1.62) 0 (0) -0.06 (-0.23) 0.12 (0.62) 0.18 (1.36) 0.24 (1.1) 0.23 (2.03) 0.3

Cluster11 0.54 (2.35) 0.41 (2.46) -0.04 (-0.22) -0.23 (-1.6) 0 (-0.02) -0.05 (-0.2) 0.12 (0.65) 0.18 (1.31) 0.25 (1.11) 0.23 (2.19) 0.3

Cluster12 0.53 (2.32) 0.42 (2.48) -0.03 (-0.2) -0.22 (-1.57) 0 (0.04) -0.07 (-0.25) 0.12 (0.62) 0.19 (1.39) 0.24 (1.08) 0.29 (2.31) 0.3

Clusetr17 0.53 (2.32) 0.41 (2.42) -0.04 (-0.24) -0.22 (-1.49) 0.01 (0.06) -0.05 (-0.19) 0.12 (0.65) 0.18 (1.35) 0.23 (1.04) 0.28 (2.6) 0.3

Cluster18 0.54 (2.34) 0.4 (2.39) -0.04 (-0.22) -0.22 (-1.51) 0.01 (0.1) -0.05 (-0.18) 0.12 (0.62) 0.19 (1.41) 0.23 (1.02) 0.22 (2.03) 0.3

Cluster24 0.54 (2.37) 0.4 (2.39) -0.05 (-0.31) -0.23 (-1.59) 0 (0) -0.04 (-0.14) 0.12 (0.63) 0.17 (1.28) 0.25 (1.11) 0.31 (2.58) 0.3

Cluster30 0.54 (2.36) 0.41 (2.42) -0.05 (-0.29) -0.24 (-1.63) 0 (-0.01) -0.06 (-0.24) 0.13 (0.66) 0.18 (1.36) 0.23 (1.04) 0.29 (2.38) 0.3

Cluster48 0.53 (2.32) 0.39 (2.31) -0.03 (-0.17) -0.22 (-1.53) 0.02 (0.16) -0.04 (-0.15) 0.12 (0.63) 0.18 (1.36) 0.23 (1.06) 0.29 (2.56) 0.3
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Table B.3: Number of Firms per Sector (K-means): Descriptive Statistics

This table reports the distribution of the number of firms within each economic sector for different classification methods. For
clusters, K-means is used instead of bisecting K-means. Only “functional” sectors with N ≥ 5 firms are considered. The first
panel groups schemes that yields between 9 and 11 sectors; the second one between 17 and 18; the third refers to 24 sectors.
Ordinal numbers denote distribution percentiles. Data refer to the period July 1984 - June 2019.

SIC9 FF10 GICS11 Cluster10 FF17 NAICS18 Cluster18 GICS24 Cluster24

Mean 331 298 271 306 186 164 172 126 130

Std. 275 209 195 370 274 331 204 90 151

Skewness 1.48 0.73 0.81 1.66 3.1 3.76 1.80 1.01 1.90

Kurtosis 1.81 -0.74 -0.43 1.96 9.18 13.4 2.69 0.39 3.16

Min 7 28 21 5 22 5 5 5 5

1st 9 41 22 5 24 6 5 10 5

50th 248 237 196 161 103 76 93 104 69

99th 1180 784 740 1482 1383 1686 832 384 650

Max 1209 830 805 1670 1438 1832 991 404 807
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Table B.4: Within-sector Explained Variation (K-means)

This table reports the average within-sector R2 obtained by regressing the CAPM residuals of each firm i in cluster k on the
cluster portfolio k, for different K corresponding to each industry classification. K-means is used instead of bisecting K-means.
Data refer to the period July 1984 - June 2019.

K SIC NAICS FF GICS Clustering

5 - - 4.17% - 8.50%

9 5.98% - - - 10.09%

10 - - 8.51% - 10.73%

11 - - - 8.80% 10.70%

12 - - 8.00% - 10.57%

17 - - 9.98% - 10.60%

18 - 8.98% - - 10.87%

24 - - - 9.00% 10.55%

30 - - 9.88% - 10.75%

48 - - 11.20% - 11.84%
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Table B.5: Sector Investing (K-means): Out-of-sample SR

This table shows the OOS Sharpe Ratio of the maximum SR portfolio obtained using economic sectors as base assets for
different K corresponding to each industry classification. Portfolio weights are computed at the end of June of each yearand
the classification into clusters is kept fixed over the next 12 months. Data refer to the period July 1984 - June 2019.

K SIC NAICS FF GICS Clustering

5 - - 1.00 - 1.29

9 0.81 - - - 1.28

10 - - 0.73 - 1.39

11 - - - 0.84 1.39

12 - - 0.83 - 1.35

17 - - 1.74 - 1.21

18 - 0.98 - - 1.17

24 - - - 0.82 1.30

30 - - 0.59 - 1.08

48 - - 0.79 - 1.38
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Table B.6: Sector Investing (K-means): Mean-Reversion strategies

This table shows average excess returns (in percent), annualized Sharpe Ratios and alphas (in percent) with respect to the
Fama and French (2015) plus momentum (“FF6”) for equal-weighted mean-reversion strategies for clustering-based sectors
when K-means is used instead of bisecting K-means, for different number of industries K. The corresponding t-statistic is
reported on the right next to each metric, with bold numbers for values above conventional significance levels. The t-statistic
for the Sharpe Ratio is computed following Bailey and Lopez de Prado (2012). The last column refers to the FF6 model.
Strategies are rebalanced at the end of June of each year between 1984 and 2019.

Avg. Excess Ret. (%) t-stat Ann. SR t-stat Alpha (%) t-stat Adj. R2

Cluster5 0.26 2.58 0.44 2.65 0.21 2.46 0.37

Cluster9 0.48 4.33 0.74 4.73 0.47 4.95 0.34

Cluster10 0.49 4.11 0.7 5.06 0.51 5.09 0.36

Cluster11 0.41 4.44 0.76 4.59 0.39 4.88 0.31

Cluster12 0.39 3.85 0.66 4.1 0.38 4.47 0.37

Cluster17 0.38 3.7 0.63 4.1 0.34 4.02 0.4

Cluster18 0.4 4.55 0.78 4.7 0.39 4.8 0.23

Cluster24 0.37 4.24 0.73 4.61 0.39 4.93 0.28

Cluster30 0.43 4.82 0.83 5.17 0.45 5.83 0.32

Cluster48 0.42 4.63 0.79 5.06 0.41 5.43 0.39
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Table B.7: Sector Investing (K-means): WMR factor

This table shows market prices of risk (in percent) estimated through FMB regressions (Fama and MacBeth, 1973) for the
five Fama and French (2015) plus momentum plus WMR, the within-cluster mean-reversion portfolio, for different industrial
classification schemes and different number of industries K. Standard K-means is used instead of bisecting K-means. The
corresponding t-statistic is reported in brackets, with bold numbers for values above conventional significance levels. The
second-to-last column refers to the WMR factors built from the economic sectors on the rows. The last column refers to the
average adjusted R2 from the second step of the FMB regressions. WMR factors are rebalanced at the end of June of each year
between 1984 and 2019.

Mkt-RF SMB HML RMW CMA Mom WMR Adj. R2

Cluster5 0.54 (2.33) 0.42 (2.52) -0.07 (-0.4) -0.23 (-1.64) -0.02 (-0.15) -0.13 (-0.49) 0.16 (1.2) 0.25

Cluster9 0.52 (2.28) 0.41 (2.44) -0.07 (-0.42) -0.24 (-1.65) -0.02 (-0.14) -0.12 (-0.45) 0.33 (2.49) 0.25

Cluster10 0.54 (2.33) 0.4 (2.43) -0.07 (-0.4) -0.24 (-1.69) -0.01 (-0.08) -0.1 (-0.39) 0.34 (2.42) 0.25

Cluster11 0.53 (2.3) 0.42 (2.5) -0.07 (-0.39) -0.24 (-1.67) -0.02 (-0.16) -0.12 (-0.45) 0.27 (2.48) 0.25

Cluster12 0.53 (2.3) 0.42 (2.53) -0.06 (-0.38) -0.25 (-1.72) -0.02 (-0.16) -0.12 (-0.43) 0.29 (2.45) 0.25

Cluster17 0.52 (2.27) 0.42 (2.48) -0.06 (-0.38) -0.24 (-1.69) -0.01 (-0.07) -0.14 (-0.52) 0.33 (2.62) 0.25

Cluster18 0.53 (2.29) 0.41 (2.47) -0.05 (-0.33) -0.24 (-1.68) -0.01 (-0.09) -0.14 (-0.52) 0.25 (2.47) 0.25

Cluster24 0.52 (2.25) 0.42 (2.5) -0.05 (-0.33) -0.22 (-1.52) -0.01 (-0.11) -0.15 (-0.56) 0.2 (1.91) 0.25

Cluster30 0.53 (2.32) 0.41 (2.44) -0.07 (-0.41) -0.24 (-1.66) -0.02 (-0.15) -0.14 (-0.53) 0.31 (2.89) 0.25

Cluster48 0.52 (2.26) 0.42 (2.54) -0.05 (-0.3) -0.23 (-1.59) 0 (-0.01) -0.13 (-0.48) 0.23 (2.15) 0.25
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Table B.8: Sector Investing (K-means): WMR factor with additional controls

This table shows market prices of risk (in percent) estimated through FMB regressions (Fama and MacBeth, 1973) for the five
Fama and French (2015) model plus momentum plus short-term and long-term reversals plus industry momentum (Moskowitz
and Grinblatt, 1999) plus WMR, the within-cluster mean-reversion portfolio, for different industrial classification schemes and
different number of industries K. Standard K-means is used instead of bisecting K-means. The corresponding t-statistic is
reported in brackets, with bold numbers for values above conventional significance levels. The second-to-last column refers to
the WMR factors built from the economic sectors on the rows. The last column refers to the average adjusted R2 from the
second step of the FMB regressions. WMR factors are rebalanced at the end of June of each year between 1984 and 2019.

Mkt-RF SMB HML RMW CMA Mom STR LTR INDMOM WMR Adj. R2

Cluster5 0.55 (2.41) 0.39 (2.37) -0.04 (-0.26) -0.22 (-1.53) 0 (-0.03) -0.06 (-0.21) 0.11 (0.59) 0.18 (1.36) 0.23 (1.06) 0.14 (1.11) 0.3

Cluster9 0.54 (2.36) 0.4 (2.37) -0.04 (-0.23) -0.22 (-1.55) 0 (0) -0.04 (-0.17) 0.13 (0.65) 0.17 (1.3) 0.25 (1.14) 0.3 (2.38) 0.3

Cluster10 0.56 (2.45) 0.38 (2.3) -0.04 (-0.25) -0.22 (-1.56) 0 (0.02) -0.03 (-0.12) 0.12 (0.61) 0.17 (1.3) 0.25 (1.14) 0.3 (2.17) 0.3

Cluster11 0.55 (2.41) 0.39 (2.35) -0.04 (-0.24) -0.22 (-1.55) 0 (-0.04) -0.05 (-0.17) 0.11 (0.59) 0.17 (1.29) 0.25 (1.12) 0.23 (2.2) 0.3

Cluster12 0.55 (2.39) 0.4 (2.4) -0.04 (-0.21) -0.23 (-1.59) 0 (-0.04) -0.04 (-0.16) 0.12 (0.61) 0.18 (1.31) 0.25 (1.12) 0.28 (2.35) 0.3

Cluster17 0.55 (2.39) 0.39 (2.33) -0.03 (-0.21) -0.23 (-1.56) 0 (0.04) -0.07 (-0.26) 0.12 (0.62) 0.17 (1.28) 0.23 (1.03) 0.31 (2.56) 0.3

Cluster18 0.55 (2.4) 0.38 (2.28) -0.03 (-0.19) -0.22 (-1.51) 0 (0.03) -0.06 (-0.24) 0.12 (0.62) 0.17 (1.27) 0.24 (1.08) 0.25 (2.43) 0.3

Cluster24 0.53 (2.35) 0.41 (2.42) -0.03 (-0.2) -0.21 (-1.46) 0.01 (0.06) -0.07 (-0.25) 0.11 (0.59) 0.18 (1.37) 0.24 (1.07) 0.19 (1.93) 0.3

Cluster30 0.54 (2.38) 0.4 (2.41) -0.05 (-0.3) -0.24 (-1.64) 0 (-0.01) -0.06 (-0.21) 0.12 (0.63) 0.18 (1.39) 0.24 (1.09) 0.29 (2.72) 0.3

Cluster48 0.54 (2.35) 0.4 (2.42) -0.04 (-0.21) -0.21 (-1.49) 0.01 (0.08) -0.05 (-0.18) 0.12 (0.61) 0.18 (1.32) 0.25 (1.11) 0.22 (2.04) 0.3
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Figure B.1: Cluster Time-stability and Stability Index (K-means)
This figure shows the empirical density of the firm-level stability measure Si for i = 1, ..., N for
different number of clusters K. Standard K-means is used instead of bisecting K-means. The red
vertical bar denotes the cross-sectional mean, i.e. the stability index SI. The black bar refers to
any other classification systems (the density collapses onto the value 1). Data refer to the period
July 1984 - June 2019.
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Figure B.2: Cluster Time-Instability and Instability Index (K-means)
This figure shows the empirical density of the firm-level instability measure Gi for i = 1, ..., N for
different number of clusters K. Standard K-means is used instead of bisecting K-means. The red
vertical bar denotes the cross-sectional mean, i.e. the instability index II. The black bar refers to
any other classification systems (the density collapses onto the value 0). Data refer to the period
July 1984 - June 2019.
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Figure B.3: Feature Importance, K = 10 and K = 18
This figure shows the time-series average PAC-FSp for the twenty characteristics with the highest
values, in descending order, for different K corresponding to Cluster10 and Cluster 18, as report in
the titles above each panel. Standard K-means is used instead of bisecting K-means. Data refer
to the period July 1984 - June 2019.
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