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Abstract

In this study, we introduce a novel entity matching (EM) framework. It com-
bines state-of-the-art EM approaches based on Artificial Neural Networks (ANN)
with a new similarity encoding derived from matching techniques that are preva-
lent in finance and economics. Our framework is on-par or outperforms alternative
end-to-end frameworks in standard benchmark cases. Because similarity encod-
ing is constructed using (edit) distances instead of semantic similarities, it avoids
out-of-vocabulary problems when matching dirty data. We highlight this property
by applying an EM application to dirty financial firm-level data extracted from
historical archives.
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1. Introduction

Quantitative studies in finance and economics commonly rely on a multitude of data

sources. However, they often lack a common identifier and matching their records requires

a significant allocation of human and computational resources. In the age of big data, as

the scale of the used sources grows, matching becomes less feasible because the costs of

linking sources without common identifiers increase rapidly.

The recent literature on Entity Matching (EM) in finance, economic history, medi-

cal research, and computer science makes significant efforts in developing semi-automated
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frameworks that reduce the human-in-the-loop requirements and enhance access to EM-

driven research (Helgertz et al., 2022; P. Li et al., 2021; Abramitzky et al., 2020; López-

Cuadrado et al., 2020; Antoni & Schnell, 2019; González-Carrasco et al., 2019; Ebraheem

et al., 2018; Mudgal et al., 2018; Rodriguez-Lujan & Huerta, 2016). Nevertheless, these

frameworks are accompanied by high technical burdens, and their implementation re-

quires either fitting a comprehensive toolbox of Machine Learning (ML) models and

selecting the most accurate (e.g., López-Cuadrado et al., 2020; González-Carrasco et al.,

2019) or selecting among vocabularies and using word embeddings to fit an appropriate

language model (e.g., López-Cuadrado et al., 2020; Ebraheem et al., 2018).

We propose a modular EM recommendation framework based on Artificial Neu-

ral Networks (ANN) that, similarly to other state-of-the-art systems, aims to reduce

human-in-the-loop requirements while keeping the technical prerequisites within the set

of well-established methods used in finance and economics. Because ML methods are not

compatible with alphanumeric data, a common feature of the frameworks based on such

methods is the presence of an initial encoding step transforming text to numeric data.

Alternative frameworks calculate the similarity of two records by first embedding the

textual data of each record into two distinct vector representations and then calculating

the similarity of the vector representations. Instead, our approach bypasses the separate

embedding of records and introduces a similarity encoder that directly transforms a pair

of records to ML-compatible numeric data using distance concepts (e.g., Levenshtein,

Jaro-Winkler, Euclidean, etc.) that are ubiquitous in economic and finance on EM.

Our approach has the following advantages: (1) Similar to state-of-the-art models,

it reduces the need for human expertise on the content of the linked data sources. (2)

By avoiding word embeddings, it requires less technical expertise than other matching

frameworks. (3) The similarity encoder, without excluding the possibility, removes the

need to train a model using word-embedding layers that can be computationally costly.

(4) The similarity encoding calculations for each record pair are independent of each other

and can be parallelized. As a result, the approach we propose can be efficiently scaled

to multiple processing units and nodes to handle matching cases with a large number of

records. (5) Because similarity encoding gives similarity representations of records based

on (edit) distances, it is not susceptible to Out-of-Vocabulary problems that arise when

using word embeddings from multilingual and/or dirty data (e.g., data containing typos,

spelling mistakes, or extraction errors) (Piktus et al., 2019).

Besides using semi-automated frameworks, record matching via human computation

is prevalent in economics, finance, and, more generally, in social sciences (e.g., Bartram

et al., 2022; Wojcik et al., 2021; Persson, 2020). However, human computation is costly

and can even become unfeasible when working with large-scale, administrative, online

tracking, and other forms of big data. For such cases, human computation is only feasible

when the linking procedure can be crowd-sourced, which in turn requires (i) the absence
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of privacy restrictions that prevent disseminating the data to the public, and (ii) the

availability of either an established community willing to engage in the process or enough

financial resources to fund the record linking labor. These requirements can prevent

independent researchers and academic institutions with limited access to funding from

conducting research using linked big data, give competitive advantages to researchers and

institutions based on financial instead of academic merits, and hinder the democratization

of EM-related research (Ebraheem et al., 2018). Recent end-to-end frameworks provide

semi-automated recommendation systems using model and feature selections; blocking

and matching-threshold rules; and, more recently, ANNs aiming to reduce the allocation

of human resources to EM tasks (P. Li et al., 2021; Antoni & Schnell, 2019; Ebraheem et

al., 2018; Mudgal et al., 2018).

We demonstrate that our recommendation framework is on-par or outperforms

state-of-the-art end-to-end alternatives when detecting record matches with minimal hu-

man input. We benchmark the accuracy of our approach using three matching tasks

with publicly available data sets that are commonly used in evaluating EM frameworks.1

Although our framework is highly modular and can be used in combination with block-

ing layers, the few-shot learning property of the ANN underlying our framework allows

the benchmark results to be obtained within reasonable computation times (few hours)

without resorting to blocking rules (see also P. Li et al., 2021; Mudgal et al., 2018, for

other Deep Learning (DL) models with similar properties).

Finally, we present an application of our matching framework in a domain with

dirty firm-level financial data that we extracted from historical archives by using Op-

tical Character Recognition (OCR) software (Kamlah et al., 2022). The data repre-

sent German firms operating in the period from 1910 to 1919 with non-harmonized

and non-standardized attributes extracted from the “Handbuch der deutschen Aktienge-

sellschaften” (see also Gram et al., 2022). In a 5-fold cross-validation with 30% train

and 70% test random sample splits, our framework achieves an average 99.36 F-score in

the test sub-sample. Our results strongly indicate that record matching with similarity

encoding provides a lightweight alternative that gives high-accuracy recommendations

when linking dirty data.

The rest of the paper is organized as follows. Section 2 contains a summary of the

previous work on EM with particular emphasis on frameworks and applications in finance

and economics. In Section 3, we introduce the ANN architecture of our EM approach

and discusses similarity encoding from (i) a system design and (ii) a formal, and (iii) a

data transformation perspective. In Section 4, we discuss the modularity of similarity

encoding layers and the computational properties of our implementation. In Section 5, we

present the evaluation of our framework against several benchmark EM tasks found in the

1The benchmark tasks match entities between (i) Abt-Buy (E-commerce), (ii) Amazon-GoogleProducts
(E-commerce), and DBLP-ACM (bibliographic) data.

3

Electronic copy available at: https://ssrn.com/abstract=4541376



Entity Matching with Similarity Encoding· Karapanagiotis and Liebald (2023)

literature and compare it with the evaluations of alternative state-of-the-art frameworks.

Furthermore, the section presents the results of the application of our framework when

linking dirty financial historical data. Finally, Section 6 concludes.

2. Literature Review

2.1 Entity Matching Practices in Finance and Economics

EM (also referred to as record or entity linkage, and entity resolution) is the process

of linking records from distinct data sources. In this context, an entity can refer to a

multitude of objects, such as corporate organizations, individuals, municipal bodies as

well as digital entities, such as social media accounts or research articles.

EM is an important part of (quantitative) research in the fields of economics and fi-

nance. This importance is because – assuming the researchers combine different sources –

it is a necessary step in generating a study’s data foundation. The EM frameworks that

are dedicated to and designed from within the social sciences primarily focus on the

linking of individuals across historical sources. In particular, social scientists have fo-

cused on linking US census data and have developed automated EM systems. While the

early approaches used hardcoded matching rules introduced by Ferrie (1996) and Ferrie

(2005), the more recent literature has proposed linkage frameworks that rely on statistical

algorithms. These frameworks use expectation maximization (Abramitzky et al., 2020)

or supervised learning techniques. When using ML to find matching record pairs, the

proposed frameworks rely on logit (Helgertz et al., 2022) and probit (Feigenbaum, 2016)

regressions or gradient boosting (Price et al., 2021). Bailey et al. (2020), Abramitzky,

Boustan, Eriksson, et al. (2021) and Ghosh et al. (2023) evaluate these frameworks’ accu-

racy and find somewhat heterogeneous performances. Importantly, ML-based frameworks

making use of deep ANNs are still absent from this literature to the best of our knowledge.

Next, we discuss the EM approaches used in quantitative studies in economics and

finance in cases where a common identifier does not exist. Reviewing the literature indi-

cates the existence of three essential approaches. These include (i) human computation-

based EM (e.g., Florackis et al., 2023; Bartram et al., 2022; Persson, 2020), (ii) rule-based

approaches that refer to manually defined thresholds for record pair similarities, and (iii)

applications of the automated frameworks discussed in the previous paragraph (e.g., Bug-

gle et al., 2023; Abramitzky, Boustan, Jacome, & Perez, 2021).

To gain an impression about the relative distribution of these three approaches, we

investigated EM practices in articles published in two recent issues of The Journal of

Finance (Vol. 78, Issue 3) and The Quarterly Journal of Economics (Vol. 138, Issue 2).2

First, as illustrated by Table 4 in Appendix D, 11 of the 24 articles published in these two

2We select these two journals as a reference because they are the highest ranked outlets in their fields
according to Scimago.
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issues are based on EM tasks, highlighting the relevance of the topic. Second, only one

articles applies EM based on the statistical algorithms discussed above. The remaining

articles either use rule-based methods that rely on manually defined thresholds for record

pair similarities or perform human computation-based EM.

In summary, researchers in finance and economics implement EM in different ways.

However, EM based on ANN appears to be missing. This is surprising considering that

such DL-based approaches yield the best results (see Section 5) and represent the state-

of-the-art in computer science (see Section 2.2).

2.2 Entity Matching in Computer Science

From a computer science perspective, EM is crucial for information management and

analysis as well as knowledge integration and data mining. Although the research com-

munity had already acknowledged the importance of EM more than 75 years ago (e.g.,

Dunn, 1946), most of the development took place during the last two decades.

The methods proposed encompass rule-based (Singh et al., 2017; Fan et al., 2009;

Bilenko & Mooney, 2003; J. Wang et al., 2011)3 and crowdsourcing (Gokhale et al., 2014;

J. Wang et al., 2012) approaches. More recently, however, ML (Qian et al., 2017; Konda

et al., 2016; Bilenko & Mooney, 2003) and in particular DL-based methods have received

greater attention as they exhibit superior performances (see, for instance, Section 5).

The DL-based approaches primarily work on information provided by external word

embedding models. Differences stem from the type of embedding models used. On the one

hand, EM systems, such as Y. Li et al. (2020)’s Ditto, leverage pre-trained transfomer-

based language models (LM) that enable contextual word embeddings to account for

the different meanings of a given word. On the other hand, DeepER (Ebraheem et

al., 2018), DeepMatcher (Mudgal et al., 2018), and CorDEL (Z. Wang et al., 2020)

represent examples for EM systems that rely on embedding models that do not use

self-attention mechanisms. Commonly used word embedding models in this context are

fastText (Bojanowski et al., 2017) or GloVe (Pennington et al., 2014).4 Moreover, efforts

are being undertaken that aim to reduce the costs associated with generating sufficient

training data for DL-based methods, including active learning (Meduri et al., 2020; Kasai

et al., 2019; Qian et al., 2017), data augmentation (Y. Li et al., 2020), transfer learning

techniques (Jin et al., 2021; Zhao & He, 2019), or unsupervised ML approaches such as

AutoFJ (P. Li et al., 2021) and ZeroER (Wu et al., 2020).

A conventional EM pipeline typically consists of four steps (Ebraheem et al., 2018):

3Rule-based approaches used in finance and economics do not correspond to recent computer science
work related to rule-based EM. By contrast, while the default approach in finance and economics rests
on manually defined similarity thresholds, the computer sciences focus on the automatic generation of
such rules without human involvement (e.g., Singh et al., 2017).

4See Y. Li et al. (2020) for a more detailed literature review on DL-based EM approaches that include
a discussion of the field’s challenges and opportunities.
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(1) creating a labeled training dataset, consisting of true and false matching pairs, (2)

training a ML model or learning decision rules using (a subset) of the labeled dataset, (3)

blocking or other indexing techniques that aim at minimizing computational and memory

requirements by reducing the pool of candidate record pairs, and (4) making predictions

using the learned ML model and rules from (2).

3. Similarity Encoding

3.1 An Intuitive Description of the Framework

We want to match the records of two data sets, say Dl and Dr, that have some overlapping

information. The records of Dl and Dr have one (e.g., unstructured data) or more

(structured data) fields. A subset of the fields of Dl and Dr has values drawn from the

same information space.

For example, Dl and Dr are two structured data sets containing records of automo-

biles. The data set Dl has the fields model, producer, and origin, which take alphanumeric

values and a field sales with numeric values. The data set Dr has the fields name, firm,

and country with alphanumeric and engine with numeric values. Despite the differ-

ent naming conventions, the fields model and name contain non-harmonized automobile

model names, producer and firm have non-harmonized producing firm names, and origin

and country have the country of origin of the producing firm.

A straightforward manual attempt to find the records from Dl and Dr that belong

to the same entity involves pairing the associated fields by drawing values from the same

information space and examining how similar the information they represent is across all

records. The advantage of this approach is that it incorporates information coming from

multiple fields that humans can use to make their assessments. The humans consolidate

the isolated field similarities in an overarching record similarity evaluation. However, the

disadvantage of this manual approach is, however, that as Dl and Dr become larger, any

manual EM endeavor becomes costly and time inefficient.

The EM framework we introduce uses a collection of field and record ANNs to em-

ulate manual EM behavior. Figure 1 displays the architecture.5 The ANN architecture

imitates the previously described human matching process while being inexpensive and

far less time-consuming. An overarching record-matching network distributes similarity

data to separate small field networks. Each field network outputs a field prediction (prob-

ability) that indicates whether two values from a pair of Dl and Dr fields constitute a

match. Subsequently, the field predictions are concatenated and passed through the over-

arching record network. The record network consolidates the separate field predictions

and outputs the probability that a pair of Dl and Dr records represent the same entity.

5We postpone the discussion of the technical advantages of the introduced architecture for Section 4
and provide a high-level framework description in this section.
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Figure 1: Entity matching network architecture.

A crucial element that is missing from the discussion so far is how each field network

obtains the field similarity values. In most cases, the similarity of the values from the Dl

and Dr fields can be calculated in many distinct ways. For instance, the similarity of two

alphanumeric fields can be calculated via non-equivalent variations of the edit distance

such as the Levenshtein (Levenshtein, 1965) and Hamming (Hamming, 1950) metrics.

As an example, the Levenshtein and Hamming metrics with unit cost operations of the

values “Acme Corporation” and “Corporation Acme” are respectively equal to 10 and 11.

Furthermore, there are alternative approaches for assessing the similarity of two alphanu-

meric values that are not based on (mathematically) proper metrics. For example, one

can tokenize the two sentences of the last example, order the tokens, and then calculate

an edit distance between the transformed sentences.6 This distance calculation results in

comparing the transformed expressions “Acme Corporation” and “Acme Corporation”

which are identical. As a result, some concepts of similarity can be more appropriate

than others for certain pairs of field values.

When humans manually assess the similarity of two Dl and Dr fields, they are not

confined to using a single calculation method. Recognizing that “Acme Corporation” and

6This approach is commonly referred to as token sort ratio. Tokenization describes splitting a string
into parts (i.e., tokens) using a special character as the token delimiter (usually a space character).
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“Corporation Acme” are identical up to a reshuffling transformation is an approachable

realization for many humans examining the similarity of the two values. A human can

also quickly realize that the reshuffling technique is irrelevant when comparing the values

“Acme Germany” and “Acme Greece” and resort to alternative methods for assessing

the similarity of the fields. The component of the matching architecture in Figure 1

responsible for emulating the use of multiple distance concepts is the similarity encoder.

The similarity encoder receives as input a pair of records from Dl and Dr and

performs a collection of similarity calculations for each pair of associated fields. One

or more similarity calculation methods can be used for each pair of associated fields.

The architecture displayed in Figure 1 disentangles the encoding of input records to

similarity values from the evaluation of the probability of the input records’ entities

constituting a match. The field and record networks are responsible for assessing the

matching probability, while the similarity encoder is responsible for transforming the

input data to numerical values that can be used in statistical learning methods.

The advantage of the separation is that the user neither needs to specify blocking

rules and thresholds nor evaluate constraints regarding the appropriateness of individual

similarity calculations. Instead, the statistical learning method, in our case the field

and record networks, assume this evaluation. It suffices that the user provides high-level

instructions to the similarity encoder on which (i) fields to use from each data set, and (ii)

which similarity calculation methods are potentially relevant for each pair of associated

fields.

3.2 A Formalization of Similarity Encoding

Rozinek & Mareš (2021) provide an axiomatization of similarity spaces extending the

usual concepts used for metric spaces and show that similarity and metric spaces have

a duality relation based on negative monotonic transactions. We extend certain aspects

of their work providing new results that are relevant for EM with similarity encoding.

Intuitively, we show that whenever two or more fields of two data sets contain elements

from spaces that comply with a concept of distance, they can be encoded via similarity

functions to vector spaces, which are compatible with statistical learning methods.

A normalized similarity space is a pair (X, s) where X is a set and s : X×X → [0, 1]

is a symmetric function that satisfies s(x, y) = 1 ⇐⇒ x = y and s(x, z) + 1 ≥ s(x, y) +

s(y, z) for all x, y, z ∈ X. Our formalization is driven by Proposition 1.

Proposition 1 A set X is metrizable if and only if there is a normalized similarity s

making (X, s) a normalized similarity space.

The proof of Proposition 1 is given in Appendix A. The relevance of Proposition 1 is

better illustrated by focusing on examples that are commonly found in EM applications.
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1. Fields with numeric values: Any two numeric fields that can be embedded in the

real or complex number system admit normalized similarities. For example, fields

having integer values can be embedded in the real number system, and the function

s(x, y) = 1/ (|x− y|+ 1) can be used as a normalized similarity. In particular,

fields drawing values from normed vector spaces have normalized similarities. For

example, any `p space becomes a normalized similarity space when coupled with

the function s(x, y) = 1/ (‖x− y‖p + 1).

2. Fields with date or time values: The similarity of date and time fields can be

assessed in terms of time units (e.g., seconds, minutes, and hours) that have passed

since a fixed reference point. Practically, this is a special case of the previous

example. The most common date or time representation used in computing is

the UNIX time, measuring the number of seconds elapsed since midnight UTC of

January 1, 1970 (UNIX epoch). With this representation, the similarity between

two dates is reduced to the similarity of the numeric values of their UNIX times.

3. Fields with geographical coordinates: There are many ways with various de-

grees of accuracy for calculating distances on the earth’s surface (see, e.g., Stal et

al., 2022). Any reasonable distance d of two points on the surface of the earth is nat-

urally bound by half of the earth’s circumference. For applications with coordinates

confined within a particular geographical region the upper bound of the distance d is

M = maxx,y d(x, y) where x and y are picked from the coordinates belonging in this

region. A normalized similarity can then be obtained by s(x, y) = (M−d(x, y))/M .

4. Fields with alphanumeric values: Edit distances with unit operation costs and

invertible operations are metrics for a given alphabet over which the strings of the

two associated fields are formulated. Fisman et al. (2022) show that the normalized

edit distance (NED; Marzal & Vidal, 1993) with unit operation costs is a metric.

A normalized similarity can be obtained from NED by s(x, y) = 1− d(x, y).

Many functions used in practical applications to measure the similarity of the values

from two fields cannot be formally induced by a concept of distance. For example, the

Jaro-Winkler distance, which is a commonly used approach in measuring how similar

two strings are in record-matching applications (Adam et al., 2021; Cule et al., 2020),

does not satisfy the triangular inequality condition (Rozinek & Mareš, 2021, Definition

4, Property N2). In such cases, the theoretical guarantee of Proposition 1 and some

results of Fisman et al. (2022); Rozinek & Mareš (2021) are not applicable. Nonetheless,

functions such as the Jaro-Winkler distance have established their usefulness in practical

applications and, as long as the user tolerates not having the theoretical guarantees on

some occasions (see Section 5.2), non-proper similarity functions can be used with the

network architecture displayed in Figure 1.
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The remaining section focuses on the construction of similarity encoders from col-

lections of field similarities. Let X1, . . . , Xk be sets from which the values of the common

fields of the data corpora are drawn. Let also Xl,1, . . . , Xl,kl and Xr,1, . . . , Xr,kr be the po-

tentially distinct sets for the values of the remaining fields of the corpora to be matched.

Consider the product spaces

Ys =

(
k∏
i=1

Xi

)
×

(
ks∏
i=1

Xs,i

)
(s = l, r) ,

which we will refer to as left space (s = l) and right space (s = r). Let Dl ∈ Y nl
l be a

nl× (k+ kl) and Dr ∈ Y nr
r be a nr × (k+ kr) matrix. Note that the matrices Dl and Dr,

which represent the two data sets that we aim to link, can have different row numbers

(i.e. nl 6= nr).

Suppose that the rows of the matrices Dl and Dr are associated by some application-

specific logic, which can be described using field similarity functions over the common

spaces X1, . . . , Xk. Let mi be the number of similarity functions used for field Xi with

i = 1, . . . , k and m =
∑
mi be the total number of used similarity functions. In our frame-

work’s logic, these field similarity functions represent instructions on how two records of

Dl and Dr can be encoded into data compatible with statistical learning methods.

Each distinct set of instructions based on the field constituents of the records gives

rise to a distinct similarity encoder. For a fixed set of instructions

I =
(
s1

1, . . . , s
1
m1
, s2

1, . . . , s
2
m2
, . . . , sk1, . . . , s

k
mk

)
, (1)

where sij is the j-th field similarity applied to element i, we can define a vector-valued

function by bundling the similarities together; namely

cI :

(
k∏
i=1

Xi

)
×

(
k∏
i=1

Xi

)
→ [0, 1]m

:
(
xl, xr

)
7→
(
s1

1(xl1, x
r
1), . . . , s1

m1
(xl1, x

r
1), . . . , sk1(xlk, x

r
k), . . . , s

k
mk

(xlk, x
r
k))
)
,

(2)

where xsi denotes the i-th element of the input vector xs (for s = l, r). We refer to

functions defined as in Equation 2 as similarity encoders. For any given instruction

set, a similarity encoder describes how the two records of Dl and Dr are associated.

As noted earlier, there are typically multiple ways one can define associations be-

tween two data sets. For example, when matching two string fields both the Levenshtein

and the longest common subsequence (LCS) similarities can be used. Thus, the similarity

encoder defined by I is not unique, and some sets of instructions are more appropriate

for certain application domains than others. Therefore, a flexible EM recommendation

framework should allow switching between various instruction sets instead of attempting
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to provide a universal similarity encoder based on the (data) types of the associated fields.

To describe the mapping of instructions to similarity encoders, let N be the collec-

tion of all instructions with mi similarity functions for field i that can be defined when

matching the left and right spaces. A similarity map is a function that gives an encoder

for each instruction set; and it is defined as

S: N → ([0, 1]m)(
∏k

i=1Xi)×(
∏k

i=1Xi)

: N 3 I 7→ cI .
(3)

In the architecture displayed in Figure 1, the operation of Equation 3 is implemented

by the constructor of the similarity encoder (see also Section 4 and Appendix B for

implementation details).

The similarity map creates a vector-valued function for each collection of real-valued

functions passed to it. Because S is a special case of concatenation of scalar functions, it

satisfies the following proposition.

Proposition 2 With the product norm induced by the supremum norm used on its do-

main and the `1 norm on its range, the similarity map S is an isometry. In particular, S is

a restriction of a bounded and continuous operator with operator norm equal to 1. More-

over, S maps convex combinations of instructions to convex combinations of similarity

encoders.

The proof of Proposition 2 is in Appendix A. The isometry property of Proposition 2

indicates that the similarity operator maps the individual distances of the field spaces Xi

to similarity encoders that capture overarching distances between records. The arguments

of the proof of Proposition 2 depend only on the ranges of the similarity functions which

are [0, 1] by definition. Therefore, they can be replicated for functions such as Jaro-

Winkler that do not satisfy the definition of a similarity function (and hence Proposition

1). Nevertheless, the problem when attempting to expand the definition of S to include

such cases is that there is no unambiguous way established in the literature of which type

of functions should be considered as instructions. Thus, there is no established way to

define a replacement for N which makes the definition of S over non-proper similarity

functions ambiguous.

3.3 Similarity Encoding from a Data Transformation Perspective

A similarity encoder cI receives input data in the form of associated field pairs from two

data sets and outputs a similarity matrix. The field pairs of the input data can have

different data types (e.g., alphanumeric, numeric, date, etc.). All output columns have

numeric data types. Moreover, the number of columns in the output matrix can be greater

than the number of field pairs when the instructions used to construct cI contain more
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than one similarity function for any of the associated fields. The data transformation is

displayed in Figure 2.

Figure 2: Similarity encoding transformation.

The input data have three dimensions (left rectangular cuboid of Figure 2). The

rows represent a batch of record pairs obtained by combining rows from the left and

right data sets, the columns represent the associated fields, and the depth represents the

data source (left or right data set). The color filling of each column indicates the data

type of the associated fields. Columns 1, 2, and 5 have the same data type (red; say

alphanumeric), column 3 has a different data type (green; say date), and column 4 is of

numeric type (blue).

The output data have two dimensions (right rectangular cuboid of Figure 2). The

rows represent the batch of record pairs, and the columns represent the similarity values

calculated by cI . The output matrix has seven columns, two more compared to the

columns of the input data, implying that the encoder applies either three similarity

functions to one of the field pairs, or two similarity functions to two field pairs. All

columns of the output data have numeric values in the interval [0, 1]. The similarity

matrix produced by the encoder is used as input for the subsequent layers (field networks)

of the architecture displayed in Figure 1.

4. Implementation and Discussion

The two main challenges associated with EM boil down to computation time and memory

requirements. Completely matching the entities represented by the records of two data

corpora requires comparing all the pairs of the cross-product of the corpora. However,

the number of pairs grows quadratically with the number of observations of the left and

right data sets which makes the EM tasks computationally demanding even for small

data sets (Christen, 2012). For example, if nl = nr = 105 are the numbers of left and

right records respectively, there exist n = 1010 candidate record pairs. Even if no more

than one similarity function is used for only one pair of fields, this number of candidate
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pairs requires 40Gb of memory when storing single precision floating numbers (4 bytes).

4.1 Data- and Technical-expertise Requirements

Conventional end-to-end EM systems use blocking as a central component of their pipelines

to mitigate the matching challenges. Blocking reduces computational and memory re-

quirements by lowering the number of candidate record pairs based on application-specific

sets of exclusion constraints. In this respect, blocking techniques introduce a trade-off

between comparison completeness and computation time. In conventional systems, the

exclusion constraints are manually defined by humans which requires existing expertise

with the semantics, content, and accuracy of the data sources. In this respect, the trade-

off between comparison completeness and computation time translates into a trade-off

between data expertise and computation time.

However, data expertise is application specific and, due to the idiosyncrasies of en-

tity matching problems, not easily transferable between applications even if these fall into

the same data domain. Every matching problem requires finding appropriate blocking

criteria, and there is no guarantee, for example, that the criteria for matching person

entities between sources Dl and Dr are effective when matching person entities between

sources D′l and D′r. Furthermore, the efficiency of the conventional blocking approach

becomes more doubtful when the total cost of using all the resources, both human and

artificial, is considered. Gaining data expertise is a time and effort-intensive task for hu-

mans, and the exchange of machine computation time with human resources can hinder

certain applications.

Many state-of-the-art EM systems found in the literature propose statistical meth-

ods for selecting exclusion constraints that require involving less data-expertise at the cost

of using more technical-expertise. For example, inclusion and exclusion criteria can be

selected from the combinations of the fields using techniques such as Locality Sensitive

Hashing (LSH) (e.g., Ebraheem et al., 2018). Nonetheless, even blocking implementa-

tions based on statistical learning can lead to an unintended exclusion of actual entity

matches (e.g., due to statistical errors) that negatively affect the EM’s performance. This

risk can significantly increase if some data fields are dirty and the representation of the

corresponding entity characteristics is imperfect.

Our framework, similar to other state-of-the-art EM systems (P. Li et al., 2021;

Ebraheem et al., 2018; Mudgal et al., 2018), uses DL to reach matching recommendations.

Matching models based on DL have a few-shot learning property in the sense that the

models can learn how to detect record matches by using only a subset of the available

match and mismatch examples (see also Mudgal et al., 2018). This property greatly

reduces the number of record pairs required for model training and alleviates the need
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for blocking.7 For example, instead of using all n = nl×nr candidate record pairs, model

training can be based on nm match examples and only a subset of the remaining n− nm
mismatch examples. The default behavior in the implementation of our framework is

to use 10% of the mismatch examples during training. The results for the benchmark

evaluations and the application in Section 5 are obtained using the default 10% mismatch

share.

4.2 Semantic and Distance Matching with Dirty Data

While most of the finance and economics literature relies on numeric and string distances

to match data sources, many state-of-the-art systems outside these fields are based on

word embedding techniques. The standard techniques give vector representations of

words that capture semantic similarities, and EM systems use these semantic similari-

ties to provide matching recommendations when linking data sources. However, many big

data sources in finance and economics are multilingual and contain information from user

input, which can have spelling mistakes, or OCR-extracted text, which may have recogni-

tion errors. Such cases lead to Out-of-Vocabulary problems and hinder the applicability

of word embedding methods (Piktus et al., 2019).

A solution to the Out-of-Vocabulary problem is to increase the embedding space

so it can represent more, potentially misspelled or OCR miss-recognized words. On the

other hand, statistical learning using large vocabularies is computationally demanding.

Instead, distance matching is based on numeric and edit distances, does not require

establishing a vocabulary to calculate similarities, and is readily applicable for cases of

dirty data.

The similarity encoding implementation we propose can simultaneously account for

multiple similarity functions for a single pair of associated fields.8 Because a similarity

function’s applicability is context-specific (Abramitzky et al., 2020), this flexibility is

a central design feature of our framework. Every matching problem requires finding an

appropriate similarity function, and there is no guarantee that, for example, the similarity

function of choice for matching persons between sources Dl and Dr are effective when

matching persons between sources D′l and D′r. The DL networks displayed in Figure

1 give an evaluation of the statistical relevance of each similarity function in a given

application context.

7Nonetheless, blocking and few-shot learning are not mutually exclusive. The modular architecture
displayed in Figure 1 can be easily combined with other pre-processing/blocking layers preceding the
similarity encoding calculations that can further reduce the computational requirements.

8See Appendix B for the list of available pre-defined similarity functions with native implementations.
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4.3 Computation and Modularity

Besides using the few-shot property to reduce memory requirements, our approach follows

the previous literature and does not store the complete cross-product of the left and

right data sets in memory. Instead, we use a data generator which iterates over the

combinations of left and right data sets and feeds input pairs to the matching system

using indexing methods (see also Doll et al., 2021).

Concerning the computation time, the properties of similarity encoders and the

architecture displayed in Figure 1 allow our implementation to efficiently scale on modern

computation clusters with multiple processing units. The scalability of the architecture

stems from two points. First, the calculations of the similarity encoder are embarrassingly

parallelizable. All similarity calculations perform only read operations on the input data

and write operations in different memory locations of the output data. In terms of

the visualization of Figure 2, a similarity encoder only reads the data from the cells of

the left rectangular cuboid, while the output of each individual similarity calculation is

written to one and only one cell of the right cuboid. These characteristics minimize the

need for synchronization among multiple threads and processes to perform the encoding

calculations in parallel and allow the computations to be spread across multiple processing

units and computing nodes. Second, the calculations of matching predictions for the field

pairs of D′l and D′r are independent of each other that makes the architecture modular

across fields. Each field network uses only a slice of the input data with information

on a single field pair to arrive at its matching prediction. Thus, the intermediate field’s

matching predictions enclosed in the annotated rectangle P of Figure 1 can be performed

on different compute nodes and the results can be gathered at completion on the main

node responsible for the record matching predictions.

5. Performance Evaluation

5.1 Benchmarking

In this section, we compare our EM framework to alternative open-source state-of-the-art

EM systems using public benchmark datasets (Köpcke et al., 2010).9 For the remainder

of this section, we refer to our framework as MLMatch.

Hardware: We perform all calculations using a multi-socket system with AMD EPYC

7763 64-Core CPUs and 2 threats per core. The CPU speed is up to 2234.7 MHz and

the system’s total available memory amounts to 1.0Ti of RAM. The system uses two

NVIDIA A100-PCIE GPUs with 40960 MiB each.

9The datasets can be accessed with this link.
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Datasets: We test MLMatch in three different benchmarking matching tasks. The

associated data are publicly available and comprise three datasets for each matching

task: a left dataset, a right dataset and a two-column table representing the correct

matches. As illustrated in Table 1, for two of the benchmark tasks (Abt-Buy & Amazon-

GoogleProducts) the challenge is to correctly match (product-level) e-commerce data. In

the third task (DBLP-ACM ), the challenge is to link the bibliographic information from

various computer science conferences.

The matching tasks further refer to structured and, in some cases, dirty data with

the number of fields varying between three and four. Moreover, some fields do not have

missing values (see the first number in the parentheses), while others have some missing

values (indicated by the parentheses’ second digit). The matching tasks cover m:1 and

1:1 relationships between records from the left and right datasets (column Rel. in Table

1), which consist of up to 3.2 thousand entries.10

Table 1: Benchmark Data Summary Statistics

Left Right

Dataset Domain Fields #Records Fields #Records #Matches Rel. Dirty

DBLP-ACM Bibliographic 4 (4+0) 2,614 4 (4+0) 2,294 2,224 1:1
Abt-Buy E-commerce 3 (2+1) 1,081 4 (2+2) 1,092 1,097 m:1 X
Amazon-GoogleProducts E-commerce. 4 (2+2) 1,363 4 (3+1) 3,226 1,300 m:1 X

Note: All datasets are provided by Köpcke et al. (2010). The first (second) digit in the parentheses following the field
count indicates the number of fields without (with) missing information. The column Dirty indicates whether values of one
field are (incorrectly) stored in other fields (Mudgal et al., 2018). For instance, in a subset of the Buy dataset, a product’s
description includes the manufacturer ’s name although there is a separate field for this set of information.

Configuration: When calculating MLMatch’s benchmark performance statistics, we

use a largely uniform model calibration across all matching tasks. To enable compara-

bility, we thus set the batch size to 90 and assign the learning rate hyperparameter to

0.0001. Moreover, we always rely on the default network architecture throughout all set-

ups. Differences, on the other hand, exist concerning the number of training epochs (1000

for DBLP-ACM and 2000 for Abt-Buy & Amazon-GoogleProducts), and the training ratio

(0.15 for DBLP-ACM, 0.3 for Amazon-GoogleProducts and Abt-Buy). Additionally, we

use a custom discrete similarity function to handle missing values. The custom function

is used alongside the pre-defined ones, which higlights the flexibility of MLMatch’s us-

age.11 The custom function returns a value of one if the two input values are non-missing

and equal; and zero otherwise. The definition of a meaningful custom similarity function

does not require deep knowledge on the data corpora. Instead, rough eyeballing suffices

10In case of an m:1 relationship, there might exist multiple matches from the right dataset for one
observation of left, and vice versa.

11See Appendix 3 - 5 for the specification of the similarity map in each matching task.
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in most cases, and – importantly – the inclusion of custom functions only has a small

effect on the F1-scores in the three EM tasks.

Evaluation: To ensure the reliability of MLMatch’s stated performance, we apply

K-fold cross-validation with K = 5. The reported results correspond to the mean value

of the five iterations. Table 2 illustrates the MLMatch’s F1-scores in comparison to

the current state-of-the-art EM system. Concerning the DBLP-ACM matching task,

MLMatch performs well as opposed to other EM systems. It delivers the second highest

F1-score of 99.1 which is only 0.1 points below the best-performing system. With regards

to the more complicated matching tasks, MLMatch’s relative performance is convincing.

Our system outperforms its competitors in the Abt-Buy matching task with an F1-score

that is 12.9 points higher compared to CorDEL, the second-best-performing system.

However, the interpretation of this result should be approached with caution due to the

availability of only five benchmark cases. Moreover, when predicting matching entities

in the Amazon-GoogleProducts case, MLMatch’s performance is superior to all but one

systems with a F1-score of 84.9.

In summary, MLMatch performs well on all the benchmark datasets we use. In

most cases, it outperforms alternative state-of-the-art EM systems.

Table 2: Benchmark Performance

F1-score

EM System Source

DBLP
-

ACM

Abt
-

Buy

Amazon
-

GoogleProducts

Magellan Mudgal et al. (2018) 98.4 43.6 49.1
DeepER Ebraheem et al. (2018) 96.0 - 98.6
DeepMatcher Mudgal et al. (2018) 98.4 62.8 69.3
Ditto P. Li et al. (2021) 99.0 - 75.6
AdaMEL-hyb Jin et al. (2021) 98.9 - 65.1
RuleSynth Singh et al. (2017) 92.6 - 63.8
CorDEL Z. Wang et al. (2020) 99.2 64.9 70.2
AutoFJ P. Li et al. (2021) 97.7 61.3 -
ZeroER Wu et al. (2020) 96.0 52.0 48.0
MLMatch 99.1 77.8 84.9

MLMatch Rank 2. 1. 2.

Note: This table illustrates the performance of current state-of-the-art EM systems in three different cases benchmarked
against MLMatch. The illustrated performance statistics refers to the F-Score, defined as 2× precision×recall

precision+recall
. The table

further provides information on the system’s authors. As the original paper that introduces Magellan (Konda et al.,
2016) includes no performance statistics, we use information provided by Mudgal et al. (2018). Moreover, the indicated
DeepMatcher statistics refer to the one of the four available DL models (SIF, RNN, Attention, and Hybrid) yielding the
highest F1-scores as shown by Mudgal et al. (2018). We use the strategy for Z. Wang et al. (2020) who offer statistics for
three different variations of CorDEL (Attention, Context Attention and and a simplified version named “Sum”). When
reporting F1-scores of their unsupervised system ZeroER, Wu et al. (2020) only provide rounded values, explaining why
the first decimal place is always zero. The “-” sign indicates that no performance statistics for the respective benchmark
dataset are available.
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5.2 A Use Case: OCR-Extracted Historical Firm-Level Data

In this section, we offer another use case. This use case refers to the matching of enti-

ties from repeated annual cross-sections of firm data extracted via OCR from historical

German yearbooks. Gram et al. (2022) describe the data extraction process, detail the

underlying relational data model, and provide summary statistics for a subset of the fields

extracted for the period 1920 - 1932. The database is implemented according to the FAIR

principles and will be made fully available the the public in the upcoming years.

We chose this set-up for the use case because (i) matching firms across sources is

common for scientific studies in economics and finance, and (ii) it represents a challenging

EM task. The task’s challenges stem from multiple factors introducing variation between

firms in the left (the cross-section in t = t) and the right datasets (the cross-section

from t = t + 1): First, the OCR is imperfect. Hence, any variable extraction procedure

that converts unstructured OCR-extracted text to structured formats leads to dirty data.

Second, type-setting conventions were time-inconsistent. For example, the firm’s address

might be included in its name in one year; however, it might be left out in another year.

A second example refers to inconsistent abbreviations. Third, the actual values of the

fields might change between the two years. For example, a firm might change its name,

move its headquarters to another location, or rephrase its purpose statement. In short,

the set-up represents an appropriate testing and evaluation case for MLMatch.12

To create the training data, we first randomly pick 500 firm entries from the data

source’s 15th volume, corresponding to the financial year of 1910/11. Afterward, we

manually identify these firms’ representation in the 16th volume. After excluding (i)

wrongly identified firms (i.e., an OCR text line that does not represent a firm that was

incorrectly predicted to be one), and (ii) firms that have no representation in the 16th

volume (e.g., due to bankruptcy), the labeled data consists of 367 entity pairs. The 10

selected fields for the EM task are relatively time-consistent across the volumes of the

original source. These fields include, for instance, the firms’ names as well as a range

of date fields (e.g., founding and registration dates).13 On the other hand, we do not

account for fields that tend to change frequently over time, such as a firm’s profit and

loss statements or balance sheets.

We perform the ANN’s training using the cross join of random samples representing

30% (110 entity pairs) of the labeled data. For string fields we feed six different similarity

functions per field to the network (Levenshtein, Jaro-Winkler distances, and partial, token

sort, token set, and partial token set ratios). Concerning date-related fields we rely on one

(binary) discrete similarity function. This is because the representations of two different

dates might have high string similarities even if they refer to different points in time (see

12See Adam et al. (2021); Cule et al. (2020); Karapanagiotis (2019); Poukens (2018) for a more detailed
explanation of the requirements and pitfalls related to firm data extraction using OCR technologies.

13The keys in the similarity map included in Listing 6 represent the labels of all 10 fields.
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the discussion in Section 3.2).

We then perform the evaluation of the trained classifier on the the cross join of

70% (257 entity pairs) of the labeled data, as indicated by the Columns 3 and 4 in Table

3. When evaluating the matching performances delivered by MLMatch, we follow the

K-fold cross-validation approach with K = 5. Thus, each row in Table 3 corresponds

to one iteration (Column 1). In all of the five iterations, we set the batch size to 90,

training ratio to 0.3, and the learning rate to 0.01. Moreover, in each of the iterations

we train the models on 1,000 epochs.

As illustrated by Columns 5 to 12, MLMatch’s performance is strong. The number

of false positive predictions range between zero and four, and the count of false negative

matches varies between zero and five across the five iterations. These numbers correspond

to accuracy scores of no less than 99.9 and F-scores always above or equal to 99.

Table 3: Benchmark Performance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Iteration
Data
Set

#Test
Matches

Test
Fraction

TP FP TN FN Accuracy Precision Recall F-Score

1 Test 257 0.7 256 0 6430 2 100 100 99,2 99,6
2 Test 257 0.7 253 0 6430 5 99,9 100 98,1 99,0
3 Test 257 0.7 256 2 6428 2 99,9 99,2 99,2 99,2
4 Test 257 0.7 257 0 6430 1 100 100 99,6 99,8
5 Test 257 0.7 258 4 6426 0 99,9 98,5 100 99,2

Note: This table illustrates MLMatch’s performance when matching repeated cross-sections of firm data extracted via
OCR from historical German yearbooks. Column 1 indicates the K-fold cross-validation iteration. Column 3 shows the
number of matching record pairs constituting the test sample’s foundation. Column 4 shows the test fractions which equals
1 − training fraction. Columns 5 to 8 show the number of true positive, false positive, true negative, and false negative
predicted matching pairs, respectively. Columns 9 to 12 highlight the resulting performance metrics, including accuracy
(= TP+TN

TP+TN+FP+FN
), precision (= TP

TP+FP
), recall (= TP

TP+FN
), and the F-Score (= 2× precision×recall

precision+recall
).

6. Conclusion

We contribute to the literature on semi-automated EM frameworks that aim to reduce the

human-in-the-loop requirements when linking data sources. In doing so, we combine and

extent recent developments in economics, finance, and computer science EM literature.

In particular, we propose and implement a modular EM recommendation frame-

work based on ANNs, the state-of-the-art approach in computer science, and similarity

encoding, following the best practices from linking data in finance and economics. Our

recommendation framework can be applied in various domains.

Compared to alternative state-of-the-art EM systems, our framework proves ben-

eficial for five reasons. First, it reduces the requirements for human expertise on the

content of the linked data sources. Second, using a similarity encoder enables training
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ANNs without relying on word embedding, which tend to have greater technical expertise

requirements. Third, not relying on word embeddings can, at the same time, reduce the

computational complexity associated with training embedding-based ANNs. Fourth, due

to the properties of similarity encoders, the encoding calculations can be easily paral-

lelized, and our approach can be scaled up using multiple computing nodes. Fifth, the

similarity encoder is not subject to the Out-of-Vocabulary issues that word-embedding-

based EM systems face when used with dirty or multilingual data.

Morever, we use three benchmark cases to demonstrate that our approach is on-

par and, in most cases, outperforms the majority of alternative state-of-the-art systems.

When matching product-level e-commerce records in the Abt-Buy EM task, it exhibits an

F1-score of 77.8, which is 12.9 points higher compared to the second-best-performing sys-

tem. In the other two benchmark cases (DBLP-ACM and Amazon-GoogleProduct), our

approach yields the second highest F1-scores (99.1 and 84.9, respectively) when compared

to nine alternative systems.

Our similarity encoding matching framework likewise performs well in tasks that

are more common for research in economics and finance. We use dirty firm-level data

extracted via OCR from historical sources to illustrate our framwork’s relevance in these

fields. Our framework achieves an average F1-score of 99.36 when conducting 5-fold

cross-validation in this set-up.
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Linkage Center (GRLC). Jahrbücher für Nationalökonomie und Statistik , 239 (2), 319–
331. doi: 10.1515/jbnst-2017-1004

Bachmann, M. (2021, October). Maxbachmann/RapidFuzz: Release 1.8.0. Zenodo. doi:
10.5281/zenodo.5584996

Bailey, M. J., Cole, C., Henderson, M., & Massey, C. (2020). How well do automated
linking methods perform? Lessons from US historical data. Journal of Economic
Literature, 58 (4), 997–1044.

20

Electronic copy available at: https://ssrn.com/abstract=4541376



Entity Matching with Similarity Encoding· Karapanagiotis and Liebald (2023)

Bartram, S. M., Hou, K., & Kim, S. (2022). Real effects of climate policy: Financial
constraints and spillovers. Journal of Financial Economics , 143 (2), 668–696.

Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate detection using learnable
string similarity measures. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 39–48).

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the association for computational linguistics , 5 ,
135–146.

Buggle, J., Mayer, T., Sakalli, S. O., & Thoenig, M. (2023, January). The refugee’s
dilemma: Evidence from jewish migration out of nazi germany*. The Quarterly Journal
of Economics , 138 (2), 1273–1345. doi: 10.1093/qje/qjad001

Chollet, F., & others. (2015). Keras. https://keras.io.

Christen, P. (2012). Data matching: Concepts and techniques for record linkage, entity
resolution, and duplicate detection. Springer Publishing Company, Incorporated.

Cule, B., buelens, F., poukens, J., annaert, J., & richer, J. (2020, December). EurHisFirm
M6.2: Data connecting case study. Zenodo. doi: 10.5281/zenodo.4309048

Doll, H., Gabor-Toth, E., & Schild, C.-J. (2021, May). Linking deutsche bundesbank
company data. Deutsche Bundesbank, Research Data and Service Centre.

Dunn, H. L. (1946). Record linkage. American Journal of Public Health and the Nations
Health, 36 (12), 1412–1416.

Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., & Tang, N. (2018). Dis-
tributed representations of tuples for entity resolution. Proceedings of the VLDB En-
dowment , 11 (11), 1454–1467.

Fan, W., Jia, X., Li, J., & Ma, S. (2009). Reasoning about record matching rules.
Proceedings of the VLDB Endowment , 2 (1), 407–418.

Feigenbaum, J. J. (2016). Automated census record linking: A ma-
chine learning approach (Working Paper). Massachusetts: Harvard Uni-
versity. (https://scholar.harvard.edu/jfeigenbaum/publications/automated-census-
record-linking)

Ferrie, J. P. (1996). A new sample of males linked from the public use microdata sample
of the 1850 U.S. federal census of population to the 1860 U.S. federal census manuscript
schedules. Historical Methods: A Journal of Quantitative and Interdisciplinary History ,
29 (4), 141–156. doi: 10.1080/01615440.1996.10112735

Ferrie, J. P. (2005). History lessons: The end of American exceptionalism? Mobility in
the United States since 1850. Journal of Economic Perspectives , 19 (3), 199–215.

Fisman, D., Grogin, J., Margalit, O., & Weiss, G. (2022). The normalized edit distance
with uniform operation costs is a metric. In H. Bannai & J. Holub (Eds.), 33rd annual
symposium on combinatorial pattern matching (CPM 2022) (Vol. 223, pp. 17:1–17:17).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/
LIPIcs.CPM.2022.17

Florackis, C., Louca, C., Michaely, R., & Weber, M. (2023). Cybersecurity risk. The
Review of Financial Studies , 36 (1), 351–407.

21

Electronic copy available at: https://ssrn.com/abstract=4541376



Entity Matching with Similarity Encoding· Karapanagiotis and Liebald (2023)

Ghosh, A., Hwang, S. I. M., & Squires, M. (2023). Links and legibility: Making sense
of historical US Census automated linking methods. Journal of Business & Economic
Statistics , 0 (0), 1–12.

Gokhale, C., Das, S., Doan, A., Naughton, J. F., Rampalli, N., Shavlik, J., & Zhu, X.
(2014). Corleone: Hands-off crowdsourcing for entity matching. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data (pp. 601–612).
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A. Proofs of section 3.2

A.1 Proof of proposition 1

Suppose that X is metrizable and let d be a metric on X. Without loss of generality,

we can assume that d takes values in [0, 1]. If this is not the case and d is not bounded,

we can define d̃(x, y) = d(x, y)/ (1 + d(x, y)). The function d̃ is a metric on X and has

values in [0, 1]. If, instead, d is bounded but takes values greater than one, we can define

d̃(x, y) = d(x, y)/ supx′,y′∈X d(x′, y′) and use d̃ instead of d. Define s(x, y) = 1−d(x, y) for

all x, y ∈ X. The function s is (i) symmetric and satisfies (ii) s(x, y) = 1 ⇐⇒ d(x, y) =

0 ⇐⇒ x = y and (iii)

s(x, y) + 1 = 2− d(x, y) ≥ 1− d(x, z) + 1− d(z, y) = s(x, z) + s(z, y).

For the reverse direction, suppose that s is a normalized similarity on X. Define

d(x, y) = 1 − s(x, y) for all x, y ∈ X. The function d is (i) symmetric, and satisfies (ii)

d(x, y) = 0 ⇐⇒ s(x, y) = 1 ⇐⇒ x = y and (iii)

d(x, y) = 1− s(x, y) ≤ 1− s(x, z) + 1− s(z, y) = d(x, z) + d(z, y).

A.2 Proof of proposition 2

The similarity map is not an operator because its domainN is not a vector space, since for

any real number λ > 1 and any normalized similarity function s, λs is not a normalized

similarity function. To prove the proposition’s claims, we define an operator acting on

sets of bounded functions as the similarity map acts on sets of similarity functions.

We use the following notation to facilitate the exposition. For a set A, and a normed

space B, we use B (A,B) to denote the set of bounded functions from A to B. If B = R,

we simply write B (A). For any natural number n, we use the notation An to denote the

n-Cartesian product A× A× . . .× A.
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Consider the vector space
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The restriction of the operator Ŝ on N gives the similarity map S defined by eq. (3).

By its definition, Ŝ is linear and for any f ∈ X , we have

‖Ŝf‖1 = ‖cf‖1 = ‖c(f11 ,...,f1m1
,...,fk1 ,...,f

k
mk

)‖1 =
k∑
i=1

mi∑
j=1

‖f ij‖∞ = ‖f‖X ,

which implies that Ŝ (i) is an isometry, (ii) is bounded, (iii) is continuous, and (iv) has

operator norm

‖Ŝ‖ = sup
‖f‖X=1

‖Ŝf‖1 = 1.

This also shows that the similarity map is an isometry.

Lastly, suppose that I1 and I2 are two sets of instructions in N and α ∈ [0, 1].

Convex combinations of normalized similarities are normalized similarities, thus Iα =

αI1 + (1− α)I2 is in N . By the linearity of Ŝ, we get

SIα = ŜIα = αSI1 + (1− α)SI2 = αcI1 + (1− α)cI2 ,

which shows that convex combinations of instructions are mapped to convex combinations

of encoders.

B. Implementation Details

The implementation of the similarity encoder is written in C++. Two bindings exist, mak-

ing the encoder’s functionality accessible in both Python (pymlmatch) and R (rmlmatch).

Both bindings use the Keras library (Chollet & others, 2015) for the EM ANNs. The
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similarity encoder and the two bindings are distributed under the Expat license. Listings

1 and 2 give workflow examples for training of a matching model in both the Python and

R libraries.

Listing 1: Python Binding Syntax

1 model = match.MatchingModel(similarity_map)

2

3 model.compile(

4 loss = "binary_crossentropy",

5 optimizer = tensorflow.keras.optimizers.Adam(

6 learning_rate = 1e-3),

7 metrics = [

8 tensorflow.keras.metrics.TruePositives (),

9 tensorflow.keras.metrics.FalsePositives (),

10 tensorflow.keras.metrics.TrueNegatives (),

11 tensorflow.keras.metrics.FalseNegatives ()])

12

13 model.fit(

14 left_train ,

15 right_train ,

16 matches_train ,

17 epochs = 2000,

18 batch_size = 312,

19 mismatch_share = 0.2,

20 shuffle = True)

21

22 train_eval = model.evaluate(

23 left_test , right_test , matches_test)

24

25 predictions = model.predict(

26 left , left)

27

28 suggestions = model.suggest(

29 left , left , count = 3)

Listing 2: R Binding Syntax

1 model <- matching_model(similarity_map)

2

3 model |> compile(

4 loss = keras::loss_binary_crossentropy (),

5 optimizer = keras :: optimizer_adam(

6 learning_rate = 1e-3),

7 metrics = list(

8 keras:: metric_true_positives(),

9 keras:: metric_false_positives(),

10 keras:: metric_true_negatives(),

11 keras:: metric_false_negatives ()))

12

13 model |> fit(

14 left_train ,

15 right_train ,

16 matches_train ,

17 epochs = 2000L,

18 batch_size = 312L,

19 mismatch_share = 0.2,

20 shuffle = TRUE)

21

22 model |>

23 evaluate(left_test , right_test , matches_test)

24

25 predictions <- model |>

26 predict(left , right)

27

28 suggestions <- model |>

29 suggest(left , right , count = 3)

Initialization and Compilation: The initialization of a matching model requires a

similarity map that defines

1. the fields supposed to be used from the left and right data sets,

2. the way they relate to one another, and

3. which similarity functions are to be considered (i.e., how to encode the data).

Both the Python and R libraries offer a set of commonly used pre-defined similar-

ity and ratio functions with native implementations. These are the discrete, euclidean,

gaussian, levenshtein, jaro, and jaro winkel distances, and the partial, token sort,

partial token sort, token set, and partial token set ratios. The discrete simi-

larity can be used with fields of any type, while the gaussian and euclidean distances

work only with numerical data. The remaining functions can be applied to string fields.

The string similarity and ratio calculations use the RapidFuzz C++ library (Bachmann,

2021). Aside from the pre-defined functions, both pymlmatch and rmlmatch allow the

caller to use custom similarity functions.

Multiple similarity functions can be used for each association of fields. Moreover,

in the case where the associated fields from the left and right data sets do not share
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a common name, they can be added to the similarity map using the ∼ operator (i.e.,

left name∼right name). If the associated fields have the same name, it suffices to only

pass the name once.14

A matching model object spans by default an ANN with n Field Networks and one

subsequent, overarching Record Network, where n equals the number of fields included

in the similarity map (see Figure 1 in the main body of the text for a visualization of

the architecture). If not specified differently, each Field Network has four hidden dense

layers. The unit counts of these dense layers equal the maximum of i) the number of

similarity functions used for the respective field multiplied by 15/d, where d is the depth

position of the layer. Thus, assuming the number of similarity functions is sufficiently

large, the unit counts reduce toward the end of the Field Networks. The layers use a

rectified linear unit (relu) activation function. The Field Networks ’s output layer is a

single unit classifying dense layer. The Record Network is built using similar logic and

has the same similar values for the network’s width and depth.

The matching model class is derived from the Keras library’s model classes (Chollet

& others, 2015). Objects of the matching model class need to be compiled before their

use. The matching model class’s compile method wraps the Keras model class’s compile

method. The options and the keyword arguments of Keras’s compile can be used with

matching model’s compile.

Fit and Evaluation: Fitting a matching model object is performed using the fit

function. The fit function extends the Keras’s functionality to adapt it to EM require-

ments. Model training requires three data sets: (i) & (ii) the left and right data with the

training records from the data sources to be linked, and (iii) the matches data, which is

a two-column data set with the indices of matching records of training data. Additional

keyword arguments such as the number of training epochs or the learning rate can be

set using the standard Keras keyword arguments. The mismatch training examples are

automatically calculated by pairing the indices of left and right that are not recorded

in the matches data. Because the total number of candidate entity pairs grows quadrat-

ically while the number of actual matching pairs only grows linearly with the number of

observations left and right (Christen, 2012), the inclusion of all mismatches can lead

to unbalanced training data. This inclusion can potentially lead to biased model fits with

good accuracy but bad precision, recall, and F1-score metrics. The keyword argument

mismatch share can be used to restrict the number of used mismatches during training.

The performance of a matching model fit can be assessed via the evaluate func-

tion which overrides the corresponding Keras function. Calling evaluate requires left,

right, and matches evaluation data. The model is evaluated over all the potential entity

14Listings 3 - 5 provide examples of similarity map specifications. The illustrated examples corre-
spond to the benchmark performance evaluation tasks in Section 5.
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pairs from the cross join between left and right, even if the mismatch share was set

to less than one during training.

Predictions and Suggestions: The fitted model can generate matching predictions

in two separate ways. First, via the predict function which returns a vector of matching

probabilities for all candidate record pairs from the cross join of left and right. Second,

via the suggest function, which for each record in left returns n matching recommenda-

tions from right that exhibit the highest matching probability. The number of returned

recommendations can be modified using the count keyword argument.

C. Listings

Listing 3: The Similarity Map Used for the DBLP-ACM Matching Task

1 similarity_map = {

2 "title": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

3 "authors": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

4 "venue": ["levenshtein", "jaro_winkler", "partial", discrete_capital_letters],

5 "year" : ["euclidean", "gaussian", discrete ]}

Listing 4: The Similarity Map Used for the Abt-Buy Matching Task

1 similarity_map = {

2 "description": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

3 "name": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set", discrete],

4 "description~name": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

5 "name~description": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

6 "price" : ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set", discrete],

7 "name~manufacturer" :: ["partial", "partial_token_set"],

8 "description~manufacturer" :: ["partial", "partial_token_set"]}

Listing 5: The Similarity Map Used for the Amazon-GoogleProducts Matching Task

1 similarity_map = {

2 "description": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

3 "title~name": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

4 "description~name": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

5 "title~description": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

6 "manufacturer": [

7 "levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set", discrete],

8 "price" : ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set",discrete ]}

Listing 6: The Similarity Map Used When Matching Historical Firms

1 similarity_map = {

2 "company_name": ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

3 "company_info_1" : ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

4 "company_info_2" : ["levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

5 "found_date": [discrete],

6 "found_year": [discrete],

7 "register_date": [discrete],

8 "register_year": [discrete],

9 "concession_date": [discrete],

10 "concession_year": [discrete],

11 "statue_change_date": [discrete],

12 "company_name~company_info_1": [

13 "levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

14 "company_name~company_info_2": [

15 "levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"],

16 "company_info_1~company_info_2": [

17 "levenshtein", "jaro_winkler", "partial", "token_sort", "token_set", "partial_token_set"]}
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D. EM Approaches Used in Recent Finance and Economics Articles

Table 4: EM in Recent High-Ranked Finance and Economics Publications

(1)
Journal

(2)
Author(s)

(3)
EM Task

(4)
Entity Type

(5)
Method

Journal of Finance Griffin et al. (2023) X Firms Rule-based
Journal of Finance Gathergood et al. (2023) X Financial Products Common ID
Journal of Finance Sautner et al. (2023) X Firms Rule-based
Journal of Finance Gormsen and Lazarus (2023) X Firms Common ID
Journal of Finance Hsu et al. (2023) X Firms Rule-based
Journal of Finance Cordell et al. (2023) X Financial Products Common ID
Quarterly Journal of Economics Moscona and Sastry (2023) X Crops Rule-based
Quarterly Journal of Economics Babina et al. (2023) X Persons Rule-based
Quarterly Journal of Economics Ganong and Noel (2022) X Financial Accounts -
Quarterly Journal of Economics Bai et al. (2022) X Persons Manual
Quarterly Journal of Economics Buggle et al. (2023) X Persons Probabilistic

Note: This table lists the scientific articles from two issues of The Journal of Finance (Vol. 78, Issue 3) and The Quarterly
Journal of Economics that use entity matching (EM). In total, the two reviewed issues have 24 articles. Of those, 11, or
46%, use EM. If different EM tasks are performed in an article, we list the method and entity type that correspond to
the task that appears to be the technically most challenging from a data management perspective. Column 5 illustrates
the applied methods. These are human computation-based manual EM, EM using an existing common identifier, and
rule-based approaches relying on pre-defined matching thresholds for one string similarity function. Only Buggle et al.
(2023) apply a technical more complex (probabilistic) matching approach, that likewise accounts for one similarity function.
With regards to Ganong and Noel (2022), the authors provide no information on the applied EM approach, indicated by
“-”.
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