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1 Introduction

At LHC energies, charmonium is mainly produced from gluon–gluon scatterings producing

cc pairs [1] which form a bound state. While the hard gluon–gluon scattering can be

described within perturbative Quantum Chromodynamics (QCD), the hadronisation of the

cc pair into charmonium is essentially non-perturbative and cannot be yet calculated from

the QCD Lagrangian. There are several phenomenological approaches for the description of

charmonium production: the Colour Evaporation Model (CEM) [2, 3], the Colour Singlet

Model (CSM) [4] and the Non-Relativistic QCD model (NRQCD) [5] which differ mainly

in the way the charmonium states are formed in the hadronisation process. In the CEM

model, the production rate of a given charmonium state is proportional to the production

cross section of cc pairs integrated between mcc and twice the mass of the lightest D-meson,

where mcc is twice the mass of the charm quark, or, according to a recent conjecture [6, 7],

the mass of the bound state itself. In the CSM model, the pre-resonant cc state is assumed

to be directly produced colourless and with the same quantum numbers as the final-state

charmonium. The NRQCD model includes all possible colour and quantum number states

for the pre-resonant cc pair, with each configuration having a probability to transform

into a given bound state, described by a set of universal long-distance matrix elements

determined from global fits to experimental data. Detailed reviews of the state-of-the-art

calculations for charmonium production can be found in refs. [8–10].

J/ψ production is a probe of the hot and dense medium created in ultrarelativistic

heavy-ion collisions [11, 12]. Moreover, it is also sensitive to nuclear effects not related to

the creation of deconfined matter, called cold-nuclear-matter effects, such as modification
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of the parton distribution functions [13, 14]. In order to gauge both the hot and cold

medium effects, precise knowledge of the J/ψ production rates in the absence of a nucleus

in the initial state is of paramount importance. The J/ψ measurement in pp collisions

constitutes a baseline for the quantification of nuclear effects in both nucleus–nucleus and

proton–nucleus collisions.

In this paper, results for the transverse momentum (pT) dependence of the inclusive

J/ψ production cross section at mid-rapidity (|y| < 0.9) in pp collisions at the centre-of-

mass energy
√
s = 5.02 TeV are presented. The inclusive cross section contains a prompt

contribution, which includes directly produced J/ψ as well as the feed-down from the

prompt decay of heavier charmonium states (mainly ψ(2S) and χc), and a non-prompt

contribution from the weak decay of beauty hadrons.

The J/ψ production is measured in the dielectron decay channel using the ALICE

central barrel detectors. The pT-differential cross section is measured for pT < 10 GeV/c

supplementing the existing mid-rapidity measurements at high pT by ATLAS [15] and

CMS [16] down to zero pT. Thus, ALICE can measure the pT-integrated inclusive J/ψ

production cross section, the mean transverse momentum 〈pT〉 and the second moment

of the transverse momentum 〈p2T〉. Similar measurements in pp collisions were performed

by ALICE at
√
s = 2.76 TeV [17] and at

√
s = 7 TeV [18] at mid- and forward rapidity

(2.5 < y < 4.0), and at
√
s = 5.02, 8 and 13 TeV at forward rapidity [19–21]. Prompt J/ψ

production cross sections were measured at
√
s = 7 TeV by ALICE [22] and LHCb [23] and

at
√
s = 8 and 13 TeV by LHCb [24, 25].

The paper is organised as follows: the ALICE apparatus and the data sample are

described in section 2, the data analysis is detailed in section 3 and the results are dis-

cussed in section 4 in comparison with other measurements and theoretical calculations.

Conclusions are given in section 5.

2 Apparatus and data sample

The central barrel of the ALICE detector [26, 27] allows the reconstruction of J/ψ in the

e+e− decay channel at mid-rapidity. The entire setup is placed in a solenoidal magnetic

field of B = 0.5 T oriented along the beam direction.

In this analysis, the Inner Tracking System (ITS) [28] and the Time Projection Cham-

ber (TPC) [29] are used for tracking whereas the TPC provides the electron identification.

The ITS is subdivided into six cylindrically-shaped layers of silicon detectors around the

beam pipe with radii from 3.9 to 43.0 cm. The two innermost layers form the high granu-

larity Silicon Pixel Detector (SPD), the two intermediate layers the Silicon Drift Detector

(SDD), and the outermost layers the Silicon Strip Detector (SSD). The ITS provides pre-

cise tracking close to the interaction point and collision vertex position determination. The

TPC is a large drift detector with a cylindrical geometry which extends radially between

85 < r < 250 cm and longitudinally between −250 < z < 250 cm, where z = 0 and r = 0

correspond to the nominal interaction point. It is the main tracking device, with a full

azimuthal acceptance for tracks in the pseudorapidity range |η| < 0.9. Additionally, the
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TPC can be used for the particle identification of charged particles via the measurement

of the specific ionisation energy loss dE/dx in the TPC gas.

The minimum-bias (MB) trigger is provided by the V0 detector which consists of two

forward scintillator arrays [30] placed on both sides of the nominal interaction point at

z = −90 and +340 cm covering the η range −3.7 < η < −1.7 and 2.8 < η < 5.1. The

trigger signal consists of a coincident signal on both sides and is fully efficient in inelastic

collisions containing a J/ψ.

For this analysis, the data recorded by ALICE in the 2017 LHC pp run at a centre-

of-mass collision energy of
√
s = 5.02 TeV are used. A total of 987 million MB events are

used in this analysis corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nb−1.

The integrated luminosity is obtained following a procedure [31] which employs the Van

der Meer technique [32].

3 Analysis, corrections, and systematic uncertainties

3.1 Event and track selection

The J/ψ candidates are searched in the dielectron decay channel, with the electron tracks

being reconstructed in the ITS and the TPC. The events fulfill the MB trigger condition

and have the collision vertex within the longitudinal interval |zvtx| < 10 cm to ensure

uniform detector acceptance. Beam-gas events are rejected using offline timing cuts with

the V0 detector. The probability for collision pile-up was ≤1% during the entire data

taking period and these events are rejected using a vertex finding algorithm based on SPD

tracklets [27].

Electron candidates are required to have a minimum transverse momentum of 1 GeV/c

and a pseudorapidity in the range of |η| < 0.9. Due to the short decay time of the

J/ψ and its decay mothers, if any, the daughter electrons are reconstructed as primary

particles [33]. The candidate daughter tracks are required to have a maximum distance-

of-closest-approach to the reconstructed collision vertex of 0.2 cm in the radial direction

and 0.4 cm along the beam-axis direction. Monte Carlo (MC) simulations are used to

verify that this requirement does not reject electrons from the decays of non-prompt J/ψ.

Tracks which originate from long-lived weak decays of charged particles (e.g. π± → µ±ν

or K± → µ±ν) are rejected from the analysis. A hit in at least one of the two SPD layers

is required for both electron candidates to improve the tracking resolution and reduce the

number of electrons from photon conversions. Electron candidates are required to have

at least 70 out of a maximum of 159 attached clusters and the track fit χ2/Ndof < 2

in the TPC.

Electron candidates are selected such that their specific ionisation energy loss dE/dx

in the TPC lies within the interval [−2,+3] σe relative to the expectation for electrons

with same momentum as the candidate, where σe is the specific energy-loss resolution

for electrons in the TPC. Similarly, to further reject contamination, particles compatible

within 3σ with being a proton or a pion, according to the measured dE/dx, are rejected.

The dominant source of background electrons is photon conversions. Electrons from

conversions in the material at large radii (typically beyond the SPD layers) are removed
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using the requirement on the SPD hits described above. Electrons from conversions occur-

ing in the beam pipe or in the SPD material can pass the primary track selection criteria.

Therefore, further rejection of this background is done by employing a method which relies

on a second set of electrons selected with looser criteria. Electrons from the first (primary)

set are paired with those of the second set. For pairs with an invariant mass below the

threshold of 50 MeV/c2, the corresponding electron from the primary set is excluded from

further analysis. The looser selection criteria of the second set are optimised in a data

driven way such that the signal to background ratio is improved, but the loss of signal with

respect to not applying this procedure remains negligible.

3.2 Signal extraction

The J/ψ signal is extracted from the invariant mass distribution of all opposite-sign pairs

obtained by making all possible combinations with the electrons and positrons selected

with the criteria described above. Examples of invariant mass distributions of opposite-

sign (OS) electron pairs are shown in figure 1 for the pT-integrated case and for a few

selected pT intervals. These distributions contain contributions from the J/ψ signal and the

combinatorial and correlated backgrounds. For the combinatorial background, kinematic

correlations do not play a significant role and this component can be modelled using a mixed

event (ME) technique, while the correlated background in the J/ψ mass region originates

mainly from semi-leptonic decays of correlated open heavy-flavour hadrons [34]. The signal

component corresponds to the electron pairs from J/ψ decays and has an asymmetric shape

due to the radiative component and to the energy lost by the electrons in the detector

material via brehmsstrahlung.

In order to obtain the raw number of J/ψ counts, a two-step procedure is employed.

First, the combinatorial background is obtained using a ME technique and scaled such

that the invariant mass distribution of like-sign (LS) pairs from ME matches the same-

event LS distribution in the invariant mass range 1.2 < mee < 5.0 GeV/c2. Second, the

combinatorial background is subtracted and the remaining distribution is fit with a two-

component function, an exponential (or a second order polynomial) for the correlated

background and the MC template of the J/ψ signal shape. This strategy provides a good

fit quality for all the pT intervals, as indicated by the χ2/Ndof values shown in the panels

of figure 1. The number of J/ψ candidates is obtained by counting the bin entries in the

mass interval 2.92 < mee < 3.16 GeV/c2 after subtracting all background components.

The background-subtracted signal distribution is also fit with a Crystal Ball function [35]

and the pT-integrated dielectron mass resolution at the J/ψ peak region obtained from the

Gaussian core of the function is found to be 23 MeV/c2.

Alternative fit strategies for the same-event OS invariant mass distribution are consid-

ered. A first strategy is to make a template fit to the total OS invariant mass distribution,

where the ME LS background is used as the template for the combinatorial background

with the normalisation used as a free parameter, while the correlated background and sig-

nal components are defined similarly as for the standard method. A second alternative is

to fit the OS mass distribution with the MC template for the signal component, while for

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

0

200

400

6002
c

C
o

u
n

ts
 p

e
r 

4
0

 M
e

V
/ c > 0 GeV/

T
p

 = 1.00dofN/2χ

 42± = 1168 
ψJ/N

0

50

100

150

2
c

C
o

u
n

ts
 p

e
r 

4
0

 M
e

V
/ c <  2 GeV/

T
p 1 < 

 = 0.71dofN/2χ

 22± = 293 
ψJ/N

2.5 3 3.5
)2c (GeV/eem

0

20

40

60

2
c

C
o

u
n

ts
 p

e
r 

4
0

 M
e

V
/ c <  5 GeV/

T
p 4 < 

 = 0.86dofN/2χ

 12± = 115 
ψJ/N

 = 5.02 TeVsALICE pp 

-1
 0.4 nb± = 19.4 intL

|<0.9y, |−e+ e→ ψJ/

Signal

Correlated background

Combinatorial background

c <  3 GeV/
T

p 2 < 

 = 1.00dofN/2χ

 18± = 219 
ψJ/N

2.5 3 3.5
)2c (GeV/eem

c <  7 GeV/
T

p 5 < 

 = 1.13dofN/2χ

 12± = 118 
ψJ/N

Figure 1. (Colour online) Same-event opposite-sign dielectron invariant mass distributions for sev-

eral pT-intervals with signal (blue), correlated background (green), and combinatorial background

(red) components.

the sum of the combinatorial and correlated background an ad-hoc function is used (ratio

of small order polynomials). These alternative methods produce compatible results.

3.3 Corrections

In order to correct the observed J/ψ signal for detector effects and the selection procedure,

MC events are generated by adding a single J/ψ meson to a simulated MB pp collision.

PYTHIA 6.4 [36] is used to simulate the MB events and the non-prompt J/ψ component,

while the prompt component is produced uniformly distributed in rapidity with a pT spec-

trum based on a phenomenological interpolation of measurements at RHIC, CDF, and

the LHC [37]. The J/ψ decays, including the radiative component, are handled by PHO-
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TOS [38]. The transport through the ALICE detector material is handled by GEANT3 [39]

with tracks being reconstructed from the simulated hits using the same algorithm as for the

real data. The pT-integrated acceptance times efficiency 〈A× ε〉 is 9.9%, varying between

8.1% and 13% as a function of pT, and is the product of the acceptance factor, the re-

construction efficiency including the track quality cuts, the electron identification cuts and

the fraction of the signal within the mass counting interval of 2.92 < mee < 3.16 GeV/c2.

Due to the variation of 〈A × ε〉 with the J/ψ transverse momentum in the considered pT
intervals, the calculated correction factors have a mild dependence on the shape of the pT
distribution and the fraction of non-prompt J/ψ, fB, used in the simulation. In order to

correct for this effect, the corrected J/ψ cross-section, obtained initially using efficiencies

weighted with the J/ψ spectrum from simulations, is used to reweight the acceptance times

efficiency factor and obtain an updated cross section. This procedure can be iteratively

employed until the variation of the J/ψ cross section between two iterations is smaller

than a desired precision. Already after the first iteration, the inclusive J/ψ pT-integrated

cross section varied by less than 1%, while for the pT-differential cross section the changes

were even smaller, so the procedure is stopped after one iteration. Due to the fact that

in our analysis there is a 1–2% difference in acceptance times efficiency between prompt

and non-prompt J/ψ and that the fB value in simulation is larger with respect to existing

measurements at Tevatron [40] and LHC [22, 41, 42] energies, the acceptance times effi-

ciency factors are reweighted to account for these differences. The largest impact from this

correction is observed at high pT, where the difference between simulation and existing fB
measurements is largest, and shifts the cross section upwards by 0.3%.

The differential cross section in a rapidity interval ∆y and transverse momentum in-

terval ∆pT is calculated as

d2σJ/ψ

dydpT
=

NJ/ψ(∆y,∆pT)

BR(J/ψ → e+e−) · 〈A× ε〉(∆y,∆pT) ·∆y ·∆pT · Lint
, (3.1)

where NJ/ψ is the number of reconstructed J/ψ candidates, BR(J/ψ → e+e−) is the branch-

ing ratio of the J/ψ mesons decaying into dielectrons [43], and Lint is the integrated lumi-

nosity of the data sample.

3.4 Systematic uncertainties

The sources of systematic uncertainties are related to the ITS-TPC tracking, electron

identification, signal extraction procedure, the J/ψ input kinematic distributions used in

the MC production, the integrated luminosity determination, and the branching ratio of

the dielectron decay channel. A summary of all the systematic uncertainties is provided in

table 1.

The dominant source of systematic uncertainty is related to the ITS-TPC tracking and

has two components, one related to the ITS-TPC matching efficiency and the other to the

track quality requirements. The component due to the ITS-TPC matching efficiency is the

largest and is determined by comparing the probability to match the TPC tracks to hits

in the ITS in both data and simulation [44].
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Source pT (GeV/c)

pT > 0 0−1 1−2 2−3 3−4 4−5 5−7 7−10

Tracking 5.3 4.8 5.1 5.4 5.5 5.2 5.6 5.7

PID 0.43 0.21 0.42 0.17 0.04 0.40 1.1 2.5

Signal shape 1.9 1.8 1.8 1.8 1.8 1.8 2.9 2.9

Background fit 0.21 1.0 0.30 0.36 0.18 0.27 0.21 0.21

MC input 1.4 0.24 0.35 0.10 0.15 0.11 0.15 0.69

Luminosity 2.1

Branching ratio 0.53

Total uncorrelated syst. 0.21 1.0 0.30 0.36 0.18 0.27 0.21 0.21

Total correlated syst. 5.8 5.1 5.5 5.7 5.8 5.6 6.4 6.9

Global syst. 2.2

Total 6.2 5.6 5.9 6.1 6.2 6.1 6.8 7.3

Table 1. Summary of the contributions to the systematic uncertainty (in percentage) for the inclu-

sive pT-integrated cross section dσ/dy and in the different pT intervals. All sources of systematic

uncertainty are considered to be highly correlated over pT, except for the background fit which is

considered fully uncorrelated.

After propagation to the J/ψ candidate pairs, this uncertainty is found to vary between

4.3% at low pT up to 5.4% at high pT. The uncertainty due to the track quality require-

ments amounts to approximately 2% in all pT intervals and was obtained by varying the

selection criteria and computing the RMS of the cross-section distribution obtained after

these variations. This tracking uncertainty is considered to be correlated over pT.

The systematic uncertainty due to the electron identification is estimated by comparing

the response of the TPC electron identification of a clean sample of electrons from tagged

photon conversions in data to true electrons from the MC simulation. Half the difference

between the selection efficiency in data and simulation is taken as the systematic uncer-

tainty on the single electron PID efficiency and propagated to that on the J/ψ selection

using a toy MC simulating J/ψ decays in the dielectron channel.

The uncertainty due to the TPC PID ranges between 0.1% at intermediate and 2.5%

at high pT and is considered to be correlated over pT.

The uncertainty on the signal extraction procedure has contributions from the choice

of the J/ψ invariant mass shape and from the fit procedure used to describe the correlated

background. It is estimated by varying the mass interval used for the signal counting and

the mass range used for the fitting. The value of the uncertainty is determined as the

RMS of the distribution of cross sections obtained from the cases which give statistically

significant variations, similar to the procedure described by Barlow [45]. The uncertainty

on the J/ψ signal shape ranges between 1.8% in the low- and 2.9% in the high-pT intervals

and is treated to be correlated over pT. The uncertainty due to the background fitting is

1% in the lowest pT-interval and less than 0.5% otherwise. It is considered as uncorrelated.

The uncertainty from the J/ψ pT-distribution which is used to compute the corrections

is related to the precision of the fit to the measured J/ψ spectrum which is used in the
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Figure 2. Left: inclusive J/ψ cross section as a function of rapidity compared to the ALICE results

at forward rapidity [21] and to calculations from [49] to which a non-prompt component is added

as computed in [50]. Right: inclusive J/ψ cross section at mid-rapidity [17, 18, 40, 51, 52] as a

function of collision energy compared to the calculations from [49]. The data points from PHENIX

and STAR, both at
√
s = 0.2 TeV, are slightly shifted for improved visibility.

iterative procedure described in section 3.3. The fit parameters are varied randomly within

their allowed fit uncertainty taking into account their correlation matrix. The resulting

uncertainty amounts to 1.4% for the pT-integrated cross section and less than 1% in each

of the considered pT-intervals.

The systematic uncertainty on the integrated beam luminosity is described in detail

in ref. [31] and amounts to 2.1%. This uncertainty is taken as a global uncertainty for the

pT-integrated and the pT-differential cross sections.

The uncertainty on the branching ratio BR(J/ψ → e+e−) = (5.97 ± 0.03)% [43] is

treated as fully correlated between all bins.

4 Results

The inclusive J/ψ cross section in pp collisions at
√
s = 5.02 TeV measured at mid-rapidity

in the interval |y| < 0.9 is

dσJ/ψ/dy = 5.64± 0.22(stat.)± 0.33(syst.)± 0.12(lumi.) µb.

The systematic uncertainty contains all the sources described in section 3 added in quadra-

ture, assuming that the J/ψ is produced unpolarised. Although the existing measurements

in pp collisions at LHC energies indicate a null or only a small polarisation [46–48], there

are no polarisation measurements for J/ψ at low pT and mid-rapidity at LHC energies. In

order to estimate the impact on the measured inclusive J/ψ cross section, the acceptance

and efficiency factors are reweighted to take into account various polarisation scenarios.

In the extreme cases of a fully transverse (λ = +1) or a fully longitudinal (λ = −1) po-

larisation in the helicity frame, the pT-integrated cross section would increase by 15% or

decrease by 24%, respectively.
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In the left panel of figure 2, the inclusive pT-integrated cross section dσ/dy is compared

with the ALICE measurements at forward rapidity in the dimuon channel [21]. The sys-

tematic uncertainties are represented as boxes and the statistical uncertainties are shown

by vertical error bars. The reported J/ψ cross sections are inclusive and contain both the

prompt and non-prompt components. The rapidity-dependent cross section is compared

with results for prompt J/ψ from Leading Order (LO) NRQCD calculations coupled to

a Colour Glass Condensate (CGC) description of the gluon distributions in the proton

from Ma and Venugopalan [49]. This model includes a soft-gluon resummation which al-

lows the calculation of the J/ψ cross section down to zero pT. The Long Distance Matrix

Elements (LDME) used are obtained by fitting the prompt component of high-pT J/ψ

at Tevatron [53]. Feed-down from higher mass charmonia, ψ(2S) and χc, are considered.

The non-prompt component is calculated with Fixed-Order Next-to-Leading Logarithm

(FONLL) [50] from beauty quarks with a J/ψ in the final state. The prompt component

from ref. [49] and the non-prompt component from ref. [50] are then added together in

order to generate the inclusive J/ψ cross section shown in the left panel of figure 2. The

uncertainties of the prompt and non-prompt component are assumed to be uncorrelated

when calculating the error band of the sum. The non-prompt contribution to the inclusive

cross section is of the order of 10–20% in the considered low-pT regime. The relatively

large uncertainty band of the model is mainly due to variations of the charm-quark mass,

and the renormalisation and factorisation scales. Assuming that the rapidity dependence

in the calculation is not affected by the change of these scales, the rapidity dependence of

the J/ψ cross section is well reproduced in the model. The overall normalisation of the

calculation has very large uncertainties and these data represent a strong constrain to the

model assumptions.

The energy dependence of the J/ψ cross section in pp collisions at mid-rapidity is

shown in the right panel of figure 2. The results are compared with the PHENIX [51] and

STAR [52] measurements at
√
s = 0.2 TeV, the CDF measurement at

√
s = 1.96 TeV [40],

and previous ALICE measurements at
√
s = 2.76 [17] and 7 TeV [18], where statistical

and systematic uncertainties are added in quadrature. A steady increase, approximately

logarithmic in
√
s, of dσ/dy at mid-rapidity is observed. The data are compared with the

calculated prompt J/ψ cross section from ref. [49]. Since the non-prompt component is

known to be of the order of 10% of the inclusive cross section, the qualitative comparison

to the data is not affected. As in the case of the rapidity dependence discussed above, the

calculations are compatible with the logarithmic trend seen in the data, while the absolute

normalisation has large uncertainties.

In the left panel of figure 3, the pT-differential cross section d2σ/dpTdy is compared to

three calculations of the prompt J/ψ cross section: two NLO NRQCD calculations from Ma

et al. [54] and Butenschoen et al. [55], and the above-mentioned calculations usind leading

order NRQCD and CGC [49]. The non-prompt component obtained using FONLL [50]

is shown separately. In the right panel of figure 3, the non-prompt FONLL calculation is

added to each of the three prompt calculations and compared with results of the present

analysis. Within the model uncertainties, the NRQCD+CGC model provides a good de-
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Figure 3. pT-differential inclusive J/ψ cross section compared with prompt J/ψ calculations

from NLO NRQCD [54, 55] and LO NRQCD+CGC [49] and non-prompt J/ψ calculations from

FONLL [50]. The calculations for the prompt and non-prompt components are shown separately

in the left panel while in the right panel the FONLL calculation is added to the prompt J/ψ

calculations.

scription of the trend over the covered pT interval, with the lower part of the band being

favoured by the data. Although employing a very similar approach for the small distance

coefficients, the two NLO NRQCD calculations use quite different LDME values, extracted

by fitting charmonium cross-sections measured at Tevatron and HERA with different low

pT cut-offs. This limits the range of validity to pT > 3 and pT > 5 GeV/c for the cross

sections obtained in ref. [55] and ref. [54], respectively. In addition, the calculations from

ref. [55] predict a strong transversal J/ψ polarisation, which is in contradiction to the recent

ALICE measurement at forward rapidity in pp collisions at
√
s = 8 TeV [47] which favours

zero or a small amount of polarisation. The cross sections from ref. [55] do not include

feed-down contributions from higher mass charmonia. Both predictions are in agreement to

the data considering the uncertainties, however, the above mentioned differences in model

assumptions together with the large scale uncertainties prevent drawing firm conclusions.

There are recent alternative works, not at the presented energy, using an improved CEM

model [6, 7] or NRQCD in the kT-factorisation approach [56–58] that could further help

interpret our data.

In figure 4, the pT-differential cross section d2σ/dpTdy is compared with the high-pT
measurements from ATLAS [15] and CMS [16] at mid-rapidity and same collision energy.

It should be noted that the ATLAS and CMS measurements extend to higher pT but are

truncated to a region which is relevant for the comparison to ALICE. The ATLAS and

CMS measurements of the prompt and non-prompt contributions were summed in order

to obtain the inclusive cross section needed to compare with our measurement. Good

agreement is observed between the results in the overlapping pT region.

The energy dependence of the pT-differential J/ψ cross section can be studied by using

its moments, the average transverse momentum 〈pT〉 and the squared average transverse

momentum 〈p2T〉. In this analysis, the inclusive J/ψ 〈pT〉 and 〈p2T〉 are obtained by fitting
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Figure 4. pT-differential inclusive J/ψ cross section compared with ATLAS [15] and CMS [16]

results at mid-rapidity. Luminosity uncertainties are indicated in the legend, except in the case of

ATLAS for which these are included in the boxes.

the measured spectrum with a power law function of the form

f(pT) = C × pT{
1 + (pT/p0)

2
}n , (4.1)

where C, p0, and n are free fit parameters. In the interval pT < 10 GeV/c, the first two

moments of the fitted function are

〈pT〉 = 2.66± 0.06(stat.)± 0.01(syst.) GeV/c,

〈p2T〉 = 10.2± 0.5(stat.)± 0.1(syst.) GeV2/c2.

The systematic uncertainty is obtained by fitting the measured J/ψ spectrum only with

the systematic uncertainty of the pT-differential cross section. The statistical uncertainty

on the 〈pT〉 and 〈p2T〉 takes into account the correlation matrix of the parameters from the

fit procedure. A cross check of these results is performed considering a fit to the dielectron

〈pT〉 and 〈p2T〉 distribution as a function of the invariant mass. A polynomial fit function is

used to parameterise the background 〈pT〉 and 〈p2T〉 as a function of invariant mass, and the

signal-over-background ratio obtained from the signal extraction procedure as discussed in

section 3.2. The values obtained with this cross check are found to be compatible with the

ones obtained from the spectrum fit.

The energy dependences of the 〈pT〉 and 〈p2T〉 moments are shown in figure 5. A steady

increase with energy is observed for both 〈pT〉 and 〈p2T〉 over a wide collision energy range

which includes results from SPS [59], RHIC [51, 52], Tevatron [40], and LHC [18, 22].

Statistical and systematic uncertainties are added in quadrature. This behaviour is a

consequence of the opening of the phase space with increasing collision energy, i.e. for a

fixed Bjorken-x the momentum-exchange Q2 grows with increasing collision energy leading
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Figure 5. The 〈pT〉 (lower panel) and 〈p2T〉 (upper panel) of inclusive J/ψ at mid-rapidity as a

function of the collision energy. These results are compared to previous results from ALICE at

LHC [18, 22], Tevatron [40], RHIC [51, 52] and SPS [59].

to a hardening of the J/ψ pT spectrum. Also, the faster increase with energy of the bb cross

section compared to the cc cross section leads to a growth of the non-prompt J/ψ fraction,

which further hardens the J/ψ pT spectrum. In order to quantify the energy dependence

of the J/ψ 〈pT〉 and 〈p2T〉, we performed similar fits to those used in refs. [51, 60], where

linear or quadratic functions of the logarithm of the centre-of-mass collision energy were

used. These simple parameterisations describe the existing measurements over nearly three

orders of magnitude in collision energy, with values of the χ2/Ndof of 1.7 and 0.98 for the

J/ψ 〈pT〉 and 〈p2T〉, respectively.

5 Conclusions

The inclusive J/ψ production cross section in proton–proton collisions at
√
s = 5.02 TeV

in the rapidity range |y| < 0.9 is measured down to zero pT using the dielectron decay

channel. The measurement is performed using a minimum-bias data sample corresponding

to an integrated luminosity of Lint = 19.4 ± 0.4 nb−1 and yields a pT-integrated cross

section of dσ/dy = 5.64± 0.22(stat.)± 0.33(syst.)± 0.12(lumi.) µb.

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

Comparisons of the inclusive pT-integrated and pT-differential cross section of three

NRQCD calculations for prompt J/ψ summed with a non-prompt J/ψ component calcu-

lated with FONLL are compatible with the data if the large scale uncertainties are consid-

ered as uncorrelated over rapidity, collision energy or pT. A more refined approach, which

would consider correlations between model parameters will allow to differentiate between

the different theoretical approaches.

A good agreement to the complementary ATLAS and CMS measurements at the same

collision energy is observed in the overlapping pT interval. The energy dependence of

the 〈pT〉 and 〈p2T〉 indicate a hardening of the pT-differential cross section with increasing

collision energy. This is well described by a linear and squared logarithmic increase of 〈pT〉
and 〈p2T〉 with

√
s, respectively.
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[36] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[37] F. Bossu, Z.C. del Valle, A. de Falco, M. Gagliardi, S. Grigoryan and G. Martinez Garcia,

Phenomenological interpolation of the inclusive J/psi cross section to proton-proton collisions

at 2.76 TeV and 5.5 TeV, arXiv:1103.2394 [INSPIRE].

[38] P. Golonka and Z. Was, PHOTOS Monte Carlo: A Precision tool for QED corrections in Z

and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

[39] R. Brun et al., GEANT Detector Description and Simulation Tool, CERN-W5013,

CERN-W-5013, W5013, W-5013 (1994).

– 16 –

https://doi.org/10.1007/JHEP11(2012)065
https://arxiv.org/abs/1205.5880
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5880
https://doi.org/10.1007/JHEP02(2013)041
https://arxiv.org/abs/1212.1045
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1045
https://doi.org/10.1007/JHEP06(2013)064
https://arxiv.org/abs/1304.6977
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6977
https://doi.org/10.1007/JHEP10(2015)172
https://arxiv.org/abs/1509.00771
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00771
https://doi.org/10.1088/1748-0221/3/08/S08002
https://inspirehep.net/search?p=find+J+%22JINST,3,S08002%22
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://arxiv.org/abs/1402.4476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4476
https://doi.org/10.1088/1748-0221/5/03/P03003
https://arxiv.org/abs/1001.0502
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.0502
https://doi.org/10.1016/j.nima.2010.04.042
https://arxiv.org/abs/1001.1950
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.1950
https://doi.org/10.1088/1748-0221/8/10/P10016
https://arxiv.org/abs/1306.3130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3130
https://cds.cern.ch/record/2648933?ln=en
http://cds.cern.ch/record/296752
https://cds.cern.ch/record/2270008
https://doi.org/10.1007/JHEP09(2018)064
https://arxiv.org/abs/1805.04391
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04391
https://doi.org/10.1103/PhysRevD.34.711
https://doi.org/10.1103/PhysRevD.34.711
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D34,711%22
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
https://arxiv.org/abs/1103.2394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2394
https://doi.org/10.1140/epjc/s2005-02396-4
https://arxiv.org/abs/hep-ph/0506026
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0506026
https://cds.cern.ch/record/1082634
https://cds.cern.ch/record/1082634


J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

[40] CDF collaboration, Measurement of the J/ψ meson and b−hadron production cross sections

in pp̄ collisions at
√
s = 1960 GeV, Phys. Rev. D 71 (2005) 032001 [hep-ex/0412071]

[INSPIRE].

[41] CMS collaboration, Prompt and Non-Prompt J/ψ Production in pp Collisions at√
s = 7 TeV, Eur. Phys. J. C 71 (2011) 1575 [arXiv:1011.4193] [INSPIRE].

[42] ATLAS collaboration, Measurement of the differential cross-sections of prompt and

non-prompt production of J/ψ and ψ(2S) in pp collisions at
√
s = 7 and 8 TeV with the

ATLAS detector, Eur. Phys. J. C 76 (2016) 283 [arXiv:1512.03657] [INSPIRE].

[43] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018)

030001 [INSPIRE].

[44] ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions

at
√
s = 7 TeV, Eur. Phys. J. C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].

[45] R. Barlow, Systematic errors: Facts and fictions, in Advanced Statistical Techniques in

Particle Physics. Proceedings of Conference, Durham U.K. (2002), pg. 134 [hep-ex/0207026]

[INSPIRE].

[46] ALICE collaboration, J/ψ polarization in pp collisions at
√
s = 7 TeV, Phys. Rev. Lett. 108

(2012) 082001 [arXiv:1111.1630] [INSPIRE].

[47] ALICE collaboration, Measurement of the inclusive J/ψ polarization at forward rapidity in

pp collisions at
√
s = 8TeV, Eur. Phys. J. C 78 (2018) 562 [arXiv:1805.04374] [INSPIRE].

[48] LHCb collaboration, Measurement of J/ψ polarization in pp collisions at
√
s = 7 TeV, Eur.

Phys. J. C 73 (2013) 2631 [arXiv:1307.6379] [INSPIRE].

[49] Y.-Q. Ma and R. Venugopalan, Comprehensive Description of J/ψ Production in

Proton-Proton Collisions at Collider Energies, Phys. Rev. Lett. 113 (2014) 192301

[arXiv:1408.4075] [INSPIRE].

[50] M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical

predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137

[arXiv:1205.6344] [INSPIRE].

[51] PHENIX collaboration, Ground and excited charmonium state production in p+ p collisions

at
√
s = 200 GeV, Phys. Rev. D 85 (2012) 092004 [arXiv:1105.1966] [INSPIRE].

[52] STAR collaboration, J/ψ production cross section and its dependence on charged-particle

multiplicity in p+ p collisions at
√
s = 200 GeV, Phys. Lett. B 786 (2018) 87

[arXiv:1805.03745] [INSPIRE].

[53] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang and Y.-J. Zhang, J/ψ Polarization at Hadron

Colliders in Nonrelativistic QCD, Phys. Rev. Lett. 108 (2012) 242004 [arXiv:1201.2675]

[INSPIRE].

[54] Y.-Q. Ma, K. Wang and K.-T. Chao, J/ψ(ψ′) production at the Tevatron and LHC at

O(α4
sv

4) in nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 042002 [arXiv:1009.3655]

[INSPIRE].

[55] M. Butenschoen and B.A. Kniehl, Reconciling J/ψ production at HERA, RHIC, Tevatron

and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett. 106 (2011)

022003 [arXiv:1009.5662] [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevD.71.032001
https://arxiv.org/abs/hep-ex/0412071
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0412071
https://doi.org/10.1140/epjc/s10052-011-1575-8
https://arxiv.org/abs/1011.4193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4193
https://doi.org/10.1140/epjc/s10052-016-4050-8
https://arxiv.org/abs/1512.03657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03657
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D98,030001%22
https://doi.org/10.1140/epjc/s10052-017-5090-4
https://arxiv.org/abs/1702.00766
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00766
https://arxiv.org/abs/hep-ex/0207026
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0207026
https://doi.org/10.1103/PhysRevLett.108.082001
https://doi.org/10.1103/PhysRevLett.108.082001
https://arxiv.org/abs/1111.1630
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1630
https://doi.org/10.1140/epjc/s10052-018-6027-2
https://arxiv.org/abs/1805.04374
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04374
https://doi.org/10.1140/epjc/s10052-013-2631-3
https://doi.org/10.1140/epjc/s10052-013-2631-3
https://arxiv.org/abs/1307.6379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6379
https://doi.org/10.1103/PhysRevLett.113.192301
https://arxiv.org/abs/1408.4075
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4075
https://doi.org/10.1007/JHEP10(2012)137
https://arxiv.org/abs/1205.6344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6344
https://doi.org/10.1103/PhysRevD.85.092004
https://arxiv.org/abs/1105.1966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1966
https://doi.org/10.1016/j.physletb.2018.09.029
https://arxiv.org/abs/1805.03745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.03745
https://doi.org/10.1103/PhysRevLett.108.242004
https://arxiv.org/abs/1201.2675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2675
https://doi.org/10.1103/PhysRevLett.106.042002
https://arxiv.org/abs/1009.3655
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3655
https://doi.org/10.1103/PhysRevLett.106.022003
https://doi.org/10.1103/PhysRevLett.106.022003
https://arxiv.org/abs/1009.5662
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5662


J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

[56] S.P. Baranov, A.V. Lipatov and N.P. Zotov, Prompt J/Ψ production at LHC: new evidence

for the kt-factorization, Phys. Rev. D 85 (2012) 014034 [arXiv:1108.2856] [INSPIRE].

[57] S.P. Baranov, A.V. Lipatov and N.P. Zotov, Prompt charmonia production and polarization

at LHC in the NRQCD with kT -factorization. Part I: ψ(2S) meson, Eur. Phys. J. C 75

(2015) 455 [arXiv:1508.05480] [INSPIRE].

[58] S.P. Baranov, A.V. Lipatov and N.P. Zotov, Prompt charmonia production and polarization

at LHC in the NRQCD with kt-factorization. Part II: χc mesons, Phys. Rev. D 93 (2016)

094012 [arXiv:1510.02411] [INSPIRE].

[59] O. Drapier, Etude des distributions en impulsion transverse des dimuons produits dans les

collisions noyau-noyau aupres du SPS du CERN, Ph.D. Thesis, Universite Claude Bernard –

Lyon 1, Lyon France (1998), http://na50.web.cern.ch/NA50/theses.html.

[60] UA1 collaboration, A Study of the General Characteristics of pp̄ Collisions at
√
s = 0.2 to

0.9 TeV, Nucl. Phys. B 335 (1990) 261 [INSPIRE].

– 18 –

https://doi.org/10.1103/PhysRevD.85.014034
https://arxiv.org/abs/1108.2856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2856
https://doi.org/10.1140/epjc/s10052-015-3689-x
https://doi.org/10.1140/epjc/s10052-015-3689-x
https://arxiv.org/abs/1508.05480
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05480
https://doi.org/10.1103/PhysRevD.93.094012
https://doi.org/10.1103/PhysRevD.93.094012
https://arxiv.org/abs/1510.02411
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.02411
http://na50.web.cern.ch/NA50/theses.html
https://doi.org/10.1016/0550-3213(90)90493-W
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,261%22


J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

The ALICE collaboration
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M.K. Köhler102, T. Kollegger105, A. Kondratyev75, N. Kondratyeva91, E. Kondratyuk90,

P.J. Konopka34, L. Koska116, O. Kovalenko84, V. Kovalenko112, M. Kowalski118, I. Králik65,

A. Kravčáková38, L. Kreis105, M. Krivda65,109, F. Krizek93, K. Krizkova Gajdosova37,
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D.B. Piyarathna126, M. P loskoń79, M. Planinic97, F. Pliquett69, J. Pluta142, S. Pochybova145,

M.G. Poghosyan94, B. Polichtchouk90, N. Poljak97, W. Poonsawat115, A. Pop47,

H. Poppenborg144, S. Porteboeuf-Houssais134, V. Pozdniakov75, S.K. Prasad3, R. Preghenella53,

F. Prino58, C.A. Pruneau143, I. Pshenichnov62, M. Puccio34,26, V. Punin107, K. Puranapanda141,

J. Putschke143, R.E. Quishpe126, S. Ragoni109, S. Raha3, S. Rajput99, J. Rak127,

A. Rakotozafindrabe137, L. Ramello32, F. Rami136, R. Raniwala100, S. Raniwala100,

S.S. Räsänen43, B.T. Rascanu69, R. Rath49, V. Ratza42, I. Ravasenga31, K.F. Read130,94,

K. Redlich84, v, A. Rehman22, P. Reichelt69, F. Reidt34, X. Ren6, R. Renfordt69, A. Reshetin62,

J.-P. Revol10, K. Reygers102, V. Riabov96, T. Richert80,88, M. Richter21, P. Riedler34,

W. Riegler34, F. Riggi28, C. Ristea68, S.P. Rode49, M. Rodŕıguez Cahuantzi44, K. Røed21,
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J. Vrláková38, B. Wagner22, Y. Watanabe133, M. Weber113, S.G. Weber144,105, A. Wegrzynek34,

D.F. Weiser102, S.C. Wenzel34, J.P. Wessels144, E. Widmann113, J. Wiechula69, J. Wikne21,

G. Wilk84, J. Wilkinson53, G.A. Willems34, E. Willsher109, B. Windelband102, W.E. Witt130,

Y. Wu129, R. Xu6, S. Yalcin77, K. Yamakawa45, S. Yang22, S. Yano137, Z. Yin6, H. Yokoyama63,

I.-K. Yoo18, J.H. Yoon60, S. Yuan22, A. Yuncu102, V. Yurchenko2, V. Zaccolo58,25, A. Zaman15,

C. Zampolli34, H.J.C. Zanoli121, N. Zardoshti34, A. Zarochentsev112, P. Závada67, N. Zaviyalov107,

H. Zbroszczyk142, M. Zhalov96, X. Zhang6, Z. Zhang6,134, C. Zhao21, V. Zherebchevskii112,

N. Zhigareva64, D. Zhou6, Y. Zhou88, Z. Zhou22, J. Zhu6, Y. Zhu6, A. Zichichi27,10,

M.B. Zimmermann34, G. Zinovjev2, N. Zurlo140,

i Deceased
ii Dipartimento DET del Politecnico di Torino, Turin, Italy
iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics,

Moscow, Russia
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India
v Institute of Theoretical Physics, University of Wroclaw, Poland

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation,

Yerevan, Armenia
2 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine,

Kiev, Ukraine
3 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science

(CAPSS), Kolkata, India
4 Budker Institute for Nuclear Physics, Novosibirsk, Russia
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

– 22 –



J
H
E
P
1
0
(
2
0
1
9
)
0
8
4

10 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’, Rome, Italy
11 Chicago State University, Chicago, Illinois, United States
12 China Institute of Atomic Energy, Beijing, China
13 Chonbuk National University, Jeonju, Republic of Korea
14 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics,

Bratislava, Slovakia
15 COMSATS University Islamabad, Islamabad, Pakistan
16 Creighton University, Omaha, Nebraska, United States
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Pusan National University, Pusan, Republic of Korea
19 Department of Physics, Sejong University, Seoul, Republic of Korea
20 Department of Physics, University of California, Berkeley, California, United States
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
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