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Abstract: The thermal restoration of chiral symmetry in QCD is known to proceed by an analytic
crossover, which is widely expected to turn into a phase transition with a critical endpoint as the
baryon density is increased. In the absence of a genuine solution to the sign problem of lattice QCD,
simulations at zero and imaginary baryon chemical potential in a parameter space enlarged by a
variable number of quark flavours and quark masses constitute a viable way to constrain the location
of a possible non-analytic phase transition and its critical endpoint. In this article I review recent
progress towards an understanding of the nature of the transition in the massless limit, and its critical
temperature at zero density. Combined with increasingly detailed studies of the physical crossover
region, current data bound a possible critical point to µB ą„ 3T.
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1. Introduction

Many salient features of the spectrum of hadrons and their interactions observed
in nature are determined by the near-chiral symmetry of the QCD Lagrangian and its
spontaneous breaking by the QCD vacuum. The fact that nature breaks chiral symmetry
also explicitly by non-vanishing quark masses can be taken into account in terms of chiral
perturbation theory [1,2], due to the smallness of the u- and d-quark masses.

In a hot and/or dense medium, chiral symmetry is expected to be gradually restored
once the temperature exceeds T ą„ 160 MeV or the baryon chemical potential µB ą„ 1 GeV.
Associated with this change of the realised symmetry, one also expects a change of dynamics
and its underlying degrees of freedom which, asymptotically, should become quarks and
gluons. Similar to the vacuum properties of the theory, one also expects the properties of
this thermal transition to be closely related to those of the theory in the massless limit.

The low energy scales of the transition region demand a non-perturbative first prin-
ciples approach like lattice QCD. Unfortunately, a severe sign problem prohibits simulations
by importance sampling for non-vanishing chemical potential, for introductions see [3–5].
Despite tremendous efforts over several decades, no genuine solution to this problem
is available to date, and knowledge of the QCD phase diagram by direct calculation
remains scarce. Nevertheless, during the last years there has been considerable progress
in studying the properties of the thermal QCD transition in an enlarged parameter space,
where the number of flavours and quark masses is varied away from their physical val-
ues. Besides giving theoretical insight into the interplay of symmetries and dynamics in
controlled situations, such studies also provide constraints on the physical phase diagram,
which are beginning to become phenomenologically relevant. In this article, I collect some
recent results allowing to better understand and remove lattice artefacts, resulting in a
consistent picture that also accommodates apparently conflicting statements based on
earlier simulations. In particular, I will focus on developments suggesting a modified
version of the Columbia plot and constraints on the location of a possible critical point.
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2. Some Lattice Essentials

For readers less familiar with lattice QCD, it may be useful to recall a number of
basic definitions and issues that are important for the interpretation of the following lattice
results. For details, see the corresponding textbooks [3,6,7]. Conventionally one considers
Euclidean space-time discretised by hypercubic lattices with N3

s ˆ Nτ points separated by
a lattice spacing a. This represents a box with spatial length L “ Nsa and Euclidean time
extent aNτ “ 1{T, which corresponds to inverse temperature as in continuum thermal
field theory, once (anti-)periodic boundary conditions for (fermionic) bosonic fields have
been applied. When a quantum field theory is formulated on the lattice, its action (and all
observables) differ from those in the continuum. As an example, consider Wilson’s SUpNcq
pure gauge action

SYM “ β
ÿ

p

”

1´ 1
Nc

TrUppq
ı

, β “ 2Nc

g2 , (1)

which is constructed from so-called plaquette variables Uppq. These are the fundamental
squares of the lattice consisting of four gauge links Uµpxq “ expp´igaAµpxqq, which
are group elements of SUpNcq. For sufficiently small lattice spacing the plaquette can
be expanded,

Uppq “ 1` ia2gFµν ´ a4g2

2
FµνFµν `Opa6q, (2)

and the classical action (1) is seen to reproduce the continuum Yang-Mills action in the limit
a Ñ 0. However: for any finite lattice spacing a the action differs by terms of Opa2q from
the continuum action. Such terms disappearing in the continuum are called “irrelevant”,
at finite lattice spacing they constitute lattice artefacts. An improvement of lattice actions
in the sense of reducing such artefacts [8] can be achieved by adding irrelevant terms to
the lattice action, which subtract those already present. Quite generally, lattice actions are
then not unique but may differ by arbitrary irrelevant terms. All such differences between
valid actions and observables must disappear in the continuum limit.

Approaching the continuum limit is a highly non-trivial affair, as one has to take
a Ñ 0 while keeping other dimensionful quantities, like masses or temperature, fixed
along a so-called line of constant physics in the lattice parameter space. The lattice spacing
is tuned indirectly through the running gauge coupling evaluated at the cutoff scale,
g “ gpΛ „ a´1q, so that by asymptotic freedom gpa Ñ 0q Ñ 0. This implies that the
lattice gauge coupling βpa Ñ 0q Ñ 8. For thermodynamics, keeping temperature constant
during the continuum approach implies Nτ Ñ 8 in the continuum limit. Thus, while
the precise value of the lattice spacing is determined by some form of scale setting, finer
thermodynamics lattices imply larger Nτ , and lattice artefacts can be parametrised in units
of temperature as powers of the dimensionless aT “ N´1

τ .
The most problematic lattice artefacts for QCD by far are those afflicting the fermion

formulation. In particular, it is impossible to put chiral fermions on a lattice without
artificial doubler degrees of freedom while maintaining locality [9]. It is clear that this
implies severe caveats for any investigation of chiral symmetry breaking. In a nut shell,
the current choices are:

• The Wilson formulation: By adding irrelevant mass terms „ a´1, the doubler degrees
of freedom become heavy and decouple in the continuum limit. However, for any
finite lattice spacing chiral symmetry is broken completely by these terms.

• The staggered formulation: Spin and flavour degrees of freedom are distributed to
different lattice sites, which can be done so as to reduce the number of doublers. The
remaining ones are removed by taking an appropriate root of the fermion determinant,
which can only be fully valid in the continuum. In this formulation the original chiral
symmetry is reduced from SUp2qL ˆ SUp2qR Ñ Op2q.

• Formulations with a lattice version of full chiral symmetry exist in the form of domain
wall or overlap fermions, and are expected to eventually supersede the previous for-
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mulations. However, they require complicated non-local constructions and currently
are more expensive to simulate by over an order of magnitude.

Due to the enormous numerical cost of thermodynamical investigations for light
fermions, most lattice results covered here are based on different versions of the staggered
or Wilson discretisations. In order to avoid the damage these do to chiral symmetry and
its spontaneous breaking, it is mandatory to first take the continuum limit to remove the
lattice artefacts, and only then approach the chiral limit.

A general difficulty in investigating phase diagrams is the fact that non-analytic phase
transitions only exist in infinite volume [10,11], while numerical simulations are obviously
limited to finite boxes. A change of dynamics associated with a phase transition is signalled
by a rapid change of the expectation values of suitable observables Opxq, accompanied by
maximal fluctuations, i.e., peaks in their susceptibilities,

χO “
ż

d3x
´

xOpxqOp0qy ´ xOpxqyxOp0qy
¯

. (3)

This allows to determine the location of a transition as a function of the bare parameters
of the theory. In a finite box this is always an analytic crossover, and the behaviour on
different volumes has to be compared to see whether a non-analytic phase transition builds
up in the thermodynamic limit. The peak height will diverge at a second-order transition
with „ Vσ, where σ is a combination of critical exponents appropriate for the observable
and the universality class of the transition. For a first order transition the divergence is
„ V, whereas for a crossover the peak height will saturate at a finite value. More intricate
(and reliable) finite size scaling studies are based on the first three generalised cumulants
(n “ 2, 3, 4 ) of the fluctuation of an observable, δO “ O´ xOy,

BnpδOq “ xpδOqny
xpδOq2yn{2 , (4)

which besides the peak height also quantify the skewness and the tails of the statistical
distribution of the observable, thus giving access to various critical exponents.

Finally, the infamous sign problem at finite baryon density appears because of a
property of the fermion determinant, defined with complex chemical potential for baryon
number (in continuum notation),

detp��D`m´ µγ0q “ det˚p��D`m` µ˚γ0q . (5)

Thus, the fermion determinant is complex for real chemical potential, but stays real for
purely imaginary chemical potential. For real chemical potential, all imaginary parts cancel
out of the partition function exactly, but the real part is oscillatory and averages to the
so-called average sign, evaluated by the partition function with µ “ 0,

Zpµq “ Zp0q
B

detpµq
detp0q

F

0
“ Zp0q exp

´

´Vp f pµq ´ f p0qq{T
¯

. (6)

This is also the simplest reweighting factor multiplying any observable, when a µ “ 0
ensemble is reweighted to µ ‰ 0. Its size is governed by the free energy difference of
the systems with and without chemical potential, and is exponentially suppressed for
large volumes. Hence all expectation values of observables are lost in the statistical errors
sooner or later. It must be stressed that this is only a problem for numerical evaluations
by importance sampling, other evaluations and the physics itself have no issue with
chemical potential. For more details, see introductions like [3–5]. So far there is no genuine
algorithmic cure for the sign problem, for an overview of earlier attempts see [12] and the
proceedings of the annual lattice conferences for updates.
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3. The Columbia Plot at Zero Baryon Density

As a point of departure, consider the thermal QCD transition at zero baryon density,
µB “ 0. The nature of this transition for physical quark masses has been known for some
time to be an analytic crossover [13]. Away from the physical point, the order of the QCD
thermal transition with N f “ 2` 1 quarks as a function of quark masses is usually specified
in a so-called Columbia plot [14], for which two possible realisations, to be discussed below,
are shown in Figure 1.

3.1. The Deconfinement Transition

Even though it is far from the physical point or the chiral limit, the heavy mass corner
is interesting in its own right and promises insights, which will also be useful for light
quarks. In the quenched limit QCD reduces to SUp3q Yang-Mills theory in the presence of
static quarks, whose propagators are Polyakov loops which represent an order parameter
for the global Zp3q center symmetry related to confinement [15]. Its spontaneous breaking
at some critical temperature proceeds by a first-order deconfinement phase transition [16],
whose latent heat has recently also been computed [17]. In the presence of dynamical
quarks, the center symmetry is explicitly broken by 1{mq and the first-order phase trans-
ition weakens with diminishing quark masses, until it disappears along a second-order
critical line in the 3d Zp2q universality class. Contrary to the chiral limit, this entire region
can be simulated directly and a complete non-perturbative understanding should be attain-
able in the near future. The location of the critical line is under investigation [18–21]. While
continuum extrapolations are not yet available, the presently finest lattices predict the
pseudo-scalar mass evaluated on the critical point for N f “ 2 to be about mc

PS „ 4 GeV [20].
Together with the latent heat, these quantities should permit a detailed understanding of
the confinement-deconfinement transition and its interplay with screening by dynamical
quarks, which will be valuable for the physics interpretation of the crossover region at the
physical point. Finally, these quantities can serve as benchmarks to test and tune trunca-
tions involved in functional renormalisation group or Dyson-Schwinger approaches [22],
or effective lattice theories for the heavy quark region, which are employed to describe
finite density physics [23,24].

Figure 1. Possible scenarios for the nature of the thermal QCD transition as a function of the
quark masses, with a first-order (left) or a second-order (right) transition in the chiral limit of the
light quarks. Every point of the plot represents a phase boundary, with an implicitly associated
(pseudo-)critical temperature Tcpmu,d, msq. (Here and in the following, “phase boundary” refers to a
(pseudo-)critical combination of parameters irrespective of the nature of the transition, which can be
first order, second order or crossover.)
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3.2. The Chiral Transition at Zero Baryon Density

The situation is far more difficult in the opposite limit of massless quarks, because it
cannot be simulated directly. For several decades expectations have been based on an
analysis of three-dimensional sigma models, augmented by a ’t Hooft term for the Up1qA
anomaly, which represent Landau-Ginzburg-Wilson effective theories for the chiral con-
densate as the order parameter of the transition. The renormalisation group flow based on
the epsilon expansion [25] predicts the chiral phase transition to be first-order for N f ě 3,
whereas the case of N f “ 2 is found to crucially depend on the fate of the anomalous
Up1qA symmetry: If the latter remains broken at Tc, the chiral transition should be second
order in the Op4q-universality class, whereas its effective restoration would enlarge the
chiral symmetry and push the transition to first-order. For non-zero quark masses, chiral
symmetry is explicitly broken. A first-order chiral phase transition then weakens to dis-
appear at a Zp2q second-order critical boundary, just like the deconfinement transition
in the heavy mass regime, whereas a second-order transition disappears immediately.
This results in the two scenarios for the Columbia plot depicted in Figure 1. The results
of the epsilon expansion were essentially confirmed by numerical simulations of three-
dimensional sigma models [26] and a perturbative expansion in fixed dimensions [27].
A later high-order perturbative analysis for the case with an effectively restored Up1qA
at the transition temperature finds a possibility for second-order transitions also in this
case, but with a symmetry breaking pattern Up2qL bUp2qR Ñ Up2qV signalling a different
universality class [28]. Finally, a recent functional renormalisation group analysis applied
to Up1qA restoration in QCD, which is in good agreement with lattice susceptibilities at
finite quark masses [29], favours the Op4q scenario in the chiral limit [30].

A large number of lattice simulations has been devoted to disentangle which of these
situations is realised in QCD. When the Columbia plot is considered on the lattice with
different lattice spacings, its parameter space is enlarged by an additional axis. The chiral
critical line then traces out a chiral critical surface whose shape is discretisation-dependent,
while for all valid discretisations it must of course emerge from the same critical line in the
continuum limit. The following subsections collect the current evidence on the location of
the chiral boundary line in the Columbia plot.

3.3. Nf “ 2 and Nf “ 2` 1

Early simulations (without sophisticated finite size scaling analyses) on coarse Nτ “ 4
lattices were fully consistent with the expected scenarios shown in Figure 1: A first-order
region could be clearly seen for Nf “ 3, whereas the smallest available masses were
consistent with a continuous transition or crossover for Nf “ 2, both for unimproved
staggered [14] and unimproved Wilson [31] fermions. More recently and using finite
size scaling of cumulants, a narrow first-order region was also identified for N f “ 2,
again for unimproved staggered [32,33] and unimproved Wilson [34] fermions on Nτ “ 4.
However, the location of the Zp2q-boundary varies widely between these, indicating large
cutoff effects.

Recent investigations using the Highly Improved Staggered Quark (HISQ) action
start at the N f “ 2` 1 physical point and then gradually reduce the light quark mass
value, until they correspond to mPS « 45 MeV, on lattices Nτ “ 6, 8, 10 [35,36]. No sign
of a first-order transition is detected. Thus either a Zp2q-critical point bounding a very
narrow first-order region is approached, or a second-order transition in the chiral limit. The
analysis employs a renormalisation group invariant combination of chiral condensates as
order parameter representing the magnetisation-like variable, and the light quark masses
ml “ mu,d in units of the strange quark mass as symmetry breaking field,

M “ ∆ls “ 2pmsxψ̄ψyl ´mlxψ̄ψysq{ f 4
K, H “ ml{ms . (7)
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Near a critical point the magnetic observables are dominated by universal scaling functions

Mpt, hq “ h1{δ fGpzq ` . . . , χMpt, hq “ BM
BH

“ h´1
0 h1{δ´1 fχpzq ` . . . , (8)

with a scaling variable z “ t{h1{βδ expressed in terms of the reduced temperature and
external field, t “ t0pT´T0

c q{T0
c , h “ H{h0, which contain the unknown critical temperature

in the chiral limit, T0
c , and two non-universal parameters t0, h0.

Figure 2 (left) shows the chiral susceptibility as a function of temperature for a series of
decreasing light quark masses on Nτ “ 8. A considerable reduction of the pseudo-critical
temperature, defined by the peak location of the susceptibility, is apparent as the light quark
mass is reduced. Moreover, the peak height is growing as expected when approaching a
true phase transition. To test for the universality class of the approached transition, the ratio
M{χM is shown in Figure 2 (right), which near a critical point is dominated by universal
scaling functions. While it is difficult to distinguish between Op4q and Zp2q, it is apparent
that any finite critical quark mass bounding a first-order region has to be excessively small
to be consistent with the observed behaviour.
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Figure 2. (Left): Chiral susceptibility at the physical strange quark mass for a range of decreasing
light quark masses on Nτ “ 8 lattices with HISQ action, from [35]. (Right): Magnetic equation of
state at the pseudo-critical temperature approaching the chiral limit. Lines represent fits to OpNq-
(N “ 2, 4 second-order scenario) or Zp2q-scaling with a finite critical quark mass (first-order scenario),
from [36].

There is a similar scaling expression for the approach of the pseudo-critical crossover
temperature to the critical temperature in the chiral limit,

TpcpHq “ Tcpml “ 0q
´

1` zX
z0

H1{βδ
¯

` sub-leading , (9)

Tcpml “ 0q “ 132`3
´6 MeV . (10)

In [35] the variation between the possible sets of critical exponents is observed to be very
small, so that an extrapolation makes sense even without knowledge of the true universality
class. Moreover, the extrapolations were checked to be stable under an exchange of the
order of the continuum and chiral extrapolations, leading to the critical temperature as a
first result for the chiral phase transition in the massless limit.

Simulations with Wilson fermions do not yet reach such small quark masses, but are
fully consistent with this picture down to the physical pion mass. In particular, extrapol-
ations of the pseudo-critical temperature to the chiral limit have also been attempted by
an investigation using Nf “ 2` 1` 1 Opaq-improved twisted mass Wilson fermions, with
strange and charm quark masses close to their physical values [37]. In these simulations
lattice spacings are held fixed in a range a{fm P r0.062, 0.082s, and temperature is varied by
Nτ P r12, 20s. The pseudo-critical temperature is defined in three different ways: By the
maximum of the chiral susceptibility χ as above, and as the inflection point of polynomial
fits to the chiral condensate (∆) and a subtracted version without additive renormalisation
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p∆3q. The resulting temperatures as a function of pseudo-scalar (pion) mass are shown
in Figure 3 (left), together with extrapolations to the chiral limit, employing either Op4q
exponents or Zp2q-exponents and a critical pseudo-scalar mass up to mπ „ 100 MeV. Again,
it is not possible to distinguish between these scenarios. As in the previous case, the ex-
trapolated critical temperature in the chiral limit is therefore robust under changes of the
critical exponents and quoted as

T0
c “ 134`6

´4 MeV, (11)

in remarkable agreement with the staggered result.
Figure 3 (right) shows an investigation of sections of the chiral critical line using

Opaq clover-improved Wilson fermions [38]. Starting point are the data for N f “ 3 to be
discussed separately below, and on Nτ “ 6 further points at larger strange quark masses
have been added. The critical line is then fitted assuming a tricritical strange quark mass as
explained in Section 3.5 plus polynomial corrections. Note that this discretisation features
a much wider first-order region, which even contains the physical point on the coarser
lattices. This must be a lattice artefact, and the first-order region rapidly shrinks as Nτ

is increased.

0 100 200 300 400 500
mπ [MeV]

140

160

180

200

220

T
c

[M
eV

]

O(4),∆

O(4),∆3

O(4), χ

Z2,∆

Z2,∆3

Z2, χ

T∆

T∆3

Tfull

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

(
𝑡 0

𝑚
𝜂 𝑠

)2

(𝑡0𝑚𝜋)2

CEP at 𝑁T = 6
CEP at 𝑁T = 8
CEP at 𝑁T = 10
CEP cont. up. lim.
const 𝑚s⁄𝑚l
physical point
𝑁F = 3

Figure 3. (Left): Pseudo-critical temperature of the crossover defined by the chiral susceptibility
χ, the inflection point of the chiral condensate ∆ or an additively renormalised chiral condensate
∆3, for Nf “ 2` 1` 1 twisted mass Wilson fermions close to the continuum. Lines represent chiral
extrapolations according to the Op4q second-order or finite critical Zp2q-mass scenario. From [37].
(Right): Columbia plot expressed in η, π-masses in units of the Wilson flow parameter t0. Critical
points have been determined using an Opaq-improved Wilson action. The first-order region includes
the physical point on coarse lattices, but shrinks drastically as Nτ is increased. From [38].

Several conclusions can be drawn from these results. Firstly, the width of a potential
first-order region as in Figure 1 (left) is bounded to a small fraction of the physical light
quark (or pion) masses. Second, the numerical proximity of the critical exponent combin-
ations 1{pβδq for the 3D Op2q, Op4q and Zp2q universality classes appears to allow for a
robust extrapolation of the chiral transition temperature to the massless limit with remark-
ably small uncertainties. Conversely this statement implies, however, that it is impossible
to firmly identify the universality class in this way, which would require exponentially
accurate data. This problem might be avoided by looking at the scaling of energy-like
variables, which are governed by the critical exponent α that changes sign between the
Op2q, Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves



Symmetry 2021, 13, 2079 8 of 25

as an energy-like observable, but unfortunately a firm distinction between universality
classes would require a further substantial reduction of the light quark mass [39]. Finally,
note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature
at the physical point. This constrains the possible location of a chiral critical point at finite
baryon density, as will be discussed in Section 5.1.

3.4. Nf “ 3 and Nf “ 4

The Nf “ 3 theory, represented by the diagonal of the Columbia plot, Figure 1, is
particularly interesting because a sufficiently large first-order transition and its associated
Zp2q-critical endpoint are accessible by direct simulations, rather than by extrapolation.
However, the situation has become more complicated since the early results, as shown by
the compilation of critical pseudo-scalar masses obtained by different actions and lattice
spacings in Table 1. The largest value in the table differs by almost an order of magnitude
from the lowest bound! Unless any of the employed lattice actions is fundamentally flawed,
all of them must eventually converge to the same continuum limit, which is not in sight
yet. However, the general trend is for the critical mass to shrink when either a lattice with
fixed action is made finer (larger Nτ), or when improved actions are employed. This points
to enormous cutoff effects, which quite generally appear to increase the first-order region,
i.e., make the transition stronger. Another observation is for the first-order region to be
considerably larger in the case of Wilson fermions, which is consistent with stronger cutoff
effects due to the complete violation of chiral symmetry.

Table 1. Summary of previous studies (continued from [40,41]) of the N f “ 3 chiral critical point at
µB “ 0 .

Action Nτ mc
PS Ref. Year

unimproved staggered 4 „290 MeV [42] 2001
p4 staggered 4 „67 MeV [43] 2004

unimproved staggered 6 „150 MeV [40] 2007
HISQ staggered 6 À45 MeV [44] 2017
stout staggered 4–6 „0? [41] 2014

Wilson-Opaq-impr. 6–8 „300 MeV [45] 2014
Wilson-Opaq-impr. 4–10 À170 MeV [46] 2017
Wilson-Opaq-impr. 4–12 À110 MeV [47] 2020

As an example, consider Figure 4 (left), where the critical pseudo-scalar mass is shown
from a comprehensive long term study with Opaq-improved Wilson fermions for different
lattice spacings. The critical meson mass shrinks by nearly a factor of two when the lattice
is changed between Nτ “ 6 and Nτ “ 12. Its continuum value depends strongly on the
extrapolation function and could even be zero. The same effect is observed for Nf “ 4
unimproved staggered fermions [48], as shown in Figure 4 (right). One expects the trans-
ition in this case to be more strongly first-order than for Nf “ 3, since the spontaneously
breaking symmetry is larger. This is borne out both for Wilson [49] and staggered fermions.
Note that for Nf “ 4 staggered fermions no rooting is applied, which therefore cannot
cause any unphysical behaviour. Moreover, the effect of reducing the lattice spacing is
similar for Nf “ 2, 3, 4 staggered fermions, i.e., with and without rooting.

We can then conclude that Wilson and staggered discretisations show the same qual-
itative behaviour, with a monotonic decrease of the critical pseudo-scalar mass mc

PSpNτq
as the continuum is approached by increasing Nτ . Quantitative contradictions between
different actions are only avoided, if the final answer mc

PSp8q is below the lowest available
value mPSpNτq. In summary, since finer lattices and improved actions have become avail-
able, the situation for Nf “ 3, 4 is quite similarly ambiguous to the previously discussed
Nf “ 2 and Nf “ 2` 1.
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Figure 4. Critical pseudo-scalar mass in units of temperature as a function of N´2
τ “ paTq2. (Left): N f “ 3 Opaq-improved

Wilson fermions with different continuum extrapolations, from [47]. (Right): N f “ 3, 4 unimproved staggered fermions,
from [48].

3.5. Three-State Coexistence and Tricritical Scaling

The uncertainty about the size of a potential first-order region can be removed by a
different analysis, which leads to a consistent picture covering the results of all discreti-
sations reported here. Starting point is the observation that a change of the chiral phase
transition in the massless limit from first order to second order, brought about by variation
of a continuous parameter, necessarily proceeds by a tricritical point [50]. To see this,
assume the scenario in Figure 1 (right), and consider the corresponding phase diagram for
a fixed ms ă mtric

s , Figure 5 (left). For non-vanishing quark masses, the first-order transition
weakens to disappear in a critical endpoint, and the phase diagram is symmetric under a
chiral rotation mu,d Ñ ´mu,d. Hence, in the massless limit the critical temperature marks a
triple point of three-state coexistence: Two states with broken chiral symmetry, ˘xψ̄ψy ‰ 0,
and one with chiral symmetry restored, xψ̄ψy “ 0. When ms is increased, these points
trace out a triple line (corresponding to the green mu,d “ 0 line in Figure 1) along which
the latent heat of the first-order transition decreases, until it vanishes in a tricritical point.
At the same time, the two wings of finite mass first-order transitions shrink, so that the
tricritical point marks the confluence of two critical endpoints.

This opens an additional path of investigation. Quite generally, tricritical points come
with their own set of critical exponents, which take mean field values since their upper
critical dimension is three. For a general introduction to the theory of tricritical scaling,
see [51]. In particular, the functional form of the critical wing lines entering the tricritical
point as a function of the symmetry breaking field, which is the bare light quark mass in
our case, is governed by a critical exponent,

mc
spmlq “ mtric

s `A1 ¨m2{5
l `O

`

m4{5
l

˘

. (12)

This allows for an extraction of the location of a tricritical point with fixed, known expo-
nents, which is much easier than having to determine the exponents themselves. Knowing
the location of the tricritical point then fixes the order of the transition on both sides of it,
albeit without information about the universality class. Attempts in this direction were
made in [38,52], but they are not yet conclusive because the lattices are coarse, whereas
very high precision data very close to the chiral limit would be required on sufficiently
fine lattices in order to unambiguously distinguish tricritical scaling from an ordinary
polynomial. However, this problem can be circumvented by a change of variables in the
bare parameter space of the theory.
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Figure 5. (Left): Phase diagram with a first-order chiral phase transition. For T ă Tc the T-axis
corresponds to a coexistence line of ˘xψ̄ψy ‰ 0, and Tcpmu,d “ 0q represents a triple point. (Right):
Columbia plot for mass-degenerate quarks. Again every point represents a phase boundary and has
an implicitly associated Tcpm, Nfq.
3.6. The Chiral Phase Transition as a Function of Nf and Nτ

In [33] it was suggested to consider a different version of the Columbia plot with
degenerate quarks only, in which the variable strange quark mass ms is traded for a variable
Nf analytically continued to non-integer values. Starting with integer Nf, after Grassmann
integration the QCD partition function reads

ZpNf, g, mq “
ż

DAµ pdet MrAµ, msqNf e´SYMrAµs , (13)

which can now be formally viewed as a statistical system of gauge field variables depending
on a continuous parameter Nf. In the lattice formulation with rooted staggered fermions,
whose determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate
quarks, this is implemented straightforwardly. The Columbia plot Figure 1 (right) then
translates to the version shown in Figure 5 (right), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 ă Ntric

f ă 3, and the Nf-axis to the right
of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point Ntric

f ą 1 is
guaranteed to exist as soon as there is a first-order region for any Nf ą 1. At finite lattice
spacing there is an additional parameter, and the Zp2q-critical boundary traces out a chiral
critical surface which terminates in a tricritical line in the chiral limit of the lattice theory.
Since there is ample evidence for first-order transitions at coarse lattice spacings, the task is
now reduced to track their boundaries in the lattice bare parameter space and determine
the location of the tricritical line in the lattice chiral limit.

Numerical results obtained with unimproved staggered fermions for a wide range of
flavours and Nτ “ 4, 6, 8 [33,53] are shown in Figure 6. The left plot represents the lattice
version of the Columbia plot Figure 5 (right). One observes a summary of the previous
discussion, namely a first-order transition getting stronger with Nf and with increasing
lattice spacing. The cutoff effects are growing with Nf, for Nf “ 7 the critical bare quark
mass is reduced by a stunning factor of five when the lattice spacing is reduced (Nτ is
increased) by a factor of two! No continuum critical mass mc is discernible yet for any Nf.
On the other hand, the intercepts of the critical lines at m “ 0 constitute the sought-after
tricritical line Ntric

f pNτq. Tricritical scaling can be appreciated in the rescaled Figure 6
(right), where the data approach a leading order scaling relation [33]. This allows for an
extrapolation

amc
`

NfpNτq, Nτ

˘ “ D1pNτq
`

Nf ´ Ntric
f pNτq

˘5{2 ` . . . . (14)
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Figure 6. The chiral critical surface for unimproved staggered fermions, projected onto the pm{T, Nfq
plane [53] (left) and onto the pam, Nfq plane for Nτ “ 4 [33] (right). Every point of the plane
represents a phase boundary with an implicitly tuned βpam, Nf, Nτq. Regions above the Zp2q-lines
represent crossover, those below first-order transitions. Fits on the left show next-to-leading order
tricritical scaling, on the right leading-order tricritical scaling.

The scaling relation has been inverted here, because in simulations Nf is fixed whereas
the critical quark mass is computed with statistical errors. Note also that the Nf “ 2
data point in Figure 6 (right) has been obtained by a tricritical extrapolation in imaginary
chemical potential at fixed Nf “ 2 [32]. This is an independent confirmation of the bare
quark mass as a tricritical scaling field near its chiral limit. Scaling fits in the left figure
take into account the next-to-leading order terms to predict Ntric

f pNτ “ 4q « 1.71p3q and
Ntric

f pNτ “ 6q « 2.20p8q. While no extrapolation for Nτ “ 8 is available yet, the critical line
further flattens and appears to shift to the right, implying a line Ntric

f pNτq. One concludes
that, for unimproved staggered fermions, the Nf “ 2 massless theory shows a first-order
transition on Nτ “ 4, but a second-order transition on all finer lattices and in the continuum.
The question now is what happens to the Nf ě 3 theories.

This can be seen in a different variable pairing in Figure 7 (left), where the same critical
bare quark masses are rescaled by the tricritical exponent, and plotted as a function of
Nτ for different fixed Nf-values. Only a slight curvature is exhibited by those Nf-lines
with three data points, which thus are compatible with next-to-leading order scaling and a
tricritical point at some finite Ntric

τ pNfq, obtained by the corresponding extrapolations.

3.7. Tricritical Scaling for Wilson Fermions

What about Wilson fermions, which exhibit the widest first-order region among
the discretisation schemes discussed here? In this case the conceptual situation is more
difficult, because chiral symmetry is broken completely so that the bare quark mass and
chiral condensate receive additive renormalisation as well as the ordinary multiplicative
one. Moreover, the bare parameter phase diagram is expected to show lattice artefacts
such as parity broken phases [54,55] or first-order bulk transitions [56–58], whose location
depends on the details of the lattice action and Nτ . This may considerably complicate the
bare parameter phase diagram while, of course, all actions should eventually agree in the
continuum limit.

Here we consider an RG-improved Wilson gauge and non-perturbatively O(a)-improved
Wilson fermion action, for which the Aoki phase is limited to the strong coupling regime
and no other unphysical phases have been observed [59], and which was used for the se-
quence of Nf “ 3 simulations [45–47] displayed in Figure 4 (left). These data have recently
been reanalysed in order to test for tricritical scaling [53], in analogy to the staggered case
above. To this end, one can exploit that in chiral perturbation theory

m2
PS9mq , (15)

which also holds for Wilson fermions provided that an additively renormalised quark mass
is used. The data from Figure 4 are replotted in Figure 7 (right), with the vertical axis res-
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caled to be proportional to the renormalised quark mass as scaling variable. Perfect triritical
scaling is observed, with extrapolations that are robust under variation between leading
and next-to-leading order, as well as when using only the coarsest lattices Nτ “ 4, 6, 8.
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Figure 7. The chiral critical surface projected onto the pam, aT “ N´1
τ q plane for unimproved

staggered fermions [53] (left) and for Opaq-improved Wilson fermions [47] (right), with tricritical
scaling fits to both. From [53].

3.8. Conclusions for the Continuum Limit

Knowing the structure of the bare parameter lattice phase diagram, its implications
for continuum physics can be stated. The continuum limit is represented by the origin of
the pam, N´1

τ q plane, which can be approached along different lines of constant physics,
representing theories with different values for, e.g., the vacuum pseudo-scalar mass. For any
Nf with a finite Ntric

τ pNfq, the parameter region of first-order transitions is not continuously
connected to the continuum limit, and thus represents a mere cutoff effect. In other
words, for all Nτ ą Ntric

τ , simulations will only show crossover behaviour for any vacuum
pion mass, such that the transition in the continuum chiral limit is approached from the
crossover, and corresponds to an isolated second-order point. By contrast, a first-order
transition in the chiral continuum limit implies a finite mc in physical units, which would
require the Zp2q-critical line amcpNτq to terminate in the origin of the plot. Moreover,
there would be no tricritical point and no associated tricritical scaling, so that amcpNτq
should have an ordinary Taylor expansion about zero with the usual cutoff corrections
„ a, a2 etc. In [53] it was found that polynomial next-to-leading order fits are unable to
accommodate the Nτ “ 4, 6, 8 data for Nf “ 5, 6, 7 unimproved staggered fermions. For the
Nf “ 3 Opaq-improved Wilson fermions such fits are possible but have worse χ2{dof than
the tricritical fits. We must then conclude that the staggered action predicts all massless
theories with Nf ď 7 to have second-order transitions in the continuum limit, and that the
Wilson clover-action agrees with this for N f “ 3. Note that this conclusion is perfectly
consistent with the absence of any first-order region in all simulations with improved
staggered actions so far.

In summary:

• Qualitatively, the discretisation effects on the chiral phase transition are the same for
unimproved staggered fermions and either unimproved or Opaq-improved Wilson
fermions, making the transition stronger compared to the continuum.

• In both discretisations, the boundaries of the first-order transitions at finite lattice
spacings exhibit tricritical scaling and extrapolate to a finite Ntric

τ pNf “ 3q. This implies
that the first-order region is not connected to the continuum limit. Thus, when the
continuum limit is taken before the chiral limit, as is necessary to avoid lattice artefacts,
both predict a second-order transition.

• Quantitatively, the cutoff effects are larger for Wilson fermions, resulting in a larger
Ntric

τ pNfq than in the case of staggered fermions. This might be explained by the fact
that the respective discretisations break chiral symmetry fully or only partially.
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If these conclusions withstand the test of further investigations, they require a modifi-
cation of the Columbia plot, as shown in Figure 8, with a second-order transition all along
the mu,d “ 0 limit, independent of the strange quark mass. Note that the universality class
of these second-order transitions remains open. Since the chiral symmetry is different for
the Nf “ 2, 3 boundary cases, one might expect critical exponents to smoothly cross from
one set of values to the other along the second-order line.

Figure 8. The Columbia plot in the continuum, as suggested by the tricritical scaling analyses of
unimproved staggered and Opaq-improved Wilson fermions. From [53].

Numerical simulations are no mathematical proof, and the reported results are in
contradiction with the predictions from [25,27]. Given the presently available data, what
would it take to avoid this conclusion and render the chiral phase transition for Nf ě 3
first order? This would require future data points for amcpNτq (or amPSpNτq) on larger Nτ

to extrapolate to zero as a polynomial in N´1
τ , i.e., without tricritical scaling, independent

of the discretisation scheme. The tricritical scaling observed for the presently available
Nτ would then have to be “accidental”. On the other hand, the question arises whether
the three-dimensional sigma models investigated in [25,27] represent the most general
case compatible with QCD. It is well-known that φ4-theories do not permit tricritical
points, which requires φ6-terms. In three dimensions, φ6 theories are renorrmalisable and
moreover show stable infrared fixed points in non-perturbative studies [60,61], which
could reconcile effective theories with the current lattice results. It should be possible to
resolve these questions in the near future and finally settle the fate of the thermal QCD
phase transition with massless quarks.

4. The Columbia Plot with Chemical Potential

Once a chemical potential µ for quark (or µB “ 3µ for baryon) number is switched
on, the Columbia plot in the continuum (or at fixed lattice spacing viz. Nτ) gets extended
into a third dimension. In this case the Zp2q-critical boundary lines sweep out critical
surfaces, as sketched schematically in Figure 9 (left). Labelling the third axis by pµ{Tq2,
both real and imaginary chemical potential can be discussed. Imaginary chemical potential,
µ “ iµi with µi P R, is unphysical, but it does not induce a sign problem and thus can be
simulated without difficulty [62]. This can be exploited to extract various properties of
the phase diagram at sufficiently small real µ by analytic continuation [63,64]. Two exact
symmetries are important here. Because of CP-invariance, the QCD partition function is an
even function of the chemical potential Zpµq “ Zp´µq. Furthermore, for arbitrary fermion
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masses it is periodic in imaginary chemical potential because of the global Roberge-Weiss
(or center) symmetry [65],

Z
´

T, i
µi
T

¯

“ Z
ˆ

T, i
µi
T
` i

2πn
Nc

˙

. (16)

Thus, as imaginary chemical potential is increased, the partition function periodically cycles
through the Nc center sectors, which are distinguishable by the phase of the Polyakov
loop, whereas the thermodynamic functions are invariant under a shift between sectors.
The boundaries of these sectors, located at pµ{Tqc “ ˘ip2n` 1qπ{3 with n “ 0, 1, 2, . . ., are
marked by first-order transitions for high temperatures and crossover for low tempera-
tures, see Figure 9 (right). Varying T at fixed imaginary chemical potential, the analytic
continuation of the QCD thermal transition is crossed, whose order depends on N f and the
quark masses, as discussed in the previous sections. For a first-order chiral or deconfine-
ment transition, the transition lines meet up in a triple point, which marks a three-phase
coexistence between two phases of the Polyakov loop and their average. For a thermal
crossover the Roberge-Weiss transition ends in a critical endpoint with 3D Ising univer-
sality. The boundary between these cases, corresponding to specific quark mass values,
is marked by a tricritical point. In the Columbia plot for the first Roberge-Weiss plane at
µ{T “ iπ{3, these trace out tricritical lines, in which the deconfinement critical surface
ends in the Roberge-Weiss plane [66]. These structures have been established explicitly for
unimproved staggered [66,67] as well as unimproved Wilson [68] fermions and generalise
to any discretisation respecting the center symmetry.

The thermal phase transition at imaginary µ
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Figure 9. (Left): Columbia plot with chemical potential as observed on coarse lattices. The bottom
plane corresponds to the first center-transition. (Right): The QCD phase diagram at imaginary chem-
ical potential. Vertical lines mark first-order transitions between different center sectors, the dotted
lines are the analytic continuation of the thermal transitions at real µ, whose nature depends on the
quark masses.

4.1. The Deconfinement Transition

Once again it is instructive to also consider the more easily accessible heavy mass
corner, and to study how the deconfinement transition changes in the presence of a baryon
chemical potential. Moreover, for heavy quarks one can expand the fermion determinant
in inverse quark mass and, after an additional resummed strong coupling expansion, an
effective lattice theory can be constructed that reproduces the Zp2q-boundary on Nτ “ 4
lattices at µ “ 0., but in addition can be solved at finite chemical potential, both imaginary
and real [23]. The tricritical line in the Roberge-Weiss plane dictates the deconfinement
critical surface to emanate from it by tricritical scaling,

mcpµq
T

“ mcp0q
T

` K
”´π

3

¯2 `
´µ

T

¯2ı2{5
, (17)
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where now the deviation of the chemical potential from the Roberge-Weiss plane is the
center symmetry breaking scaling field. This scaling behaviour is confirmed numerically
and, even at leading order, found to extend far into the range of real chemical potentials.
The region of first-order deconfinement transitions is thus found to continuously shrink
with real chemical potential [23,66]. This observation implies that the chiral and deconfine-
ment transition regions remain separated for all chemical potentials, i.e., the respective
critical surfaces do not join. The chiral critical surface must then form a closed volume with
the boundaries of the quark mass and chemical potential parameter space, since one cannot
get from a first-order transition to a crossover without passing through a critical point.

4.2. The Chiral Transition

For unimproved Wilson and staggered discretisations on Nτ “ 4, 6, the 3D Columbia
plot looks as in Figure 9 (left), with the region of chiral phase transitions getting wider
in the imaginary µ direction. Expanding the Zp2q-critical light mass for small chemical
potential for any fixed ms,

mc
l pµq

mc
l p0q

“ 1` c1

´µ

T

¯2 `O
´´µ

T

¯4¯
, (18)

one may conclude that c1 ă 1 and by analytic continuation the first order region shrinks in
the real-µ direction. As an independent check on these calculations at imaginary chemical
potential, the curvature of the chiral critical surface can be computed directly at µ “ 0.
For staggered fermions one finds c1 ă 0 both at ms “ ml and at ms “ mphys

s , and the
next coefficient is negative as well [40,52,69]. Thus the chiral transition strengthens with
imaginary and weakens with real chemical potential. This is opposite to a scenario with a
chiral critical point close to the temperature axis, which would require the chiral transition
at the physical point to strengthen with real µ. The only investigation finding a positive
curvature so far is for Opaq-improved Wilson fermions [70]. However, we have seen in the
previous sections the enormous cutoff effects on the location of the chiral critical surface at
µ “ 0, and the question is how these vary with µ for a given discretisation. The fact that
for µ “ 0 the critical surface moves to the chiral limit makes it practically impossible to
compute its curvature on fine lattices.

Investigations in the Roberge-Weiss plane on finer lattices reveal the same trend as
seen at µ “ 0, namely the chiral tricritical line moving towards smaller quark masses,
both for unimproved staggered [71] and Wilson [72] quarks, Figure 10 (left). For stout-
smeared staggered [73] and HISQ [74] actions on Nτ “ 4, even the larger first-order region
in the Roberge-Weiss plane cannot be detected when starting from the physical point
and reducing the pion masses down to mπ « 50 MeV, as Figure 10 (right) shows by
demonstrating second-order scaling for the Roberge-Weiss endpoint.
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Figure 8. Overview of chiral tricritical values of the pion mass in the Roberge-Weiss plane.

lattice spacing, appear to have considerably larger cut-off
effects. For example, comparing amtric

⇡, heavy “ 2.2302p2q
from Ref. 24 with our amtric

⇡, heavy “ 1.7260p3q, the pion-
resolution problem is milder in the present study. It is
also interesting to compare the position of the tricritical
points in physical units,

mtric, Wilson
⇡, light “ 669`95

´81 MeV

mtric, Staggered
⇡, light “ 328`44

´81 MeV
(23)

and

mtric,Wilson
⇡, heavy “ 3659`589

´619 MeV

mtric, Staggered
⇡, heavy “ 2813`235

´261 MeV
. (24)

The large differences between discretizations again imply
being far from the continuum limit, where results from
all discretizations have to merge. The observed trend
is consistent with the findings of simulations with im-
proved staggered actions, where the tricritical points can
only be bounded to be at much smaller masses, as indi-
cated in Figure 8, as well as with the analogous findings
at zero chemical potential (see discussion in the introduc-
tion). In particular the comparison across discretizations
implies enormous cut-off effects in the critical masses,
which could end up being over „100% of an eventual
continuum limit. We remark that cut-off effects in the
critical temperatures are much milder. At present, there
is no theoretical explanation as to why the discretization
effects on critical quark masses in the Columbia plot are
so strong.

In conclusion, we have determined the shift of the tri-
critical points in the Roberge-Weiss plane of unimproved
staggered fermions by changing from N⌧ “ 4 to N⌧ “ 6
lattices. The aspect ratios and statistics required to ex-
tract the correct order of the phase transition are found

to be larger in the Roberge-Weiss plane than at µ “ 0.
We find the cut-off effect on the tricritical masses to be
smaller but qualitatively the same as that observed with
Wilson fermions, and consistent with results for both dis-
cretizations at zero chemical potential. This implies in
particular, that the entire chiral critical surface depicted
in Figure 1 is shifted significantly towards smaller (and
possibly zero) light quark masses, as the lattice spac-
ing decreases, which is also consistent with results from
improved staggered actions. Unfortunately, our study
also implies that much finer lattices at inevitably smaller
quark masses are necessary, before one can hope the re-
sults of the light tricritical mass to stabilize in a contin-
uum limit.
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Figure 10. (Left): Tricritical pseudo-scalar mass values delimiting the first-order chiral region in
the RW-plane [71]. (Right): Finite size scaling with 3d Zp2q exponents for stout-smeared staggered
fermions with mPS « 50 MeV and pml{msqphys on Nτ “ 4 in the RW-plane [73].

Note that the order parameter for the center sectors is the imaginary part of the
Polyakov loop, even in the light quark regime. It is then interesting to study the interplay
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between the center and chiral dynamics in the Roberge Weiss plane, since they are inde-
pendent symmetries. In particular, in the chiral limit there must be a true phase transition
for any chemical potential, since the latter does not break chiral symmetry. Figure 11 shows
the renormalisation group invariant chiral condensate from Equation (7) and the disconnec-
ted part of the corresponding susceptibility as functions of temperature, as observed with
HISQ fermions on Nτ “ 4 [74]. Indeed, as the quark mass decreases a chiral transition is
building up, just as at µ “ 0, and it is particularly interesting where the transition happens.
The location of the emerging peak in the susceptibility is, at the current accuracy, consistent
with the yellow bar in the figure marking the critical temperature of the Roberge-Weiss
endpoint, so that the transition lines in the chiral limit would indeed be connected as in
Figure 9 (left). Note that there is no a priori reason for this, since we have independent
center and chiral symmetries, with a Zp2q universality of the Roberge-Weiss endpoint and
a larger, OpNq-like universality along the chiral transition line. If these lines really do meet
in the chiral limit, their junction should be multicritical.
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Figure 11. (Left): Chiral condensate as defined in Equation (7) in the RW plane from HISQ fermions
on Nτ “ 4. (Right): Disconnected chiral susceptibility at fixed quark mass ratio for various lattice
sizes. Yellow bands show the location of the RW endpoint transition temperature, extracted from the
peak location of χL. From [74].

In summary, from the µ “ 0 and imaginary chemical potential results together we
conclude that the entire chiral critical surface is shifting drastically towards the chiral
limit as the lattice spacing is decreased, and it is an open question whether any first-order
transition remains in the continuum limit at any µ. At the same time, this implies that
the crossover at the physical point for µ{T “ µB{p3Tqă„ 1, which is where an analytic
continuation of Equation (18) holds (see Section 5.1), is very soft and does not display any
singular behaviour due to the chiral transition.

5. QCD at the Physical Point

Having discussed the order of the thermal QCD transition in a generalised parameter
space, the aim is to see how this constrains the physical quark mass configuration. The
qualitative relation between the phase diagram in the chiral limit of the light quarks and
their physical values has been worked out some time ago by mean field methods [75,76], as
shown in Figure 12. In the chiral limit, there must be a non-analytic phase transition for any
value of the baryon chemical potential, since the latter respects chiral symmetry. We have
seen that lattice results are indeed converging towards a second-order transition at µB “ 0.
By contrast, the first-order nature of the chiral transition at T “ 0 is based on expectations
from NJL, Gross-Neveu and sigma models in mostly mean field investigations, with no
firm QCD predictions available yet. If this assumption holds, there must be a tricritical
point marking the change between first-order and second-order behaviour, which might
even have an influence on physical QCD if the light quark masses happen to be in the
scaling window of the tricritical point [77]. At finite quark masses chiral symmetry is
broken explicitly, the second-order line turns into crossover and the first-order transition
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d `Opm4{5

u,d q,
Tcpmu,dq “ Ttric ` B m2{5

u,d `Opm4{5
u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ą Ttricpmu,d “ 0, µB “ 0q ą Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities

There are several methods that have been used so far to extract information about the
phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{Tă„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8
ÿ

n“1

1
2n!

χB
2npTq

´µB
T

¯2n
, χB

2npTq “
B2np p

T4 q
BpµB

T q2n

ˇ

ˇ

ˇ

µB“0
, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nτ “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Figure 13. (Left): Baryon number fluctuations χB
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4 , χB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [84].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1´ κ2

ˆ

µB
Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5qMeV [85]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient κ4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µBă„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for κ2 in Equation (22) .

κ2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [86]
0.0135(20) imag. µ, stout-smeared staggered [87]
0.0145(25) Taylor, stout-smeared staggered [87,88]

0.016(5) Taylor, HISQ [85]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep ă Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ą 3.1 Tpcp0q « 485 MeV. (23)
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5.2. The Search for a Critical Point

For any power series of a function with a given domain of analyticity in its complex
argument, the radius of convergence gives the distance between the expansion point
and the nearest singularity. This implies that the location pTc, µc

Bq of a non-analytic QCD
phase transition constitutes an upper bound on the radius of convergence of the series
Equation (21), or that of any other thermodynamic function. Turning this around one
may search for a critical point: If a finite radius of convergence can be extracted from the
pressure series for real parameter values, it should signal a phase transition. The simplest
estimator is the ratio test of consecutive coefficients, whose extrapolation yields the radius
of convergence,

r “ lim
nÑ8 r2n , r2n “

ˇ

ˇ

ˇ

ˇ

ˇ

2np2n´ 1qχB
2n

χB
2n`2

ˇ

ˇ

ˇ

ˇ

ˇ

. (24)

In practice, however, only the first few coefficients are available and an extrapolation is
not feasible. For a compilation of available results, see [89]. Moreover, the ratio estimator
is inappropriate for series with irregular signs and complex singularities, where it fails
to converge.

This can be illustrated by modelling the lattice data in a spirit similar to the hadron
resonance gas descriptions, such that higher coefficients become available and different
scenarios can be tested for compatibility with the data. As an example, consider the fugacity
expansion of baryon number density. At imaginary chemical potential, this is a Fourier
series whose coefficients can be computed on the lattice without sign problem,

nB

T3 |µB“iθBT “ i
ÿ

k

bkpTq sinpkµB{Tq , (25)

bkpTq “ 2
π

ż π

0
dθB Im

´nBpT, iθBTq
T3

¯

sinpkθBq . (26)

In [90] a cluster expansion model (CEM) was proposed, which takes the first two coefficients
as input from a lattice calculation [91], and expresses all higher coefficients in terms of
these,

bkpTq “ αSB
k
rb2pTqsk´2

rb1pTqsk´1 , k “ 3, 4, . . . (27)

The αSB
k are T-independent and fixed to reproduce the Stefan-Boltzmann limit. This

recursion implies that only two-body interactions are included, and corresponds to a
truncated virial expansion which is valid for sufficiently dilute systems. The model now
predicts all coefficients bkě3 and allows for an all-order closed expression,

nBpT, µBq
T3 “ ´ 2

27π2
b̂2

1

b̂2

!

4π2 rLi1px`q ´ Li1px´qs ` 3 rLi3px`q ´ Li3px´qs
)

, (28)

with b̂1,2 “ b1,2pTq
bSB

1,2
, x˘ “ ´ b̂2

b̂1
e˘µB{T , Lispzq “

8
ÿ

k“1

zk

ks .

All existing lattice data in the crossover regime are reproduced with excellent accuracy, as
the examples in Figure 13 (left) show. Moreover, Figure 13 (right) compares the coefficient
b1 computed directly from its defining equation, Equation (26), with a calculation from a
combination of χB

i , by inverting the CEM. Note that all orders of the fugacity expansion
enter this calculation. The remarkable quantitative agreement is only possible, if both
lattice calculations (using different actions) give equivalent results and all coefficients of
the CEM are sufficiently close to the true QCD values.

With all coefficients of the fugacity expansion available, one can study the radius
of convergence of CEM, Figure 14. The ratio estimator fails to converge, because of the
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irregular signs of higher order coefficients (it works for equal or alternating signs). On the
other hand, the Mercer-Roberts estimator,

rn “
ˇ

ˇ

ˇ

ˇ

ˇ

cn`1cn´1 ´ c2
n

cn`2cn ´ c2
n`1

ˇ

ˇ

ˇ

ˇ

ˇ

1{4
, (29)

converges and extrapolates to a unique radius of convergence, even for coefficients cn
pertaining to different observables, as must be the case for a true singularity. A number of
improved estimators with faster convergence properties has been proposed in [92].
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Figure 14. (Left): Comparison of estimators for the radius of convergence in CEM. (Right): The
resulting radius of convergence as a function of T predicts the RW-transition at imaginary µB.
From [90].

The red points in Figure 14 (right) show the resulting radius of convergence of the
CEM for different temperatures. At high temperatures a singularity is predicted at a
distance |µB{T| « π and T ą Tpc, which is quantitatively compatible with the first-order
Roberge-Weiss transition in the imaginary µB direction. At lower temperatures there is no
Roberge-Weiss transition and the radius of convergence quickly grows. This is an intriguing
result, given that no information from imaginary chemical potential has been used as input.
It shows that the general approach to detect a non-analytic phase transition is viable,
provided that a good estimator for the radius of convergence is used and that sufficiently
many coefficients are available (more than 100 in this case!). The correct identification of
the Roberge-Weiss transition by the radius of convergence conversely implies that the CEM
of lattice QCD does not have another phase transition closer to the origin, i.e., a possible
critical endpoint in the real direction must satisfy

µ
cep
B ą πT . (30)

This is fully consistent with Equation (23) but derived by completely different methods.
Of course, modelling higher coefficients in terms of lower ones is not unique. The

simplest alternative is a description of the baryon number fluctuations up to χB
8 by a

polynomial model, equally without singularity [93]. Another one is provided by a rational
function model, which can account for singularities and can be applied both to QCD or to
a chiral model with a phase transition [94]. Equations of state compatible with lattice data
and including an Ising critical point in predefined locations have also been constructed [95].
While the properties of models are not those of QCD, these analyses altogether do show that
there is no sign of criticality in the real µB direction from the presently available, continuum
extrapolated lattice data at zero or imaginary chemical potential, but at best in their higher
order completions. It will thus be interesting to test higher order coefficients without
modelling by Padé approximants or conformal maps as demonstrated in a Gross-Neveu
model [96], or by resummation schemes in pµB{Tq [97].
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Having to go term by term in an expansion can be avoided, if the radius of con-
vergence is instead determined by the Lee-Yang zero [10,11] closest to the origin. Using
reweighting to real chemical potential, this was the strategy employed in the first lattice
prediction of a critical point on Nτ “ 4 lattices using unimproved rooted staggered fermi-
ons [98]. However, it is now understood that the closest Lee-Yang zero was caused by a
spectral gap between the unrooted taste quartets of the zeros, after Taylor expanding the
reweighting factor, rather than by a phase transition [99]. This is related to the general
problem of staggered taste quartets splitting up when they cross a branch cut of a rooted
determinant [100]. It has then been proposed to redefine the rooted staggered determinant
by a geometric matching procedure averaging over the quartets, after which it can be
represented as an ordinary polynomial [99]. A further development [101] concerns the
reweighting procedure, which usually is based on sampling with the phase quenched
determinant and reweighting in the phase factor. This has a well-known overlap problem
between the sampled and reweighted ensembles. To get rid of this, one may neglect the
imaginary part of the determinant in the partition function altogether, which is allowed
since it will average to zero. One can then sample with the real part of the fermion deter-
minant and reweight in the sign only, which has no overlap problem. Of course, the sign
problem remains and one is still faced with a challenging signal to noise ratio.

Application of these new methods using the stout-smeared action on coarse Nτ “ 4
lattices appears to signal a Lee-Yang zero at µB „ 2.4T [101], which however is is still far
from the continuum. Simulation results on Nτ “ 6 for the renormalised chiral condensate,

xψ̄ψyRpT, µq “ ´mud

f 4
π

“xψ̄ψyT,µ ´ xψ̄ψy0,0
‰

, (31)

are shown in Figure 15, both for real and imaginary chemical potential [102]. In the left
plot, there is no steepening or narrowing of the chiral crossover yet as the real chemical
potential is increased. In the right plot the chemical potential is varied for fixed temperature
T “ 140 MeV. One observes full compatibility of the reweighted real µB simulations with
the analytic continuation from imaginary µB simulations, but with smaller errors. In this
case, also, there is no sign of a non-analyticity, which is again consistent with the results
from other methods.
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Figure 15. Renormalised chiral condensate from simulations with stout-smeared staggered fermions
at imaginary (blue) and real (black) chemical potential. (Left): Temperature scan at various chemical
potentials. (Right): µB scan at at T “ 140 MeV. Coloured bands result from analytic continuation of
imaginary chemical potential data. From [102].

6. Conclusions

Even though the sign problem of lattice QCD remains unsolved, there has been consid-
erable progress over the last few years towards phenomenologically relevant constraints on
the QCD phase diagram. This is due to a number of complementary paths of investigation,
each of them refining their methods and having finer lattices as well as different lattice
actions at their disposal.

In the Columbia plot at µB “ 0, the region of first-order deconfinement transitions in
the heavy mass corner can be directly simulated, and its Zp2q-critical boundary for Nf “ 2,
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while not yet continuum extrapolated, is expected to settle in a region around mPS „ 4 GeV.
The region of first-order chiral phase transitions seen in various lattice discretisations has
been observed to shrink continuously with decreasing lattice spacing. There is numerical
evidence for several Nf ě 3 that their Zp2q-critical boundary extrapolates to the chiral
limit at finite lattice spacing, exhibiting tricritical scaling. Such first-order regions are not
connected to the continuum and represent lattice artefacts. If this is confirmed by further
studies, the Columbia plot will look like in Figure 8.

In another recent development, the critical temperature for the chiral transition in
the massless limit has been determined to be in the range T « 126´ 140 MeV, which is
significantly lower than the pseudo-critical temperature at the physical point. According
to the expected relationship between the massless limit and the physical quark masses, this
bounds a possible critical endpoint at finite baryon density to be at µB ą„ 3T. An estimate of
the radius of convergence, based on a cluster expansion model consistent with all available
zero density baryon number fluctuations for physical QCD, is fully consistent with this.
Novel techniques to extract the leading Lee-Yang zero of the partition function, either with
improved reweighting methods or by refined series analyses, should be able to provide
additional, independent estimates of the proximity of a phase transition to the physical
point in the near future.
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