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Abstract

The climate system is one of the classical examples of a complex dynamical
system consisting of interacting sub-systems through mass, momentum, and
energy exchange across various spatial and temporal scales. This thesis aims to
detect and quantify sub-component interactions from an information exchange
(IE) perspective. For this purpose, IE estimators derived from information
theory are explored and applied to the available climate data obtained from
observations, reanalysis, global and regional climate models. Specifically, this
thesis investigates the usefulness of information theory methods for process-
oriented climate model evaluation.

Firstly, methods derived from the concepts of information theory such
as transfer entropy and information flow along with their linear and non-
linear estimation techniques are initially tested and applied to idealized two-
dimensional dynamical systems. The results revealed an expected direction
and magnitude of IE providing insights into underlying dynamics. However,
as expected the linear estimators are robust for linear systems but fail for non-
linear systems. Though the non-linear estimators (kernel and kraskov) showed
expected results for all the idealized systems, their free tuning parameters are
to be tested for consistent results. Moreover, these methods are sensitive to the
available time series length.

A real world example case study involving the dynamics between the Indian
and Pacific oceans revealed a physically consistent bi-directional IE. However,
unexpected IE was detected in the example of North Atlantic and European air
temperatures indicating hidden drivers. Though IE provides insights into sys-
tem dynamics, the availability of time series length and the system at handmust
be carefully taken into account before inferring any possible interpretations of
the results.

Quantifying the IE from El-Niño southern oscillation (ENSO) and Indian
Ocean Dipole (IOD) to the Indian Summer Monsoon Rainfall (ISMR) with the
observational and reanalysis data sets revealed that both ENSO and IOD are
synergistic predictors for the inter-annual variability of the ISMR over central
India i.e., the monsoon core region. Though the investigated three Global
Climate Models (GCM) could not reveal the underlying IE dynamics of ENSO,
IOD, and ISMR, a Regional Climate Model (RCM) simulation downscaling
one of the GCMs with realistic large scale signals across the lateral boundaries
showed good agreement with the observations.

Evaluating a coupled regional climatemodeling systemdriven by two differ-
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ent global data sets with IE estimators revealed significant differences between
the process chains linking the north-west Mediterranean sea surface temper-
atures, evaporation, wind speed, and the Vb-cyclone induced precipitation
over Danube, Odra, and Elbe catchments in the historical period (1951-2005).
Detailed investigation revealed that the north-west Mediterranean Sea in the
coupled regional simulation driven by ERA-20C reanalysis corresponded to
the Vb-cyclone precipitation over the three catchments while no such corre-
spondence is noted in the EC-EARTH driven simulation. This discrepancy is
attributed to the inheritance of the simulation biases from GCM into the RCM.
In the future period (1965-2099), no significant changes in the processes are
noted from the simulation.

Overall, this thesis used IE estimators in investigating the underlying dy-
namics of climate system and climate models. The estimators proved useful in
providing insights into climate system dynamics assisting in a process based
climate model evaluation.



Kurzzusammenfassung

Das Klimasystem ist ein typisches Beispiel für ein komplexes dynamisches Sys-
tem, das aus verschiedenen Subsystemen besteht, die durch Massen-, Impuls-
und Energieaustausch auf verschiedenen räumlichen und zeitlichen Skalen
miteinander interagieren. Ziel dieser Arbeit ist es, die Wechselwirkungen
zwischen den Subsystemen aus der Perspektive des Informationsaustauschs
(engl. Information Exchange, IE) zu erkennen und zu quantifizieren. Zu
diesem Zweck werden aus der Informationstheorie abgeleitete Maße für den
Informationsfluß untersucht und auf die verfügbaren Klimadaten bestehend
aus Beobachtungen, Reanalysen, globalen Klimamodellen und regionalen Kli-
mamodellen angewendet. Insbesondere zeigt die vorgelegte Arbeit die Nüt-
zlichkeit informationstheoretischer Methoden für die prozessorientierte Kli-
mamodellbewertung.

Aus den Konzepten der Informationstheorie abgeleitete Methoden wie
die Transferentropie, der sogenannte Informationsfluss, sowie deren lineare
und nichtlineare Schätzverfahren werden zunächst getestet und auf ideal-
isierte zweidimensionale Systeme angewendet. Die Ergebnisse liefern eine
Abschätzung für die Richtung und Größe des Informationsflusses, was Ein-
blicke in die zugrundeliegende Dynamik bietet. Wie erwartet sind die linearen
Schätzer zwar robust für lineare Systeme, versagen aber bei nichtlinearen Sys-
temen. Obwohl die nichtlinearen Schätzer (Kernel und Kraskov) robuste Ergeb-
nisse für alle idealisierten Systeme zeigen, müssen ihre freienTuning-parameter
auf konsistente Ergebnisse getestet werden. Außerdem sind diese Methoden
empfindlich gegenüber den Eigenschaften der verwendeten Zeitreihen (z.B. der
Zeitreihenlänge). Die nichtlinearen Schätzer ergaben einen physikalisch kon-
sistenten bidirektionalen Informationsaustausch zwischen dem Indischen und
dem Pazifischen Ozean. Am Beispiel der Lufttemperaturen im Nordatlantik
und in Europa wurde jedoch ein unerwarteter Informationsaustausch zwis-
chen beiden Regionen festgestellt, der auf versteckte Einflussfaktoren hinweist.
Obwohl die Informationstheorie wichtige Einblicke in die Systemdynamik
gewährt, müssen die Länge der verfügbaren Zeitreihen und das jeweilige Sys-
tem sorgfältig berücksichtigt werden, bevor mögliche Interpretationen der
Ergebnisse abgeleitet werden können.

Die Quantifizierung des Informationsaustauschs von El-Niño und der
Southern Oscillation (kurz ENSO) und dem Dipol des Indischen Ozeans (IOD)
auf den Indischen Sommermonsunregen (IMSR) mithilfe von Beobachtungs-
und Reanalysedaten ergab, dass sowohl ENSO als auch IOD synergetische

v



vi ▶ KURZZUSAMMENFASSUNG

Prädiktoren für die inter-annuelle Variabilität des ISMR über Zentralindien,
d.h. der Monsunkernregion, sind. Obwohl die drei untersuchten globalen
Klimamodelle (GCM) die zugrundeliegende Dynamik von ENSO, IOD und
ISMR nicht aufzeigen konnten, zeigte eine einzelne regionale Klimamodell-
Simulation (RCM), bei der eines der GCMs mit realistischen großräumigen
Signalen entlang der lateralen Grenzen regionalisiert wurde, eine gute Übere-
instimmung mit den Beobachtungen. Dieses Ergebnis unterstreicht die Nüt-
zlichkeit der informationstheoretischen Schätzer für die prozessorientierte
Evaluierung von Klimamodellen.

Die Bewertung gekoppelter regionaler Klimamodellsysteme mit infor-
mationstheoretischen Maßen ergab signifikante Unterschiede zwischen den
Prozessketten, die die Meeresoberflächentemperaturen des nordwestlichen
Mittelmeers, die Verdunstung, die Windgeschwindigkeit und den von Vb-
Zyklonen verursachten Niederschlag über den Einzugsgebieten von Donau,
Oder und Elbe im historischen Zeitraum (1951-2005) verbinden. Detaillierte
Untersuchungen ergaben, dass das nordwestliche Mittelmeer in der gekoppel-
ten regionalenKlimasimulation auf derGrundlage der ERA-20C-Reanalyse den
Vb-Zyklonenniederschlag über den drei Einzugsgebieten beeinflusst, während
in der EC-EARTH-Simulation keine derartigen Zusammenhänge festgestellt
wurden. Diese Diskrepanz wird auf die Vererbung der Fehlern in der Kli-
masimulation vom GCM auf das RCM zurückgeführt. In der zukünftigen
Periode (1965-2099) werden keine signifikanten Änderungen der Prozesse in
der Simulation festgestellt.

Insgesamt hat diese Arbeit gezeigt, dass die Schätzer für den Informa-
tionsaustausch zusätzliche Einblicke in die zugrundeliegende Systemdynamik
liefern und damit eine prozessbasierte Klimamodellbewertung unterstützen.
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Deutsche Zusammenfassung

Die Erde ist ein komplexes, dynamisches System, welches aus nichtlinearen
Wechselwirkungen zwischen seinen Subsystemen besteht. Diese Subsysteme
umfassen die Atmosphäre, Biosphäre, Kryosphäre. Hydrosphäre, Lithosphäre
und Anthroposphäre. Sie interagieren auf verschiedenen räumlichen und
zeitlichen Skalen durch Austausch von Masse, Impuls und Energie. Um zu
verstehen, welche Prozesse das Klima der Erde bestimmen, ist es nötig, diese
Wechselwirkungen zu erkennen und zu quantifizieren.

Zusätzlich zu umfassenden Beobachtungsnetzwerken, stellen Wetter- und
Klimamodelle ein hilfreiches Werkzeug dar, um das Klima der Erde in der
Vergangenheit, der Gegenwart und der Zukunft zu verstehen. Bedingt durch
den technischen Fortschritt der letzten Jahrzehnte haben sowohl Klimamodelle
als auch Beobachtungssysteme beträchtliche Datenmengen produziert.

Methoden wie Korrelationsanalyse, Regression, empirische orthogonale
Funktionen und zeitversetzte Kreuzkorrelation werden häufig genutzt, um
Wechselwirkungen zwischen Subsystemen des Klimasystems auf Basis von
Modell- oder Beobachtungsdaten zu verstehen. Ein klassisches Beispiel hier-
für war der Versuch von Sir Gilbert Walker den Niederschlag des indischen
Sommer Monsuns durch Korrelations- und Regressionsanalyse vorherzusagen
(Taylor 1962). Das Indian Meteorological Department benutzt zusätzlich zu
dynamischen Wettervorhersagemodellen bis heute multivariate Regressions-
analyse (Rajeevan et al. 2007).

Obwohl die Korrelationsanalyse ein nützliches Werkzeug ist, um lineare
Wechselwirkungen zu analysieren, ist sie nicht in der Lage die Richtung der
Wechselwirkungen, also Ursache und Wirkung, zu bestimmen. Zeitversetzte
Korrelationsanalyse hat den Nachteil sensitiv auf Autokorrelation zu reagieren,
was zu unklaren Signalen führen kann (Runge et al. 2014). Wechselwirkungen
zwischen Subsystemen können aus der Perspektive des Informationsaustuschs
(engl. Information Exchange, IE) zwischen den Subsystemen betrachtet werden.
Mithilfe dieser Methode sollte sich nicht nur der statistische Zusammenhang
zwischen Subsystemen beschreiben lassen, sondern auch ein tieferes Verständ-
nis für die physikalischen Prozesse und die Dynamik des Gesamtsystems erre-
icht werden. Kumar & Gupta (2020) erörtern, dass informationstheoretische
Ansätze es ermöglichen, die Komplexität und das Verhalten von dynamischen
Systemen besser charakterisieren, während physikalische Gesetze der Entwick-
lung des Systems wichtige Grenzen setzen. Diese Arbeit zielt darauf ab, In-
formationstheorie auf Klimadaten anzuwenden, um die zugrundeliegenden

xxvii
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Systemdynamik aufzudecken. Insbesondere versuchen wir unsere Methodik
auf die Evaluierung von Klimamodellen auszuweiten, um so ihre Nutzbarkeit
zu untersuchen. Nach unserem Wissen sind dies die ersten Versuche, diese
Methodik umfangreich auf die Evaluierung von Klimamodellen anzuwenden.

Diese Arbeit untersucht die folgenden Fragen:

• Kann die zugrundeliegende Dynamik idealisierter und komplexer Ab-
straktionen des Klimasystems mithilfe informationstheoretischer Meth-
oden robust abgeschätzt werden?

• Bieten diese Methoden zusätzliche Erkenntnisse bei der Evaluierung
von regionalen Klimamodellen, vor allem in Bezug auf die Wechsel-
wirkungen zwischen ENSO, IOD und dem indischen Monsunnieder-
schlag (ISMR)?

• Wie verändert sich die Prozesskette zwischenMittelmeer undVb-Niederschlag
in regionalen Erdsystemmodellen in Abhängigkeit von den Antriebs-
daten?

Um die erste Frage zu beantworten, benutzen wir Methoden wie die ax-
iomatische Transfer Entropie und den sogenannten "first principle-based in-
formation flow" zur Quantifizierung des Informationsaustauschs. Da die zuge-
hörigen Schätzverfahren noch nicht umfassend untersucht wurden, haben wir
sowohl nichtparametrische Schätzer wie "transfer-entropy (TE)-binning", "TE-
kernel" und "TE k-nearest neighbor" als auch parametrische Schätzer wie "TE-
linear" und "information flow (IF)-linear" in idealisierten, zweidimensionalen
Testfällen zusammenmit ihrer Abhängigkeit von der Stichprobengröße getestet.
Anschließend wurden diese Schätzverfahren auf zwei Klimaphänomene ange-
wandt: die Kopplung des Indischen Ozeans mit dem pazifischen Ozean und die
Kopplung der Nordatlantischen Oszillation mit der Lufttemperatur in Europa.

Die Ergebnisse zeigen, dass die parametrischen Schätzer, IF-linear und
TE-linear, den einseitigen und den beidseitigen Informationsfluss im Falle eines
idealisierten linearen Systems erkennen und verlässlich quantifizieren kön-
nen, jedoch nicht in nicht-linearen Systemen. Unter den nichtparametrischen
Schätzern liefern TE-kernel und TE-kraskov plausible Ergebnisse. Allerd-
ings mussten dafür Parameter eingestellt werden, um konsistente numerische
Ergebnisse zu erhalten. Außerdem wurde eine langsame Konvergenz des Infor-
mationsaustauschs mit dem TE-Kraskov Schätzer festgestellt. Aufgrund dessen
kommen wir zu dem Schluss, dass die beiden plausiblen, nichtparametrischen
Schätzer gemeinsam angewandt werden sollten und ihre Implementierung
sorgfältiger Einstellungen bedarf, um quantitative Aussagen über die Wechsel-
wirkungen in nicht-linearen Systemen zu ziehen.
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Für realistische Klimaanwendungen zeigten die parametrischen und die
zuverlässigen nichtparametrischen Schätzer einen erheblichen bidirektionalen
Informationsaustausch zwischen dem Indischen und dem Pazifischen Ozean.
Darüber hinaus stimmten die Zeitverzögerungen des signifikanten Informa-
tionsaustauschs zwischen dem Pazifik und dem Indischen Ozean mit der
vorhandenen Literatur überein, was auf eine Verbindung zwischen physikalis-
chen Prozessen und der Dynamik des Informationsaustauschs hinweist. An-
gesichts der Beschränkungen vonTEund IF-linear kann jedoch dieMöglichkeit
eines versteckten Einflusses durch ein anderes System in der indo-pazifischen
Kopplung nicht ausgeschlossen werden. Im zweiten Beispiel der Klimaanwen-
dung, d. h. der NAO und der europäischen Lufttemperatur im Winter, zeigten
diese Schätzer einen unrealistischen, bidirektionalen Informationsaustausch,
was auf den Einfluss eines versteckten Treibers hindeutet.

Zur Evaluation regionalerKlimamodelle, insbesondere derWechselwirkun-
gen zwischen IOD, ENSO und dem indischen Sommermonsunregen, setzen
wir Methoden wie den Informationsaustausch aus zwei Quellen ein. Zur Ver-
anschaulichung der Konzepte und der Quantifizierung des Informationsaus-
tauschs zwischen zwei Quellen und einem Ziel verwenden wir idealisierte
Testfälle, die sowohl aus linearen als auch aus nichtlinearen, dynamischen
Systemen bestehen. Unsere Ergebnisse zeigen, dass diese Systeme eine Netto-
Synergie aufweisen (d. h. der kombinierte Einfluss von zwei Quellen auf ein
Ziel ist größer als die Summe ihrer Beiträge), selbst bei unkorrelierten Quellen
sowohl in linearen als auch in nichtlinearen Systemen.

Als nächsten Schritt untersuchten wir den Informationsaustausch zwis-
chen ENSO und IOD zu ISMR IE in verfügbaren Beobachtungen, Reanalyse-
Datensätzen und in drei Global Climate Model (GCM)-Simulationen, die auch
mit dem Regional Climate Model (RCM) dynamisch verfeinert wurden. Die
Ergebnisse der Beobachtungen und Reanalysedaten deuten darauf hin, dass
sowohl IOD als auch ENSO die jährliche Variabilität der ISMR in den meisten
Teilen des indischen Subkontinents beeinflussen. Insbesondere weisen IOD
und ENSO über Zentralindien, der Kernregion des Monsuns, eine positive
Nettosynergie auf, wohingegen sie über dem südlichen Teil Indiens redundante
Informationen liefern. Darüber hinaus teilen sich ENSO und IOD redundante
Informationen (negative Nettosynergie) im südlichen Teil des indischen Sub-
kontinents.

Für die Modellevaluation haben wir drei CMIP5-GCMs - MPI-ESM-
LR (Stevens et al. 2013) Nor-ESM-M (Bentsen et al. 2013) und EC-EARTH
(Hazeleger et al. 2010) -mit demnicht-hydrostatischen regionalen Klimamodell
COSMO-crCLM Version v1-1 dynamisch verfeinert. Das COSMO-crCLIM
ist eine beschleunigte Version des COSMO-Modells (Fuhrer et al. 2014) im
Klimamodus (Leutwyler et al. 2016, Rockel et al. 2008), das für viele regionale
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Klimasimulationen über Europa verwendet wurde. Die RCM-Simulation hat
eine horizontale Auflösung von 0, 22◦ (d.h. 25km) und 57 vertikale Ebenen
und verwendet einen Zeitschritt von 150s. Die Konfiguration der Modellsimu-
lation folgte dem CORDEX-Rahmen, d.h. es wird ein historischer Zeitraum
von 1950-2005 und das Business-as-usual-Szenario (RCP8.5) von 2006-2099
simuliert. In dieser Arbeit haben wir jedoch nur den historischen Zeitraum
untersucht.

Die Ergebnisse zeigen, dass MPI-ESM-LR keinen synergetischen Infor-
mationsaustausch über dem indischen Subkontinent aufweist, während in
Nor-ESM-M die IOD und ENSO über demWesten Indiens gemeinsame Infor-
mationen liefern. EC-EARTH zeigt weniger Nettosynergie über dem indischen
Subkontinent. Insgesamt weichen die Ergebnisse des IE-Austauschs von den
Beobachtungen ab, was für alle drei GCM-Simulationen gilt. Die IE-Muster
über dem indischen Subkontinent für die verfeinerten RCM-Simulationen
zeigten eine Nettosynergie in Zentralindien und gemeinsame Informationen
in Südindien in der verfeinerten Nor-ESM-M-Simulation. In der verfein-
erten MPI-ESM-LR- und der verfeinerten EC-EARTH-Simulation sind solche
Muster jedoch nicht vorhanden.

Dies stimmt mit den Ergebnissen der GCM-Simulationen überein, bei de-
nen festgestellt wurde, dass die Nor-ESM-M-Simulation die ENSO- und IOD-
induzierten anomalenNiederschlagsstrukturen besser nachbildet als die beiden
anderen GCMs. Obwohl alle COSMO-crCLM-Simulationen dieselbe Physik
und Dynamik aufweisen, konnte nur die verfeinerte Nor-ESM-M-Simulation
realistische IE-Muster nachbilden.

Die besseren Ergebnisse in der regionalisierten Nor-ESM-M-Simulation
können auf realistischere großräumige Informationen aus derGCM-Simulation
zurückgeführt werden, wie z. B. den Feuchteflusstransport während ver-
schiedener Phasen von ENSO- und IOD-Ereignissen. Eine genauere Unter-
suchung der Anomalien des Feuchteflusstransports ergab, dass sich die Muster
der MPI-ESM-LR- und EC-EARTH-GCM-Simulationen stark von denen der
Reanalyse unterscheiden und folglich falsch dargestellt werden. Eine bessere
Replikation der Anomalie der Feuchtigkeitsflüsse in der Nor-ESM-MGCM-
Simulation während ENSO und IOD könnte auf eine bessere Simulation der
großräumigen Zirkulationsmuster, wie die Walker- und Hadley-Zirkulationen,
zurückzuführen sein, da die SST besser dargestellt wird als in den beiden
anderen GCM-Simulationen.

Was die RCM-Simulationen anbelangt, so zeigten die Ergebnisse ähn-
liche Anomalien der Feuchtigkeitsflüsse im Vergleich zu den treibenden GCM-
Simulationen, wobei die regionalisierte Nor-ESM-M die regionalisierten MPI-
ESM-LR und die regionalisierten EC-EARTH Simulation übertrifft. Diese
Ergebnisse deuten darauf hin, dass ein realistisches großskaliges Signal aus den
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GCM-Simulationen (z. B. der Feuchtetransport und die SST-Anomalien) für
ein RCM von wesentlicher Bedeutung ist, um die GCM-Ergebnisse in Bezug
auf die ISMR-Variabilität zu verbessern. Wenn das großskalige Signal aus dem
GCM nicht korrekt ist und falsche Feuchtigkeitsflüsse an den seitlichen Gren-
zen des RCM aufgezwungen werden, werden die regionalisierten Ergebnisse
beeinträchtigt.

Um die dritte und letzte Frage der Arbeit zu beantworten, wendetenwir die
Informationsaustauschschätzer an, um die Prozessketten zu verstehen, die das
nordwestliche Mittelmeer und die Vb-Ereignis-Niederschläge in den Donau-,
Elbe- und Oder-Einzugsgebieten in den regionalen gekoppelten Atmosphäre-
Ozean-Klimasimulationen verbinden. Das gekoppelte regionale Klimamodell
besteht aus dem COSMO-CLM als Atmosphärenkomponente, dem Nucleus
for EuropeanModeling of the Ocean (NEMO) als Ozeankomponente über dem
Mittelmeer (NEMOMED12) und TRIP für die Flussabflussberechnung. Diese
einzelnen Komponenten sind durch einen Koppler namens OASIS miteinander
verbunden.

In diesemAbschnitt derArbeitwurden zwei gekoppelte regionaleKlimamodell-
Simulationen verwendet, nämlich das COSMO-CLM–NEMOMED12–TRIP
für den Zeitraum 1951-2099 unter kontinuierlicher Verwendung des EC-
EARTH GCM als Antriebsdaten mit dem RCP-8.5-Szenario für den zukünfti-
gen Zeitraum (2006-2099) bei 0,11◦ (≈ 12 km) horizontal und die ECMWF-
Reanalyse des zwanzigsten Jahrhunderts (ERA-20C) als gekoppelte regionale
Klimasimulationmit demselbenAufbau. Die LeistungderERA-20C-Simulation
bei der realistischen Nachbildung der Vb-Zyklonereignisse und der damit ver-
bundenen Niederschläge wurde bereits in der Studie von Krug et al. (2022)
berichtet und analysiert. Daher ist die heruntergerechneteERA-20C-Simulation
eine Referenz für die Validierung der heruntergerechneten, von EC-EARTH
simulierten Vb-Zyklonenereignisse und der damit verbundenen Niederschläge
im historischen Zeitraum.

Bei der Häufigkeit der Vb-Zyklone wurde eine gute Übereinstimmung
zwischen der GUF-Auswertung und den historischen GUF-Simulationen fest-
gestellt. Darüber hinaus zeigten die Vb-Zyklonenzugdichte und -intensität
in Bezug auf den minimalen Zyklonenzentraldruck sowie die Rangfolge der
Vb-Zyklonenniederschlagsanomalien eine gute Übereinstimmung zwischen
der GUF-Auswertung und den historischen Simulationen. Eine unbedeutende
Zunahme der Vb-Zyklonenhäufigkeit um 1,8 % bis zum Ende des 21. Jahrhun-
derts wurde in der GUF-Zukunftssimulation festgestellt. Die Änderungen der
zukünftigen Vb-Niederschlagsanomalien über den drei Einzugsgebieten waren
ebenfalls nicht signifikant.

In der GUF-Bewertungssimulation entsprachen die SST-, Verdunstungs-
und Windgeschwindigkeitsanomalien im nordwestlichen Mittelmeerraum



xxxii ▶ DEUTSCHE ZUSAMMENFASSUNG

der Rangfolge der Vb-Zyklonenniederschlagsanomalien. Eine solche Übere-
instimmung wurde in der EC-EARTH-gesteuerten historischen Simulation
nicht festgestellt. Trotz Ähnlichkeiten im Modellaufbau (gleiche regionale
Atmosphäre/Ozean-Modellkomponentenund -aufbautenüber demMittelmeer)
und guter Übereinstimmung in der Vb-Zyklonenhäufigkeit, -intensität und -
niederschlag zwischenderGUF-Auswertungundder historischenGUF-Simulation
unterscheiden sich die Zustands- und Prozessketten des nordwestlichen Mit-
telmeers im Hinblick auf den Informationsaustausch.

Die Unterschiede zwischen den Simulationen könnten auf das Auftreten
von Simulationsverzerrungen zurückgeführt werden, die vom treibenden EC-
EARTH GCM übernommen wurden, z.B. zu kalte Oberflächen- und Meere-
soberflächentemperaturen über demMittelmeer im Vergleich zum ERA-20C
Forcing. Das Downscaling von EC-EARTH3 (neueste Version von EC-EARTH),
das eine geringere Verzerrung der Oberflächenlufttemperaturen und des SST
(Döscher et al. 2021) aufweist, könnte zu einem besseren Verständnis der
Zustands- und Prozessketten beitragen, die das nordwestliche Mittelmeer und
die Vb-Zyklonenniederschläge in historischen und zukünftigen Zeiträumen
verbinden.

Zusammenfassend lässt sich sagen, dass die in dieser Arbeit eingehend
getesteten Schätzer für den Informationsaustausch dabei helfen, die regionalen
Klimasimulationen prozessorientiert auszuwerten und die zugrunde liegende
Systemdynamik aufzuzeigen. Diese Bewertungsmethode hilft der regionalen
Klimagemeinschaft, die Modellleistung weiter zu verstehen und zu verbessern
sowie den geeigneten globalen Modellantrieb zu wählen. Die Robustheit dieser
Schätzer für den Informationsaustausch stellt jedoch aufgrund ihrer Empfind-
lichkeit gegenüber der verfügbaren Zeitreihenlänge und den freien Abstim-
mungsparametern noch eine Herausforderung dar und bedarf daher weiterer
Forschung. Darüber hinaus wurden die Methoden genutzt und angewandt, um
die Wechselwirkungen zwischen einer einzelnen oder zwei Quellen und einem
Ziel zu quantifizieren. Das Klimaphänomen besteht jedoch aus hochdimen-
sionalen Wechselwirkungen, so dass neue und effiziente Schätzer für den In-
formationsaustausch entwickelt werden müssen, um mehrdimensionale Wech-
selwirkungen aufzudecken.
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CHAPTER 1
Introduction

Earth is a complex dynamical system consisting of non-linear interactions
among its sub-components namely the atmosphere, biosphere, cryosphere,
hydrosphere, lithosphere, and the anthroposphere. These components interact
at various spatial and temporal scales through mass, momentum, and energy
exchange. Detecting and quantifying these interactions assists in understanding
the processes which govern our earth’s climate.

In addition to the large observational network, climate models based on the
governing fluid equations are very useful tools in understanding the past and
future climate state. With the recent advances in science and technology, an
enormous amount of data is produced with the help of climate models on large
computing facilities, ground-based, and satellite-based observational systems.

Methods such as correlation, regression analysis, empirical orthogonal func-
tions, and time-lagged cross-correlations were often used on the observational
and climate model data to understand the interactions among sub-components
of earths climate. A classical example was the attempt by Sir Gilbert Walker to
predict the Indian Summer Monsoon rainfall with correlations and multiple
regression equations (Taylor 1962). The Indian Meteorological Department
still uses multiple regression analysis for the long range prediction of the Indian
Monsoon in addition to the dynamical weather prediction models (Rajeevan
et al. 2007).

Though correlations are useful tools in analyzing the linear interactions,
they do not detect the direction of interactions i.e., drive and response compo-
nents. Often the time-lagged correlations were used for directionality, they are
sensitive to the auto-correlations which result in obscure detection of direc-
tional interactions (Runge et al. 2014). The interactions among sub-components
can be contemplated as information exchange (IE) between them. This IE should
ideally reveal not just the statistical interdependence between these compo-
nents, but a physical representation of the processes adding a new dimension
to understanding the system dynamics. Kumar & Gupta (2020) argued that
the information-theory-based approaches enable to better characterize the
complexity and emergent behavior of the dynamical system, while the laws of
physics provide important constraints on the evolution of the system behavior.

This thesis aims at exploring the information exchange methodology ap-
plied to the available climate data in an attempt to unravel the underlying system

3
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Information
theoretic methods

Non-linear

TE-
binningTE-

kernel

TE-
kraskov

MI-
kraskov
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kernel

Linear

IF-linear
MI-linear

TE-linear

FIGURE 1.1. Various information theory methods and their estimators developed and used in
this thesis

dynamics. Specifically, we aim to extend our methodology to climate model
evaluation so as to investigate the usefulness of these methods. To the best
of our knowledge these are the very first steps in applying this methodology
extensively to climate model evaluation.

1.1 INTRODUCTION TO INFORMATION THEORY

In this sub-section, we discuss the fundamentals of the information theory,
various methods derived from it, and their estimation techniques.

The concept of information entropy was first proposed by Shannon (2001),
in his work "The Mathematical Theory of Communication" which connected
with optimal coding and error-free communication. However, the information
entropy was later adapted to many fields such as neurosciences, earth sciences,
climate sciences, etc.

The mathematical formulation of Shannon Entropy for a random variable
𝑋 is given as

𝐻 (𝑋 ) = −
∑︁
𝑥

𝑝 (𝑥) log𝑝 (𝑥),

where 𝑝 (𝑥) represents the probability of an individual state for the random
variable𝑋 . The summation goes through all the possible states of the random
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variable𝑋 . The entropy is often expressed in bits if the logarithm base 2 is used,
else in nats if a natural logarithm is used.

The information entropy can be understood as the average uncertainty or
surprise about the outcome of the random variable𝑋 . For example, consider
a fair coin with equal probability of heads and tails. Such a coin toss has 1 bit
of entropy. Lets assume that the coin was not fair, lets say the probability of
getting a head is 1

4 and tail is 3
4 , the entropy of such a coin would be 0.81.

If an uncertainty about the random variable𝑋 is reduced by the knowledge
of an other variable 𝑌 , then both the random variables𝑋 and 𝑌 share common
information about each other. This can be mathematically represented as
Mutual Information (MI),

𝑀𝐼𝑥𝑦 =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) .

The MI between the random variables𝑋 and 𝑌 is greater than zero when
there exists any mutual dependence between each other regardless of their
nonlinear dependence. Mutual information was used in the study by Knuth
et al. (2013) to study the interactions between the cloud cover and the sea
surface temperature anomalies around the globe. Their study observed high
mutual information exchange values over the central Pacific indicating the
dependence of the two variables over that particular location. The MI was also
used in the climate model verification by the study of Ahrens &Walser (2008).

Though MI is a useful metric, it is a symmetric quantity, meaning, it does
not contain any dynamical directional information. Though time-lagged mu-
tual information can provide insights into the system dynamics, however, due
to the common input from the history of the targeted random variable it could
produce spurious unrealistic results. Hence, Schreiber (2000) introduced an-
other important information theory metric called Transfer Entropy (TE) in
an attempt to detect and quantify the asymmetric interactions among the sub-
systems.

The TE is based on the transitional probabilities explicitly incorporat-
ing the underlying dynamics of a complex system. The difference between
the MI and TE is based on the notion that the former method relies on the
static probabilities while the latter is based on the transitional probabilities.
The TE measures the deviation between the transitional probabilities based
on the generalized Markovian property of order 𝑘 , 𝑝 (𝑥𝑛+1 |𝑥𝑛, ..., 𝑥𝑛−𝑘+1) and
𝑝 (𝑥𝑛+1 |𝑥𝑛, ...., 𝑥𝑛−𝑘+1, 𝑦𝑛, ...., 𝑦𝑛−𝑙+1) of the subsystems𝑋 and 𝑌 .

In a detailed investigation, Schreiber (2000) experimentally applied TE to
idealized spatiotemporal systems and then to a real-world application namely,
to a bivariate physiological time series. The TE with kernel estimator for the
first idealized system i.e., a one-dimensional lattice of a uni-directional coupled
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FIGURE 1.2. Transfer Entropy in Ulam maps from 𝑋1 to 𝑋2 and vice versa (in solid lines) with
increasing coupling coefficient 𝜖 and time delayed Mutual Information (in dotted
lines). Figure source: Schreiber (2000)

maps showed expected uni-directional information exchange showcasing the
asymmetric relation.

With a more complicated idealized system, the Ulam map 𝑓 (𝑥) = 2 − 𝑥2

with non-small coupling, the TE between the two systems𝑋1 and𝑋2 produced
reliable asymmetric results compared to the time-lagged mutual information.
Figure 1.2 shows the information exchange in bits along with the coupling
coefficient 𝜖 for both the TE and MI.

The dynamics of the Ulam coupled map in Figure 1.2 undergo several
bifurcations with changing coupling coefficient 𝜖 . At a coupling coefficient
𝜖 = 0.18, the asymptotic state is of temporal and spatial period two. At this
particular coupling coefficient information is neither exchanged nor produced
between the sites. The values as derived from the time-lagged MI and TE
are 1 and 0 respectively. The TE thus reveals the true system dynamics, un-
like the time-lagged mutual information, as there is no information exchange.
Moreover, applying the TE to the real world application revealed a dominant
information exchange from heart rate to breath rate than vice versa unlike the
mutual information revealing the dynamics between the heart and the breath
rate of sleeping human suffering from sleep apnea. These results from Schreiber
(2000) motivated many branches of science to adopt TE as a methodology for
estimating the driving dynamics of complex systems.

The Transfer Entropy is widely applied in the field of neurosciences, espe-
cially in brain research. For example, Vicente et al. (2011) applied TE to test
for effective connectivity to electrophysiological simulation data and magne-
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toencephalography (MEG) observational recordings in a simple motor task.
They concluded that the TE estimations proved reliable in quantifying the
non-linear interactions where linear methods were hampered. In the field of
Earth System Sciences, Ruddell & Kumar (2009) applied TE for quantifying the
directionality and the time scale of information flow between pairs of ecohy-
drological variables using observed time series data. When the TE is applied to
the ecohydrological system in a healthy peak growing season state and during
a severe drought, they concluded that the process network during drought
is substantially decoupled. These two studies were classical examples of the
application of TE to practical applications.

The TE is also applied earlier in the field of climate science. For example,
Runge et al. (2012) used the TE estimations to the daily mean sea level pressure
anomalies in the winter months at four locations in eastern Europe. Their re-
sults suggested a south-eastward flow of entropy, which is physically consistent
to the dynamics of lower and upper atmosphere. The information exchange
between the four locations in the eastern Europe when estimated from the
MI showed unrealistic physical links when compared to the TE estimations.
Their results motivated many further studies in applying the TE to the climate
data, e.g., the drivers of recent temperature variability (Bhaskar et al. 2017)
possible relation between the Earth’s magnetic field and climate (Campuzano
et al. 2016) and, analyzing changes in the complexity of climate with radiation
data (Delgado-Bonal et al. 2020).

Another information theory methodology was proposed by San Liang &
Kleeman (2005) in an attempt to derive information exchange from fundamen-
tal principles, unlike TE which was axiomatically framed. From here after this
method is referred an information flow. Considering two sub-systems𝑋 and
𝑌 , the information flow from 𝑌 to𝑋 is quantified by the difference between
the marginal entropy evolution of𝑋 , i.e., 𝑑𝐻𝑋

𝑑𝑡
and the entropy evolution of𝑋

excluding the influence of 𝑌 , i.e., 𝑑𝐻
∗
𝑋

𝑑𝑡
. To compute the information flow, the

marginal evolution of the probability density functions needs to be estimated.
However, without the knowledge of the system dynamics, estimating these
quantities is a challenge. To overcome this challenge, San Liang (2014) lin-
earized the governing equation for information flow and proposed a maximum
likelihood estimator for estimating information flow.

The maximum likelihood information flow estimator is straightforward to
apply to time-series data and does not involve knowing the system dynamical
equations. This methodology is applied between the climate variables and the
surface mass balance over the Antarctica region to investigate the dynamical
processes affecting the surface mass balance in climate model simulations dur-
ing the historical period (Vannitsem et al. 2019). The study by Tawia Hagan et al.
(2019) applied the information flow to the soil moisture and near-surface tem-



8 ▶ CHAP. 1 INTRODUCTION

peratures over China using the European Center for Medium-range weather
forecast ERA-Interim dataset. Their results revealed an expected dominant in-
formation flow signal from the soil moisture to air temperature in the month of
spring. Finally, the information flow is used in analyzing the causal interactions
between the global radiative forcing and the global mean surface temperature
anomalies. Various radiative forcing parameters such as aerosols, carbon diox-
ide concentrations, and natural variability such as solar cycle, and volcanoes
are checked for causality with the global surface temperatures. Their results
revealed dominating significant information exchange from the global 𝐶𝑂2
concentrations to air temperatures, indicating the role of anthropogenic forcing
in changing the climate.

In this thesis, the information exchange methods described above are de-
veloped and tested rigorously on idealized test cases before applying them
to climate application and climate models. While the information exchange
methods are very useful, their estimation is very challenging. More details
of the estimation techniques are described in chapter 2. However, Figure 1.1
provides an overview of various estimators which estimate the MI, TE and
information flow in both linear and non-linear forms. In an attempt to explore
various information exchange methods and furthermore apply them on climate
data, we ask the following specific questions,

1.1.1 Research Question– 1

The information theory methods though useful in revealing the system dynam-
ics, their estimation is a challenge. Especially, the non-parametric estimation
of TE. Most of the literature mentioned in section 1.1 relied on a single esti-
mation technique of TE while applying to the datasets, i.e., binning technique.
Furthermore, the TE and information flow methodologies are derived from
two different principles, hence their performance in unraveling the system
dynamics on the idealized and climate data is yet to be investigated in detail.
Moreover, the availability of climate data is limited and this poses a challenge
in applying these methods to detect robust climate interactions.

The first scientific question of the thesis is the following,

• Do the IE estimators provide robust and reliable result’s to quantify the
system dynamics in idealized and climate system applications?

To answer this question, in chapter 3 a detailed investigation of various
TE estimators shown in Figure 1.1 applied on linear and non-linear idealized
systems and two large-scale climate teleconnections is discussed. Furthermore,
the sensitivity of these estimators on time series length is also investigated.
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1.2 INFORMATION THEORY AS A TOOL FOR REGIONAL CLIMATE MODEL EVALUA-
TION

Climate models based on fundamental fluid equations of mass, momentum,
and energy are widely used in simulating and understanding the current and
future climate. Furthermore, they comprise of various components such as
ocean, atmosphere, land, ice, etc. Global Climate Models (GCM) simulate the
climate for the whole globe at various resolutions from hundreds of kilometers
to tens of kilometers. However, with increased resolution comes increased
computational and data storage costs. Hence there is a trade-off between the
computational costs and the desired horizontal and vertical resolution.

Regional Climate Models (RCMs) simulate the regional climate to provide
higher spatial and temporal characteristics of a specific region of interest by dy-
namically downscaling a GCM of course resolution (Giorgi 2019) as depicted
in the Figure 1.3. The data from the RCMs are typically used for the long-
term planning and adaptation by the impact studies modeling groups, national
climate assessment reports, and strategies (Sørland et al. 2021). The GCMs
provide large-scale information to the RCMs through the lateral and surface
boundary conditions. The RCM then integrates the governing equations with
its physics and dynamics to simulate the regional climate characteristics by ac-
counting for the sub-GCM grid-scale forcings and processes eg., the orography,
convection, etc.

RCMRCM
GCM

FIGURE 1.3. Schematic depiction of a global climate model grid and overlapping regional
climate model grid explaining dynamical downscaling.

Typically, an RCM receives large-scale signals from the downscaling GCMs
through the lateral boundaries every 6 hours. Generally, the wind components,
temperature, water vapor, and surface pressure are provided to the lateral
boundary area. To allow a smooth transition from the GCM at the RCM
lateral boundaries relaxation techniques (Davies & Turner 1977) are used at the
interface which is called a buffer zone. The information flows from the driving
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GCM into the RCM through these buffer zone and a dynamical equilibrium
is expected to reach after an initial spin-up between the large-scale GCM
information and the internal dynamics within the RCM.

1.2.1 Research Question–2

Although the regional climate within the simulated domain is a result from
the RCM physics and dynamics, the influence of driving GCM through the
large scale forcing and surface boundary condition has an impact on the RCM
simulation. A realistic lateral and surface boundary information flowing into
the RCM is essential for an accurate regional climate simulation.

Indian Summer Monsoon

ENSOIOD

Walker Circulation

Hadley Circulation

Regional Meridional Circulation

Moisture flux transport

Indonesian troughflow

FIGURE 1.4. Schematic depiction of interactions between IOD, ENSO and the Indian Summer
Monsoon.

The ENSO over the Pacific region is known to influence the ISMR through
the changes in the Walker and Hadley Circulation while the IOD influences the
monsoon rainfall through the changes in the regional circulation and moisture
flux (Ashok et al. 2004). A representation of the interaction between ENSO,
IOD and ISMR is shown in Figure 1.4. The example of the large scale signals,
IOD, ENSO and their influence on the IMSR poses a good example for the
research question–2 of the thesis.

• Could we quantify IE flowing from the GCM lateral boundaries into the
RCM for a specific simulated climate phenomenon i.e., the dynamics of
Indian Ocean Dipole (IOD), the El-Niño Southern Oscillations (ENSO)
and the regionally simulated Indian Summer Monsoon rainfall (ISMR)?

An answer to this question can provide insights on the influence of large
scale signals from the GCM on the RCM simulated climate, specifically the
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influence of large scale signals, the IOD, ENSO and the regionally simulated
ISMR. Chapter 4, discusses the quantification of the information exchange
from the large scale phenomenon between the IOD, ENSO and ISMR from
observational data and then in the GCM-RCMmodel chains.

1.3 INFORMATION EXCHANGE IN COUPLED REGIONAL CLIMATE MODELING SYS-
TEMS

Most of the regional climate model simulations use stand-alone atmosphere,
ocean, or land components. While such systems add value in capturing im-
portant regional climate information, most often they miss crucial feedback
between the sub-components (ocean, atmosphere, or land). For example most
of the coordinated regional downscaling experiments called CORDEX use
stand-alone regional climate models (Sørland et al. 2021, Jacob et al. 2020).
Recently there were efforts in coupling various components in the RCMs to
incorporate various feed-backs for simulating a realistic climate (Somot et al.
2008). For example Akhtar et al. (2018) coupled the regional atmosphericmodel
Consortium for Small-scale Modelling in Climate Mode (COSMO-CLM) to a
regional climate model Nucleus for European Modeling of the Ocean (NEMO)
over the Mediterranean Sea. This system is also coupled with a river runoff
model named Total Runoff Integrating Pathways (TRIP) to close the water
cycle over the Mediterranean region. A schematic figure describing such a
regional climate system is shown in Figure 1.5. The sub-components in this
system are coupled with each other through a coupler named OASIS which
exchange fluxes between these components at regular intervals. More details
of the simulations and the model set-ups are described in chapter 2.

Atmosphere + Soil
 (COSMO-CLM)

Ocean
 (NEMO-MED12)

Hydrology
 (TRIP)

Coupler
 (OASIS-MCT3)

river runoff

surface runoff
ground runoffsea surface temperature

evaporation – precipitation

u wind stress

v wind stress

solar flux

net solar flux

Black Sea

FIGURE 1.5. Schematic depiction of regional coupled COMSO-CLM + NEMO-MED + TRIP sys-
tem along with various coupling variables.

The added value of such a coupled regional system in simulating the precip-
itation, air temperatures and extreme events such as Vb-cyclones were reported
in several studies Akhtar et al. (2019), Kelemen et al. (2019), Primo et al. (2019),
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Krug et al. (2022). However, a detailed investigation on the process chains
connecting variables is yet to be investigated.

1.3.1 Research Question–3

To investigate the process chains and thereby evaluate the coupled regional
climate model, we apply information exchange estimators to these coupled
simulations. Specifically, we ask the following important third question of this
thesis,

• Does the process chain connecting the coupled Mediterranean Sea and
the Vb-cyclone precipitation change in the coupled RCM simulations
when driven with different driving data?

Chapter 5 discusses answer to this specific question extensively.

1.4 OUTLINE OF THE THESIS AND FLOW CHART

The current chapter of the thesis consisted of a brief overview of the topic,
motivation and three important scientific questions to be addressed. In chap-
ter 2, a brief description of the methods, modeling systems, and various data
sources used in this thesis are described. Thereafter, chapter 3 investigates var-
ious information exchange estimators on idealized and real-world applications
such as the Indo-Pacific ocean coupling. In chapter 4 the IE estimators are
applied for GCM-RCMmodel chain evaluation specifically on the interactions
between IOD, ENSO and IMSR. In chapter 5, we apply the IE estimators to
identify and quantify the process chain in coupled regional climate models,
specifically the information exchange between the Mediterranean Sea and the
Vb-cyclone precipitation. Finally, conclusions and outlook are given in chapter
6. A comprehensive overview of this thesis is shown in Figure 1.6.
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C1: Background, Introduction, Research Questions

C2: Data, Methodology, Simulations

C3: Quantification of Information Exchange
in Idealized and Climate System Applications

C4: The synergistic impact of ENSO and IOD
on the Indian Summer Monsoon Rainfall in
observations and climate simulations - an
information theory perspective

C5: Vb-cyclones and associated North-Western
Mediterranean Sea state in regional coupled
climate simulations: evaluation and projection

C6: Conclusions

Appendix: A

Appendix: B

Research Question: 1

Research Question: 2

Research Question: 3

FIGURE 1.6. Flowchart for an overview of the thesis content. The characters (C1–C6) repre-
sents the chapters in this thesis.





CHAPTER 2
Methods, Modeling Systems and Data

This chapter provides an overview of various estimators derived from infor-
mation theory, regional and global climate modeling systems, their model
configuration and set-ups along with the data used for validation.

2.1 INFORMATION THEORY METHODS AND ESTIMATORS

One of the fundamental metrics used in this thesis is so-called mutual infor-
mation (MI). The MI is used to detect the shared information between two
independent processes (Shannon 2001, Thomas & Joy 2006). For random
variables X and Y, MI measures the divergence between the joint distribution
𝑝 (𝑥,𝑦) and the product of the marginal distributions 𝑝 (𝑥) and 𝑝 (𝑦):

MI𝑥𝑦 =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) .

Calculation of MI on real-valued data sets depends much on the estimation
technique utilized for calculating the joint and marginal probability density
functions (PDF). A simple technique for calculating the PDFs is to divide the
continuous data into a random number of bins. This approach is commonly
referred to as binning. Depending on the base of the logarithm, the units of MI
are measured in either nats (natural logarithm) or in bits (logarithm to the base
2).

A more elegant way of constructing a PDF is to use a box step kernel for
the estimation of the joint and marginal probabilities (Lizier 2014, Kantz &
Schreiber 2004). For example, the joint probability distribution for 𝑝 (𝑥,𝑦) is
calculated as:

𝑃𝑟 (𝑥𝑛, 𝑦𝑛) =
1
𝑁

𝑁∑︁
𝑛′=1

Θ( | (𝑥𝑛 − 𝑥𝑛′), (𝑦𝑛 − 𝑦𝑛′) | − 𝑟 ),

where the norm corresponds to the maximum distance in the joint space of
𝑥,𝑦. The 𝑟 represents the kernel width.

Another method that uses the adaptive resolution technique for the calcu-
lation of MI uses k-nearest neighbors was proposed by Kraskov et al. (2004).
Here the resolution of the effective PDF is higher in the regions where the data

15



16 ▶ CHAP. 2 METHODS

are numerous, while the resolution is relaxed at less amount of data. Initially,
for each point in the two dimensional space i.e., 𝑧𝑖 = (𝑥𝑛, 𝑦𝑛), its neighbors’
distance 𝑑=max| |𝑧𝑖 − 𝑧 𝑗 | | is calculated. While any norm could be used, in this
thesis, the maximum norm is used. Next, the total number of points that fall
within the range𝑑 in all the marginal spaces is counted. Thereafter, the number
of points in each of themarginal spaces is substituted in the following equation:

MI𝑥,𝑦 = Ψ(𝐾)− < Ψ(𝑛𝑥 + 1) + Ψ(𝑛𝑦 + 1) > −Ψ(𝑁 ),

where Ψ denotes the digamma function, K is the number of nearest neighbors,
and the angle brackets indicate averaging over all the points, 𝑛𝑥 , 𝑛𝑦 that fall
within the range 𝑑 in the marginal spaces.

The linear version of the MI involves calculating the co-variance terms,

𝐼 (𝑋 ;𝑌 ) = 1
2 log

[
det Σ(𝑋 )

det Σ(𝑋 |𝑌 )

]
.

where Σ(𝑋 ) refers to the co-variance of 𝑋 and Σ(𝑋 |𝑌 ) refers to the partial
co-variance of𝑋 with respect to 𝑌 .

An other important high dimensional metrics which estimates the asym-
metric information exchange is the transfer entropy (TE) proposed by Schreiber
(2000). Similar to the MI, the TE can be estimated with the above mentioned
techniques, namely TE-binning, TE-kernel, TE-Kraskov and TE-linear.

The TE from subsystem 𝑌 to𝑋 through discrete binning approach is cal-
culated by decomposing the individual joint entropies as:

TE𝑦−>𝑥 = 𝐻 (𝑥𝑘𝑛 , 𝑦𝑙𝑛) − 𝐻 (𝑥 (𝑘+1)
𝑛 , 𝑦𝑙𝑛) + 𝐻 (𝑥 (𝑘+1)

𝑛 ) − 𝐻 (𝑥𝑘𝑛 ), (2.1)

where𝑘 and 𝑙 correspond to the embedding dimensions of X andY, respectively.
Similarly the MI could be estimated by box kernel by calculating the joint

probabilities through kernel step function and then substituted in the equation
(2.1).

Finally, the TE from the nearest neighbours is calculated with the following
equation,

TE𝑦−>𝑥 = Ψ(𝐾)+ < Ψ(𝑛𝑥𝑛 + 1) − Ψ(𝑛𝑥𝑛+1, 𝑛𝑥𝑛 ) − Ψ(𝑛𝑥𝑛 , 𝑛𝑦𝑛 ) >,

where K is the number of nearest neighbors, Ψ denotes the digamma func-
tion, while the angle brackets indicate averaging over all the points, 𝑛𝑥𝑛+1, 𝑛𝑥𝑛
and 𝑛𝑦𝑛 are the number of points that fall within the range 𝑑 in the marginal
spaces. Similarly, this formula can be extended for higher embedding spaces.

So far, the methods proposed above only quantify the mutual information
or the information exchange by transfer entropy between two subsystems. In
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chapter 4, we compute the information exchange between two sources together
with a target system. For example, the MI between the two sources 𝑌 and 𝑍
and a target𝑋 is expressed as

𝐼 (𝑋 ;𝑌, 𝑍 ) =
∑︁
𝑥,𝑦,𝑧

𝑝 (𝑥,𝑦, 𝑧) log 𝑝 (𝑥,𝑦, 𝑧)
𝑝 (𝑥)𝑝 (𝑦, 𝑧) ,

where 𝑝 (𝑥,𝑦, 𝑧) is the three dimensional joint probability distribution of
variables𝑋 ,𝑌 and𝑍 , while other probabilities represent the respectivemarginal
probability density functions.

From the study byWilliams&Beer (2010), themutual information, 𝐼 (𝑋 ;𝑌, 𝑍 ),
that the two sources 𝑌 , 𝑍 share with target𝑋 decomposes into four parts as

𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝑈 (𝑋 ;𝑌 |𝑍 ) +𝑈 (𝑋 ;𝑍 |𝑌 ) + 𝑅(𝑋 ;𝑌, 𝑍 ) + 𝑆 (𝑋 ;𝑌, 𝑍 ), (2.2)

where𝑈 (𝑋 ;𝑌 |𝑍 ) is the unique information shared by 𝑌 to 𝑋 , 𝑈 (𝑋 ;𝑍 |𝑌 ) is
the unique information shared by 𝑍 to𝑋 , 𝑅(𝑋 ;𝑌, 𝑍 ) redundant information
shared by both sources 𝑌 and 𝑍 together with 𝑋 , and 𝑆 (𝑋 ;𝑌, 𝑍 ) synergistic
information about𝑋 while knowing the states of 𝑌 and 𝑍 together. One of the
limitations of the above equation is that no complete solution is reached among
the scientific community to calculate the individual contributions of the terms.
However, Barrett (2015) proposed a quantity known as net synergy as,

Δ𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝐼 (𝑋 ;𝑌, 𝑍 ) − 𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 ),
= 𝑆 (𝑋 ;𝑌, 𝑍 ) − 𝑅(𝑋 ;𝑌, 𝑍 ) .

(2.3)

When Δ𝐼 (𝑋 ;𝑌, 𝑍 ) > 0, synergistic information from two sources is greater
than redundant information and vice versa. The Δ𝐼 provides a lower-bound
for synergistic/redundant information. From here on, if Δ𝐼 (𝑋 ;𝑌, 𝑍 ) > 0 we
refer as net synergistic information and if Δ𝐼 (𝑋 ;𝑌, 𝑍 ) < 0 we refer to as net
redundant information.

This quantity is a very useful metric in understanding the information
dynamics of two sources. For example, if there exists a net synergy between
the two sources implies that the knowledge of them together reduces the un-
certainty of the target variable than the sum of individual contributions. This
metric is applied to the IOD, ENSO and Indian Summer Monsoon interactions
in chapter 4.

2.2 CLIMATE MODELLING SYSTEMS

In this thesis, a non-hydrostatic regional climate model COnsortium for Small-
scale Modelling (COSMO-CLM) was used as the atmospheric component for
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the regional climate simulations (Rockel et al. 2008). The COSMO-CLM is
designed for applications ranging from meso-β to meso-γ scales (Steppeler
et al. 2003). The model primitive dynamic and thermodynamical equations
are solved with a Runge–Kutta numerical time-stepping scheme (Wicker &
Skamarock 1998) on a three-dimensional Arakawa-C grid (Arakawa & Lamb
1977). This COSMO-CLM grid is based on rotated geographical coordinates
and a generalized, terrain-following height coordinate (Doms et al. 2005).

2.2.1 Regional Climate Simulations over South Asia

The simulations conducted in chapter 4 used an accelerated version of the
COSMO model called the COSMO-crCLIM in climate mode (Fuhrer et al.
2014, Schär et al. 2020). This accelerated version was developed to conduct
simulations on heterogeneous hardware architectures including the graphics
processing units (GPUs) and multicore central processing units (CPUs).

The domain used for conducting the simulations is depicted in Figure
2.1. The domain covers the South Asia Monsoon region which includes the
Indian Sub-continent, the Indian Ocean, the Himalayas, etc. The COSMO-
crCLIM simulation has a horizontal resolution of 0.22◦ (i.e., 25km) with 57
vertical levels and is using a time step of 150s. The domain is a standard set-up
that follows the framework of coordinated regional downscaling experiments
(CORDEX), an international collaborative effort for regional climate dynamical
downscaling (Giorgi et al. 2009, Gutowski Jr et al. 2016).

FIGURE 2.1. South Asia CORDEX domain used in the regional climate simulations with COSMO-
crCLIM

The COSMO-crCLIM used a two-stream radiative transfer calculations
based on (Ritter & Geleyn 1992). The convection is parameterized by (Tiedtke
1989), and the turbulent surface energy transfer and planetary boundary layer
used the parametrization of (Raschendorfer 2001), with a four-category mi-
crophysics scheme which includes cloud, rainwater, snow, and ice (Doms et al.
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2005). For the soil-vegetation-atmosphere-transfer TERRA-ML (Heise et al.
2006) was used with a modified groundwater formulation (Schlemmer et al.
2018).

The simulations were conducted continuously for the period 1950-2099.
For the future period, i.e., 2006-2099 the business as usual future emission
scenario (RCP8.5) was used for accessing the climate change signal.In chapter
4, only the information exchange between the IOD, ENSO, and the Indian
Summer Monsoon Rainfall are investigated in the historical period. However,
the results these simulations were validated and the climate change signal over
the SouthAsia domainwas discussed in the study by Sørland et al. (2021). A total
of four simulations were conducted with similar settings, with one simulation
driven by reanalysis data set and the remaining three simulations used three
different GCM’s as shown in Table 2.1

TABLE 2.1. Simulations conducted over South-Asia CORDEX domain @ 25km resolution

Driving Model resolution Time-period

ERA-Interim reanalysis
(ERA-Interim)

0.5◦ × 0.5◦ 1979-2005

Max Planck Institute
ESM (MPI-ESM-LR)

1.875 ◦ × 1.875 ◦ 1950-2099

Norwegian Climate Cen-
tre ESM (Nor-ESM-M)

2.5 ◦ × 1.9 ◦ 1950-2099

SMHI, Sweden EM (EC-
EARTH)

1.125 ◦ × 1.125 1950-2099

2.2.2 Coupled Regional Climate Simulations over Europe

The simulations conducted in chapter 5 used coupled regional climate model
with the COMSO-CLM 5-0-9 as the atmospheric component, a regional ver-
sion of the Nucleus for European Modeling Ocean (NEMO) as the ocean com-
ponent, the Total Runoff Integrating Pathway (TRIP) river runoff model con-
necting the rivers in the southern part of the domain to the Mediterranean Sea.
The NEMOmodel was adapted over the regional Mediterranean Sea including
a section of the Atlantic Ocean as a buffer zone for open boundary (Beuvier
et al. 2012). The horizontal resolution of NEMO is about 1/12◦ (≈ 6.5–8.0km
in latitude and ≈ 5.5–7.5km in longitude) and 75 unevenly spaced z-levels in
the vertical direction. The coupling of these components is done through a
coupler OASIS3-MCT which exchange fluxes between these components at
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regular intervals of time (Craig et al. 2017). Moreover, the coupler interpolates
the coupling fields onto the respective grids before exchanging information to
the sub-components. This system is extensively tested for varying resolutions
and coupling intervals in the study by (Akhtar et al. 2018).

NEMO-MED

MED-CORDEX

adapted from www.cordex.org

http://www.cordex.org/images/pdf/documentation/CO
RDEX_domain_description_230615.pdf

FIGURE 2.2. Med-CORDEX domain used in the coupled regional climate simulations with
COSMO-CLM + NEMO-MED12 + TRIP

The horizontal resolution of COSMO-CLMwas about 0.11◦ and used 40
vertical layers representing about 22.7 km of the atmospheric column. The
domain used for conducting simulations is represented in Figure 2.2. The
Mediterranean Sea represented in red color is actively coupled to the atmo-
spheric component COSMO-CLM. The model configuration for COMSO-
CLM follows similar settings as described in subsection 2.2.1. A total of three
simulations were conducted over the Med-CORDEX domain and the details
are provided in Table 2.2. The coupled regional climate simulations driven by
EC-EARTH and ERA20CR were used in chapter 5.

2.3 DATA USED FOR VALIDATION

The following data sets were used as observation for real world climate appli-
cations or for validating the regional climate simulations in this thesis,

• NOAA ESRL Niño 4 index : The monthly time series of the Niño 4
index over the Pacific Ocean were obtained from NOAA ESRL for the
time period of 1958–2010 corresponding to a total of 633 months (ESRL
n.d.).

• JAMSTEC IOD index : The monthly time series of the Indian Ocean
Dipole index over the Indian Ocean were obtained from JAMSTEC for
the time period of 1958–2010 corresponding to a total of 633 months
(JAMSTEC n.d.).
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TABLE 2.2. Regional model simulations conducted over Med-CORDEX domain @ 12km reso-
lution

RCM-Model driving data Time-period

Stand-alone
COMSO-CLM

ERA-Interim 1979-2015

Coupled COMSO-
CLM + NEMO-
MED12 + TRIP

ERA-Interim 1979-2015

Coupled COMSO-
CLM + NEMO-
MED12 + TRIP

EC-EARTH 1950-2099

Coupled COMSO-
CLM + NEMO-
MED12 + TRIP +
NEMO-BALTIC

ERA20CR 1901-2005

• COBE-SST2 : The SST reanalysis data set consisting of Sea Surface
Temperature and Ice was obtained from NOAA for the period 1958–
2010 (Hirahara et al. 2014).

• CRU air temperatures : The near surface air-temperatures were ob-
tained from the CRU database held at the British Atmospheric Data
Centre, RAL, UK for the period of 1901 to 2016 (Harris et al. 2017).

• HadISST 1.1 : The UKMet Office’s Hadley Centre Sea Ice and Sea Sur-
face Temperature dataset (HadISST 1.1) was used as SST observational
reference the Indian and the Pacific ocean (Rayner et al. 2003).

• GPCCprecipitation data set : Monthly precipitation fields fromGlobal
Precipitation Climatology Centre (GPCC) was used for precipitation
observational record for Indian Monsoon rainfall (Schneider et al. 2008).

• APHRODITE precipitation data set : A high-resolution data set, cov-
ering only the South Asia domain called Asian Precipitation - Highly-
ResolvedObservationalData IntegrationTowardsEvaluation (APHRODITE)
at monthly intervals was used as a precipitation reference for the Indian
Monsoon rainfall (Yatagai et al. 2012).

• NCEP-NCAR reanalysis : The rainfall, winds, and specific humidity
reference were obtained from the National Center for Environmental
Prediction–National Center for Atmospheric Research (NCEP–NCAR)
reanalysis data set (Kalnay et al. 1996).
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• ERA-Interim reanalysis : The rainfall reference for IMSR wass ob-
tained from the ERA-Interim (Dee et al. 2011). This data set was also
used as a driving GCM for south Asia regional climate simulations.

• MERRA reanalysis : MERRA reanalysis rainfall datasets (1980-2005)
was used for one of the precipitation reference for Indian Monsoon
(Rienecker et al. 2011).
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CHAPTER 3
Quantification of Information Exchange in Idealized and Cli-
mate System Applications1

ABSTRACT

Often in climate system studies, linear and symmetric statistical measures are
applied to quantify interactions among subsystems or variables. However, they
donot allow identification of the driving and responding subsystems. Therefore,
in this study, we aimed to apply asymmetric measures from information theory:
the axiomatically proposed transfer entropy and the first principle-based infor-
mation flow to detect and quantify climate interactions. As their estimations are
challenging, we initially tested nonparametric estimators like transfer entropy
(TE)-binning, TE-kernel, and TE k-nearest neighbor and parametric estimators
like TE-linear and information flow (IF)-linear with idealized two-dimensional
test cases along with their sensitivity on sample size. Thereafter, we experimen-
tally applied these methods to the Lorenz-96 model and to two real climate
phenomena, i.e., (1) the Indo-Pacific Ocean coupling and (2) North Atlantic
Oscillation (NAO)–European air temperature coupling. As expected, the linear
estimators work for linear systems but fail for strongly nonlinear systems. The
TE-kernel and TE k-nearest neighbor estimators are reliable for linear and
nonlinear systems. Nevertheless, the nonparametric methods are sensitive to
parameter selection and sample size. Thus, this work proposes a composite use
of the TE-kernel and TE k-nearest neighbor estimators along with parameter
testing for consistent results. The revealed information exchange in Lorenz-96
is dominated by the slow subsystem component. For real climate phenomena,
expected bidirectional information exchange between the Indian and Pacific
SSTs was detected. Furthermore, expected information exchange from NAO to
European air temperature was detected, but also unexpected reversal informa-
tion exchange. The latter might hint to a hidden process driving both the NAO
and European temperatures. Hence, the limitations, availability of time series
length and the system at hand must be taken into account before drawing any
conclusions from TE and IF-linear estimations.

1Published as: Pothapakula, P.K, Primo C, Ahrens B. (2019). Quantification of
Information Exchange in Idealized and Climate System Applications. Entropy 2019,
21, 1094. https://doi.org/10.3390/e21111094
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3.1 INTRODUCTION

Complex dynamical systems consist of interacting subsystems. It is important
to detect these interactions and quantify their strength to improve process un-
derstanding. Especially in the climate system, detecting the interactions could
provide insights into system dynamics. These interactions can be contemplated
as information exchanged or transferred among subsystems. Shannon (2001)
introduced a mathematical theory for quantifying the information contained
in the context of data compression and transmission. Recently, there has been
a surge in applications of information theory in a wide range of fields, for
example, uncertainty propagation (San Liang 2011, Tödter & Ahrens 2015,
Kirchgessner et al. 2017), neurosciences (Schelter et al. 2006, Vicente et al.
2011), climate sciences (Stips et al. 2016, Bhaskar et al. 2017, Knuth et al. 2013),
earth system sciences (Ruddell & Kumar 2009, Bennett et al. 2019, Gerken et al.
2019, Yu et al. 2019), turbulence research (Tissot et al. 2014), and networks and
synchronization in dynamical systems (Boccaletti et al. 2002).

Often in climate studies, the relationship among subsystems is assessedwith
correlation analysis, empirical orthogonal functions, and linear regressions
given time series. Among them, correlation analysis is a parametric method
used in identifying linear interactions. For nonlinear interactions, mutual in-
formation, a nonparametric method (Ahrens &Walser 2008, Shannon 2001),
is often used. Mutual information reveals any shared information between
two subsystems. However, both correlation and mutual information are sym-
metric, i.e., they cannot distinguish between a drive and a response system.
For a better understanding of the dynamics, detection of the directionality of
interactions is essential. The time-lagged cross-correlation and time-lagged
mutual information methods are frequently used for this purpose (Klein et al.
1999, Lanzante 1996). Runge et al. (2014) observed that these two methods
are sensitive to autocorrelations which often obscure detection and quantifi-
cation of the interaction mechanisms. For example, in his study, a spurious
interaction between tropical east Pacific and the northern tropical Atlantic is
detected at a time lag 3–6 months while cross-correlations are applied, while
the information theoretic-based asymmetric measures detected an interaction
between tropical east Pacific and the northern tropical Atlantic at a time lag of
1 month. This interaction time lag is physically consistent with the advection
speed of Pacific–Atlantic Walker circulation.

For deeper insights into detecting drive and response linear interactions,
Granger (1969) proposed a test based on the Wiener principle. According to
the Granger test, X causes Y if the past of the system X assists in predicting
the future of the system, Y. In a statistical sense, if the error variance of the
optimal linear prediction of Y future state based on the past of X and Y has a
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smaller error variance than considering the past of Y alone, then X causes, Y.
A nonparametric method equivalent to Granger causality known as transfer
entropy (TE) was proposed by Schreiber (2000) (for linear Gaussian systems,
they are equivalent up to a factor of 2). The TE measures if any additional
information is provided by the past of the source system, which assists in pre-
dicting the future state of the destination system. In other words, it measures
the divergence or deviation between the entropy rates of the destination’s own
past and the past included from a source system. The TE, unlike mutual infor-
mation, is an asymmetric quantity and hence, it can detect drive and response
interactions. It is worth noting that, in nature, the interactions do not merely
consist of driving and responding systems, but also systems which drive each
other simultaneously with different interaction strength. Hence, any reliable
asymmetric estimate, e.g., TE, should reveal this underlying behavior. Many
information-theory-based methods were spawned based on a similar princi-
ple to that of TE, for example, momentary information transfer, Information
Transfer to Y, and Information transfer to X (Runge 2015). These methods have
their own applications and limitations.

The simplest estimation of TE uses a multivariate Gaussian model assum-
ing linear interactions between the subsystems. This parametric estimation is
hereafter referred to as TE-linear. While the parametric estimator TE-linear is
straightforward to calculate, the nonparametric TE estimation is notoriously
challenging. Some of the common nonparametric estimation techniques of TE
in the literature include the binning, kernel density, and k-nearest neighbor.
These estimators are sensitive to the parameter selection in their implementa-
tion, such as the bin width selection in the binning estimator, the kernel width
in the kernel density estimator, and the number of nearest neighbors while
applying the k-nearest neighbor estimator. Unfortunately, no clear consensus
is reached among the scientific community on selecting these free parameters.
As a result of this dependency, spurious detection of information exchange
between the system components could arise. Regardless, TE has been widely
used—for example, Bhaskar et al. (2017) applied TE in the identification of
primary drivers of recent climate variability and quantified their influence on
climate variability. Their results suggested that greenhouse gases are primary
contributors to the recent climate variability. Campuzano et al. (2016) studied
the information exchange between the South Atlantic anomaly and global sea
level for the last 300 years using TE and concluded that larger information is
exchanged from the south Atlantic anomaly to global sea-level rise than vice
versa. However, these studies relied only on a single TE estimation technique
(binning). It is still unclear if TE nonparametric estimations with the free pa-
rameters reliably produce numerically consistent estimations. Furthermore,
these estimators are also sensitive to the length of the time series. For example,
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robust kernel estimation asks for sufficient data. Hence, before applying TE to
climate phenomena, we tested various estimators of TE along with their sensi-
tivity on time series length with idealized systems where the system dynamics
is expected or known.

San Liang & Kleeman (2005), realizing that information exchange could be
derived rigorously rather than axiomatically, developed another method called
it information flow (IF), which is derived from the first principles of informa-
tion theory. In their framework, the information source and destination are
abstracted as system components and thus derive the information flow between
these dynamical components. The information flow between the source system
Y and destination systemX is equal to the difference between the time evolution
of marginal entropy of X and entropy of X excluding the influence of, Y. To
apply the information flow method, the time evolution of the marginal proba-
bilities must be computed. This time evolution of the marginal probabilities,
in turn, depends on the system dynamics. If the system dynamics is unknown,
IF becomes difficult to apply. The information flow method was successfully
applied to Heńon maps, the Rössler system, and truncated Burgers–Hopf with
their respective system dynamics known (San Liang 2016). Unlike that of IF,
the calculation of TE do not require system dynamics. Hence, given two climate
time series, TE is straightforward to apply. San Liang (2014) proposed a simple
and concise maximum likelihood estimator of IF for linear systems which is
easy and straightforward to apply without system dynamics. This estimator is a
very important result for the climate community as it bridges the gap between
theory and real-world applications. From hereafter, this maximum likelihood
estimator is referred to as information flow-linear (IF-linear). IF-linear has
been successfully applied in detecting the causal structure between CO2 and
global temperatures (Stips et al. 2016), changing the relationship between the
convection over the Western Tibetan Plateau and the sea surface temperature
in the Northern Bay of Bengal (Vaid & Liang 2018) and forecasting the tropi-
cal cyclone genesis over the Northwest Pacific through identifying the causal
factors in cyclone–climate interactions (Bai et al. 2018).

In this work, our aim was to apply information theory methods to detect
interactions between climate phenomena. Moreover, we were provided with
a limited amount of temporal series of climate data and with their dynamics
unknown. Hence, we focused on IF-linear and TE methods. We wanted to
find out if these methods are consistently able to detect the directionality of
the interactions for climate phenomena. Having in mind that the nature of
both methodologies differs, we first wanted to understand if this could lead to
differences in detecting the information exchange from climate time series. On
the other hand, TE methods are highly sensitive to the choice of free parame-
ters and with time series length, which often might lead to brittle information
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exchange detections. Thus, we initially checked if the different estimators
(IF-linear, TE-linear, TE-binning, TE-kernel, and TE-kraskov) detect the direc-
tionality of the interactions using various temporal series lengths as realized
by idealized systems, whose dynamics and directionality of the interactions is
expected or known. These systems consist of uni- and bidirectional coupled
linear and nonlinear systems. Thereafter, we applied these methods to the
Lorenz-96 system (Lorenz 1996), which is known to mimic the mid-latitude
atmosphere behavior. Finally, we experimentally applied these methods to (1)
Indo-Pacific sea surface temperatures interbasin coupling and (2) the relation
between North Atlantic Oscillation (NAO) and winter near-surface air temper-
atures over Europe. One of the limitations of this study is that we rigorously
tested and applied various estimators to two-dimensional systems only. For a
detailed and excellent review on the applications of TE on high dimensional
interactions, refer to Runge (2018).

This paper is organized as follows. Section 3.2 comprises the background
material for IF-linear, TE, and its estimation techniques such as TE-linear,
TE-binning, TE-kernel, and TE k-nearest neighbor. In Section 3.3, the above
mentioned methods are applied to uni- and bidirectional coupled linear and
nonlinear systems, the Lorenz-96 system, and then to climate phenomena.
Results are also discussed in this section. Finally, conclusions are drawn in
Section 3.4.

3.2 METHODS

In this section, the basic concepts of information theory are discussed along
with a brief introduction of information flow and transfer entropy. Estimation
techniques of TE are also presented.

3.2.1 Transfer Entropy

Let 𝑝 (𝑥) be the probability of a state for the random variable𝑋 . The Shannon
entropy of𝑋 ,𝐻 (𝑋 ), quantifies the amount of information needed to describe
the random variable𝑋 (Shannon 2001):

𝐻 (𝑋 ) = −
∑︁
𝑥

𝑝 (𝑥) log𝑝 (𝑥),

where the summation goes through all states of the random variable𝑋 . The
units of entropy are nats if a natural logarithm is applied; alternatively, it is
often expressed in bits when the logarithm base is 2.
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Let 𝑞(𝑥) be another probability distribution for the same random variable,
and Kullback divergence measures the distance between the two probability
distributions 𝑝 and 𝑞. It is defined as:

𝐷𝑝 | |𝑞 =
∑︁
𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞(𝑥) .

Similarly, mutual information(MI) is the divergence between the joint distri-
bution 𝑝 (𝑥,𝑦) of variable X and Y and the product of themarginal distributions
𝑝 (𝑥) and 𝑝 (𝑦):

MI𝑥𝑦 =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) .

Mutual information quantifies the shared information between X and Y
and thus is symmetric and lacks any direction of information exchange. Mutual
information between X and Y while a third variable (Z) taken into account is
given by conditional mutual information (CMI) as:

CMI𝑥𝑦 |𝑧 =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦, 𝑧) log 𝑝 (𝑥 |𝑦, 𝑧)
𝑝 (𝑥 |𝑧) .

Transfer entropy is a special case of CMI, in which the conditioning is done
on the past of Y inplace of, Z. Furthermore, the TE reflects the dependencies
contained in the transitional probabilities which represent the dynamics of
the system. The TE measures the deviation between the generalized Markov
property, in other words, the deviation between the transitional probabilities
𝑝 (𝑥𝑛+1 |𝑥𝑛, ..., 𝑥𝑛−𝑘+1) and 𝑝 (𝑥𝑛+1 |𝑥𝑛, ...., 𝑥𝑛−𝑘+1, 𝑦𝑛, ...., 𝑦𝑛−𝑙+1):

TE𝑦−>𝑥 =
∑︁
𝑥,𝑦

𝑝 (𝑥𝑛+1, 𝑥
𝑘
𝑛 , 𝑦

𝑙
𝑛) log

𝑝 (𝑥𝑛+1 |𝑥𝑘𝑛 , 𝑦𝑙𝑛)
𝑝 (𝑥𝑛+1 |𝑥𝑘𝑛 )

, (3.1)

where 𝑘 and 𝑙 are the embedding dimensions of the destination and source
variables, respectively. An important measure known as active information
storage (AI) is given as:

AI = MI(𝑥𝑘𝑛 ;𝑥𝑛+1)

which is used in approximating the embedding dimensions of the destina-
tion system. It measures how much of the information from the past of the X
system (𝑥𝑘𝑛 ) is observed to be in use in computing its next future observation
(𝑥𝑛+1). Here, MI refers to mutual information. If additional information from
𝑦𝑛 assists in the reduction of the uncertainty in the future state of 𝑥𝑛+1 given
𝑥𝑛 , then there is an information transfer from Y to, X. Thus, TE quantifies the
average information transfer from Y to X and similarly vice versa. It is impor-
tant to note that the source Y can potentially influence the system X at various
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interaction delays. A scanning approach for the largest information exchange
values was employed by Wibral et al. (2013) to calculate the interaction delay
between the source and destination systems. In this work, we adopted the same
methodology to calculate the interaction delays for climate applications. Fur-
thermore, the comparison of TE estimations only makes sense if the interaction
delays in both directions are properly and independently reconstructed (Woll-
stadt et al. 2017). Hence, it is important to ensure the correct interaction delays
are extracted. The TE, unlike MI and correlation, is an asymmetric measure.
While the TE equations seem straightforward, its nonparametric estimation for
continuous data is quite challenging. Coarse-graining the continuous data into
discrete states is hard to interpret unless the measure converges when reducing
the coarsening scale. The implementation of the binning estimator uses a bin
width parameter upon which the estimates are highly sensitive. Similarly, the
kernel density estimator relies on kernel width and the k-nearest neighbor esti-
mator on the number of nearest neighbors. Unfortunately, no clear consensus
is reached in optimally choosing these parameters. Hence, in the current study,
we tested all the methods for numerical consistency before applying to climate
applications. A brief introduction to these methods is given in the following
sections.

Estimation of TE-Binning

For the estimation of TE, joint probability distributions are calculated from the
underlying time series. Binning is one of the most straightforward approaches
in the estimation of joint probabilities. Unfortunately, entropy estimations are
highly sensitive to the number of bins chosen (i.e., bin width). In the litera-
ture, there exist numerous methods that describe the selection of an optimum
number of bins for Gaussian distributions (Scott 1979, Freedman & Diaconis
1981) and suggestions for distributions without any underlying assumptions
(Kang et al. 2017, Ruddell & Kumar 2009). In the current study, we used a
more general method proposed by Knuth et al. (2013), known as generalized
Knuth method with no underlying assumptions about the distribution. In this
method, each of the N observed data points are placed into one of M-fixed
width bins, where the number of bins is selected utilizing a Bayesian paradigm.
The likelihood of the multidimensional data with volume V and probabilities
𝜋𝑖 for the 𝑖𝑡ℎ bin is given by the multinomial distribution:

𝑝 (𝑑 |𝑀, 𝜋) = (𝑀
𝑉
)𝑁𝜋𝑛1

1 𝜋
𝑛2
2 ....𝜋

𝑛𝑀
𝑀
,

where 𝑑 = [𝑑1, 𝑑2..., 𝑑𝑁 ] denote N observed points, 𝑛1, 𝑛2...𝑛𝑁 denotes the
number of points in each sample, and 𝜋 = [𝜋1, 𝜋2, .., 𝜋𝑀 ] denote the respective
probabilities of the bin. The Dirichlet prior conjugate to the multinomial
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likelihood function for the non-informative prior is given as:

𝑝 (𝜋 |𝑀) =
Γ(𝑀2 )
Γ( 1

2 )
[𝜋1, 𝜋2, ..., 𝜋𝑀−1, (1 −

𝑀−1∑︁
𝑖=1

𝜋𝑖)]−1/2.

The posterior distribution of the bin probabilites from the Bayes theorem
is:

𝑝 (𝜋,𝑀 |𝑑) ∝ 𝑝 (𝜋 |𝑀)𝑝 (𝑀)𝑝 (𝑑 |𝜋,𝑀).
Then, the optimum number of bins are chosen by the mode of the posterior

distribution of:

log𝑝 (𝑀
𝑑
) = 𝑁 log𝑀+log Γ(𝑀2 )−𝑀 log Γ( 1

2 )−log Γ(𝑁+𝑀2 )+
𝑀∑︁
𝑖=1

log Γ(𝑛𝑖+𝑀2 )+𝐾,

where𝑀 is the number of bins, 𝑑 is the observed data points, 𝑛𝑖 is the number
of data sample in each bin, and𝐾 is a constant. For more details, refer to Knuth
et al. (2013). After calculating the optimal number of bins𝑀 , TE is calculated
by decomposing into individual joint entropies given as:

TE𝑦−>𝑥 = 𝐻 (𝑥𝑘𝑛 , 𝑦𝑙𝑛) − 𝐻 (𝑥 (𝑘+1)
𝑛 , 𝑦𝑙𝑛) + 𝐻 (𝑥 (𝑘+1)

𝑛 ) − 𝐻 (𝑥𝑘𝑛 ), (3.2)

where 𝑘 and 𝑙 are the embedding dimensions of X and Y, respectively. An esti-
mation bias for TE could arise due to the assumption of a uniform distribution
within every single bin which corresponds to maximum entropy.

Estimation of TE-Kernel

This estimator uses the box step kernelΘwithΘ(𝑥 > 0) = 0 andΘ(𝑥 < 0) = 1
for the estimation of relevent joint probability distributions (e.g., 𝑝 (𝑥,𝑦), 𝑝 (𝑥)
and 𝑝 (𝑦)). For example, the joint probability distribution 𝑝 (𝑥,𝑦) is calculated
as:

𝑃𝑟 (𝑥𝑛, 𝑦𝑛) =
1
𝑁

𝑁∑︁
𝑛′=1

Θ( | (𝑥𝑛 − 𝑥𝑛′), (𝑦𝑛 − 𝑦𝑛′) | − 𝑟 ),

where the norm corresponds to the maximum distance in the joint space and 𝑟
is the kernel width. In simple terms, the resultant probability is the fraction ofN
values which fall within the kernel width 𝑟 in the joint dimensional space. Here,
𝑟 is the free parameter and the resultant probability is sensitive to the choice
of 𝑟 . Furthermore, the conditional probabilities are defined in terms of their
respective component joint probabilities. These probabilities are substituted
in Equation 3.1 to calculate TE. Kernel estimators are model-free (i.e., they
do not assume parametric distribution). For more details about the estimator,
refer to Kantz & Schreiber (2004), Goodwell & Kumar (2017) and information-
theoretic toolkit from Lizier (2014).
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Estimation of TE-K-Nearest Neighbor

Kraskov et al. (2004) introduced the k-nearest neighbor estimator which uses
an adaptive binning strategy. This estimator uses the average distances to the k-
nearest neighbor data points for the calculation of TE. This is a nonparametric
estimation technique.

Transfer entropy from Y to X,𝑇𝐸𝑦𝑥 with embedding dimensions 𝑘 = 1
and 𝑙 = 1, is calculated as follows: For each point in the highest dimensional
space given in Equation (3.2) (i.e., 𝑧𝑖 = (𝑥𝑛+1, 𝑥𝑛, 𝑦𝑛)), its neighbors’ distance
𝑑=max| |𝑧𝑖 − 𝑧 𝑗 | | is calculated. While any norm could be used, in the current
study, the maximum norm is utilized. The number of points that fall within
the range 𝑑 in all the marginal spaces is counted. Thereafter, the number of
points in each of the marginal spaces are substituted in the equation below to
calculate TE:

TE𝑦−>𝑥 = Ψ(𝐾)+ < Ψ(𝑛𝑥𝑛 + 1) − Ψ(𝑛𝑥𝑛+1, 𝑛𝑥𝑛 ) − Ψ(𝑛𝑥𝑛 , 𝑛𝑦𝑛 ) >,

where K is the number of nearest neighbors, Ψ denotes the digamma function,
while the angle brackets indicate averaging over all the points, 𝑛𝑥𝑛+1, 𝑛𝑥𝑛 and
𝑛𝑦𝑛 are the number of points that fall within the range 𝑑 in the marginal spaces.
Similarly, this formula can be extended for higher embedding spaces. Further-
more, this method enables for bias correction. From hereafter, this method is
referred as TE-kraskov. For more details, refer to the information-theoretic
toolkit of Lizier (2014).

Estimation of TE-Linear

The entropy for a continous random variable𝑋 is given as:

𝐻 (𝑥) = −
∫ ∞

−∞
𝑝 (𝑥) log𝑝 (𝑥)𝑑𝑥 .

For the linear estimation of entropy, substituting the probability of a Gaus-
sian distribution (Thomas & Joy 2006) in the above equation gives:

𝐻 (𝑥) = 1
2 log 2𝜋𝑒𝜎2.

For a multivariate Gaussian model, the entropy is given as:

𝐻 (𝑥) = 1
2 log((2𝜋𝑒)𝑑 |Ω𝑥 |),

where 𝑑 is the number of dimensions, |Ω𝑥 | is the determinant of the 𝑑 × 𝑑 co-
variance matrix Ω𝑥 = 𝑥𝑥𝑇 , and the overbar indicates averaging. Furthermore,
the TE is estimated as the sums and differences of the joint entropies given in
Equation (3.2).
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Assumptions in the Practical Estimation of TE

Before applying the TE estimators mentioned above, it is very important to
observe their assumptions. While the TE estimations in the above sections
involve the interactions between two subsystems X and Y, real-world climate
applications often involve a tangle of higher dimensional interactions. In order
to disentangle the sole interactions between X and Y, one needs to remove the
influence of all the other interacting variables in the state phase. However, this
can be computationally exhaustive and perhaps almost impossible. This unreal
aspect was already mentioned in Granger (1969). Hence, while applying TE
to retrieve the information exchange between two subsystems, there might be
unobserved variables influencing the estimation. Hence, this limitation needs
to be accounted for while applying TE. In the current study, we limited our
detailed investigations to two-dimensional systems. Hence, a possible influence
of unobserved variables on TE estimations cannot be ruled out. For a detailed
review on the applications of TE on high dimensional interactions, refer to
Runge (2018).

In theTEEquation (3.1), the deviation between the transitional probabilities
is calculated with the embedding dimensions of the destination and source
variables, 𝑘 and 𝑙 , respectively. The embedding dimension 𝑙 of the source
variable could be chosen at which the maximum information exchange takes
place, while an ideal embedding 𝑘 for the destination system should be as
large as possible. Due to the computational complexity and a limited number
of time series data available for climate applications, a minimum value for
𝑘 = 1 could be chosen provided most of the information from the past of
destination system is embedded within the minimum 𝑘 . In the current study,
this was verified through the calculation of active information of the destination
system. Moreover, assumptions in the TE calculation involve stationarity, time
aggregation, faithfulness, etc. An excellent review of these assumptions is
available in Runge (2018).

3.2.2 Liang and Kleeman Information Flow

Consider a two-dimensional nonlinear system 𝑥1 and 𝑥2:

𝑑𝑥1
𝑑𝑡

= 𝐹1(𝑥1, 𝑥2, 𝑡),

𝑑𝑥2
𝑑𝑡

= 𝐹2(𝑥1, 𝑥2, 𝑡),

with randomness limited to its intial condition. The above equations follow the
convention in physics which does not distinguish random and deterministic
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variables. Let𝐻1 be the marginal entropy of 𝑥1. The𝐻1 evolution of 𝑥1 may be
due internal mechanism of 𝑥1 itself or subject to the influence of 𝑥2. The later
is the information flow from 𝑥2 to 𝑥1, which is of interest to us . If

𝑑𝐻 ∗
1

𝑑𝑡
is the

contribution of evolution of marginal entropy by 𝑥1 itself, then:
𝑑𝐻1
𝑑𝑡

=
𝑑𝐻 ∗

1
𝑑𝑡

+𝑇2−>1,

where𝑇2−>1 is the information flow from 𝑥2 to 𝑥1. Therefore, the information
flow could be written as:

𝑇2−>1 =
𝑑𝐻1
𝑑𝑡

−
𝑑𝐻 ∗

1
𝑑𝑡

.

The term 𝑑𝐻1
𝑑𝑡

can be calculated by Liouville equation. Thus, San Liang &
Kleeman (2005) obtained the entropy evolution: 𝑑𝐻

𝑑𝑡
= 𝐸 (∇ · 𝐹 ), where 𝐸 is the

expectation operator. Based on this San Liang & Kleeman (2005) argued that
the first term on the right hand side must be 𝑑𝐻 ∗

1
𝑑𝑡

= 𝐸 ( 𝜕𝐹1
𝜕𝑥1

), which was later
proven by San Liang (2016). Substituting both terms in the above equation,
San Liang & Kleeman (2005) argued that the information flow from 𝑥2 to 𝑥1 is
equal to:

𝑇2−>1 =
𝑑𝐻1
𝑑𝑡

−
𝑑𝐻 ∗

1
𝑑𝑡

= −𝐸
( 1
𝜌1

𝜕𝐹1𝜌1
𝜕𝑥1

)
,

where 𝜌1 is the marginal probability density function of 𝑥1. However, this
heuristic argument was rigorously proven in San Liang & Kleeman (2007),
San Liang (2008). The thus obtained information flow is asymmetric between
𝑥1 and 𝑥2. However, the above formalism is only for 2D deterministic systems.
Moreover, for a 2D system with stochasticity involved, this formalism does not
work. The Liang information flow rigorous formalism has undergone recent
developments with higher dimensional systems and stochasticity involved.
Consider a dynamical system:

𝑑x
𝑑𝑡

= F(𝑡 ; x) + B(𝑡 ; x) ¤w,

where x and F are 𝑛-dimensional vector, B is an 𝑛 ×𝑚 matrix, and w is an
𝑚-vector of standard Wiener process ( ¤w is a vector of white noise). The rate of
information flow from 𝑥2 to 𝑥1 for the above dynamical system is given by:

𝑇2−>1 = −
∫
𝑅𝑛

𝜌2/1
𝜕(𝐹1𝜌2)
𝜕𝑥1

𝑑𝑥𝑥𝑥 + 1
2

∫
𝑅𝑛

𝜌2/1
𝜕2(𝑔11𝜌2)
𝜕𝑥2

1
𝑑𝑥𝑥𝑥,

where 𝜌2/1 is the conditional probability density function of 𝑥2 on 𝑥1, 𝜌2 =∫
𝑅
𝜌𝑑𝑥2 and 𝑔11 =

∑𝑚
𝑗=1 𝑏1𝑗𝑏1𝑗 . When 𝑛 = 2, the equation reduces to:

𝑇2−>1 = −𝐸
[ 1
𝜌1

𝜕(𝐹1𝜌1)
𝜕𝑥1

]
+ 1

2𝐸
[ 1
𝜌1

𝜕2𝑔11𝜌1

𝜕𝑥2
1

]
.
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If the system dynamics 𝐹1 and 𝑔11 are independent of 𝑥2, then𝑇2−>1 = 0,
which remarkably appears in the classical formalism. For systems with the
dynamics unknown, the estimation of entropy evolution is a challenge. Hence,
San Liang (2014), under the linear assumption, proposed a simple easy-to-use
formula know as themaximum likelihood estimator of information flow. Given
two series 𝑥1 and 𝑥2, for consistency with the formulae of TE mentioned above,
we considered 𝑥 = 𝑥1 and𝑦 = 𝑥2; the information flow maximum likelihood
estimator or IF-linear from the system𝑦 to 𝑥 is given by:

𝑇𝑦−>𝑥 =
𝐶𝑥𝑥𝐶𝑥𝑦𝐶𝑦,𝑑𝑥 −𝐶2

𝑥𝑦𝐶𝑥,𝑑𝑥

𝐶2
𝑥𝑥𝐶𝑦𝑦 −𝐶𝑥𝑥𝐶

2
𝑥𝑦

,

where𝐶𝑥𝑥 ,𝐶𝑦𝑦 and𝐶𝑥𝑦 are the covariances of 𝑥 and 𝑦, while the subscript
𝑑𝑥 indicates time series derived from 𝑥 which is formed as 𝑥 (𝑛+𝑘)−𝑥 (𝑛)

𝑘.𝑑𝑡
, with k

some integers greater than or equal to 1. This easy-to-use formula bridges the
gap between theory and real applications and has been successfully applied to
real-world applications.

3.3 RESULTS

In the current section, the above-discussed methods are tested for one-way and
two-way coupled linear and nonlinear idealized systems. After testing various
estimators, we applied them to the Lorenz-96 model which mimics midlatitude
atmosphere behavior and finally to two important real-world climate phenom-
ena.

3.3.1 Applications to Idealized Systems

Unidirectional Linearly-Coupled Autoregressive System

We considered a two-dimensional linear system 𝑥 and 𝑦 with the following
governing (Knuth et al. 2013) :

𝑦𝑛+1 = 0.5𝑦𝑛 + 𝑁 (0, 1),
𝑥𝑛+1 = 0.6𝑥𝑛 +𝐶𝑦𝑛 + 𝑁 (0, 1),

(3.3)

where 𝑁 (0, 1) is Gaussian noise with zero mean and unit variance. The cou-
pling coefficient𝐶 is varied from 0 to 1 with an increment of 0.1. The system
was initialized with (𝑥0, 𝑦0) = (0, 0). We integrated around 100,000 iterations
and considered the last 5000 steps for detecting and quantifying the informa-
tion exchange. Throughout this study, in all the idealized systems, a similar
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number of iterations was followed. In real climate applications, the number of
observations is limited and it is essential that the methodsmentioned in Section
3.2 detect the direction of information exchange even with a limited number
of data points. Hence, the total number of points was decreased from 5000
down to 200 time units to check the reliability of these methods. It is worth
noting that this article does not aim at suggesting solutions for finite sample size
effects; rather, we compared different estimators robustness against variations
of the sample size. Equation (3.3) implies that the coupling coefficient𝐶 drives
the information exchange from 𝑦 to 𝑥 . However, there is no exchange from
𝑥 to𝑦. Thus, any reliable method should reproduce this asymmetry. We also
show the error bars representing two standard deviations representing the
measure of uncertainty for the IF-linear and TE estimations. Furthermore, in
order to choose the embedding dimensions for TE, we calculated the active
information for the system 𝑥 and 𝑦. For the source embedding dimensions
for TE calculations, we chose 𝑙 = 1, as the governing equations showed the
past of source variable exchanges maximum information at time lag 1. The
active information for the destination systems showed a minimal increase of AI
from 0.2270 nats with time lag 1 to 0.2278 nats with 1 to 10 time lags. Hence,
to reduce the computational complexity we chose the value of embedding di-
mension 𝑘 to be 1. From the governing equations, the interaction time delay
of 1 is chosen as the source transfers maximum information exchange at a
time delay of 1. Before applying the TE-binning estimator, Knuth’s method
for detecting the optimal number of bins was applied to the data. However, as
the data consist of various coupling strengths (𝐶), the optimal number of bins
varies for a particular coupling coefficient. For consistency, we kept the bin
width constant throughout all the values of coupling coefficient𝐶 but allowed
variations for different length of time series.

Figure 3.1 shows the information exchange from 𝑥 to𝑦 for different cou-
pling coefficients 𝐶 and varying time series lengths. The IF-linear robustly
measures a nonzero information exchange from𝑦 to 𝑥 and zero information
exchange from 𝑥 to𝑦 for time series lengths 𝑛 ≳ 500 time units. As expected
from the governing equations, the information exchange increases from𝑦 to
𝑥 with the coupling strength (Knuth et al. 2013). We also plotted the error
bars which represent two standard deviations of IF-linear estimation for the
respective time series length (see San Liang (2014) for details of the significance
test). With time series of 200 time units, relying on the error bars, one can
distinguish the asymmetry in the information exchange between systems 𝑥
and𝑦. The TE-linear estimator also shows the asymmetry in the interactions
between 𝑥 and𝑦. The results are also stable with all the time series lengths. The
error bar represents two standard deviations of 100 permuted surrogates for
TE estimations (refer to Lizier (2014) for details into the significance test for
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TE). As in the previous case, the strength of the association from 𝑦 to 𝑥 also
increases with the increase in the coupling coefficient.
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FIGURE 3.1. Information exchange in the unidirectional coupled linear system (Equation (3.3))
with various time series lengths (𝑛) measured by (a) the IF-linear method (nat-
s/time) and (b–e) with different variants of the TE measure (in nats). Error bars
represent two standard deviations of the permuted surrogate samples.

Among the nonparametric estimators, TE-binning is able to reproduce the
information exchange from𝑦 to 𝑥 with a time length 𝑛 = 5000 and 𝑛 = 3000
time units (with a total number of 12 and 14 bins, respectively). However, it
overestimates the TE from 𝑥 to𝑦. This overestimation may be attributed to the
rough estimation of the joint pdf. Moreover, the assumption of a uniform bin
width corresponds to biased entropy estimation. With the large overlapping
error bars, it is difficult to distinguish the information exchange direction. The
TE-kernel estimator (kernel width = 1) is also able to detect the asymmetry in
the coupling between 𝑥 and𝑦 and also the strength of the association. However,
with a time series length 𝑛 ≲ 500 time units, spurious information exchange
is detected from 𝑥 to 𝑦. Nevertheless, the error bars from 𝑥 to 𝑦 with time
series length 𝑛 ≲ 500 time units cross zero nats, and hence, no significant
information exchange takes place. Furthermore, various kernel widths from
0.5 to 2 were tested, and the results are consistent between the kernel widths
from 1 to 2. The better performance of TE-kernel might be attributed to the
smoother estimation of the pdf when compared with the TE-binning. Similarly,
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the TE-kraskov estimator (20 nearest neighbors) is able to show the one-way
coupling and also the strength of the coupling with the time series 𝑛 ≳ 500
time units. Below 500 time units, permutation surrogate improves to access
the direction of information exchange. The TE-kraskov estimator ess tested
between 4 to 60 neighbors, and the results are consistent from 20 to 60 nearest
neighbors.

The estimations of information exchange are sensitive to the autocorrela-
tion of the time series (Runge 2018). Hence, we calculated and compared the
autocorrelations for various systems. For this system, the time lag-1 autocorre-
lation of the system 𝑥 was around 0.5, and the autocorrelation of the system𝑦
was around 0.7. The presented results show that both parametric methods pro-
vide robust results along with the nonparametric TE-kernel and TE-kraskov
estimators above the time series length of 500 time units. In addition, with
permutation surrogates, even with time series length of 200 time units, the di-
rectionality of the information exchange is retrieved. The TE-binning method
produced unreliable results.

Bidirectional Coupled Linear Autoregressive System

Often in climate systems, subsystemsmutually exchange information. However,
sometimes the interaction strength from one system might be stronger than
the interaction in the opposite direction. Hence, it is very important that the
methods mentioned in Section 3.2 not only detect the interactions but also
quantify their relative strength. Therefore, as an example, we considered the
system with governing equations:

𝑥𝑛+1 = 0.1𝑥𝑛 +𝐶𝑦𝑥𝑦𝑛 + 𝑁 (0, 1),
𝑦𝑛+1 = 𝐶𝑥𝑦𝑥𝑛 + 0.1𝑦𝑛 + 𝑁 (0, 1),

(3.4)

where𝑁 (0, 1) isGaussiannoisewith zeromean andunit variance and𝐶𝑦𝑥∈[0,1]
and 𝐶𝑥𝑦 = 1

2𝐶𝑦𝑥 . We initialized the system with (𝑥0, 𝑦0) = (0, 0). From the
governing equations, a bidirectional information exchange exists and the rela-
tive information exchange from𝑦 to 𝑥 is stronger than from 𝑥 to𝑦, since𝐶𝑦𝑥

=2𝐶𝑥𝑦 . For the TE estimations, the AI values of this system are similar to those
of the unidirectional coupled autoregressive system. Hence, for this system,
we considered the embedding dimensions 𝑘 and 𝑙 to be 1. From the governing
equations, the interaction time delay of 1 was chosen as the source transfers
maximum information exchange at a time delay of 1.

The measured information exchange with different estimators for the sys-
tem with governing Equation (3.4) is shown in Figure 3.2. The IF-linear shows
a bidirectional information exchange. Further, it is able to quantify the strength
of the information exchange between 𝑥 and 𝑦 realistically for all time series
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length; in other words, as the coupling coefficients increases, the information
exchange increases bidirectionally, and importantly, the strength of association
from 𝑦 to 𝑥 is stronger than vice versa. This measured property would be
very useful in climate applications to accurately quantify the strength of the
associations among the subsystems. The TE-linear reproduced the bidirec-
tional information exchange for all the time series lengths as well. Further, the
strength of the information exchange is also accurately captured.
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FIGURE 3.2. Information exchange in the bidirectional coupled linear system (Equation (3.4))
with various time series lengths (𝑛) measured by (a) the IF-linear method (nat-
s/time) and (b–e) with different variants of the TE measure (in nats). Error bars
represent two standard deviations of the permuted surrogate samples.

The TE-binning estimator is able to reproduce the bidirectional informa-
tion exchange with a time length of 𝑛 = 5000 and 𝑛 = 3000 time units (with
a total number of 10 and 13 bins, respectively). However, with time series
length less than 1000 time units, spurious detections are noted. Furthermore,
with overlapping error bars, the detection of the directionality of information
exchange from𝑦 to 𝑥 and from 𝑥 to𝑦 is difficult. The TE kernel estimator pro-
vides robust bidirectional information exchange (kernel width = 1) but shows
spurious results for time series length of 200 time units, especially for weaker
couplings. However, at weaker couplings, the error bars assist in detecting
the direction of information exchange. Similarly, the TE-kraskov (10 nearest
neighbors) estimator is able to show the bidirectional coupling and also the
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strength of the information exchange for all time series lengths. The results are
consistent between 10 to 60 nearest neighbors.

In summary, both the parametric methods produced stable results and also
the nonparametric TE-kernel and TE-kraskov estimators showed consistent
results for almost all time series lengths. The autocorrelations for this system
were 0.2 and 0.4 with time lags of 1 and 2, respectively, for 𝑥 and 𝑦. Unlike
the previous example with unidirectional coupling, the results were relatively
robust even with 200 points. This might be associated with the weaker auto-
correlation magnitude in the bidirectional coupled system as compared to the
unidirectional coupled linear system. This sensitivity of TE estimations on the
autocorrelations was reported in Runge (2018).

Nonlinear Unidirectional Coupled Anticipatory System

Often in climate science, the relation among the subsystems is nonlinear, and
it is very important to identify these associations and quantify their strength.
Hence, in this section, we considered a special case of a nonlinear system called
anticipatory system. Systems in which the response somehow predicts or
anticipates the drive dynamics are known as anticipatory systems (Rosenblum
et al. 1997, Voss 2000). For example, Scolozzi & Geneletti (2017) discussed
the climate change paradigm illustrating on a systemic framework grounded
in the concept of anticipatory system in which the anthroposphere acts as an
anticipatory system anticipating and governing the climate dynamics. In the
current study, we considered a one way coupled nonlinear anticipation system
proposed by Hahs & Pethel (2011) with the following equations:

𝑥𝑛+1 = 𝑓 (𝑥𝑛),
𝑦𝑛+1 = (1 − 𝜖) 𝑓 (𝑦𝑛) + 𝜖𝑔𝛼 (𝑥𝑛),

(3.5)

where 𝑓 (𝑥) = 4𝑥 (1 − 𝑥) is the chaotic logistic map and 𝑔𝛼 (𝑥𝑛) = (1 −
𝛼) 𝑓 (𝑥) +𝛼 𝑓 (𝑓 (𝑥)). For this system, 𝜖 = 0.3 is chosen. For 𝜖 > 0.3, the system
is synchronized. The response𝑦 is strongly coupled to the driver, but it retains
its independence. The function 𝑔𝛼 (𝑥𝑛) = (1 − 𝛼) 𝑓 (𝑥) + 𝛼 𝑓 (𝑓 (𝑥)) includes a
tunable parameter 𝛼 (coupling coefficient). When 𝛼 =0, the𝑦 system is driven
towards the 𝑥 system and when𝛼 = 1, the𝑦 system is driven towards the future
of the system 𝑥 . We initialized the system with (𝑥0, 𝑦0) = (0.4, 0.1). For the
TE calculations, the source embedding dimension 𝑙 = 1 is chosen based on the
governing equations, while the AI for the destination system shows a maximum
value at time lag 1 and then a decrement for higher lags. Hence, 𝑘 is chosen to
be 1. From the governing equations, the interaction time delay of 1 is chosen
as the source transfers maximum information exchange at a time delay of 1.

Figure 3.3 represents information exchange for the system with governing
Equation (3.5). The IF-linear shows an information exchange from 𝑥 to 𝑦 at
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all coupling coefficients except for the values 0.4 to 0.7 and no information
exchange from 𝑦 to 𝑥 except at coupling coefficient 0.2 for the time series
length of 5000 time units. Similarly, at lower time series lengths, this asymme-
try is captured; however, at coupling coefficients values from 0.4 to 0.7, it is
difficult to distinguish the information flow directionality even with the error
bars. With longer time series, IF-linear successfully detects the unidirectional
information exchange, and this result is reported in San Liang (2014). Even
though one can argue that IF-linear has been developed strictly for linear sys-
tems, it qualitatively detects the asymmetry in the information exchange for
this anticipatory system. San Liang (2014) presented a detailed description
of how IF-linear is able to retrieve the properties of this anticipation system
through linearization. This property of IF-linear is remarkable, as it is easy
to apply given two time series. Moreover, unlike nonparametric TE, IF-linear
does not depend on free tuning parameters, which is an added value for its
application and also computationally efficient. The TE-linear fails to detect the
direction of information exchange at all time series lengths for this system, in
fact, the directionality is reversed. It is worth noting that the implementation
of TE-linear does not involve any linearization, unlike IF-linear.

The TE-binning estimator (10 bins) shows information exchange from 𝑥

to𝑦 at a time series length of 5000 time units. At higher coupling coefficients,
nonzero information exchange is detected from𝑦 to𝑥 . With a time series length
less than 1000 time units, unrealistic nonzero information exchange is detected
from𝑦 to 𝑥 at all coupling coefficients. The TE-kernel estimator (kernel width
= 0.5) also detects the one-way coupling between 𝑥 and𝑦 (consistently between
0.25 to 1 kernel widths) at all time series lengths. However, at greater coupling
coefficients, spurious information exchange is detected from𝑦 to 𝑥 at all-time
series lengths with kernel width greater than 0.5. The TE-kraskov estimator (4
nearest neighbors) shows exactly the unidirectional coupling between 𝑥 to𝑦
(consistently between 4 to 60 neighbors) at all time series lengths. The better
estimation of TE-kraskov might be attributed to the adaptive data efficient
discretization as well as bias correction (Kraskov et al. 2004). However, with
TE-kraskov, a very slow convergence of information exchange with increasing
time series length is noted. This behavior was reported in the study by Zhu et al.
(2015). In summary, for this system, IF-linear is able to detect the asymmetry
in the information exchange while TE-linear fails. The nonparametric TE-
kraskov estimator provides reliable results for all time series lengths. While the
asymmetry in coupling is captured by TE-kernel and TE-binning, unrealistic
nonzero information exchange is detected at higher coupling coefficients from
system𝑦 to 𝑥 .
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(e) TE-kraskov

FIGURE 3.3. Information exchange in the unidirectional coupled nonlinear anticipatory system
(Equation (3.5)) with various time series lengths (𝑛) measured by (a) the IF-linear
method (nats/time) and (b–e) with different variants of the TE measure (in nats).
Error bars represent two standard deviations of the permuted surrogate samples.

Bidirectional Coupled Non-Linear System

In this section, we extend our analysis from a unidirectional nonlinear coupled
system to a bidirectionally coupled nonlinear system. For this purpose, we
considered Heńon maps which were motivated by the Lorenz equations. The
Heńon map captures the stretching and folding dynamics of chaotic systems
such as the Lorenz system which mimic the atmospheric behavior. We con-
sidered two identically coupled Heńon maps with the following governing
equations (Wiesenfeldt et al. 2001):

𝑥𝑛+1 = 1.4 − 𝑥2
𝑛 + 0.3𝑥𝑛−1 +𝐶𝑦𝑥 (𝑥2

𝑛 − 𝑦2
𝑛),

𝑦𝑛+1 = 1.4 − 𝑦2
𝑛 + 0.3𝑦𝑛−1 +𝐶𝑥𝑦 (𝑦2

𝑛 − 𝑥2
𝑛),

(3.6)

where the coupling coefficients𝐶𝑦𝑥 and𝐶𝑥𝑦 ∈[0,0.4]. For the TE calculations,
the source embedding dimension 𝑙 = 1 was chosen based on the governing
equations. The AI for the destination system shows a maximum value at first
two time lags and then a decrement for higher time lags. Hence, we considered
the embedding dimension𝑘 = 1. From the governing equations, the interaction
time delay of 1 was chosen as the source transfers maximum information
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exchange at a time delay of 1. For this system, the region outside the coupling
interval [0.3,0.3] corresponds to synchronization.

Figure 3.4 represents information exchange for the system with governing
Equation (3.6) for a time length of 5000 time units. The IF-linear shows an
information exchange from 𝑥 to𝑦 at coupling coefficient𝐶𝑦𝑥 from 0.1 to 0.25
and 𝐶𝑥𝑦 from 0.1 to 0.2. Further, it shows an information exchange from
system 𝑦 to 𝑥 at coupling coefficient 𝐶𝑦𝑥 from 0.1 to 0.3 and 𝐶𝑥𝑦 from 0.1
to 0.2. A similar behavior was also observed with the TE-linear estimator,
but at a lower coupling coefficient below the synchronization, TE-linear fails.
The nonparametric TE-binning (consistently between 10 to 20 bins) and TE-
kernel (consistently between 0.25 to 1 kernel widths) shows an information
exchange between 𝑥 and 𝑦 with couplings below [0.3,0.3]. Furthermore, the
strength of the information exchange increases from 𝑥 to 𝑦 as the coupling
strength𝐶𝑥𝑦 increases and vice versa. This symmetric behavior is expected
as the two Heńon systems are identically coupled. This was also shown by
Lungarella et al. (2007). Similar patterns with the TE-kraskov estimator (4
nearest neighbors) are also seen (consistently between 4 to 60 neighbors). We
also tested the information exchange for this system with a time series length
of 500 time units (figure not shown). It was observed that the spatial patterns
of the information exchange exhibit similar spatial patterns as those in Figure
3.4 but less clearly established for TE-binning, TE-kernel, and TE-kraskov
estimators. However, the TE-binning estimation overestimates the information
exchange when compared with TE-kernel and TE-kraskov. In summary, for
this system, both the parametric methods failed to detect the bidirectional
nonlinear interactions, while the nonparametric TE-kernel and TE-kraskov
estimators showed consistent results for time series lengths 𝑛 = 5000 and
𝑛 = 500 time units.

From the above-discussed idealized systems, considering the dependencies
of TE nonparametric estimations on the free parameters, instead of relying
on any single estimator, we propose to use a composite of TE-kernel and TE-
kraskov estimators for nonlinear systems. Furthermore, the free parameters,
i.e., kernel width and the number of nearest neighbors are to be tuned until
both the estimators consistently show a significant information exchange. For
the linear systems in addition to TE-kernel and TE-kraskov along with the
tuning of free parameters, linear estimators (IF-linear and TE-linear) shall be
used simultaneously.
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FIGURE 3.4. Information exchange in the bidirectional coupled nonlinear system (Equation
(3.6)) with time series length of 500 time units measured by (a,b) the IF-linear
method (nats/time) and (c–j) with different variants of the TE measure (in nats).

Two-Scale Lorenz-96 Model

So far, we had investigated information exchange in idealized linear and non-
linear coupled systems where the dynamics of the system is known or expected.
In this section, we consider a simple conceptual model of atmosphere-like mul-
tiscale dynamics, namely, the Lorenz-96 system (Lorenz 1996) which consists
of coupled fast and slow subsystems. This model was originally introduced to
mimic multiscale midlatitude weather. Furthermore, it has been extensively
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used in the study of the influence of multiple spatiotemporal scales on the
predictability of atmospheric flows (Herrera et al. 2010, Tödter & Ahrens 2015).
Although the equations in Lorenz-96 are known and identically coupled, the
interaction behavior of Lorenz-96 is hard to expect, as its dynamics is domi-
nated by the interplay between the fast and slow subsystems. Hence, to detect
the direction of information exchange, we applied the methods discussed in
Section 3.2 to the Lorenz-96 system. The Lorenz-96 system has the following
governing equations:

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖−1(𝑥𝑖+1 − 𝑥𝑖−2) − 𝑥𝑖 + 𝐹 − ℎ𝑐

𝑏

𝑛∑︁
𝑗=1
𝑦 𝑗,𝑖 ,

𝑑𝑦 𝑗,𝑖

𝑑𝑡
= 𝑐𝑏𝑦 𝑗+1,𝑖 (𝑦 𝑗−1,𝑖 − 𝑦 𝑗+2,𝑖) − 𝑐𝑦 𝑗,𝑖 +

ℎ𝑐

𝑏
𝑥𝑖 .

(3.7)

It consists of𝑚 slow variables 𝑥𝑖 coupled to𝑚 × 𝑛 fast variables𝑦 𝑗,𝑖 . Fur-
thermore, the two systems are coupled by coupling constantℎ, scaling constants
𝑏 and 𝑐 , and 𝐹 is a constant forcing. Here, 𝑖 = 1, ....𝑚 and 𝑗 = 1, ....𝑛. Both the
𝑥𝑖 and 𝑦 𝑗,𝑖 have periodic boundary conditions, i.e., 𝑥𝑚+1 = 𝑥1; 𝑥0 = 𝑥𝑚 and
𝑦𝑛+1,𝑖 = 𝑦1,𝑖+1; 𝑦0,𝑖 = 𝑦𝑛,𝑖−1. The conventional parameter values 𝐹 = 8 and
𝑚 = 40 are chosen. Furthermore, the values of 𝑛,𝑏 , and 𝑐 are chosen to be 4,
10, and 10, respectively. This setup leads to a two-scale model where the fast
variables fluctuate 10 times faster than the slow ones. The coupling parameter
ℎ is varied from 0 to 1 with an increment of 0.1. For more details of the system,
refer to Herrera et al. (2010). For this system, we chose embedding dimensions
𝑙 =𝑚 = 1 based on the peak AI values at time lag 1 for TE calculation. From
the governing equations, the interaction time delay of 1 is chosen as the source
transfers maximum information exchange at a time delay of 1.

Figure 3.5 represents information exchange for the system with governing
Equation (3.7) for various time series lengths. The IF-linear indicates that there
exists a bidirectional information exchange between the slow system and the
fast system. Furthermore, the magnitude of information exchange from the fast
system to the slow system is stronger than vice versa. The TE-linear shows that
a greater amount of information is exchanged from the fast system to the slow
system at low couplings. At higher couplings, the information converges to
zero in both directions. However, as the IF-linear and TE-linear fail for strong
nonlinear systems, we do not draw any conclusions from these results as the
Lorenz-96 is a highly nonlinear system.

The TE-binning estimation (10 bins) shows information exchange from
𝑥 to 𝑦, i.e., the slow system to the fast system. Moreover, weak information
exchange is detected from𝑦 to 𝑥 . The TE-kernel estimator (kernel width = 0.5)
and TE-kraskov estimator (4 nearest neighbors) also show that the information
exchange is dominant from the slow system to the fast system than vice versa.
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From the composite use of TE-kraskov and TE-kernel alongwith the parameter
tuning, we see a bidirectional information exchange between the systems 𝑥
and 𝑦. Moreover, the system 𝑥 leads the system 𝑦, i.e., the slow system leads
the fast system. Herrera et al. (2010), in their study, also noted that there
exists a bidirectional influence between the fast and slow system as revealed
from the spatial patterns of the system trajectories. They also found that the
fast system is conditioned by the slow system especially at lower couplings,
i.e., the system dynamics is dominated by the slow system. From Figure 3.5,
the nonlinear methods show that the information exchange decreases as the
coupling coefficient increases; this requires a further detailed investigation.
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FIGURE 3.5. Information exchange in the Lorenz-96 system (Equation (3.7)) with various time
series lengths (𝑛) measured by (a,b) the IF-linear method (nats/time) and (c–j)
with different variants of the transfer entropy (TE) measure (in nats). Error bars
represent two standard deviations of the permuted surrogate samples.

3.3.2 Application to Climate Phenomena

Information Exchange between Indian and Pacific Ocean

The El Niño Southern Oscillation (ENSO) is an important large-scale coupled
atmosphere–ocean phenomenon which has a remote influence on sea surface
temperatures in other ocean basins (Klein et al. 1999). An atmospheric bridge is
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one of the mechanisms through which this influence is mediated (Lau & Nath
1996, Ashok et al. 2003). ENSO oscillations are characterized by changes in
the sea surface temperature (SST) patterns over the equatorial Pacific Ocean.
Among many measures, the Niño 4 and Niño 3 indices measure the ENSO
oscillation strength and phase. Another important climate variability called
the Indian Ocean dipole (IOD) occurs in the Indian Ocean and is known to
have an influence on Indian summer monsoon and on rainfall over Australia,
Indonesia, and East Africa (Ummenhofer et al. 2009, Lau & Nath 1996, Cai &
Cowan 2008, Hong et al. 2008). A positive phase of IOD represents a cooling
in the eastern part of the Indian Ocean and warming in the western part of the
Indian Ocean and vice versa. The strength and phase of the IOD are measured
through the IOD index.

Earlier studies stated that IOD might arise due to the internal atmosphere–
ocean coupling of the Indian Ocean (Yamagata et al. 2004). However, the ENSO
forcing is one of the factors responsible for causing IOD, and furthermore, a
co-evolution of ENSO and IOD events are noted (Luo et al. 2010, Meyers et al.
2007, Fischer et al. 2005, Saji et al. 1999). ENSO and IOD are known to interact
with each other through the Walker circulation in the atmosphere (Ashok et al.
2001). It is also observed that the IOD could also contribute to the development
phase of ENSO through feedbacks Annamalai et al. (2005), Ashok et al. (2001).
Although the ENSO and IOD co-evolve during some years, there is still no
consensus about their linkage. San Liang (2014) investigated the interaction of
theNiño 4 index on the IndianOcean SST and also the IOD index on the Pacific
Ocean SST. In his study, the patterns of information flow from theNiño 4 index
to Indian Ocean SST revealed an Indian Ocean dipole-like structure over the
Indian Ocean basin. Furthermore, an ENSO-type pattern is also obtained over
the Pacific Basin when the IOD index is applied to the Pacific Ocean SST. In
our study, we applied the linear and nonlinear estimators to robustly measure
the interaction mechanism between ENSO and IOD.

Here, the IOD and ENSO relationship was investigated with all the infor-
mation exchange measures discussed above. The monthly time series of the
Niño 4 index and Indian ocean dipole index were obtained from NOAA ESRL
and JAMSTEC, respectively, for the period of 1958–2010 (i.e., 633 months).
The lag-1 autocorrelation of Niño 4 is 0.8 and an IOD index of magnitude 0.9.
Hence, a time series length longer than 500 time units is recommended to apply
the methods mentioned in the previous examples. As the available length of
the indices is 633 months, it is expected that information exchange detection
and quantification could be robustly estimated by the information exchange
methodsmentioned in Section 3.2. However, detecting interaction delaysmight
need a greater amount of time series while estimating TE (Wollstadt et al. 2014).
Hence, we cross-checked if our interaction delays are physically consistent with
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the existing literature. As data input, the SST reanalysis namedCOBE-SST2 Sea
Surface Temperature and Ice (Hirahara et al. 2014) was obtained from NOAA
for the same period. Before applying the information exchange methods, the
indices were deseasonalized, and the linear trend was removed to fulfill the
stationarity criteria for TE (Runge 2018) and IF-linear estimations.

Table 3.1 gives the information exchange between the two indices as quan-
tified by the various methods. A permutation technique, under which the
surrogates preserve the tuples 𝑝 (𝑥𝑛+1, 𝑥

𝑘
𝑛 , 𝑦

𝑙
𝑛) for TE estimation is used to de-

termine the significant information exchange within 95% confidence interval
(100 samples). For more details into the technique, refer to Lizier (2014). The
significance test for IF-linear follows San Liang (2014). Moreover, based on the
AI, we chose the destination embedding𝑘 = 1 due to theminimal increase from
time lag 1 to time lag 10months for both IOD andNiño 4 , while we scanned for
the time interaction delay at which maximum information is exchanged from
the source to the destination (Wibral et al. 2013). The parametric methods show
significant information exchange from the Niño 4 index to IOD at a lag of 2 to
3 months, while significant information is exchanged from IOD to the Niño 4
index with a time lag of 0 and between 10 and 14 months. The instantaneous
relation between the IOD and Niño 4 has been observed throughout the histor-
ical records. However, it is interesting to note that significant instantaneous
information is exchanged from IOD to the Niño 4 index and not vice versa.
This relation could be attributed to the feedback of the IOD on the Pacific
Ocean due to the wind anomalies induced by ENSO over the Indian Ocean
(Luo et al. 2010). The time lagged information exchange results suggest that
ENSO events tend to influence the IOD (Ueda &Matsumoto 2000), and then
the induced IOD tends to provide feedback to the ENSO (Behera & Yamagata
2003, Annamalai et al. 2005). The nonparametric TE-kernel and TE-kraskov
estimators also exhibit a similar behavior except the TE-binning estimator. The
free parameters are tuned and tested rigorously for numerical consistency.

TABLE 3.1. Information exchange between the Niño 4 (N4) and the Indian Ocean dipole (IOD)
index (* refers to significant information exchange).

Method N4 to IOD (lag=3) IOD to N4 (lag=0) IOD to N4 (lag=7) Units

IF-linear 1.0 * 1.2 * 1.1 * nats/month ×10−2

TE-linear 0.7 * 1.3 * 1.4 * nats ×10−2

TE-binning 0.5 * 0.9 * 0.7 nats ×10−2

TE-kernel 0.3 * 1.5 * 1.6 * nats ×10−2

TE-kraskov 0.1 * 1.1 * 0.9 * nats ×10−2

We further investigated the patterns over the respective oceans at the time
of maximum influence of the indices. Figure 3.6 shows significant information
exchange from the Niño 4 index to the Indian Ocean SST at a lag of 3 months.
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The IF-linear shows the influence of Niño 4 on the Indian Ocean, especially
on the Southeastern Indian Ocean, suggesting an information exchange from
the Pacific Ocean to the Indian Ocean. The TE-linear also shows a significant
exchange of information from the Pacific Ocean to the Indian Ocean with
a maximum value of TE-linear near the Southeast Indian Ocean. While the
TE-kernel also replicated a similar pattern, the TE-binning estimator produced
a spurious pattern. The results were also checked for consistency with var-
ious kernel widths ranging between 0.25 and 2. The TE-binning estimator
could not reveal a similar pattern with various bin widths. The TE-kraskov
estimation also revealed an information exchange from the Pacific Ocean to the
Indian Ocean and was consistent within the range between 20 and 60 nearest
neighbors.

The significant information exchange pattern from IOD to the Pacific
Ocean at a lag of six is represented in Figure 3.7. The IF-linear shows an
information exchange over the central PacificOcean, suggesting an information
exchange from the IndianOcean to the Pacific Ocean. The TE-linear also shows
that information is exchanged from the Indian Ocean to the Pacific Ocean with
maximum values of TE occurring near the central Pacific Ocean. The TE-
kernel and TE-kraskov estimators show nonlinear interactions near the East
Pacific with numerical consistency from 0.25 to 2 kernel widths and 20 to
60 nearest neighbors, respectively, while the TE-binning produce spurious
patterns without any numerical consistency for all varying bin widths. These
nonlinear interactions need further investigation.

As the current example is a large-scale process and the variables are ex-
pected to be near-Gaussian, and as all the estimators (except TE-binning)
showed a bidirectional information exchange, it could be concluded that a bidi-
rectional information exchange exists between the Pacific and Indian Ocean
SST. However, as mentioned earlier, we limited our investigation to two-
dimensional systems, here between ENSO and IOD. In real-world climate
systems, there could always be an unobserved influence of another system
on the information exchange estimations. Hence, care is to be taken before
drawing any conclusions; furthermore, the information exchange magnitudes
are quite smaller compared with the idealized test cases.
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FIGURE 3.6. Information exchange from the Niño 4 Index to the Indian Ocean sea surface
temperatures for the period of 1958–2010 measured by (a) the IF-linear method
(nats/time) and (b–e) with different variants of the TE measure (in nats ×10−1).
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FIGURE 3.7. Information exchange from the Indian Ocean dipole Index to the Pacific Ocean sea
surface temperatures for the period of 1958–2010 measured by (a) the IF-linear
method (nats/time) and (b–e) with different variants of the TE measure (in nats
×10−1).

Information Exchange between Nao and European Near-Surface Tem-
peratures

The North Atlantic Oscillation (NAO) is one of the dominant modes in the
climate system which influences the European climate and many parts of the
Northern Atlantic (Barnston & Livezey 1987). The NAO characterizes the
strength of the subtropical high and polar low. The NAO is measured through
the NAO index, which is obtained by the normalized pressure difference be-
tween the stations located in the Azores and Iceland (Papadimas et al. 2012). A
positive NAO represents a deeper low over Iceland and stronger subtropical
high than normal and vice versa.

There have been several studies suggesting the influence of the NAO on the
winter temperatures over Europe (Trigo et al. 2002, Gámiz-Fortis et al. 2011).
One of the physical mechanisms in which the NAO influences the temperatures
is by the advection of the heat by anomalous mean flow (Trigo et al. 2002).
Another mechanism through which the temperatures are affected is through
modulation of radiation by the cloud cover (Gámiz-Fortis et al. 2011) through
altering the storm track directions. In the current study, we investigated the
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information exchange from NAO to winter temperatures over Europe and
checked if all the methods reproduce this relation.

The NAO index and the near-surface air temperatures (𝑇 ) were obtained
from the CRU database (Harris et al. 2017) held at the British Atmospheric
Data Centre, RAL, UK for the period of 1901 to 2016. December, January, and
February temperatures were chosen as the winter months. The total time series
length of 348 months was considered. The autocorrelation of NAO is of magni-
tude 0.1 with a time lag of 1month, and surface air temperature autocorrelation
is about 0.05 with a time lag of 1 month. Because of the low autocorrelations,
we expected the methods mentioned in Section 3.2 to be robust with given time
series length. Moreover, the AI for 𝑇 and NAO showed a minimal increase
from time lag 1 to time lag 10, and hence, 𝑘 = 1 was chosen, while we scanned
for an interaction delay at which the source exchanges maximum information
exchange. The PRUDENCE regions (Christensen et al. 2002) over Europe were
selected, and spatial mean air temperatures over different regions were used to
detect the information exchange.

Table 3.2 shows the information exchange between the NAO and𝑇 over
two PRUDENCE regions (the British Isles and Scandinavia). The parametric
IF-linear shows significant information exchange from𝑇 over the British Isles
to the NAO index at an interaction delay of zero days. The TE estimators
show a significant information exchange bidirectionally between NAO and𝑇
over the British Isles except for the TE-binning estimator. For Scandinavia, IF-
linear shows information exchange from NAO to𝑇 , while TE estimators show
bidirectional information exchange. Over other PRUDENCE regions, similar
bidirectional information exchange is observed except for the Mediterranean
region. These results seem to be implausible, as one would not expect any
information exchange from𝑇 over Europe to the NAO index. This unrealistic
estimation of information exchange could have arisen froma common influence
by a hidden third variable. Earlier studies have observed the sensitivity of TE
estimation to a hidden variable (Runge et al. 2012). From previous literature,
a possible influence on NAO might arise from the variations in sea surface
temperatures, sea ice, volcanic activity, and solar activity (Wanner et al. 2001),
which also influence the𝑇 over Europe.
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TABLE 3.2. Information exchange between North Atlantic Oscillation (NAO) and winter near-
surface temperatures (* refers to significant information exchange).

Method NAO to TS TS to NAO Units Region

IF-linear 0.02 0.09 * nats/month British Isles
TE-linear 0.318 * 0.314 * nats British Isles
TE-kernel 0.4 * 0.38 * nats British Isles
TE-kraskov 0.3 * 0.2 * nats British Isles
IF-linear 0.08 * 0.05 nats/month Scandinavia
TE-linear 0.14 * 0.14 * nats Scandinavia
TE-kernel 0.24 * 0.2 * nats Scandinavia
TE-kraskov 0.16 * 0.17 * nats Scandinavia

3.4 CONCLUSIONS

This work targeted detecting and quantifying interactions in climate phenom-
ena through asymmetric methods from information theory, IF, and TE. How-
ever, due to the difficulty in their estimations, we initially tested various estima-
tors of these methods to idealized systems and then to two important climate
phenomena. We limited our discussions only to two-dimensional systems.

The parametric estimators assuming linearity, such as the rigorously de-
rived IF-linear and axiomatically proposed TE-linear, detected and reliably
quantified the unidirectional and bidirectional information exchange in the
idealized linear systems. IF-linear was able to detect the unidirectional infor-
mation exchange for the tested unidirectional nonlinear system, whereas the
TE-linear failed to do so. For the bidirectional nonlinear Heńon maps, both
linear estimators failed to detect and quantify the information exchange. Hence,
care has to be taken if linear information exchange measures is applied in cli-
mate system diagnosis, especially if the system variables have non-Gaussian
distributions. However, these two estimators, IF-linear and TE-linear, were
robust and reliable for the discussed linear systems and, in addition, IF-linear
also for a weakly nonlinear system. For all the idealized systems discussed here,
the nonlinear implementation of IF might reveal the interactions, but since we
focused on climate applications given time series with an unknown dynamical
model, we used IF-linear, which does not require system dynamics.

Among the nonparametric estimators, the TE-binning failed to be useful
as a robust estimator. Even though the TE-kernel and TE-kraskov passed
the idealized tests, their implementations had to be tuned to get consistent
numerical results. Slow convergence of information exchange with the TE-
kraskov estimator with increase in time series length was also noted. Therefore,
we concluded that both reliable nonparametric estimators should be jointly
applied and their implementation should be optimized for consistent results
before any quantitative interpretation of the investigated nonlinear system is
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drawn. This conclusion is conditioned on the availability of long enough data
time series. The composite use of TE-kernel and TE-kraskov showed that the
dynamics of the Lorenz-96 model is dominated by the slow subsystem.

For real climate applications, i.e., information exchange between the In-
dian and Pacific Oceans, the parametric and reliable nonparametric estimators
showed a significant bidirectional information exchange. Moreover, the time
lag of significant information exchange from Pacific to the Indian Ocean was
about 2 to 3 months. An instantaneous information exchange from the Indian
to Pacific Ocean was detected and also with a time lag of about 10 to 12 months.
The respective spatial patterns over the Indian and Pacific Oceans revealed a
significant bidirectional information exchange. Hence, given the consistent esti-
mations, we conclude that a bidirectional information exchange exists between
the Pacific and Indian Oceans, as expected from literature (Ueda &Matsumoto
2000, Behera & Yamagata 2003, Annamalai et al. 2005). However, given the
limitations of TE and IF-linear, a possibility of a hidden influence by another
system cannot be ruled out. This requires further analysis.

For the relation of NAO and European winter air temperatures, the esti-
mators showed significant bidirectional information exchange. The process
mechanism from NAO to European temperature is often discussed in the lit-
erature (Trigo et al. 2002, Gámiz-Fortis et al. 2011). However, the measured
information exchange from European temperatures to the NAO cannot be
explained by a straightforward process chain. This indicates an influence from
a third hidden variable as a common driver.

Thus, even though TE and IF-linear are useful measures which allow for
quantification of interactions and their directionality, their limitations and the
system at hand need to be taken into account carefully before drawing any
conclusions from their estimations. Hence, we propose a composite use of the
information theorymethodswith parameter testing for various applications, for
example, as a robust model evaluation framework. While this study was limited
in investigating the relationship between two systems, in the future study, the
authors plan to investigate interaction measures based on information theory
in higher-dimensional climate system networks.
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CHAPTER 4

The synergistic impact of ENSO and IOD on the Indian Sum-
mer Monsoon Rainfall in observations and climate simula-
tions - an information theory perspective2
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ABSTRACT

El-Niño southern oscillation (ENSO) and Indian Ocean Dipole (IOD) are two
well-know temporal oscillations in the sea surface temperature (SST), which
both are thought to influence the interannual variability of the Indian Summer
Monsoon Rainfall (ISMR). Until now, there has been no measure to assess
the simultaneous information exchange (IE) from both ENSO and IOD to
ISMR. This study explores the information exchange from two source variables
(ENSO and IOD) to one target (ISMR). First, in order to illustrate the concepts
and quantification of two-source IE to a target, we use idealized test cases
consisting of linear as well as non-linear dynamical systems. Our results show
that these systems exhibit net synergy (i.e., the combined influence of two
sources on a target is greater than the sum of their individual contributions),
even with uncorrelated sources in both the linear and non-linear systems. We
test IE quantification with various estimators (the Linear, Kernel, and Kraskov
estimators) for robustness. Next, the two-source IE from ENSO and IOD to
the ISMR is investigated in observations, reanalysis, three global climate model
(GCM) simulations, and three nested, higher-resolution simulations using a
regional climate model (RCM). This (1) quantifies IE from ENSO and IOD to
ISMR in the natural system, and (2) applies IE in the evaluation of the GCM and
RCM simulations. The results show that both ENSO and IOD contribute to
the ISMR interannual variability. Interestingly, significant net synergy is noted
in the central parts of the Indian subcontinent, which is India’s monsoon core
region. This indicates that both ENSO and IOD are synergistic predictors in the
monsoon core region. But, they share significant net redundant information
in the southern part of Indian subcontinent. The IE patterns in the GCM
simulations differ substantially from the patterns derived from observations
and reanalyses. Only one nested RCM simulation IE pattern adds value to the
corresponding GCM simulation pattern. Only in this case, the GCM simulation
shows realistic SST patterns and moisture transport during the various ENSO
and IOD phases. This confirms, once again, the importance of the choice of the
GCM in driving a higher-resolution RCM. This study shows that two-source
IE is a useful metric that helps in better understanding the climate system and
in process-oriented climate model evaluation.

4.1 INTRODUCTION

The South AsianMonsoon is considered as a large-scale coupled air-sea-land in-
teraction phenomenon that brings seasonal rainfall to the Indian subcontinent
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and other near areas (Webster et al. 1998). Large parts of the Indian subcon-
tinent receive rainfall from June to September known as the Indian Summer
Monsoon Rainfall (ISMR). The ISMR contributes about 70–90% to the total
annual precipitation amount in the Indian subcontinent (Shukla &Huang 2016).
The agriculture in the Indian subcontinent depends substantially on the ISMR,
and any variations on the interannual as well as intraseasonal variabilities of
ISMR cause a significant impact on the country’s economy. The interannual
variation of the IMSR is only about 10% of the mean (Gadgil 2003), yet it has
a large impact on crop production. The mean seasonal rainfall predictability
significantly depends on the interannual variability of the ISMR (Goswami
et al. 2006, Pillai & Chowdary 2016). The interannual variability of the ISMR
is linked to many noted oscillations, the El Niño Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), Atlantic Multidecadal Oscillation (AMO), Atlantic
Zonal Mode (AZM), Pacific Decadal Oscillation (PDO), etc., (Nair et al. 2018,
Sabeerali et al. 2019, Hrudya et al. 2021). The oscillations thought to have the
most significant impact on the ISMR are ENSO and IOD (Krishnaswamy et al.
2015). Hence, in this study, we majorly focus on the individual and combined
influences of the two climate modes ENSO and IOD on the ISMR interannual
variability in observations, reanalysis data sets, and climate models.

ENSO is an important large-scale coupled atmosphere-ocean aperiodic
oscillation over the Pacific ocean that on average occurs every 2–7 years. The
Sea Surface Temperature (SST) pattern over western (central-eastern) tropical
Pacific ocean experience large cold (warm) anomalies during the El Niño phase.
The normal patterns of SST over the Pacific ocean are enhanced during the
La Niña phase. These variabilities in the SST are coupled to the atmospheric
Walker circulation, and Sir Gilbert Walker in 1924 was the first to observe
a relation between ENSO and ISMR (Walker 1924, Gadgil 2003, Goswami
1998, Yun & Timmermann 2018). He noticed that often the El Niño (La Niña)
conditions over the Pacific ocean are linked to weak (strong) ISMR. During
the El Niño conditions, the entire walker circulation is shifted eastwards by
which the descending branch of the Walker cell on the western Indian ocean
shifts eastward to overlie on the Indian subcontinent, thereby suppressing the
convection (Walker 1924, Kumar et al. 2006, Palmer et al. 1992). In the La Niña
years, the entire Walker circulation shifts slightly westward, which assists in
enhancing the convection over the Indian subcontinent. Many other studies
(Goswami 1998, Slingo & Annamalai 2000) argued that the El Niño conditions
do not suppress the ISMR directly through the descending branch of theWalker
circulation but rather, the changes in the Walker circulation enhances the
meridional Hadley circulation decent over the Indian subcontinent. Hence, it
could be that the ENSO affects the IMSR through interactions between the
Walker and Hadley circulations.
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Another important source that is linked to the ISMR interannual variability
is a dipole like structure in the Indian ocean surface temperature known as
IOD (Saji et al. 1999). During a positive (negative) IOD, the southeastern part of
the Indian ocean is cooler (warmer) than normal while the western part of the
Indian ocean is warmer (cooler). During the positive IOD event, the meridional
circulation in the region ismodulated through anomalous convergence patterns
over the Bay of Bengal, thereby strengthening the monsoon with anomalous
positive rainfall over the Indian subcontinent while the negative IOD events
lead to theweakening of the rainfall (Ashok et al. 2001). Behera&Ratnam (2018)
found that the opposite phases of IOD are associated with distinct regional
asymmetries in IMSR anomalies over the Indian subcontinent contributing
significantly to the interannual variability. Interestingly, Behera & Ratnam
(2018) found that during the co-existence of El Niño and positive IOD, the IOD
tends to compensate for the influence of El Niño leading to normal rainfall by
inducing anomalous convergence over the Bay of Bengal. Similarly, the negative
IOD events can reduce the impact of La Niña on ISM rainfall and cause deficit
monsoon rainfall. However, the study of Chowdary et al. (2015) showed that
the local air–sea interaction in the tropical Indian ocean opposes the Pacific
ocean impact even in the absence of IOD. Hence, still there are uncertainties
associated with the individual and combined influence of ENSO and IOD on
the interannual variability of ISMR.

Motivated by these large uncertainties in the present knowledge about how
ENSO and IOD influence the ISMR interannual variability, we are investigating
these connections from a two-source information exchange (IE) perspective.
The IE between two subsystems 𝑋 and 𝑌 can be understood as the average
uncertainty reduction about𝑋 in knowing 𝑌 or vice versa. The information
theory, in its current form, provides a complete description of the IE relation-
ship between a single-source and a target. However complex climate system
often consist of multi-sources influencing a target such as the ENSO and IOD
influencing the ISMR variability. The IE in a system composed of two-source
systems 𝑌 and 𝑍 to the target variable𝑋 is decomposed into four parts (Figure
4.1) according to Williams & Beer (2010): (i) unique information shared by
𝑌 to 𝑋 (ii) unique information shared by 𝑍 to 𝑋 (iii) redundant information
or overlapping information shared by both sources 𝑌 and 𝑍 together with𝑋
(iv) synergistic information about𝑋 while knowing 𝑌 and 𝑍 together but not
either of them alone. An example of synergistic information from two sources
is the classical binary exclusive-or (XOR) operation (Williams & Beer 2010,
James et al. 2016), where the two sources 𝑌 and 𝑍 provide information that
is not available from either of their states alone but by jointly knowing their
states together. Since ENSO and IOD are known to simultaneously influence
the ISMR variability, one could expect the component of synergy or redundant
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information existing in this climate phenomenon. In the case of synergy, the
target uncertainty of IMSR interannual variability is reduced only when the
states of two sources, ENSO and IOD are known together but not individually.
This decomposition of information is known as partial information decom-
position (PID). It is very important to note that, though the methods from
information theory are very useful in analyzing the complex system behavior,
their estimations are quite challenging due to their sensitivity to free tuning
parameters and sample size (Knuth et al. 2013, Smirnov 2013, Pothapakula et al.
2019). Hence, this study follows and uses various estimators we proposed in
our earlier work (Pothapakula et al. 2019) for robustness in the results.

Here we are investigating the information exchange from ENSO and IOD
to the IMSR interannual variability by using available observations, reanalysis
data sets, and climate models. However, before exploring the two-source IE
from the ENSO and IOD to IMSR variability, we first demonstrate the concept
of two-source IE with results from a simple idealized linear and non-linear
dynamical models for better understanding. We also use various estimators of
IE, for example, Linear, Kraskov, and Kernel estimators for robustness. Then,
the two-source IE concept is applied to observations and reanalysis data sets.
This helps in understanding the IE dynamics of ENSO and IOD to the interan-
nual variability of IMSR in the natural system. Thereafter, we investigate if the
two-source information exchange dynamics of ENSO and IOD to ISMR inter-
annual variability is replicated in three different global climate models (GCM)
simulations from the 5th phase of the Coupled Model Intercomparison Project
(CMIP5). Since it is well known that GCMs due to their low spatial resolution
do not resolve all the subgrid-scale phenomena, we have used dynamical down-
scaling of the three GCM simulations with an RCM to obtain higher resolution
details (Bhaskaran et al. 2012, Choudhary et al. 2018, Dobler & Ahrens 2011,
Asharaf & Ahrens 2015, Lucas-Picher et al. 2011). The RCM simulations are
performed with a horizontal resolution of 25km (∼ 0.22) and follow the frame-
work of coordinated regional downscaling experiments (CORDEX) (Giorgi
et al. 2009, Gutowski Jr et al. 2016). By employing the two-source IE from
the ENSO and IOD to the ISMR interannual variability on both the driving
GCM simulations and the downscaled RCM simulations, we can evaluate the
performance of the model chain. To our knowledge, this is a first of its kind
evaluation study of GCM simulations and RCM simulations with information
theory methods from the two-source IE viewpoint.

This paper is organized as follows. In Section 4.2 we explain briefly the
information theory methods and estimators used in this study followed by a
brief discussion about the idealized linear and non-linear dynamical systems.
In Section 4.3 observational and reanalysis data, various GCMs in CMIP5 used
in this study, and the RCMmodel used in dynamically downscaling the GCM
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simulations are discussed. In Section 4.4, the results obtained from idealized
systems and model evaluation are shown along with a detailed discussion.
Finally, conclusions are drawn in Section 4.5.

4.2 THE THEORY OF INFORMATION EXCHANGE

Shannon (2001) introduced the concept of information entropy, which quan-
tifies the average uncertainty of a given random variable. Recently, various
methods from information theory have been widely used in the fields of earth
system sciences (Bennett et al. 2019, Gerken et al. 2019, Jiang & Kumar 2019,
Ruddell et al. 2019), climate sciences (Nowack et al. 2020, Runge et al. 2019,
Garland et al. 2019, Campuzano et al. 2018, Bhaskar et al. 2017) and in other
interdisciplinary sciences (Wibral et al. 2017, Novelli et al. 2019, Ahmad 2018).
This section comprises of the basic concepts of information theory along with
a brief introduction of various estimators. Also, a description of the idealized
systems used in this study is covered.

4.2.1 Concepts from Information Theory

The Shannon entropy (Shannon 2001) of a random variable𝑋 , quantifies the
amount of uncertainty contained in it and is defined by

𝐻 (𝑋 ) = −
∑︁
𝑥

𝑝 (𝑥) log𝑝 (𝑥),

where 𝑝 (𝑥) is the probability of a discrete state of the random variable 𝑋 .
The summation goes through all states of the random variable𝑋 . The units of
entropy are expressed in nats if a natural logarithm is applied (in bits when the
logarithm base is 2).

Mutual information (MI) quantifies the reduction in the uncertainty of one
random variable given knowledge of another variable (Thomas & Joy 2006)
and is defined by

𝐼 (𝑋 ;𝑌 ) =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) ,

where 𝑝 (𝑥,𝑦) is the joint distribution of variables𝑋 and𝑌 , and 𝑝 (𝑥), 𝑝 (𝑦) are
the marginal distributions of𝑋 and 𝑌 , respectively.

Mutual information between two sources 𝑌 and 𝑍 and a target𝑋 is given
as

𝐼 (𝑋 ;𝑌, 𝑍 ) =
∑︁
𝑥,𝑦,𝑧

𝑝 (𝑥,𝑦, 𝑧) log 𝑝 (𝑥,𝑦, 𝑧)
𝑝 (𝑥)𝑝 (𝑦, 𝑧) ,
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where 𝑝 (𝑥,𝑦, 𝑧) is the joint distribution of variables 𝑋 ,𝑌 and 𝑍 , and 𝑝 (𝑥),
𝑝 (𝑦, 𝑧) are the marginal probabilities. Furthermore, the information 𝐼 (𝑋 ;𝑌, 𝑍 )
that the two sources share with target should decompose according to partial
information decomposition by Williams & Beer (2010) into four parts (Figure
4.1) as

𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝑈 (𝑋 ;𝑌 |𝑍 ) +𝑈 (𝑋 ;𝑍 |𝑌 ) + 𝑅(𝑋 ;𝑌, 𝑍 ) + 𝑆 (𝑋 ;𝑌, 𝑍 ), (4.1)

where𝑈 (𝑋 ;𝑌 |𝑍 ) is the unique information shared by 𝑌 to 𝑋 , 𝑈 (𝑋 ;𝑍 |𝑌 ) is
the unique information shared by 𝑍 to𝑋 , 𝑅(𝑋 ;𝑌, 𝑍 ) redundant information
shared by both sources 𝑌 and 𝑍 together with 𝑋 , and 𝑆 (𝑋 ;𝑌, 𝑍 ) synergistic
information about𝑋 while knowing the states of 𝑌 and 𝑍 together.

FIGURE 4.1. Information exchange from two sources 𝑌 , 𝑍 to the target 𝑋 decomposed accord-
ing to PID as unique information (U), redundant information (R) and synergistic
information (S)

In the case of two sources influencing the target, the mutual information
shared by a single source to the target is given by

𝐼 (𝑋 ;𝑌 ) = 𝑈 (𝑋 ;𝑌 |𝑍 ) + 𝑅(𝑋 ;𝑌, 𝑍 ),
𝐼 (𝑋 ;𝑍 ) = 𝑈 (𝑋 ;𝑍 |𝑌 ) + 𝑅(𝑋 ;𝑌, 𝑍 ).

(4.2)

From the current information theory framework, the quantities 𝐼 (𝑋 ;𝑌, 𝑍 ),
𝐼 (𝑋 ;𝑌 ), 𝐼 (𝑋 ;𝑍 ) can be straightforwardly computed. Unfortunately, with the
present standardmethods available from information theory, one cannot obtain
the contributions of unique, synergy, and redundant information exchange
metrics solely (Barrett 2015). Here, we would like to bring to the attention of
the readers that many interesting studies have come up with various definitions
of these metrics (Williams & Beer 2010, Griffith & Koch 2014, Bertschinger
et al. 2014, Finn & Lizier 2018) and still, there has been no consensus among the
scientific community for obtaining these metrics. A complete and consistent
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framework on quantifying the individual contributions of various terms in PID
would make information theory a complete framework for understanding the
information dynamics of multi-source systems.

According to Barrett (2015), one can obtain a quantity known as net synergy
from Eq.4.1 and Eq.4.2 as

Δ𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝐼 (𝑋 ;𝑌, 𝑍 ) − 𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 ),
= 𝑆 (𝑋 ;𝑌, 𝑍 ) − 𝑅(𝑋 ;𝑌, 𝑍 ) .

(4.3)

When Δ𝐼 (𝑋 ;𝑌, 𝑍 ) > 0, synergistic information from two sources is greater
than redundant information and vice versa. The Δ𝐼 provides a lowerbound
for synergistic/redundant information. From here on, if Δ𝐼 (𝑋 ;𝑌, 𝑍 ) > 0 we
refer as net synergistic information and if Δ𝐼 (𝑋 ;𝑌, 𝑍 ) < 0 we refer to as net
redundant information.

4.2.2 Estimation techniques

Though the information theory methods are very useful in assessing the behav-
ior of dynamical systems, their estimation is challenging. Hence, in this study,
we implemented various estimators for robustness in our results.

Estimation under linear approximation (Linear estimator)

Here we will briefly introduce the basic concepts for estimation of the two-
source IE under linear approximation. For a detailed explanation of the concept,
we are referring the reader to Barrett (2015).

The entropy for a continuous random variable𝑋 under linear approxima-
tion is given as

𝐻 (𝑋 ) = 1
2 log[det Σ(𝑋 )] + 1

2𝑚 log(2𝜋𝑒),

where𝑚 is the dimension of random variable 𝑋 , Σ(𝑋 ) is the𝑚 ×𝑚 matrix
covariances i.e., cov(𝑋 𝑖 , 𝑋 𝑗 ).

Following Barrett (2015), the partial covariance of𝑋 with respect to 𝑌 is
given as

Σ(𝑋 |𝑌 ) = Σ(𝑋 ) − Σ(𝑋,𝑌 )Σ(𝑌 )−1Σ(𝑌,𝑋 ) .

From then the conditional entropy can be derived as

𝐻 (𝑋 |𝑌 ) = 1
2 log[det Σ(𝑋 |𝑌 )] + 1

2𝑚 log(2𝜋𝑒) .
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The mutual information 𝐼 (𝑋 ;𝑌 ) is the difference between𝐻 (𝑋 ) and𝐻 (𝑋 |𝑌 ),

𝐼 (𝑋 ;𝑌 ) = 1
2 log

[
det Σ(𝑋 )

det Σ(𝑋 |𝑌 )

]
.

For a general three dimensional jointly Gaussian system (𝑋,𝑌, 𝑍 )𝑇 , and
by setting zero mean and unit variance, the covariance matrix is given by,

Σ =


1 𝑎 𝑐

𝑎 1 𝑏

𝑐 𝑏 1


.

Thus, from the above matrix, the mutual information is given as

𝐼 (𝑋 ;𝑌 ) = 1
2 log

(
1

1 − 𝑎2

)
,

𝐼 (𝑋 ;𝑍 ) = 1
2 log

(
1

1 − 𝑐2

)
,

𝐼 (𝑋 ;𝑌, 𝑍 ) = 1
2 log

(
1 − 𝑏2

1 − (𝑎2 + 𝑏2 + 𝑐2) + 2𝑎𝑏𝑐

)
.

The net synergy can be obtained by 𝐼 (𝑋 ;𝑌, 𝑍 ) − 𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 ), given
as

Δ𝐼 (𝑋 ;𝑌, 𝑍 ) = 1
2 log

(
(1 − 𝑎2) (1 − 𝑏2) (1 − 𝑐2)
1 − (𝑎2 + 𝑏2 + 𝑐2) + 2𝑎𝑏𝑐

)
.

Estimation through box step kernel (Kernel estimator)

The estimation of non-linear entropy and mutual information estimators con-
tains Probability Density Functions (PDFs). The uni-variate and bi-variate PDFs
for continuous data can be estimated through various available discretization
methods (e.g., binning, kernel etc). Here we use a simple box step kernel Θ
with Θ(𝑥 > 0) = 0 and Θ(𝑥 < 0) = 1 for the estimation of relevant joint
probability distributions (e.g., 𝑝 (𝑥,𝑦), 𝑝 (𝑥) and 𝑝 (𝑦)). For example, the joint
probability distribution 𝑝 (𝑥,𝑦) is calculated as

𝑝𝑟 (𝑥𝑛, 𝑦𝑛) =
1
𝑁

𝑁∑︁
𝑛′=1

Θ( | (𝑥𝑛 − 𝑥𝑛′), (𝑦𝑛 − 𝑦𝑛′) | − 𝑟 ),

where the norm corresponds to the maximum distance in the joint space and 𝑟
is the kernel width. Similarly one can estimate the PDF for high dimensional
systems for the estimation of MI. For more details into the estimator, refer to
Kantz& Schreiber (2004), Goodwell &Kumar (2017) and information-theoretic
toolkit from Lizier (2014).
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Estimation through k-nearest neighbor (Kraskov estimator)

The k-nearest neighbor estimator uses an adaptive binning strategy by estimat-
ing the average distances to the k-nearest neighbor data points. For example,
the MI can be computed as

𝐼 (𝑋 ;𝑌 ) = Ψ(𝑘)− < Ψ(𝑛𝑥 + 1) + Ψ(𝑛𝑦 + 1) > +Ψ(𝑁 ),

where 𝑁 is total number of points, 𝑛𝑥 and 𝑛𝑦 are the number of points that
fall in the marginal spaces of𝑋 and 𝑌 respectively within the distance taken as
𝑑= max(| |𝑥 − 𝑥 ′ | |, |𝑦 − 𝑦 ′ | |) and Ψ denotes the digamma function. For more
details refer to Kraskov et al. (2004). Similarly, the equation mentioned above
can be extended to higher dimensional estimation of MI. From hereafter, the
estimation through k-nearest neighbor is called as Kraskov estimator.

4.2.3 Idealized systems for demonstration

Before we apply information theory estimators to two-source information
exchange in climate applications, we consider idealized linear systems as given
in the following sub-section to demonstrate the concept of two-source IE.

Linear autoregressive systems

Often in climate systems, the future state prediction of a variable relies on the
past of its own state (persistence) or from past of another variable (Runge et al.
2014), or from the linear/non-linear combination of both (possible case of net
synergy/redundancy). Hence, as a first case of demonstration, we considered
a two-dimensional linear system (Barrett 2015) 𝑥 and 𝑦, with 𝑥 receiving in-
formation from its immediate past and from the immediate past of𝑦 with the
following governing equations:

𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛼𝑦𝑡−1 + N𝑥 (0, 1),
𝑦𝑡 = N𝑦 (0, 1),

(4.4)

where𝛼 is the coupling coefficient varied from 0 to 0.8with an increment of 0.1
andN(0, 1) is Gaussian noise with zero mean and unit variance. The system
was initialized with (𝑥0 = 0) and is integrated around 100,000 iterations. For
the analysis of two-source IE with various estimators, we use the last 5000 time
units from the available time series.

In the first example, we considered IE from two sources (one source being
the persistence) contributing to the target prediction, however not all predic-
tions of target depend on two sources simultaneously (i.e., net synergy/redun-
dancy do not exist), hence as a second case , we considered a system consisting
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of two subsystems which are coupled with each other but only having a single
source with the governing equations

𝑥𝑡 = 𝛼𝑦𝑡−1 + N𝑥 (0, 1),
𝑦𝑡 = 𝛼𝑥𝑡−1 + N𝑦 (0, 1),

(4.5)

with𝛼 being the coupling coefficient. We followed similar steps for integration
as in the previous linear system.

Finally as third example, we test a three-dimensional system in which two
individual sub-systems contribute to the evolution of third system such as the
ENSO and IOD, as two individual systems contributing to the interannual
variability of the ISMR. This system has the governing equations

𝑥𝑡 = 𝛼𝑦𝑡−1 + 𝛼𝑧𝑡−1 + N𝑥 (0, 1),
𝑦𝑡 = N𝑦 (0, 1),
𝑧𝑡 = N𝑧 (0, 1),

(4.6)

where system𝑦 and 𝑧 are two individual sub-systems exchanging information
to the target system 𝑥 .

We also extended our analysis to a non-linear Heńon system described in
the Appendix section.

4.3 DATA AND CLIMATE MODELS

In this section, we will discuss various observational and reanalysis data sets
used to quantify the two-source IE from ENSO and IOD to ISMR interannual
variability in the natural system. Furthermore, the details of various GCM and
RCM simulations used in this study are also covered.

4.3.1 Observational, reanalysis data sets and climate simulations

We are focusing on the South Asian Summer Monsoon seasons, starting from
June and ending in September ( June- July-August-September: JJAS), thusmonthly
data sets for JJAS for the time period 1951-2005 from observations and model
simulations are used in this study. Various observational, reanalysis data sets
and model simulations used to quantify the two-source IE from the ENSO and
IOD to the ISMR interannual variability are listed in Table 4.1 and are also
described here.
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Observational, reanalysis data sets and indices

The UK Met Office’s Hadley Centre Sea Ice and Sea Surface Temperature
dataset (HadISST 1.1) (Rayner et al. 2003) is used to retrieve SST information
for the Indian and the Pacific ocean. Monthly precipitation fields from Global
Precipitation Climatology Centre (GPCC) (Schneider et al. 2008) is used as
precipitation observational record together with a high-resolution data set,
covering only the monsoon south Asia domain, namely the Asian Precipita-
tion - Highly-Resolved Observational Data Integration Towards Evaluation
(APHRODITE) monthly accumulated precipitation (Yatagai et al. 2012). The
rainfall, winds, and specific humidity are taken from the National Center for
Environmental Prediction–National Center for Atmospheric Research (NCEP–
NCAR) reanalysis data set (Kalnay et al. 1996). The ENSO and IOD indices are
obtained from the National Oceanic and Atmospheric Administration Earth
System Research Laboratories(NOAA ESRL) and Japan Agency for Marine-
Earth Science and Technology(JAMSTEC) for validation of PCs derived from
the observational SST data sets, i.e., the HadISST, and NCEP reanalysis SST.
In addition to the above-mentioned data sets, we also used ERA-Interim (Dee
et al. 2011) and MERRA (Rienecker et al. 2011) reanalysis rainfall datasets
(1980-2005) as additional resources.

Global and regional climate simulations

The three CMIP5 GCMs (details in Table 4.1), the MPI-ESM-LR (Stevens et al.
2013), Nor-ESM-M (Bentsen et al. 2013) and EC-EARTH (Hazeleger et al.
2010) were dynamical downscaled with the non-hydrostatic regional climate
model COSMO-crCLM version v1-1. The COSMO-crCLIM is an accelerated
version of the COSMOmodel (Fuhrer et al. 2014) in climate mode (Leutwyler
et al. 2016, Rockel et al. 2008). A two-stream radiative transfer calculations are
based on Ritter & Geleyn (1992), the convection is parameterized by Tiedtke
(1989), the turbulent surface energy transfer and planetary boundary layer
are using the parametrization of (Raschendorfer 2001), and precipitation is
based on a four-category microphysics scheme that includes cloud, rainwater,
snow, and ice (Doms et al. 2005). The soil-vegetation-atmosphere-transfer
is using the TERRA-ML (Heise et al. 2006), however, this current version
is employing a modified groundwater formulation (Schlemmer et al. 2018).
The RCM simulation has a horizontal resolution of 0.22◦ (i.e., 25km) and
with 57 vertical levels and is using a time step of 150s. The model simulation
configuration is following the CORDEX framework, meaning that a historical
period is simulated from 1950-2005, and the business as usual future emission
scenario (RCP8.5) is simulated from 2006-2099. However, here we are only
looking into the historical period. It is to be noted that for the analysis of
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rainfall anomaly composites, moisture anomalies, and IE plots, the GCM and
RCM simulations are interpolated to a common observational grid (a grid with
0.25◦). Our interpretation of results does not change much with the original
resolution of the datasets.

TABLE 4.1. CMIP5–GCMs/RCM/observations descriptions used in the current study.

GCM Modeling center Acronym Ensemble member Atm.Resolution
Max Planck Institute for Meteorology MPI-ESM-LR r1i1p1 1.875 ◦ × 1.875 ◦

Norwegian Climate Centre Nor-ESM-M r1i1p1 2.5 ◦ × 1.9 ◦

SMHI, Sweden EC-EARTH r12i1p1 1.125 ◦ × 1.125◦
RCM Modeling center

CLMCom-ETH COSMO-crCLIM 0.22◦ × 0.22◦
Observations and Reanalysis data sets

APHRODITE – – 0.25◦ × 0.25◦
GPCC – – 0.5◦ × 0.5◦

HadISST – – 1◦ × 1◦
NCEP Reanalysis – – 1.875◦ × 1.875◦

ERA-Interim Reanalysis – – 0.5◦ × 0.5◦
MERRA Reanalysis – – 0.5◦ × 0.65◦

4.4 RESULTS AND DISCUSSION

In the current section, first, we discuss the results of two-source IE obtained
from various idealized linear dynamical systems mentioned in Section 4.2.
Thereafter, we present results of two-source IE in the climate system with the
observations, reanalysis data sets, GCM simulations, and the RCM simulations.

4.4.1 Applications to idealized systems

First, wewill startwith the discussion of results obtained from idealized systems
with various IE estimators.

Linear autoregressive system

Figure 4.2 shows the information exchange (in nats) from𝑦𝑡−1 (immediate past
of𝑦) to𝑥𝑡 (present of𝑥 ) and also from𝑥 immediate past to present of𝑥 (i.e., 𝑥𝑡−1
to 𝑥𝑡 ), for the system with Equation 4.4. The two-source mutual information
linear estimator shows that as the coupling coefficient increases, the IE from
𝐼 (𝑥𝑡 ;𝑦𝑡−1, 𝑥𝑡−1) increases, indicating that the immediate pasts of 𝑥𝑡−1 and𝑦𝑡−1
exchange information to the future state of 𝑥 as expected from the system
dynamics. Also, as expected the 𝐼 (𝑥𝑡 ;𝑦𝑡−1, 𝑥𝑡−1) > 𝐼 (𝑥𝑡 ;𝑦𝑡−1) or 𝐼 (𝑥𝑡 ;𝑥𝑡−1),
indicating that the two-source IE dominates the dynamics of this system. The
IE from the immediate past of 𝑥 i.e., 𝑥𝑡−1 is a stronger source of information
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to the target 𝑥𝑡 due to self feedback/large persistence and 𝑦𝑡−1 is a weaker
source to the target 𝑥𝑡 (this behavior is often observed in the climate system
where persistence/self feedback plays an important role (Runge et al. 2014). The
error bars represents two standard deviations of the 100 permuted surrogates
showing the measure of uncertainty for the IE estimations. Furthermore there
exists a significant positive net synergy (Δ𝐼 ) indicating that the two sources at
higher couplings exchange synergistic information to the target even though
the two sources𝑦𝑡−1 and 𝑥𝑡−1 are uncorrelated with each other, in other words,
a certain degree of uncertainty about the system 𝑥𝑡 is reduced by knowing the
state of 𝑥𝑡−1 and 𝑦𝑡−1 together. Here in this system, the synergy between the
two sources (𝑦𝑡−1 and 𝑥𝑡−1) to the prediction of target ( 𝑥𝑡 ) might be arising
from their linear combination. This shows that linear systems can exhibit
synergies, which is also shown analytically in the work by Barrett (2015). The
non-linear estimators, i.e., Kraskov estimator (40 k-nearest neighbors) and
Kernel estimator (1.5 kernel width) also show the similar system behavior. The
free parameters i.e., kernel width (1–2 kernel widths) and number of k-nearest
neighbors (20–60 neighbors) are tested and tuned for consistent and robust
results.
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FIGURE 4.2. Information exchange in nats from two-source (red line), single source (green
and blue lines), and net synergy (black line) to the target with Linear, Kraskov and
Kernel estimators. The error bars represents two standard deviations of the 100
permuted samples.

Next, we tested another system consisting of two subsystems, coupled
with each other but only having a single source as in Equation 4.5. From
Figure A.1 (in appendix A), the MI linear metrics shows that 𝐼 (𝑥𝑡 ;𝑦𝑡−1) =

𝐼 (𝑥𝑡 ;𝑦𝑡−1, 𝑥𝑡−1) indicating that the immediate pasts of 𝑥𝑡−1 does not contribute
to IE for the target 𝑥𝑡 . The net synergy from 𝑦𝑡−1, 𝑥𝑡−1 to the target 𝑥𝑡 is as
expected zero. The IE from 𝑦𝑡−1 to 𝑥𝑡 increases as the coupling coefficient
increases, which is also expected. This is also seen in Kraskov estimator (40
k-nearest neighbors) and Kernel estimator (1.5 kernel width). The free tuning
parameters are tested and tuned for consistent results. Finally, among the
linear systems, we tested a three-dimensional system (similar to the situation
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of ENSO, IOD influencing ISMR variability) with the Equation 4.6. Figure A.2
shows that the information exchange from 𝐼 (𝑥𝑡 ;𝑦𝑡−1) = 𝐼 (𝑥𝑡 ; 𝑧𝑡−1) indicating
that the two sources contribute to the target system equally and moreover the
IE increases with increase with coupling coefficient. This behavior is expected
as observed from the governing equations. Even though the two sources are
uncorrelated with each other, they exhibit positive net synergy. The similar
behavior in the system is seen with non-linear Kernel estimator (1.5 kernel
width) and Kraskov estimator (40 k-nearest neighbors). The free parameters
are tested and tuned for consistent results. The results for non-linear system
are discussed in Appendix section.

The results from idealized linear and non-linear examples show that some
systems do exhibit positive net synergy from two-sources to target for both
linear aswell as non-linear systems, evenwhen the two sources are uncorrelated.
Furthermore, all the three estimators mentioned above i.e., Linear, Kernel and
Kraskov estimators are able to detect consistently the two-source information
exchange.

4.4.2 Application of dual-source IE to climate phenomenon

In this section, we examine the two-source IE from ENSO, IOD to the inter-
annual variability of ISMR. Foremost, we present results obtained from the
observational, reanalysis data sets and then extend our analysis of two-source
IE to three GCM simulations as mentioned in Table 4.1 . Thereafter, we present
results from our dynamically downscaled simulations with COSMO-crCLM
with the three GCMs as driving models.

Observation and reanalysis data

In the observations and reanalysis data sets, empirical orthogonal function
(EOF) analysis of the detrended SST anomalies is performed over the tropical
Indian ocean (25◦S–20◦N,50–120◦E) and the tropical Pacific ocean (25◦S–
25◦N,120◦E–80◦W) to obtain the major oscillations and their respective PCs.
The ENSO and IOD indices are taken as the time series associated with their
respective PCs obtained from the EOF spatial patterns replicating them. Figure
4.3 shows the second EOF patterns of the SST anomalies over the Indian ocean
and first EOF patterns over the Pacific ocean for HadISST and from NCEP
reanalysis. From the two SST data sets, it is observed that both ENSO and IOD
like structures are captured with the second EOF and the first EOF patterns
i.e., a zonal dipole like structure in the Indian ocean and the Pacific ocean
respectively. We use EOF analysis as opposed to standard indices such as the
dipole mode index known as DMI (Saji et al. 1999) and Niño-3.4 to allow each
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model to exhibit their own patterns as opposed to an imposed structure (Saji
et al. 2006, Cai, Cowan & Sullivan 2009, Cai, Sullivan & Cowan 2009, Liu et al.
2011).
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FIGURE 4.3. EOF2 patterns of SST anomalies (JJAS) in the Indian ocean and EOF1 patterns in
the Pacific ocean for observed HadISST and NCEP reanalysis.

To ensure that the EOF patterns in the observed SST data sets replicate
the ENSO and IOD modes, the obtained PCs are compared against the corre-
sponding Niño 3.4 and IOD index obtained from the NOAA ESRL Physical
Sciences Division, and JAMSTEC observations (shown in Figure A.3). These
indices are widely used in several studies concerning the IOD and Niño 3.4
teleconnections. The percentage of the total variance contributed by the first
20 EOFs from the Indian and Pacific ocean SST anomalies for the seasons JJAS
are also shown in Figure A.3. The linear fit between the Indian ocean PCs
of EOF-2 obtained from the HadISST against the observed IOD index has a
correlation of about 0.78, and the correlation of NCEP reanalysis SST with the
observed IOD index is 0.77. These results are significant at a 99 % confidence
level. This indicates that the EOF2 replicates the IOD like variability for the
two mentioned datasets. The percentage of the total variability contributed
by the EOF1 of the Indian ocean is about 30% which is associated with the
basin-scale anomalies of uniform polarity in the Indian ocean associated with
the ENSO events. The dipole mode (EOF2) explains about 15% of the total
variancewhich is associatedwith the IOD.Our results for the Indian ocean EOF
patterns and their respective contribution to the total variance are consistent
with the study by Saji et al. (1999). Similarly, the PCs associated with the first
EOF over the Pacific ocean are highly correlated against the observed Niño 3.4
index with a correlation value greater than 0.8 for both data sets indicating that
the EOF1 captures the ENSO like variability. The percentage of total variance
contributed by the first EOF ≈ 20% is also consistent with the ENSO literature.
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FIGURE 4.4. Total precipitation anomaly (mm/month) composites (JJAS) over the Indian sub-
continent for El-Niño, La-Niña, positive IOD and negative IOD events observed in
GPCC, APHRODITE and NCEP reanalysis data sets for the period of 1951-2005

The ENSO and IOD are known to influence the ISMR distribution across
the Indian subcontinent. Hence to investigate the rainfall anomaly distribution
during various phases of ENSO and IOD (i.e., El-Niño, La-Niña, IOD+ve,
and IOD-ve), we plotted the anomaly composite figures ( Figure 4.4 ) for the
ISMR during these events. The anomalies are constructed by subtracting the
Indian subcontinent climatology mean JJAS rainfall with the rainfall months
associated with various phases of IOD and ENSO. The anomaly composites
with El-Niño (La-Niña) events show that most parts of Indian subcontinent
receive less (more) rainfall during the El-Niño (La-Niña) phases. This behavior
can be attributed to the suppression of convection over the Indian subcontinent
during the El-Niño phase through the zonal and meridional circulation and
vice-versa during La-Niña phase. The rainfall anomaly composites associated
with the positive and negative phases of the IOD represent distinct regional
asymmetric rainfall anomalies i.e., a meridional tripolar pattern, with above
than normal rainfall in central parts of India and below than normal rainfall
to the north and south of it. Conversely, the negative IOD is associated with a
zonal dipole having above (below) normal rainfall on the western (eastern) half
of the Indian subcontinent. These results with rainfall composites during IOD
phases are consistentwith Behera&Ratnam (2018), where it was concluded that
these rainfall anomaly patterns are due to the differences in the atmospheric
responses and the associated differences in moisture transports to the region
during contrasting phases of the IOD. Hence, Figure 4.4 indicates that both
ENSO and IOD contribute to the interannual variability of the IMSR.
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FIGURE 4.5. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for observa-
tional data sets GPCC, APHRODITE and NCEP reanalysis. Only significant values
at 95% confidence intervals are plotted.

Figure 4.5 represents the IE from the IOD toprecipitation i.e., 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷),
ENSO toprecipitation i.e., 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂), the two-source IE i.e., 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷, 𝐸𝑁𝑆𝑂)
together with the NET SYNERGY for the observations GPCC, APHRODITE,
and the NCEP reanalysis data sets under linear approximation. We chose vari-
ous precipitation data sets to accommodate uncertainties due to the sparse data
networks, especially in regions with complex topography. The observed IE
from IOD to total precipitation i.e., 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) shows that the IOD trans-
mits information to the southwest sector of the Indian subcontinent especially
the lee-ward side of the western ghat regions in GPCC and APHRODITE data
sets. This feature is slightly shifted to the east in the NCEP reanalysis data
sets. All the IE plotted values are significant at 95% confidence level obtained
from 100 surrogate samples. Some regions in the northeast sector also are
influenced by the IE from IOD which is replicated in all three observational
data sets. It is interesting to note that the location at which the IE from IOD to
the precipitation over the Indian subcontinent matches the significant rainfall
anomalies shown in Figure 4.4. The 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) shows that the northern
parts of the Himalayas, central India receive information from the Pacific ocean
in all the three data sets, this also matches the anomaly locations shown in
Figure 4.4. The two-source information exchange covers most parts of the
Indian subcontinent indicating that both ENSO and IOD contribute to the
ISMR during JJAS seasons. Also, interestingly from the NET SYNERGY plot, a
positive net synergy over certain parts of central India also known as monsoon
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core region is observed, indicating that both ENSO and IOD synergistically
contribute to the interannual variability of ISMR. Furthermore, the ENSO and
IOD share net redundant information (negative net synergy) in the southern
sector of the Indian sub-continent. The Kraskov estimator (Figure A.4) and
the Kernel estimator (Figure A.5) also show similar IE patterns over the Indian
subcontinent with 40 k-nearest neighbors for Kraskov and 0.5 kernel width for
Kernel estimators (free parameters are tested and tuned for consistent results).
In addition, we also checked the two-source IE patterns in the two reanalysis
datasets, MERRA and ERA-Interim (1980-2005), shown in Figure A.6 and Fig-
ure A.7. It is found that in both the data sets, similar IE patterns are replicated
i.e., positive net synergy in central India and net redundant information in
southern part of the Indian subcontinent. We also did a similar analysis for the
months of DJFM, our results show that the net synergy from IOD and ENSO
to the rainfall is absent (Figure A.8–Figure A.13). This is expected as the IOD
mode during these months is dissipated and absent.

The net synergy between the ENSO and IOD to the ISMR interannual vari-
ability in JJAS indicates that the central India monsoon rainfall predictability
lies in knowing the states of ENSO and IOD together than by knowing the
states of ENSO and IOD individually (similar to the idealized test case example
3). This is also exactly similar to the XOR logic gate, where the uncertainty of
the output is known only with the simultaneous knowledge of the two input
states. To understand the information synergy physically, we show the mois-
ture transport figures from the NCEP reanalysis datasets for various phases
of ENSO and IOD during the JJAS. From Figure 4.6 it is observed that the
anomalous negative moisture flux during the El-Niño is compensated with
the positive moisture flux anomaly by IOD +ve especially in central India, and
vice-versa during the La-Niña and IOD-ve events. It is known that the El-Niño
events are often associated with IOD+ve events (Behera & Ratnam 2018) and
vice versa (the ENSO and IOD are positively correlated in our data sets). From
the precipitation composites (Figure 4.3), in central India, an anomalous nega-
tive (positive) rainfall during the El Niño (La Niña) is observed, and during the
IOD+ve (IOD-ve) a positive (partly negative) anomalous rainfall is observed.
This could explain why both the IOD and ENSO states should be known to-
gether to explain the variability of the central Indian subcontinent rainfall as the
IOD and ENSO are having compensating effects. This compensating behavior
is not seen in the southern or northern part of the Indian subcontinent, hence
this could explain the net redundant information between ENSO and IOD to
the precipitation to the southern region. The readers are referred to Fig.3 by
Barrett (2015) to further explore the relation of synergy dependence on the
compensating influence from both sources, i.e., the correlation between two
sources and to their targets respectively.
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FIGURE 4.6. Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, IOD+ve and IOD-ve events observed in NCEP reanalysis data sets
for the period of 1951-2005.

Global and regional climate model simulations

Next, we are performing the same analysis, starting with the EOF patterns
from the SST fields obtained from the three GCM simulations listed in Table
4.1, to investigate how the ENSO and IOD associated variability in the Indian
and Pacific oceans are represented. Figure 4.7 shows the second EOF pattern
of the SST anomalies over the Indian ocean and the first EOF pattern in the
Pacific ocean, for theGCMsimulations ofMPI-ESM-LR,Nor-ESM-M, andEC-
EARTH. It is found that all the GCM simulations replicate the zonal dipole like
patterns over the Indian ocean and Pacific ocean similarly as the observations.
The percentage of the total variability contributed by EOF1 of the Indian ocean
is about 30% in all the GCM simulations (Figure A.14) which is comparable to
the observations. The EOF2, which is associated with the IOD, explains about
15% of the total variance in all the GCMs, also similar to observations. The
percentage of total variance contributed by the first EOF is between 20 − 25%
in all the GCM simulations in the Pacific ocean, which is similar to variance
in the observations. Thus, these results indicate that the variability associated
with the SST anomalies over the Indian and the Pacific ocean is represented
in the three GCM simulations. The SST anomaly composites during various
phases of IOD and ENSO events (Figure A.15 and Figure A.16) show that most
of the GCM simulations can replicate the SST anomaly composite patterns
found during the IOD+ve events in HadISST (Figure A.15). On the contrary,
during IOD-ve events, the MPI-ESM-LR portrays unrealistic warm anomalies
throughout the Indian ocean. Over the Pacific ocean, the MPI-ESM-LR and
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EC-EARTH have an unrealistic westward extension of the warm (cold) pool
during El Niño (La Niña) events. The patterns from Nor-ESM-M are closer
to the observation, shown in Figure A.16. The unrealistic westward extension
of the SSTs in EC-EARTH and MPI-ESM-LR simulations might influence the
walker circulation through unrealistic large scale teleconnections patterns.
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FIGURE 4.7. EOF2 patterns of SST anomalies for (JJAS) in the Indian ocean and EOF1 patterns
for (JJAS) in the Pacific Ocean for three GCM simulations, i.e., MPI-ESM-LR, Nor-
ESM-M and EC-EARTH for the period of 1951-2005.

Figure 4.8 represents the ISMR anomaly composites during the El-Niño,
La-Niña, IOD+ve and, IOD-ve events for the three GCM simulations, the MPI-
ESM-LR, Nor-ESM-M, and EC-EARTH, when selecting the associated years
given by the respective PCs. The rainfall anomaly composites associated with
the positive phase of ENSO show dry conditions over the northern/northwest
parts of the Indian subcontinent in the MPI-ESM-LR, dry conditions through-
out the Indian sub-continent in Nor-ESM-M. The EC-EARTH simulation does
not show a clear rainfall anomaly signal. Similar opposite polarity of rainfall
anomalies are observed in the La-Niña conditions in the MPI-ESM-LR and
Nor-ESM-M simulations, while slight wet conditions in north-east India in
EC-EARTH. For the IOD+ve events, MPI-ESM-LR shows dry conditions in
the southwest, while the Nor-ESM-M simulation shows dry conditions in
the northwest and the Himalayan region, the EC-EARTH does not show any
variability. The Nor-ESM-M during the IOD-ve phase shows overall positive
anomaly, while no clear signal is observed in MPI-ESM-LR and EC-EARTH.
Overall, the ENSO phase signal is better replicated in Nor-ESM-M simulation
and partly in MPI-ESM-LR as in the observations, while most of the GCM
simulations failed to replicate the regional rainfall asymmetric response in IOD
events as in observations (except Nor-ESM-M, which partly can replicate the
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dipole patterns). This might be due to the coarse resolution of GCMs which
may not be able to replicate the fine-scale precipitation response to the IOD.
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FIGURE 4.8. Total precipitation anomaly composites over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events in MPI-ESM-LR, Nor-ESM
and EC-EARTH simulations(1951-2005)

Figure 4.9 represents the IE spatial patterns from the IOD and ENSO i.e.,
𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷), 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂), the two-source IE, 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷, 𝐸𝑁𝑆𝑂)
together with the NET SYNERGY over the Indian subcontinent in the three
GCM simulations i.e., MPI-ESM-LR, Nor-ESM-M, and EC-EARTH with the
linear estimator. The information exchange from IOD to total precipitation in
MPI-ESM-LR shows that the information from the IOD is exchanged to the
southeastern part of the Indian Subcontinent. This is contrary to what is seen
in the results from the observations, where most of the IE takes place to the
leeward side of the western ghats and the northeastern sector of India. TheNor-
ESM-M simulation shows that IE from IOD is transmitted to the western side
of the Indian subcontinent, where the observed significant anomalies are noted
in Figure 4.9. The EC-EARTH does not show any information exchange from
IOD to the land points over the Indian sub-continent. The 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂)
show that the northern parts of the Himalayas and north west-central India
receive information from the Pacific ocean in MPI-ESM-LR. For Nor-ESM-M,
thewestern ghats and its leeward side are influenced by ENSO. The EC-EARTH
does not show as much IE as the Nor-ESM-M orMPI-ESM-LR over the Indian
continent, with an exception for some scattered locations over the Himalayas.

The two-source information exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) covers the
northwest part of the Indian subcontinent for MPI-ESM-LR and the extreme
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southeast. For Nor-ESM-M the information exchange covers mostly the west-
ern part of India. The EC-EARTH show IE over isolated places of northeast
India. These results indicate that the three GCMs exhibit a IE pattern which is
different from the observed patterns. Moreover, the results of the NET SYN-
ERGY show that MPI-ESM-LR does not show any net synergistic IE over the
Indian subcontinent, while in Nor-ESM-M the IOD and ENSO share common
information over the west of India. EC-EARTH show less net synergy over the
Indian sub-continent. Overall, the results from the IE exchange differ from
the observations, seen for all the three GCM simulations. These results are
consistent with Kernel and Kraskov estimators (Figure A.17).

65 80 95

5
1
5

2
5

3
5

 ° E

 °
 N

MPI−ESM−LR

I(PREC;IOD)

65 75 85 95

5
1
5

2
5

3
5

 ° E

 °
 N

I(PREC;ENSO)

MPI−ESM−LR

65 80 95

5
1
5

2
5

3
5

 °
 N

0

1

2

3

4

5

6

7I(PREC;IOD,ENSO)

MPI−ESM−LR

65 80 95

5
1
5

2
5

3
5

 °
 N

−3

−2

−1

0

1

2

3

NET SYNERGY

MPI−ESM−LR

65 80 95

5
1
5

2
5

3
5

 ° E

 °
 N

Nor−ESM−M

I(PREC;IOD)

65 75 85 95

5
1
5

2
5

3
5

 ° E

 °
 N

I(PREC;ENSO)

Nor−ESM−M

65 80 95

5
1
5

2
5

3
5

 °
 N

0

1

2

3

4

5

6

7I(PREC;IOD,ENSO)

Nor−ESM−M

65 80 95

5
1
5

2
5

3
5

 °
 N

−3

−2

−1

0

1

2

3

NET SYNERGY

Nor−ESM−M

65 80 95

5
1
5

2
5

3
5

E

 °
 N

EC−EARTH

I(PREC;IOD)

65 75 85 95

5
1
5

2
5

3
5

E

 °
 N

I(PREC;ENSO)

EC−EARTH

65 80 95

5
1
5

2
5

3
5

 °
 N

0

1

2

3

4

5

6

7I(PREC;IOD,ENSO)

EC−EARTH

65 80 95

5
1
5

2
5

3
5

 °
 N

−3

−2

−1

0

1

2

3

NET SYNERGY

EC−EARTH

FIGURE 4.9. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for the GCM
simulations MPI-ESM-LR, Nor-ESM-M and EC-EARTH for JJAS (1951-2005). Only
significant values at 95% confidence intervals are plotted.

Next, we are investigating how the two-source information exchange is
represented when we dynamically downscale the three GCM simulations (MPI-
ESM-LR, Nor-ESM-M, and EC-EARTH) with the regional model COSMO-
crCLIM (0.22◦). We are applying the same two-source information exchange
method on the RCM fields as we have done for the GCM simulations. How-
ever, since the RCM simulations are only covering a limited area, namely the
South Asian CORDEX domain, we had to combine the RCM results with the
GCM simulations, in particular for the EOF-analysis over Indian and Pacific
oceans. Figure 4.10 represents the ISMR anomaly composites during the posi-
tive IOD+ve, IOD-ve, El-Niño, and La-Niña events for the COSMO-crCLM
RCM simulation driven with three GCM simulations, the MPI-ESM-LR, Nor-
ESM-M, and EC-EARTH. Here we are selecting the same years as given by the
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principal components from the drivingGCM simulations. The rainfall anomaly
composites associated with the El-Niño events show dry conditions over the
northern parts of Himalayas for the downscaled MPI-ESM-LR and wet condi-
tions in western ghats and isolated parts in central India. During the La-Niña
phase, dry conditions in the central Indian subcontinent, western ghats and wet
conditions elsewhere are observed. In the downscaled Nor-ESM-M, dry (wet)
signal is observed throughout Indian subcontinent during El-Niño (La-Niña)
phases. In the downscaled EC-EARTH, dry regions are noted throughout most
parts of Indian subcontinent during El-Niño, while dry conditions are seen
in central India and wet conditions elsewhere in La-Niña phase. The rainfall
anomalies composites associated with the positive IOD in the observations, i.e.,
a meridional tripolar pattern with above than normal rainfall in central parts of
India and below than normal rainfall to north and south of it is only observed in
the downscaled Nor-ESM-M. Similarly, the negative IOD in downscaled Nor-
ESM-M is associated with a zonal dipole having above (below) normal rainfall
on the western (eastern) half of India similar to that of the observations as seen
in Figure 4.5. Overall, these results suggest that the downscaled results from
Nor-ESM-M better reproduces the spatial patterns of precipitation anomalies
associated with ENSO and IOD, when comparing to the observations, than the
downscaled results from EC-EARTH and MPI-ESM-LR.
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FIGURE 4.10.Total precipitation anomaly composites over the Indian subcontinent for El-Niño,
La-Niña, positive IOD and negative IOD events for the downscaled COSMO-crCLM
simulations driven by MPI-ESM-LR, Nor-ESM-M and EC-EARTH GCM simulations
for JJAS (1951-2005)

Figure 4.11 represents the IE patterns over the Indian subcontinent for the
downscaled RCM simulations with the Linear estimator (these patterns are



4.4 RESULTS AND DISCUSSION ◀ 81

also consistent with Kraskov (Figure A.18) and Kernel (Figure A.19) estimators).
The net synergy in central India, and shared information in southern India is
better represented in the downscaledNor-ESM-M simulation, compared to the
downscaled MPI-ESM-LR and downscaled EC-EARTH. This is in agreement
with the results from the GCM simulation, where it was found that Nor-ESM-
M simulation had a better replication of ENSO and IOD induced anomalous
precipitation structures than the two other GCMs (see Figure 4.10). These
results are interesting, even though all the COSMO-crCLM simulations have
the same physics and dynamics, only downscaled Nor-ESM-M replicated real-
istic patterns of IE. The improvement in results in downscaled Nor-ESM-M
can be attributed to a more realistic large-scale information coming from the
GCM simulation, such as the moisture flux transport during various phases of
ENSO and IOD events (see Figure A.20 – Figure A.24 and Figure 4.6). For the
MPI-ESM-LR and EC-EARTH GCM simulations, the moisture flux anomalies
are very different from the reanalysis fluxes and thus seem misrepresented. A
better replication of the moisture flux anomaly in Nor-ESM-M GCM simu-
lation during ENSO and IODmight be from a better simulation of the large
scale circulation patterns, like the Walker and Hadley circulations, due to the
better representation of the SST than the two other GCM simulations (Figure
A.8 and Figure A.9). The RCM simulation results exhibit similar moisture flux
anomalies compared to the driving GCM simulations, in which the downscaled
Nor-ESM-M outperforms the downscaled MPI-ESM-LR and downscaled EC-
EARTH. These results indicate that a realistic large-scale signal from the GCM
simulations (e.g., the moisture transport and SST anomalies) is essential for an
RCM to properly improve the GCM results in terms of IMSR variability. When
the large-scale signal from the GCM is incorrect, and wrong moisture fluxes
are imposed on the lateral boundaries of the RCM, the downscaled results are
hampered.
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FIGURE 4.11. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) and two- source infor-
mation exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) , NET SYNERGY ×10−2 nats for the down-
scaled COSMO-crCLM simulations for JJAS (1951-2005). Only significant values
at 95% confidence intervals are plotted.

4.5 CONCLUSIONS

In this article, we explored two-source information exchange (IE) from ENSO
and IOD (quantified by SST variabilities in the Pacific and Indian oceans) to the
Indian Monsoon Summer Rainfall (IMSR) interannual variability. But, first, we
used simple idealized linear and non-linear dynamical systems to demonstrate
the concepts of two-source IE. Results showed that both the linear and the
non-linear idealized systems can exhibit positive net synergy (i.e., the com-
bined influence of two sources is greater than their individual contributions).
Interestingly, two uncorrelated sources can show positive net synergistic IE to
a target.

The two-source ENSO and IOD to IMSR IE was explored in observations,
reanalysis data sets, and in three GCM simulations which were also further
dynamically downscaled with the RCM. The results from the observations and
reanalysis data suggest that both IOD and ENSO influence the interannual
variability of the ISMR throughout most parts of Indian subcontinent. Interest-
ingly, we found that IOD and ENSO exhibit positive net synergy over central
India, which is the monsoon core region, and net redundant information over
the southern part of India.

The IE patterns in the three GCM simulations differ from that in the ob-
servations. However, the GCMNor-ESM-M better captured the precipitation
anomalies from ENSO and partly from IOD than the other two GCMs. Previ-
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ous studies also showed that Nor-ESM-M outperforms other CMIP5 GCM
simulations in terms of rainfall climatology, and most aspects of the clima-
tological annual cycle and interannual variability in the Indian subcontinent
(Sperber et al. 2013, McSweeney et al. 2015).

Downscaling Nor-ESM-M simulation with the RCM COSMO-crCLM
better replicated the observed IE patterns than downscaling the MPI-ESM-LR
and EC-EARTH simulations. Importantly, the downscaled Nor-ESM-M IE
results are in better agreement with the observations than the Nor-ESM-M
results. Downscaling Nor-ESM-M adds value to the GCM simulation. This
can not be concluded here for downscaling of MPI-ESM-LR and EC-EARTH
simulations. Downscaling the latter simulations did not add value because of
a missing realism in their large-scale SST patterns and horizontal moisture
flux variability, which are important RCM boundary conditions and which
were better represented in the Nor-ESM-M simulation. Downscaling did
not compensate errors in the large-scale driving simulations. These results
highlight the importance of the choice of GCM simulations when performing
dynamically downscaling for high-resolution regional climate projections.

Finally, we propose to use the two-source IE metric as a complementary
tool to gain additional insight into the climate system and to perform process-
oriented climate model evaluation.
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CHAPTER 5
Vb-cyclones and associated North-Western Mediterranean
Sea state in regional coupled climate simulations: evalua-
tion and projection3

ABSTRACT

Vb-cyclones propagating from the North-WesternMediterranean Sea (NWMS)
into central Europe are often associated with extreme precipitation. This study
explores the state and process chain linking theNWMSstate and theVb-cyclone
precipitation in the Danube, Elbe, and Odra catchments in regional coupled
atmosphere-ocean climate simulationswithCOSMO-CLM+NEMO.Two high-
resolution simulations, an evaluation simulation (1951-2005) downscaling the
centennial ERA-20C reanalysis and a continuous simulation (historical 1951-
2005 + RCP8.5 future scenario 2006-2099) downscaling the EC-EARTH global
climate data set are used for this purpose. The results show a good agreement
in mean annual Vb-cyclone frequency between the evaluation (9.7 events/year)
and the historical (10.1 events/year) simulations. But, there are significant
discrepancies in the seasonal cycle. The mean cyclone intensity measured with
minimum central pressure, track density, and precipitation rankings in the
three catchments also show good agreement. The simulations for the future
period show a basin-average SST warming of ≈ 2.5 – 3 K by the end of 21𝑠𝑡
century, but insignificant changes in Vb-cyclone frequency, mean intensity, and
precipitation in the selected catchments. The NWMS sea surface temperature,
evaporation, and wind speed anomalies corresponding to the Vb-cyclone pre-
cipitation rankings differ between the evaluation and historical simulations. In
the evaluation simulation, Vb-cyclone precipitation rankings correspond with
sea surface temperature, evaporation, and wind speed anomalies, while in the
historical and the future simulation no such correspondence is seen. Especially
the Adriatic and Ionian basins in the simulation driven by EC-EARTH show no
sensitivity to the Vb-cyclone precipitation over the catchments. The change in
the processes between evaluation and historical simulations might be due to the
emergence of biases inherited from the driving EC-EARTH global simulation.
The future simulation shows no significant process changes compared to the
historical simulation.

85
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3 Submitted as: Pothapakula, P. K., Krug, A., Anika, O.H., Timo, K., Ahrens,
B. (2022). Vb-cyclones and associated Mediterranean Sea state in regional coupled
climate simulations: evaluation and projection (Earth System Dynamics)

5.1 INTRODUCTION

Observational and modeling studies relating to the global temperature and
precipitation changes provide confidence in the current ongoing global warm-
ing (Stocker et al. 2013). Changes in the extreme weather and climate events
such as warm/cold days and nights, heat waves, droughts, heavy precipitation
events induced by the anthropogenic global warming were observed in the last
century (Fischer et al. 2013, Wilcox & Donner 2007, Trenberth 1999, Nishant
& Sherwood 2021, Beniston et al. 2007, Seneviratne et al. 2012). Specifically,
short-term precipitation extremes often result in heavy damage to infrastruc-
ture and life, and hence are in need of further investigations (Hochman et al.
2022, Mathias et al. 2021).

Over central Europe, extra-tropical cyclones named Vb-cyclones are often
associated with extreme precipitation, especially in the summer season (Hof-
stätter et al. 2018, Blöschl et al. 2013). These Vb-cyclones develop over the
North-Western Mediterranean Sea (NWMS) typically over the Gulf of Lions
and travel northeastward through the eastern Alps to central Europe (van Beb-
ber 1891, Messmer et al. 2015). Often, extreme precipitation occurring in the
catchments of Danube, Elbe and Odra is linked to the Vb-cyclones (Krug et al.
2022).

Though the occurrence of Vb-cyclones is rare (typically about 4-10 events
on average per year) they are of considerable importance due to the extreme
precipitation they bring to central and eastern Europe (Hofstätter et al. 2016,
Messmer et al. 2015). These events occur throughout the year with a peak
frequency in spring (Hofstätter et al. 2016, 2018). The Vb-cyclones are typically
fed from the evaporation over continental land and nearby oceans. For example,
enhanced evaporation over the Mediterranean Sea and subsequent increase of
available total water content in the atmosphere during Vb-cyclones was studied
by Hofstätter & Chimani (2012) and Messmer et al. (2017). Based on a model
sensitivity study, Volosciuk et al. (2016) reported an increase in precipitation by
17% over central Europe with warmer sea surface temperatures (SST) over the
Mediterranean Sea compared with a simulation run by average Mediterranean
SST for the period 1970-1999. Results from Volosciuk et al. (2016) relied on
a stand-alone coarse-resolution global atmosphere model without dynamic
coupling of the ocean, missing crucial air-sea feedback processes. The role
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of the Mediterranean Sea in enhancing the August 2002 flood in the early
stages was shown in Sodemann et al. (2009), James et al. (2004), Gangoiti et al.
(2011). Furthermore, a sensitivity study byMessmer et al. (2017) confirmed the
Mediterranean Sea role in supplying moisture to Vb-cyclones. However, other
studies concluded that the moisture transport from the North Atlantic, Black
Sea, continental moisture are major sources contributing to the precipitable
water for Vb-cyclones (James et al. 2004, Gangoiti et al. 2011, Ho-Hagemann
et al. 2015, 2017, Krug et al. 2022).

Krug et al. (2022) analyzed about 1107 Vb-cyclone events simulated by a
regional coupled climate model during the period 1901-2010. Their study con-
cluded that the NWMS played an active role in the early stage intensification of
the Vb-cyclones and also in pre-moistening the continental land. Furthermore,
high precipitation Vb-cyclone events were associated with anomalously high
dynamically driven evaporation. However, with Lagrangian moisture source
diagnostics on selected 16 Vb-cyclones, their study revealed that continental
moisture recycling, the north Sea, the Baltic Sea, the north Atlantic, and the
Black Sea were major sources of moisture supply to the Vb-cyclones. Krug
et al. (2021) reported a significant information exchange between the evapora-
tion over the NWMS and Vb-cyclone precipitation over the Odra catchment.
Abovementioned studies highlight the NWMS’s role inmodulating Vb-cyclone
intensity.

As the role of the Mediterranean Sea in modulating the Vb-cyclone events
is well established in the literature for the historical period, investigating the
Vb-cyclone’s future projections and the role of the Mediterranean Sea in the
warming climate becomes extremely important. Especially, the Mediterranean
Sea being a hot spot of climate change, investigating its role in the future Vb-
cyclones is also of extreme importance. Using a Global Climate Model (GCM),
ECHAM5/OM1, Nissen et al. (2013) reported a decrease in the number of
Vb-cyclones by the end of the 21𝑠𝑡 century but an increase in precipitation
amount by 16% compared to the present. Messmer et al. (2020), investigated
the climate change impacts on Vb-cyclone characteristics using a global climate
model, i.e., Community Earth System Model ensemble simulations. Their
results confirmed a minor decrease in the frequency of Vb-cyclones from 2.9
to 2.6 Vb-cyclones per year by the end of 21𝑠𝑡 century. They also found a
subtle eastward shift in the Vb-cyclone frequency pattern. Furthermore, by
downscaling the 10 heaviest precipitation Vb-cyclone events with the Weather
Research and Forecasting model in future and historical periods, they reported
insignificant changes in the total precipitation amount. It is to be noted that
the study by Messmer et al. (2020) downscaled only 10 Vb-cyclone heavy
precipitation events in the past and future periods.

To simulate mesoscale systems such as the Vb-cyclones and analyze their



88 ▶ CHAP. 5 CH. 5 TITLE IN THE HEADER

climatic characteristics, high-resolution regional climate model simulations
in long centennial periods are desirable. Mittermeier et al. (2019) using a
Canadian Regional Climate Model Large Ensemble (Leduc et al. 2019) at a
resolution of about 12 km (0.11◦) studied future Vb-cyclone frequency and
precipitation changes over Bavaria from 1950-2099. They reported a non-
significant increase in the absolute number of Vb-cyclones per year in the future
period. Also, a significant decrease in future summer Vb-cyclone frequency
and increase in spring. In terms of Vb-cyclone daily precipitation intensity, a
significant increase was reported over Bavaria.

The Coordinated Regional Climate Downscaling Experiment (CORDEX)
is an initiative that coordinates scientific groups for high-resolution regional
climate data sets (Giorgi 2006). The regional climate model, Consortium for
Small-scaleModelling in ClimateMode (COSMO-CLM, Rockel &Geyer (2008)
) is used for dynamically downscaling GCMs over various CORDEX domains
(Asharaf & Ahrens 2015, Russo et al. 2020, Drobinski et al. 2020, Evans et al.
2021). The added value of such high-resolution simulations was well doc-
umented in the studies by Schlemmer et al. (2018), Imamovic et al. (2019),
Panosetti et al. (2019), Hentgen et al. (2019), Brogli et al. (2019), Sørland et al.
(2021). However, the COSMO-CLM often uses prescribed SSTs from the driv-
ing GCMs which are handicapped by their coarse resolution and unrealistic
air-sea dynamic interactions (Akhtar et al. 2018). Especially given the impor-
tance of theMediterranean Sea in the evolution of Vb-cyclone events, a realistic
and dynamically interactive ocean model is thus necessary.

The COSMO-CLM is coupled to Nucleus for European Modeling of the
Ocean (NEMO, Madec (2008)) over the Mediterranean sea (NEMOMED12,
Brossier et al. (2011, 2012)) along with a river run-off model, Total Runoff
Integrating Pathways (TRIP) to make the regional system dynamically inter-
active (Akhtar et al. 2018). The added value of such a coupled regional system
was reported by Kelemen et al. (2019) on the representation of European con-
tinental precipitation. Furthermore, Primo et al. (2019) reported the added
value in terms of extreme air temperatures. This coupled system was earlier
used to study Vb-cyclones in the historical period by Akhtar et al. (2019) and
Krug et al. (2022). Their study demonstrated the ability of the coupled system
in representing the past Vb-cyclone events realistically. Furthermore, Krug
et al. (2022) analyzed the total precipitation sums of a few selected Vb-cyclone
events (1901–2010) simulated by the coupled system driven by the ERA-20C
reanalysis. They reported that the coupled system precipitation patterns and
magnitudes agree well with the CRU (Harris et al. 2020) and the E-OBS (Cornes
et al. 2018) precipitation observational data sets.

In the current study, we apply the regional climate coupledmodel (COSMO-
CLM–NEMOMED12–TRIP) for the period 1951-2099 continuously using the
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EC-EARTH GCM (Hazeleger et al. 2012) as driving data. The simulation used
historical greenhouse gas emissions for the historical period 1951-2005 and
RCP8.5 forcing scenario for the future period (2006-2099) at 0.11◦ (≈ 12 km)
horizontal resolution. This simulation was a part of the coordinated activity
by various institutions within the Med-CORDEX phase-II framework. The
Med-CORDEX focuses on coordinated multi-model and multi-scenario stud-
ies covering the Mediterranean region with high resolution coupled regional
climate models (Ruti et al. 2016).

We evaluate the EC-EARTH driven regional climate simulation with the
ECMWF twentieth century reanalysis (ERA-20C) driven coupled regional
climate simulation for Vb-cyclone frequency and their characteristics in the
historical period before we proceed to investigate the future Vb-cyclone char-
acteristics. Thereafter the NWMS state in terms of SST, evaporation and wind
speed corresponding to the Vb-cyclone precipitation over the three catchments,
the Danube, Elbe and Odra in the two simulations is analyzed. Finally to quan-
tify the process chain linking the NWMS and the Vb-cyclone precipitation
over the three catchments we use information theory methods similar to the
studies by Pothapakula et al. (2019, 2020), Krug et al. (2021). These studies
used information exchange to quantify the Indo-Pacific coupling, the interplay
between the Indian Ocean dipole and El-Niño Southern Oscillation with the
Indian Monsoon precipitation, and, the role of NWMS evaporation during
the Vb-cyclone precipitation over Odra catchment. More details about these
methods and the simulations are explained in the data andmethodology section.

Specifically, in this study we ask the following questions:
1. Does the EC-EARTH driven coupled regional simulation produce Vb-

cyclones comparable to the ERA-20C reanalysis driven coupled regional simu-
lation in the historical period.

2. Does the state of the NWMS and the process chain differ between the
two simulations in the historical period?

3. Do the characteristics of Vb-cyclones and their associated process chain
linking the NWMS change in the future period?

This paper is organized as follows. Section 5.2 consists of data and method-
ology describing the climate models, the Vb-cyclone tracking, and a brief
introduction to information theory methods. Thereafter, we present the results
and discussion in Section 5.3 which includes validation of the Vb-cyclones
in historical periods, future changes compared with historical period, results
representing the state of NWMS and quantification of the process chain link-
ing NWMS and Vb-cyclone precipitation in-terms of information exchange
over the three catchments. Finally, some conclusions and outlook are given in
Section 5.4.
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5.2 DATA AND METHODS

5.2.1 Regional Coupled Climate Model Setup

The dynamical downscaling was performed with a regional climate coupled
atmosphere and ocean system consisting of atmospheric component COMSO-
CLM 5-0-9 and the NEMOMED12 ocean component. The COSMO-CLM
is a non-hydrostatic regional model designed for applications across various
spatial and temporal scales. The governing equations were numerically solved
by the Runga Kutta time-stepping scheme (Wicker & Skamarock 2002). It used
the Arakawa-C grid in rotated geographical coordinates and follows terrain
sigma vertical coordinates. The horizontal resolution of COSMO-CLMwas
about 0.11◦ and used 40 vertical layers representing about 22.7 km of the atmo-
spheric column. The applied physical parameterizations included the Ritter &
Geleyn (1992) radiative scheme, the Tiedtke convection scheme (Tiedtke 1989),
and a four-category microphysics scheme (Doms & Baldauf 2011, Doms et al.
2011). The soil-vegetation-atmosphere-transfer sub-model TERRA provided
the lower boundary conditions over land (Schrodin & Heise 2001, Schulz et al.
2016). The current simulation used the AeroComGlobal AOD data (Kinne et al.
2006) to represent the aerosol properties. The initial and the lateral boundary
files were taken from the EC-EARTH available through the SMHI Sweden
(Hazeleger et al. 2012). The lateral boundary files were updated every 6 hours
for the entire simulation period (1951-2099).

TheNEMOMED12 is the ocean component of the regional climate coupled
atmosphere and ocean system used in this study. The regional version of the
NEMO-V3.6was adapted over theMediterranean regionnamedNEMOMED12
in the current study. The domain of the NEMOMED12 covers the entire
Mediterranean Sea at a horizontal resolution of ≈ 7.5 km along with a buffer
zone nearby the Atlantic Ocean. A 3D relaxation of the temperature and salinity
was performed in the buffer zone so as to realistically simulate the circulation
from the Atlantic through the Gibraltar Strait and into the Mediterranean
Sea (Sevault et al. 2009). The Black sea was parameterized such that the re-
sultant net balance of the water budget is added into the Mediterranean Sea.
The water budget was closed through the Total Runoff Integrating Pathways
(TRIP) model (Oki & Sud 1998) which supplies freshwater influx at theMediter-
ranean river mouths. For more information on the NEMOMED12 readers
are advised to refer Somot et al. (2008), Sevault et al. (2014). The coupling of
the sub-components in the regional coupled system was done by the OASIS-
MCT3 coupler (Craig et al. 2017). The coupling fields between the ocean and
atmosphere are interpolated and exchanged every three hourly by the coupler.
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In addition to the NEMOMED12, the NEMO configuration adapted over
the North and Baltic marginal seas was coupled to the atmospheric compo-
nent COSMO-CLM in a simulation driven by ECMWF twentieth century
reanalysis, ERA-20C (Poli et al. 2016). The performance of ERA-20C down-
scaled simulation in realistically replicating the Vb-cyclone events and their
associated precipitation was already reported and analyzed in the study by
Krug et al. (2022). Hence in this study, we used the ERA-20C downscaled
simulation as a reference for validating the downscaled EC-EARTH simulated
Vb-cyclone events and their associated precipitation in the historical period. It
is to be noted that though the EC-EARTH driven simulation was only coupled
to NEMOMED12, both simulations used same coupling frequency and set-ups
over the Mediterranean Sea region. From hereafter the downscaled simula-
tion driven by ERA-20C is referred to as Goethe University Frankfurt (GUF)
evaluation simulation, the downscaled EC-EARTH simulation in the historical
period (1951-2005) as GUF historical simulation, and finally the future period
(2045-2099) of downscaled EC-EARTH simulation as a GUF future simulation,
or simply the evaluation, historical and future respectively. As the Vb-cyclone
are rare events, we considered 55 years in the historical and future periods to
account for sufficient Vb-cyclone cases.

5.2.2 Vb-cyclone tracking

For detecting and tracking Vb-cyclones in the two simulations a tracking
algorithm developed by Wernli & Schwierz (2006) which was later modified
by Sprenger et al. (2017) was used. The mean sea level pressure was used as
input for the tracking algorithm (at a 6-hourly interval). Within the domain,
25◦ W–45◦ E and 25◦ N–75◦ N, closed isobars were tracked and the deepest
pressure within the closed isobar was considered to be the cyclone center.
Thereafter, the next following track point cyclone center was selected by a
guess on the past displacement vector within a search of radius 1000 km. The
tracking algorithm considers all the cyclones crossing the 47◦ N latitude and
between the longitudes, 12◦ E and 22◦ E with a lifetime greater than 24 hours
(Hofstätter et al. 2016, Wernli & Schwierz 2006). For more details regarding
the tracking algorithm, the readers are directed to refer Krug et al. (2022).

5.2.3 Vb-cyclones and North-Western Mediterranean Sea state

After the Vb-cyclone tracking, their frequency of occurrence, track density,
minimumcentral pressure, and precipitationwas analyzed. Hence the historical
period was taken from 1951-2005 and the future period from 2045-2099 in
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this study. The number of Vb-cyclone events per year along with their linear
trends and respective 95% confidence intervals was analyzed. The linear trend
line is computed with the least square regression approximation through R
software package (R Core Team 2013). The track density of the Vb-cyclones
represent the probability with which Vb-cyclone centers cross a grid point
in the given time period similar to the study by Messmer et al. (2015). The
minimum central core pressures obtained from the simulations were plotted
using box whiskers. The box whiskers ends at the quartiles, the horizontal line
at the center represents the median, and the points/circles are the values more
than 1.5 times the interquartile range from the end of the box.

For the Vb-cyclone precipitation analysis, three important catchments i.e.,
the Danube, Elbe, and Odra were selected. The daily anomalies of precipitation,
SST, evaporation andwind speedswere calculated by subtracting the daily value
from the daily climatological mean during the respective analysis period to
remove the seasonal cycle and to account for possible systematic biases. There
after, the spatial and temporal averages of the precipitation over the Danube,
Elbe, and Odra were calculated for each Vb-cyclone life time as detected from
the tracking algorithm. Similarly, the spatial and temporal averages of the
SST, evaporation and wind speeds over the pre-defined uptake region over the
NWMS were calculated. The spatially averaged precipitation sum anomaly
accumulated during the Vb-cyclone life time over the respective catchments
was further ranked according to the intensity indicating the rank of Vb-cyclone
events. In other words, the precipitation anomaly during the entire Vb-cyclone
life timewere ranked and a Vb-cyclone eventwith highest positive precipitation
anomaly was ranked as 1. In addition to the Vb-cyclone precipitation anomaly
rankings, the absolute precipitation amounts were also showed.

Corresponding to the Vb-cyclone precipitation anomaly rankings we ana-
lyzed the state of the NWMS (7◦ E, 22◦ E, 35◦ N, 46◦ N) similar to the study by
Krug et al. (2022). The corresponding spatially and temporally averaged SST,
evaporation, and wind speeds anomalies over this pre-defined region were plot-
ted corresponding to the Vb-cyclone precipitation anomaly rankings. We also
showed the moving averages of SST, evaporation, and wind speed anomalies
for 10 Vb-cyclones with the Local Polynomial Regression Fitting (LOESS) lines
corresponding to the precipitation anomalies over the Danube, Elbe, and Odra
catchments. We adapted the methodology as in Krug et al. (2022) for analyzing
the precipitation rankings and corresponding NWMS state.
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5.2.4 Quantifying process chain between North-Western Mediterranean Sea
and Vb-cyclone precipitation

Methods from information theory were recently used in quantifying inter-
actions among sub-systems, especially in climate system applications (Potha-
pakula et al. 2019, 2020, Krug et al. 2021, Ruddell et al. 2019). Transfer entropy
(TE) was especially used in detecting and quantifying the direction of infor-
mation exchange between two or more sub-systems. Unlike correlation, TE is
an asymmetrical measure. Generally, the estimations from TE are free from
any underlying assumptions of the probability distributions. However, the
estimation of TE in non-parametric form is still a challenge and requires rigor-
ous parameter tuning and testing (Kaiser & Schreiber 2002, Pothapakula et al.
2019).

A study by Pothapakula et al. (2019) tested various TE estimators on ideal-
ized and real climate test cases along with the sensitivity of these estimators
on time series length. Their results showed that the TE-linear which assumes
Gaussianity is robust in revealing the system dynamics. While the non-linear
estimations like TE kraskov, kernel gave reliable results, their free-tuning pa-
rameters such as the number of nearest neighbors, kernel width were tested
and tuned for reliable estimations.

In this study, we used the robust TE-linear estimation to quantify the
process chain in terms of information exchange between the NWMS and the
spatio–temporal averaged precipitation over three catchments during all the
detected Vb-cyclone days. Here we bring to the attention of readers that unlike
the precipitation rankings where the precipitation anomaly for the entire Vb-
cyclone event life time was considered, the information exchange calculations
used individual days of all the detected Vb-cyclone events. By considering all
the Vb-cyclone days, we aim for robust estimation of information exchange
with long time series as proposed in (Pothapakula et al. 2019). Furthermore, it is
to be noted that the Granger causality is equivalent to the linear approximation
of TE by a factor of 2 (Barnett et al. 2009). Krug et al. (2021) applied the same
methodology to quantify the information exchange between the NWMS and
the precipitation over Odra catchments during Vb-cyclones.

At the heart of the information theory lies the concept of Entropy (𝐻 ). The
Entropy quantifies the uncertainty of a random variable𝑋 (Shannon 1948) and
is defined as,

𝐻 (𝑋 ) = −
∑︁
𝑥

𝑝 (𝑥) log𝑝 (𝑥), (5.1)

where 𝑝 (𝑥) represents the probability of a state of the random variable𝑋 .
The summation goes through all the states of the random variable quantifying
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the average uncertainty of𝑋 . The units of entropy are generally expressed in
nats when natural logarithm is used, whereas in the units of bits if the logarithm
to the base of 10 is used. In this study, all the results quantifying information
exchange were expressed in the units of nats.

Mutual information (𝑀𝐼 ) is defined as the average uncertainty reduction
in the random variable𝑋 provided by the knowledge of random variable 𝑌 or
vice-versa.

𝑀𝐼𝑋𝑌 =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) , (5.2)

Where the 𝑝 (𝑥,𝑦) represents the joint probability of a state corresponding
to the random variables𝑋 and𝑌 . The𝑀𝐼 is a symmetric quantity and thus can
not detect the direction of information exchange.

The𝑇𝐸 builds upon the𝑀𝐼 measure and is defined as mutual information
between the future target variable𝑋 and the whole past of the source 𝑌− con-
ditioned on the whole past of the target variable𝑋−. The𝑇𝐸 is an asymmetric
measure giving directional information exchange.

𝑇𝐸𝑌−>𝑋 = 𝑀𝐼 (𝑋 ;𝑌− |𝑋−) . (5.3)

Due to computational complexity in the estimation of joint probability
densities, the whole past of the source and target random variables are reduced
as follows,

𝑇𝐸𝑌−>𝑋 = 𝑀𝐼 (𝑋 ;𝑌𝑡−𝜏 |𝑋𝑡−𝜔 ), (5.4)

where 𝜏 and𝜔 represents the time lags of the history of source and target
variables. The values of the 𝜏 and 𝜔 are generally chosen depending on the
system dynamics. For more detailed review on TE and its estimation refer to
Pothapakula et al. (2019).

In this study, we chose the target variable to be the spatial averaged daily
precipitation anomaly over the respective catchments during a Vb-cyclone
event and the source being the simultaneous state of SST, evaporation or wind
speed anomalies over the NWMS. The value of 𝜏 was taken to be zero and
𝜔 as one consistent to the study of Krug et al. (2021). The TE measure in
this study quantifies the reduction in uncertainty about the present state of
precipitation in the respective catchment while knowing the state of NWMS
(SST, evaporation or wind speed) during the same day given the knowledge of
one day precipitation persistence in the catchment region. Significance tests
with permuted surrogates were conducted for information exchange values
(Lizier 2014, Pothapakula et al. 2019). Though the measure of TE is highly
useful, its limitation interms of common drivers influencing the source and
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target needs to carefully taken into account. For example, while investigating
the information exchange between Vb-cyclone daily precipitation and NWMS
daily evaporation anomaly, it is assumed that no common driver is influencing
the source and target variables (Runge et al. 2019, Pothapakula et al. 2019).

5.3 RESULTS AND DISCUSSION

In this section, first, the Vb-cyclone characteristics interms of occurrence,
precipitation, minimum sea level pressure are discussed in evaluation, historical
and future simulations. Thereafter, we analyze the NWMS state and associated
process chain interms of information exchange during these events. Additional
analysis which includes the evaluation of the SST’s obtained from the two
simulations were performed and discussed in the Appendix B section.

5.3.1 Vb-cyclones in the historical and future periods

In this sub-section, we present and discuss the results obtained fromVb-cyclone
tracking in various simulations. For the evaluation simulation, a total of 531
Vb-cyclone events were detected for the period 1951-2005 corresponding to
9.7 Vb-cyclone events per year (standard deviation is 2.1 events per year). In
the historical simulation, a total of 557 Vb-cyclone events were detected for the
period 1951-2005 corresponding to 10.1 Vb-cyclones per year (standard devia-
tion is 1.6 events per year). The historical simulation slightly overestimated the
number of Vb-cyclones by a statistically insignificant amount of 4.8% compared
to the evaluation simulation. The blue line in Figure 5.1 represents the fitted
linear regression line and the grey bands represent the 95% confidence interval
bands for all the tracked Vb-cyclones each year in various simulations. Overall,
the trends revealed to be statistically insignificant in evaluation, historical and
future simulations. With respect to the seasonal differences, on average the
historical simulation overestimated the Vb-cyclone occurrence by 49% per year
in summer (significant at 95% confidence) while in winter it underestimated
Vb-cyclones by 41% per year (significant at 95% confidence) compared to the
evaluation simulation (see Figure B.2) in supplementarymaterial). Furthermore,
the SST’s in the historical simulation during summer season are colder than
in the evaluation simulation (see Appendix B) indicating that the Vb-cyclone
occurrence’s in the historical simulation during summer are determined by
some large scale dynamics rather than by the thermodynamic instability created
by the Mediterranean SSTs.

In total 567 Vb-cyclones were detected in the future simulation for the
period 2045-2099 corresponding to 10.3 Vb-cyclones per year (standard devi-
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FIGURE 5.1. Time series of annual Vb-cyclone event number and their associated linear trends
for the evaluation, historical, and future simulations. The shaded intervals corre-
spond to the 95% confidence intervals for the Vb-event trend line.

ation is 2.3 events per year). This indicates an increase by 1.8% Vb-cyclones
events per year in the future period compared to the historical period. Standard
student’s t-test analysis revealed that this percentage increase was insignificant.
This result is consistent with the findings by Mittermeier et al. (2019) where
an insignificant percentage increase of Vb-cyclone frequency in the far future
was reported with 0.11◦ resolution stand-alone regional climate model. No
significant changes in the Vb-cyclone seasonal frequency and trends were re-
vealed in the future simulation compared to historical simulation (Figure B.2
in appendix). This result is contrary to the findings of Mittermeier et al. (2019)
, where they reported significant changes in the Vb-cyclone occurrences in the
future spring and summer seasons.

A good agreement in the Vb-cyclone track density was also detected be-
tween the historical and evaluation simulations (Figure B.3 in appendix). How-
ever, a minor underestimation of ≈ 1% of the Vb-cyclone centers over the
eastern flanks of the Alps and a very slight overestimation over Italy was noted
in the historical simulation. In the simulated future, the Vb-cyclones travelled
further north-eastwards compared to the historical period (also reported in
Messmer et al. (2020). The Vb-cyclones intensity in terms of minimum cyclone
central pressure also revealed good agreement between the historical and eval-
uation simulation with respect to the median values (the center line of the box
plots in Figure B.4 in appendix), however a discrepancy exists in the outliers,
i.e., the extreme values, especially values with greater minimum cyclone central
pressures (values > 1020 hPa). This difference might be attributed to the low
number of Vb-cyclones detected in the winter season in historical simulation
compared to the evaluation simulation (Figure B.2, winter season box plot).
The future simulation indicated no significant changes in the Vb-cyclone mini-
mum central pressures compared to historical simulation, especially with the
median values in the box whisker plots. This is also true in all the seasons where
no significant changes are observed between the median values of historical
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GUF Evaluation GUF Historical GUF Future
FIGURE 5.2. Ranked Vb-cyclone total precipitation anomalies in the Danube, Elbe, and Odra

catchments obtained from various simulations.

and future simulations, however differences are noted in the outliers in all the
seasons (Figure B.5 in appendix).

Figure 5.2 shows the Vb-cyclone precipitation anomalies ranked according
to their magnitudes (lowest rank for maximum anomaly) in the Danube, Elbe,
and Odra river catchments for various simulations. The rankings over the
Elbe and Odra catchments in evaluation showed similar anomaly magnitudes
due to their close spatial proximity. The Danube catchment showed higher
precipitation anomalies in high and medium ranks (≈ > 400 ranks) while a
higher variability in lower ranks compared to Elbe and Odra in both historical
and evaluation simulations. This behavior of Danube was attributed to the
presence of complex orography and also to the typical Vb-cyclone pathways
(Krug et al. 2022). The similarity between the Elbe and Odra catchments pre-
cipitation rankings, high precipitation anomalies in the Danube catchment
is also seen from the absolute precipitation amounts (Figure B.6 in supple-
mentary notes). Over all, there is a good agreement between the evaluation
and historical simulated precipitation rankings over all the three catchments.
However the precipitation magnitudes for a few high-ranked events (≈ 1-20
ranks) were greater (≈ 0.5, 0.45, 0.25 mm/day) in the Danube, Elbe, and Odra
catchments respectively in evaluation simulation compared to the historical
simulation (Figure B.7). The spatial precipitation patterns showed a zonal dif-
ference between the historical and evaluation simulation. The precipitation in
the historical simulation was slightly greater in magnitude (≈ 1mm/day) in the
western part of the domain, while in the eastern domain, there was an under
estimation (≈ 1mm/day) (Figure B.8). In the future, all the three catchments
show similar precipitation anomaly magnitudes as the historical simulation,
but with very slight higher precipitationmagnitudes for the top 10 high ranking
Vb-cyclone events (Figure B.7). With Vb-cyclone events rankings greater than
10, no significant differences were found in the future precipitation anomalies
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GUF Evaluation GUF Historical GUF Future
FIGURE 5.3. Sea surface temperature anomalies corresponding to the Vb-cyclone precipitation

anomaly rankings in various simulations for Danube, Elbe and Odra catchments.
The lines show themoving average and the LOESS regression. The data for Danube
and Elbe catchments were shifted by constant values for improved representation.

andmagnitudes over the three catchments. The spatial plots of the precipitation
show that the future simulation on average shows an insignificant increase
of total precipitation by about (≈ 1mm/day) for all the detected Vb-cyclones
compared to the historical simulation (Figure B.8).

5.3.2 North-Western Mediterranean Sea state during the Vb-cyclones and asso-
ciated process chains

This sub-section presents the state of the SST, evaporation, and wind speed
anomalies over the NWMS and associated process chains interms of informa-
tion exchange.

Figure 5.3 shows the spatially averaged SST anomalies of the NWMS (do-
main shown in black rectangle box)with respect to the Vb-cyclone precipitation
anomaly rankings. In the evaluation simulation the high precipitation anoma-
lies tend to be realized for low SST anomalies, especially for the Danube and
Elbe catchments. This might be attributed to the strong upper sea mixing and
evaporative cooling during the Vb-cyclone life time. These cooler anomalies
were also partially replicated for the Danube and Odra basins in the historical
simulation (≈ 1-100 ranks). In the future simulation the SST cooling was not
noticed. Figure 5.4 presents the spatial distribution of the mean SST anomalies
over the NWMS during all the Vb-cyclones. The evaluation simulation on
average showed negative SST anomalies in the NWMS. This was expected as
the Vb-cyclones usually originate from the NWMS. Though the cooling in the
historical simulation was noticed with less magnitude in the north-western
domain, no such cooling was seen over the Adriatic sea and Ionian region. This
means that the SST’s in these regions were not responsive in the historical
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FIGURE 5.4. Mean sea surface temperatures anomalies (K) during all the Vb-cyclones in vari-
ous simulations corresponding to precipitation over Danube, Elbe and Odra catch-
ments.
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FIGURE 5.5. Information exchange ( ×10−2 nats ) between the SST’s and the total precipitation
anomalies over the Danube, Elbe and Odra catchments for various simulations.
Only 95% significant range is plotted.
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GUF Evaluation GUF Historical GUF Future
FIGURE 5.6. Evaporation anomalies corresponding to the Vb-cyclone precipitation anomaly

ranking in various simulations for Danube, Odra and Elbe catchments. The lines
show the moving average and the LOESS regression. The data for Danube and
Elbe catchments were shifted by constant values for improved representation.

simulation. This behaviour was also seen in the mean bias plots, where the
cooling of the SST’s in the historical was underestimated compared to evalua-
tion (Figure B.9 in appendix). The difference between the future and historical
simulations on average showed no major differences in the magnitude of SST
cooling during the tracked Vb-cyclones indicating no significant changes in
the response of SST to the future Vb-cyclone events over the NWMS.

Thereafter, we investigated the information exchange between the SST’s
and theVb-cyclone induced precipitation over the three catchments to diagnose
the process chains linking the NWMS and Vb-cyclone precipitation (Figure
5.5). We noted significant differences in the information exchange spatial
locations between the evaluation and historical simulations, especially in the
Elbe and Odra catchments. In the historical simulation an underestimation of
information exchange between the NWMS and the precipitation over the Elbe,
and an overestimation in the information exchange over the Odra catchments
was noted indicating that the process linking the SST’s and the Vb-cyclone
differ between the evaluation and historical simulation. The spatial locations
of the information exchange in the future simulation remained the same as in
historical simulation, but with minor changes in the magnitude of information
exchange, especially over the Odra catchment, a significant reduction in the
amount of information exchange is noted.

Figure 5.6 shows the evaporation anomalies over the NWMS with respect
to the Vb-cyclone precipitation anomaly rankings. In the evaluation simulation
the evaporation anomalies corresponded to the precipitation anomaly rank-
ings in all the catchments indicating the dependence of Vb-cyclones on the
NWMS moisture. High evaporation anomalies over the NWMS are linked
with high ranked precipitation Vb-cyclone events overall the catchments, re-
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iterating the importance of NWMS moisture feeding the Vb-cyclones. This
result is consistent with the findings of Messmer et al. (2017) concluding that
the moisture from the Mediterranean Sea leads to high atmospheric moisture
availability causing an increased precipitation amount over central Europe.
The historical simulation however showed no such correspondence between
the NWMS evaporation anomalies and the Vb-cyclone precipitation except for
only aminor increase in the anomalies of evaporation over theDanube and Elbe
catchment ( high ranks, ≈ > 100 ranks). The spatial plots in Figure 5.7 show
that on average the magnitude of evaporation over the NWMS was greater in
the evaluation simulation compared to the historical simulation during the de-
tected Vb-cyclones. The historical simulation underestimated the evaporation
from the NWMS, especially over the Adriatic and Ionian regions. This was
further evident from the mean bias plots where a large negative bias is noted
between the historical and evaluation simulation (Figure B.10 in supplement).
The spatial patterns corresponding to the future simulations on average showed
no significant changes in the magnitude of evaporation anomalies compared
to the historical simulation indicating that the Mediterranean response with
respect to the evaporation does not change in the future compared with the
historical period.
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FIGURE 5.7. Mean anomaly patterns of evaporation (mm/day) over the Mediterranean Sea
from various simulations for all Vb-cyclone events.

The information exchange between the evaporation over the NWMS and
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FIGURE 5.8. Information exchange ( ×10−2 nats) between the evaporation over the Mediter-
ranean Sea and the total precipitation anomalies over the Danube, Elbe and Odra
catchments for various simulations. Only 95% significant range is plotted.

the Vb-cyclone precipitation over the three catchment’s is presented in Figure
5.8. We noticed a significant amount of information exchange between the
NWMS’s evaporation (and also Adriatic Sea for Odra catchment) and the Vb-
cyclone precipitation in the evaluation simulation for all the catchments. This
result is in line with the findings of Krug et al. (2021) concluding significant
information exchange between the NWMS and the Odra catchments for all
the detected Vb-cyclones from 1901-2010. However, the historical simulation
does not show significant information exchange linking the NWMS and Vb-
cyclone precipitation in all the catchments. This indicates that some crucial
physical processes linking the evaporation over the NWMS and Vb-cyclone
precipitation were missing in the historical simulation. Nevertheless, the pre-
cipitation magnitudes over the three catchments are comparable between the
evaluation and historical simulation implying that the underestimation of the
Mediterranean moisture in the historical simulation is compensated by other
moisture sources feeding the Vb-cyclone precipitation. Messmer et al. (2017)
found a non-linear response of the Vb-cyclone precipitation with increment
and decrement of moisture flux over the Mediterranean Sea. An increase in
the Mediterranean moisture flux contributed to about 24% significant increase
of Vb-cyclone precipitation, while a decrease in the moisture flux resulted in
insignificant decrease in Vb-cyclone precipitation amount. This implies a non-
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linear compensation effects of atmospheric moisture feeding the Vb-cyclone’s,
and perhaps this is also the reason for historical simulation compensation ef-
fects. However, this needs a detailed investigation. The information exchange
spatial locations do vary between the historical and future simulations, but the
difference in the magnitudes of information exchange is less compared to the
differences between the historical and evaluation simulations. This indicates
that the processes linking the NWMS evaporation and the Vb-cyclones are not
likely to change in the future.

GUF Evaluation GUF Historical GUF Future
FIGURE 5.9. Wind speed anomalies corresponding to the precipitation anomaly rankings in

various simulations for all Vb-cyclones. The lines show the moving average and
the LOESS regression. The data for Danube and Elbe catchments were shifted by
constant values for improved representation.

Figure 5.9 shows the wind-speed anomalies with respect to the Vb-cyclone
precipitation anomaly rankings. The high wind speed anomalies tend to be
realized for high precipitation rankings in evaluation simulation. Krug et al.
(2022) showed that these strongwinds result in the dynamic evaporative forcing
over the NWMS fueling the Vb-cyclone precipitation especially during their
initial phase. This phenomena also leads to the SST’s cooling over the NWMS,
which is evident from the results of our evaluation simulation. The increasing
trends in wind-speed are also replicated in the historical and future simulations,
however the wind speed anomaly magnitudes were slightly lower in historical
simulations compared to the evaluation simulation. The future simulation also
show a good correspondence in the wind speed anomalies, i.e, high ranked
Vb-cyclone events linked with high wind speed anomalies.

The spatial plots of the mean daily wind speed anomalies for all the Vb-
cyclones are shown in Figure 5.10. On average the wind speed anomaly mag-
nitudes in the evaluation simulation over the NWMS were slightly higher in
magnitude compared to the historical simulation (Figure B.11 in appendix).
It is to be noted that the differences between the evaluation and historical
simulation were greater in magnitudes for the SST anomalies ( Figure 5.4)
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FIGURE 5.10.Mean anomalies of wind speed (m/s) over theMediterranean Sea in the evaluation,
historical, and future simulations over Danube, Elbe and Odra catchments for all
Vb-cyclone events.

and the evaporation anomalies ( Figure 5.7) over the NWMS compared to the
wind speed anomalies differences. Similar to the higher significant SST and
evaporation anomaly differences over the Ionian basin and the Adriatic Sea, the
wind speed biases are also observed in the historical simulation over these re-
gions compared to evaluation simulation. This implies that some of the crucial
feed-backs interms of SST’s, evaporation and, wind speed linking the Adriatic
Sea and some parts of the Ionian basin are entirely missing in the historical
simulation. The future simulation on average showed no significant differences
from the historical simulation.

The information exchange spatial locations linking the NWMSwind speed
anomalies and the Vb-cyclone precipitation over the three catchments is shown
in Figure 5.11. Unlike the information exchange patterns linking the NWMS’s
SST and the evaporation anomalies to the Vb-cyclone precipitation where
significant differences were found between the evaluation and historical simu-
lations, the information exchange patterns linking the wind speed anomalies
and Vb-cyclone precipitation showed very similar patterns and magnitudes.
This indicates that though the historical simulation captured the process linking
wind speed anomalies over the NWMS and Vb-cyclone precipitation, errors
in the dynamical evaporative forcing still exist. We found a cold bias in SSTs
simulated in the historical simulation which might be causing the unrealistic
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FIGURE 5.11. Information exchange ( ×10−2 nats) between the wind speed and total precipitation
anomalies for various simulations. Only 95% significant range is plotted.

dynamical evaporative forcing response over the NWMS. Though the same
coupled RCM model setup was used for both the historical and evaluation
simulation, we see differences in the SST magnitudes. We further investigated
plausible reasons for such a behaviour of coupled RCM and a detailed explana-
tion is provided in the Appendix A section. The investigation showed that the
coupled RCMs closely follow the SSTs of their driving GCMs. The EC-EARTH
GCM used in the historical simulation had a cold bias in the Mediterranean
SST, which seemed to be further inherited by the coupled RCM. Furthermore,
(Hazeleger et al. 2012) reported biases in surface parameters such as cold sur-
face temperature and surface fluxes in the EC-EARTH GCM simulation. This
indicates that the historical simulation must have inherited the simulation bi-
ases from its driving GCM, the EC-EARTH, resulting in cold bias of SST and
surface air temperatures which influence the evaporation over the NWMS. A
study by Pothapakula et al. (2020) reported that the biases from the GCM large
scale signals were inherited by the downscaled COSMO-CLM simulations
over the South Asia domain resulting in unrealistic process chain linking the
Indian Summer Monsoon Rainfall, the Indian Ocean dipole and the El-Niño
Southern Oscillation. However, study by Sørland et al. (2018) reported that
the RCMs tend to improve the driving GCM biases over Europe, however
the RCMs were reported to do a better job in correcting the GCMs when the
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GCM has a warm bias, compared to a cold bias. Since the historical simulation
forced by EC-EARTH is reported to have a cold bias on the surface temper-
ature and sea surface temperatures, it is plausible that the cold biases were
inherited by the coupled RCMhistorical simulation. The information exchange
patterns and magnitudes corresponding to the future simulation in Figure 5.11
showed no significant differences compared to the historical simulation. This
indicates that the future process linking the wind speeds and the Vb-cyclone
induced precipitation over the three catchments do not significantly change in
the future.

5.4 CONCLUSIONS

This work focused on the evaluation and projection of Vb-cyclones, the corre-
sponding state and process chains linking the North-West Mediterranean Sea
(NWMS) and Vb-cyclone related precipitation in two high resolution coupled
regional climate model simulations. One regional simulation was driven by
ERA-20C reanalysis (1951-2005) called evaluation, and the other simulation
was driven by EC-EARTH for the period 1951-2099. The simulation for the
period 1951-2005 was referred as historical, and from the period 2006-2099
as future simulation.

The results revealed a good agreement in the Vb-cyclone frequency be-
tween the evaluation (9.7 events per year) and historical simulations (10.1
events per year) but with significant seasonal differences. This discrepancy
in the seasonal cycle of Vb-cyclone occurrences between the evaluation and
historical simulation needs a further detailed investigation. The Vb-cyclone
track density and intensity in terms of minimum cyclone central pressure
showed good agreement between the evaluation and historical simulation. An
insignificant increase by 1.8 % in the Vb-cyclone frequency by the end of 21𝑠𝑡
century was revealed from future simulation. The Vb-cyclone precipitation
anomaly magnitude rankings also showed good agreement between the evalua-
tion and historical simulations. Changes in the future Vb-cyclone precipitation
anomalies over the three catchments were insignificant.

In investigating the state of NWMS and the Vb-cyclone related precipi-
tation in the Danube, Odra and Elbe catchments, the evaluation simulation
showed a correspondence of NWMS SST, evaporation, and windspeed anoma-
lies to the Vb-cyclone precipitation anomaly rankings. Such a correspondence
was not detected in the EC-EARTH driven historical simulation. Despite good
agreement in the Vb-cyclone frequency, intensity, and precipitation between
the evaluation and historical simulation, the state and process chains differ.
These differences might be attributed to the emergence of simulation biases



5.5 ACKNOWLEDGEMENTS ◀ 107

inherited from the driving EC-EARTH GCM. Furthermore, (Hazeleger et al.
2012) reported biases in surface parameters such as cold surface temperatures
and fluxes, whichmight be inherited by the coupled RCM resulting in cold SSTs
and unrealistic dynamical evaporative response in the historical simulation.
Downscaling the EC-EARTH3 (latest version of EC-EARTH) which has smaller
bias in the surface air temperatures, SST and surface fluxes (Döscher et al. 2021)
might assist in further understanding the state and process chains linking the
NWMS and the Vb-cyclone precipitation in historical and future periods.
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CHAPTER 6
Conclusion

This thesis investigated various methods derived from information theory and
applied them to idealized dynamical systems, real-world climate applications
including evaluation of regional climate model simulations. These methods
were chosen to reveal and quantify the underlying system dynamics of complex
systems such as climate. The first part of the thesis focused on methods such as
mutual information, transfer entropy, information flow and their estimation
techniques. Furthermore, the sensitivity of these estimators to free tuning
parameters, available time-series length were explored on various idealized
dynamical systems and few climate applications with known dynamics. There-
after, these methods were applied to evaluate the dynamics underlying ENSO,
IOD, and the Indian Summer Monsoon Rainfall in the observations, global cli-
mate models, and regional climate models. Finally, these methods were applied
in evaluating the regional coupled climatemodeling system and the interactions
between the Mediterranean Sea and Vb-Cyclones. The following are the broad
conclusions of the thesis,

6.1 QUANTIFYING INFORMATION EXCHANGE IN IDEALIZED AND CLIMATE SYSTEM

APPLICATION

Applying various information theory methods and their estimators on two
dimensional idealized test cases and real world climate applications and their
sensitivity on the times series length and free tuning parameters, the following
conclusions were drawn:

• The parametric estimators IF-linear and TE-linear detected and reliably
quantified information exchange in the idealized linear systems however,
they failed for nonlinear systems.

• Among the nonparametric estimators the TE-kernel and TE-kraskov
passed the idealized tests, however, their implementations had to be
tuned for consistent numerical results.

• For real world applications, these estimators revealed expected dynamics
between IOD and ENSO interactions, while unrealistic bi-directional
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information exchange between the NAO and European air temperatures
indicating the influence of hidden drivers.

• The study proposed a composite use of the tested estimators with careful
consideration of available time series length, parameter testing, limita-
tions of the methods specifically involving high dimensional interactions
and common drivers.

6.2 THE SYNERGISTIC IMPACT OF ENSO AND IOD ON THE INDIAN SUMMER

MONSOON RAINFALL IN OBSERVATIONS AND CLIMATE SIMULATIONS - AN

INFORMATION THEORY PERSPECTIVE

Exploring the two source information exchange dynamics on a single target
in idealized experiments and the underlying dynamics of ENSO, IOD on the
Indian SummerMonsoon Rainfall in observations, GCM’s and RCM’s revealed
the following conclusions:

• Testing information exchange from two sources to a single target on
idealized test cases revealed that both linear and the non-linear idealized
systems can exhibit positive net synergy (i.e., the combined influence of
two sources is greater than their individual contributions).

• Exploring the information exchange from two source variables (ENSO
and IOD) to one target (ISMR) in the observational and reanalysis data
revealed a synergistic role by the two sources in contributing towards
the interannual variability over the Monsoon core region.

• Only one RCM simulation driven by a GCMwith realistic ENSO, IOD
moisture transport signals replicated the synergy between the two sources
(ENSO and IOD) contributing to the interannual variability of Indian
Monsoon Core rainfall.

• This study reiterates the importance of the driving GCM’s large scale
signals while dynamical downscaling with RCM’s and the usefulness of
IE methods in process based climate model evaluation.

6.3 VB-CYCLONES AND ASSOCIATED NORTH-WESTERN MEDITERRANEAN SEA

STATE IN REGIONAL COUPLED CLIMATE SIMULATIONS: EVALUATION AND

PROJECTION

Evaluating the coupled regional climate simulations in terms of the Vb-cyclones
and the state of the North-West Mediterranean Sea in evaluation, historical
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and projection simulations with information exchange methods revealed the
following conclusions:

• There is a good agreement in the mean annual Vb-cyclone frequency,
mean cyclone intensity, and precipitation rankings in the Danube, Elbe,
and Odra catchments between the evaluation and the historical simula-
tions.

• The projection simulation under the RCP-8.5 pathway revealed a basin-
average SST warming of ≈ 2.5 – 3 K, but insignificant changes in Vb-
frequency, mean intensity, and precipitation in the catchments by the
end of the 21𝑠𝑡 century.

• Significant differences are found between the North-Western Mediter-
ranean SST, evaporation, andwind speed anomalies corresponding to the
precipitation rankings over the three catchments along with the process
chains between the historical and evaluation simulation. No significant
differences were found between the historical and future simulations.

• The discrepancies in the state of the North-Western Mediterranean
Sea and the process chains in terms of information exchange might be
attributed to the inheritance of the simulation biases from the driving
GCM. This result reiterates the usefulness of IE methods in process
based climate model evaluation.

6.4 FUTURE PROSPECTS

The present thesis tested and applied various methods derived from infor-
mation theory to reveal the underlying system dynamics. After testing these
methods and their estimation techniques on various idealized test cases, they
were applied to real-world climate applications and regional climatemodel eval-
uation. After some findings and conclusions mentioned in the above sections,
the following future directions in exploring these methods are recommended.

• While the estimation techniques such as TE-linear, IF-linear, TE-kernel,
and TE-kraskov provided reliable results, they were still sensitive to the
available time-series length and moreover, the non-linear estimators
were sensitive to the free tuning parameters. Hence investigating the
robustness of these estimators is still a challenge and needs further re-
search. For example, the study by Zhu et al. (2015) proposed a new novel
estimation technique extending the kraskov estimator for calculating
TE.
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• All the methods used in this thesis assume stationary time series in the
real world climate applications and regional model evaluation. While
most of the climate time series data is non-stationary, amethod providing
insights into the time-varying information exchange providing robust
estimation for non-stationary time series needs further research. One
such study in this direction was done by Tawia Hagan et al. (2019). Their
study showed that the IF-linear can capture the time-varying causality
structure within soil moisture–air temperature coupling.

• While this thesis investigated the synergy between the ENSO, IODon the
Indian Monsoon Summer Rainfall over the Monsoon core region, more
recent studies focused on the influence of El NiñoModoki, a tripolar pat-
tern of the SST and sea level pressure anomalies over the tropical Pacific
on the Indian SummerMonsoon Rainfall (Feba et al. 2021). Hence future
research can apply the information exchange methods to investigate the
influence of El Niño Modoki and IOD on the Indian Summer Monsoon
Rainfall.

• The information exchange between the Mediterranean Sea and the Vb-
cyclone precipitation is investigated on two regional coupled climate
model simulations. However, these methods could be applied to multi-
model ensemble simulations for more robust estimations (Zittis et al.
2019).

• Themethods in this thesis were applied between a single source and a tar-
get (eg., the interactions between the Mediterranean Sea and Vb-cyclone
precipitation), dual-source and a target (eg., the ENSO, IOD influence
on the Indian Summer Monsoon Rainfall). However, real-world climate
applications involve high dimensional interactions involving multiple
sources influencing a target. Revealing such multi-directional infor-
mation exchange between the sub-components in the climate system
requires robust measures by overcoming the curse of dimensionality.
Further research is required in this direction (Runge et al. 2019).

=======================================================
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FIGURE A.1. Information exchange in nats from two-source (red line), single source (green and
blue lines), and net synergy (black line) to target for Linear, Kraskov and Kernel
estimators. The error bars represents two standard deviations of the 100 permuted
samples.
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FIGURE A.2. Information exchange in nats from two-source (red line), single source (green
and blue lines), net synergy (black line) to target for Linear, Kraskov and Kernel
estimators. The error bars represents two standard deviations of the 100 permuted
samples.
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FIGURE A.3. Regressions of PCs obtained from their respective EOFs over the Indian and Pacific
Oceans with the observed IOD and Niño 3.4 Index and their associated percentage
contribution to the total variance for HadISST and NCEP reanalysis SST data sets
for JJAS.
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FIGURE A.4. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for observa-
tional data sets GPCC, APHRODITE and NCEP reanalysis with Kraskov estimator
for JJAS. Only significant values at 95% confidence intervals are plotted.
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FIGURE A.5. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for observa-
tional data sets GPCC, APHRODITE and NCEP reanalysis with Kernel estimator
for JJAS. Only significant values at 95% confidence intervals are plotted.
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FIGURE A.6. Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for observa-
tional data set ERA Interim reanalysis (1980-2005) for JJAS. Only significant values
at 95% confidence intervals are plotted.
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at 95% confidence intervals are plotted.

60 100−
2
0

1
0

HadISST (EOF2)

 ° E

 °
 N

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

60 100−
2
0

1
0

NCEP Reanalysis (EOF2)

 ° E

 °
 N

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

150 200 250

−
4
0

4
0

HadISST (EOF1)

 ° E

 °
 N

−0.2

−0.1

0.0

0.1

0.2

150 200 250

−
4
0

4
0

NCEP Reanalysis (EOF1)

 ° E

 °
 N

−0.2

−0.1

0.0

0.1

0.2

FIGURE A.8. EOF2 patterns of SST anomalies (DJFM) in the Indian ocean and EOF1 patterns in
the Pacific ocean for observed HadISST and NCEP reanalysis.
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FIGURE A.9. SST composites (DJFM) in the Indian ocean and the Pacific ocean for observed
HadISST.
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FIGURE A.13.Information exchange from 𝐼 (𝑃𝑅𝐸𝐶 ; 𝐼𝑂𝐷) , 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂) , two-source informa-
tion exchange 𝐼 (𝑃𝑅𝐸𝐶 ;𝐸𝑁𝑆𝑂, 𝐼𝑂𝐷) and NET SYNERGY ×10−2 nats for observa-
tional data sets GPCC, APHRODITE and NCEP reanalysis for DJFM with Linear
estimator. Only significant values at 95% confidence intervals are plotted.
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FIGURE A.14.Percentage of the total variance contributed by the first 20 EOFs to the total
variability in Indian and Pacific Ocean SST for MPI-ESM-LR, Nor-ESM-M and EC-
EARTH models for the month of JJAS (1951-2005)
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FIGURE A.15.SST composites for observations and GCMs for various phases of IOD events
over the Indian ocean for JJAS.
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FIGURE A.16.SST composites for observations and GCMs for various phases of ENSO events
over the Pacific ocean for JJAS.
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FIGURE A.17. Information exchange from I(PREC;IOD), I(PREC;ENSO), two-source information
exchange I(PREC; ENSO,IOD) and NET SYNERGY ×10−2 nats for MPI-ESM-LR,
Nor-ESM-M and EC-EARTH GCM models with Kraskov estimator for JJAS. Only
significant values at 95% confidence intervals are plotted.
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FIGURE A.18.Information exchange from I(PREC;IOD), I(PREC;ENSO), two-source information ex-
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crCLM simulations for JJAS (1951-2005) with Kraskov estimator. Only significant
values at 95% confidence intervals are plotted.
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FIGURE A.20.Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events observed in Nor-ESM-M
GCM for the period of 1951-2005
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FIGURE A.21.Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events observed in MPI-ESM-LR
GCM for the period of 1951-2005
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FIGURE A.22.Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events observed in downscaled
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FIGURE A.23.Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events observed in downscaled
MPI-ESM-LR for the period of 1960-1990
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FIGURE A.24.Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for
El-Niño, La-Niña, positive IOD and negative IOD events observed in downscaled
EC-EARTH for the period of 1951-2005





APPENDIX B

Supplementary for chapter 5

B.1 MEDITERRANEAN SEA SURFACE TEMPERATURES IN THE GCM-RCM CHAINS

To understand the difference in the responses of the Mediterranean Sea in the
historical and evaluation simulations, we compared the SST’s obtained from the
evaluation and historical regional coupled simulationswith theUKMetOffice’s
HadleyCentre Sea Ice andSea SurfaceTemperature dataset (HadISST1.1)with a
resolution about 1◦ × 1◦ (Rayner et al. 2003) in the historical period. In addition,
we also used the NOAA Optimum Interpolation (OI) SST V2 (Reynolds et al.
2002) with a horizontal resolution of about 0.25◦ × 0.25◦ as another source of
observational data set. Furthermore, we investigated the SST’s as replicated in
the GCM-RCM chain for various available coupled simulations in the Med-
CORDEX phase II experiments as the simulation used in the current study
were a part of Med-CORDEX phase II initiative. The data sets available in the
Med-CORDEX data base used in this analysis is shown in Table B.1.

The SST data sets from the models in Table B.1 are available through the
Med-CORDEX website (https://www.medcordex.eu). The University of Bel-
grade used the PrincetonOceanModel (POM) as the regional ocean component
and the limited area model Eta/NCEP for the atmospheric component (Djurd-
jevic & Rajkovic 2008), the Centre National de Recherches Meteorologiques
(CNRM), Meteo France used the NEMOMED8 as the ocean model and the
ALADIN-Climate model as the atmospheric component (Sevault et al. 2014).
The GERICS-AWI Helmholtz-Zentrum Hereon Geesthacht, Climate Service
Center Germany used the MPIOM developed at the Max Planck Institute for
Meteorology (Hamburg, Germany) as the ocean component and REMO as the
atmospheric component. All the SST data sets were linearly interpolated onto a
common grid prescribed by theMed-CORDEX community named OMED-11i
which is approximately 12 km in resolution. Note that simulations used in this
study are refered to as Goethe-University Frankfurt (GUF) simulations in this
Appendix section.

B.1.1 Evaluation and future projections of Mediterranean SST

FigureB.1(a) shows the temporal evolution of the basin averaged annualMediter-
ranean SST for various simulations. Comparing the GUF historical and GUF
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evaluation simulated SST’s to the HadISST and OISST observational data sets,
we noticed a cold bias (≈ 2 K). This cold bias was more pronounced in the GUF
historical compared to the GUF evaluation simulation. This may be attributed
to a more realistic atmospheric forcing by COSMO-CLM on the ocean model
NEMOMED12 in the evaluation simulation compared to historical simulation.
The Med-CORDEX phase-II ensemble also simulated a cold bias, but a smaller
one compared with GUF simulations. A closer look into the seasonal cycle
revealed that almost all the simulations had a cold bias in the spring and summer
seasons (Figure B.12). It was interesting to note the close correspondence of
the driving GCM’s and the downscaled simulated SST time evolution in Figure
B.1(a) indicating the inheritance of the GCM SST magnitudes by the respective
RCMs. The global model, EC-EARTH’s SST was colder than the other con-
sidered CMIP5 GCM SST’s, hence, this explains the comparably larger cold
bias of the GUF historical simulation which appears to be inherited by the
coupled RCM. Furthermore, a narrow spread in the Med-CORDEX ensemble
and CMIP5 GCM ensemble was identified. Selection of only two GCM’s for
downscaling, i.e., the MPI-ESM-LR and CNRM from the CMIP5 simulations
so far might the reason for such a narrow spread.

A closer look into the spatial SST and the bias plots in historical period
revealed that the cold bias was present throughout the Mediterranean Sea
(Figure B.13 and Figure B.14). Especially the south-eastern warm pool was
not very well captured by the GUF simulations and also by the Med-CORDEX
ensemble members. However, overall important SST patterns (e.g., the warm
eastern pool in the Levantine compared to the western cold pool over the
North-Western Mediterranean) of the Mediterranean Sea were well captured
by the GUF evaluation and GUF historical simulations.

The Mediterranean SST climate change signal is presented in Figure B.1(b).
The SST anomaly was calculated with respect to the reference period 1951-
2005. Almost all the simulations agreed very well that the basin averaged
Mediterranean SST will warm ≈ 2.5 K – 3 K under the RCP8.5 scenario by
the end of 21𝑠𝑡 century. This warming of the Mediterranean Sea is consistent
with the findings by Soto-Navarro et al. (2020). Spatial climate change SST
patterns in GUF and the Med-CORDEX ensemble simulations reveal a ho-
mogeneous warming throughout the Mediterranean Sea (Figure B.15). This
results indicate that the GUF simulation captured the future warming signal of
the Mediterranean SST inline with the Med-CORDEX ensemble.
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FIGURE B.1. (a) Mediterranean Sea basin averaged annual SST (K) evolution and (b) SST
anomalies for the time period 1951-2099 (with reference to historical period 1951-
2005) obtained from various simulations along with observational data sets, the
HadISST and OISST.
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TABLE B.1. RCMs/observations descriptions for SST evaluation over the Mediterranean Sea.

RCMModeling Institution Acronym driving model

University of Belgrade EBUPOM2c MPI-ESM-LR

CNRMMeteo-France CNRM-RCSM4 CNRM-CM5

Helmholtz-Zentrum Hereon GERICS-AWI-ROM44 MPI-ESM-LR

Helmholtz-Zentrum Hereon GERICS-AWI-ROM22 MPI-ESM-LR

Goethe University Frankfurt CLMcom-GUF EC-EARTH

Observations and Reanalysis
data sets

HadISST – –

OISST – –

Goethe-University Frankfurt (GUF)CLMcom-GUF ERA-20C
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FIGURE B.2. Total number of Vb-cyclone events occured during Spring, Summer, Autumn and
Winter and their associated trends in various GUF simulations
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FIGURE B.3. Probability density field of all detected Vb-cyclone centres various GUF simulations
and their respective differences.
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FIGURE B.4. Box plots representingminimumcentral core pressure (hPa) for all the Vb-cyclones
in various GUF simulations.
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FIGURE B.5. Minimum central core pressure for all the Vb-cyclone detected tracks in Spring,
Summer, Autumn and Winter seasons as simulated in various GUF simulations.
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FIGURE B.6. Ranked total absolute Vb-precipitation amounts over the Danube, Elbe, and Odra

catchments in (a) GUF evaluation (b) GUF historical (c) GUF future simulations.
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FIGURE B.7. Difference between the total absolute precipitation amounts in the Danube, Elbe,
and Odra catchment (a) GUF historical -GUF evaluation (b) GUF future - GUF
historical
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FIGURE B.8. Difference in the total absolute precipitation amounts (mm/day) between the GUF
historical and evaluation (upper panel), GUF Future and historical (lower panel)
for all the catchments
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FIGURE B.9. Difference in the sea surface temperatures mean anomalies between GUF histor-
ical and evaluation (upper panel), GUF future and historical (lower panel) corre-
sponding to Vb-precipitation precipitation over all the catchments.
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FIGURE B.10.Difference in the evaporation (mm/day) mean anomalies between GUF historical
and evaluation (upper panel), GUF future and historical (lower panel) corresponding
to Vb-precipitation over all the catchments.
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FIGURE B.11.Difference in the wind speed (m/s) mean anomalies between GUF historical and
evaluation (upper panel), GUF future and historical (lower panel) corresponding to
Vb-precipitation over all the catchments.
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