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Chapter 1

Introduction

1.1 Nanoplasmonics
Nanoplasmonics refers to a subfield of nanophotonics, which covers the generation, detection
and manipulation of light at nanometre scales. The research field focusses on the interac-
tion processes of light and conduction electrons at metal-dielectric interfaces or metallic
nanostructures. It explores optical near-fields at sub-wavelength volumes and interactions
between confined fields and matter. Its goals align with the trend in nanophotonics to es-
tablish miniaturized optical devices for applications in microscopy, optical communication
and sensing [1].

With regards to potential applications, a major driver lies in the field of optical com-
munication and data manipulation. Specifically, there is hope for higher calculation speeds
than with electronics and simultaneously smaller footprints compared to photonic technolo-
gies. Fundamentally, the carrier frequencies for electronic signals are limited by RC-delay
of the electronics and create an upper limit for the data transmission rate. Over longer
distances, higher frequencies in the form of light are used for optical communication with
optical fibres. However, optical waveguides for data transmission must be much larger in
diameter as their cut-off diameter scales with the wavelength of the light (e.g. 1550 nm at
telecom wavelengths). Combining nanoelectronic dimensions in the order of mere nanome-
tres with optical frequencies of hundreds of terahertz would allow to replace some of the
optical-to-electronic conversion at the information destination that creates bottlenecks in
current data manipulation networks. [2, 3]

Moreover, scientific curiosity is driven by the fact that confinement of light into nanoscale
dimensions leads to strong electromagnetic fields that allow for the investigation of light-
matter interaction in a broad range of frequencies, from the visible to the terahertz regime.
This interaction can be further enhanced by resonant structures, such as metallic nanopar-
ticles, structured surfaces, metasurfaces and 2D materials. Controlling the interaction be-
tween light and matter at the nanoscale can be exploited to create new phenomena and
material properties at the larger scale, such as negative refraction, sub-wavelength focussing
and surface guiding of light. Furthermore, many optoelectronic applications, such as de-
tectors, modulators and switches, as well as higher harmonics frequency generation are all
based on the use of light-matter interaction. [4]

1.2 Metasurfaces and 2D materials
The field of metamaterials has been growing over the past 15 years and made the develop-
ment of materials with novel electromagnetic and photonic properties a reality. Metamate-
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1 Introduction

rials are artificially fabricated periodic micro- or nanostructures, as illustrated in Fig. 1.1,
that react resonantly to incident light. Due to their sub-wavelength building blocks, they
can form macroscopic electromagnetic properties that cannot be found in natural materials.
The design of their sub-wavelength components controls the effective material properties
such as permittivity and permeability in a way that allows refractive index and the inter-
action with light to be designed in new ways. The most popular examples of these novel
effects are superresolution imaging and negative refraction, with the most prominent appli-
cation being the electromagnetic camouflage cloak [5]. However, many applications of this
type are limited by high absorption losses and strong dispersion inherent to the resonant
behaviour. Moreover, the fabrication of micro- and nanoscopic three-dimensional structures
with existing techniques is particularly complex.

Figure 1.1: 3D photonic-metamaterial structures based on periodic metallic and dielectric
“meta-atoms”. Reprinted by permission from Springer Nature: Springer Nature, Nature
Photonics 5, 523-530, Ref.[6], Copyright (2011).

Currently, research is increasingly focusing on optical metasurfaces, as shown in Fig. 1.2.
Metasurfaces are ultra-thin structures whose thickness lies far below the wavelength of light,
which significantly minimizes optical losses. In contrast to three-dimensional metamateri-
als, they benefit from considerably simpler manufacturing processes based on established
semiconductor technology, such as lithography and nanoprinting. The planar structures are
of particular interest due to the prospect of integrating them directly into photonic micro-
and nano-chips. This opens up an enormous application potential [7].

Two other aspects justify the particular interest in two-dimensional metasurfaces: The
extremely thin layers use tiny resonators to directly control the phase of radiation and are
able to shape wave fronts as desired. A new generation of ultra-thin optical elements could
be created whose interaction with light is no longer based on the classical propagation of
light waves [8]. Another promise are materials that transmit light far below its wavelength.
Such waves with large wave vectors are usually characterized by evanescent fields and die
out quickly. However, hyperbolic metasurfaces are designed to support the propagation of
surface waves with extremely large wave vectors. This way, the diffraction limit of classi-
cal optics can be tricked and spatially compressed Surface Plasmon Polaritons (SPPs) may
be realized. This motivates potential applications in nanophotonics, such as planar nan-
otransceivers, pure optical communication, signal processing and high-resolution sensors and
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1.2 Metasurfaces and 2D materials

imaging [9].
SPPs are electromagnetic waves that can propagate at the interfaces between metallic

and dielectric media, e.g. gold and air. A quasi-particle is formed from the coupling of an
electromagnetic wave in the dielectric medium with a plasma wave in the metallic medium,
whose behaviour and expansion is determined by the properties of both media. The prospect
of using specially developed metasurfaces to exploit compressed and controllable surface
plasmons with exotic properties has led to a fusion of the research fields of metamaterials
and plasmonics into metaplasmonics in recent years [5, 10]. Research is driven by visionary
questions: Can we develop nanoscopic circuits based on light instead of electricity? Can
these nanocircuits be used as nanoradios in wireless applications? Is it possible to use
nanocircuits directly with biological units as optical nanosensors? [11, 12]

Figure 1.2: Scanning Electron Microscopy (SEM) images of metasurfaces. (a) Gold-nano
discs on polyurethane, (b) Nano-printed rod antennas, (c) V-antennas produced by electron
beam lithography, (d) Chiral metasurface (beam corresponds to 500 nm). Reprinted by
permission from Springer Nature: Springer Nature, Nature Photonics 8, 889-898, Ref.[13],
Copyright (2014).

SPPs are not limited to noble metal surfaces and metasurfaces. Another important
playing field for plasmonic effects are natural 2D materials like graphene, hexagonal Boron
Nitride (hBN) or Transition Metal Dichalcogenides (TMDCs). These naturally occurring
van-der-Waals crystals grow in weakly bound layers held together by intermolecular van-
der-Waals forces. The individual layers can be mechanically exfoliated from the bulk crystal
or directly grown in single or few layer form and thus offer themselves as surfaces that can
be perfectly smooth down to the atomic level. These interfaces are well-suited for studying
the coupling of light and matter, such as plasmons, electrons, excitons or phonons, in the
form of polaritons. In fact, the successful exfoliation of graphene was so ground-breaking
that it was awarded with the Noble Prize in Physics in 2010 [14]. Currently, TMDCs are
gaining traction as another promising 2D material due to their semiconducting properties,
direct band gap in the visible spectrum and strong spin-orbit coupling.

The combination of nanostructured surfaces and TMDC materials can be used to further
increase the coupling between light and matter. Metasurfaces and nanoparticles, both with
features on sub-wavelength scales, and photonic cavities with wavelength lengthscales are
used to facilitate coupling between light and plasmonic or excitonic phenomena. The fact
that most TMDC monolayers have a direct band gap in the visible frequency spectrum
allows the coupling of visible light with its excitonic resonance. The coupling becomes
apparent through absorption and re-emission of photons, showing visible photoluminescence.
The control of this coupling through the use of resonant cavities or nanoparticles can be
exploited to enhance the photoluminescence photon yield and even change the lifetime of
the excitation. [15]

Another application that may exploit the two-dimensional nature of semiconducting
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1 Introduction

TMDC crystals are Tunnel Field-Effect Transistors (TFETs). These are motivated by the
apparent quantum limitation of increasingly miniaturized conventional transistors. With
gate oxides reaching critical thicknesses of about 1 nm, electrons begin to leak by tunnelling
through. Tunnel transistors instead use the tunnelling of electrons as their working princi-
ple. The extremely thin semiconducting monolayers, multilayers and heterostructures serve
as well-controlled tunnel barriers. Switching the device is done electrically or optically
by modulating the probability of electrons to tunnel through this barrier. Obviously, the
nanoscale integration of transistors based on two-dimensional semiconductors feeds into the
domain of applying nanophotonic components to enhance microchip speeds and footprint.
[16, 17]

Again, the understanding and control of light-matter interaction is a cornerstone of this
development and tangles these seemingly frayed threads. The following section presents the
current state of research in the field of metasurfaces in the context of surface wave control
(i.e. metaplasmonics). Two-dimensional TMDC materials complement the discussion on
polaritonic interfaces and connect to further applications of TMDCs in the context of tunnel
devices. Lastly, the thesis branches off from nanoscopic light-matter coupling to non-linear
light-matter interaction in bulk silicon, where it will be shown how a single charge carrier
description is able to capture the valence band dynamics after excitation by intense terahertz
pulses surprisingly well.

1.3 Milestones and state of the art
In recent years, metasurfaces have become one of the fastest developing domains of modern
theoretical and applied research on electromagnetic effects [18]. For the development of the
first directive antennas in the radio frequency range, dense cable grids were investigated
as early as 1897 [19], which could be described as homogeneous effective media under the
assumption of large wavelengths. For optical frequencies, initial studies on metasurfaces be-
gan in 1970 with so-called nano-island films for sensor applications. Resonant nano-metallic
islands were used to increase the field of incident radiation. Still, the resulting anomalous
absorption of the incident light could be described by an effective complex permittivity as
for homogeneous materials [20].

Meanwhile, the central idea of transforming the phase front of an incident wave directly
via interaction with individual sub-wavelength elements has developed into active research
on “flat optics” [21]. Notable established metasurface-based ultra-thin optical elements
in the scope of flat optics are Vortex plates, half and quarter wave plates, flat lenses and
mirrors with anomalous reflection and refraction [22]. Ultra-thin smartphones, photography
and fibre-integrated flat lenses for biomedical imaging are just a few of the applications that
researchers are envisioning.

In contrast to research on metasurfaces for the direct manipulation of wave fronts, meta-
surfaces for the control of propagating near-field waves, such as surface plasmons, have only
recently begun to attract more interest [23–26], as illustrated in Fig. 1.3. In particular,
the investigation of extremely anisotropic metasurfaces, which permit surface waves with
hyperbolic dispersion, is predicted to have a bright future because of their potential for the
development of photonic chips [27]. For example, Liu et al. [22] theoretically showed how the
propagation of SPPs can be controlled selectively between normal and anomalous diffrac-
tion. High et al. [28] later demonstrated hyperbolic dispersion in the visible frequency range
on a silver nanostructure and confirmed the expected negative refraction and diffraction-free
propagation experimentally. A further experimental characterization of a hyperbolic meta-
surface by Samusev et al. [26] could experimentally demonstrate polarization-dependent
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Figure 1.3: Relevance of the topic ‘metasurface’ and ‘surface plasmon’ in the last ten years
measured by publications per year according to the citation database Web of Science Core
Collection as of 09/2021.

excitation of different hyperbolic surface modes on a metasurfaces made up of elliptical gold
discs. In both cases, far-field methods were used for characterization, specifically detec-
tion of the decoupled surface wave and Attenuated Total Reflection (ATR) spectroscopy,
respectively.

Direct observation and imaging (direct mapping) of SPP at short wavelengths is es-
pecially challenging for strongly confined surface waves with compressed wavelengths and
electrical fields that rapidly decay perpendicular to the surface. These properties demand
that the near-field is detected in the vicinity of the surface with sub-wavelength resolution.
A Scattering-Type Scanning Near-Field Optical Microscope (s-SNOM) is ideally suited for
these requirements and well established for the measurement of surface plasmons on isotropic
metallic films [29–31] and 2D materials [32–34]. With this optical near-field method, local
material properties and surface fields with spatial resolution down to nanometres can be
recorded. The method allows the direct observation of the electrical field amplitude and
phase of surface plasmons and thus direct characterization of wave vector, dispersion, di-
rectivity, propagation width, divergence, reflection and refraction.

In connection with metamaterials, first s-SNOM studies have recently been published.
For the terahertz frequency range, the directional control of surface plasmons on metasur-
faces was demonstrated [35]. In the mid-infrared region, s-SNOM measurements on chiral
metasurfaces helped clarify the origin of circular dichroism [36, 37]; moreover, SPPs on
three-dimensional metamaterials [38] and the near-field characterization of ultra-flat phase
controlling metasurfaces [39] were demonstrated. The visible and near-infrared spectral
range has received less attention, even though it is particularly relevant for telecommunica-
tions and data transmission and thus promises potential applications in metaphotonics [40].
Still, several publications show impressive findings, e.g. direct near-field measurements of
a plasmonic metal lens [41], the manipulation of surface waves by phased array structures
[42], the propagation of SPPs on anisotropic metasurfaces [43] and along a one-dimensional
photonic transmission lines at a telecom wavelength of 1550 nm [44].

The resurgence of research involving TMDC materials inspired even further studies in
the context of nanophotonics and polaritonics. Notably, the first experimental demonstra-
tion of photoluminescence in MoS2 monolayers in 2010 [45], which is exclusive to single
layer crystals [46], fuelled scientific curiosity. One approach taken was using hybrid systems
made of TMDC monolayer(s) on a gold interface, allowing coupling of the metal’s SPP
mode to an exciton resonance [47], leading to the emergence of exciton-plasmon-polaritons.
A notable demonstration of these hybrid polaritons by Zhang et al. [48] combines nanopat-
terned TMDCs and metallic films, effectively enhancing the interaction with light of these
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1 Introduction

polaritonic modes. Pushing the nanopatterning to smaller scales, one quickly reaches the
domain of TMDC metasurfaces, which can be exploited to efficiently access the strong light-
matter non-linear interaction present in TMDCs [49]. The integration of two-dimensional
layers with nanoresonators serves well to make use of the promising characteristics found
in TMDC materials: nanometer thickness, direct bandgap, strong spin-orbit coupling and
durable mechanical properties. From an application-driven perspective, there is a vast
potential for research focusing on (exciton) optoelectronics, (flexible) electronics, nanopho-
tonics [50], light generation, computing, sensing [48] and spin-valley physics [51, 52]. One
such milestone was the demonstration of the first (encapsulated) single-layer MoS2 transis-
tor in 2011 [53]. Moreover, by stacking of two-dimensional layers heterostructures emerge
that are destined for the application as vertical TFETs [17, 54, 55], suggested as candidates
for post-CMOS technology.

1.4 Outline of this thesis
This thesis is structured along seven chapters. The introduction is meant to offer a brief
overview across the driving forces behind a lot of research on nanophotonics on two-dimen-
sional material systems. The common thread of probing light-matter interaction at thin
material interfaces will be recognizable throughout the thesis. The second chapter details
the experimental setup that was built to conduct all nanoscopic experiments for this the-
sis. Furthermore, several intricacies and challenges of achieving sub-wavelength optical
(s-SNOM) and nano-electrical (c-AFM) measurements are covered. Through the following
four chapters, the contributions made by this thesis to investigating light-matter interac-
tion on the nanoscale from various perspectives are presented. Each chapter contains a
brief introduction, a theory section, measured data or simulation results and the analysis;
complemented by a concluding section.

Chapter 3 covers the direct observation of guided mode resonances on a metallic meta-
surface with a self-implemented s-SNOM. In Chapter 4, the s-SNOM technique is applied
to a TMDC monolayer in combination with a resonant microcavity to trace the origin of
enhanced photoluminescence. The setup is modified into a Conductive Atomic Force Micro-
scope (c-AFM) for Chapter 5, facilitating the measurement of quantum tunnelling currents
across microscopic terraces of vertical TMDC and graphene (hetero)stacks.

Chapter 6 contains a digression from the domain of nanophotonics. Instead, single-carrier
time-domain simulations are presented that accompany experiments on carrier dynamics and
terahertz higher harmonics generation in p-doped silicon. The common thread of probing
light-matter interaction offers a loose connection to the central theme. Additionally, a
certain conceptual resemblance will be apparent between the dynamic response of charge
carriers to an electromagnetic field constrained by the periodic crystal potential and the
electron gas description governing surface plasmonics.

Chapter 7 concludes the thesis by drawing together the different results.
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Chapter 2

Experimental setup

2.1 Diffraction limit and beyond
In classcial microscopy, the minimum resolution ∆r of an optical system cannot significantly
surpass the wavelength λ used for imaging. This relationship is known as the diffraction
limit and expressed by the Rayleight criterion

∆r = 1.22λ
sin θmax

(2.1)

where θmax is the maximum angle of the cone of light that enters the lens.
This dependence on wavelength and angle can be understood in the angular spectrum

representation. An electric field distribution is expressed as a superposition of plane waves
propagating at different angles and amplitudes. Each plane wave has a total momentum
of k = 2π

λ
. However, their projection ki parallel and perpendicular to the direction of

propagation depends on the angle θi. A plane wave propagating at angle θi can be expressed
within these directions via

E⃗(k⃗, r⃗) = E⃗0(ei(kxx+kyy)eikzz) (2.2a)
k =

√
k2
x + k2

y + k2
z ≡

√
k2

∥ + k2
⊥ (2.2b)

Diffraction occurs due to the finite aperture of the optical system. Fig. 2.1 illustrates
the diffraction of the electric field passing through a subwavelength aperture. The near-field
region, within which the object can still be resolved, is lost after less than a distance of λ.
[56, p. 38ff]

The electric field of subwavelength objects diffracts in an analogous way and more dras-
tically with decreasing feature size. Plane waves propagating at a large angle θi have higher
lateral momenta k∥ and contain the finer image features of a sample. Hence, resolution is
lost when these plane waves traveling at large θi are cut off by a finite aperture in the far
field. An imaging system with a large angular resolution collects plane waves with large
lateral momenta k∥. Large apertures are necessary to collect the high wavevector compo-
nents necessary to image very small objects. Moreover, k∥ has an upper limit expressed
in equation 2.2b, which is defined by its wavelength via k = 2π

λ
, namely the fundamental

resolution limit for far-field microscopy.
To surpass the fundamental resolution limit for far-field microscopy, one can exploit the

near-field of the optical field that is characterized by evanescent waves. In fact, the “use
of evanescent waves is the key to optics on the nanometer scale” [58, p.7]. Propagating
waves are defined by real wavevectors ki; on the other hand, evanescent waves are defined
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2 Experimental setup

Figure 2.1: Fraunhofer diffraction for a subwavelength rectangular aperture of length λ/2
based on [57, p. 63].

by complex wavevector components kz. Physically, these waves therefore quickly decay
perpendicular to the surface. Eq. 2.3 shows that for complex values of kz the wave decays
quickly for large values of |kz|

ei(kzx+kyy)eikzz = ei(kxx+kyy)e−|kz |z (2.3)

The consequence is that evanescent waves do not propagate into the far-field. The
detection has to be performed in the vicinity of the surface. The advantage of measuring
evanescent waves is that the use of complex kz alleviates the limit on k∥ imposed by equation
2.2b. Measuring closer to the surface lets one detect the field before it decays, hence more
evanescent waves can be collected and a better resolution is achieved. The imaging resolution
depends on the efficient detection of evanescent waves.

Experimentally, there are various approaches for detecting evanescent fields and facili-
tating near-field imaging: placing a detector close to the sample [59], using an Aperture-
Type Scanning Near-Field Optical Microscope (a-SNOM), Tip-Enhanced Raman Spec-
troscopy (TERS), Tip-Enhanced Photoluminescence (TEPL) [58] or s-SNOM. The latter
lies at the heart of this thesis and shall be presented further in this chapter.

2.2 Atomic force microscopy
The Atomic Force Microscope (AFM) serves as the foundation for the nanoscopic measure-
ment techniques employed for this thesis: s-SNOM and c-AFM. It was invented in 1982 as
a scanning probe microscope that uses a sharp tip to mechanically record the topography
of a sample surface. [60] The measurement is based on the detection of miniscule forces
between the sample and the probing tip. These tiny forces are resolved by monitoring a
spring-like cantilever which is mechanically bent or whose vibration resonance frequency is
shifted. The imaging resolution depends on the radius of the probing tip’s apex. Nowadays,
AFM resolution can reach down to atomic scales, imaging of atoms in molecules and even
electron orbitals has been demonstrated [61].

2.2.1 Modes of operation
AFM is operated in three main sensing mechanisms: contact mode, tapping mode and non-
contact mode. The forces between tip and sample change with distance and are governed
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2.2 Atomic force microscopy

by Pauli exclusion repulsion and van-der-Waals attraction. For an uncharged interaction,
the forces are described by the Lennard-Jones-Potential. The three AFM modes work in
different regimes of this potential, that are characterized by repulsive (green) or attractive
(purple) forces as illustrated in Fig. 2.2, respectively. [62]
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(c) z0 = 0.6 nm

Figure 2.2: Potential and Force of Lennard-Jones, Cantilever and total interaction for an
AFM tip with three different relaxed tip-sample distances z0. The dots mark the local
minima of the total potential and thus the deflection of the flexed cantilever. Situations
with multiple minima are subject to hysteresis (see Sect. 2.2.3). The shaded regions highlight
the repulsive (green) and attractive (violet) force regimes associated with contact mode and
non-contact mode respectively.

In contact mode, the distance is kept exclusively in the repulsive force regime and tip
and sample are in direct contact. During a scan, the contact force is kept constant by
controlling the sample height. This is achieved by monitoring the bending of the cantilever,
typically via recording the position of a laser beam that is reflected off the cantilever’s top
surface.

In tapping mode, the cantilever is moved slightly away from the sample and oscillates
at or close to its resonance frequency. The tip moves between the repulsive and attractive
force regime and shortly taps the sample on each period. To keep the average force between
tip and sample constant during a scan, the amplitude or phase of the cantilever oscillation
is monitored optically by a deflected laser beam or piezo-electrically with a tuning fork.

In non-contact mode, tip and sample do not touch. The tip oscillates near its resonance
frequency above the sample and stays in the attractive regime. The system is very sensitive
to changes in the distance between tip and sample since slight changes in the attractive force
affect the resonance frequency of the cantilever and are directly visible through a change in
oscillation amplitude and phase.

2.2.2 Non-contact feedback

Keeping the tip-sample distance constant without being in contact thus requires a well-
controlled feedback mechanism. The way in which mechanical amplitude and phase are
affected by a changing distance is dependent on the force regime. The cantilever motion z
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2 Experimental setup

can be described by a 1-dimensional point mass m attached to the cantilever spring by [63]

mz̈ + kz + mω0

Q
ż = FLJ + F0 cos (ωt) (2.4)

where F0 and ω describe amplitude and frequency of the piezoelectric actuator. ω0 and Q
are resonance frequency and quality factor of the cantilever spring. FLJ is the Lennard-Jones
force. We can linearise the FLJ over the tip oscillation around its equilibrium z′

0, as can be
seen from Fig. 2.2. Then FLJ can be expanded as

FLJ = FLJ(z′
0) + dFLJ

dz

∣∣∣∣
z′

0

(z − z′
0) + ... (2.5)

With these two Eqs. 2.4 and 2.5 an effective spring constant ke and modified resonance
frequency ω′ can be obtained as

ke = k − dFLJ

dz

∣∣∣∣
z′

0

(2.6a)

ω′ =
√
ke
m

=

√
k − dFLJ

dz
|z′

0

m
(2.6b)

The gradient of the Lennard-Jones-Force in the non-contact regime (purple shaded) is
positive (dFLJ

dz
> 0), hence the resonance frequency ω′ is reduced. A decrease in tip-sample

distance z is observable as a further reduced resonance frequency ω′. For a set-point slightly
above resonance, a reduction in distance thus shifts the resonance frequency away from the
driven cantilever - a drop of the oscillation amplitude follows. [64, 65]

2.2.3 Force-distance curves and hysteresis
Typical force-distance curves for contact-mode AFM measurements with the setup used
for this thesis are shown in Figs. 2.7 and 2.8 of Sect. 2.4.1. The graphs plot tip-sample
interaction force over tip-sample distance. Upon approach, the cantilever is slightly bent
down by the attractive forces before reaching the repulsive regime where it is bent upwards
by the sample. A strong hysteresis occurs upon retract, since the position of the tip is given
by the contribution of two potential: cantilever potential Vc and Lennard-Jones potential
VLJ. The sum of both is the effective potential. The cantilever will bend to remain in the
local effective potential minimum while the relaxed tip-sample distance z0 is swept. Fig. 2.2
highlights the local potential minima as dots. For certain intermediate distances, see Fig.
2.2b, multiple minima can exist. This causes a hysteresis that depends on approach/retract
direction and creates a characteristic jump-off point, when the cantilever’s current local
potential minimum is resolved. [63]

The cantilever potential according to Hooke’s law is

Vc(D) = k

2(z − z0)2 (2.7)

where z is the real tip-sampe distance and z0 the average tip-sample distance. Lennard-Jones
potential is given by

VLJ = 4ϵ
(

(σ
z

)12 − (σ
z

)6
)

(2.8)

where values for adhesion work ϵ = 650kB and minimum separation σ = 0.34 nm [66], and
k = 0.2 N/m have been used to create Fig. 2.2.
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2.3 s-SNOM

For contact-mode AFM measurements it is important to calibrate an appropriate con-
tact force prior to the measurement. This is done using a force-distance measurement and
the cantilever spring constant, which is obtained from the manufacturer or calibration tech-
niques, e.g. thermal tune method [67, 68]. A softer cantilever makes it easier to carefully
control the contact force, while a stiff cantilever leads to lower force resolution. Moreover, a
soft cantilever is necessary to keep the tip approached at low contact force without risking
loss of contact. Common contact forces for contact-mode AFM vary between 50 nN and
500 nN [69]. Typically, soft cantilevers are not suitable for dynamic AFM operation due to
their low resonance frequencies (ω0 <20 kHz).

2.3 s-SNOM
The capability of AFM to keep a constant distance of several nanometers between a sample
and a sharp probing tip provides a basis for optical measurements in the vicinity of the sur-
face with nanoscopic resolution. In classical microscopy, the resolution of an image is limited
by the wavelength of the light. Reaching beyond the diffraction limit of classical microscopy
was proposed for the first time by Synge in 1928 [56], but could only be experimentally
realized, firstly at a wavelength of 3 cm, in 1972 [70]. The first experimental proof at optical
frequencies that the resolution limit is in fact penetrable was demonstrated in 1984 [71, 72].
The idea is based on the detection of quickly decaying evanescent components of the electric
field that are confined to the surface. By scanning a detector, small aperture or scatterer
in the vicinity of the surface, the evanescent fields can be detected or transferred to the
far-field. Contrary to far-field radiation, evanescent waves contain highly-resolved detailed
information on the sample surface far below their wavelength.

The transition from near-field to far-field region is determined by the wavelength λ and
aperture or targeted resolution ∆r, known as the Fraunhofer distance L

L = 2(∆r)2

λ
(2.9)

For the situation depicted in Fig. 2.1, with an object of size λ
2 , the Fraunhofer distance is

L = λ
2 . For a typical tip size of 30 nm and λ = 850 nm, this evaluates to a tip-sample distance

of below 3 nm. Consequently, near-field imaging at visible or near-infrared wavelengths has
to be performed in close vicinity of the sample.

In s-SNOM, this is achieved by letting a sharp tip oscillate just above the surface (a
setup identical to an AFM). Additionally, a laser beam is focussed onto the tip’s apex,
which functions as an optical probing antenna for both coupling and scattering of light.
The tip is polarized by the electromagnetic field and the scattered light’s magnitude and
phase is affected by the interaction with the sample’s dielectric constant.

The interaction can be modelled by two polarizable spheres that are affected by plane
wave illumination. The origin of the contrast based on this approximation is detailed in
Sect. 2.3.1. Moreover, using a more thorough treatment, the description can be extended to
increasing levels of detail by including the geometry of the tip, the geometry of the sample
(half space), reflections of the surface and beam parameters. [73, 74]

In short, the probe tip acts as a sub-wavelength scatterer for the near-field. It converts
evanescent waves into propagating waves that can be detected in the far field. The intimate
relationship between scattering dipole and scattering cross-section allows for an imaging
resolution of the surface dielectric constant based on the tip size rather than wavelength.
[58]
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Figure 2.3: Light is focussed onto the AFM tip (red arrow). The strong field enhancement
between tip apex and sample surface is modulated by the oscillation of the cantilever with
frequency Ω. As a result, the scattered near-field (blue arrow=) carrier this (non-linear)
modulation into the far-field, where it is detected.

2.3.1 Near-field signal generation
A common and easily accessible approach to model the tip-sample interaction and approxi-
mate the scattered magnitude and phase is the point-dipole model. The model assumes the
tip to be a sphere with a point-dipole located at its center which induces a mirror dipole
inside the sample. [75] For quantitative calculations an extended dipole model is often ap-
plied, which does a better job at avoiding underestimation of the tip’s field enhacement. In
this case, the tip is modelled as an elongated ellipsoid and the tip length enters the equa-
tion. [73] Several publications have introduced more advanced treatments of the tip-sample
interaction [74, 76–80], including the effect of anisotropic samples [81, 82]. Though more
exact, these models usually demand the introduction of several tunable geometric or empir-
ical parameters, which ultimately requires fitting multiple parameters and complicates their
predictive value [83].

In the following, the theory will cover the simple point-dipole model as it offers interesting
qualitative insight into the signal origin that is sufficient for the analysis given in Chapter 3.
Moreover, the approach of modelling the excitation of a polarizable sphere can be adapted to
a dielectric sphere, which was used in Chapter 3 to excite surface waves on a metasurface.
Yet another neat parallel is drawn in Sect. 3.2.2, where the derivation of the effective
refractive index of a metasurface is based on the polarizability of subwavelength scatterers.

Within the point-dipole model the shape of the scanning probe is modelled as a small
sphere with radius a ≪ λ, as suggested in Fig. 2.4. As the object is so small, we may apply
the quasi-static approximation to Maxwell’s equations. The spherical tip forms a dipole
moment p⃗ as it is polarized by the incoming field E⃗0

p⃗ = αE⃗0 (2.10)

The polarizability α depends on the permittivities ϵi of tip and surrounding medium
(air) and is given by [84]

α = 4πϵ0a
3
(
ϵtip − ϵair

ϵtip + 2ϵair

)
(2.11)
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2.3 s-SNOM

Now, we use the electrostatic potential of a point dipole at distance r⃗ [84]

V (r⃗) = 1
4πϵ0

r⃗ · p⃗
r3 (2.12)

to calculate the electric field E⃗ generated by the tip

E⃗ = −∇⃗V (2.13a)

= − 1
4πϵ0

(
p⃗

r3 ∇⃗r⃗ + r⃗ · p⃗ ∇⃗r−3
)

(2.13b)

=
− 1

4πϵ0 p⃗
(

1
r3 − 3r2

r5

)
= 1

2πϵ0
p⃗
r3 if r⃗ ∥ p⃗

− 1
4πϵ0 p⃗

(
1
r3

)
= −1

4πϵ0
p⃗
r3 if r⃗ ⊥ p⃗

(2.13c)

Since the vector r⃗ connects tip and mirror dipole, i.e. normal to the surface, the result
depends on the polarization (s or p) of the incoming electric field relative to the surface.

The tip’s dipole moment induces a mirror dipole p′ in the sample given by the response
of the surface.

p⃗ ′ = ±ϵ2 − 1
ϵ2 + 1 p⃗ ≡ ±βp⃗ (2.14)

This induced dipole p⃗ ′ in turn is associated with a field E⃗ ′ according to Eq. 2.13c.
To obtain the effective dipole of the coupled system induced by both the incoming light

E⃗0 and the mirror dipole E⃗ ′, the contributions are added. For light polarized parallel to the
tip, by applying Eq. 2.14 and substituting the distance between the dipole and its mirror
image r = 2(a+ z), one obtains

p⃗ = α(E⃗0 + E⃗ ′) = α

(
E⃗0 + p⃗ ′

2πϵ0r3

)
(2.15a)

= α

1 − αβ
2πϵ0r3

E⃗0 (2.15b)

= α

1 − αβ
16πϵ0(a+z)3

E⃗0 = αeff,∥E⃗0 (2.15c)

The result for light polarized perpendicular to the tip shaft is analogous. In this case,
the dipole moments are oriented opposite to each other and the total scattering cross-section
will be decreased to

p⃗⊥ = α

1 − αβ
32πϵ0(a+z)3

E⃗0 = αeff,⊥E⃗0 (2.16)

Naturally, parallel polarization is most common in s-SNOM experiments and Eq. 2.15c is
mostly stated as the point-dipole model.

A simple extension can be used to further improve the model by including light E⃗s,r
that is scattered by the tip towards the sample and then reaches the detector by specular
reflection. Furthermore, the tip is excited additionally by incoming light that is first reflected
off the surface and then reaches the tip. Both contributions are affected by the reflectivity of
the sample. Phase delays are neglected due to the short optical paths relative to wavelength.
The situation is depicted in Fig. 2.4. The additional electric fields are given by [85]

E⃗0,r = r∥E⃗0 (2.17a)
E⃗s,r = r∥E⃗s (2.17b)
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Figure 2.4: Incoming light E⃗0 and scattered light E⃗s are the dominant waves. However,
additional components reach the tip, E⃗0,r, and the detector E⃗s,r via reflection off the sample.
These contributions are added to obtain the total near-field signal E⃗nf.

The Fresnel coefficient r∥ for non-magnetic media is given by

r∥ = n1 cos(θ2) − n2 cos(θ1)
n1 cos(θ2) + n2 cos(θ1)

(2.18)

where the refractive indices ni and angles θi are connected via Snell’s law

n1

n2
= sin(θ2)

sin(θ1)
(2.19)

The tip-scattered field E⃗s is thus composed of two components

E⃗s = αeff,∥(E⃗0 + E⃗0,r) = αeff(1 + r∥)E⃗0 (2.20)

Finally, the field that reaches the detector is given by the sum of

E⃗nf = E⃗s + E⃗s,r = (1 + r∥)E⃗s

= αeff,∥(1 + r∥)2E⃗0 (2.21)

Thus, the scattered light is proportional to the incoming light, with σ = αeff,∥(1 + r∥)2

being the scattering cross-section. This complex signal is measured in an s-SNOM exper-
iment. Based of the model, one can determine the surface permittiviy from the acquired
magnitude and phase of the scattered electric field.

It is noted in passing that while assuming negligible phase delays for reflection off tip
and sample mostly improves agreement between data and model, it is not generally fulfilled.
As reported by Walla et al. [Wal7], specular reflection of incoming radiation can result in
the generation of SPPs on the sample surface with a non-negligible phase shift for certain
(non-rotationally-symmetric) tip and sample geometries.
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2.3 s-SNOM

2.3.2 Pseudo-heterodyne detection

The focal spot size of the laser beam far exceeds the s-SNOM tip’s size, due to the fun-
damental diffraction limit. The light that is scattered from the focal region thus contains
near-field signal components and a considerable contribution of light that is scattered or
reflected from the sample, top of the cantilever or the tip shaft. This leads to the central
challenge in s-SNOM: the separation of the true near-field signal from these background
components.

The background suppression is based on the modulation of the near-field component
through harmonic modulation Ω of the tip-sample distance, i.e. oscillating the probing
tip. The near-field term is strongly distance-dependent over length scales comparable to
the tip size a ≪ λ, see Eq. 2.15c. Harmonic modulation of the distance z thus generates
higher harmonics at nΩ. In contrast, the background-scattered light changes on scales
of λ and is thus barely, and at most linearly, affected by the tip modulation. Different
background-suppression schemes exist with varying complexity and effectiveness. These are
non-interferometric (intensity), homodyne, heterodyne and pseudo-heterodyne detection.
[86]

Non-interferometric and homodyne detection allow suppression of directly detected back-
ground-scattering (additive background) through lock-in amplification at a higher harmonic
nΩ . However, these methods cannot remove the effect of interference between near-field
and background components (multiplicative background). On the other hand, heterodyne
and pseudo-heterodyne detection make use of a frequency-shifted reference beam and theo-
retically allow the complete removal of background-scattered interference. At infrared and
visible frequencies, pseudo-heterodyne detection is the more practical implementation of the
two. It is therefore used in this work.

In pseudo-heterodyne detection, the s-SNOM signal Enf is interfered with a sinusoidally
phase modulated reference wave ER at frequency M < Ω

ER = ER,0e
i(ωt+γ sin(Mt)+ψR) (2.22)

where γ, M and ψR are the phase-modulation depth, frequency and phase offset, respectively.
Phase-modulating the reference beam generates a frequency comb with equally spaced fre-
quency components ω ±mM , phase shift of π

2 between neighbouring lines, and amplitudes
ER,0Jm(γ), where Jm denotes the mth order Bessel function of the first kind.

The interference of the tip-scattered light Enf, with frequency components ω ± nΩ
at the higher harmonics of the cantilever oscillation, and the reference wave ER creates
sidebands with frequencies fn,m = nΩ ± mM . This is depticted in Fig. 2.5. All doubly-
modulated sidebands with n,m ̸= 0 are now free of additive and multiplicative background
contributions. Their amplitudes un,m are [87]

un,m = 2κER,0Jm(γ)Escat,n cos(ϕscat,n − ψR −m
π

2 ) (2.23)

where the detector sensitivity κ is introduced. The Bessel weighted functions of the first
kind Jm(γ)Escat,n are given in Fig. 2.5 for reference with a modulation depth γ = 2.63.

One can now use the first two sidebands m = 1 and m = 2 surrounding each harmonic
nΩ. Their amplitude can be tuned to be equal by choosing an appropriate phase-modulation
depth of γ = 2.63, yielding J1(γ) = J2(γ). Moreover, the phase relationship between
neighbouring lines can be used to yield the near-field amplitude and phase by combining
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Figure 2.5: Power spectrum as expected at the detector output after pseudo-heterodyne
detection. Equally spaced sidebands mM surround the harmonics nΩ of the cantilever
modulation. Dashed lines highlight the amplitude distribution according to the Bessel
function of first kind. Here a modulation depth of γ = 2.63 has been chosen, which leads
to equal amplitudes for the first and second sidebands.

the signals given by Eq. 2.23√
u2
n,1 + u2

n,2 = 2κER,0J1,2(2.63)Escat,n ∝Escat,n (2.24a)

arctan
(
un,1
un,2

)
= arctan

(
sin(ϕscat,n − ψR)
cos(ϕscat,n − ψR)

)
=ϕscat,n − ψR (2.24b)

2.3.3 Description of setup
The experimental setup of the s-SNOM for taking near-field measurements is presented in
the following. Fig. 2.6 shows a schematic of the layout set-up for this thesis.

The top-central square block contains the AFM setup. The probe tip and cantilever
are attached to a holder that uses a piezoelectric actuator to vibrate the tip at frequency
Ω. The vibration amplitude is controlled by observing the position of a laser beam that
is deflected off the cantilever top surface on a position sensitive diode (PSD, not shown).
Based on this feedback signal, the sample is kept at a constant distance to the tip using a
piezoelectric tripod powered by a three channel high voltage amplifier (V45BL, Anfatec).
The sample, depicted as a periodic gold metasurface, is scanned underneath the tip using
a two-axes translation stage (P-517.3CL, Physik Instrumente) with a closed-loop range of
100 × 100 µm2.

The optical laser light used for performing s-SNOM measurements can be supplied by
different laser sources: Toptica DL100 DFB (λ = 855 nm), Sacher Cheetah TEC 50 (λ =
784 nm) or Spectra Physics Excelsior (λ = 532 nm).

The light is fed through a single-mode fibre (P3-780A-FC-2, Thorlabs) and Transversal
Magnetic (TM)-polarized by a λ/2-plate before entering the interferometer. The first beam-
splitter (BS1) splits the light into signal (transmission) and reference (reflection) beam.

The signal beam is reflected by a mirror, transmitted through the second beam-splitter
(BS2) and reaches the parabolic mirror (top of figure). The parabolic mirror has a focal
length of 10 mm; it can be aligned by a three-axes closed-loop piezo stage (NanoCube,
Physik Instrumente) with a range of (100 µm)3. The light is focussed onto the tip apex,
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Figure 2.6: Experimental s-SNOM setup for pseudo-heterodyne detection. The laser beam
transmits the beamsplitters (BS1, BS2) and is focussed onto the oscillating (Ω) AFM tip
apex. The scattered light is collected by the parabolic mirror and reflected by BS2 onto the
detector. It interferes with the reference light which is phase-modulated by being reflected
off the modulated mirror M.

as explained in Sect. 2.3.1. The scattered light is collimated by the parabolic mirror and
reflected at beam-splitter BS2.

At the detector (DET100A, Thorlabs), the signal is heterodyned with the reference
beam, which was split off at beam-splitter BS1. It is reflected off the oscillating mirror (M
≈ 800 Hz, A ≈ 250 nm), which is responsible for the phase modulation of the wave explained
in Sect. 2.3.2. Both beams impinge on the power-law detector (PD) and the characteristic
pseudo-heterodyne beating can be analysed by the lock-in amplifier (not shown).

2.4 Conductive-AFM
Another mode of operation based on the AFM is the Conductive Atomic Force Microscope
(c-AFM). Specifically, c-AFM delivers high-resolution current maps and local (nanoscale)
Current-Voltage (I-V) characterization. These capabilities have proven useful for the eval-
uation of nanoscale electrical properties of ultrathin gate dielectrics and integrated circuit
failure analysis [88]. Moreover, it is the method of choice for investigating current injection
into 2D materials [89], lateral conductivity of graphene and TMDCs [90, 91] and vertical
(transversal) current flow across dielectric thin films, 2D insulators [92] and van-der-Waals
semiconductors [93].

c-AFM operates in contact mode, i.e. in the repulsive force regime, and uses a metallic
probe tip which scans the sample surface. c-AFM measures the topography like AFM,
with the feedback based on the tip-sample van-der-Waals forces, and thus independently
of the current flow. This is in contrast to Scanning Tunneling Microscopy (STM), where
the distance control is based on measuring the tunnel current flow. Consequently, c-AFM
application is not limited to conducting samples. The system simultaneously measures the
topography of the sample and the current flow. Metallic tip and the substrate each act as an
electrode between which a DC bias is applied. The current varies with the conductivity of
the sample. Usually, a transimpedance amplifier is necessary to amplify the small currents.

For the system presented here, a low noise current amplifier (DLPCA-100, Femto) with
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variable low noise gain between 103 - 109 V/A and high speed gain up to 1011 was used. Its
most important specifications are presented in Table 2.1.

Gain setting (low noise) (V/A) 106 107 108 109

Upper cut-off frequency -3 dB 200 kHz 50 kHz 7 kHz 1.1 kHz
Current noise density (/

√
Hz) 130 fA 43 fA 13 fA 4.3 fA

measured at 1 kHz 1 kHz 100 Hz 100 Hz
Integr. noise current (rms) 130 pA 41 pA 5.8 pA 0.8 pA
Max. input current (±) 10 µA 1 µA 0.1 µA 10 nA

Table 2.1: Selected performance data of DLPCA-100 depending on Gain setting [94].

For an I-V measurement, the probing tip is kept in contact with the sample at a fixed
position while the DC voltage is swept and the current is recorded. Analysing local I-V
characteristics is especially interesting on semiconducting samples, including semiconducting
2D van-der-Waals materials, that may only have very limited lateral dimensions altogether.
In particular, mechanically exfoliated TMDC flakes often appear in the form of terraced
layers, and individual layers slightly protrude from underneath each other. Accessing these
features at the nano- to microscale requires a high-resolution. A more detailed treatment of
this topic follows in Chapter 5.

2.4.1 Tip choice
Another experimental key topic is the choice of an appropriate probing tip. c-AFM tips
commonly suffer from considerable mechanical wear. Firstly, this is due to friction from
operating in contact mode and secondly, due to current flow and heating effects. A good
overview covering common issues associated with different tips related to coating material,
contact force and current is presented by Krause [95].

Table 2.2 summarizes the cantilevers that were tested for the c-AFM measurements pre-
sented in Chapter 5. The first choice, a Silicon tip with 23 nm PtIr coating with low force
constant, was tested for scanning. Metal-coated tips usually have small tip radii and offer
excellent conductivity. However, they suffer from mechanical wear and their conductivity
quickly degrades. Even though PtIr5 is about twice as hard as pure platinum, the exper-
iments confirmed that these cantilevers became unreliable and eventually non-conductive
after several scans. The scans were performed with typical contact forces between 25 -
500 nN. With a DC bias of 20 mV, electrical contact between tip and gold sample could be
established with minimum forces ranging from 50 - 150 nN.

Cantilever Tip material Tip radius k fres
Arrow-ContPt10 coated PtIr5 < 25 nm 0.2 N/m 14 kHz
RMN-25PT300B solid Pt < 20 nm 18 N/m 20 kHz
RMN-12PT400B solid Pt < 20 nm 0.3 N/m 4.5 kHz

Table 2.2: Parameters of three different cantilever types that were tested within this work.

An alternative are fully metallic tips, which are more expensive than metal-coated tips.
The second cantilever is such a solid platinum tip with high force constant. As stated
above, pure platinum is softer than its alloy. However, even though a fully metallic tip may
lose resolution upon degradation, it retains its electrical conductivity. In fact, the effective
contact area may even increase with increasing tip wear leading to higher current flow.
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2.4 Conductive-AFM

Figure 2.7 shows a typical approach curve of deflection (measured as voltage difference,
T-B, between top and bottom half of the PSD) and current flow at DC bias of 20 mV
over distance d for cantilever RMN-25PT300B. The hysteresis due to the adhesion force
upon retract is apparent. Another aspect to note is the deflection of Vcontact = 0.7 mV
upon current onset during approach. Assuming a linear relationship between deflection and
distance during contact, one can perform the calibration

force
deflection = k

deflection
distance

= 18 N/m
231 mV

µm
= 77 nN/mV (2.25)

and obtain the minimum contact force Fcontact = 54 nN. The deflection prior to approach
has a standard deviation noise of 0.4 mV or ±30 nN, which is very large and creates a
disadvantage due to the high spring constant that is hardly suitable for contact-mode AFM
measurements.
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Figure 2.7: Approach curve for cantilever RMN-25PT300B showing deflection and current at
bias of 20 mV over tip-sample distance. The measurement allows the calibration of the PSD
Deflection Voltage and the contact force. The insufficient force resolution for a cantilever
with high spring constant is apparent.

The third cantilever, with a solid platinum tip and low spring constant, is an adequate
choice for c-AFM as it does not degrade quickly and offers well-controlled contact force
setting. The platinum tip offers good conductivity and resolution. Fig. 2.8 shows the
approach curve of the cantilever, which allows the calibration

force
deflection = 0.3N/m

295mV
µm

= 1 nN/mV (2.26)

The softer cantilever thus provides a much lower force noise of ±0.4 nN.
Typical DC bias voltages range between ±3 V. The associated currents range from 10 pA

to 10 nA when measuring on TMDC van-der-Waals flakes, but can occasionally exceed 10 µA
when the tip is short-circuited on the metallic substrate or a metal contact. These currents
can lead to extremely high current densities considering the small tip-sample contact area
in the range of 10−3 to 10−2 µm2. Severe heating, tip degradation, melting and even fusing
of the tip apex can occur [95]. High current densities can also damage the sample, an effect
that is further discussed in Chapter 5.
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2 Experimental setup

Figure 2.8: Approach curve for cantilever RMN-12PT400B showing deflection over tip-
sample distance for a soft spring constant.

2.4.2 Effective contact area
Determining the electrical contact area is critical when analysing the current density across
the tip. Furthermore, it is a crucial parameter in the calculation of (tunnel) current densities
from the measurement of current flow. However, the electrical contact is not simply equal
to the physical probe tip apex area, but scales as a function of contact force and tip radius.
In fact, the effective electrical contact area is considerably smaller than πR2

tip would let one
assume due to the paraboloidal shape of the tip [96]. A common approach is to model the
contact area between a deformable sphere (the platinum tip) and the deformable sample
surface (e.g. WS2) [97]. The effective electrical contact area between tip and sample is then
given by

Aeff = πr2
c = π

(
K−1FtsRtip

) 2
3 (2.27)

where Fts is the tip-sample force, Rtip is the tip radius and K is the reduced elastic modulus
of the tip sample system [98]:

1
K

= 3
4

(
1 − ν2

tip

Etip
+

1 − ν2
sample

Esample

)
(2.28)

with Young’s moduli Ei and Poisson’s ratio νi of tip and sample, as exemplified in Table
2.3.

Material Ei,2D Ei,3D νi
WS2 142 Nm−1 237 GPa 0.21
WSe2 114 Nm−1 163 GPa 0.19

Graphene 339 Nm−1 1000 GPa 0.18
Platinum - 140 GPa 0.39

Gold - 70 GPa 0.42

Table 2.3: Young’s moduli and Poisson ratios for different materials. [99–101]

The 2D Young’s modulus is suitable to characterize 2D materials. For a viable compar-
ison to 3D materials, the parameter can be converted by dividing through the thickness of
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2.4 Conductive-AFM

Figure 2.9: Calculated effective tip radius depending on contact force for a platinum tip,
considering three different radii, on WS2 sample.

the 2D material (e.g. 6 Å for WS2 monolayer) [102]. For a platinum tip with Rtip = 25 nm
on WS2, using a contact force of 150 nN, this results in an effective contact area of 29 nm2

or an effective tip radius of only 3 nm. An effective tip radius exceeding 10 nm can hardly
be achieved even with higher contact force, as illustrated in Fig. 2.9.

21



22



Chapter 3

Guided mode resonances on
metasurfaces

3.1 Introduction
Surface Plasmon Polaritons (SPPs) propagate on two-dimensional interfaces between metal-
lic and dielectric half-spaces. Apart from a simple metallic half-space, a thin metallic layer
also supports the propagation of SPPs. In this case, two interfaces above and below the
metal exist. The situation is depicted in Fig. 3.2. Furthermore, if the metallic layer is cho-
sen to be very thin, the SPPs feel each other - each mode is affected by the two interfaces
simultaneously. This is the case when the boundary conditions for the evanescent tails into
the metal cannot be considered independently, or if the evanescent electric fields reach the
opposite side of the metal film. Then, the modes experience strong coupling and splitting of
respective energies and wavevectors is observed [103]. The critical thickness for coupling of
opposite interface modes is the penetration depth. It thus depends on material, its structure
and the wavelength of the surface waves.

For symmetric dielectric environments on either side of the metal layer, the resulting
modes can be labelled as Short-Range and Long-Range Surface Plasmon Polariton (LRSPP).
The latter is characterized by significantly lower attenuation and weaker confinement com-
pared to SPPs at a half-space interface, making it interesting for applications [104–106]. On
the other hand, in material systems with asymmetric dielectric environments around the
metallic layer, i.e. with different refractive indices, the two individual modes also interact.
However, their coupling cannot always be classified as strictly into short- and long-range
modes due to a phase mismatch of the modes at the interfaces. In this case, LRSPP are
affected by additional damping and applications may be initially limited [107].

Under certain conditions, however, these asymmetric structures support so-called guided-
mode resonances. This type of mode is characterized by a full vertical confinement on one
of the two interfaces, specifically towards the dielectric with low refractive index. However,
coupling across the metallic layer leads to radiative losses into the high-index dielectric. This
characteristic is observable as leakage into the dielectric cladding or high-index substrate.
Guided-mode resonances have found applications in the literature as tunable band-pass
filters or sensitive phase detectors [22, 23, 25–27, 108, 109]. The phenomenon appears
with different nomenclature that is used interchangeably such as leaky-mode resonances,
quasi-guided modes or leaky surface plasmon-polaritons.

Most of the results presented in this chapter were published in condensed form by Walla
et al. as “Near-Field Observation of Guided-Mode Resonances on a Metasurface via Dielec-
tric Nanosphere Excitation” [Wal6] and were presented at METANANO 2018 - International
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3 Guided mode resonances on metasurfaces

Conference on Metamaterials and Nanophotonics [Wal15].

3.2 Theory

3.2.1 Drude formalism
It is truism to state that SPPs only exist at interfaces between metallic and dielectric media.
These categories, however, are not absolute as they appear and should be understood as
a descriptive statement of the material response to electromagnetic radiation at a given
frequency. This property is expressed by the (dispersive) permittivity ϵ of a material. Being
a complex quantity, it reflects both the strength of the polarisation and the phase of the
material response. The permittivity is affected by material-specific charge carrier densities,
rotational or vibrational resonances, intra- and inter-band transitions. Furthermore, the sub-
wavelength (surface) structure of a material may also affect the electromagnetic response
and can be represented by an effective permittivity. In the following, the Drude formalism
shall be introduced as an instructive model to understand the different regimes that govern
the existence and propagation of surface wave.

The Drude(-Lorentz) formalism assumes that free (and bound) electrons perform har-
monic oscillations in a lattice of positive ion cores when accelerated by an external field.
The details of the lattice potential are reflected by the effective mass m of the electron,
which differs from its free mass. The differential equation describing the motion r⃗ of an
electron responding to an applied electromagnetic field E⃗(r⃗, t) is [110]

m¨⃗r +mΓ ˙⃗r +mω2
0 r⃗ = −qE⃗(r⃗, t) (3.1)

where damping factor Γ, resonance frequency ω0 and electron charge q have been introduced.
A solution is found for a harmonic driving field E⃗(t) = E⃗0e

−iωt. When responding to
the field, the oscillating electrons r⃗(t) cause a macroscopic polarization P⃗ = −nqr⃗ of the
carrier density n, resulting in dielectric displacement D⃗ = ϵ0E⃗ + P⃗ . The effective relation
between field and displacement D⃗ = ϵ0ϵ(ω)E⃗ is then given by the Drude-Lorentz formula

ϵ(ω) = ϵvac + ϵfree + ϵbound (3.2a)

= 1 −
ω2
p

ω2 + iΓω +
∑
j

[
fj

(ω2
0j − ω2) − iΓjω

]
(3.2b)

where ω2
p = nq2

ϵ0m
is the plasma frequency; fj, ω0j,Γj are oscillator strength, resonance fre-

quency and damping factor of the bound electron resonances j, respectively [110, 111].
When considering only free carriers moving as an electron gas, a reasonable assumption

for metals at most frequencies, the third terms of Eqs. 3.1 (restoring force) and 3.2 (bound
electrons) vanish. The resulting expression for the permittivity is the Drude formula. In
this case, the ansatz of Eq. 3.1 can also be expressed in momentum space, substituting
m ˙⃗r = ℏk⃗ to yield

˙⃗
k = − q

ℏ
E⃗(t) − k⃗Γ (3.3)

which will be applied to positive hole charge carriers in Chapter 6, to identify the origin of
higher harmonic Terahertz frequencies generated in a doped Silicon crystal by an intense
Terahertz pulse.

The simple assumptions made by Drude of modelling the motion of electrons under an
external field like an ideal gas provide good results across a wide range of frequencies. In
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Figure 3.1: Real and imaginary part of the dielectric function of gold according to experi-
mental data [112], Drude-Lorentz’ and Drude’s model.

noble metals the model diverges from reality when interband transitions set in at higher
optical and ultra-violet frequencies [110, 113]. This is shown for gold in Fig. 3.1, where
real and imaginary permittivity are compared between Drude1, Drude-Lorentz [114] and
experimental data by Johnson and Christy [112]. At the nanoscale, the permittivity values
remain accurate down to dimensions of about 2 nm [115] before non-local effects cause
damping and blue shift of the resonances [116, p. 369].

3.2.2 Effective medium approximation
The polarizability α of a spherical particle was introduced in Sect. 2.3 in order to model
the effect of the s-SNOM tip as a spherical dipole interacting with the surface

α = 4πϵ0a
3
(
ϵm − ϵd
ϵm + 2ϵd

)
(3.4)

In order to approximate the macroscopic permittivity of a metamaterial ϵeff, one can
apply the Clausius-Mossotti relation. It assumes that the permittivity of a bulk material
can be modelled by summing over a uniform array of polarizable inclusions (spheres), i.e
from its atomic, molecular or meta-atomic unit cells. Clausius-Mossotti states that [117,
118]

ϵeff − ϵd
ϵeff + 2ϵd

=
∑
j

Njαj
3ϵ0

(3.5)

where Nj is the number of particles per unit volume, and ϵd is the permittivity of the
surrounding medium. For a metasurfaces which can be described as a periodic lattice of
polarizable spheres, the sum over all polarizabilities results in the Maxwell Garnett equation(

ϵeff − ϵd
ϵeff + 2ϵd

)
= f

(
ϵm − ϵd
ϵm + 2ϵd

)
(3.6)

1To account for the residual ϵ of the ion lattice, ϵ∞ = 9.23 is substituted for ϵvac.
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3 Guided mode resonances on metasurfaces

where f is the volume fraction of the inclusions. This can be solved for the effective per-
mittivity

ϵeff = ϵd
2ϵd + ϵm + 2f(ϵm − ϵd)
2ϵd + ϵm − f(ϵm − ϵd)

(3.7)

An extension of the model broadens the scope to include not only spherical inclusions in
a dielectric matrix, but also spheroidal particles. Here, merely the result for the anisotropic
Maxwell-Garnett homogenization theory is given [116, p.141ff.]

ϵeff = ϵd
ϵd + [vp(1 − f) + f ](ϵm − ϵd)
ϵd + vp(1 − f)(ϵm − ϵd)

(3.8a)

v0→0= fϵm + (1 − f)ϵd (3.8b)

where vp is the depolarization factor, with p ∈ {x, y, z}. For oblate spheroids resembling
thin pancakes, vx, vy → 0, and vz → 1 [117]. Eq. 3.8b thus describes the lateral permittivity
for two-dimensional metasurfaces made of elliptical thin disks. Here, the filling factor f is
given by f = asbs

a0b0
. as, bs are the radii of the elliptical disc and a0, b0 are the half-lengths of

the unit cell [119–121].
To conclude, we can see from Eq. 3.8b that it can be reasonable to approximate the

permittivity for a metasurface by taking a weighted average of the permittivities filling the
unit cell. However, in general the validity is only given for low filling factors f , as long as
spacing between neighbouring unit cells is large and strong interaction between metaatoms
can be neglected. Furthermore, in the presence of resonances, the Maxwell Garnett theory
is not a reliable homogenization approach.

3.2.3 SPPs at thin metallic layers
The properties of SPPs can be derived by solving Maxwell’s equations and choosing appro-
priate boundary conditions for surface waves propagating in a multi-interface system [122]

∇⃗ × E⃗ = −δB⃗

δt
∇⃗ · D⃗ = ρfree (3.9a)

∇⃗ × H⃗ = J⃗ + δD⃗

δt
∇⃗ · B⃗ = 0 (3.9b)

The structure of interest here is an IMI multilayer. A thin metallic film of thickness
h = 2a is sandwiched at −a < z < a between two dielectrics ϵ1 and ϵ3. The field components
for a TM-polarized waves are above the metal film z > a (left column) and below the metal
film z < −a (right column) [111, p. 30]

Hy = Aeiβxe−k1z Hy = Beiβxek3z (3.10a)

Ex = iA
1

ωϵ0ϵ1
k1e

iβxe−k1z Ex = −iB 1
ωϵ0ϵ3

k3e
iβxek3z (3.10b)

Ez = −A β

ωϵ0ϵ1
eiβxe−k1z Ez = −B β

ωϵ0ϵ3
eiβxek3z (3.10c)

where β = kx is the propagation wavevector, and ki ≡ kz,i is the wavevector component
perpendicular to the interfaces.

For a single interface, the surface mode will exponentially decay into both the dielectric
and the metal. However, for a thin interface the modes inside the metallic film −a < z < a,
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3.2 Theory

Figure 3.2: Sketch of a three-layer Insulator-Metal-Insulator (IMI) structure with two bound
surface modes. The SPPs are localized at the two interfaces between the dielectrics and the
thin metal film. Letters A,B,C,D point to the interfaces considered in the derivation.

localized at the top and bottom, will be affected by both interfaces and thus couple

Hy = Ceiβxek2z +Deiβxe−k2z (3.11a)

Ex = −iC 1
ωϵ0ϵ2

k2e
iβxek2z + iD

1
ωϵ0ϵ2

k2e
iβxe−k2z (3.11b)

Ez = C
β

ωϵ0ϵ2
eiβxek2z +D

β

ωϵ0ϵ2
eiβxe−k2a (3.11c)

The system of equations can be solved by imposing continuity at the interfaces z = ±a
of Hy and Ex

Ae−k1a = Cek2a +De−k2a
A

ϵ1
k1e

−k1a = −C

ϵ2
k2e

k2a + D

ϵ2
k2e

−k2a (3.12a)

Be−k3a = Ce−k2a +Dek2a −B

ϵ3
k3e

−k3a = −C

ϵ2
k2e

−k2a + D

ϵ2
k2e

k2a (3.12b)

The linear system of coupled equations can be solved to obtain an implicit expression
for the dispersion relation, i.e. a relationship between β and ω, which is dependent on the
thickness h. Using the notation κi = ki/ϵi, this yields2

tanh(k2h) = κ1κ2 + κ2κ3

κ2κ2 + κ1κ3
(3.13)

where the following relationship must be fulfilled

ki
2 = β2 − ϵik0

2 (3.14)

It is noted that for βi >
√
ϵik0, the wavevector of the SPP is larger than that of the dielectric

light line, then ki > 0 and the modes are bound or non-radiative. If βi <
√
ϵik0, it follows

that ki2 < 0 and ki is imaginary. This solution describes a plane wave solution radiating off
of the metal interface.

Two generally discussed limiting cases following from Eq. 3.13 are:

1. The symmetric cladding, ϵ1 = ϵ3, where the expression splits into a pair of odd and
even modes [111]

tanh(k2a) = −κ1

κ2
tanh(k2a) = −κ2

κ1
(3.15)

2The equivalence of expression Eq. 3.13 and Eq. 2.28 in [111] is shown in Appendix A.1.
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3 Guided mode resonances on metasurfaces

The terms odd or even relate to the symmetry or antisymmetry, respectively, of Ex(z).
Symmetric (odd) modes do not have a zero crossing inside the metal film. This
terminology can be confusing, since Ex and Ez behave oppositely with regards to
symmetry.

2. The thick metal layer, i.e. lim
h→∞ tanh(k2h) = 1, i.e. decoupled SPPs at independent

interfaces

κ1 = κ2 κ3 = κ2 (3.16)

with Re(ki) > 0, such that the fields are bound, this yields the well-known dispersion
relation for SPPs at a half-space interface

βi = k0

(
ϵiϵ2

ϵi + ϵ2

)1/2
(3.17)

In the interesting case of a very thin metallic layer (h ≪ λ) with asymmetric cladding
(n1 ̸= n3), two surface waves with different wavevector βi exist at the interfaces. The possible
solutions fall into four distinct regimes as is illustrated in Fig. 3.3, showing amplitude-wave-
front sketches of the fields.

Figure 3.3: Field distributions for bound, leaky and growing modes guided along a thin
metal film. The arrows show the energy flow in the dielectrics. Adapted with permission
from [104] © The Optical Society.

The common non-radiative case in Fig. 3.3a shows fields decaying away from the film
and wave fronts tilted into the metal film. These modes are bound to the surface at both
interfaces. Fig. 3.3b shows a growing wave solution into one of the dielectrics. This mode
demands an external incident field to constantly supply energy to support the growing
character. Fig. 3.3c and Fig. 3.3d show the two cases for leaky solutions into medium 1 and
3, respectively. The wave energy is localized in one dielectric, and the wave front is tilted
towards the metal film. In the opposite dielectric, the fields grow exponentially, their wave
fronts are tilted away from the metal film and they radiate into the dielectric. [104, 123]

The radiation angle θ for leaky waves which radiate into the dielectric medium is given
by considering phase matching at the interface or Snell’s law

β sin(90◦) = nk0 sin(θ) (3.18)

Fig. 3.4 shows the numerically calculated dispersion relation for a symmetric IMI mul-
tilayer at a gold interface. The metal permittivity is modelled with the Drude model, the
dielectric has permittivity ϵ1,3 = 2.1. Two straight light lines (n0 = 1, n1,3 = 1.45) and the
half-space interface SPPs are displayed in long and short dashed lines, respectively. Two
two surface modes (blue and red) exist below the light line, shown for three different layer
thicknesses h ∈ {20 nm, 30 nm, 40 nm}. The characteristic asymptotic behaviour towards
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Figure 3.4: Dispersion relation of a (Drude) gold layer sandwiched in a symmetric cladding
(n = 1.45). The short-dashed line shows the dispersion for a thick layer. For thin layers
(40 nm, 30 nm, 20 nm) two bound modes exist, split into even (red) and odd (blue), shifted
towards lower and higher energies, respectively. The grey shading marks the photonic band
gap, where the modes are strongly damped.

the surface plasmon resonance ωsp = ωp(1 + ϵ1,3)− 1
2 is seen, above which a photonic band

gap opens (shaded region). For non-negligible damping, the curve bends through the band
gap as a strongly damped evanescent wave. The two surface waves demonstrate energy
splitting. Compared to the uncoupled surface wave (short dashed line), they are repelled
towards higher and lower energies.

3.2.4 Numerical solution of dispersion relation
The dispersion relation for an IMI three-layer system follows from Eq. 3.13. As shown in
Sect. 3.2.3, the solutions to the expression can only be expressed analytically for certain
special cases, such as symmetric cladding or thick metal layer. Generally the equation must
be solved numerically for the material parameters in question. [105, 124, 125]

Fig. 3.5 shows the numerically calculated dispersion relation for an air-gold-glass multi-
layer system for varying thickness of the metal layer, h = 10, 20, 40 nm. The permittivity of
gold was modelled using the Drude model. The air and substrate (n3 = 1.45) light lines are
shown as straight dashed lines. The black dashed bent lines are the dispersion lines for sin-
gle interface SPP at a air/gold (upper) and gold/substrate (lower) half-space, respectively.
For a thin metal layer, these two modes are coupled and they shift towards lower (red) and
higher (blue) energies. The corresponding layer thicknesses in nanometers are labelled in
the graph with matching colours.

One can observe that the single-interface substrate dispersion line bends back in the
photonic band gap above its characteristic surface plasmon resonance at about 4.5 eV. The
coupled modes, on the other hand, bend over but turn around to reconnect with their
partner. This effect is accompanied by strong damping, as is typical for the evanescent
regime [126, p. 298].

Even though each dispersion line describes a mode that is supported by the multilayer
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3 Guided mode resonances on metasurfaces

system, the SPP modes are localized primarily at top (blue) or bottom (red) interface,
respectively. This is where their electric field energy is propagating and consequently where
they may be observed more easily. Still, it is important to note that SPPs stemming from
air/metal interface lie above the substrate light line at low frequencies. The field components
of this surface mode reaching towards the substrate/metal interface are hence not confined
to the surface by momentum conservation. These modes are thus not bound to the interface
on both sides and can become radiative/leaky into the substrate.
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Figure 3.5: Dispersion relation of a (Drude) gold layer sandwiched in an asymmetric cladding
(n1 = 1, n3 = 1.45). The short-dashed lines show the dispersion lines for half-space interfaces
of air/gold and air/substrate, respectively. For thin layers (40 nm, 20 nm, 10 nm) two bound
modes exist, shifted towards lower (red) and higher (blue) energies, respectively. The odd
mode at h = 40 nm is barely distinguishable from the uncoupled mode dispersion.

While Fig. 3.5 draws an instructive picture of the situation, the Drude model is in
fact not ideal to model the SPP behaviour in this frequency range. Instead, the dispersion
relation in Fig. 3.6 was modelled with the Drude-Lorentz permittivity for the gold layer.
All other parameters remain the same as before. It becomes apparent how the dispersion
is strongly affected by the additional resonances and damping introduced by the interband
transitions. Even though Re(ϵ) is negative for the whole frequency range depicted, the
strong damping contained in Im(ϵ) can shift the dispersion line above the light line. This
is the case for the single-interface SPP at higher frequencies and, interestingly, also occurs
due to very thin layer thickness as can be seen for the blue line at h = 10 nm.

Another aspect is exemplified at the dashed-dotted horizontal line (λ = 850 nm). The
even mode (red) becomes more confined (i.e. higher k-vector) with decreasing layer thick-
ness. More energy propagates inside the metallic layer, the wavelength becomes shorter and
absorption losses increase. Meanwhile, the odd line (blue) experiences vanishing confine-
ment. It propagates increasingly in the dielectric, its wavelength approaches that of freely
propagating light. Since it is now only weakly guided, absorption losses in the metal fade
out. This case is sometimes labelled Long-Range Surface Plasmon Polariton [106, 107, 122]
as opposed to its short-range partner [127].
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Figure 3.6: Numerically calculated dispersion relation for a Drude-Lorentz gold layer with
asymmetric cladding (n1 = 1, n3 = 1.45). The short-dashed lines show the dispersion lines
for half-space interfaces of air/gold and air/substrate, respectively. For thin layers (40 nm,
20 nm, 10 nm) two bound modes exist, shifted towards lower (red) and higher (blue) energies.
Strong coupling across ultra-thin layers can shift the odd (blue) mode above the light line.

3.3 Measurements

3.3.1 Overview

s-SNOM is well suited to observe SPPs on plasmonic surfaces with high-resolution. This
allows imaging of wavefronts as well as of the polarization fields on the individual metaatoms.
[32, 128–130] The measurements presented in this chapter were conducted with the s-SNOM
setup detailed in Sect. 2.3.3, at a laser wavelength of λ = 850 nm. For exciting SPPs on the
surface, a dielectric nanosphere was placed on the sample and kept within the focal spot of
the laser.

In this section, the metasurface design and the excitation scheme is explained. Then the
near-field imaging results are presented for the wavefronts and for the unit cell resonance.
The subsequent analysis is based on aforementioned theory surrounding the different surface
modes that are theorized and measured on the metasurface. It is concluded that merely one
out of three predicted modes is observed in the s-SNOM imaging. The influence of both
the excitation channel and the imaging technique is discussed to explain the absence of the
remaining two modes from the measurement. Finally, the leaky nature of the observed mode
is assessed.

3.3.2 Sample design

The metasurface sample consists of a periodic array of elliptical gold metaatoms on a fused
silica substrate. The array is composed of subwavelength gold disks with square unit cell
dimensions of 200 nm x 200 nm, as sketched in Fig. 3.7a. The nano-disks have an elliptical
base with long and short axes of 175 nm and 140 nm, respectively, and a height of 20 nm.
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3 Guided mode resonances on metasurfaces

(a) Unit cell design (b) SEM image

Figure 3.7: The metasurface consists of elliptical gold disks of 20 nm thickness in a periodic
array on fused silica substrate. (a) The disk and unit cell dimension. (b) SEM image
of the metasurface and the Silicon nanosphere used for SPP excitation. Both reprinted
with permission from ACS Photonics, 5, 4238-4243, Ref.[Wal6], Copyright 2018 American
Chemical Society.

The sample was fabricated using electron beam lithography3. The substrate made of
fused silica has a refractive index of n = 1.45. The effective permittivity for the gold
metasurface is expected to lie below that of a homogeneous gold film, with ϵeff = −16.5+1.1i
for gold permittivity of ϵAu = −28.3 + 1.7i at λ = 850 nm [112], according to Eq. 3.8b.

One can estimate the skin depth or penetration depth Lz (into medium i or into gold)
for a single-interface SPPs from Eqs. 3.14 and 3.17 via

1
Lz

= |Im(kz)| = k0Im
(

ϵi,2√
ϵi + ϵ2

)
(3.19)

yielding Lz = 24.5 nm under the assumption of a homogenous half-space with the effective
permittivity and wavelength as given above. The metasurface thickness of 20 nm lies below
the penetration depth. The structure must thus be treated as a multilayer system and modes
at the interfaces cannot be treated independently. Furthermore, the different dielectrics air
and fused silica around the metallic layer creates an asymmetric IMI environment.

3.3.3 Excitation via nanosphere
Surface modes that are confined to an interface cannot radiate into the space above and
below. The reverse is also true: free-space radiation cannot directly couple energy into
confined surface modes. This is due to unfulfilled momentum conservation considering the
projection of the wavevectors onto the surface for the incoming light and surface wave,
respectively, as introduced in Sect. 3.2.3.

The mismatch in momentum or phase of free-space and surface waves has to be bridged
by means of an excitation or coupling scheme [111, p. 39ff.]. There are several techniques
that facilitate coupling through the use of gratings or prisms (ATR). These techniques
can be tuned to efficiently match the momentum difference through appropriate choice of

3at the Department of Photonics Engineering, Technical University of Denmark
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3.3 Measurements

Figure 3.8: s-SNOM 3Ω near-field map of surface waves excited by the silicon nanosphere
on the metasurface. (a) The silicon nanosphere is marked by a red circle. The black arrow
shows the direction of incident light. The white square is depicted in Fig. 3.9. (b) Fourier-
filtering is applied to highlight the interference pattern between SPP and incoming light.
Reprinted with permission from ACS Photonics, 5, 4238-4243, Ref.[Wal6], Copyright 2018
American Chemical Society.

wavelength and angle. Other techniques do not rely on resonant matching conditions, but
rather broaden the narrow k-vector of the incoming radiation, such as a highly-focused laser
beam [131] or end-fire coupling [123]. Furthermore, an overlap between the k-vectors can
also be achieved by using surface defects (grooves or edges) [132], resonant particles or a
probing tip. Surface defects break the symmetry of the plane and light that is diffracted
leads to the creation of increased (evanescent) wavevector components.

For the experiment presented here, a high-index dielectric nanosphere was fabricated4 to
facilitate coupling into surface modes. Sinev et al. [133, 134] demonstrated that dielectric
nanoparticles can provide superior coupling efficiency compared to metallic defects, due to
their strong electric and magnetic dipole resonances. A Silicon nanosphere with a diameter
of 210 nm is used to provide the condition for excitation of surface waves. It can be seen
in the SEM image in Fig. 3.7b. The choice of sphere diameter leads to a resonance close
to the wavelength of λ = 850 nm [134]. The Silicon sphere was fabricated by laser printing
of amorphous silicon films [135]. Electrostatic pick-and-place nano-manipulation supervised
by electron-beam microscopy was used to position the sphere on top of the unit cell [136].

3.3.4 Near-field images of metasurface
The sample was illuminated at λ= 850 nm, with a power of P ≈ 10 mW and TM-polarization.
The scattered signal was detected using pseudo-heterodyne detection with a modulation of
the reference mirror at M = 800 Hz and demodulated at the third harmonic 3Ω. The near-
field signal imaged on the metasurface is shown in Fig. 3.8a.

The position of the silicon nanosphere is marked by a red circle. A black arrow indicates
the incident angle of the laser at polar angle Φ = 0◦ relative to the long axis of the gold
elliptic discs. The azimuthal angle of the laser beam is θ = 70◦ relative to the substrate
normal. The feature marked by the white square is further analysed in Fig. 3.9. The periodic
features in Fig. 3.8a are a combination by the surface wave pattern and a topography-
induced periodic signature of the gold disks. Therefore, a Fourier filter is applied to remove
the spatial frequency at the unit cell period of 200 nm. The processed image is shown in

4at the Department of Nanophotonics and Metamaterials, ITMO University, Russia
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3 Guided mode resonances on metasurfaces

Fig. 3.8b, where the standing wave pattern stemming from the interference of radially
propagating surface plasmon polaritons (originating at the nanosphere) and the projection
of the exciting light is emphasized [Wal6].

Incidentally, it may appear counter-intuitive to describe the surface plasmon polaritons
depicted in Fig. 3.8b as radially propagating. Indeed, this observation demands further
analysis as the interference conceals the concentric pattern. Sect. 3.4.2 covers the Fourier
analysis performed on the imaging data.

Figure 3.9: AFM image and corresponding s-SNOM map of the area marked in Figure
3a. Individual metaatom dipole modes parallel to the long axis of the gold nanodisks
are resolved. Reprinted with permission from ACS Photonics, 5, 4238-4243, Ref.[Wal6],
Copyright 2018 American Chemical Society.

Fig. 3.9 shows the zoomed-in feature marked by a white square in Fig. 3.8a. The AFM
topography (left) shows the elliptical gold disks of the sample. White ellipses mark their
position, which has been translated into the s-SNOM near-field map (right). Comparing
the near-field map with the location of the disks helps in finding the correspondence to the
mode excitation within each unit cells. In this case, the near-field distribution resembles a
dipole excitation of the structure, which is polarized along the long axis of the disk. The
propagating SPP is made up of these individual excitations. Their relative phase lag defines
the wavefront and wavevector of the SPP mode. This interpretation is corroborated by
simulations depicted in Sect. 3.4.3.

3.4 Analysis

3.4.1 Simulation of dispersion relation
It was shown in Sects. 3.2.3 and 3.2.4 that the dispersion relation for single interfaces and
specific multilayer systems can be solved analytically. Generally, homogeneous multilayer
systems with coupled interface modes can be solved numerically. For inhomogeneous ma-
terials such as metasurfaces, a simple resort is to apply effective medium approximations,
as introduced in Sect. 3.2.2. However, it has been noted that this approach suffers in the
vicinity of spectral resonances. A more exact approach is to use Finite Difference Time Do-
main (FDTD) modelling to analyse the dispersion of surface waves. This approach is chosen
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(a) XY view (b) Perspective view

Figure 3.10: Layout of the elliptical disc in the simulation volume (yellow box) as viewed
in the Lumerical FDTD software. (a) Top view. (b) Perspective view. Excitation dipoles
are marked as blue arrows, here oriented for propagation along the long axis. Time-domain
monitors are marked as yellow crosses.

in the following. The dispersion diagrams for the metasurface sample were calculated using
the nanophotonic FDTD simulation software Lumerical FDTD.

The simulation is defined as a single unit cell with periodic Bloch boundary conditions,
as depicted in Fig. 3.10. The vertical boundary condition (z) is a perfectly matched layer
(PML) with distance to the surface large enough to contain the evanescent tails. Specifically,
2 µm and 1 µm above and below the metasurface are defined, respectively. The simulation
area is marked as a green square and a yellow box in Figs. 3.10a and 3.10b, respectively.

To excite the structure, ten oriented electric field dipole sources (blue arrows) are placed
at randomized locations in the unit cell. They are used to each excite a short pulses with
pulselength T = 3.6 fs and a broad frequency spectrum between 200 - 550 THz (about 545
- 1500 nm). The excited pulse passes through the space domain. At the lateral boundaries
(x,y) periodic Bloch boundary conditions are employed. These are defined, with ax being
the length of the unit cell, as

E⃗xmin
= e−iaxk⃗blochE⃗xmax (3.20a)

E⃗xmax = e−iaxk⃗blochE⃗xmin
(3.20b)

Bloch boundary conditions are similar to periodic boundary conditions, albeit with a non-
zero phase shift between opposite boundaries. A single simulation is performed with a
broadband pulse for a fixed Bloch phase shift. The critical question that is answered is
whether the imposed phase shift will create constructive or destructive interference with the
mode excited in the unit cell. By repeating the simulation with increasing values of k⃗bloch,
different k-vectors are probed for the structure.

Ten monitor points (yellow crosses) are placed at randomized locations at a defined
height. The electric field propagating through the simulation volume due to the excitation
pulse is recorded by these monitors over an integration time of 150 fs. For each recorded time
trace, the resulting signal trace is windowed, effectively blocking out the excitation pulse,
and then Fourier-transformed. Since the boundary condition imposes fixed phase shifts,
most waves add up destructively. Only waves that match the system’s E-k dispersion add
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3 Guided mode resonances on metasurfaces

up constructively. These modes make up the eigenmodes of the structure and are observable
as a peak in the Fourier spectrum. By iterating this procedure over all boundary vectors
k⃗bloch, the frequency spectra form a bright contrast in the final plot of E vs. k.

Figure 3.11: Dispersion diagrams for anisotropic metasurface modelled using Lumerical
FDTD (a) along the long axis of the metastructure and (b) along the short axis of the
metastructure. Reprinted with permission from ACS Photonics, 5, 4238-4243, Ref.[Wal6],
Copyright 2018 American Chemical Society.

Fig. 3.11 shows the resulting dispersion relation for two orientations of the metasurface
along long and short axis of the elliptical disks, respectively. Several lines have been added as
guides for the eye to help with the interpretation of the graph. Light lines in the dielectrics
(air and fused silica), have been marked as blue and red dotted straight lines. Three surface
modes are marked with black and white lines.

Both black dotted lines identify surface modes, which bend to the right away from the
light line with increasing frequency. A larger wavevector is related to a shrinking wavelength
and can be understood as increasing confinement to the surface. Comparison of the two
orientations reveals a strong anisotropic behaviour. Moreover, upper and lower branch can
be assigned to TM- and Transversal Electric (TE)-polarized SPPs, respectively, as detailed
in [26]. It is noted that the prediction of a TE-polarized SPP would be forbidden under
the assumption of a homogenized layer. It is bound to the existence of metaatoms. With
regards to the theory presented in Sect. 3.2.4, the TM-polarized SPP behaves analogous to
the red-shifted mode expected in a multilayer system.

The white dotted line marks another surface mode which is located just underneath
the air light line. This indicates that the mode is confined to the upper interface towards
air rather than towards the surface. Its small wavevector suggests weak confinement and
large evanescent tails. It is important to note that the dispersion line lies inside the cone
defined by both light lines. This means that phase-matching to the high-index dielectric is
in fact possible. Since the metallic layer is very thin, the mode is expected to radiate into
the substrate. A further observation is that the dispersion of this mode displays negligible
anisotropy as seen from the comparison of both graphs.

3.4.2 Fourier analysis of near-field map
For further analysis, the real-space data shown in Fig. 3.8b is Fourier-transformed which
allows to distinguish between the different components making up the standing wave wat-
tern. In fact, assessing the radial (a)symmetry of the wave pattern can give insight on the
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isotropic behaviour of the leaky mode dispersion (white dotted line in Fig. 3.11) mentioned
in Sect. 3.4.1. The Fourier space image is shown in Fig. 3.12a in the interval ±3 µm−1.
The resulting pattern is necessarily point-symmetric and consists of two overlapping rings
that are offset from the centre in the direction of the incident laser light (black arrow in
Fig. 3.8a). The image can be understood by considering it as the sum of two interfering
wavevector contributions. Firstly, there is the angle-independent projection of the inci-
dent light onto the surface and, secondly, there is the radially propagating surface plasmon
polaritons, visible as a circle in Fourier space.

Figure 3.12: (a) 2D Fourier-transform of the near-field measurement in Fig. 3.8b. Interfer-
ence fringes are visible as a double ring pattern. The radius of the rings corresponds to the
wavevector of the surface wave. (b) Fit of two rings on the data in (a) with an offset from
the center koff = 1.09 µm−1 and radius of kSPP = 1.20 µm−1. Reprinted with permission
from ACS Photonics, 5, 4238-4243, Ref.[Wal6], Copyright 2018 American Chemical Society.

To clarify the interpretation, Fig. 3.12b shows a fit of two rings onto the data. The offset
from the center koffset can be compared to the expected projection kprojection of the incident
wavevector, for an incident azimuthal angle of θ = 70◦ relative to the surface normal

koffset = 1.09 µm−1 (3.21a)
kprojection = k0 sin(θ) = 1.10 µm−1 (3.21b)

The two values show excellent agreement.
Furthermore, the fitted rings have radii of kSPP = 1.20 µm−1, which corresponds to a

SPP wavelength of λSPP = 2π
kSPP

= 832 nm. with the excitation wavelength λ0 = 850 nm, the
ratio λSPP

λ0
= 0.98 is very close to unity. The weak confinement of the observed wavelength

correlates with a weak vertical confinement to the metasurface. Consequently, one would
expect a weak coupling between surface and polariton wave. This explains the negligible
effect of the anisotropy of the metasurface on the dispersion of this mode.

3.4.3 Dipole resonances of unit cell
Analysing the trends and location of modes in the simulated dispersion relation already
yielded several interesting results. However, many interpretations are rather indirect and
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3 Guided mode resonances on metasurfaces

it would be advantageous to visualize the modes further. Experimentally this has been
attempted by imaging the unit cell with high resolution, as shown in Fig. 3.9.

Here, the software Lumerical FTDT has been used to simulate the unit cell resonance for
defined Energy and Bloch-vector. Specifically, Bloch boundary conditions with kbloch,x = 0
and kbloch,y = kSPP = 1.20 µm−1 are imposed at an Energy of E = 1.46 eV (correspongding
to the excitation at λ = 850 nm) to find the unit cell excitation supporting the leaky mode
for a propagation along the long axis of the elliptical disk.

For this simulation, a single electric dipole source is placed in the center of the unit
cell. The pulsed excitation and subsequent propagation is analogous to Sect. 3.4.1. A
3D field monitor records the field evolution with time. Then, an apodization window is
applied, which excludes effects at the start of the simulation from the Fourier transform
of the monitor data. The one-sided apodization window is centered at 250 fs with a width
of 50 fs, such that no influence of the excitation is expected and only eigenmodes of the
structure are expected to survive.

(a) ϕ = 0π (b) ϕ = 1
2π (c) ϕ = π (d) ϕ = 3

2π

Figure 3.13: Simulated electric field Ez(x,y) at z=10 nm above the metasurface for four
different phases. The simulation was performed for E = 1.46 eV (λ = 850 nm) and k =
1.20 µm−1.

Fig. 3.13 shows the simulated field Ez of the leaky mode for different phases. The propa-
gation of dipole mode along the long axis of the disk is apparent. As the Ez field component
is dominant in an s-SNOM measurement with p-polarized illumination, one should expect
a comparable observation in the unit cell’s near-field signature shown in Fig. 3.9. The mea-
surement of the individual metaatom shows satisfactory qualitative agreement with Fig.
3.13c.

Changing the perspective, Fig. 3.14 shows cut plane (y,z) through the centre (x=0) of
the metasurface along its long axis, i.e. is along the direction of propagation (y). Depicted
are the field components Ez (a-d) and Ey (e-h) for different phase evolutions. One can
observe that Ez is antisymmetric, while Ey is symmetric. This is the typical signature of the
odd (symmetric) mode, as introduced in Sect. 3.2.3. It becomes less bound to the interface
with decreasing layer thickness, while its wavevector decreases, as its field distribution is
displaced out of the metallic layer. This observation confirms the assumed behaviour that
was inferred from the analysis of the dispersion relation.

3.4.4 3D full-wave analysis
From the dispersion relation produced with the Lumerical FDTD simulation, the observed
SPP is expected to be a leaky mode due to its location above the substrate light line. In
order to further characterize the mode behaviour, and confirm its radiative nature full-wave
simulations are performed using CST Microwave Studio.
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(a) Ez, ϕ = 0 (b) Ez, ϕ = π
2 (c) Ez, ϕ = π (d) Ez, ϕ = 3π

2

(e) Ey, ϕ = 0 (f) Ey, ϕ = π
2 (g) Ey, ϕ = π (h) Ey, ϕ = 3π

2

Figure 3.14: Simulated electric field Ez(y,z) (top row) and Ey(y,z) (bottom row), showing
a cut through the center of the unit cell (x = 0) along the propagation direction. The
simulation was performed for E = 1.46 eV (λ = 850 nm) and k = 1.20 µm−1.

The full metasurface is modelled for a sample size of 5.8 × 5.8 µm2 with open boundaries
along all three dimensions. The excitation of the surface wave is modelled with a vertical
5 nm long discrete electric dipole (current amplitude of 1 A) located just 20 nm above the
metasurface. This almost point-like source represents the nanosphere excitation. However,
as the electric dipole does not model the magnetic excitation of the sphere, the TE-polarized
surface waves that are expected to couple strongly to the magnetic resonance, will not be
excited directly. In this particular case, this is advantageous as it helps to reveal the TM-
polarized guided-mode resonance.

Fig. 3.15a shows the Ez electric field for a SPP which is excited at the left edge and
propagates to the right. Again, the propagation direction is depicted along the long axis of
the metasurface. Two wavelengths can be distinguished from the simulation. At the upper
metasurface-air interface, the SPP is only weakly confined and extends quite far out into air.
At the lower metasurface-substrate interface, a more strongly confined and short-wavelength
SPP is observed.

Fig. 3.15b shows the lateral magnetic field Hy. The homogeneous permeability of the
sample allows a clearer comparison of the modes in the dielectrics. Moreover, the figure
highlights the leakage radiation which is marked by two black arrows. This radiation is
associated with the leaky mode at the upper interface. To calculate the expected radiation
angle, one can apply Snell’s law, Eq. 3.18, with β = 1.2 µm−1. The radiation angle into the
substrate yields ϕ = 46◦, which fits well to the simulation results.

A more detailed analysis is facilitated by a plot of horizontal lineouts of the electric
field component Ez, shown in Fig. 3.15c. Three positions above the substrate are shown:
20 nm, 30 nm and 40 nm. One can find signatures of the two TM-polarized modes in the
interference pattern: a stronger contribution from the upper SPP and a weaker contribution
from the leaky SPP. A superposition of two damped radial sine waves is fitted to the lineouts
(dotted lines), resulting in wavelengths of λ1 = (838 ± 0.4) nm and λ2 = (553 ± 0.3) nm.
The wavelength λ1 and the experimental data λ = 832 nm show good correspondence. The
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3 Guided mode resonances on metasurfaces

Figure 3.15: (a) Ez field distribution obtained through full-wave simulation of vertical elec-
tric dipole above the metasurface consisting of elliptical gold disks shown along the long axis
of the metaatoms. Two surface waves are identified at either interface of the metasurface.
(b) Hy field distribution reveals the leaky nature of the top interface SPP which is visible as
a wave radiating into the substrate marked with black arrows. (c) Lineouts taken from Fig-
ure (a) for different heights z above the surface can be fitted with the superposition of two
waves that correspond to the surface waves on both interfaces. Reprinted with permission
from ACS Photonics, 5, 4238-4243, Ref.[Wal6], Copyright 2018 American Chemical Society.
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3.5 Conclusion

decay constants for the fits are summarized in Table 3.1. The much stronger damping of
the first mode (λ1) is a result of its leakage into the substrate.

height z A1(10−3) α1 (µm−1) A2(10−3) α2 (µm−1)
40 nm 2.3 0.65 1.4 0.42
30 nm 15.2 0.66 9.7 0.39
20 nm 24.6 0.52 15.3 0.27

Table 3.1: Amplitude and decay fitting parameters from superposition of two damped
radial sine waves, shown as dotted lines in Fig. 3.15c.

3.5 Conclusion
This chapter presented near-field measurements of SPPs on an anisotropic metasurface that
were excited by means of a silicon nanosphere. Three modes were predicted as eigenmodes of
the surface from FDTD simulations. Two of which are expected to show strongly anisotropic
dispersion, while the third behaves approximately isotropic and displays leakage into the
substrate.

Only the leaky mode (also dubbed guided-mode resonance) was observed in the s-SNOM
measurement and could be assigned to the predicted eigenmode. The radiative losses into
the substrate were analysed through full-wave simulations, as they are inaccessible by surface
scanning. The negligible anisotropic dispersion was explained by the weak confinement to
the metallic layer, effectively neglecting the surface structure influence.

The two other anisotropic modes are absent from the near-field measurement. Two
reasons are identified for this:

1. The strongly confined modes are localized at the lower metasurface-fused silica in-
terface, with fields penetrating into the metallic layer. This makes it more difficult
to access them through s-SNOM measurements of the top surface. Meanwhile, the
guided-mode resonance carries most of its energy above the surface, yielding a domi-
nating s-SNOM signal. The signal could potentially overshadow remaining field com-
ponents of the unobserved modes.

2. The excitation efficiency of the dielectric nanosphere depends on the wavevector
matching between the sphere’s near-field and the SPPs. The anisotropic modes have
much larger wavevectors than the guided-mode resonance and the exciting light. Con-
sequently, the momentum matching between non-resonant coupling channel and SPP
is less efficient. It can thus be hypothesized whether the anisotropic modes have been
sufficiently excited.

In conclusion, the use of s-SNOM facilitated direct observation of the guided mode reso-
nance. A dielectric nanosphere was well-suited for radial excitation of this mode. However,
it was shown that the observation of anisotropic strongly confined modes was not possi-
ble under the presented measurement and excitation combination. Whether the dominant
challenge is the mode localization underneath the metasurface or the inefficient excitation
channel has been discussed.

These findings motivate an adapted experimental approach for future research. Brissinger
et al. succeeded in measuring subsurface SPPs through a 55 nm homogenous gold film by
s-SNOM using ATR and edge excitation [137]. This approach offers a dual advantage,
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as light impinging through ATR already carries an increasing momentum. Moreover, the
necessary tuning of the coupling angle to within 2◦ highlights how a precise matching to
the resonance may have to be facilitated. Translated to the silicon sphere excitation, this
could be done by preparing differently sized spheres or by wavelength-tuning of the laser
source. Another interesting idea is to make use of substrate-enhanced near-field imaging
[77]. Based on a multi-reflection model, coincidentally introduced in Sect. 4.2.3, it was shown
that the scattered s-SNOM signal from thin layers can be strongly enhanced by choosing
am appropriate substrate thickness or refractive index. A more far-fetched idea to visualize
buried SPP modes, borrowed from photoemission electron microscopy (PEEM), would be
to prepare the interface with “SPP sensitizers”, e.g. nanoparticles that exhibit localized
surface plasmon resonances [138] or TMDC nanocrystals that induce additional interference
patterns on the surface [139].

Finally, it is noted that choosing a longer wavelength is not expected to improve the
depth resolution. This may be counter-intuitive due to the different skin depth, but be-
comes evident from the wavelength-independent lateral resolution predicted by the quasi-
static point-dipole model, see Sect. 2.3.1, which equally applies to the vertical dimension.
Moreover, subsurface terahertz s-SNOM imaging repeatedly reports depth resolutions not
exceeding 50 nm [140–142].
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Chapter 4

Photoluminescence enhancement
from WS2

4.1 Introduction
This chapter picks up the idea of light-matter interaction on two-dimensional material sys-
tems in the context of TMDC materials, a semiconducting class of van-der-Waals materials
which is often compared to graphene with regard to its application potential. Atomically
thin TMDCs monolayers have become known for a variety of interesting properties, such as
a direct band gap, large exciton binding energy, strong spin-orbit coupling and strong spin
valley polarization [143].

This chapter focusses on the photoluminescent nature of one of their representatives:
WS2. In its single layer form, WS2 has been found to exhibit the strongest light-matter
interaction out of the common TMDC candidates: MoS2, MoSe2, WS2, WSe2; all of which
show prominent exciton resonances in the visible spectrum [144].

The goal of this research is to enhance the photoluminescence yield which can be obtained
from the single layer WS2. Several ideas have been reported for coupling TMDC layers to
achieve this, which can be loosely classified into three different approaches [145]

1. localized surface plasmon resonances, such as plasmonic particles [146], a resonant
dielectric Silicon nanosphere [147], metal backed dielectric nanopillars [148], periodic
gold nanoantennas [149], or plasmonic metasurfaces [150]

2. photonic structures, such as placing the monolayer onto an integrated photonic crystal
cavity [151, 152]

3. modification of the dielectric surroundings in a way that exploits constructive inter-
ference effects, such as optimizing the underlying substrate thickness and composition
[153, 154]

A central theme is to enhance the light-matter interaction between the active TMDC ma-
terial and the exciting light. The sample presented here was prepared with the second and
third approach in mind, as two types of external microcavities have been integrated into
the substrate. To be precise, a single circular Bragg cavity was used, but lateral and verti-
cal interference effects were treated separately to find the desired values for etching of the
lateral geometry and vertical depth, respectively.

In order to find the appropriate parameters for substrate material, structure and dimen-
sions, two modelling approaches are discussed in the literature [145]: a multiple reflection
model [154] and (transfer) matrix-based analytical models [155]. Both of these approaches
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have been applied, one for each of the two cavity orientations, to optimize the structure
design.

The structure is designed to enhance both the in-coupling of light at λ0 = 532 nm (the
laser source) and the out-coupling of light at λPL = 615 nm, corresponding to the A exciton
resonance at E = 2.0 eV [144]. The resonant interaction of the microcavity with the incom-
ing light and with the excitation of the WS2 monolayer enhances the photoluminescence
observed. On one hand, this is due to the expected field enhancement of the incoming light
at the centre of the cavity and vertical multi-pass interference which consequently creates
an increased absorption cross-section of the atomically thin monolayer. On the other hand,
resonant coupling of the microcavity and the exciton resonance can in principle increase the
photoluminescence photon yield, tune the spatial emission pattern [156, 157], and modify
the spontaneous emission rate.

The sample studied here is a GaP substrate-integrated microcavity covered with few-
layer hBN-buffered monolayer WS2. A reference structure without lateral Bragg-structure,
but with vertical circular trench of the same depth, is also covered in the same way. The sam-
ple is measured at room temperature using microreflection contrast measurements, micro-
photoluminescence measurements and s-SNOM.

Sample patterning was done by focused-ion beam milling by a project partner1. The
design and microscopic optical measurements were performed by another partner2. The
study was complemented by s-SNOM measurements and data analysis performed by the
author of this thesis. The high-resolution data and nano-imaging of the surface electric
fields on the microcavity complement the previous measurements and allow an analysis of
the structure that would not be accessible with low-resolution microscopy.

This chapter focusses on the near-field optical measurements. The discussion of design
and microscopic measurements is restricted to only provide necessary context. For more
details on this part of the project, the reader is referred to the joint publication “Near-
Field Nano-Imaging of Buried Microcavity for Enhancement of WS2 Monolayer Exciton
Photoluminescence” by Mey et al. [Wal13], or the thesis by Schneider [158]. Particularly,
the microcavity presented in Sect. 4.2.3 has been designed by F. Wall2. The s-SNOM
based analysis was presented by the author of this thesis at META 2019 - Intl. Conf. on
Metamaterials, Photonic Crystals and Plasmonics [Wal13].

4.2 Theory

4.2.1 Transition metal dichalcogenides
TMDC materials are semiconducting crystals which consist of stacked two-dimensional
atomic layers which form a bulk to neighbouring layers by van-der-Waals adhesion force.
While this makes them similar to graphene, with which heterostacks can be easily formed,
TMDCs are neither mono-atomic nor truly flat. They have the chemical composition MX2,
with transition metal M, defined via their partially filled d electron sub-shell, and two chalco-
gen atoms X, i.e. group 16 of the periodic table. Geometrically, one monolayer consists of
three hexagonal atomic planes. The transition metal atom is in the centre and bound to
chalcogen atoms in the planes above and below in a zig zag fashion [159]. TMDC materials
are receiving a lot of attention due to their intriguing optical and electrical properties, partly
caused by their interesting structure.

1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, China
2Dept. of Physics and Materials Sciences Center, Philipps-Universität Marburg
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Most importantly, the low dimensionality reduces Coulomb screening in these systems
and effects that rely on Coulomb force are significantly enhanced. Excitons, i.e. quasipar-
ticles of electron-hole pairs bound by Coulomb interaction, most prominently play a crucial
role in optoelectronic properties of TMDCs [160]. For single layers, the indirect bulk band
gap transitions into a direct band gap at visible frequencies which leads to strong exciton-
binding energies, narrow absorption peaks and high photoluminescence quantum yield at
room temperature [161]. For WS2, an exciton binding energy of 0.71 eV [160] and a record
quantum yield among the TMDC candidates of 6% at cryogenic temperatures has been
reported [162].

Additionally, monolayer TMDCs have strong intrinsic spin-orbit coupling due to their
characteristic d-orbital sub-shells, effectively introducing strong energy-splitting in the va-
lence (and in the conduction) band. Moreover, the two chalcogen planes above and below
the transition metal create two degenerate valleys, K and K’, in Brillouin space due to
broken inversion symmetry, which introduce a valley spin degree of freedom. This means
that different energy states can be optically selected by spin, i.e. circularly polarized light,
opening an avenue for spintronic and valleytronic applications. [163]

4.2.2 Sample fabrication
The substrate-integrated microcavity and reference have a lateral depth of 70 nm and
105 nm, respectively. The lateral Bragg cavity consists of six rings of nominal widths of
dGaP = 135 nm followed by air spacing of dair = 110 nm and a central circle of radius dair.
The theoretical radius of both the microcavity and the reference hole consequently is r =
1.58 µm. An AFM image of the Bragg cavity can be seen in Fig. 4.7. The fabrication was
performed in GaP substrate using Gallium Focussed Ion Beam (FIB) milling (Auriga Dual
Beam SEM-FIB, Zeiss), with an ion beam of 30 kV and 500 pA.

On top of the microstructures, large hBN flakes and mechanically exfoliated WS2 mono-
layers were transferred in sequential steps by dry-stamping with a gel film [Wal13, Supp. Info.].
During preparation of the sample, it was shown that a hBN buffer was necessary to avoid
photoluminescence quenching due to direct contact with the GaP substrate. Subsequent
AFM measurements evaluated the buffer thickness to be 13 nm and 20 nm for microcavity
and reference structure, respectively.

Fig. 4.1 shows an optical microscopy image of the sample. Six positions of microcavities
or references are highlighted by coloured circles, which are referred to in Table 4.1. The
objective cross-hairs with the central circle should not be confused with the sample positions.
The hBN flakes are visible across the sample. The large transparent area on the right is
due to a large gold sheet obstructing access to the surface by s-SNOM. The square pattern
around the yellow cavity is a typical feature which appears due to SEM imaging.

Color Pattern Cover Notes
green Reference cover trapped dust particle
pink - - no information recorded

orange Reference - obstructed by gold particle
purple Bragg cavity cover used for measurements
yellow Bragg cavity open used for measurements

red Bragg cavity - obstructed by gold particle

Table 4.1: Sample overview with color codes depicted in Fig. 4.1. Covered samples have a
heterolayer of hBN/WS2 placed over the structured substrate.
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4 Photoluminescence enhancement from WS2

Figure 4.1: Optical microscope impression of the sample gives an overview of the different
samples. Circular holes are labelled ‘reference’ and circular Bragg gratings are labelled
‘cavity’. The structures have a diameter of 3.2 µm. The colour codes are summarized in
Table 4.1.

4.2.3 Microcavity design

In order to enhance the photoluminescence yield for the monolayer, both the in-coupling
of light and photoluminescence out-coupling should be tuned. With this goal in mind, the
vertical and lateral structure of the substrate are patterned in a way that creates constructive
interference at the two wavelengths λ0 = 532 nm and λPL = 615 nm.

Both resonators benefit from a high refractive index substrate due to its high amplitude
reflectivity rij according to Fresnel’s laws assuming perpendicular incidence

rij = ni − nj
ni + nj

tij = 2ni
ni + nj

(4.1)

GaP has been chosen as a substrate due to its high refractive index (n532 nm = 3.474 +
0.002i, n615 nm = 3.334, n850 nm = 3.178) for the corresponding wavelengths [164].

For the design along the vertical and lateral orientation, a multiple reflection model [154]
and a (transfer) matrix-based analytical model [155] is used, respectively.

Transfer Matrix Method

For the design of the circular Bragg-cavity, the radial symmetry of the structure is exploited
by applying a one-dimensional model transfer matrix method rendering all reflections and
transmission perpendicular. Within the transfer matrix method, the electromagnetic wave
is modelled by calculating the the transfer (or interface) matrix Tij, using Eqs. 4.1, for the
propagation across an interface and the phase (or layer) matrix Pi for the phase ϕi = nikdi
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Figure 4.2: Reflectivity of the DBR at different energies shown for the ideal dimensions
and the fabricated structure. The real structure is resonant at wavelengths λ0, λPL, and
off-resonance at λref as indicated with the dashed lines.

associated with propagation through a layer i of width di

Tij = 1
tij

(
1 rij
rij 1

)
Pi =

(
e−iϕi 0

0 eiϕi

)
(4.2)

The electromagnetic field at each position z is expressed in term of its forward and backward
travelling waves [161, 165]

E⃗(z) =
(
E+
i (z)

E−
i (z)

)
(4.3)

The complete cavity matrix is then modelled my multiplying the transfer and phase
matrices alternating air layer by GaP layer

Scavity = P1T12P2T23 ... Pn−1T(n−1)n (4.4)
= (P1T12P2T21)N · P1T12 (4.5)

where N = 6 is the number of rings, and the multiplication is simplified using the identical
layer and interface matrices (air = 1; GaP = 2).

Finally, the cavity’s reflectivity for an emitter in the centre, given by the ratio of the
matrix elements s of Scavity [165, Supp. Info.],

R0n =
∣∣∣∣∣E

−
0

E+
0

∣∣∣∣∣
2

=
∣∣∣∣s21

s11

∣∣∣∣2 (4.6)

has to be maximized. The resulting ideal air and GaP layer widths for the lateral (in-plane)
Distributed Bragg Reflector (DBR) are dair = 154 nm and dGaP = 46 nm, respectively. The
characteristic relationship of distributed Bragg reflectors nairdair = λPL

4 and nGaPdGaP = λPL
4

is fulfilled.
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4 Photoluminescence enhancement from WS2

However, the structure fabricated by FIB has the alternative parameters for air and GaP
layers dair = 110 nm and dGaP = 135 nm, as these dimensions were more easily fabricated.
Fig. 4.2 shows the reflectivity graph for the ideal (green) and real (red) microcavity, with
relevant wavelengths highlighted. Obviously, the alternative parameters define an equally
applicable stopband for the wavelengths of in-coupling and out-coupling radiation. Further-
more, using the alternative parameters, a reference wavelength at λref = 850 nm can be used
to test the structure at off-resonance.
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Figure 4.3: Reflectivity maps at different wavelengths for a radial DBR of six GaP rings for
different layer thicknesses dair and dGaP. The colorbar shows the reflectivity. The green and
red dot show the location of ideal and fabricated microcavity, highlighting the resonance for
λ0, λPL and off-resonance for λref for the real structure.

To account for the tolerance in fabrication, reflectivity maps for swept combinations of
layer widths are considered, displayed in Fig. 4.3. The location of ideal and real cavity
dimensions are marked by green and red dots for all wavelengths, respectively. The di-
mensions of the fabricated structure lie safely in the reflectivity maximum for λ0 and λPL,
wheras the reflectivity is low at λref as expected.

Multi-reflection model

For the design of the FIB etching depth, the goal is to maximize the electric field amplitude
through constructive interference at the monolayer for λ0 and λPL. This is achieved by
considering a multi-reflection model for the fabricated structure of three thin layers as
depicted in Fig. 4.4. This model is an extension of the reflection by a transparent thin film
to a system of multiple layers by Rouard’s treatment [166, 167, p. 63ff].

The definitions for Fresnel’s laws Eqs. 4.1 and phase ϕi = nikdi assuming perpendicular
incidence are used again. Using the multiple reflection model, one can obtain two enhance-
ment factors for light reaching the monolayer Fin, and for light emitted from the monolayer
Femit. Both factors contain a dependence on z, the origin of photoluminescence inside the
WS2 monolayer of dWS2 = 6.18 Å. The derivations are based on adding all electric field reflec-
tions and corresponding phase shifts at the different layer interfaces, generating an infinite
geometric series which converges into a neat expression. Neighbouring layers are treated by
introducing effective reflection coefficients r∗

ij and solving recursively from the substrate up
to the monolayer. The derivation is omitted here for brevity and the interested reader is
referred to the descriptions by Heavens [167, p. 63ff] or Zhang et al. [154, Suppl. Info.].
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Figure 4.4: Multi-reflection model for optimizing the vertical etching deptch for the mul-
tilayer: WS2 monolayer (6.18 Å), hBN flake (13 − 20 nm), air trench, GaP substrate. The
microcavity features are indicated by the vertical GaP pillars.

One obtains the enhancement factors Fin for in-coupling

Fin =
∞∑
n=0

t01(e−iϕz + r∗
12e

−i(2ϕ1−ϕz))(r∗
12r10e

−2iϕ1)n (4.7a)

= t01e
−iϕz

1 + r∗
12e

−2iϕ1

1 + r∗
12r10e−i2ϕ1

(4.7b)

and Femit = t10
t01
Fin for out-coupling. The effective reflection coefficients r∗

ij for the hBN and
air layer are3

r∗
ij =

rij + r∗
j(j+1)e

−2iϕj

1 + rijr∗
j(j+1)e

−2iϕj
(4.8)

Assuming that excitons are homogeneously distributed throughout the WS2 monolayer,
one then integrates over z in the final equation to find the total enhancement factor G given
by the product of in-coupling and out-coupling, here normalized to a reference interface
[154]

G = 1
N

� dWS2

0
|Fin(z) · Femit(z)|2 dz (4.9)

The model was applied to find the optimum etching depth for different hBN flake thick-
nesses dhBN1 = 10 nm and dhBN2 = 30 nm. Depending on the hBN buffer layer, which
is measured only after its final placement on the structure, the theoretical optimum was
calculated to lie between dair = 104 nm and dair = 54 nm, respectively. The resulting en-
hancement factor plots can be found in Fig. SI.3 in [Wal13, Supp. Info.].

The microcavity structure was finally fabricated with an effective trench of dair = 70 nm.
The hBN cover thickness was later measured to dhBN = 13 nm. The reference structure
without integrated microcavity has an effective trench of dref,air = 105 nm, and a buffer
of dref,hBN = 20 nm; representative of the expected tolerances due to FIB fabrication and
bending of the suspended layers into the structure.

During the preparation of this thesis, the model was applied again to adapt the data to
the finally fabricated hBN thickness. Fig. 4.5 shows the wavelength and air layer thickness
parameter space for the enhancement factor at two different thicknesses of the hBN layer
dhBN = 30 nm and dhBN = 13 nm. The data differs slightly from Fig. SI.3 in [Wal13,
Supp. Info.] due to different refractive index data [164, 168, 169]. The optimized air layer

3Indices i,j are layer indices; while the imaginary i appears in the exponential term.
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thickness at λ0 = 532 nm is marked by a green circle and yields dair = 89 nm and dair =
61 nm, respectively.
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Figure 4.5: Enhancement factor G shown for different wavelengths and air layer thicknesses
at two different thicknesses of the hBN layer (a) dhBN = 30 nm and (b) dhBN = 13 nm. A
green circle marks the optimized thickness at λ0 = 532 nm and yields (a) dair = 89 nm and
(b) dair = 61 nm. Wavelength axis and colorbar apply to both graphs.

4.3 Measurements
The sample was pre-characterized by the project partners using an inverted optical micro-
scope (IX73, Olympus) to excite the sample at λ0 = 532 nm and obtain time-integrated
photoluminescence images. Fig. 4.6a shows one of these measurements of the circular
microcavity covered by 13 nm hBN and monolayer WS2. The structure displays obvious
photoluminescence enhancement and the radial profiles across the structure, see Fig. 4.6b,
depict a spatial dependence with a resolution of about 0.4 µm.

Additionally, s-SNOM measurements were performed to optically characterize the struc-
ture with a resolution of 20 nm. s-SNOM is sensitive to local surface electric fields as well as
beneath the surface in the vicinity of the interface [79, 170]. By scanning the near-field of
the hBN/WS2-covered microcavity, it is thus possible to directly image the excitation of the
resonant structure, even through the van-der-Waals stack. A comparison is made between
the covered and the open structure at the excitation wavelength of λ0 = 532 nm and at the
off-resonant reference wavelength of λref = 850 nm.

The experimental setup used for these measurements is outlined in Sect. 2.3.3. However,
the detection was performed in non-interferometric mode with reference mirror M blocked.
Near-field images at higher harmonics of second and third order, 2Ω and 3Ω, were acquired.
AFM images were acquired simultaneously.

Fig. 4.7 shows the measurements for the two samples: hBN/WS2-covered microcavity
(a-c) and open microcavity (d-f). The samples are marked by purple and yellow colour codes
from Table 4.1. The three measurements from left to right show the topography measured
by AFM, the near-field signal at 3Ω at λ0 = 532 nm (green colour scale), and the near-field
signal at 3Ω at λref = 850 nm (red colour scale).

Due to the hBN/WS2-cover on the sample in Fig. 4.7a, the Bragg cavity is not visible in
the topography image. Instead, one can see the indentation of the covering layer bending into
hole. However, the data in Figs. 4.7b and 4.7c confirms that the electric field enhancement
of the cavity is indeed captured through the van-der-Waals stack of about 13 nm thickness.
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(a) Micro-photoluminescence image. (b) Corresponding radial profiles.

Figure 4.6: Photoluminescence enhancement from a hBN/WS2-covered microcavity mea-
sured by time-integrated optical photoluminescence microscopy, with 60x magnifying ob-
jective. (a) False-color CCD image showing the glowing WS2 monolayer and the circular
enhanced area on top of the structure. (b) Corresponding background-subtracted (5000
counts) cross-sectional intensity traces. Adapted with permission from ACS Nano, 13, 5,
5259-5267, Ref.[Wal13], Copyright 2019 American Chemical Society.

4.4 Analysis
A common observation for the covered and open cavities is that, at the in-coupling wave-
length of λ0 = 532 nm, the near-field shows maximum enhancement at the centre of the
Bragg cavity, see Figs. 4.7b and 4.7e, and a minimum for excitation at λref = 850 nm, see
Figs. 4.7c and 4.7f. The fact that covered structure and reference structure both display the
central enhancement suggests that it can be assigned to the lateral Bragg grating, rather
than the vertical interference.

To allow a better comparison between the measurements, Fig. 4.8 shows horizontal
profiles through the cavity centre for the six measurements shown in Fig. 4.7. Edges and
centre of the circular structure are marked by dashed lines. The profiles corresponding to
the resonant wavelength λ0 are shown in green, the off-resonant profiles corresponding to
λref are shown in red. Three main observations can be taken away from the comparison:

1. Comparing the signal strengths at the cavity centre, for both covered and open struc-
ture the field enhancement is a strong maximum at λ0 and (almost) minimal at λref.
This speaks in favour of a strong influence of the lateral DBR design. A difference
between covered and open cavity is however not observed here.

2. Considering only the resonant cavity at λ0, the relative strength of the central maxi-
mum to the outer maxima is slightly stronger for the covered cavity compared to the
open cavity.

3. Comparing the periods of the topography to the near-field profiles, one can observe
a half-period “phase shift” between the two wavelengths. The near-field signal at
λ0 shows field-enhancement in the Bragg grating’s gaps. For the off-resonance case,
however, the field maxima fall onto the GaP rings. Again, no difference is observed
between covered and open cavity with respect to this effect.

The latter observation may be explained by considering the contributions making up
the s-SNOM signal [171]. Firstly, the scattering cross-section of the tip apex is sensitive to
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Figure 4.7: Topography and near-field measurements of monolayer-covered and open micro-
cavity structure. (a) Topography of WS2-hBN covered cavity. (b) Near-field map of covered
cavity at 532 nm. (c) Near-field map of covered cavity at 850 nm. (d) Topography of open
microcavity. (e) Near-field map of open cavity at 532 nm. (f) Near-field map of open cav-
ity at 850 nm. Reprinted with permission from ACS Nano, 13, 5, 5259-5267, Ref.[Wal13],
Copyright 2019 American Chemical Society.

the material’s permittivity, as outlined in Sect. 2.3.1. Secondly, the near-field interaction
is strongly dependent on the tip-sample distance, which is usually kept constant by means
of the AFM feedback, see Sect. 2.2.2. However, in the case of scanning buried structures,
the assumption of constant distance may not be fulfilled since the depth of the microcavity
below the hBN/WS2 varies. Thirdly, surface electric fields by plasmonic modes and electric
field enhancement (hot spots) are scattered by the s-SNOM tip and strongly affect the
near-field signal response. Consequently, the near-field image at λref = 850 nm contains a
dominant spectroscopic topography contribution effectively mapping out the permittivities
of GaP and air. On the other hand, at λ0 = 532 nm the response is dominantly made up
of the field enhancement of the resonant cavity, most prominently in its centre. This effect
causes the observed reversal of the near-field and explains the radial “phase shift” between
the two wavelengths.

Further near-field images taken in parallel at the second harmonic signal 2Ω are shown
in Fig. A.1 of Appendix A.2. It is well known that demodulation at the second harmonic
is often insufficient to effectively suppress the background contribution, as detailed in Sect.
2.3.2. Indeed, the second harmonic data shows obvious horizontal interference fringes and
artifacts that seem to appear due to scattering by the topography. Interestingly though,
the comparison between the measurements of the open cavity at the resonant wavelength
at 2Ω, Fig. A.1 of Appendix A.2, and 3Ω, Fig. 4.7e, shows a signal reversal across the
whole cavity. The latter near-field image clearly traces the topographical structure while
suppressing this effect at the third harmonic brings out the reverse field enhancement.

Near-field measurement were also performed on the reference sample, corresponding to
the green color code according to Table 4.1. This structure is a hBN/WS2-covered circular
etched hole, but without Bragg cavity. Fig. 4.9 shows the measurements of AFM and
s-SNOM on the sample. Unfortunately, a dust particle was trapped on the structure as
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Figure 4.8: Horizontal line-outs taken from the AFM and s-SNOM measurement in Fig.
4.7. Vertical lines mark the edges and centre of the microcavity structure. While the field
maxima at 850 nm coincide with the topographical maxima of the Bragg cavity, the field
distribution at 532 nm shows a complimentary behaviour. Most strikingly, one can observe
a clear field maximum in the centre of the cavity for both measurements taken at 532 nm.
Adapted with permission from ACS Nano, 13, 5, 5259-5267, Ref.[Wal13], Copyright 2019
American Chemical Society.

(a) Topography. (b) Near-field at 2Ω. (c) Near-field at 3Ω.

Figure 4.9: Topography and near-field measurements of the reference structure: a
hBN/WS2-covered circular hole without Bragg grating. A dust particle trapped in the
structure complicates the analysis. The colourbars of (b) and (c) are in arbitrary units.

apparent from the topography image in Fig. 4.9a. Nonetheless, from the measurement at
the third harmonic, Fig. 4.9c, one can deduce an enhancement of the field at the perimeter
of the structure. Although mostly obstructed by the dust particle, no spatial pattern or
enhancement comparable to the Bragg structure samples can be observed in the central area
of the structure.
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4.5 Conclusion
In conclusion, structural patterning of the substrate by FIB etching was a viable way to
enhance the exciton photoluminescence yield of the WS2 monolayer (a factor of 10 is re-
ported in [Wal13]). To achieve this, two approaches are combined. Firstly, a lateral DBR
microcavity was optimized by transfer matrix method to maximize the reflectivity into its
centre. Secondly, the vertical air gap between the substrate and the suspended hBN/WS2
stack was modelled by a multi-reflection method to optimize for constructive interference
of the exciting light at the monolayer. Additionally to optical characterization by photo-
luminescence microscopy, high-resolution s-SNOM measurements were recorded to support
the claim that specifically the in-coupling of radiation at λ0 = 532 nm is enhanced by the
microcavity. This question could be answered with the presented data.

A strong influence of the lateral DBR patterning was identified through near-field mea-
surement of different structures (open and covered DBR, and reference hole) and at different
wavelengths (resonant and off-resonant). A maximum field enhancement was found in the
centre of the circular cavity and locally enhanced rings were observed between the circu-
lar GaP rings of the Bragg cavity exclusively for resonant illumination. In contrast, no
strong dependence on the vertical structuring (open vs covered DBR) could be observed by
s-SNOM. However, a clear field enhancement was present also for the reference structure
(without Bragg grating) at the perimeter of the hole, demonstrating the generally enhancing
effect of the trench by suspending the monolayer. Still, the dominant effect is the lateral
Bragg structure, at least with regard to the in-coupling enhancement.

To further disentangle the near-field signal response due to material contrast and surface
field enhancement, which is complicating the analysis, one could excite the s-SNOM tip and
the structure using s-polarized light, which reduces the material permittivity response [172,
173]. However, in turn one expects a generally reduced signal intensity.

Another idea for further measurements is the direct detection of photoluminescence
by means of Tip-Enhanced Photoluminescence [174]. Similarly to Su et al. [175], who
demonstrate nanoscale mapping of excitons and trions in monolayer MoS2, a 20 nm tip
could be used to detect and enhance the photoluminescence yield. However, as shown by
these authors, a metallized tip in contact with the semiconducting monolayer may affect
the sample and the cavity. In fact, a tip or nanoantenna in the proximity of the quantum
emitter may tune both the excitation and the emission efficiency [176]. Depending on
size and resonance of the tip, this can cause enhancement, resonance shift and even full
quenching of the photoluminescence [177]. Thus, the tip’s influence has to be factored in
when assessing the microcavity enhancement on the photoluminescence out-coupling.

54



Chapter 5

Vertical tunneling through TMDC
layers

5.1 Introduction
Transition Metal Dichalcogenides (TMDCs) are considered excellent candidates for a great
number of electro-optical applications due to their occurrence in atomic layers, their direct
band gap and strong light-matter interaction in the visible regime, and interesting properties
applicable to spin- and valleytronics. The emerging photoluminescence, which arises due
to a characteristic transition from indirect to direct band gap for TMDC multilayers when
thinned down to single layers, was discussed and studied in Chapter 4. In this context, a
brief overview of several defining characteristics was presented in Sect. 4.2.1.

This chapter follows a different perspective and centers their semiconducting properties.
Particularly the direct band gap in the visible spectrum has motivated a variety of applica-
tions, such as transistors [54, 178] or photovoltaic cells [179]. Furthermore, the possibility
to easily fabricate heterostructures by stacking different van-der-Waals layers has become
a lively playground for research [180]. One of the central themes is vertical current trans-
port through TMDC single- and multilayers, and heterostructures [159, 181]. Generally,
current transport across a thin semiconducting barrier can be classified into field emission,
thermionic field emission and thermionic emission. The former conceptualizes two effects
known as direct and Fowler-Nordheim tunneling. Thus, four basic transport processes are
obtained, which play a role in thin metal-semiconductor-metal contacts. They are illustrated
in Fig. 5.1.

Thermionic emission is the dominant process in thick semiconducting layers. One such
example is vertical field-effect transistors, which are assembled from stacked TMDC mul-
tilayers. These are based on the modulation of the Schottky barrier height, analogous to
changing the gate bias in Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs).
Some notable examples use heterostructures consisting of graphene/MoS2/metal [179] or
graphene/WS2/graphene [54].

Field emission, on the other hand, becomes the dominant process in few-layer TMDC
barriers and the current dependence on barrier height and voltage bias changes. Graphene is
a common contact due to its strongly tunable Fermi level [182], however it does not function
as a tunnel barrier due to its zero band gap; in contrast to other van-der-Waals materials,
such as isolating hBN (Eg = 6 eV) or semiconducting TMDCs (Eg ≈ 1.0 - 2.5 eV) [183]. Using
hBN in the context of tunnelling [55, 182, 184] has led to the successful implementation of
vertical Tunnel Field-Effect Transistors, e.g. by sandwiching 4 - 7 layers of hBN between
graphene contacts [17]. Notable examples for studies on TMDCs and their use for TFETs
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are based on graphene and WS2 [185], MoSe2 [186], and MoS2 [187].
Furthermore, a range of properties of TMDCs, as discussed in Sect. 4.2.1, can be merged

with mere tunnelling application into exciting research branches. As TMDC materials
are photoactive in the visible, the tunnelling current can be tuned by light [188, 189].
Spin-dependent tunnelling has been predicted in vertical tunnelling through MoS2, due its
magnetic properties [190]. Resonant tunnelling and Negative Differential Resistance (NDR)
can occur in heterostructures with clean interfaces at room temperature, making promises
for vertical quantum electronics [92, 191, 192].

Tunneling effects in TMDC monolayers and its heterostructures evidently show a vast
potential. Some authors even highlight the role of TFETs in beyond-Si electronics [159],
owing to their excellent shot noise properties suggested to beat MOSFETs’ subthreshold
swing limit of 60 mV/dec [193, 194] and excel at low power consumption, ranking them
as potential successors to silicon transistors once they exhaust their fundamental quantum
limits [195].

This chapter introduces some theoretical aspects that are key to understanding tun-
nelling in TMDC heterostructures. Experimental I-V measurements obtained with c-AFM
are demonstrated. The results are discussed with regard to the current transport observed.
Experimental challenges related to the measurement technique and sample preparation are
then discussed. The chapter covers preliminary studies that were useful to characterize the
c-AFM setup. Consequently, a focus is put on some experimental challenges, suggested
solutions and propositions for continued studies on the topic.

5.2 Theoretical background
Current transport across a potential barrier can mostly be described by one or a combination
of four basic mechanisms, which are illustrated as arrows 1 to 4 in Figs. 5.1b and 5.1c. Direct
tunneling (1) and Fowler-Nordheim tunneling (2) are different regimes of field emission.
Both tunneling processes refer to tunnelling of carriers from the conduction band through
the barrier. The transition from direct tunneling to Fowler-Nordheim tunneling occurs
at higher bias voltages once the barrier width becomes dependent on voltage bias. This
is indicated by a dotted vertical line to the right of arrow 2 in 5.1c. The processes are
explained in detail in Sect. 5.2.1.

Thermionic field emission (3) refers to tunneling of thermally excited carriers through a
reduced barrier width at the elevated energy and can be seen as a transition region between
field emission and thermionic emission [196, 197], it will not be discussed further in this
chapter. Thermionic emission (4) describes current flow of carriers with sufficient energy to
overcome the potential barrier. In this case the current depends on the barrier height, but
it is independent of barrier shape. The process is discussed in Sect. 5.2.2.

5.2.1 Field emission
Tunneling is a quantum-mechanical effect. According to classical mechanics, carriers can
either pass over a potential barrier - which would refer to thermionic emission as mentioned
above - or they are completely reflected by it. However, according to quantum mechanics
the carrier is represented by a probability wavefunction ψ. The wavefunction of the carrier
hitting a potential wall does not immediately decrease to zero, instead a finite probability
remains that it penetrates into and eventually through the barrier. Consequently, there is a
finite probability that the electron will tunnel through a barrier of given height and width
[197, p. 46f].
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Figure 5.1: Carrier transport between two metal electrodes across a Schottky barrier. a)
Wavefunction showing tunneling through a trapezoidal barrier without bias. Net current
is zero. b,c) Processes under bias referred to in the main text: (1) Direct tunneling, (2)
Fowler-Nordheim tunneling, (3) thermionic field emission, (4) thermionic emission.

Interestingly, the mathematical description is a wave exhibiting exponential decay into
the potential barrier, which continues its propagation on the other side. This is analogous
to evanescent waves that leak through a very thin metasurface, as described in Sect. 3.2.3.
Other analogous examples from the optical realm include ATR and evanescent surface fields
that are picked up by a tip, as in photon scanning tunneling microscopy [198, 199]. The
effect in this case is known as optical tunneling.

To find the tunneling probability for the carrier, one considers Schrödinger’s equation
for a particle with effective mass m∗ moving through a potential V (x) as sketched in Fig.
5.1a.

d2ψ

dx2 + k(x)2ψ = 0 (5.1a)

k(x)2 = 2m∗

ℏ2 (E − Φ(x)) (5.1b)

with k(x) being imaginary when tunneling through a barrier (Φ(x) > E).
For a constant potential Φ0(x) of width d, the tunneling probability Tt can be calculated

as the ratio of probability densities between transmitted |ψ2|2 and reflected |ψ1|2 wave [197,
p. 48]

Tt = |ψ2|2

|ψ1|2
≈ 16E(Φ0 − E)

Φ2
0

exp (2ikd) (5.2)

For slowly varying potentials, i.e. when the particle’s de Broglie wavelength is much
smaller than the variation length scales of Φ(x), the solution to the Schrödinger equation
can be found using the famous Wentzel-Kramers-Brillouin (WKB) approximation. The
tunneling probability then becomes [197, p. 48]

Tt = |ψ2|2

ψ1|2
≈ exp

(
2i
� x2

x1

k(x)dx
)

(5.3)

The tunneling current density jt per unit energy dE and unit area can then be calcu-
lated as the product of number of available carriers on one side of the barrier, unoccupied
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corresponding states on the other side and the respective tunneling probability. Integrating
over all energies results in the total current density Jt per unit area given by the Tsu-Esaki
formula [200, 201]

Jt = qm∗

2π2ℏ3

�
Tt(E, qV ) ·N(E, qV )dE (5.4)

N(E) is the supply function, which is the difference between the Fermi-Dirac distributions in
region 1 and region 2, considered only for the longitudinal energies. It is calculated through
a separation of the Fermi-Dirac distribution into longitudinal and transversal energy, that
is integrated over its transversal energy variable in radial coordinates [200]

N(E) = kBT ln
 1 + exp

(
−E−Ef

kBT

)
1 + exp

(
−E−qV−Ef

kBT

)
 (5.5)

Here, the variable E refers to the longitudinal energy over which the integration has to
be performed, Ef is the Fermi energy, kBT is the dependence on Boltzmann constant and
temperature.

It is noted that the supply function differs from the one typically assumed in STM,
which is simply the difference of Fermi-Dirac distributions of the two regions. This simpler
approach, neglecting the uni-directional tunneling, has also been applied in the context of
TMDC heterostructures [202].

Direct tunneling and Fowler-Nordheim tunneling

Field emission refers to tunneling of electrons from the conduction band through the poten-
tial barrier. In most cases, the potential barrier can be modelled as a trapezoidal potential,
as illustrated in Fig. 5.1, with barrier heights Φi left and right, respectively. The difference
between direct tunneling and Fowler-Nordheim tunneling becomes clear, when considering
the location of the turning point x2. For the low-voltage bias regime, qV < Φi, the electron
has to pass the whole width of the barrier in order to reach the opposite side. The turning
point x2 is independent of voltage and one speaks of direct tunneling. For the high-voltage
regime, qV > Φi, the electron tunnels through the triangular part of the barrier. In this
case, the turning point x2 (and hence the tunneling width d) are bias dependent, as the ef-
fective barrier width shrinks with increasing bias. This is called Fowler-Nordheim tunneling.
[203, 204]

For a generalized description, we can write the trapezoidal potential barrier as

Φ(x) =


0, if x < x1
(Φ2−qV )−Φ1

d
x+ Φ1, if x1 ≤ x ≤ x2

−qV, if x > x2

(5.6)

and the voltage-dependent turning point x2, assuming x1 = 0 and positive bias, is

x2 =


d, if E < Φ2 − qV

(E−Φ1)d
Φ2−qV−Φ1

, if Φ2 − qV ≤ E ≤ Φ1

0, if Φ1 < E

(5.7)

With the potential barrier plugged into Eq. 5.3 for the tunneling probability, and the
turning points as the integration boundary, one can calculate the current density using
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Eq. 5.4. For an asymmetric trapezoidal barrier, the expression can be solved with a sim-
ple numerical integration [205]. Arbitrary barrier shapes require a more nuanced meshing
approach [206].

For fitting experimental studies, a common approach [189, 207–209] is to apply approx-
imations suggested by Simmons [203, 210]. It is assumed that the potential barrier Φ(x)
can be expressed by a mean barrier height Φ̄ leading to the expression [207, 210]

I = qA

4π2ℏ(βd)2

{(
Φ̄ − qV

)
exp

(
−α

√
Φ̄ − qV

)
− Φ̄ exp

(
−α

√
Φ̄
)}

(5.8)

where α = 2β(x2 −x1)
√

2m∗/ℏ, and β is a correction factor of 23
24 . The low and high voltage

regimes, respectively, result from the assumptions of the following parameters

(x2 − x1) = d Φ̄ = (Φ1 + Φ2)/2 low voltage (5.9a)

(x2 − x1) = Φid

qV
Φ̄ = Φi/2 high voltage (5.9b)

where the former leads to direct tunneling and the latter (with i=1 for forward bias) leads
to the Fowler-Nordheim tunneling equations. The resulting tunneling current I is expressed
by the following equations [203, 209]

I =


Aq2

√
m∗(Φ1+Φ2)
h2d

V exp
(

−2d
√
m∗(Φ1+Φ2)

ℏ

)
direct tunneling

Aq2m0
4ℏΦid2m∗V

2 exp
(

−4d
√

2m∗Φ3
i

3ℏeV

)
FN tunneling

(5.10)

where A is the cross-sectional area, and the transition voltage between the two regimes is
given by qV = Φi.

One advantage of such an analytical expression is that a “Fowler-Nordheim plot” of
ln
(
I
V 2

)
over 1

V
can be used to extract the Schottky barrier height Φ̄, since for Fowler-

Nordheim tunneling

ln
(
I

V 2

)
∝ − 1

V

(
4d

√
2m∗Φ3

3ℏq

)
(5.11)

Fig. 5.2 displays a typical tunneling I-V plot showcasing the transition between direct
and Fowler-Nordheim regime. Modelled are direct and Fowler-Nordheim approximations,
Eqs. 5.10, the generalized Simmons approximation, Eq. 5.8, and the Tsu-Esaki formula,
Eq. 5.4. The graph shows the tunneling current for a rectangular potential barrier of height
Φ0 = 1 eV and width d0 = 3 nm, circular contact area A = 10 nm radius. The Tsu-Esaki
equation was solved by numerical integration over the barrier width (x2 − x1) and the
longitudinal energies dE. Fig. 5.2a shows that the Fowler-Nordheim approximation is a
good fit to the generalized Simmons equation for the high voltage regime. The fact that the
WKB approximation in the form of the generalized Simmons approximation overestimates
Tsu Esaki’s result is confirmed in the literature [211]. Fig. 5.2b shows how the logarithmic
plot proposed in Eq. 5.11 exposes the Fowler-Nordheim tunneling regime as a straight
line with a slope that depends on barrier height and width. The bend at 1 V−1 shows the
transition from direct tunneling to field emission at the transition voltage of qV = Φ0 [207].

The example depicts the situation for a rectangular barrier. The approximations for a
trapezoidal barrier were stated in Eq. 5.9a. For direct tunneling, the mean barrier height
can suffice, or a more complex analytical model for a tilted potential can be applied [212].
For Fowler-Nordheim tunneling, the potential barrier height is chosen which the electrons
must initially tunnel through and it thus depends on bias polarity, i.e. Φ1 for V > 0 and
Φ2 for V < 0 [213].
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Figure 5.2: Different models and approximations to calculate the tunneling current. Shown
for Φ = 1 eV, d0 = 3 nm. (a) shows a linear plot and (b) a Fowler-Nordheim plot with the
characteristic linear slope and an inset showing a larger scale.

5.2.2 Thermionic emission
Thermionic emission or Schottky emission is a conduction process that occurs when electron
overcome the Schottky barrier due to thermal activation energy. Contrary to tunneling
effects, thermionic emission is strongly temperature dependent and, for a single barrier, can
be described by

Jte = A∗T 2 exp
(

− qΦi

νkBT

) [
exp

(
qV

kBT

)
− 1

]
(5.12)

where A∗ = 4πqm∗kB
2h−3 is the effective Richardson constant of 120 Acm−2K−2 for free

electrons [197, p. 157]. The barrier height Φi in this case is subject to image force lowering,
as described in Sect. 5.2.3. ν is the ideality factor of 1 (ideal) to 1.2 [214].
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Figure 5.3: Comparison between thermionic emission and Fowler-Nordheim tunneling with-
out (solid lines) and with (dashed lines) image force barrier lowering. The model assumes a
Schottky barrier height Φi=0.5 eV, barrier width d=1 nm, contact area A=30 nm2. Different
proportionalities are obvious from a ln(I/V2) plot.

Several publications report thermionic emission to be the dominant current transport
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process in thick vertically stacked TMDC heterostructures [187, 209], e.g. larger than three
layers for MoS2 at room temperature [185]. Occasionally, thermionic emission models have
been applied even to single layers [215], though not without valid scepticisms. Moreover,
the I-V curve for thermionic emission across a sandwiched TMDC flake can be modelled
as two back-to-back Schottky diodes. Depending on bias polarity, one of the contacts is
reverse-biased and an asymmetric response is obtained for different contact metals. The
total current in this case is given by [214, 215]

J =
Ĵ1Ĵ2 sinh

(
qV

2kBT

)
Ĵ1 exp

(
qV

2kBT

)
+ Ĵ2 exp

(
−qV
2kBT

) (5.13)

where Ĵi = A∗T 2 exp
(
qΦi

kBT

)
.

Fig. 5.3 shows that while in a linear plot the distinction between thermionic emission
and field emission may not be immediately obvious, the typical plot of ln(I/V 2) over 1/V
only generates the characteristic linear slope for Fowler-Nordheim tunneling. Here, the
comparison is made between Eqs. 5.12 and 5.10, parameters are noted in the figure caption.

5.2.3 Image force lowering
Electrons that approach the potential barrier induce a positive charge that acts like an
image charge inside the potential barrier. The potential of this image charge reduces the
effective potential barrier height. The image force lowering tends to be small in comparison
to the barrier height. Nevertheless, the effect rounds of the steep edges of the potential
barrier. It thus has an effect on the tunnel current density. The image potential in the
interval 0 ≤ x ≤ d is calculated using image force methods and is approximately [203, eq.
33]

Φimage(x) = − 1.15 ln(2)q2

8πϵ0ϵrx(1 − x
d
) (5.14)

Figure 5.4: Image force lowering in a rectangular tunnel barrier of Φ = 4 eV, d = 2 nm and
ϵr = 16 with (dashed) and without (solid) image force lowering at different bias voltages.

Figure 5.4 shows a comparison for a rectangular tunnel barrier of Φ = 4 eV, d = 2 nm
and ϵr = 16 with and without image force lowering at different bias voltages. Obviously,
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image force lowering affects both the height and the width of the potential barrier. The
modified potential barrier can be roughly approximated by subtracting the image force
lowering correction [197, p. 146]

∆Φ =
√

qV

4πϵ0ϵrd
(5.15)

from Φi to use the effective Schottky barrier height in Eq. 5.10.

5.3 WS2 on graphene

5.3.1 Sample characterization
These first measurements presented here were performed on a WS2 flake positioned on top of
a graphene flake. Both van-der-Waals materials were mechanically exfoliated (RAPGARD
TDS F6F, Nitto) [158, Appendix A1] and transferred onto SiO2 substrate using dry vis-
coelastic stamping (PF-20/17-X4, Gel-Pak) by a project partner1 [216–218]. Preparation
of the samples was performed under ambient conditions. The sample was then further
processed in Frankfurt by lift-off photolithography and deposition of 100 nm gold on 3 nm
chromium to facilitate electrical contacting of the graphene flake.

Fig. 5.5 shows two optical microscopy images and corresponding AFM scans of the
sample. Figs. 5.5a and 5.5b show an overview of the sample after the lithographic processing,
where the gold contacts can be clearly seen. Fig. 5.5c is a zoomed in image of the same
sample, taken before the lithography was performed. One can clearly distinguish between
the blue color of the WS2 flake and the shaded graphene flake underneath. Fig. 5.5d is
the corresponding AFM image which shows the step height between the flakes and the
substrate. A horizontal imaging artifact is visible in the lower part of the image. Across the
step between graphene and WS2 a profile indicates the data shown in the graph of Fig. 5.6.

I-V measurements were taken with the c-AFM setup as described in Sect. 2.4. The
cantilever used in conjunction with this sample was of type RMN-25PT300B with a spring
constant of k = 18 N/m, see Table 2.2. The measurements reflect that this cantilever is too
stiff for obtaining I-V measurements with well-controlled contact force, and a high contact
force of about 1.5 µN was used. The transimpedance amplifier was set to an amplification of
106 V/A, see Table 2.1, to be able to measure currents up to 0.5 µA versus a DC bias voltage
applied between the PtIr5 tip and the graphene flake (contacted via the gold electrode).

While usually one would expect to observe a transition between direct tunneling to
Fowler-Nordheim tunneling regime with increasing bias voltage, the experimental setup
here includes a series resistance of 1 MΩ meant to limit the maximum current flow across
tip and TMDC flake. This leads to an expected I-V slope

dI

dU
= 1
R0

= 1
Rtunnel +Rseries

Rtunnel→0
≊

1
1MΩ (5.16)

and is indeed observed as an experimental linear slope of 1/1.2 MΩ for high voltages, as
shown in Sect. 5.3.2.

The potential barrier heights Φi at the two heterojunctions PtIr/WS2 and WS2/graphene
are approximated with the Schottky-Mott rule by calculating the difference between the
metal work function Φmetal and the semiconductor’s electron affinity χ

Φi = Φmetal − χ (5.17)
1Dept. of Physics and Materials Sciences Center, Philipps-Universität Marburg
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(a) Optical microscopy, 50x. (b) AFM topography.

(c) Optical microscopy image, 50x. (d) AFM topography.

Figure 5.5: Visualization of the 2D-material heterostructure sample. (a) Image of WS2 flake
(blue) on top of graphene flake. The contact leads were placed using photolithography and
gold deposition. (b) WS2 flake (blue) on top of Graphene flake, before contacting. The
orientation can be compared to the AFM scanned images. (c) Gold-contacted graphene
flake with WS2 flake placed on top. (d) WS2 flake on top of graphene flake. Horizontal
white lines are due to scanning artifacts. The lineout is discussed below.

Figure 5.6: Topography profile from Fig. 5.5d. The data is averaged over a linewidth of
20 px and fitted with an edge of step height (3.5 ± 1.0) nm.

63



5 Vertical tunneling through TMDC layers

Figure 5.7: Energy-band diagram illustrating the formation of a potential barrier at the
heterojunctions of WS2 sandwiched between PtIr and graphene (Gr). The arrows highlight
the magnitudes of the work functions Φ, electron affinities χ and barrier heights Φi towards
the vacuum level (dotted line). ∆E indicates the difference between graphene’s Fermi level
and Dirac point.

Work function and electron affinity are defined as the energy required to remove an electron
from the Fermi level EF and from the the conduction band EC , respectively, to the vacuum
level [197, p. 135]. Fig. 5.7 illustrates the formation of the barrier at the heterojunctions.
The tunable Fermi level of graphene is indicated by ∆E and can play a crucial role in the
design of TFETs [17].

WS2 WSe2 Gr Pt PtIr Au
Work function Φ (eV) 4.73 4.21 4.6 6.35 4.85 5.1
Band gap Eg (eV) 1.54 1.32 0 - - -
Electron affinity χ (eV) 3.95 3.7 4.6 - - -

Table 5.1: Work function Φ, band gap Eg and electron affinity χ for several materials: WS2,
WSe2, Graphene (Gr), Pt, PtIr and Gold [219–223].

Table 5.1 states general values for Φ, band gap Eg and χ for some materials relevant to
this chapter. According to these parameters one would expect with Eq. 5.17 the ideal barrier
heights Φ1 = 0.9 eV and Φ2 = 0.65 eV. The most important deviations of experimental barrier
heights from the ideal values are due to interface layers, chargeable interface (surface) states,
and image-force lowering, see Sect. 5.2.3 [197, p. 135].

5.3.2 Tunnel current analysis
Fig. 5.8 shows a I-V measurement on the WS2 flake in linear and Fowler-Nordheim plot,
demonstrating the characteristic linear slope. The data shows both up and down sweep for
the I-V measurement. The linear data interval is manually selected (orange and yellow cir-
cles) and fitted with the Fowler-Nordheim model, Eq. 5.10. The two asymmetric polarities
were fitted simultaneously to find the potential barrier heights Φ1 and Φ2. The remaining
parameters were assumed, i.e. a contact area of A = 29 nm2 (see Sect. 2.4.2), an effective
mass in WS2 of m∗ = 0.34m0 [224] and a barrier width of d = 3.5 nm (see AFM measurement
in Fig. 5.6). It is noted that the programmatic fit emphasizes the high voltage data points,
due to their increased density in the 1/V plot. The slight hysteresis is neglected for this
analysis.

The least squares fit is plotted as solid lines in both the linear and Fowler-Nordheim
plot of Fig. 5.8 and yields barrier heights Φ1 = 0.54 eV and Φ2 = 0.44 eV. The results are
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5.3 WS2 on graphene

Figure 5.8: I-V measurement on the WS2/Gr flake, shown in linear scale and as Fowler-
Nordheim plot. The data range used to fit the Fowler-Nordheim model is marked with
orange and yellow circles. Solid lines indicate the fit result with the parameters given in the
legend.

summarized in Table 5.2 together with results for two alternative estimations of the barrier
width d.

Assuming ideal barriers, one would expect theoretical barrier heights Φ1 = 0.90 eV and
Φ2 = 0.65 eV, see Sect. 5.3.1. The fitting result thus deviates considerably from the theoret-
ical prediction. Moreover, Table 5.2 clearly shows that the fitting routine is very sensitive
to the tunnel width. An accurate determination of the true tunnel barrier width or the
number of TMDC layers is thus crucial for obtaining a reliable fitting result.

d (nm) Φ1 (eV) Φ2 (eV)
experimental 1.8 0.90 0.73

3.5 0.54 0.44
4.8 0.42 0.34

theoretical - 0.90 0.65

Table 5.2: Fitting parameter d and fitting results Φi for the Fowler-Nordheim model and
data shown in Fig. 5.8. Other parameters are given in the text.

Two main reasons are likely responsible for the deviation between experimental and
theoretical values of the barrier heights. Firstly, an incorrect prediction of the theoretically
ideal barrier height. This may be on the one hand due to neglecting the image force lowering,
as suggested in Sect. 5.2.3, and on the other hand due to the influence of graphene’s tunable
density of states. The strong influence of graphene’s tunable Fermi level and consequently
available states on the tunneling current density [225] is not considered in the above model.
Since the density of states of graphene is electrostatically tunable, it is effectively a function
of bias voltage. The interface dipole across the graphene-metal interface creates a potential
drop ∆V , which causes an energy shift ∆E of its work function. It can be expressed in
analytical form for T → 0 as [226]

∆E = ±

√
1 + 4αq |V − VD| − 1

2α (5.18)
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where α = 2q2(d−d0)
ϵπℏ2ν2

f
, with (d− d0) being the effective distance between the charge sheets of

graphene and the opposite metal electrode and νf ≈ c/300 being the Fermi velocity. d0 is
the equilibrium distance of ≈ 2 − 3Å [227, 228]. For a bias voltage of ±2 V this creates a
Fermi shift of up to 0.16 eV for an assumed layer thickness of 1.8 nm.

Secondly, a systematic error (and noise) in the tunnel width determination by AFM
would lead to an ill determination of the barrier heights Φi. Recently, inconsistencies in
AFM topography measurements on TMDC materials, specifically WS2, have been reported
on [229]. Though analysed in the context of non-contact AFM measurements, the anomalies
attributed to water adsorbates and resulting capillary effects in the order of ±6 nm could
well be transferred to the case of contact-mode AFM. The suggested remedies are using
increased contact forces to push through the capillary potential and annealing the sample
prior to topography measurements [230]. An additional artifact occurring in contact-mode
AFM imaging of two-dimensional materials is associated with anisotropic friction coefficients
that depend on scan direction, and can lead to height variations of up to 5 times [231].

Lastly, experimental challenges with regards to the current measurement, that could
affect the I-V data, are considered at the end of this chapter.

5.4 WS2 on gold

5.4.1 Sample characterization
Further measurements were performed on a mechanically exfoliated WS2 flake that was
placed directly on a gold substrate which had been prepared by evaporation of 100 nm gold
on 3 nm chromium. The transfer of the TMDC flake was again performed in Marburg via
dry viscoelastic stamping onto the substrate prepared in Frankfurt by thermal evaporation
deposition. The gold substrate was electrically connected to serve as the bottom electrode.
Photolithography processing was not necessary. The layered structure of the WS2 flake
is best seen in the optical microscopy images, shown in Figs. 5.9a and 5.9d, due to their
different transparencies. We can distinguish three terraces of different heights.

Fig. 5.9c shows a photoluminescence microscopy image, taken with the setup mentioned
in Sect. 4.3. Here, the excitation light at 532 nm is filtered out and the red photoluminescence
at 615 nm becomes visible. Photoluminescence is verification for monolayer presence, since
it requires a direct band gap that is only present for the single layer structure. One can
observe that the photoluminescence only appears on the upper part of the monolayer terrace
and is quenched below the apparent fracture that passes through the flake, as is visible in
both the optical and the AFM image, Figs. 5.9d and 5.9e. A possible explanation could
be a different contact between monolayer and substrate for these two regions, where the
lower region allows for charge transfer and subsequent recombination at the gold interface
[202, 232, 233]. An uneven contact between flake and substrate could be given for the
whole flake. This introduces some uncertainty concerning the true thickness of the flake,
considering inclusions of air or water.

The AFM topography images shown in Figs. 5.9b and 5.9e show the same detail visible
in the corresponding optical microscopy images. However, the AFM scans allow to deter-
mine the height of the WS2 flake and highlight the size of surface features such as holes,
particles, dust and surface defects. A profile of 1 px width spanning across the WS2 terraces
is indicated as a black line in Fig. 5.9e and extracted into the plot given in Fig. 5.10. The
three layers were fitted with two steps of equal height, resulting in a step height of ∆h
= 1.3 nm. Given the thickness of a single WS2 layer of 6 Å, a step appears to consist of
an increase of two layers. Even though the monolayer terrace can be cleary made out in
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(a) Optical microscopy (50x) (b) AFM topography

(c) Micro-photoluminescence (50x)

(d) Optical microscopy (50x) (e) AFM topography

Figure 5.9: Optical microscopy and AFM topography of WS2 flake on gold substrate. (a,b)
The overview shows several larger defects and surface contaminations of the sample. (c)
The monolayer can be verified via its photoluminescence. (d,e) The terraces have different
layer thicknesses, the profile in (e) is shown in Fig. 5.10.
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5 Vertical tunneling through TMDC layers

Figure 5.10: Topography lineout from figure 5.9e. The lineout has width of 1 px and passes
through two indentation. The three terraces are highlighted by horizontal lines of height
spacing ∆h = 1.3 nm.

the optical microscopy image and is confirmed by photoluminescence microscopy, the AFM
does not resolve the topography contrast. The insufficient AFM heigh resolution may be
caused by the use of open-loop height piezos and possibly capillary forces from water films
introducing topographical artifacts [229].

For I-V measurements on this sample, cantilever type RMN-12PT400B was used (see
Table 2.2) and a contact force of about 100 nN was applied.

5.4.2 Tunnel current analysis
I-V measurements were performed on the three terraces of the WS2 flake shown in Fig. 5.10.
An analysis of the data collected on the two upper terraces (thicker tunneling width) is
presented here. No useable I-V measurements were possible on the first terrace. This may
be due to the monolayer thickness and thus steep onset and high current flows through the
single layer, which could not be resolved.

Figs. 5.11 and 5.12 show the data for the middle and top terrace, respectively. The
Fowler-Nordheim model, Eq. 5.11, was fit to the manually selected linear regime of the
Fowler-Nordheim plot (right). The data used for fitting is marked by circles; only one sweep
direction was considered. For these fits, the three parameters for tunnel barrier heights Φ1,
Φ2 and a common barrier width d were simultaneously determined with a least squares fit.
A contact area of A = 29 nm2 and an effective mass m∗ = 0.39m0 for WS2 were assumed,
as with the previous sample. The results are shown by solid lines in both figures with
parameters given in the legends and summarized in Table 5.3 for middle and top terrace.

d (nm) Φ1 (eV) Φ2 (eV)
middle terrace 4.88 0.91 1.06
top terrace 5.97 0.76 1.02

Table 5.3: Fitting results for Schottky barrier height and tunneling width for the two data
sets shown in figures 5.11 and 5.12.

From Schottky-Mott’s rule, Eq. 5.17, and Table 5.1, the theoretical ideal tunnel barrier
heights are calculated to be

Φ1 = ΦPtIr−χ = 0.90 eV (5.19a)
Φ2 = ΦAu −χ = 1.15 eV (5.19b)
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5.4 WS2 on gold

Figure 5.11: I-V measurement on the middle terrace of the WS2 flake, shown in linear scale
and as Fowler-Nordheim plot. The data range used to fit the Fowler-Nordheim model is
marked with orange and yellow circles. Solid lines show the fitting result with the parameters
as shown in the legend.

Figure 5.12: I-V measurement on the top terrace of the WS2 flake. The data range for the
Fowler-Nordheim fit is marked with orange and yellow circles. The fit result is shown by
solid lines for the parameters in the legend.
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5 Vertical tunneling through TMDC layers

and the tunnel widths, as determined from Fig. 5.10, are dmiddle = 3a and dtop = 5a, where
a = 6 Å is the single layer thickness of WS2.

The resulting values for the Schottky barrier heights are comparable in size for the
middle and upper terrace and lie close to the theoretical values. Moreover, additional
image force lowering further lowers the expected values. The difference in tunneling widths
∆d = 1.09 nm is equal to 1.8a, i.e. about two layers. The relative thicknesses between
middle and top terrace thus matches the expected step height from the AFM measurement.
However, the absolute tunneling thicknesses of ≈8a and ≈10a (where a = 6 Å) is twice the
value expected from the AFM profile, Fig. 5.10.

Several reasons could lead to these deviations. Firstly, as with the WS2 on graphene
sample described Sect. 5.3.1, systematic AFM measurement errors could occur, e.g. due to
water adsorption [229] . Unfortunately, the monolayer thickness could not be resolved in the
measurement, which would allow to reference the AFM topography to the known monolayer
thickness (identified through photoluminescence microscopy). Secondly, water adsorbents
also affect the current flow between tip and sample as the electrical contact may not be well-
controlled. Thirdly, the contact between TMDC flake and gold substrate was assumed to be
ideal. However, roughness of the surface may easily lead to on inhomogeneous contact that
would factor into the heterojunction formation as well as directly into the current flow. As
these issues are prone to affect all c-AFM measurements presented here, they are considered
more detailed in Sect. 5.5.

Indeed, repeated measurements at identical and different locations on the WS2 terraces
showed weak reproducibility of the I-V data, which may be due to variances of the contact
formation between substrate, sample and probing tip. An impression of the variation in
measurement results is given by several additional I-V graphs and Fowler-Nordheim analysis
in Appendix A.3.

5.5 Experimental challenges

5.5.1 Water adsorption in ambient atmosphere
From the comparison of measurements and theoretical predictions for the two samples anal-
ysed in this chapter, it was suggested that the contact between TMDC flake and c-AFM tip
may not behave ideally. Firstly, a systematic topographical offset was suspected to distort
the experimental determination of the van-der-Waals flakes’ thicknesses. Secondly, a non-
ideal electrical contact between surface and tip would affect the I-V characterization of the
tunnel barrier.

Indeed, several authors point out experimental challenges with c-AFM and AFM mea-
surements on two-dimensional materials. A possible reasons for systematic AFM topography
offsets was proposed by Gupta et al. to be due to a different tip-sample attraction force on
different materials, e.g. explaining an offset of 0.3 nm when measuring on graphene and
SiO2 [234]. This however can hardly explain the offset of about 3 nm obtained in Sect.
5.4.2. Additionally, the height resolution of the setup used here is only about 1 nm and
thus unable to resolve the offset stated by Gupta et al. Contrary to the lateral translational
stage, the z axis piezoelectric actuators of the AFM used here run in open-loop (only the
AFM feedback applies) which may slightly affect quantitative topography readings.

Protrusions of 0.3 nm height have also been described by Ando et al. and could be as-
signed to surface contamination with water adsorbates [235]. Furthermore, the authors
compare c-AFM measurement in ambient (60% humidity) to vacuum atmosphere and con-
clude that “current measurement in the existence of adsorbed water is not suitable for
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quantitative analysis” [235] of Fowler-Nordheim plots.
Furthermore, Sumaiya et al. report that “electrical contact resistance measurements

performed via c-AFM suffer from poor reliability and reproducibility . . . due to . . . sample
roughness, contamination via adsorbates, changes in . . . humidity and temperature, as well
as deformation of the tip apex caused by contact pressures and/or Joule heating” [236].
Switching from ambient to dry nitrogen atmosphere is suggested to resolve most issues;
additionally annealing and a higher contact force (> 30 nN) also improve the reliability.

The references strongly suggest that the measurements presented in this chapter may
be affected by water adsorption, as they were also performed under ambient conditions.
Water adsorption appears to be a general issue in c-AFM measurements, dry or vacuum
atmosphere should be used to verify this hypothesis in future measurements.

5.5.2 Substrate roughness
Another source for reliability and reproducibility issues stated by Sumaiya et al. is sample
roughness [236]. The use of an evaporated gold film on a chromium adhesion layer as a
substrate for the WS2 flake in the second sample was meant to render the photolithography
processing unnecessary, due to issues detailed in Sect. 5.5.3. However, the gold surface may
introduce additional surface roughness compared to the use of graphene on SiO2 for the first
sample.

(a) Overview of WSe2 on gold. (b) Zoom on gold surface and WSe2 edge.

Figure 5.13: SEM images of a WSe2 flake on an evaporated gold film. The high-resolution
allows to evaluate the surface roughness of the surface. (a) Overview with a scale bar of
10 µm. (b) Magnified view of flake edge to amplify the surface roughness (light grey area)
with a scale bar of 1 µm.

Fig. 5.13 shows SEM images of a TMDC flake on a comparable gold substrate. Surface
structure and roughness of the evaporated film are better resolved than in the AFM images.
While the TMDC flake is smooth, a rough gold surface is apparent from Fig. 5.13b. The
gold appears in islands of very roughly 100 nm diameter. The gold film was deposited at a
rate of about 1.5 Å/s onto unheated SiO2 substrate. These parameters are similar to the
evaluation of Figs. 1a and 5a by Liu et al. [237] and correlate with a surface roughness of
about 5 nm. The metal-WS2 interface partially inherits the roughness from the substrate,
since the layer doesn’t conformally follow the rough surface. It has been suggested that
a roughness >2 nm causes variations in the metal-TMDC distance leading to local band
bending and formation of trap states [238].
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5 Vertical tunneling through TMDC layers

Evidently, the gold surface may give rise to an ill-defined heterojunction or tunnel barrier
variations and additionally permit water or air inclusions below the exfoliated WS2 flake.
Another viable method for clean transfer of van-der-Waals crystals to noble metal surfaces is
to thermally evaporate the metal onto bulk TMDC crystals [239] or onto TMDC monolayers
[240]. Alternatively, it may be more feasible to return to using graphene as a bottom
electrode. This was done for the sample presented in Sect. 5.3, and gold deposition was
only needed to create an electrical contact to the larger smooth graphene flake.

5.5.3 Choice of photoresist
It was pointed out that using graphene as a bottom electrode placed directly onto SiO2
substrate has advantages over using a fully gold coated substrate. It is well-known that one
of the key advantages of working with two-dimensional materials is that they can be readily
stacked into van-der-Waals heterostructures [180].

For the sample fabrication gold contacts were created as electrical contacts by pho-
tolithography, gold-evaporation and lift-off. It was discovered during the preparation of
several samples used within thesis that the standard image reversal photoresist AR-U 4040
(Allresist) is not appropriate when TMDC flakes are already present on the substrate, since
heavy bubble formation after the first UV-exposure in the photoresist prevents further pro-
cessing. The exposure was tried for varying exposure times from -1 s to +10 s deviation
from the standard process. Fig. 5.14 shows the typical state of the photoresist imaged with
an optical microscope. The pads and leads (5 µm width) meant to define the gold electrical
leads can be seen at the right and centre of the image.

Figure 5.14: Typical state of a structure when bubbles are formed during the UV exposure.
The slanted parallel lines each have a width of 5 µm. The bubble formation occurs solely
on substrates that had been prepared with TMDCs flakes.

The established process used regularly on clean SiO2 substrates is tempering the pho-
toresist to room temperature, spin-coating it onto the substrate (15 s at 2000 rpm and 60 s at
6000 rpm), tempering (5 min at 85◦C) and image-wise UV exposure (2.6 s at 4.7 mW cm−2).
It is noted that the irradiance given by the optical energy controller of the mask aligner MA
45 (SUSS) at channel 1 (i.e. 4.7 mW cm−2) is probed at 365 nm. The photoresist AR-U 4040
is photosensitive at 365 nm, 405 nm and 436 nm. These spectral lines of the mercury-vapor
lamp can be assumed to be roughly of the same intensity. The crosslinking bake (5 min at
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103◦C) and flood exposure (29 s at 4.7 mW cm−2) were not performed when bubbles forma-
tion occured. Annealing the sample at 160° (5 min) could not solve the bubble formation
issue. Complete removal of the TMDC flakes by hydrofluoric acid (1 min) however did.

Bubble formation during the exposure is often due to out-gassing of nitrogen gas in
(typically positive but also reversal) photoresists on diazonaphthoquinone (DNQ) basis.
Ideally, nitrogen diffuses rapidly from the resist film. However, if nitrogen cannot escape
quickly, bubbles, blisters or cracks can form. Typically, this is the case for thick resist
layers, high exposure intensity or insufficient soft-bake tempering prior to exposure. For the
TMDC sample here, nitrogen gas may be trapped on the sample due to adhesion on TMDC
flakes or residuals. Using a negative resist without out-gassing components may also solve
the issue. [241]

Switching to the negative resist AR-N 4340 (Allresist) indeed solved the issue. Ap-
propriate process parameters were found close to the data sheet with spin-coating (60 s at
4000 rpm), soft-bake (1 min at 90◦C), UV exposure (6.4 s at 4.5 mW cm−2), crosslink bake
(2 min at 95◦C) and development (60 s in AR 300-35, Allresist).

5.5.4 Sample defects due to current flow
Lastly, it was observed that applying a voltage bias and measuring current flow across
the TMDC flake can permanently damage the sample. Fig. 5.15a shows one of these
characteristic defects with a diameter of about 3 µm. The sample shown is the WSe2 on
gold substrate, which was depicted in the SEM images of Sect. 5.5.2. A white line marks
the profile extracted into Fig. 5.15d, showing the terraced multilayer structure. All defects
visible in the AFM images are also seen at the bottom of Fig. 5.13a.

In order to inspect the defect formation further, two I-V scan were performed at locations
next to the existing defect. Firstly, a sequence of five scans with contact force of 50 nN and
maximum current of 1 nA was applied. Fig. 5.15b shows the protrusion, which occurred
due to these scans. The main protrusion has a diameter of about 1 µm, however a total
diameter of 3 µm is observed for the defect. Another I-V sequence of three scans with
maximum current of 1 nA led to the formation of the triangular defect shown in Fig. 5.15c,
which lies at the edge of the layered flakes. Again, the diameter is about 3 µm.

The protrusions in Figs. 5.15a and 5.15b have heights of 50 - 60 nm. One hypothesis for
the formation of these nano summits is that the metallic tip welds itself to the van-der-Waals
layer due to heating from the current flow and then pulls the layer up when retracting after
the I-V measurement. Furthermore, the formation of a tip-attached water nanomeniscus
could increase the tip-sample adhesion force even further [242]. From Fig. 2.8 one can read
the adhesive force of the contact-mode tip on gold of to be 6 nN, which translates into a
cohesion energy of about 2.5 J m−2 for a tip area of 29 nm2 [242, Methods]. Assuming an
interlayer adhesion force of 0.5 J m−2 as for MoS2/MoS2 [242], hoisting the WSe2 layer with
the nanotip appears a plausible explanation.

Fig. 5.16 shows the general conditions of a sample images prior to performing I-V mea-
surements, Fig. 5.16a, and after having performed many measurements, Fig. 5.16b. The
strong degradation and formation of protrusions is apparent and most definitely affects both
reproducibility and reliability of the c-AFM measurements.

5.6 Conclusion
The nanoscopic measurement technique c-AFM was introduced in this chapter to measure
vertical currents on two WS2 flakes placed on graphene and on gold, respectively. The
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5 Vertical tunneling through TMDC layers

(a) Single defect prior to sequential scans. (b) Second defect to the right of (a).

(c) Third defect to the left of (a).
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(d) Profile extracted from (a).

Figure 5.15: Different surface defects on a terraced WSe2 sample that appeared after c-AFM
measurements at the respective locations stated in the captions of (a-c). (d) shows the step
profile marked in (a) as a white horizontal line.

(a) WS2 flake prior to I-V measurements. (b) WS2 after many I-V measurements.

Figure 5.16: Comparison of the condition of a WS2 flake (a) before and (b) after many
c-AFM measurements primarily on the terraces of different layer thicknesses. The sample
is heavily deteriorated which complicates topography and I-V measurements.
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measured currents through the TMDC flake were identified as due to Fowler-Nordheim
tunneling. By fitting a Fowler-Nordheim model to the experimental data, the Schottky
barrier height of WS2 to the bottom material and to the platinum tip, and in one case the
barrier width, were extracted and compared to expected ideal values.

It was found, however, that the AFM shows systematic measurement artifacts and the
c-AFM measurements suffer from weak reproducibility. Several experimental challenges
are summarized and referenced to relevant literature. The take-away messages for future
experiments are as follows:

1. The nanoscopic c-AFM measurements in ambient conditions are influenced by uncon-
trolled water adsorption on the sample surface and the probing tip, and the use of dry
atmosphere is recommended.

2. High roughness of the metal substrate cause an ill-defined contact and Schottky bar-
rier between WS2 and the substrate. The use of graphene as a bottom electrode
circumvents the fabrication issues connected to the evaporated thin film.

3. Photo-resists with nitrogen out-gassing components are not well-suited for samples
that are prepared with TMDC flakes. This is probably due to gas adhesion on van-
der-Waals crystals or fabrication residuals. An alternative negative photo-resist is
suggested.

4. Strong deterioration of the TMDC flake even after single I-V measurements are ob-
served. Tip heating and water menisci are suggested as main origins causing an
excessive adhesion between tip and sample, which may generates protrusions of the
sample upon retraction of the tip.

Further c-AFM measurements on TMDC, obviously considering these observations, seem
promising as the preliminary studies could already clearly identify Fowler-Nordheim tun-
neling, withstanding the above-mentioned issues which challenge a faithful quantitative
interpretation. Prospectively, more complex two-dimensional heterostructures can be fabri-
cated with relative ease, allowing for vertical tunneling (transistors) with multiple barriers
[185–187] and eventually resonant tunneling [92, 243, 244].
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Chapter 6

Terahertz higher harmonics from
p-doped silicon

6.1 Introduction
The preceding chapters have focussed on the physics of two-dimensional systems, their inter-
action with light and prospective application in nanoscale devices. Two-dimensional materi-
als are even heralded as a promising platform for tailored nano-electronics and photonics at
terahertz frequencies [245]. Viti and Vitiello make out the major disruptive branches in the
field: THz detection, modulation, non-linear light–matter interaction and THz nanoscience
[245]. With respect to non-linear optics, graphene has already fuelled relevant research
on saturable absorption [246, 247] and higher harmonic generation [248, 249] owing to its
unique bandstructure [250]. Recently, higher harmonics up to the ninth order could be
demonstrated from graphene coupled to a gold-grating metasurface from a fundamental of
0.7 THz and field strength of ∼30 kV cm−1 [251].

While the non-linear response of two-dimensional materials is drawing increasing atten-
tion, many aspects of optical harmonic generation in bulk crystals are still subject to avid
research [252–255]. In fact, the first observation of high-order harmonics in bulk crystalline
solid was only made in 2010 by using mid-infrared few-cycle laser pulses [256]. Still, the
differences of the microscopic mechanisms that govern higher harmonic generation from
solids as opposed to atomic gases remain a topic of intense debate [257, 258]. Furthermore,
a clear understanding of the microscopic processes, their relationship to the bandstructure
and macroscopic propagation effects is still lacking [259]. An exciting research direction is
the use of higher harmonic spectra for all-optical reconstruction of the bandstructure [260–
262]. This is achieved by exploiting the coherent motion of carriers driven by intense laser
pulses. Using long-wavelength (below-the-bandgap) pulses, the spectra reflect the ultrafast
dynamics and non-linearities of carrier wave packets in conduction and valence band of the
bulk crystal [263].

In this chapter, these ideas are drawn upon to study higher harmonic generation from
p-doped silicon. In contrast to the non-linearity from electrons in n-doped silicon, the
mechanisms for holes in the valence band are not yet equally well understood [264–266].
Here, the relative importance of the microscopic mechanisms underlying the non-linear
response is analysed with respect to the light and heavy hole band dynamics in two silicon
crystals at cryogenic and room temperature, respectively.

For the case of electrons, it is usually assumed that higher harmonics originate from a
combination of bandstructure non-parabolicity or the energy dependence of the momentum
scattering rate. The first scenario considers that carriers are driven in their band by the
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6 Terahertz higher harmonics from p-doped silicon

pulse electric field. For high intensities, carriers are driven with a large amplitude and the
parabolic band approximation fails. Hence, non-linear frequency components are generated.
In the second scenario, the accelerated carries experience energy-dependent momentum scat-
tering mechanisms. Since the carriers energy oscillates with the momentum according to
the band relation E(k), this introduces a non-linear damping term and thus higher harmon-
ics. The relevant scattering mechanisms are scattering by ionized impurities, acoustic and
optical phonons.

These mechanisms are disentangled by modelling the higher harmonics spectra using a
one-dimensional single particle time domain simulation, which allows to inspect the relative
strengths of the two contributions. These simulations are motivated by measurements per-
formed by co-researches at the FELBE1 and TELBE2 research facilities. Spectra from two
boron-doped silicon crystals were acquired by using short terahertz pulses of high intensity
at cryogenic and room temperature, respectively.

The chapter covers the theoretical background on the bandstructure model, the scatter-
ing mechanisms and the influence of the density of states. Then, the single particle time
domain model is explained and the results from the numerical solution of the differential
equation are presented. Finally, the results are compared to the experimental data and
a conclusion with respect to the origin of the higher harmonics from p-doped silicon is
discussed.

6.2 Theory

6.2.1 Silicon bandstructure model
Silicon has a diamond cubic crystal structure and a lattice parameter of 0.543 nm. Its
Brillouin zone is depicted in Fig. 6.1. The high symmetry points and their connecting paths
are marked with red circles and lines, respectively.

Figure 6.1: Face-centered cubib unit cell of Silicon. The paths between the high-symmetry
points represented in the bandstructure diagram are shown in red.

1Free Electron Laser at ELBE (Electron Linear accelerator with high Brilliance and low Emittance),
Helmholtz-Zentrum Dresden-Rossendorf

2High-Field High-Repetition-Rate Terahertz facility at ELBE, Helmholtz-Zentrum Dresden-Rossendorf
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The bandstructure relates the momentum position of a carrier in the Brillouin zone to
an energy. Fig. 6.2 shows a two-dimensional representation of the bandstructure, where the
path along the high-symmetry points is mapped onto the x-axis in units |k|. This depictions
is somewhat uncommon for the non-radial paths (X-W-K), as they are not represented
along the path and thus appear rather short, but helps to give a more intuitive idea of the
curvature/slope of E(k). While some parts of the bandstructure can be approximated with a
parabolic energy band approximation, e.g. around Γ as depicted in the insets of Fig. 6.2, in
general numerical models are employed to gain a full representation of the bandstructure for
larger k-values and across the whole Brillouin zone. Fig. 6.2 shows the result for the tight-
binding model including spin-orbit coupling (solid line) [267] and a Non-Local Empirical
Pseudo Potential Method (EPM) including spin-orbit coupling (dashed line) [268, 269] for
the valence bands in two parts of the Brillouin zone (Γ-X and Γ-K). The fact that heavy
and light hole valence band both converge at the Γ point means that carriers in both bands
contribute to the higher harmonic generation.

Obviously the exact shape of the bandstructure differs for the two approaches, even in
the vicinity of Γ, see insets. The EPM is expected to be more exact, and the calculations
in this chapter are based on numerical data based on this model3 This is possible since the
carrier dynamics along Γ-X, or ⟨100⟩, are the focus of this chapter. The tight-binding model
is only utilized to allow a comparison of the three-dimensional density of states for which
the whole Brillouin zone must be discretized. The comparison of curvatures along Γ-X and
Γ-K shows obvious differences pointing towards different effective masses along those two
directions. To verify that this is indeed plausible, these values are compared to a warped
energy surface approximation [270, p. 12ff].
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Figure 6.2: Silicon bandstructure calculated with tight binding (solid) and for selected
orientations and bands with EPM (dashed). The insets show a zoom onto the vicinity of Γ,
pointing out the different curvatures of heavy and light hole band and the splitting of the
split-off band as well as different curvatures along the directions Γ-X and Γ-K.

Warped energy surface approximation

Using the warped energy surfaces model [270, p. 12ff, 271, p. 55], the effective masses of
heavy and light hole bands in Silicon can be approximated. The band parameters of common

3calculated by C. Jungemann, Institut für Theoretische Elektrotechnik, RWTH Aachen.
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cubic semiconductors are given in Table 1.1 and Eq. 1.44 of Lundstrom [270, p. 14f] as A =
4.22, B = 0.78, C = 4.80, giving the parameters

a = ℏ2A

2m0
, b = B

A
, c = C

A
(6.1)

The warping function g is [270, Eq. 1.43]

g =
(
b2 + c2

(
sin4(θ) cos2(ϕ) sin2(ϕ) + sin2(θ) cos2(θ)

))1/2
(6.2)

from which the effective mass for heavy and light holes, respectively, is calculated

m∗ = − ℏ2

2a (1 ± g(θ, ϕ)) ; (6.3)

Table 6.1 demonstrates that the magnitude of the difference in effective masses between
heavy and light hole in fact depends strongly on the crystal orientation, as is consistently
predicted by the warped energy surface approximation and the EPM. However, the tight
binding model displays severe discrepancies with regard to the effective mass. For reference,
the average heavy and light effective masses (averaged over all directions) are 0.467 m0 and
0.159 m0, respectively [272, p. 94].

Γ-X (θ=π
2 , ϕ=0) Γ-K (θ=π

2 , ϕ=π
4 )

heavy hole light hole heavy hole light hole
WARP 0.291 m0 0.200 m0 0.589 m0 0.148 m0
EPM 0.273 m0 0.199 m0 0.551 m0 0.146 m0
TB 0.564 m0 0.303 m0 0.943 m0 0.249 m0

Table 6.1: Comparison of effective masses for heavy and light hole along to crystal orien-
tation calculated using three different models: warped energy surface (WARP), EPM and
tight binding (TB).

6.2.2 Scattering mechanisms
In the semi-classical view on carrier transport, the wave packet is described in the particle
picture. Several assumptions allow this simplification. Momentum and energy are assumed
to be known with low uncertainty. The position is assumed to be well known in comparison
to length scales over which the potential may vary. In this case, carrier motion and velocity
can be described in classic terms with the well-known relation between force and (crystal)
momentum F = ℏk̇. For Silicon, this means that the potential must vary more slowly
than the hole’s thermal de Broglie wavelength of about 6 nm at room temperature. Smaller
scales only become critical in ultra-small devices, quantum wells or nanowires. However, a
quantum-mechanical treatment is required to describe scattering events, since they involve
varying potentials on small scales. [270, p. 40f]

In the particle picture, carriers (in the form of Bloch waves) move through the crystal
undisturbed until they encounter a (weak) perturbation which causes a scattering event and
changes its momentum k0 to k′

0. The transition rate S(k0, k
′
0) depends on the perturbing

potential Us(z, t) of the scattering type via the matrix element Ha,e
k′

0k0
for absorption E ′ =

E + ℏω and emission E ′ = E − ℏω.

S(k0, k
′
0) = 2π

ℏ

∣∣∣Ha,e
k′

0k0

∣∣∣2 δ(E ′ − E ± ℏω) (6.4)
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This is Fermi’s Golden Rule, a central equation to determine the scattering in semiconduc-
tors from the matrix element Hk′

0,k0 of the scattering potential

Hk′
0,k0 ≡

�
ψk′

0
(z)Us(z, t)ψk0(z)dz (6.5a)

≃ 1
L

� +L/2

−L/2
e−ik′zUs(z, t)eikzdz (6.5b)

The approximation Eq. 6.5b assumes that the overlap integral approaches unity, which is
the case for parabolic bands. The electron is then expressed in a plane wave expansion
rather than in Bloch waves [270, p. 45]. The perturbing potential can be similar to a δ-
like center (defect or impurity) or periodic (phonon), depending on the type of scattering
experienced by the carrier [271, p. 55ff, 273, Table 2].

Momentum and energy scattering

In order to find the transition rates, one needs to identify the perturbation potentials for
the applicable scattering events. In the following, scattering by ionized impurities, acoustic
and optical phonons is discussed.

According to the previous description, the scattering rate Γ = 1
τ(p⃗0) is given by the

average time between collisions

1
τ(p⃗0)

=
∑
p′,↑

S(p⃗0, p⃗
′) (6.6)

However, two other measures must be introduced that are critical for distinguishing different
scattering mechanisms: momentum relaxation and energy relaxation.

Several scattering mechanisms mainly deflect by small angles. The carriers are thus not
scattered isotropically and even after several scattering events, the original momentum may
only be fractionally affected. The momentum relaxation rate is a measure of the mean time
(and thus number of scattering events) necessary until a carrier loses its original direction.
It is defined via the polar angle α between the momenta p⃗0 before and p⃗′ after a scattering
event. The average time to scatter the carrier into any direction is thus increased.

1
τm(p⃗0)

=
∑
p′,↑

S(p⃗0, p⃗
′)
[
1 − p′

p0
cos(α)

]
(6.7)

The energy relaxation rate, on the other hand, is the scattering rate weighted by the
fractional energy change. One example where it would differ from the momentum relaxation
rate is a scattering event that merely changes the direction of a particle while its energy
remains constant (elastic collisions).

1
τE(p⃗0)

=
∑
p′,↑

S(p⃗0, p⃗
′)
[
1 − E(p⃗ ′)

E(p⃗0)

]
(6.8)

These three quantities are related to how often, in what direction and at what energy loss
carriers are scattered when moving through a crystal.
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6 Terahertz higher harmonics from p-doped silicon

Perturbing potentials

The scattering potential of an ionized impurity can be described via the Coulomb potential
with an additional term accounting for screening by mobile carriers n0

Us(r) = q2

4πϵrϵ0r
e−r/Ld ionized impurities (6.9)

where Ld =
√
ϵrϵ0kBT/(q2n0) is the Debye length, a measure of the screening distance. For

low mobile carrier densities, the exponential screening term can be neglected.
Scattering by phonons occurs because vibrations in the crystal lattice deform the band-

structure and create a periodic grating that scatters the carriers. Acoustic phonons are
waves where oscillating neighbouring atoms are in phase and the lattice spacing is affected
by the strain δu

δx
instead of directly by the atom displacement u(x, t). On the other hand,

optical phonons displace neighbouring atoms with a half-cycle phase-shift and the lattice
spacing is directly affected by the atom displacement u(x, t). The corresponding perturbing
potentials are defined via their respective deformation potential constants DA and DO [270,
p. 61]

UAP (x, t) = DA
δu

δx
acoustic phonons (6.10a)

UOP (x, t) = DOu(x, t) optical phonons (6.10b)

Both acoustic and optical phonon scattering are relevant processes for hole scattering in
silicon. The constants DA and DO (with different units) for silicon are given in Table
6.2. For electrons, on the other hand, optical phonon scattering is limited by symmetry
conditions and forbidden along ⟨100⟩.

From the perturbation potentials given above, one can now go on to calculate the scat-
tering times for the different scattering processes. Finally, the scattering rates can be added
together to yield the total scattering time, according to Matthiessen’s rule [270, p. 167], see
Sect. 6.2.2.

Ionized Impurity Scattering

Having determined the perturbing potential of an ionized impurity, Eq. 6.9, one can calculate
the Hamiltonian using Eq. 6.5b using spherical coordinates.

Hp⃗ ′,p⃗0 = 1
Ω

�
e−ip⃗ ′r⃗/ℏUs(r)eip⃗r⃗/ℏd3r (6.11a)

= 1
Ω

(
q2

4πϵrϵ0

) �
e−ip⃗ ′r⃗/ℏ

(
r−1e−r/Ld

)
eip⃗ r⃗/ℏd3r (6.11b)

= 1
Ω

(
q2

4πϵrϵ0

) � 2π

0
dϕ

� θmax

θmin

� ∞

0
e−r/Ldei(p⃗−p⃗ ′)·r⃗/ℏrdr sin θdθ (6.11c)

One can use the fact, that impurity scattering is elastic and energy is conserved as well
as ℏβ⃗ = p⃗′ − p⃗ and |ℏβ| = 2p sin(α2 ) as illustrated in the inset of Fig. 6.3. This allows to
formulate [270, p. 67f]

Hp⃗′,p⃗ = 1
Ω

(
q2

4πϵrϵ0

) � ∞

0

� 2π

0

� +1

−1
er/Lde−iβr cos θd(cos θ)dϕdr (6.12a)

= q2

Ωϵrϵ0

1
β2 + 1/Ld

(6.12b)
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6.2 Theory

The scattering rate for a single impurity per volume Ω then follows from Fermi’s Golden
Rule, Eq. 6.4. For the total scattering rate, one multiplies by the number of impurities in
that volume NΩ.

S(p⃗, p⃗′) = 2πNq4

ℏϵ2
rϵ

2
0Ω

δ(E ′ − E)[
4
(
p
ℏ

)2
sin2

(
α
2

)
+ L−2

d

]2 (6.13)

This approach, which is based on a screened Coulomb potential, is known as Brooks-
Herring’s approach [270]. Continuing to calculate the momentum scattering rate as de-
scribed by Eq. 6.7 leads to an expression which correctly describes the decreasing influence
of ionized impurity scattering for high energy carriers, because fast-moving carriers spend
less time interacting with the perturbing potential. However, for carrier energies approach-
ing zero the momentum scattering rate diverges. This means that once carriers are described
by E = 0, they will be unable to gain kinetic energy since they experience infinite scattering.
This is shown in Fig. 6.3.

The alternative Conwell-Weisskopf approach offers a solution [274]. Screening is ne-
glected altogether (Ld → ∞). Instead, scattering by the Coulomb potential of a single
impurity is limited to a distance bmax = 1

2N
−1/3 equal to half the distance between neigh-

bouring impurities. Since carriers passing by an impurity at a distance greater than bmax
will not be deflected, this creates a minimum deflection angle θmin = 2 cot−1(bmax 2E

Zq2 ). For
calculating the momentum scattering rate, from Eqs. 6.13 and 6.7 in a spherical coordinate
system, the deflection angle α simply equals the azimuthal angle θ; it is integrated over the
possible scattering angles within θmin < α < π. The result gives as an expression for the
momentum scattering rate after Conwell-Weisskopf that is applicable for low doping and
low energy carriers [270, p. 70ff]

Γm(E) = πq4

(4πϵ0ϵr)2
√

2m∗
NE− 3

2 ln
(

1 +
(
E

E0

)2)
(6.14)

where E0 = N
1
3 q2

4πϵ0ϵr . Fig. 6.3 demonstrates how Eq. 6.14 does not diverge for small energies,
e.g. for holes passing through the Γ point of silicon’s bandstructure.

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Sc
att

eri
ng

 Ra
te 

(1/
ps

)

E n e r g y  ( e V )

 C o n w e l l - W e i s s k o p f
 B r o o k s - H e r r i n g

Figure 6.3: Comparison of momentum scattering rate according to Conwell-Weisskopf and
Brooks-Herring for silicon with doping density N=5.7 × 1015 cm−3 at room temperature.
The inset depicts a carrier scattered in an elastic collision by an angle α from p⃗ to p⃗ ′.
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6 Terahertz higher harmonics from p-doped silicon

Acoustic Phonon Scattering

Using the perturbing potential for acoustic phonons, Eq. 6.10a, and an elastic phonon wave

u(x, t) = Aβe
+i(βx−ωt) + A∗

βe
−i(βx−ωt) (6.15)

one can evaluate the squared matrix element to yield [270, Eq. 2.60]

|Hk′
0,k0|2 = |DAβ|2|Aβ|2δp⃗ ′,p⃗±ℏβ (6.16)

Now, using Fermi’s Golden Rule, Eq. 6.4, and unifying momentum and energy conservation
into a single expression by assuming parabolic bands, the transition rate yields [270, p. 77]

S(k0, k
′
0) = 2π

ℏ
|DAβ|2|Aβ|2 1

ℏvβ
δ

(
± cos(θ) + ℏβ

2p ∓ ωβ
vβ

)
(6.17)

The total phonon energy |Aβ|2 must account for quantized phonon absorption and emission
and hence is [270, p. 78]

|Aβ|2 = ℏ
2ρΩωβ

(
Nωβ

+ 1
2 ∓ 1

2

)
(6.18)

Finally, one needs to integrate the transition rate Eq. 6.17 over all possible transitions
according to Eq. 6.7 to find the momentum relaxation rate. Here, conservation of energy
and momentum dictates that

ℏβ = 2p
[
∓ cos(θ) ± ω

v(p)β

]
(6.19)

via the polar angle θ between p and β, where v(p) ≈ 107 cm s−1 is the carrier velocity. The
limits of cos(θ) of ±1 determine the range of phonon wave vectors β, that are involved
in these scattering events and thus define the integration limits ℏβ ∈ [0, 2m∗v(p)]. For
intravalley scattering, only phonons near the Brillouin zone centre can participate in the
scattering processes. In this regime, their dispersion relation is approximately linear and
given by the sound velocity vs = ω/β.

The final expression for the momentum relaxation rate due to acoustic optical phonon
scattering yields [270, Eq. 2.84]

Γm(E) = πD2
AkBT

ℏcl
g(E) (6.20)

where cl = v2
sρ is the elasticity constant given by the sound velocity and the mass density.

The values are given in Table 6.2. g(E) is the density of states.

Parameter Symbol Value in Si
Mass density ρ 2.329 g/cm3

Lattice constant a 5.43Å
Longitudinal acoustic velocity vs 9.04·105 cm/s
Hole acoustic deformation potential DA 5.00 eV
Hole optical deformation potential4 DO 6.00·108 eV/cm
Longitudinal optical phonon energy EO 0.063 eV

Table 6.2: Transport parameters for silicon. [270, p. 114f]

4Incorrectly tabulated in [270]. Here corrected with missing factor 108.
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Optical Phonon Scattering

The scattering potential for optical phonons scattering Eq.. 6.10b resembles that of acoustic
phonons up to a factor of β2 in the squared matrix element

|Hk′
0,k0|2 = |DAAβ|2δp⃗ ′,p⃗±ℏβ (6.21)

Furthermore, since the dispersion relation of optical phonons (nearly constant) differs from
that of acoustic phononcs (β = ω/vs), the condition for phonons that can be part of a
scattering event changes

ℏβ = p

[
∓ cos(θ) ±

√
cos2(θ) ± ℏω

E(p)

]
(6.22)

As above, the term cos2(θ) ≤ 1 limits the maximum wave vector of the optical phonons.
Again, only optical phonons near the Brillouin zone centre are relevant in intravalley scat-
tering. Moreover, scattering with optical phonon cannot be assumed to be elastic as their
energy is comparable to thermalized carriers at room temperature.

Using the limitation on phonon wavevectors β as boundaries for the integration over
transition rates, one obtains the momentum relaxation rate [270, Eq. 2.86]

Γm(E) = πℏD2
O

2ρEO
{(NO + 1/2 ∓ 1/2)g(E ± EO)} (6.23a)

≡ πℏD2
O

2ρEO
{NOg(E + EO) + (NO + 1)g(E − EO) · u(E − EO)} (6.23b)

where u(E − EO) is the Heaviside step function that takes into account the fact that the
emission of an optical phonon is limited to phonons that exceed the optical phonon energy
EO, given by Table 6.2, and

NO =
(
e

EO
kBT − 1

)−1
(6.24)

Matthiessen’s rule

Matthiessen’s rule states that one can assume the different scattering contributions to be
independent of each other and obtain the total scattering time by computing the sum of the
individual scattering rates [270, p. 167]. Fig. 6.4 shows a graph with the total and individual
scattering times for the two different temperatures ans doping densities considered in this
chapter.

Furthermore, as the single particle is expected to represent the average momentum
of an ensemble of thermally distributed carriers, the total energy-dependent momentum
scattering rate Γm(E) is convolved by a normalized Gaussian function with a standard
deviation σ = 2kBT

G(E) = 1√
2πσ2

e− E2
2σ2 (6.25)

resulting in a smoothed scattering rate in general and an increased scattering rate at the
centre of the Brillouin zone k = 0 and E = 0 eV. The normalized Gaussian is shown in
Fig. 6.4 (dotted yellow line).

The convolved momentum scattering times at k = 0 from Fig. 6.4 result in 33.3 ps and
0.2 ps for the temperatures 10 K and 300 K (and corresponding carrier densities), respec-
tively. These values are compared to literature mobilities µ = 1 × 105 cm2 V−1 s and µ =
5 × 102 cm2 V−1 s [275, 276] summarized in [277, p. 123] which yield scattering times of
33.5 ps and 0.2 ps, respectively, substantiating the plausibility of the scattering rate model
assumptions.
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Figure 6.4: Scattering rate contributions from ionized impurities, acoustic and optical
phonons (dashed lines). The sum makes up the total scattering (black). Assuming an
initial thermal energy distribution, the total scattering rate is smoothed with a Gaussian
(σ = kBT, yellow dotted line) to obtain the convolved momentum scattering rate (purple).

6.2.3 Density of states
It has become clear that the phonon scattering rates due to acoustic and optical phonons,
Eqs. 6.20 and 6.23b, depend directly on the available density of states for the carriers to
scatter into. In Fig. 6.2, the bandstructure appears to be a continuous distribution mapping
k-vector to energy. In reality, in a semiconductor of finite size only a finite number of k
states may exist, due to the finite number of atoms with finite number of energy levels
(bands). In k-space, these states are uniformly distributed across the Brillouin zone. The
density of states (per volume in k-space) thus is a constant

gk = 1
(2π)d (6.26)

where d is the dimensionality of the system (equal to 3 for the bulk crystal considered here),
and a factor of 2 is neglected which would account for the spin degeneracy of charge carriers.
[270, p. 26]

With a uniform distribution in k-space, the density of states in energy space necessarily
cannot be uniform for a non-linear bandstructure. It is instead given by counting the number
of states Ω(E) per interval [E,E + dE].

g(E) = 1
V

∑
BZ
δ(E − Ei(k⃗′ )) (6.27)

for the i-th band.
The sum was calculated numerically for the bands according to the tight binding model,

since data for the full Brillouin zone is available. For the crystal structure of silicon, only
a wedge of only 1

48th of the Brillouin zone needs to be considered when exploiting all sym-
metries, as seen from Fig. 6.1 [270, p. 21]. For the integration, a cubic k-space mesh of
resolution 2π/N with N = 150 was used and an energy resolution of ±0.05 eV. The den-
sity of states in units of eV−1 m−3 is obtained by considering the volume of a single state
V = (N a

2π )3. Fig. 6.5 visualizes the k states associated with a given energy for the heavy
hole band of silicon that are summed to obtain the density of states. An analogous depic-
tion for the light hole band is given in Appendix A.4. Both bands are strongly warped, i.e.
anisotropic, for larger energies.
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(a) E = -2.2 eV (b) E = -1.8 eV (c) E = -1.4 eV

(d) E = -1.0 eV (e) E = -0.6 eV (f) E = -0.2 eV

Figure 6.5: k-states associated with different energies (∆E ± 0.05 eV) for the heavy hole
band. The density of states is given by adding the number of k states per energy bin. The
high symmetry points are marked by red circles. The axes are in units of k = 2π/a.

Fig. 6.6 shows the density of states for the heavy hole band of silicon with crosses
indicating the energy bins ∆E ± 0.05 eV with colors relating to the selected visualization in
Fig. 6.5. The peak at -1.5 eV is due to the end of the Brillouin zone at the L-point as seen
in Fig 6.2.

The density of states can be obtained more easily for a monotonic and spherically sym-
metric dispersion relation, e.g. an isotropic parabolic bandstructure. In this case (or in these
regimes) the density of states is directly given by the change in occupied volume fraction
Ω(E) of the Brillouin zone, sketched in Fig. 6.5, such that

g(E) = dΩ(E(k))
dE

= dΩ(k)
dk

dk

dE
= 4πk2

V

dk

dE
(6.28)

which is given here in three dimensions. An additional factor of 2 needs to be added to
account for spin degeneracy.

Applying Eq. 6.28 to a parabolic band E = (ℏk)2

2m∗ , the general three-dimensional density
of states is obtained

g(E) = 2 · 4πk2

(2π)3
dk

dE
(6.29a)

= (2m∗)3/2

2π2ℏ3

√
E (6.29b)

It is noted that for the case of anisotropic bands, different effective masses are usually
averaged. Due to the different dependencies on the effective mass the averaging method
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Figure 6.6: Density of states of the heavy hole band numerically calculated from a tight
binding bandstructure model. Colored crosses mark the energy bins of equal size ∆E and
relate to Fig. 6.5.

depends on the purpose. To average the longitudinal and transversal components of the
conduction band, for example, the geometric mean is applied for the density of states ef-
fective mass and the harmonic mean is applied for the conductivity effective mass. For the
approximately spherical but degenerate valence bands, the generalized mean is used. The
split-off band (m∗ = 0.29m0) is additionally weighted by the split-off energy ∆ = 43 meV.
[278, 279]

m∗
dos =

(
mhh

3/2 +mlh
3/2 + (msoe

− ∆
kBT )3/2

)2/3
(6.30)

The calculated total m∗
dos yields 0.527m0 at 0 K and 0.539m0 at 300 K. However, at ele-

vated temperatures the approximated calculation is not very reliable and a density of states
effective mass of 0.59m0 at 4 K and 0.81m0 at 300 K should be used instead mainly due to
the influence of light hole non-parabolicity and additional split-off states [277, 280].

6.2.4 Equation of motion
In the semi-classical picture of charge transport, one can use a ballistic assumption for the
movement of electrons and apply a damping or scattering term to account for the combined
scattering events. In this case, the equation of motion already introduced in Eq. 3.3 can
be applied, where here we use the notation E⃗(t) for the electric field and E for the carrier
energy to describe the motion of the hole carriers k⃗(t) in momentum space

dk⃗(t)
dt

= − q

ℏ
E⃗(t) − k⃗(t)Γm(E) (6.31)

where the momentum scattering rate Γm(E) is given as the sum of scattering rates due to
ionized impurities, acoustic and optical phonons. The energy of a carrier is related to its
momentum k by the dispersion relation given by the bandstructure.

For the experiments modelled here, an intense short Terahertz pulse was used to accel-
erate the hole carriers in the silicon crystal. The electric field E⃗(t) is given by a Gaussian
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pulse defined via the maximum electric field E⃗0, pulse width T , frequency ω and phase shift
φ0

E⃗(t) = E⃗0e
−2 log(2)( t

T )2

eiωt+φ0 (6.32)
Solving the differential equation of motion numerically yields the response of the hole

carriers to the driving force exerted by the Terahertz pulse - an oscillatory movement through
the bandstructure parallel to the field polarization.

To find the carrier group velocity, the relationship between position k⃗ in momentum space
and associated velocity v⃗(k⃗) can be used, as given by the derivative of the bandstructure
[281]

v⃗(k⃗) = 1
ℏ

∇k⃗E(k⃗) (6.33)

By solving the differential equation of motion for k(t) and applying the relationship v(k),
one can thus obtain the time-dependent group velocity v(t).

It is noted that the effective mass m∗ can also be calculated by evaluating the second
derivative of the bandstructure at the Γ point. In one dimension it is given by

1
m∗ = ℏ−1 dv

dk
= ℏ−2d

2E

dk2 (6.34)

6.2.5 Terahertz emission
The coherently emitted field Eem is proportional to the current density [281, 282]

j(t) = −qnv(t) = −2Eemit(t)/(Z0d) (6.35)

where n is the hole density, Z0 = µ0c is the impedance of free space and d is the thickness of
the sample. If the thickness d is much smaller than the wavelength λ, all carriers are driven
by the same electric field E(t), otherwise corrections have to be considered.

Initially, a proportionality between current density j(t) and emitted field Eem(t) may
seem counter-intuitive. Usually, the electromagnetic field’s power radiated by a single
charged particle is proportional to its acceleration v̇(t) rather than its velocity v(t) according
to Larmor’s formula [84, p. 665]

P = 2
3
q2

c3 | ˙⃗v|2 (6.36)

However, rather than treating the charge as a single moving particle, one assumes an
“extended sheet of simultaneously moving particles” [282]. The interference within the sheet
current between the individual contributions yields an electric field at the sample E that is
proportional to the current density j(t) ∝ v(t) rather than to the charge acceleration [283,
Eq. 3.7]

E = − Z0

1 + √
ϵr
j(t) (6.37)

The emitted THz radiation Eemit will be in the form of plane waves. Now, the specific
geometry of the experimental setup, as shown in Fig. 6.7, is important for the detection.
By imaging the silicon crystal onto the detector via two mirrors, one obtains the emitted
electric field Eemit = −Edetector [281].

It is thus justified to equate the detected electric field to the emitted electric and assume
proportionality to the group velocity. Rearranging Eq. 6.35 yields

Eemit(t) = −0.5Z0d · qnv(t) (6.38)
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6 Terahertz higher harmonics from p-doped silicon

Figure 6.7: The silicon crystal is excited by the Terahertz pulse which is focused by a
paraboloidal mirror. The emitted radiation is collimated and then refocussed for electro-
optic detection. The 35-fs optical pulse from a Ti:sapphire sampling laser probes a small
area in the centre of the focussed Terahertz beam. Reprinted from [Wal11].

6.3 Simulation of 1D single particle current

If the holes accelerated by the Terahertz pulse respond non-linearly, higher harmonics ap-
pear in the emitted electric field. For frequencies in the microwave and far-infrared, two
possible mechanisms lead to this anharmonic response [264]. Firstly, carriers moving in
a non-parabolic band E(k) are subject to a non-linear velocity-momentum relation which
induces mixed frequency components when they oscillate due to an applied electromag-
netic field [284]. Secondly, the carrier motion is damped by an energy-dependent (and thus
momentum-dependent) momentum scattering rate Γm (E(k)), which introduces additional
non-linearities [285, 286]. Since the latter origin for non-linear effects exists also for semi-
conductors with parabolic bands, it presents a simple method for isolating the two effects,
as noted by Kaw [285].

As shown in Eqs. 6.28 and 6.34, the density of states and the effective mass both are
related to the derivative of the bandstructure. Since the density of states strongly influences
the scattering rate and the effective mass is a measure of the parabolicity of the bandstruc-
ture, experimentally the two mechanisms, band non-parabolicity and energy-dependent mo-
mentum scattering rate, cannot simply be separated. However, if one models the scattering
rate as being unaffected by changes made to the bandstructure, it is possible to switch the
band parabolicity on or off and thus obtain a measure of its influence on the generation of
higher harmonics.

Fig. 6.8 shows the bandstructure, group velocity and effective mass of light (lh) and heavy
(hh) holes in silicon for the direction Γ-X. The solid lines depict the dispersion according
to the EPM. The dashed line, on the other hand, depicts the band with switched-off non-
parabolicity. As a result, it is characterized by a constant effective mass, equal to m∗

EPM(Γ),
and linear group velocity.

Assuming that the density of states and hence the momentum scattering rate remains
the same for the bandstructure with and without non-parabolicity, the solution for k(t) of
the differential equation of motion, Eq. 6.31, is independent of the bandstructure. However,
the velocity-momentum relation v(k) obviously differs significantly. By introducing this
separation of the two non-linear mechanisms, one can thus break down the contributions to
the higher harmonic generation and obtain a band-dependent carrier motion v(t).
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Figure 6.8: Valence bandstructure (top panel) of heavy (hh) and light (lh) hole along the Γ-
X direction for the realistic EPM and parabolic approximation (Parabolic). Group velocity
(centre panel) and effective mass (bottom panel) correspond to the respective bandstruc-
tures.

The emitted field is easily obtained from the proportional relationship given by Eq. 6.38.
Finally, the harmonic spectrum is given by the Fourier transform

Eemit(ω) = F

� ∞

−∞
Eemit(t)e−iωtdt (6.39)

which is calculated using the fast Fourier transform and scaled by a factor

F = 2 ×

√√√√2 log(2)
πτ 2

fdhm
× T (6.40)

The factor 2 accounts for the double-sided spectrum, the root term accounts for the Gaussian
pulse envelope with pulse duration τfdhm (full duration at half maximum) and the last term
scales by the Fourier transform sampling period T .

The following sections present simulation results corresponding to two different experi-
ments with intense Terahertz pulses at low temperature and at room temperature. Table 6.3
summarizes the different parameters used in the simulation to model the different experi-
ments. The numerical solution to the equation of motion Eq. 6.31 was calculated with a
time discretization of dt = 10−3 2π

ω
and a time window of T = 16τfdhm.

5Extrapolated from [272, Fig. 2.35] and used instead of the (frozen out) doping density at 10 K.
6A common thickness d = 100 µm was assumed for both simulation, as no absolute emitted electric field,

Eq. 6.38, was calculated.
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6 Terahertz higher harmonics from p-doped silicon

sample 1 sample 2
low temperature room temperature

Temperature T 10 K 293 K
Boron doping density N 5 × 1016 cm−3 5.75 × 1015 cm−3

Residual free carrier density5 1 × 1013 cm−3 -
Avg. effective mass m∗ 0.59 m0 0.81 m0
Crystal thickness6 d 275 µm 900 µm
Frequency ω/(2π) 1.29 THz 0.3 THz
Pulse width τfdhw 17 ps 22 ps
Peak electric field E0 24 kV cm−1 70 kV cm−1

Table 6.3: Overview of the key parameters used to model the two measurements on the
different boron-doped silicon crystals at different temperatures.

6.3.1 Silicon at low temperature (10 K)

This section presents the simulation results pertaining to low-temperature measurements at
10 K on a boron-doped silicon crystal (ϵr ≈ 12). The boron density is given in Table 6.3,
however at this low temperature most hole carriers are frozen out and a residual free carrier
density at 10 K of 1 × 1013 cm−1 is extrapolated from [272, Fig. 2.35]. At this temperature,
the averaged density of states is m∗ = 0.59m0, see Sect. 6.2.3. Other parameters used for
the calculation of the momentum scattering rate are listed in Table 6.2. The sample is
excited by a 17 ps Terahertz pulse at 1.29 THz with high peak electric field of up to E0 =
24 kV cm−1 (scaled to field value in silicon).

As heavy and light hole band dynamics are treated separately, the spectra generated by
a single hole carrier in these bands are extracted independently as shown in Figs. 6.9a and
6.9b, respectively. Each graph shows the emitted field intensity of the first, third and fifth
harmonic modelled using the realistic EPM (green and blue) and the respective parabolic
band approximation (red). The insets show the third and fifth harmonics on a linear scale to
highlight the relative strengths of harmonic generation with and without non-parabolicity.

There are two main observations from the comparison between the bands and between
the models. Firstly, the intensities of the higher harmonics are much stronger for the light
hole than for the heavy hole, specifically factor 31 for the third and factor 65 for the fifth
harmonic. Secondly, the intensities of all the harmonics decrease significantly when the
non-parabolicity of the band is switched off (i.e. using the parabolic band approximation).
This is most dominant for the third harmonics with a drop to 1% and 0.1% for heavy and
light hole, respectively, and for the light hole fifth harmonic generation where the intensity
drops to 1%. The least reduction is observed for the fifth harmonic of the heavy hole band
(23%), since the realistic band harmonic generation is already relatively weak to begin with.

From the data one can conclude that the effect of band non-parabolicity for the gener-
ation of higher harmonics is dominant over the effect of energy-dependent scattering. The
strong non-linearity of the light holes can be traced back to the notable curvature most
noticeable in the effective mass m∗ of Fig. 6.8.

Next, a brief inspection of the first harmonic of both bands is presented in Fig. 6.10
verifying the plausibility of the comparison. The ratio between the emitted electric fields of
the linear components is given directly by the ratio of the effective masses of heavy and light
hole band at the Γ point 0.237 m0

0.199 m0
= 1.37, as given in Table 6.1. Moreover, no difference is

expected between the realistic bandstructure and the parabolic approximation for the first
harmonic component.
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(a) Heavy holes
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(b) Light holes

Figure 6.9: First, third and fifth harmonics generated by a single (a) heavy and (b) light
hole carrier according to EPM (green and blue) and the parabolic approximation (red) at
10 K. The insets have a linear scale and magnify the relative intensities.

From above analysis, one could conclude the relatively stronger impact of a single light
hole carrier as compared to a single heavy hole carrier. However, heavy and light holes have
significantly different effective masses, which are directly related to their three-dimensional
densities of states g(E) ∝ (m∗)3/2 via Eq. 6.29b. This yields a population ratio of 83:17 for
the averaged effective masses for heavy and light hole of 0.467 m0 and 0.159 m0, respectively
[272, p. 94]. Considering the intensity of the coherent emission I ∝ |Eemit|2, the ratio of
effective masses must be cubed, which yields a contribution to the intensity of 96:4.

Fig. 6.11 shows a plot of the weighted total intensity I ∝ |Ehh +Elh|2 as well as the single
band contributions (dashed) multiplied with their respective weighting factor. Additionally,
the total weighted power is shown for the parabolic band simulation (red). For the third
harmonic, the total contributions from heavy and light hole bands are about equal, since
the strongly non-linear light hole contribution is weighted with a much lower population
fraction. For the fifth harmonic, the light hole contribution is still about 2.5 times more
dominant than the heavy hole contribution even after accounting for the low population.
Again, the strong non-parabolicity of the bandstructure, see Fig. 6.8, is responsible for this.
However, in this case the total power is lower than the light hole contribution, which points
towards a destructive phase relationship between the emitted electric fields of heavy and
light hole.

With respect to the relative contributions of non-parabolic bandstructure and momen-
tum scattering rate, the plot of the total emitted field Fig. 6.11 confirms that simulating the
harmonic generation with a parabolic band strongly suppresses the non-linear effects. Even
for the fifth harmonic, where the suppression is less severe, the anharmonic bandstructure
mechanism still makes up more than 80% of the total non-linearity.

Returning again to the phase relationship between the emitted fields from heavy and
light hole band, it is interesting to consider the coherent sum of the two intensities. Fig. 6.12
considers three different scenarios. The coherent sum of the two electric fields I ∝ |Ehh+Elh|2
(Total) respecting the simulated phase is shown in yellow. The fully incoherent sum with
an effective phase lag of π/2 between the fields Iincoh. ∝ |Ehh|2 + |Elh|2 (Incoh.) is shown
in purple. The fully coherent sum where the fields are assumed to be completely in phase
Icoh. ∝ (|Ehh| + |Elh|)2 (Coh.) is shown in yellow.
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Figure 6.10: Emitted field at the first harmonic for a single heavy and light hole carrier
according to EPM (green and blue) and the parabolic approximation (red). The ratio 1.3
of the intensities is equal to the effective mass ratio.

It is apparent that the emitted fields are completely in phase for the first and third
harmonic. However, the fifth harmonic displays a different phase relationship. Here the
contributions of heavy and light hole band interfere destructively and effectively reduce the
total emitted power.

6.3.2 Silicon at room temperature (293 K)
The simulations presented in this section model room-temperature measurements at 293 K
on a different boron-doped silicon crystal with doping density of 5.75 × 1015 cm−3. The
averaged valence band density of states is m∗ = 0.81m0 and the same parameters listed
in Table 6.2 apply for the momentum scattering rate. The sample is excited by a 22 ps
Terahertz pulse, at 0.3 THz with high peak electric field of up to about 50 kV cm−1 (scaled
to field value in silicon). The results of this simulation are structured analogously to the low
temperature results in Sect. 6.3.1. Figs. 6.13a and 6.13b show the emitted field intensity of
the first, third and fifth harmonic from the realistic EPM (green and blue) and the respective
parabolic band approximations (red).

The observations in this case differ considerably from the low temperature simulation.
Firstly, although the light hole higher harmonics still outperform the heavy holes for the
third and fifth harmonic, the ratios are only about 2.2 and 2.5 times, respectively. This
means that the contributions by a single hole are much more balanced. Secondly, switching
off the non-parabolicity does not have such a drastic impact on the harmonic generation.
The non-linearity due to band non-parabolicity accounts for about 7% for the heavy hole
(about equal for third and fifth harmonic) and accounts for about 28% for the light hole
(again about equal for third and fifth harmonic). These findings can be seen in the respective
insets of Fig. 6.13. One can conclude that the non-linearity results mostly from the energy-
dependent momentum scattering. This is especially true for the heavy hole band, while for
the light hole band momentum scattering is the dominant effect but band anharmonicity
still contributes significantly. These conclusions equally apply to the seventh and ninth
higher harmonics as depicted in Appendix A.5.

Fig. 6.13 shows the contributions per single hole carrier in each individual band. In
order to obtain the total emitted power it is necessary to weigh each band by the popu-
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Figure 6.11: Weighted and coherently summed intensity of the first, third and fifth harmon-
ics for EPM (black) and the parabolic approximation (red). The dashed line visualize the
individual weighted intensities (96:4) of heavy and light hole. The insets have a linear scale
and magnify the relative intensities.
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Figure 6.12: Coherently weighted total intensity of light and heavy hole (black) compared
to fully coherent (Coh., ∆ϕ = 0) and fully incoherent (Incoh., ∆ϕ = π/2) intensities. For
first and third harmonic, the coherent sum coincides with the fully coherent assumption.
However, for the fifth harmonic the coherent sum of heavy and light hole shows destructive
interference leading to a lower than anticipated emitted intensity.
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Figure 6.13: First, third and fifth harmonics generated by a single (a) heavy and (b) light
hole carrier according to EPM (green and blue) and the parabolic approximation (red) at
293 K. The insets have a linear scale and magnify the relative intensities.

lation ratio 83:17 (hh:lh) or by 96:4 (hh:lh) for the intensity contribution as explained in
Sect. 6.3.1. The weighted total intensity I ∝ |Ehh + Elh|2 is shown in Fig. 6.14 compared
with the weighted individual band contributions (dashed). The weighted total intensity
with the parabolic band (red) was simulated analogously. Firstly, the additional population
weighting decreases the influence of the light hole band to a degree that allows to almost
completely neglect its contribution to the higher harmonic generation. This is in stark con-
trast to the low temperature simulation. Secondly, the dominance of the heavy hole band
further highlights the total contribution of energy-dependent momentum scattering to the
generation of higher harmonics at room temperature. The contribution due to band non-
parabolicity only accounts for 13% and 10% of the total non-linearity for third and fifth
harmonic, respectively.

A detailed comparison of the phase relationship between heavy and light hole emitted
fields is omitted here since the minor contribution of the light hole band allows to neglect
it from the total power. An analysis analogous to Fig. 6.12 confirmed that the sum of
the complex fields (Total) equals the fully coherent sum (Coh.) for the room temperature
simulation.

6.4 Measurements

6.4.1 Silicon at low temperature (10 K)
The corresponding measurements on boron-doped silicon at low temperature were performed
by co-researchers at the FELBE facility with sample and beam parameters as stated in
Table 6.3. The spectral analysis of the data was facilitated by Fourier transform infrared
spectroscopy. A detailed description of the experimental setup is given in ref. [266]. Results
discussing the higher harmonics spectra at different pump pulse electric fields and the origin
of the residual free carrier density are currently under review and expected to be published
as “Fifth-Harmonic Generation in Si” [Wal11]. A key observation of the experiment is the
generation of the fifth harmonic signal by free holes in the valence band of the boron-doped
silicon crystal. The paper also summarizes the findings detailed in Sect. 6.3.1 differentiating
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Figure 6.14: Coherently summed weighted intensity of the first, third and fifth harmonics
for EPM (black) and the parabolic approximation (red). The dashed lines visualize the
individual weighted intensities (96:4) of heavy and light hole. The insets have a linear scale
and magnify the relative intensities. Note the broken frequency axis.

between the different non-linear mechanisms, which have been contributed by the author of
this thesis.

6.4.2 Silicon at room temperature (293 K)
Room-temperature measurements on a different boron-doped silicon crystal at room tem-
perature were performed at TELBE. The relevant sample and beam parameters are again
given in Table 6.3.

Fig. 6.15 shows the measured emitted fields at the different harmonics for increasing
pump electric fields. Naïvely assuming that the optical susceptibility χ is constant, one
would expect a dependence ∝ En for the electric field strength of the nth harmonic, according
to

P (t) = ϵ0
[
χ(1)Ẽ(t) + χ(3)Ẽ3(t) + χ(5)Ẽ5(t) + . . .

]
(6.41a)

≡ P (1)(t) + P (3)(t) + P (5)(t) + . . . (6.41b)

where even terms of the non-linear polarization series are suppressed for centrosymmetric
crystals, such as silicon [287]. Fig. 6.15 indeed shows linear slopes in the log-log plot for
experiment and simulation for lower electric fields. Linear fits (dashed) highlight the slope,
which for the simulated data was fit for electric fields E0 < 12 kV cm−1. The experimental
as well as simulated slopes are lower than the expected value n for the nth harmonic, as
shown in Table 6.4.

This suggests an additional field-dependence of the susceptibility χ(E) itself. Typically,
this may be due to ionization-induced high-order non-linear susceptibility [288], though
ionization processes have not been considered in the simulation. Still, there is general
agreement between the experimental and simulated field-dependence on the pump electric
field which suggests that the reduced slope is (also) affected by the bandstructure landscape
or cross-terms between lower and higher-order susceptibilities.
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6 Terahertz higher harmonics from p-doped silicon

Harmonic: 3rd 5th 7th 9th
Experiment 2.6 3.3 4.1 5.7
Simulation 2.4 3.9 5.5 6.3

Table 6.4: Comparison of low-field exponents n of E0
n representing the linear fits in Fig. 6.15

for experimental data and simulation.

Furthermore, experiment and simulation both show an onset of saturation of the suscep-
tibility at electric fields of ∼50 kV cm−1 and ∼20 kV cm−1, respectively. It is noted that the
comparison is obviously complicated by the non-absolute scale of the simulated data. Still,
it is noticeable that the saturation onset is shifted and, moreover, the relative strengths of
the third harmonic deviates considerably between the experiment and simulation.
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Figure 6.15: Emitted electric field for different higher harmonics determined from measure-
ments at TELBE (left) compared to simulated higher harmonics (right). The qualitative
comparison shows a saturation of the emitted field for high pump electric fields for both
graphs.

Fig. 6.16 compares the phase evolution with electric field for third, fifth and seventh
harmonic in the experiment to the simulation. The experimental phases were extracted
by considering the bandwidth filtered higher harmonic time domain pulses and fitting a
Gaussian pulses with relative phase shifts and envelopes fixed in time. One obtains an
increasing phase lag for the emitted higher harmonic pulses with higher pulse electric field
for both measurement and simulation. The results all qualitatively show a linear slope,
though the simulation predicts a much lower slope of only about 1/4.

Overall, the simple time domain one-dimensional single particle simulation is able to
capture the general trend of the higher harmonic generation and its saturation quite well.
However, its strengths remains with supplying a conceptual understanding of the different
non-linear mechanisms at play. Further influences such as impact ionization, interband
scattering and propagation of the pulse through the 900 µm bulk crystal should further
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Figure 6.16: Phase comparison of emitted electric field for higher harmonics from measure-
ments at TELBE (left) and simulation (right). The data has been referenced to the lowest
available pump power and is relative to the phase of the fundamental. The simulation qual-
itatively shows an increae in phase with increasing electric field, albeit with a much lower
slope of only about 1/4.

improve the agreement between measurement and simulation.

6.5 Conclusion
To summarize, the non-linear dynamics of holes in silicon’s light and heavy valence bands
due to excitation by intense Terahertz pulses were modelled based on a one-dimensional
single particle time domain approach. Based on previously conducted measurements, two
scenarios were considered.

Firstly, at cryogenic temperatures the carrier density is strongly reduced due to freeze-
out, the density of states is low and the scattering rate is relatively weak. Experimentally,
signals at the third and fifth harmonic were observed with a fundamental at 1.29 THz and
24 kV/cm maximum electric field. The harmonics were reproduced qualitatively in the sim-
ulation allowing an assessment of their microscopic origin by switching on and off the non-
parabolicity of the bands. It was found that heavy and light hole both contribute equally to
the emission of the third harmonic and significantly to the fifth harmonic. This is despite the
lower density of states of the light hole band which is compensated by its strong band non-
parabolicity. Furthermore, the third harmonic generation is almost exclusively due to band
non-parabolicity, as deduced from the vanishing signals when switching to the parabolic
band approximation. The fifth harmonic is also dominated by band non-parabolicity, how-
ever with a significant contribution by energy-dependent momentum scattering from the
heavy hole band. Lastly, the phase relationship between heavy and light hole contribution
at the fifth harmonic appears to be destructive. This may be due to the different contribut-
ing mechanisms in the two band and motivates further investigation since experimental time
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domain data was not available to verify the plausibility of this finding.
Secondly, at room temperature a weakly-doped crystal was used, in which case the

density of states and the scattering rate are higher. Experimentally, harmonics up to the
ninth order are observed at low fundamental frequency of 0.3 THz and high intensity pulse
excitation up to 70 kV/cm. The spectra and power dependence was reproduced qualitatively
in the simulation. It was found that the heavy hole band dominates the higher harmonic
generation with only a negligible contribution by the light hole band. This is in agreement
with the finding that contrary to the low temperature case, energy-dependent momentum
scattering is almost exclusively responsible for the generation of higher harmonics at room
temperature. Therefore, the light hole’s low density of states is not counterbalanced by its
non-parabolicity - which still contributes, but is the secondary mechanisms even considered
the light hole band individually. A qualitative comparison of the power dependence of
higher harmonic generation shows a saturation towards higher electric fields for experiment
and simulation. While initially saturation seems to set in at slightly higher fields for the
experimental data, the nth harmonic power dependencies from experiment and simulation
all fall below the expected power low exponents of n. This suggests that the data already
describes the non-perturbative non-linear regime, and saturation effects must be considered
even for low electric field for both experiment and simulation.

In conclusion, modelling the higher harmonic generation in p-doped silicon semiclassi-
cally by a one-dimensional single particle in the time domain allows to switch off the non-
linear effect of the non-parabolic bandstructure and consider the isolated effect of energy-
dependent momentum scattering. By applying this approach and qualitatively comparing
the generated spectra to experimental results, the origin of the higher harmonic genera-
tion could be assigned to one or the other microscopic mechanisms, which turned out to
differ with temperature. The simulation could thus give valuable insight even though sev-
eral effects were neglected, most importantly: propagation of the pulse through the crystal
causing absorption and phase delay, the wave (or statistical) nature of the hole (particle)
ensemble, the field-dependent carrier density due to impact ionization and explicit interband
scattering.

These effects can be taken into account by applying a full-band Monte Carlo simulations
as performed by Jungemann et al. [269, 289] to model the full traversal of the pulse through
the bulk silicon crystal. This approach has been followed through a collaboration with C.
Jungemann and a comparison to the results presented in Sects. 6.3.2 and 6.4.2 is meant to
supplement a future manuscript.
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Chapter 7

Summary

To summarize, this thesis aimed at presenting the experimental work surrounding nanoscale
measurements on metasurfaces and TMDC materials. Two experimental setups were imple-
mented by the author of this thesis to conduct the measurements: an s-SNOM and a c-AFM.
The theoretical aspects explained the necessity for optical near-field imaging techniques and
the experimental setup are detailed in Chapter 2.

The central work on a metallic metasurface made up of elliptical gold disk unit cells is
presented in Chapter 3. The corresponding theory section introduces the concept of Surface
Plasmon Polaritons, which is essential for the field of plasmonics in general. Different meth-
ods for calculating the dispersion relation of these surface modes at single and multi-layer
interfaces are applied to the studied metasurface sample. The model predicts three different
modes, weakly and strong confined, that are expected to propagate at the interface. A sili-
con nanosphere placed on the sample is used as a radial excitation source. The comparison
to near-field images obtained through s-SNOM measurements, analysed by spatial Fourier
analysis reveals that only the weakly-confined guided mode resonance was sufficiently ex-
cited to be detectable by s-SNOM imaging. Observation of the remaining strongly-confined
anisotropic buried modes would demand an improved depth sensitive resolution of the sys-
tem, which should in principle be feasible for layer thicknesses of 20 nm. Moreover, the
observation puts into question whether the excitation efficiency given by the momentum
and mode volume matching of the nanosphere create sufficient excitation cross section to
generate detectable buried SPP modes. Several ideas for follow-up measurements conclude
Chapter 3.

Chapter 4 continues with the idea of visualizing buried electrical fields using s-SNOM.
Here, it is applied to the study of WS2, a two-dimensional TMDC layer exhibiting photolu-
minescence. By patterning the substrate underneath the suspended monolayer, supported
by a thin layer of hBN, the photoluminescence yield is enhanced by a factor of 10. This
is achieved by designing a lateral DBR microcavity with additionally optimized vertical
depth which was etched into the substrate. High-resolution imaging of the electric field
distribution in the resonator was facilitated by employing s-SNOM in order to assess the
in-coupling enhancement due to the two these two approaches. It could be concluded that
the lateral structure contributes dominantly to the strong photoluminescence yield, while
for the in-coupling no obvious enhancement could be attributed to the vertical patterning.

The two-dimensional material WS2 is studied again in Chapter 5 by employing c-AFM.
Thin flakes were prepared on graphene and gold to serve as tunnel barriers for vertical
currents. The nanoscopic tip was used in contact mode to image the topography of the
sample and access the microscopic terraces of different thicknesses for obtaining I-V mea-
surements. The data could be fitted with a Fowler-Nordheim model with parameters for the
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tunnel width and Schottky barrier heights of the two interfaces. However, the measurements
showed weak reproducibility which warranted a more detailed summary of the relevant error
source. The conclusion of the chapter suggests several key aspects to be taken into account
for future measurements. Critically, c-AFM is very sensitive to water film adsorption to
the sample surface, which WS2 surfaces suffer from under ambient conditions. Unreliable
c-AFM measurements as well as surface deterioration based on strong tip-sample adhesion
are associated to the formation of water menisci. Additionally, the use of two-dimensional
materials, e.g. graphene, as substrate electrodes is suggested to ensure a well-defined in-
terface. These remarks on the preliminary measurements are expected to enable further
studies on vertical currents through two-dimensional heterostructures, paving the way for
more complex layered material systems, as suggested in the conclusion of Chapter 5.

Chapter 6 delves into the description of higher harmonic terahertz generation from bulk
silicon. This presents a digression from the theme of nanoscale surface measurements and is
partly motivated by the exciting experimental data of high harmonics from silicon up to the
ninth harmonic that were being analysed at the time. Further links to two-dimensional ma-
terials are suggested in the introduction of Chapter 6, where current research on generation
of higher harmonics in two-dimensional materials is touched upon. The chapter outlines
a one-dimensional single particle time domain model, which was applied to simulate the
oscillating motion of hole carriers due to the excitation by an intense terahertz pulse. From
the two non-linear effects expected to contribute to the generation of higher-harmonics in
p-doped silicon, the non-parabolic bandstructure and energy-dependent momentum scatter-
ing, each was found to dominate in either of the two measurement conducted at different
temperatures of 10 K and room temperature, respectively. The result qualitatively describes
the experimental data and offers a contribution to the ongoing discussion on the origin of
non-linearity in higher harmonic generation from solid crystals. Concluding the chapter,
several additional parameters are discussed that are neglected in the treatment and can be
included in ongoing quantitative analysis of the data.

In conclusion, the presented topics form contributions to the experimental research based
on near-infrared s-SNOM and the setup variation c-AFM. The tip-based nanoscopic raster-
scanning measurement techniques were applied to study the surface - and to an extend
shallow volumes - of a plasmonic metasurface and mono- and multilayer TMDC materials.
In this context, near-field imaging provided evidence for surface wave dispersion of a guided
mode resonance excited via a dielectric nanosphere. Moreover, it facilitated a high-resolution
field imaging of a buried substrate-integrated photoluminescence-enhancing microcavity and
substantiated its enhancing effect on the in-coupled radiation. An endeavour to utilize the
AFM in contact mode with a conductive tip to measure quantum tunnel currents through
thin WS2 flakes showed preliminary results and was concluded with a report on how to
proceed with future studies. Lastly, additional work concerning the debate on the origin of
higher harmonics generation from the valence band of doped silicon completes the thesis.
Though not studied within the scope of two-dimensional surfaces, the relevance as a sub-
stantiating contribution to current experimental results from two high intensity terahertz
facilities merit its inclusion in this thesis.

102



Appendix

103





A.1 Thin-layer SPP dispersion relation

A.1 Thin-layer SPP dispersion relation
The dispersion relation for thin-layer SPPs and an overview over different mode types at
a thin three-layer IMI system is presented in Sect. 3.2.3. For the general expression of
the dispersion relation two different presentations are prevailing in the literature. The
equivalence of the form of Eq. 3.13 and Eq. 2.28 in [211] is confirmed in the following.

Beginning with Eq. 2.28 in [211, p. 31], where the labelling of the layer numbering here
refers to the reference such that k1=̂k3 (top layer), k2=̂k1 (metal layer), k3=̂k2 (bottom
layer).

exp(−4k2a) = k2/ϵ2 + k3/ϵ3

k2/ϵ2 − k3/ϵ3

k2/ϵ2 + k1/ϵ1

k2/ϵ2 − k1/ϵ1
(1)

By substituting 2a = h, and κi = k/ϵi

exp(−2k2h) = κ2 + κ3

κ2 − κ3

κ2 + κ1

κ2 − κ1
(2a)

= κ2κ2 + κ1κ2 + κ2κ3 + κ1κ3

κ2κ2 − κ1κ2 − κ2κ3 + κ1κ3
(2b)

exp(2k2h) = κ2κ2 − κ1κ2 − κ2κ3 + κ1κ3

κ2κ2 + κ1κ2 + κ2κ3 + κ1κ3
(2c)

= 2κ2κ2 + 2κ1κ3 − (κ2κ2 + κ1κ2 + κ2κ3 + κ1κ3)
κ2κ2 + κ1κ2 + κ2κ3 + κ1κ3

(2d)

= 2(κ2κ2 + κ1κ3)
κ2κ2 + κ1κ3 + κ2κ3 + κ1κ2

− 1 (2e)

= 2
κ2κ2+κ1κ3

(κ2κ2+κ1κ3) + κ2κ3+κ1κ2
(κ2κ2+κ1κ3)

− 1 (2f)

= 2
1 +K

− 1 ,with K = κ2κ3 + κ1κ2

κ2κ2 + κ1κ3
(2g)

2
exp(2k2h) + 1 = 1 +K (2h)

1 − 2
exp(2k2h) + 1 = K (2i)

Now one can apply the identity tanh(x) = 1 − 2
exp(2x)+1

tanh(k2h) = κ2κ3 + κ1κ2

κ2κ2 + κ1κ3
(3a)

tanh(−k2h) = κ2κ3 + κ1κ2

κ2κ2 − κ1κ3
(3b)
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A.2 Second harmonic s-SNOM data of microcacity
Fig. 4.7 of Sect. 4.2.1 shows AFM and s-SNOM measurements demodulated at the third
harmonic 3Ω of the hBN/WS2-covered microcavity and an open microcavity for reference.
Fig. A.1 shown here supplements the s-SNOM images by imaging data demodulated at
the second harmonic signal 2Ω. The ordering corresponds to the measurements shown in
Fig. 4.7, with covered cavity in the top row and open cavity in the bottom row. The
colorscales used relate to the excitation wavelengths λ0 = 532 nm (green) and λref = 850 nm
(red).

(a) Covered cavity at λ0. (b) Covered cavity at λref.

(c) Open cavity at λ0. (d) Open cavity at λref.

Figure A.1: s-SNOM images at the second harmonic 2Ω, taken simultaneously to the data
shown in Fig. 4.7 of Chapter 4. The colorbars show the s-SNOM signal intensity in arbitrary
units.

106



A.3 Supplementary c-AFM data on WS2/Au

A.3 Supplementary c-AFM data on WS2/Au
Sect. 5.4.2 presents tunnel I-V measurements on two terraces of a WS2 flake. The c-AFM
data’s weak reproducibility is exemplified in this section by supplementary measurements
on the same sample. Figs. A.2 to A.7 refer to the top terrace and Figs. A.8 and A.9 refer to
the middle terrace. Table 1 summarizes the fitting results displayed in the graphs. Reasons
for the high variance of the data are discussed in the main chapter.

Figure A.2: WS2Au (top terrace) tunnel current analysis.

Figure A.3: WS2Au (top terrace) tunnel current analysis.
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Figure A.4: WS2Au (top terrace) tunnel current analysis.

Figure A.5: WS2Au (top terrace) tunnel current analysis.

Figure A.6: WS2Au (top terrace) tunnel current analysis.
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A.3 Supplementary c-AFM data on WS2/Au

Figure A.7: WS2Au (top terrace) tunnel current analysis.

Figure A.8: WS2Au (middle terrace) tunnel current analysis.

Figure A.9: WS2Au (middle terrace) tunnel current analysis.

109



d (nm) Φ1 (eV) Φ2 (eV) Figure
top terrace 5.97 0.76 1.02 Fig. 5.12

2.29 0.89 0.94 Fig. A.2
1.55 1.32 1.47 Fig. A.3
3.34 0.83 0.98 Fig. A.4
5.63 0.49 0.64 Fig. A.5
4.47 0.78 0.64 Fig. A.6
5.51 0.53 0.61 Fig. A.7

mean ± std. 4.11 ± 1.74 0.80 ± 0.27 0.90 ± 0.31
middle terrace 4.88 0.91 1.06 Fig. 5.11

4.34 1.03 1.27 Fig. A.8
5.70 0.88 1.14 Fig. A.9

mean ± std. 4.97 ± 0.69 0.94 ± 0.08 1.16 ± 0.11

Table 1: Fitting results for Schottky barrier height and tunneling width for supplementary
data shown here and in Sect. 5.4.2.
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A.4 Iso-energy surfaces of light hole band

A.4 Iso-energy surfaces of light hole band
Fig. A.10 visualizes the iso-energy surfaces in k-space of the light hole band with the re-
spective Energy levels stated in the captions for an interval of ∆E ± 0.05 eV. The k states
associated with a given energy are summed to obtain the density of states, as explained for
the heavy hole band in Sect. 6.2.3. This is shown in Fig. A.11 in units of eV−1 cm3. As for
the heavy hole band, Fig. A.10 shows the strong warping of the band especially for larger
energies.

(a) E = -2.2 eV (b) E = -1.8 eV (c) E = -1.4 eV

(d) E = -1.0 eV (e) E = -0.6 eV (f) E = -0.2 eV

Figure A.10: k-states associated with different energies (∆E ± 0.05 eV) for the light hole
band. The density of states is given by adding the number of k states per energy bin. The
high symmetry points are marked by red circles.
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Figure A.11: Density of states of the light hole band. Colors relate to Fig. A.10.
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A.5 7th and 9th harmonic simulation at 293 K

A.5 7th and 9th harmonic simulation at 293 K
This section extends the higher harmonics analysis at room temperature from Sect. 6.3.2
to the 7th and 9th harmonic. Figs. A.12a and A.12b show the spectrum centred around
the respective frequencies in linear intensity scale. Plotted are the simulation results for
the realistic non-local empirical pseudo potential (green and blue) and the parabolic band
approximation (red). The relative strength between band non-parabolicity and energy-
dependent momentum scattering as non-linear mechanisms is the same as for the 3rd and
5th harmonic, discussed in Sect. 6.3.2.
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Figure A.12: Seventh (left) and ninth (right) harmonics generated by a (a) heavy and (b)
light hole carrier according to EPM and the parabolic approximation. The conclusion about
relative strengths from Sect. 6.3.2 can be extended to these frequencies.
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Zusammenfassung

Nanoplasmonik beschreibt ein Teilgebiet der Nanophotonik, das die Erzeugung, Erkennung
und Manipulation von Licht im Nanometerbereich umfasst. Das Forschungsgebiet konzen-
triert sich auf die Wechselwirkungsprozesse von Licht und Leitungselektronen an metallisch-
dielektrischen Grenzflächen oder metallischen Nanostrukturen. Es erforscht optische Nah-
felder in Sub-Wellenlängen-Volumina und Wechselwirkungen zwischen räumlich begrenzten
elektrischen Feldern und Materie. Die Motivation der Forschung folgt dem Trend in der
Nanophotonik, miniaturisierte optische Anwendungen in der Mikroskopie, optischen Kom-
munikation und Sensorik zu entwickeln, deren Größe die relevante optische Wellenlänge
unterschreitet. Dabei liegt die Herausforderung in der Zusammenführung von nanoelek-
tronischen Dimensionen von wenigen Nanometern und optischen Frequenzen bis Hunderte
Terahertz.

Der Einschluss von Licht auf nanoskaligen Dimensionen führt zu starken elektro-
magnetischen Feldern, die die Untersuchung der Licht-Materie-Wechselwirkung in einem
breiten Frequenzbereich vom sichtbaren bis zum Terahertzbereich ermöglichen. Diese
Wechselwirkung kann durch resonante Strukturen wie metallische Nanopartikel, struk-
turierte Oberflächen, Metaoberflächen und 2D-Materialien zusätzlich verstärkt werden.
Spannende Phänomene die daraus resultieren sind z.B. negative Brechung, Fokussierung im
Sub-Wellenlängenbereich und die Oberflächenführung von Licht. Darüber hinaus beruhen
viele optoelektronische Anwendungen wie Detektoren, Modulatoren und Schalter sowie die
Erzeugung von Frequenzen höherer Harmonischer auf der starken Wechselwirkung zwischen
Licht und Materie. [4]

Metaoberflächen sind künstlich hergestellte ultradünne periodische Mikro- oder Nanos-
trukturen, die auf einfallendes Licht resonant reagieren. Im Gegensatz zu dreidimensionalen
Metamaterialien zeigen sie deutlichen geringere optische Verluste und profitieren in der Hal-
bleitertechnologie etablierten Herstellungsverfahren, wie Lithographie und Nanodruck. Zu-
dem lassen sie sich potentiell direkt in photonische Mikro- und Nanochips integrieren [7]. Das
Design ihrer Subwellenlängenkomponenten steuert ihre effektiven Materialeigenschaften, wie
Permittivität und Permeabilität, in einer Weise, die es ermöglicht, den Brechungsindex und
die Wechselwirkung mit Licht auf neue Weise zu gestalten.

2D-Materialien, wie Graphen, hexagonales Bornitrid (hBN) oder Übergangsmetall-
Dichalcogenide (TMDCs), sind Kristalle, welche in schwach gebundenen Schichten wachsen,
die durch intermolekulare van-der-Waals-Kräfte zusammengehalten werden. Die Schichten
können mechanisch von dem Kristall abgelöst oder direkt gewachsen werden. Sie bieten
sich somit als ideale zweidimensionale Oberflächen an, um die Kopplung von Licht und
Materie, wie Plasmonen, Elektronen, Exzitonen oder Phononen, in Form von Polarito-
nen zu untersuchen. TMDCs Materialien gewinnen derzeit aufgrund ihrer halbleitenden
Eigenschaften, direkten Bandlücke im sichtbaren Spektrum , starken Photolumineszenz
und Spin-Orbit-Kopplung als vielversprechendes 2D-Material in Grundlagenforschung und
für Anwendungen an Bedeutung.

Die optische Bildgebung von an Oberflächen gebundenen Polaritonen stellt eine beson-
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dere Herausforderung dar, da ihre elektrischen Felder senkrecht zur Oberfläche schnell
abklingen und generell im Fernfeld nicht aufgelöst werden können. Im Rahmen dieser Arbeit
wurde daher ein optisches Rasternahfeldmikroskop (s-SNOM) implementiert, welches elek-
trische Oberflächenfelder und lokale Materialeigenschaften mit Nanometer-Auflösung auf
metallischen Schichten [29–31] und 2D-Materialien [32–34] auflösen kann.

Das Messprinzip beruht auf der Erfassung der schnell abklingenden evaneszenten Kom-
ponenten des elektrischen Feldes, die auf die Oberfläche gebunden sind. Durch Abtasten
eines Detektors, einer kleinen Blende oder eines Streuers in der Nähe der Oberfläche kön-
nen die evaneszenten Felder gestreut und in das Fernfeld propagiert werden. Im Gegensatz
zur Fernfeldstrahlung enthalten die evaneszenten Wellen hochaufgelöste Detailinformatio-
nen über die Probenoberfläche weit unterhalb ihrer Wellenlänge. Beim s-SNOM wird dies
dadurch erreicht, dass man eine scharfe Spitze knapp über der Oberfläche oszillieren lässt.
Zusätzlich wird ein Laserstrahl auf die Spitze fokussiert, die als optische Antenne für die
Einkopplung und Streuung von Licht fungiert. Die Spitze wird durch das elektromagnetis-
che Feld polarisiert, Amplitude und Phase des gestreuten Lichts werden durch die Wechsel-
wirkung mit der Probe beeinflusst. Die Sondenspitze wirkt also als Streuer für das Nahfeld
im Subwellenlängenbereich. Sie wandelt evaneszente Wellen in sich ausbreitende Wellen um,
die im Fernfeld nachgewiesen werden können. Die enge Beziehung zwischen Streudipol und
Streuquerschnitt ermöglicht die entscheidende räumliche Auflösung in der Größenordnung
der Messspitze und nicht der Wellenlänge. [58]

Die vorliegende Arbeit präsentiert Forschungsarbeiten basierend auf nanoskopischen
Oberflächenmessungen an plasmonischen Metaoberflächen und zweidimensionalen Materi-
alien, insbesondere dem halbleitenden TMDC WS2. Die Thesis ist in sieben Kapitel un-
tergegliedert. Die Einleitung vermittelt einen Überblick über die treibenden Kräfte hinter
der Forschung im Bereich der Nanophotonik an zweidimensionalen Materialsystemen. Die
Untersuchung der Licht-Materie-Wechselwirkung an dünnen Materialgrenzflächen zieht sich
als roter Faden durch die gesamte Arbeit.

Das zweite Kapitel beschreibt den experimentellen Aufbau, der für die Durchführung
der nanoskopischen Messungen in dieser Arbeit implementiert wurde. Es werden theoretis-
che Grundlagen, das Messprinzip und die Implementierung des s-SNOM Aufbaus skizziert.
Außerdem wird ein Strom-Spannungs-Rasterkraftmikroskop (c-AFM) im Kontaktmodus
genutzt, um elektrische Ströme auf mikroskopischen zweidimensionalen TMDC-Terrassen
zu messen. In den folgenden vier Kapiteln werden die Beiträge dieser Arbeit zur Unter-
suchung der Licht-Materie-Wechselwirkung auf der Nanoskala aus verschiedenen Perspek-
tiven vorgestellt. Jedes Kapitel enthält eine kurze Einleitung, einen Theorieteil, Messdaten
oder Simulationsergebnisse sowie eine Analyse; vervollständigt durch einen Schlussteil.

Kapitel 3 behandelt die direkte Beobachtung von geführten Modenresonanzen auf einer
metallischen Metaoberfläche mit dem s-SNOM. In Kapitel 4 wird die s-SNOM-Technik
auf eine TMDC-Monolage in Kombination mit einer resonanten Mikrokavität angewendet,
um die Wirkung auf die Verstärkung der Photolumineszenz zu beleuchten. Für Kapitel
5 wird das c-AFM eingesetzt, um Tunnelströme durch vertikale TMDC- und Graphen-
Heteroschichtstrukturen zu charakterisieren.

Kapitel 6 enthält einen Exkurs aus dem Bereich der Nanophotonik. Hier werden Zeit-
bereichssimulationen einzelner Ladungsträger zur Beschreibung von der Ladungsträgerdy-
namik in Experimenten zur Erzeugung höherer Harmonischer im Terahertzbereich in p-
dotiertem Silizium genutzt. Der gemeinsame Nenner der Licht-Materie-Wechselwirkung
bietet eine freie Verbindung zum zentralen Thema. Kapitel 7 schließt die Arbeit mit einer
Zusammenfassung ab. Im Folgenden werden die Ergebnisse kurz zusammengefasst.
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Die zentrale Arbeit an einer metallischen Metaoberfläche aus elliptischen Goldscheiben
wird in Kapitel 3 vorgestellt. Der zugehörige Theorieteil führt in das Konzept von
Oberflächen-Plasmon-Polaritonen (SPPs) ein, das für den Forschungsbereich der Plasmonik
im Allgemeinen wesentlich ist. Verschiedene Methoden zur Berechnung der Dispersion-
srelation dieser Oberflächenmoden an ein- und mehrschichtigen Grenzflächen werden auf
die untersuchte Metaoberflächenprobe angewendet. Das Modell sagt drei verschiedene
Moden voraus, die sich an der Grenzfläche ausbreiten. Eine teil-gebundene ins Substrat
abstrahlende Oberflächenmode sowie zwei vergrabene stark gebundene anisotrope Moden.
Eine auf der Probe platzierte Nanokugel aus Silizium wird als radiale Anregungsquelle
verwendet. Der Vergleich mit s-SNOM-Nahfeldbildern, die mit Hilfe der räumlichen
Fourier-Analyse interpretiert werden, zeigt, dass nur die schwach gebundene geführte
Modenresonanz ausreichend angeregt wurde, um durch s-SNOM-Bildgebung nachgewiesen
werden zu können. Die schwache Oberflächenbindung erklärt die scheinbar isotrope
Ausbreitung auf der anisotropen Oberfläche. Die Beobachtung der verbleibenden stark
eingegrenzten anisotropen vergrabenen Moden würde eine verbesserte tiefenempfindliche
Auflösung des Systems erfordern, die im Prinzip für Schichtdicken von 20 nm möglich sein
sollte. Darüber hinaus wirft die Beobachtung die Frage auf, ob die durch Impuls- und
Modenvolumenanpassung der Nanokugel gegebene Anregungseffizienz einen ausreichenden
Anregungsquerschnitt erzeugt, um nachweisbare vergrabene SPP-Moden zu erzeugen. Da-
raus werden Ideen für weitere Messungen abgeleitet, um auch die vergrabenen SPP-Moden
abbilden zu können. Dies sind zum einen die Durchstimmbarkeit der Wellenlänge oder
Nanokugeldimension, um die Resonanz und Güte der Anregung quantifizieren zu können,
der Einsatz eines Substrats oder von Nanopartikeln mit verstärkendem Einfluss auf die
Signalstärke aus dem oberflächennahen Volumen.

In Kapitel 4 wird die Idee der Visualisierung vergrabener elektrischer Felder mit s-SNOM
fortgesetzt. Hier wird es auf die Untersuchung von WS2 angewendet, einem zweidimen-
sionalen TMDC-Material, welches Photolumineszenz zeigt. Durch die Strukturierung des
Galliumphosphid-Substrats unter der hängenden Monolage, die von einer dünnen Schicht
aus hBN getragen wird, wird die Photolumineszenzausbeute um den Faktor 10 erhöht. Dies
wird durch den Entwurf einer lateralen DBR-Mikrokavität mit zusätzlich optimierter ver-
tikaler Tiefe erreicht, die in das Substrat geätzt wurde. Die hochauflösende Abbildung der
elektrischen Feldverteilung im Resonator wird durch den Einsatz von s-SNOM ermöglicht,
um die Verbesserung der Einkopplung durch diese beiden Ansätze zu bewerten. Dabei wird
die bedeckte Resonatorstruktur mit Messungen bei nicht-resonanter Anregung und in unbe-
decktem Zustand, folglich ohne vertikale Verstärkung, verglichen. Es konnte festgestellt
werden, dass die laterale Struktur überwiegend zur verstärkten Photolumineszenzausbeute
beiträgt, während für die Einkopplung keine offensichtliche Verstärkung auf die vertikale
Strukturoptimierung zurückgeführt werden konnte. Weiterführende Ideen betreffen die di-
rekte Messungen der Photolumineszenz durch messspitzenverstärkte Nahfeldmessungen und
die Trennung von Materialkontrast und Feldverteilung, welche eine für s-SNOM typische
Quelle für Messartefakte darstellt.

Das zweidimensionale Material WS2 wird in Kapitel 5 erneut mit Hilfe von c-AFM
untersucht. Unterschiedlich dicke Multilagen auf Graphen und Gold dienen als Tunnel-
barrieren für vertikale Ströme zwischen Substrat und leitender c-AFM-Messpitze. Die
nanoskopische Spitze wird im Kontaktmodus verwendet, um die Topografie der Probe abzu-
bilden und Zugang zu den mikroskopischen Terrassen unterschiedlicher Dicke zu erhalten.
Die Daten können mit einem Fowler-Nordheim-Modell mit Parametern für die Tunnelbre-
ite und Schottky-Barrierenhöhen der beiden Grenzflächen erklärt werden. Die Messungen
zeigen jedoch eine schwache Reproduzierbarkeit, was eine detailliertere Zusammenfassung
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der relevanten Fehlerquellen erfordert. In der Schlussfolgerung des Kapitels werden mehrere
Schlüsselaspekte vorgeschlagen, die bei künftigen Messungen berücksichtigt werden soll-
ten. Entscheidend ist, dass c-AFM sehr empfindlich auf die Adsorption von Wasserfilmen
an der Probenoberfläche reagiert, worunter WS2-Oberflächen unter Umgebungsbedingun-
gen leiden. Unzuverlässige c-AFM-Messungen sowie eine Verschlechterung der Oberfläche
aufgrund einer starken Adhäsion zwischen Spitze und Probe werden mit der Bildung von
Wassermenisken in Verbindung gebracht. Zusätzlich wird die Verwendung von zweidimen-
sionalen Materialien, z. B. Graphen, als Substratelektrode vorgeschlagen, um eine gut
definierte Grenzfläche zu gewährleisten. Die Unebenheit metallischer Substratkontakte
führt zu einem inhomogenem elektrischen Kontakt und der Ausbildung unterschiedlicher
Abstände sowie lokaler Fallenzustände. Diese Anmerkungen zu den vorläufigen Messun-
gen dürften weitere Studien zu vertikalen Ströme durch zweidimensionale Heterostrukturen
ermöglichen und den Weg für komplexere geschichtete Materialsysteme ebnen, wie in der
Schlussfolgerung von Kapitel 5 vorgeschlagen.

Kapitel 6 befasst sich mit der Beschreibung der Erzeugung höherer Harmonischer im
Terahertzbereich in p-dotiertem Silizium. Dies stellt eine Abweichung vom Thema der
Oberflächenmessungen im Nanobereich dar und ist teilweise durch die spannenden experi-
mentellen Daten der höheren Harmonischen aus Silizium bis zur neunten Harmonischen mo-
tiviert, die zum damaligen Zeitpunkt analysiert wurden. Weitere Verbindungen zu zweidi-
mensionalen Materialien werden in der Einleitung von Kapitel 6 angedeutet, wo die aktuelle
Forschung zur Erzeugung höherer Harmonischer in zweidimensionalen Materialien ange-
sprochen wird. Das Kapitel skizziert ein eindimensionales Einzelteilchen-Zeitbereichsmodell,
das zur Simulation der oszillierenden Bewegung von Lochladungsträgern infolge der Anre-
gung durch einen intensiven Terahertz-Puls verwendet wurde. Von den beiden nichtlin-
earen Effekten, von denen erwartet wird, dass sie zur Erzeugung höherer Harmonischer
in p-dotiertem Silizium beitragen, nämlich der nichtparabolischen Bandstruktur und der
energieabhängigen Impulsstreuung, wurde festgestellt, dass die relative Dominanz von der
Temperatur abhängt. Für die Messung bei Tieftemperatur von 10 K ist die Nichtparabo-
lizität der Bandstruktur maßgeblich, bei Raumtemperatur hingegen dominiert der Einfluss
der energieabhängigen Streurate. Dieser Unterschied liegt in dem starken Beitrag der nur
gering bevölkerten leichten Lochladungsträger begründet, die unter Berücksichtigung der
Spin-Orbit-Kopplung eine wesentlich stärker anharmonische Bandkrümmung aufweisen als
die schweren Löcher. Das Ergebnis beschreibt qualitativ die experimentellen Daten und
bietet einen Beitrag zur aktuellen Debatte über den Ursprung der Nichtlinearität bei der
Erzeugung höherer Harmonischer in festen Kristallen.

Zusammengefasst stellen die dargestellten Ergebnisse Beiträge zur experimentellen
Forschung auf der Grundlage des Nahinfrarot-s-SNOM und der Aufbauvariation des c-AFM
dar. Die spitzenbasierten nanoskopischen Rastermessverfahren wurden eingesetzt, um die
Oberfläche - und in erweitertem Sinne auch oberflächennahe Volumina - einer plasmonischen
Metaoberfläche und von ein- und mehrschichtigen TMDC-Materialien zu untersuchen.

In diesem Zusammenhang lieferte die Nahfeldbildgebung Belege für die Oberflächen-
wellendispersion einer geführten Modenresonanz, die über eine dielektrische Nanokugel an-
geregt wurde. Darüber hinaus ermöglichte sie eine hochauflösende Abbildung des Feldes
einer vergrabenen, substratintegrierten, die Photolumineszenz verstärkenden Mikrokavität
und belegte deren verstärkende Wirkung auf die eingekoppelte Strahlung. Ein Vorhaben,
das AFM im Kontaktmodus mit einer leitenden Spitze zur Messung von Quantentunnelströ-
men durch dünne WS2-Flakes zu nutzen, zeigte vorläufige Ergebnisse und wurde mit einem
Report über das weitere Vorgehen bei zukünftigen Studien abgeschlossen.

Schließlich schließen zusätzliche Arbeiten zur Debatte über den Ursprung der Erzeugung

142



höherer Harmonischer aus dem Valenzband von dotiertem Silizium die Arbeit ab. Obwohl sie
nicht im Rahmen von zweidimensionalen Oberflächen untersucht wurden, sind sie aufgrund
ihrer Relevanz als untermauernder Beitrag zu aktuellen experimentellen Ergebnissen aus
zwei Hochintensitäts-Terahertz-Anlagen in diese Arbeit aufgenommen worden.
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