N-Chlornitrenokomplexe des Wolframs: WCl₄(NCl) und [CH₃CN-WCl₄(NCl)]

N-Chloro-Nitrene Complexes of Tungsten: WCl₄(NCl) and [CH₃CN-WCl₄(NCl)]

Astrid Görge, Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg/Lahn

Dieter Fenske

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt/Main

Herrn Prof. Dr. H. Nöth zum 60. Geburtstag gewidmet

Z. Naturforsch. 43b, 677-681 (1988); eingegangen am 26. Januar 1988

Synthesis, IR Spectra, X-Ray, N-Chloro-Nitrene-Tungsten Tetrachloride, Acetonitrile Adduct

WCl₄(NCl) has been prepared as a red-brown crystal powder by the reaction of tungsten hexacarbonyl with excess nitrogen trichloride in boiling CCl₄. The complex is associated *via* chloro bridges, forming dimeric units, according to the IR spectrum. Thermal decomposition at 200 °C leads to tungsten nitride trichloride, WNCl₃. With acetonitrile, WCl₄(NCl) reacts with formation of the monomeric complex [CH₃CN-WCl₄(NCl)], which was characterized by its IR spectrum as well as by an X-ray structure determination. Crystal data: space group P2₁/m, Z = 2 (1387 independent observed reflexions, R = 0.07). Lattice dimensions at 20 °C: a = 590.4(3), b = 729.0(3), c = 1124.6(4) pm, $\beta = 100.63(2)^\circ$. The complex forms monomeric molecules, in which the tungsten atom has a distorted octahedral environment of four chlorine atoms in equatorial positions, and the acetonitrile molecule in *trans*-position to the $\Im = \Im - Cl$ group. Bond lengths WN = 172 and NCl = 161 pm; bond angle WNCl = 175.5°.

1. Einleitung

N-Chlornitrenokomplexe von Übergangsmetallen (auch N-Chlorimidokomplexe genannt) mit der Baugruppe $\mathbf{\tilde{M}} \equiv \mathbf{\tilde{N}} - \mathbf{Cl}$ sind erst in geringer Anzahl bekannt. Kristallographisch gesicherte Beispiele sind VCl₃(NCl) [1], ReF₅(NCl) [2], ReNF₄ · ReF₅(NCl) [3] und $[CH_3CN-MoF_4(NCI)]$ [4]. Zu ihrer Synthese dienen die Umsetzung von VCl₄ mit Chlorazid [5] oder die Chlorierung von VN [1] zum VCl₃(NCl), die Umsetzung von ReF6 mit Trimethylsilylazid und anschließende Behandlung des Primärproduktes mit ClF_3 zum $ReF_5(NCl)$ [2], die Fluorierung von ReNCl₄ zum ReNF₄ · ReF₅(NCl) [3] oder die Fluorierung von MoCl₄(NSCl) zum MoF₄(NCl), das sich mit Acetonitril solvatisieren läßt [4]. Wir fanden nun in der Reaktion von Wolframhexacarbonyl mit Stickstofftrichlorid eine weitere Synthesemöglichkeit, die zu dem ersten Beispiel eines N-Chlornitrenokomplexes des Wolframs führte.

2. Synthese und Eigenschaften von WCl₄(NCl)

Die Verbindung entsteht in sehr guter Ausbeute bei der Einwirkung von überschüssigem Stickstofftrichlorid, gelöst in Tetrachlorkohlenstoff, auf Wolframhexacarbonyl:

$$2 \operatorname{W(CO)}_{6} + 4 \operatorname{NCl}_{3} \rightarrow$$

$$[\operatorname{WCl}_{4}(\operatorname{NCl})]_{2} + 12 \operatorname{CO} + \operatorname{N}_{2} + \operatorname{Cl}_{2} \qquad (1)$$

Die Reaktion verläuft exotherm; die Zugabe der NCl₃-Lösung erfolgt zunächst bei 0 °C. Nach Beendigung der Gasentwicklung erhitzt man den Ansatz zusammen mit noch vorhandenem Stickstofftrichlorid mehrere Stunden. Wir nehmen an, daß Reaktion (1) zunächst unter Bildung von WNCl₃ [6] verläuft, das sich anschließend durch den radikalischen Zerfall des NCl₃ in WCl₄(NCl) umwandelt. Hierfür spricht die Beobachtung, daß man WNCl₃ durch Vermeidung eines größeren Überschusses an NCl₃ direkt aus Wolframhexacarbonyl gewinnen kann [7]. Auch die früher von uns untersuchte Umsetzung von Molybdänhexacarbonyl mit Stickstofftrichlorid hatte zur Synthese von Molybdännitridtrichlorid, MoNCl₃, geführt [8].

^{*} Sonderdruckanforderungen an Prof. Dr. K. Dehnicke.

 $Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen \\ 0932-0776/88/0600-0677/\$ 01.00/0$

WCl₄(NCl) ist ein in Tetrachlorkohlenstoff und in anderen wenig polaren Lösungsmitteln nahezu unlösliches, rotbraunes, diamagnetisches, außerordentlich feuchtigkeitsempfindliches Kristallpulver. Seine Hydrolyse mit überschüssigem Wasser verläuft sehr heftig und unter Abspaltung von Chlor zu Wolframtrioxid:

$$WCl_4(NCl) + 3H_2O \xrightarrow{H_2O} WO_3 + NH_4Cl + Cl_2 + 2HCl$$
(2)

Partielle Hydrolyse führt zu rotem WOCl₄ und vermutlich zu Chloramin. In solvatisierenden Lösungsmitteln wie Acetonitril, Pyridin u.a. löst es sich exotherm unter Bildung definierter Donor-Akzeptorkomplexe; das Acetonitriladdukt $[CH_3CN-WCl_4(NCl)]$ haben wir auch kristallographisch charakterisiert (s.u.).

Die Formulierung von $[WCl_4(NCl)]_2$ als Dimeres folgt aus dem IR-Spektrum (siehe Tab. I):

In diesem beobachten wir neben WCl-Valenzschwingungen des terminalen Typs im Bereich von etwa 360 cm⁻¹ auch eine WCl₂W-Brückenvalenzschwingung bei 277 cm⁻¹. Für beide Schwingungs-

typen liegen gesicherte Vergleichsdaten vor [9]. Charakteristisch sind die Valenzschwingungen der W \equiv N-Cl-Gruppe, von denen ν W \equiv N (1207 cm⁻¹) wegen der Schwingungskopplung mit ν NCl (531 cm⁻¹) gegenüber Valenzschwingungen des terminalen Typs W \equiv N (etwa 1080 cm⁻¹ [10]) kurzwellig verschoben ist. Ganz ähnliche Verhältnisse werden in den kristallographisch untersuchten Organoimidokomplexen [WCl₄(NR)]₂ (R = C₂Cl₅ [11], R = t-C₄H₉ [12], R = p-CH₃C₆H₄ [13]) angetroffen.

In dem Acetonitrilkomplex $[CH_3CN-WCl_4(NCl)]$ werden die charakteristischen Schwingungen des WCl₄(NCl)-Fragments nur wenig beeinflußt. Die in Tab. I getroffene Zuordnung der Schwingungen des Acetonitrilmoleküls erfolgte in Anlehnung an die Spektren anderer Acetonitrilsolvate [14].

3. Kristallstruktur von [CH₃CN-WCl₄(NCl)]

Tab. III enthält die Kristalldaten und Angaben zur Strukturlösung, Tab. IV die Bindungsabstände und -winkel, Tab. V die Atomkoordinaten*.

Die Verbindung besitzt eine Molekülstruktur, in der das Wolframatom verzerrt oktaedrisch von vier

$[WCl_4(1)]$	$NCI)]_2$	$[WCl_4(1)]$	NCI · CH_3CN]	Zuordnung	
cm ·	Int.*	cm '	Int.		
124	m	129	m-st]	δWC1	
171	m	170	m ∫	0 11 014	
204	m	218	m	δCIWN	
		230	SS		
277	m-st			νWCl_2W	
		290	S	$\nu W - (NCCH_3)$	
337	sst	328	st]		
353	sst	338	st	WCI	
383	m	350	m (VWCI ₄ terminal	
398	S	372	m		
		411	m]	ACCN AWNCI	
425	m	426	st ∫	occn, owner	
531	SS			νNCl	
		787	SS	$2 \times \delta CCN$	
		823	SS		
		947	st	νCC	
		1020	st	ρCH_3	
1207	S	1203	m	$\nu W \equiv N$	
		1377	st	δCH_3	* Int
					s =

Tab. I. IR-Spektren.

* Int. sst = sehr stark, st = stark, m = mittel. s = schwach, ss = sehr schwach.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 53024, der Autoren und des Zeitschriftenzitats angefordert werden.

Tab. II. Zusammenhang zwischen MN- und NCI-Bindungsabständen und Valenzschwingungen der $\stackrel{\odot}{M} \equiv \stackrel{\odot}{N}$ –CI-Gruppe in N-Chlornitrenkomplexen.

	r M≡N [pm]	r N–Cl [pm]	≮ M≡N−Cl [Grad]	$\nu M \equiv N$ [cm ⁻¹]	ν N-Cl [cm ⁻¹]	Lit.
Cl ₃ V(NCl)	164,2	158,8	175,2	1107	510	[1]
$F_4Mo(NCl)(CH_3CN)$	172	159; 162	175,8; 177,7	1170	550	[4]
F_5 Re(NCl)	173	156	176,7	1205		[2]
$ReNF_4 \cdot ReF_5(NCl)$	164	160	177	1221	475	[3]
$Cl_4W(NCl)(CH_3CN)$	172	161	175,5	1203		[diese Arbeit]

Gitterkonstanten	a = 590,4(3); b = 729,0(3); c = 1124,6(4) pm;
	$\beta = 100,63(2)^{\circ}$
Zellvolumen	475,7 Å ³
Zahl der Formeleinheiten pro Zelle	Z = 2
Dichte (berechnet)	$2,90 \text{ g/cm}^3$
Kristallsystem, Raumgruppe	monoklin, $P2_1/m$
Meßgerät	Vierkreisdiffraktometer, Siemens AED II
Strahlung	MoK α (Graphit-Monochromator)
Meßtemperatur	20 °C
Zahl der Reflexe zur	
Gitterkonstantenberechnung	25
Meßbereich, Abtastungsmodus	$3-60^\circ$, ω -scan
Zahl der gemessenen Reflexe	2982
Zahl der unabhängigen Reflexe	1464, davon 1387 I > $2\sigma(I)$
Korrekturen	Lorentz- und Polarisationsfaktor; Absorptions-
	korrektur μ (MoK α) 143,6 cm ⁻¹ (ψ -scan)
Strukturaufklärung	W-Lage aus Patterson-Methoden, N, C, Cl aus
	Differenz-Fourier-Synthesen
Verfeinerung	Alle Atome außer Wasserstoff anisotrop verfei-
	nert
Restriktionen	Die H-Atomlagen ließen sich nicht lokalisieren
Verwendete Rechenprogramme	SHELX 76 [15], ORTEP [16]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	Int. Tab. (1974)
$\mathbf{R} = \mathbf{\Sigma} \mathbf{F}_{o} - \mathbf{F}_{c} / \mathbf{\Sigma} \mathbf{F}_{o} $	7,0%

Tab. III. Kristalldaten und Angaben zur Kristallstrukturbestimmung von $[WCl_4(NCl) \cdot CH_3CN].$

Tab. IV. Bindungsabstände [pm] und -winkel [Grad] im $[WCl_4(NCl)\cdot CH_3CN].$

Tab. V.	Atomkoordi	naten und	Parameter	U für den äqui-
valenter	isotropen Te	emperaturf	faktor exp($-8\pi^2 \text{Usin}^2 \theta/\lambda^2$)
[17]. U-	Werte als 10 ⁻	⁴ -fache in	pm ² .	

W-Cl(1)	235,0(3)	Cl(1)-W-Cl(2)	88,3(1)
W-Cl(2)	231,6(3)	Cl(1)-W-Cl(1')	88,5(1)
W-N(1)	228(1)	Cl(1)-W-Cl(2')	165,2(1)
W-N(2)	172(1)	Cl(2)-W-Cl(2')	91,2(1)
N(2) - Cl(3)	161(1)	Cl(2)-W-Cl(1')	165,2(1)
N(1) - C(1)	110(2)	N(1) - W - Cl(1)	81,8(3)
C(1) - C(2)	147(2)	N(1) - W - Cl(2)	83,5(3)
		N(2) - W - Cl(1)	97,1(4)
		N(2) - W - Cl(2)	97,6(3)
		N(1) - W - N(2)	178,4(6)
		W - N(2) - Cl(3)	175,5(10)
		W - N(1) - C(1)	174(2)
		N(1)-C(1)-C(2)	177(2)

Atom	x	у	z	U
W(1)	2041(1)	2500	2827	0299(3)
Cl(1)	-0352(6)	0251(4)	1749(3)	048(1)
Cl(2)	4755(6)	0230(5)	3428(3)	051(2)
N(1)	357(3)	2500	111(1)	037(6)
C(1)	449(3)	2500	035(2)	032(6)
C(2)	562(3)	2500	-071(2)	044(8)
N(2)	082(2)	2500	410(1)	034(6)
Cl(3)	-013(1)	2500	5353(4)	052(2)

äquatorial angeordneten Chloratomen und axial von dem N-Atom des Chlornitrenoliganden und von dem N-Atom des Acetonitrilmoleküls umgeben ist (Abb. 1). Das Molekül hat eine Spiegelebene entlang der Achse CINWNCC (Symmetrie C_s), jedoch sind die Abweichungen von der Symmetrie C_{4v} (ohne Berücksichtigung der H-Atome) nur gering. Die WNCl-Gruppe ist nahezu linear (Bindungswinkel 175,5°), so daß sp-Hybridisierung am N-Atom anzunehmen ist gemäß der Schreibweise $\bar{W} \equiv N - Cl$. Hierzu passen auch die Bindungsabstände WN (172 pm) und NCl (161 pm), die Dreifach- bzw. Einfachbindungsabständen entsprechen und mit vergleichbaren Werten auch bei anderen N-Chlornitrenokomplexen angetroffen werden (Tab. II). Die kurze WN-Bindung der W̃≡Ň−Cl-Gruppe bewirkt einen starken trans-Einfluß, so daß das N-Atom des Acetonnitrilmoleküls nur eine lange W-N-Bindung von 228 pm realisieren kann, die dem Erfahrungswert einer Bindung vom Donor-Akzeptortyp entspricht. Die große Elektronendichte der W≡N-Dreifachbindung bewirkt ein Abdrängen der vier äquatorial angeordneten Chloratome, was man an den NWCl-Bindungswinkeln erkennt, die im Mittel 97,4° betragen. Ganz ähnliche Verhältnisse werden im [CH₃CN-MoF₄(NCl)] angetroffen, in dem der entsprechende Bindungswinkel N≡MoF im Mittel 98° aufweist [4].

Abb. 1. Das $[CH_3CN-WCl_4(NCl)]$ -Molekül (ohne H-Atome). Die Ellipsoide der thermischen Schwingung umschreiben 50% Aufenthaltswahrscheinlichkeit bei 20 °C. Abstandsangaben in pm.

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit. CCl_4 und Acetonitril wurden über P_4O_{10} destilliert. Wolframhexacarbonyl war ein handelsübliches Produkt. Eine etwa 16-proz. NCl_3 -Lösung in CCl_4 erhält man in Anlehnung an Lit. [18] durch Einleiten von Chlorgas in eine auf 0 °C gekühlte wäßrige Ammoniumcarbonatlösung, die man mit CCl₄ unterschichtet hat. Nach Abtrennen der NCl₃/CCl₄-Schicht wird diese noch einige Zeit nachchloriert. Anschließend wäscht man die NCl₃-Lösung durch Schütteln mit wenig Wasser, mit Schwefelsäure angesäuerter 5-proz. (NH₄)₂SO₄-Lösung und nochmals mit Wasser. Schließlich trocknet man zunächst mit Na₂SO₄. anschließend mit P₄O₁₀. Nach Filtration wird diese Lösung direkt zur Anwendung gebracht. Die IR-Spektren wurden im Bereich von 100 bis 4000 cm⁻¹ mit Hilfe eines Bruker-IFS-88-Gerätes registriert. Nujol-Verreibungen, CsI- bzw. Lupolenfenster.

WCl₄(NCl)

Zu einer auf 0 °C gekühlten Suspension von 20 g Wolframhexacarbonyl (56,8 mmol) tropft man langsam unter Rühren 150 ml der oben beschriebenen NCl₃/CCl₄-Lösung hinzu, was etwa 0,364 mol NCl₃ entspricht. Nach Beendigung des Zutropfens und der Gasentwicklung (Cl₂, N₂, CO) erwärmt man langsam bis zum Sieden und hält 3 h bei dieser Temperatur. Man filtriert den rotbraunen Niederschlag unter Schutzgas, wäscht mit CCl₄ und trocknet i. Vak. Ausbeute 17 g (85%, bez. auf W(CO)₆).

WNCl₅ (375,1)

Gef.	W 50,69	N 3,79	Cl 47,24,
Ber.	W 49,02	N 3,73	Cl 47,24.

$[WCl_4(NCl) \cdot CH_3CN]$

3,0 g WCl₄(NCl) (8,0 mmol) werden in 20 ml CCl₄ suspendiert und unter Rühren tropfenweise mit 40 ml Acetonitril versetzt. Unter leichtem Erwärmen entsteht eine hellrote Lösung, die man zur Herstellung von Einkristallen einige Zeit bei 4 °C aufbewahrt. Eindampfen des Filtrats i. Vak. liefert das Präparat in vollständiger Ausbeute.

$WN_2C_2H_3Cl_5$ (416,2)

Gef.	W44,19	C5,83	H0,78	N6,77	C142,99,
Ber.	W44,17	C5,76	H0,72	N6,72	Cl42,62.

WNCl₃

Man erhitzt eine Probe $WCl_4(NCl)$ im dynamischen Vakuum (10⁻⁴ Torr) insgesamt 8 h auf 200 °C, wobei unter Chlorabspaltung WNCl₃ in vollständiger Ausbeute zurückbleibt.

WNCl₃ (304,2)

Gef.	W 62,72	N 4,41	Cl 36,0,
Ber.	W 60,40	N 4,59	Cl 35,0.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für großzügige Förderung.

- J. Strähle und H. Bärnighausen, Angew. Chem. 78, 450 (1966); Angew. Chem., Int. Ed. Engl. 5, 417 (1966); Z. Anorg. Allg. Chem. 357, 325 (1968).
- [2] J. Fawcett, R. D. Peacock und D. R. Russell, J. Chem. Soc. Chem. Commun. **1982**, 958; J. Fluor. Chem. **23**, 454 (1983); J. Chem. Soc. Dalton Trans. **1987**, 567.
- [3] W. Kafitz, K. Dehnicke, E. Schweda und J. Strähle, Z. Naturforsch. 39b, 1114 (1984).
- [4] D. Fenske, K. Völp und K. Dehnicke, Z. Naturforsch. 42b, 1398 (1987).
- [5] J. Strähle und K. Dehnicke, Z. Anorg. Allg. Chem. 338, 287 (1965).
- [6] K. Dehnicke und J. Strähle, Z. Anorg. Allg. Chem. 339, 171 (1965).
- [7] T. Godemeyer und K. Dehnicke, unveröffentlichte Ergebnisse.
- [8] K. Dehnicke, U. Weiher und J. Strähle, Z. Naturforsch. 32b, 1484 (1977).
- [9] J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart-New York (1986).

- [10] K. Dehnicke und J. Strähle, Angew. Chem. 93, 451 (1981); Angew. Chem., Int. Ed. Engl. 20, 413 (1981).
- [11] M. G. B. Drew, G. W. A. Fowles, D. A. Rice und N. Rolfe, J. Chem. Soc. Chem. Commun. 1971, 231.
- [12] K. Stahl, F. Weller, K. Dehnicke und P. Paetzold, Z. Anorg. Allg. Chem. 534, 93 (1986).
- [13] W. Clegg und R. J. Errington, Acta Crystallogr. C43, 2223 (1987).
- [14] J. Reedijk, A. P. Zuur und W. L. Groeneveld, Rec. Trav. Chim. Pays-Bas 86, 1127 (1967).
- [15] G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, Cambridge (1976).
- [16] C. K. Johnson, ORTEP, Report 3794, Oak Ridge National Laboratory, Tennessee (1965).
- [17] W. C. Hamilton, Acta Crystallogr. 12, 609 (1959).
- [18] L. Bayersdorfer, U. Engelhardt, J. Fischer, K. Höhne und J. Jander, Z. Anorg. Allg. Chem. 366, 169 (1969).