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Abstract

This thesis has two main parts.
The first part is based on our publication [1], where we use perturba-

tion theory to calculate decay rates of magnons in the Kitaev-Heisenberg-Γ
(KHΓ) model. This model describes the magnetic properties of the material
α-RuCl3, which is a candidate for a Kitaev spin liquid. Our motivation is to
validate a previous calculation from Ref. [2]. In this thesis, we map out the
classical phase diagram of the KHΓ model. We use the Holstein-Primakoff
transformation and the 1/S expansion to describe the low temperature dy-
namics of the Kitaev-Heisenberg-Γ model in the experimentally relevant
zigzag phase by spin waves. By parametrizing the spin waves in terms of
hermitian fields, we find a special parameter region within the KHΓ model
where the analytical expressions simplify. This enables us to construct the
Bogoliubov transformation analytically. For a representative point in the
special parameter region, we use these results to numerically calculate the
magnon damping, which is to leading order caused by the decay of single
magnons into two. We also calculate the dynamical structure factor of the
magnons.

The second part of this thesis is based on our publication [3], where we
use the functional renormalization group to analyze a discontinuous quan-
tum phase transition towards a non-Fermi liquid phase in the Sachdev-Ye-
Kitaev (SYK) model. In this thesis, we perform a disorder average over the
random interactions in the SYK model. We argue that in the thermody-
namic limit, the average renormalization group (RG) flow of the SYK model
is identical to the RG flow of an effective disorder averaged model. Using
the functional RG, we find a fixed point describing the discontinuous phase
transition to the non-Fermi liquid phase at zero temperature. Surprisingly,
we find a finite anomalous dimension of the fermions, which indicates critical
fluctuations and is unusual for a discontinuous transition. We also deter-
mine the RG flow at zero temperature, and relate it to the phase diagram
known from the literature.
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Chapter 1

Introduction

Quasiparticles are a central concept in condensed matter physics [4, 5, 6,
7, 8]. Collective modes in a many body system can often be characterized
by quantum numbers which resemble the quantum numbers known from
ordinary particles, like momentum, charge or spin. One example are the
wave-like excitations in spin systems called spin waves or magnons [4, 8, 9].
Another notable example is the Fermi-liquid theory [10, 11] used to describe
the electronic properties of normal metals. In this thesis, we investigate two
models where the two above-mentioned scenarios break down. Both of these
models are based on toy models proposed by Alexei Kitaev.

The first part of this thesis is based on our publication [1]. There, we
calculate decay rates of magnons in α-RuCl3, a candidate material for the
realization of a spin liquid phase. We show that the decay rates are high
enough to destroy the quasiparticle-character of the magnons, which was
referred to as ’breakdown of magnons’ in a previous publication [2].

The second part is based on our publication [3]. There, we perform
a scaling analysis in a simple fermionic toy model, the Sachdev-Ye-Kitaev
(SYK) model [12]. This model hosts a phase with no quasiparticle excita-
tions at all, called the non-Fermi liquid (nFL) phase [13]. This makes it an
interesting toy model for strange metals and high temperature superconduc-
tivity [14]. Here, we find an unusual result, namely that the discontinous
phase transition to the nFL phase is characterized by strong critical fluc-
tuations, a property which is normally only expected at continuous phase
transitions or critical points.

The remainder of this introductory chapter is dedicated to explain the
motivation and physical backgrounds of both topics. In Sec. 1.1 we intro-
duce Kitaev’s quantum spin liquid and summarize the current status of the
search for experimental realizations. In Sec. 1.1.1, we explain our moti-
vation to calculate magnon decay rates in the Kitaev-Heisenberg-Γ (KHΓ)
model. In Sec. 1.2, we motivate our scaling analysis in the SYK model. This
includes a short introduction to the method used for the analysis, the func-
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2 Introduction

tional renormalization group (FRG), in Sec. 1.2.1. In Sec. 1.2.2, we briefly
introduce the SYK model and the discontinuous phase transition to the nFL
phase. The detailed analyses of the two problems is presented in the two
following chapters separately, chapter 2 is dedicated to the breakdown of
magnons in the KHΓ model and chapter 3 is dedicated to the scaling analy-
sis in the SYK model. In the Appendix, we provide a summary of the thesis
in German language.

1.1 The search for Kitaev’s quantum spin liquid

Generally, quantum spin liquid (QSL) states are characterized by persisting
magnetic quantum fluctuations and absence of magnetic ordering down to
lowest temperatures [15]. Usually, they host fractional magnetic excitations.
Such a state was first proposed by Philip W. Anderson in the form of res-
onating valence bond (RVB) states [16], where localized spins pair up to form
singlet states. Quantum fluctuations in the arrangement of the pairings can
be described in terms of so-called spinons, which are magnetic excitations
with spin 1/2. While many candidate materials have been proposed, it is
still debated whether they host QSL states [17]. In the past, this confusion
has partly been due to a lack of theoretical understanding, as no derivation
of a QSL state from a microscopic model has been known since recently.
A substantial advancement in the understanding of QSLs is due to Alexei
Kitaev, who presented the (now termed) Kitaev model together with its ex-
act solution and showed that this model has a QSL ground state [18]. This
ground state is very distinct from the RVB state proposed by Anderson.
The fractional excitations are described by anyonic Majorana modes, as op-
posed to the spinons found in RVB states. These exotic quasiparticles are
of particular interest because they can be used for fault-tolerant topological
quantum computing [19, 20]. We introduce the Kitaev model in more detail
in Sec. 2.1.

A physical realization of this exotic state, termed Kitaev QSL, would
surely be of interest, but there is a problem: the couplings between the
localized spins in the Kitaev model are rather artificial and other more com-
mon couplings are usually dominant in real materials. A possible solution
was proposed with the Khaliullin mechanism [21], where strong spin orbit
coupling leads to the formation of a spin-orbit triplet state. The crystal
field of the neighboring atoms can then lead to an energy splitting which
reduces the triplet to an effective pseudo spin 1/2. Due to a specific ge-
ometric alignment of the unit cells, the interactions between neighboring
pseudo spins are of the type described by the Kitaev model and can get
comparable in magnitude to the more common magnetic interactions like
the Heisenberg interaction. In subsequent years, many candidate materials
were proposed (see Ref. [22] for a review), one of which is α-RuCl3. This
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material is an ordered magnet at low temperatures [23] and as such, cannot
be a realization of a Kitaev QSL. There is a debate whether a Kitaev QSL
can be induced by destroying the magnetic order by an external magnetic
field [22, 24, 25, 26, 27, 28]. Interestingly, it has been argued that even in
the absence of an external field, the observed inelastic neutron scattering
spectra are best explained by fractional magnetic excitations as described
by the Kitaev model [29, 30]. While the Kitaev ground state is destroyed
by non-Kitaev couplings between the pseudo spins, the fractional excita-
tions supposedly do survive. This would allow neutron scattering within a
broad energy range and could explain the scattering continuum observed in
α-RuCl3.

1.1.1 Magnon decay in the Kitaev-Heisenberg-Γ model

As an alternative to the interpretation as a QSL, the authors of Ref. [2] argue
that the broad neutron scattering continua in α-RuCl3 could be explained
by other mechanisms. Usually, one expects that the excitation spectrum
of an ordered magnet is described by spin-waves [4, 8, 9], which are well
defined quasi-particles with spin 1, called magnons. One would expect that
these magnetic excitations lead to sharp peaks in neutron scattering experi-
ments. However, the magnetic couplings and the special crystal structure in
α-RuCl3 allow scattering channels from the one-magnon to the two-magnon
states, which leads to a short magnon lifetime, diminishing their quasiparti-
cle character. The authors of Ref. [2] call this the ’breakdown of magnons’.
In the extreme, a consequence would be an incoherent magnon spectrum
which would result in a broad neutron scattering spectrum. The authors
state that the broad magnon spectrum may result either from the absence
of magnetic quasi-particles altogether, or from other types of non-magnonic
quasi-particles. Leaving open the possibility for fractional excitations, the
mechanism presented in Ref. [2] may be seen as a more general approach to a
description of the broad neutron scattering spectra in α-RuCl3. To substan-
tiate their claim, the authors describe the material by the KHΓmodel, which
is an extension of the Kitaev model that we introduce in Sec. 2.2. They first
estimate the coupling parameters of the model by comparing experimental
data from inelastic neutron scattering with results they produced by exact
diagonalization of the Hamiltonian [31]. They proceed to approximate the
leading anharmonic coupling, which is the three legged vertex describing the
decay of one magnon into two magnons, by a single constant number. With
this approximation, they calculate the damping of the spin waves. This way,
they reach considerable agreement with experiments as well as with the ex-
act diagonalization results. In order to validate this interpretation of the
scattering continuum in terms of the breakdown of magnons, it is important
to check whether the approximation of the interaction vertex, which is in
general momentum and channel-dependent, as one single number is justi-



4 Introduction

fied. The authors did this only indirectly by testing the approximation on a
different, simpler spin model where a more detailed calculation had already
been published [32].

The work presented in this thesis was originally intended as an extension
of the analysis in Ref. [2]. Our goal was to validate these results by a more
detailed calculation. However, this turned out to be a complicated task due
to the complexity of the Hamiltonian. While trying to tackle this problem,
we were able to identify a special region in the parameter space of the
KHΓ model, where the problem simplifies and a more detailed analysis is
possible. The authors of Ref. [2] then repeated their calculation for a set of
parameters which lies within this special region, allowing a comparison with
our more detailed calculation. While this set of parameters probably has
no immediate physical relevance, it was now possible to validate the cruder
approximation. We note that the method described in this thesis is quite
general and can in principle be used to identify similar special regions in
other bosonic systems as well.

1.2 Quantum phase transition in the SYK model

Physics in the vicinity of a continuous phase transition is characterized by
critical fluctuations on all length scales [33]. A discontinuous phase tran-
sition on the other hand is characterized by a state of phase separation,
with two or more sharply distinguished non-critical phases of matter. In
this work, we study a discontinuous quantum phase transition in the SYK
model and surprisingly find evidence for the presence of critical fluctuations.

We begin this section with a summary of the FRG, which is the method
we use for our analysis. Thereafter we briefly introduce the SYK model and
the discontinuous phase transition we want to investigate.

1.2.1 Functional renormalization group

We recapitulate that the renormalization group (RG) as developed by Ka-
danoff [34] and Wilson [35, 36, 37] is based on coarse-graining the dynamic
degrees of freedom of a physical theory. This is typically achieved by suc-
cessively integrating out modes with high energies, large momenta, or small
length scales and termed mode elimination. The coupling constants of the
resulting effective theory will in general depend on the degree of coarse-
graining, leading to the RG flow in the abstract space of the coupling con-
stants. Due to the mode elimination procedure, the degree of coarse-graining
- and hence the RG flow - is determined by a flowing energy, momentum
or length scale. As a result, macroscopic properties of a physical system,
which are governed by the coarse grained degrees of freedom, can be inferred
from the RG flow of its microscopic theory. The most interesting features of
the RG flow are usually the fixed points in the space of coupling constants.
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There, the couplings between the degrees of freedom stay fixed relative to
the flowing scale, i.e. a model with those couplings is scale invariant. It
turns out that the phenomenology of physical systems near a critical point
or near a phase transition can be explained by the RG flow near a critical
fixed point which attracts most couplings and repels at least one. In par-
ticular, the critical exponents of a continuous phase transition can be found
from an analysis of the RG flow near a critical fixed point and the scaling
hypothesis [34, 38] can be proved. Moreover, the reason for the universality
of the critical exponents across large groups of different physical systems
can be explained [33, 39]: the RG flow is typically characterized by a small
number of fixed points. But this means that the low energy or large scale
behavior of the whole coupling space is determined by only few fixed points.
This leads to qualitatively identical macroscopic behavior in large groups of
models, which can be grouped into universality classes.

To find the RG flow of the SYK model, we will utilize the functional
renormalization group (FRG) [39, 40, 41, 42]. The FRG is a formulation
of the RG in terms of functional differential equations. The coarse-graining
procedure is implemented by artificially introducing an explicit scale depen-
dence to the free propagator,

G0
αβ(k, ω) → G0

Λ,αβ(k, ω) . (1.1)

Here, we denote the energy, momentum, or length scale by Λ. The scale
dependence is usually chosen such that the propagator is suppressed in the
infrared regime: if Λ is a length scale, then the propagator should vanish
for lengths much larger than Λ and if Λ is an energy or momentum scale,
then the propagator should vanish for frequencies or momenta much smaller
than Λ. In the opposite ultraviolet regime, the propagator is unchanged,
and between the ultraviolet and the infrared regime, the Λ-dependence can
in principle be chosen arbitrarily. This procedure adds an artificial scale
dependence to all correlation functions of the theory, which will then ’flow’
with the scale Λ.

Here, we use the FRG in the form presented in Ref. [39]. The central
quantities are the irreducible vertices with n external legs, written as

Γ
(n)
Λ,α1...αn

(k1ω1, . . . ,knωn) . (1.2)

These irreducible vertices are precisely the vertices appearing in the tree
expansion of Feynman diagrams, and can hence be physically interpreted as
effective n-particle interactions.

For formal convenience, a generating functional ΓΛ[ϕ] is defined such
that it generates the irreducible vertices by the functional derivatives

Γ
(n)
Λ,α1...αn

(k1ω1, . . . ,knωn) =
δn ΓΛ[ϕ]

δϕα1(k1ω1) . . . δϕαn(knωn)

∣∣∣∣
ϕ=0

. (1.3)
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Here, the components ϕα of the vector ϕ are sources of the generating func-
tional. Formally, the generating functional of the irreducible vertices is the
Legendre transform of the generating functional for the connected Green’s
functions with respect to the source fields. The irreducible vertices are thus
closely related to the correlation functions of the fields, and the sources ϕα
are the expectation values of the original fields [5, 39].

The generating functional ΓΛ[ϕ] can be differentiated with respect to
the scale Λ, which leads to a linear differential equation for ΓΛ[ϕ]. This
formally exact flow equation is commonly known as the Wetterich equation.
The Wetterich equation can be functionally expanded into a power series in
the sources ϕα, leading to an infinitely large system of coupled differential

equations for the irreducible vertices Γ
(n)
Λ . This system of flow equations is

referred to as the vertex expansion and can typically only be solved approx-
imately.

The connection to the Wilsonian RG is established by the insight that
the infrared regime of the irreducible vertices coincides with the bare vertices
of a Wilsonian action where the ultraviolet regime has already been inte-
grated out [43]. Consequently, the infrared part of the flowing irreducible
vertices can directly by identified with the flowing coupling constants in a
corresponding Wilsonian RG.

1.2.2 Phase transition in the SYK model

The SYK model was introduced by Alexei Kitaev during a lecture [12].
He states that it is a simplification of a random Heisenberg model exam-
ined earlier by Sachdev and Ye [44], where Kitaev replaced the spin degrees
of freedom by Majorana modes. In this form, the SYK model served as
a simple, exactly solvable toy model for the gauge-gravity duality. For a
given quantum field theory, this duality describes a one-to-one mapping to
an equivalent gravitational theory. It was soon realized that a complex
fermionic variant of the SYK model could be a valuable toy model in con-
densed matter physics. We will define the Hamiltonian of this model later
in Sec. 3.1.

The SYK model is exactly solvable in the sense that a simple equation
for the self energy of the fermions can be derived in the thermodynamic
limit, which can be solved analytically in the zero temperature limit and
numerically for finite temperatures [14, 45, 46]. The explicit form of the
solution at low temperatures depends on the chemical potential µ. For large
|µ| one finds an integer valence (IV) state where the self energy vanishes and,
depending on the sign of µ, all modes are either uniformly occupied or uni-
formly unoccupied. For smaller |µ|, one finds a scale invariant solution with
anomalous dimension η = 1/2, i.e. the single-mode Green’s function obeys
a power law, G(τ) ∝ τ−1/2. Moreover, the characteristic time scale of corre-
lations and of thermodynamic equilibration is then given by the Planckian
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Figure 1.1: Phase diagram of
the SYK model. µ is the chemi-
cal potential and T is the temper-
ature. The discontinuous phase
transitions between the nFL and
the IV phases have critical end-
points at T = Tc, µ = ±µc.

time scale ℏω/kBT , which is strong evidence for the lack of quasiparticle ex-
citations [47]. It is the lack of quasiparticles which gives this phase the name
nFL. Because the absence of quasiparticles is also a key property of strange
metals [13], the SYK model and modifications thereof are seen as valuable
toy models for strange metals and high temperature superconductivity [14].

The subject of our interest is the phase transition separating the IV and
the nFL phases. It was shown that this is a discontinuous phase transition
with a disconitnuity in the fermionic occupation number [46, 48]. The phase
transitions have critical endpoints at some critical temperature Tc and chem-
ical potential ±µc as shown in Fig.1.1. Interestingly, the critical exponents
at the critical endpoint are asymmetrical, i.e. they depend on the direction
from which the critical point is approached. According to the authors of
Ref. [46], an RG picture of the phase transition is problematic because of
this asymmetry. In our work, we use the FRG to show that at least at zero
temperature, an RG description of the phase transition is possible. Sur-
prisingly, we find that the anomalous dimension at the phase transition is
finite. This indicates strongly correlated critical fluctuations, an unexpected
feature which at first sight seems to be incompatible with a discontinuous
phase transition. Although the interpretation is not completely clear to us,
we will discuss possible implications of this unusual result at the end of
chapter 3.
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Chapter 2

Breakdown of magnons in
the Kitaev-Heisenberg-Γ
model

Spin waves [4, 9, 8] are low energy excitations of ordered magnets in terms
of well defined bosonic quasi particles, called magnons.

Here, we consider the KHΓ model, which is believed to describe a novel
class of magnetic insulators [2, 49, 50, 51]. In the literature, it has been
argued that materials described by this model might exhibit fractional mag-
netic excitations which are suitable for quantum computations [29, 30]. How-
ever, this claim has been questioned in Ref. [2] on the basis of spin wave
theory. In their spin-wave calculation, the authors approximated the inter-
action between magnons as a momentum- and branch-independent constant.
In this work, we try to supplement the analysis of Ref. [2] with yet another,
more detailed approach to spin wave theory in the KHΓ-model.

A perturbative analysis of spin waves in the KHΓ-model is a challenging
endeavor. Due to the presence of scattering from single- to two-magnon
states, umklapp processes become important. Additionally, in the zigzag
phase which we study, the magnetic unit cell consist of four atoms, leading
to four magnon branches. As a consequence, eight-dimensional matrices
and tensors are needed to describe the Hamiltonian. This is probably at
the brink of what can be done analytically. In the approach presented here,
we use a hermitian field parametrization [52, 53, 54, 55] of the spin waves
to identify a previously unknown special region in the parameter space of
the KHΓ-model, where the spin-wave theory simplifies. This allows us to
caclulate the damping of the magnons within that special parameter region
to leading order in perturbation theory without any further approximations
of the magnonic interactions. Unfortunately, this special parameter region
does not include the parameters used in Ref. [2]. Nevertheless, the authors
of Ref. [2] were able to produce results for parameters which do fall into this

9
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special region, making a principle validation of their approximation possible.
This chapter is closely oriented on our publication [1] and has the fol-

lowing structure. We start by introducing the Kitaev model in Sec. 2.1 and
then the KHΓ model in Sec. 2.2. In Sec. 2.3, we define the lattice vectors
that we will use throughout this chapter. We then proceed by exploring
the classical phase diagram in Sec. 2.4, which we need for the spin wave
expansion that is to follow in Sec. 2.5. Thereafter in Sec. 2.6, we diagonalize
the quadratic part of the spin wave Hamiltonian using the hermitian field
parametrization. This allows us to identify the special region in parame-
ter space where the diagonalization matrices simplify. Using the analytical
results for the diagonalization matrices, we give expressions for the trans-
formed three-legged magnonic interaction vertices in terms of products of
analytic matrices. Because these expressions get very long if multiplied out,
we resort to numerical methods from that point on. Unfortunately, the spe-
cial region we found does not overlap with the parameters found in Ref. [2].
Nevertheless, a principal validation of the approximation scheme used in
Ref. [2] is possible. Therefore, we choose a representative point within the
special parameter region and calculate the damping of the magnons at zero
temperature in Sec. 2.7. We also calculate the dynamical structure factor in
Sec. 2.8. Finally, we give a short discussion of physical and technical aspects
of the results in Sec. 2.9.

2.1 The Kitaev model

The Kitaev model is defined on a honeycomb lattice with magnetic spins
S = 1/2 located at the lattice sites. The spins interact with their nearest
neighbors via an Ising interaction. Depending on the spatial orientation
of the lattice bond, different components of the spin vectors couple. To
make this bond-dependence more precise, consider a honeycomb lattice lying
in the [111]-plane of a laboratory basis {x̂, ŷ, ẑ} and aligned as shown in
Fig. 2.1. The bonds between nearest neighbor sites can have three different
orientations. We call those bonds that are perpendicular to the x̂ direction
x-bonds, those that are perpendicular to the ŷ direction y-bonds, and those
that are perpendicular to the ẑ direction z-bonds. The Hamiltonian for the
Kitaev model can then be written as

HKitaev = Kx

∑
⟨ij⟩x

Sx
i S

x
j +Ky

∑
⟨ij⟩y

Sy
i S

y
j +Kz

∑
⟨ij⟩z

Sz
i S

z
j , (2.1)

where Sx
i , S

y
i , S

z
i are the vector components of the spin operator at lattice

site i. The expression ⟨ij⟩x denotes the set of nearest neighbor pairs i, j
separated by an x-bond, and similarly for ⟨ij⟩y and ⟨ij⟩z.

In his original paper [18], Kitaev shows how to solve this model ana-
lytically. The solution is based on the decomposition of the spins into
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Figure 2.1: A hon-
eycomb lattice lying in
a [111]-plane of a lab-
oratory basis {x̂, ŷ, ẑ}.
The blue x-bonds are
perpendicular to the x̂-
direction, as are the
green y-bonds to the ŷ-
direction and the red z-
bonds to the ẑ-direction

Majorana modes. These exotic particle-like objects were first introduced
by Ettore Majorana with the intent to describe neutrinos [56]. Majorana
modes obey fermionic anti-commutation relations and are their own antipar-
ticles [57, 58, 59], i.e. their creation and annihilation operators fulfill the
relation

(c†)2 = c2 = 0 . (2.2)

The algebra of the components Sx, Sy, Sz of a spin 1/2 operator can be
expressed in terms of four Majorana operators [18]. This leads to an artificial
enlargement of the two dimensional Hilbert space of the spin to the four
dimensional Hilbert space of the four Majorana modes. Then, the exact
solution of the Kitaev model can be found by associating one of the four
Majorana modes with the lattice site and the three remaining modes with
each adjacent lattice bond. We illustrate this in Fig. 2.2. Because two
Majorana operators can be linearly combined to constitute one fermionic
creation or annihilation operator [57, 58, 59], pairing the bond-associated
Majorana modes of neighboring lattice sites with one another leads to one
fermion associated with each lattice bond. These bond fermions can in turn
be combined to constitute two types of fields, plaquette fluxes and a Z2

gauge field.
The plaquette fluxes are defined by the product of the six ordinary

fermions associated with the bonds around a closed hexagonal loop (a pla-
quette) of the honeycomb lattice. These operators commute with the Hamil-
tonian and have eigenvalues ±1. This allows for an interpretation as con-
served fluxes through the plaquettes and the Hamiltonian can be sectioned
into flux sectors. The plaquette fluxes do not capture all degrees of freedom
described by the bond fermions, as can be seen by counting the dimensions
in Hilbert space. Left over is one Z2 gauge field per lattice site, which
results from the artificial enlargement of the Hilbert space due to the intro-
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Figure 2.2: The alge-
bra of the spin operator
Si can be expressed in
terms of four Majorana
modes. Identifying one
Majorana mode, ci, with
the lattice site, and the
remaining three, ax,y,zi

with the adjacent x-, y-
and z-bonds, the Ki-
taev Hamiltonian (2.1)
can be diagonalized ana-
lytically.

duction of the Majorana modes. Calculation of physical quantities requires
a projection to the physical Hilbert space or, equivalently, fixing a gauge.

The dynamics within the conserved plaquette-flux sectors is described by
the remaining unpaired Majorana modes at each lattice site. Depending on
the relative strengths of the coupling constants Kx, Ky, Kz, the spectrum
of the Majorana modes is either gapped or gapless. If one of the couplings
is much larger than the others, the Majorana modes are gapped and exhibit
Abelian anyonic statistics, i.e. permutation of two Majorana modes leads to
a phase factor eiϕ which is distinct from the bosonic/ fermionic ±1 [60]. If
none of the couplings is dominant a gapless spectrum results. In this case,
the low energy physics is restricted to the ground state sector of the plaquette
fluxes, where all fluxes are aligned. The low energy dynamics is then fully
determined by the dynamics of the Majorana modes. In the presence of
an external magnetic field, the Majorana modes obey non-Abelian anyonic
statistics, i.e. a permutation of two Majorana modes leads to a change
of the quantum mechanical state, which can be interpreted as an operator-
valued phase factor [60]. Such non-Abelian anyons are of particular practical
interest since they obey so-called braiding rules which could be used to
perform topological quantum computations [18, 19, 20].

2.2 The Kitaev-Heisenberg-Γ model

α-RuCl3 and related materials are best described by a localized spin Hamil-
tonian on a honeycomb lattice [2, 49, 50, 51]. The most important couplings
are a Kitaev interaction as given in Eq. (2.1), a Heisenberg interaction be-
tween nearest and third-nearest neighbors, and a symmetric off-diagonal
exchange interaction. The Hamiltonian is thus given by

H = HKitaev +HHeisenberg +HΓ , (2.3)
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which constitutes the KHΓ model. The Kitaev part of the Hamiltonian is
the Hamiltonian of the Kitaev model introduced in Eq. (2.1) with equal
couplings Kx = Ky = Kz = K, i.e.

HKitaev = K
∑
α

∑
⟨ij⟩α

Sα
i S

α
j , (2.4)

where α enumerates the bond types x, y, z and ⟨ij⟩α enumerates nearest
neighbors connected by an α-bond. The Heisenberg part can be written as

HHeisenberg = J
∑
⟨ij⟩

Si · Sj + J3
∑

⟨⟨⟨ij⟩⟩⟩

Si · Sj , (2.5)

where J couples all pairs of nearest neighbors while J3 couples all pairs of
third nearest neighbors, i.e. opposite corners of the hexagons, denoted by
⟨⟨⟨ij⟩⟩⟩. The off-diagonal part HΓ of the Hamiltonian couples different spin
components of nearest neighbors. Along an x-bond, the Sy component of
one spin is coupled to the Sz component of its neighbor, and equivalent
couplings are realized for the y- and z-bonds. This can be written as

HΓ =
∑
αβγ

Γα
βγ

∑
⟨ij⟩α

Sβ
i S

γ
j , (2.6)

where α, β, γ each enumerate the bond types x, y, z. Γα
βγ is a fully symmetric

tensor whose components are non-zero only in the case when all indices are
distinct, i.e. Γx

yz = Γx
zy = Γy

zx = Γy
xz = Γz

xy = Γz
yx ≡ Γ.

2.3 Definition of lattice vectors

We choose a laboratory basis {x̂, ŷ, ẑ} such that the honeycomb lattice lies
in the [111]-plane as shown in Fig. 2.1. Then, we define sublattices and
lattice vectors as shown in Fig. 2.3. The honeycomb lattice is a hexagonal
Bravais lattice with two sites in each unit cell and hence can be divided into
two sublattices which we name A and B. The sublattice vectors pointing
from a site on sublattice A to its nearest neighbors (which lie on sublattice
B) are given by

dx =
d√
2
(−ŷ + ẑ) , (2.7a)

dy =
d√
2
(x̂− ẑ) , (2.7b)

dz =
d√
2
(−x̂+ ŷ) , (2.7c)
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Figure 2.3: Definition
of the sublattices A and
B, the lattice vectors a1

and a2, the sublattice
vectors dx, dy, dz cor-
responding to the bond
types x, y, z, and the
planar basis {e1, e2, e3}
where e3 points towards
the reader.

where d is the nearest neighbor distance and the sublattice vectors are named
in correspondence to the bond types x, y, z. The lattice vectors

a1 = −dx + dz , (2.8a)

a2 = −dy + dz , (2.8b)

can serve as a basis for the Bravais lattice. We also define a planar basis
{e1, e2, e3} where e1 and e2 lie in the lattice plane and e3 is orthogonal to
the lattice. In terms of the laboratory basis, the planar basis is given by

e1 =
1√
2
(−x̂+ ŷ) , (2.9a)

e2 =
1√
6
(−x̂− ŷ + 2ẑ) , (2.9b)

e3 =
1√
3
(x̂+ ŷ + ẑ) . (2.9c)

2.4 Classical ground states

The classical ground state is the spin configuration which minimizes the
Hamiltonian when the spin operators are replaced by classical spin vectors.
For the minimization procedure, it is convenient to rewrite the nearest and
third-nearest neighbor sums in the Hamiltonian (2.3) in terms of the sublat-
tice vectors dx, dy, dz defined in Eq. (2.7). The Heisenberg part (2.5) can
be written as

HHeisenberg = J
∑
i∈A

∑
α

Si · Si+α + J3
∑
i∈A

∑
α

Si · Si−2α , (2.10)



Classical ground states 15

where i ∈ A iterates over all sites on sublattice A and α takes the values
x, y, z. The index (i+ α) denotes the lattice site at Ri + dα, and the index
(i − 2α) denotes the lattice site at Ri − 2dα. Note that these lattice sites
belong to sublattice B. For later convenience, we rewrite the dot product
between the spin vectors in the Hamiltonian (2.10) in tensor notation,

HHeisenberg =
∑
i∈A

∑
αβγ

Sβ
i (J δβ,γ)S

γ
i+α +

∑
i∈A

∑
αβγ

Sβ
i (J3 δβ,γ)S

γ
i−2α . (2.11)

Similarly, the Kitaev term (2.4) and the off diagonal term (2.6) of the Hamil-
tonian can be written in tensor notation as

HKitaev =
∑
i∈A

∑
αβγ

Sβ
i (K δα,β δβ,γ)S

γ
i+α , (2.12)

HΓ =
∑
i∈A

∑
αβγ

Sβ
i Γα

βγ S
γ
i+α . (2.13)

All three parts of the Hamiltonian are now expressed in the same format,
and the whole Hamiltonian can be written as

H =
∑
i∈A

∑
αβγ

Sβ
i

(
Wα

βγ S
γ
i+α + J3 δβ,γ S

γ
i−2α

)
, (2.14)

where we defined the nearest-neighbor interaction tensor

Wα
βγ = J δβ,γ +K δα,β δβ,γ + Γα

βγ . (2.15)

This can be written in matrix notation as

H =
∑
i∈A

∑
α

Si · (W α Si+α + J3 Si−2α) , (2.16)

with the bond-dependent nearest-neighbor interaction matrices

W x =
(

J+K 0 0
0 J Γ
0 Γ J

)
, W y =

(
J 0 Γ
0 J+K 0
Γ 0 J

)
, W z =

(
J Γ 0
Γ J 0
0 0 J+K

)
, (2.17)

as expressed in the laboratory basis {x̂, ŷ, ẑ}.
Classically, the spins Si are vectors of fixed length S, i.e. they are fully

determined by their polar and azimuthal angles θi and φi. To find the
minimum of the Hamiltonian (2.16), we require that the drivatives with
respect to θi and φi vanish at every lattice site. We begin by minimizing
the spins on sublattice A,

0
!
=

∂H

∂(θi, φi)
=

∂Si

∂(θi, φi)
·
∑
α

(W α Si+α + J3 Si−2α) for all i ∈ A . (2.18)

We notice that all spins appearing in the second term of the dot product
are on sublattice B. The derivatives ∂Si/∂(θi, φi) span the plane of vectors
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perpendicular to Si. The vanishing dot product in Eq. (2.18) thus implies
that any vector in this plane must be perpendicular to the second term of the
dot product (or that the second term vanishes by itself). This in turn means
that the spin Si must be parallel to the second term of the dot product,

Si ∝
∑
α

(W α Si+α + J3 Si−2α) for all i ∈ A . (2.19)

Normalization to length S leads to

Si = ±S
∑

α (W
α Si+α + J3 Si−2α)

|∑α (W
α Si+α + J3 Si−2α)|

for all i ∈ A . (2.20)

Substituting this back into the Hamiltonian (2.16) leads to a an expression
for the ground state energy that depends only on the spins on sublattice B,

E0 = ±S
∑
i∈A

[
∑

α (W
α Si+α + J3 Si−2α)]

2

|∑α (W
α Si+α + J3 Si−2α)|

. (2.21)

Noting that the energy is minimized by the minus sign then leads to

E0 = −S
∑
i∈A

∣∣∣∣∣∑
α

(W α Si+α + J3 Si−2α)

∣∣∣∣∣ , (2.22)

The minus sign implies for the spin orientations (2.20) on sublattice A that

Si = −S
∑

α (W
α Si+α + J3 Si−2α)

|∑α (W
α Si+α + J3 Si−2α)|

for all i ∈ A . (2.23)

In this expression, the spins on sublattice B are coupled because they appear
in different combinations within the absolute value. This makes a further
minimization challenging. Luckily, we can use results from the literature to
simplify the problem. The phase diagram at J3 = 0 is mapped in Ref. [49]
using a combination of the Luttinger-Tisza method [61] and exact diago-
nalization. The supplementary material of Ref. [2] generalizes the results
to J3 ̸= 0. Six qualitatively distinct phases are identified in the classical
regime: the ferromagnetic and the antiferromagnetic phase, the zigzag and
the stripy phase, the 120° phase, and the incommensurate spiral phase. For
the spin-wave expansion in Sec. 2.5, we need to know the absolute orien-
tations of the spins in the respective ground states. To find those, we use
the relative orientations of the spins to one another as characterized by the
phases identified in the aforementioned literature and complete the mini-
mization of the ground state energy (2.22).
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Figure 2.4: Relative
alignments of the spins
in the classical ferromag-
netic (FM) and antiferro-
magnetic (AFM) ground
states. The magnetic
unit cell (dashed line) is
the same as the unit cell
of the Honeycomb lat-
tice.

2.4.1 Ferro- and Antiferromagnetic phases

In the ferro- and antiferromagnetic phases, all spins on the same sublattice
are aligned in the same direction SA resp. SB, as shown in Fig. 2.4. The
expression (2.22) for the ground state energy can thus be simplified to

E
FM/AFM
0 =− S

∑
i∈A

∣∣∣∣∣∑
α

(W α + J3)SB

∣∣∣∣∣
=− N

2
S

∣∣∣∣∣∑
α

(W α + J3)SB

∣∣∣∣∣ ,
where N is the number of lattice sites of the Honeycomb lattice. E

FM/AFM
0

is minimized if SB is the eigenvector of the interaction matrix∑
α

(W α + J3) =

(
3J+3J3+K Γ Γ

Γ 3J+3J3+K Γ
Γ Γ 3J+3J3+K

)
, (2.24)

with the largest absolute eigenvalue λ
FM/AFM
max , so that

E
FM/AFM
0 = −N

2
S2
∣∣∣λFM/AFM

max

∣∣∣ . (2.25)

The eigenvalues and eigenvectors of the interaction matrix are

λ1 = 3J + 3J3 +K − Γ ; v1 =
1√
2

(−1
1
0

)
= e1 , (2.26a)

λ2 = λ1 ; v2 =
1√
6

(−1
−1
2

)
= e2 , (2.26b)

λ3 = 3J + 3J3 +K + 2Γ ; v3 =
1√
3

(
1
1
1

)
= e3 . (2.26c)

If λ1 = λ2 minimizes the ground state energy, the classical ground state
is degenerate and SB lies in the lattice plane with otherwise arbitrary ori-
entation. If λ3 minimizes the ground state energy, the magnetization is
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perpendicular to the lattice plane. The magnetization on sublattice A is
determined by Eq. (2.23), which leads to

SA = −S
∑

α (W
α + J3)SB

|∑α (W
α + J3)SB|

= − λ
FM/AFM
max

|λFM/AFM
max |

SB . (2.27)

If λmax is positive, SA = −SB and the antiferromagnetic phase is realized.
For negative λmax, the ferromagnetic phase with SA = SB is realized.

2.4.2 Stripy and zigzag phase

The stripy and zigzag phases are sketched in Fig. 2.5. Their names refer to
the stripe and zigzag patterns formed by spins with the same orientation.
The zigzag phase is of our prime interest, as this is the phase realized by
α-RuCl3 at low temperature [29]. Both phases can be characterized (up to
a 120° rotation) by the relations

Si+a1 = Si+a2 = −Si (2.28)

for any lattice site i. As a result, the magnetic ground state has a lower
symmetry than the honeycomb lattice and the lattice is subdivided into
four sublattices a, b, c, and d as shown in Fig. 2.5.

Figure 2.5: Relative
alignments of the spins
in the classical stripy
and zigzag ground states.
The magnetic unit cell
(dashed black line) is
twice as large as the
unit cell of the honey-
comb lattice. The lat-
tice is accordingly sub-
divided into four sublat-
tices a, b, c and d.

We use the relations (2.28) between the spin alignments to express the
spins Si+x and Si+y appearing in the ground state energy (2.22) relative to
the spin Si+z. For any point i on sublattice a or c, these relations are

Si+x = Si+y = −Si+z , (2.29a)

Si−2x = Si−2y = Si−2z = Si+z , (2.29b)

which leads to the ground state energy

E
stripy/zigzag
0 =− S

∑
i∈A

|(−W x −W y +W z + 3J3)Si+z|

=− N

2
S |(−W x −W y +W z + 3J3)Sb| . (2.30)
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In the second line we eliminated the sum by noting that Si+z is either on
sublattice b or d (because i is on sublattice a or c) and Sb = −Sd according
to the relations (2.28). Similar to the treatment before, this is minimized if
Sb is the eigenvector of the interaction matrix

(−W x −W y +W z + 3J3) =

(
−J+3J3−K Γ −Γ

Γ −J+3J3−K −Γ
−Γ −Γ −J+3J3+K

)
(2.31)

which has the largest absolute eigenvalue λ
stripy/zigzag
max , so that

E
stripy/zigzag
0 = −N

2
S2
∣∣∣λstripy/zigzagmax

∣∣∣ (2.32)

is minimized. The eigenvalues and eigenvectors of the interaction matrix are

λ4 = −J + 3J3 −K − Γ ; v4 =
1√
2

(−1
1
0

)
= e1 , (2.33a)

λ5 = −J + 3J3 +
Γ

2
− R

2
; v5 =

1√
2 + r2

(
1
1
r

)
, (2.33b)

λ6 = −J + 3J3 +
Γ

2
Γ +

R

2
; v6 =

sign(s)√
2 + s2

(
1
1
s

)
, (2.33c)

where we defined

R =
√
4K2 − 4KΓ + 9Γ2 =

√
(2K − Γ)2 + 8Γ2 (2.34)

and

r =
2K + 3Γ−R

2K − 3Γ +R
, (2.35a)

s =
2K + 3Γ−R

2K − 3Γ−R
= −2

r
. (2.35b)

The sign function in the definition of the eigenvector v6 in Eq. (2.33c) ensures
that the eigenvectors form a right handed basis, which will be convenient
later for the spin wave expansion. Similar to the ferro- and antiferromag-
netic phases, the sign of the eigenvalue determines whether the stripy or
the zigzag phase is realized: substituting the relations between the spin
alignments (2.29) on sublattice B into the expression (2.23) for the spins on
sublattice A results in

Si =− S
(−W x −W y +W z + 3J3)Si+z

|(−W x −W y +W z + 3J3)Si+z|

=− λ
stripy/zigzag
max∣∣∣λstripy/zigzagmax

∣∣∣Si+z for all i ∈ A . (2.36)

We see that spins connected by a z-bond are parallel (stripy phase) if the
eigenvalue is negative and antiparallel (zigzag phase) if the eigenvalue is
positive.
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2.4.3 120° phase

The 120° phase can be characterized by the relations

Sj+a1 =R120Sj , (2.37a)

Sj+a2 =R−1
120Sj for j ∈ B, (2.37b)

where R120 is a right handed rotation matrix of 120° in the lattice plane.
These relations can be used to find relations between the spins appearing in
the expression (2.22) for the ground state energy:

Si+x =Si+z−a1 = R−1
120Si+z , (2.38a)

Si+y =Si+z−a2 = R−2
120Si+z , (2.38b)

Si−2x =Si+z+a1−a2 = R−1
120Si+z , (2.38c)

Si−2y =Si+z−a1+a2 = R120Si+z , (2.38d)

Si−2z =Si+z−a1−a2 = Si+z , (2.38e)

where i lies on sublattice A. The ground state energy (2.22) can then be
written as

E120◦
0 =− S

∑
i∈A

∣∣(WxR
−1
120 +WyR120 +Wz + J3R

−1
120 + J3R120 + J3

)
Si+z

∣∣
≡− S

∑
j∈B

|M120Sj | . (2.39)

In the second line we defined the interaction matrix

M120 =WxR
−1
120 +WyR120 +Wz + J3R

−1
120 + J3R120 + J3 , (2.40)

which has the explicit form

M120 =

(
J+J3 2Γ+J+J3+K J+J3

2Γ+J+J3+K J+J3 J+J3
J+J3 J+J3 2Γ+J+J3+K

)
. (2.41)

The eigenvalues and eigenvectors of M120 are

λ7 = −K − 2Γ ; v7 =
1√
2

(−1
1
0

)
= e1 , (2.42a)

λ8 = K + 2Γ ; v8 =
1√
6

(−1
−1
2

)
= e2 , (2.42b)

λ9 = 3J + 3J3 +K + 2Γ ; v9 =
1√
3

(
1
1
1

)
= e3 . (2.42c)

We first notice that λ9 = λ3 and v9 = v3, i.e. it is the same as in the
ferro-/antiferromagnetic case. As the spin is perpendicular to the lattice, it
is invariant under the 120◦ rotation. Hence this eigenvalue describes exactly
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the ferro-/antiferromagnetic phase. The remaining two eigenvectors v7 and
v8 lie in the lattice plane with pseudo degenerate eigenvalues λ7 = −λ8.
Upon transformation by M120, any vector in the lattice plane is scaled by
|λ7| and either mirrored on the e1 × e3 plane (if λ7 > 0 and λ8 < 0) or
mirrored on the e2 × e3 plane (if λ7 < 0 and λ8 > 0). As a consequence,
|M120Sj | = S|λ7| if Sj lies arbitrarily in the lattice plane, which simplifies
the ground state energy (2.39) in the 120° phase to

E120◦
0 = −N

2
S2|λ7| . (2.43)

We conclude that the classical ground state is degenerate as the absolute
orientation of the spins within the lattice plane is not fixed. The orientations
of the spins on sublattice B relative to one another are determined by the
relations (2.37). The orientation of the spins on sublattice A is defined by
Eq.(2.23) which amounts to

Si = −S M120Sj+z

|M120Sj+z|
for all i ∈ A , (2.44)

i.e. the spin on lattice site i on sublattice A is determined by mirroring the
spin on lattice site i + z either on the e2 × e3 plane (if λ7 > 0) or on the
e1 × e3 plane (if λ7 < 0). The pattern that emerges for λ7 < 0 is shown
exemplarily in Fig. (2.6).

In principle one could also imagine a ’left handed’ 120° phase, where
R120 is replaced by a left handed rotation of 120°. In this case the ma-
trix corresponding to M120 has the eigenvalues 0, 0, λ3 and the nontrivial
eigenvector v3. The trivial eigenvalues will never minimize the Hamiltonian,
while the nontrivial one describes again the ferromagnetic/antiferromagnetic
phase. Note that this asymmetry between left- and right-handed rotations
does not break the mirror symmetries of the lattice. Depending on the mir-
ror plane, either sublattices A and B are interchanged or the handedness
of dx,dy,dz is reversed, which results in a restoration of the left-/ right-
handedness of the rotation matrices. The left-handed and the right-handed
rotation matrices would swap their roles if we chose to express the relative
spin alignments (2.37) with respect to sublattice A instead of sublattice B.
Note also that the directions of the vortices appearing in Fig. 2.6 is not
determined by the handedness of the rotation matrices, but by the arbitrary
choice of spin orientation within the lattice plane. For instance, rotating all
spins by 180◦ within the lattice plane reverses the direction of the vortices
while conserving the ground state energy.

2.4.4 Incommensurate spiral phase

All ground state energies derived so far are in agreement with the ground
states energies given in the supplemental material of Ref. [2]. Similarly to
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Figure 2.6: Relative
alignments of the spins in
the classical 120° ground
state. The magnetic unit
cell (dashed line) con-
tains six lattice sites.

the 120° phase, the incommensurate spiral phase is characterized by relative
rotations of the spins among each other in the lattice plane. In this case,
the rotation angles are in general no rational fractions of 360°, leading to
a magnetic ordering vector that is incommensurate with the honeycomb
lattice. Because this complicates the minimization procedure and we are not
interested in the incommensurate spiral state anyways, we content ourselves
with adopting the result from Ref. [2] for the ground state energy,

EIS
0 = −N

4
S2
∣∣∣K − Γ−

√
8Γ2 +K2

∣∣∣ . (2.45)

2.4.5 Phase diagram

To depict the phase diagram in the four dimensional space of the couplings
J,K,Γ, J3, we express all couplings in units of E ≡

√
J2 +K2 + Γ2. For

fixed J3, the coupling space is then a unit sphere in the remaining three-
dimensional coupling space of J,K,Γ. The phase at any point on the unit
sphere is given by the corresponding minimal energy among all of the possi-
ble ground state energies given in Eqs. (2.25, 2.32, 2.43, 2.45). The resulting
phase diagram for J3 = 0 is shown in Fig 2.7a. Later, when we calculate
the magnon damping in the zigzag phase, we will be restricted to the region
in parameter space where Γ = K > 0. For vanishing third nearest neighbor
interaction J3 = 0 this region has no overlap with the zigzag phase. For-
tunately, a positive J3 stabilizes the zigzag phase, as is shown in Fig. 2.7b,
opening a window for our later analysis of the magnon damping.

2.5 Spin wave expansion in the zigzag phase

In this section, we expand the spin-Hamiltonian (2.3) of the KHΓ model in
terms of spin waves. These are magnetic excitations from the ground state
which have bosonic statics. We will expand the Hamiltonian around the
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a) Figure 2.7: a) Classical phase dia-
gram of our model (2.3) at J3 = 0. In
units of E ≡

√
J2 +K2 + Γ2, the cou-

pling space at fixed J3 forms a unit
sphere.
b) Classical phase diagram for dif-
ferent J3. Shown is the hemisphere
with Γ > 0, which corresponds to a
view from above in Fig. (a) along the
Γ-direction. In this representation,
the parameter region Γ = K > 0 is
one-dimensional and marked by the
dashed line. This region does only
overlap with the zigzag phase for pos-
itive third-nearest neighbor coupling
J3.

b)

zigzag state, since this is the experimentally relevant phase [29]. We begin by
choosing a local spin basis which is adapted to the zigzag phase in Sec. 2.5.1.
Then, in Sec. 2.5.2, we apply the Holstein-Primakoff transformation [62] to
the spin operators and expand the resulting bosonic Hamiltonian for low
bosonic excitation numbers, a procedure often referred to as 1/S expansion.
Finally, we perform a Fourier transformation from the real space to the
crystal momentum representation in Sec. 2.5.3.

2.5.1 Local spin basis

In order to perform the spin wave expansion, we first need to choose a local
right handed orthonormal basis {txi , tyi ,mi} for each site i to express the
components of the spin operators as

Si = Stx
i t

x
i + S

ty
i t

y
i + S

∥
imi . (2.46)
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Figure 2.8: A local orthonormal
right handed spin basis is chosen
for each lattice site. On sublat-
tices a and d the basis is given by
{tx, ty,m} and on sublattices b
and c by {tx,−ty,−m}. While
there is a rotational freedom in
the choice of the transversal ba-
sis {tx, ty}, the third basis vec-
tor m must point along the clas-
sical magnetization in the zigzag
phase.

Here, mi must be aligned with the classical magnetization in the zigzag
phase and tx,y are transversal. A possible choice is

txi = tx, tyi = ty, mi =m for i on sublattices a, d ; (2.47a)

txj = tx, tyj = −ty, mj = −m for j on sublattices b, c ; (2.47b)

as shown in Fig. 2.8. We leave the explicit form of the global basis {tx, ty,m}
open for now. The spin operators (2.46) can be expressed in terms of the
ladder operators S±

i = Stx
i ± iS

ty
i as

Si = S+
i t

−
i + S−

i t
+
i + S

∥
imi , (2.48)

with the complex transversal basis vectors

t±i = txi ± ityi . (2.49)

Using the relations of the local basis vectors (2.47) we can write

Si =
1

2

(
S+
i t

− + S−
i t

+
)
+ S

∥
im for i on sublattices a, d , (2.50a)

Sj =
1

2

(
S+
j t

+ + S−
j t

−
)
− S

∥
jm for j on sublattices b, c , (2.50b)

where we defined
t± = tx ± ity . (2.51)

Next, we want to substitute the spin operators (2.50) in the Hamiltonian (2.16)
of the KHΓmodel. The lattice sum in the Hamiltonian extends over the sub-
lattice A of the honeycomb lattice. In order to account for the enlarged unit
cell of the zigzag phase, we split the sum into two sums, one over sublattice
a and one over sublattice c, which gives

H =
∑
i∈a

∑
α

Si · (W α Si+α + J3 Si−2α)

+
∑
i∈c

∑
α

Si · (W α Si+α + J3 Si−2α) . (2.52)
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Recalling that α iterates over the bonds x, y, z and i+α denotes the lattice
site atRi+dα, all spin operators in the Hamiltonian (2.52) can be associated
with one of the sublattices a, b, c or d with the help of Fig. 2.8. The rep-
resentation (2.50) of the spin operators in the global spin basis {t+, t−,m}
can then be substituted, giving

H =
∑
i∈a

(
1

2
S+
i t

− +
1

2
S−
i t

+ + S
∥
im

)
·
[
W x

(
1

2
S+
i+xt

− +
1

2
S−
i+xt

+ + S
∥
i+xm

)
+W y

(
1

2
S+
i+yt

− +
1

2
S−
i+yt

+ + S
∥
i+xm

)
+W z

(
1

2
S+
i+zt

+ +
1

2
S−
i+zt

− − S
∥
i+zm

)
+ J3

∑
α

(
1

2
S+
i−2αt

+ +
1

2
S−
i−2αt

− − S
∥
i−2αm

)]
+
∑
i∈c

(
1

2
S+
i t

+ +
1

2
S−
i t

− − S
∥
im

)
·
[
W x

(
1

2
S+
i+xt

+ +
1

2
S−
i+xt

− − S
∥
i+xm

)
+W y

(
1

2
S+
i+yt

+ +
1

2
S−
i+yt

− − S
∥
i+xm

)
+W z

(
1

2
S+
i+zt

− +
1

2
S−
i+zt

+ + S
∥
i+zm

)
+ J3

∑
α

(
1

2
S+
i−2αt

− +
1

2
S−
i−2αt

+ + S
∥
i−2αm

)]
. (2.53)

2.5.2 Holstein-Primakoff transformation and 1/S expansion

Next, the local spin operators S+
i , S

−
i , S

∥
i are mapped to boson operators

bi, b
†
i by the Holstein-Primakoff transformation [62],

S+
i =

√
2S

(√
1− ni

2S

)
bi , (2.54a)

S−
i = b†i

√
2S

√
1− ni

2S
, (2.54b)

S
∥
i = S − ni , (2.54c)

where S is the total spin and ni = b†ibi is the occupation number oper-
ator. The Holstein-Primakoff transformation produces the correct spin-
commutation relations, however the bosons can have arbitrarily high oc-
cupation number while the Hilbert space of the spins is finite. Therefore,
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the mapping must be supplemented with a restriction of the bosonic occu-
pation numbers to match the number of spin eigenstates, i.e. only such Fock
states are allowed where all excitation numbers are lesser than (2S + 1).

In magnetically ordered phases, the Holstein-Primakoff bosons have a
clear interpretation: the ground state is the eigenstate where the eigenvalue

of S
∥
i at each site is S. According to the transformation (2.54c) this corre-

sponds to zero bosonic occupation. Creation of a boson at site i corresponds
by Eq. (2.54a) to a reduction of the parallel spin component at site i. It be-
comes clear that the bosons are directly related to the magnetic excitations
from the ground state.

At this point, the Holstein-Primakoff transformation may seem unneces-
sary, as one could describe the excitations at each site by the original spin
operators just as well. The bosonic representation is however much more
useful after Fourier transformation. Fourier transformed bosons are again
bosons with a fixed crystal momentum, but Fourier transformed spin oper-
ators have complicated commutation relations which mix different crystal
momenta, [Sα

k , S
β
k′ ] ∝ iϵαβγS

γ
k+k′ .

At sufficiently low temperature, larger deviations from the ground state
become rare and hence the bosonic occupation numbers ni have small ex-
pectation values. It is then justified to expand the square roots in the
Holstein-Primakoff transformation (2.54) as

S+
i =

√
2S

[
1− ni

4S
− n2i

32S2
+O

(
n3i
S3

)]
bi , (2.55a)

S−
i = b†i

√
2S

[
1− ni

4S
− n2i

32S2
+O

(
n3i
S3

)]
, (2.55b)

S
∥
i = S − ni . (2.55c)

This expansion is commonly referred to as the 1/S expansion, as the factor
1/S can be used to count the orders of the expansion. Note however that 1/S
is not the small parameter of the expansion, as for instance 1/S = 2 in the
KHΓ model. Nevertheless, each factor of 1/S is accompanied by a number
operator ni. Hence, if the quantum state of the system is predominantly
composed of low energy states as it is typically the case at low temperatures,
the occupation numbers will be small and the expansion will be accurate.

Next, we explicitly apply the 1/S expansion to the Hamiltonian (2.53)
order by order. We order the terms by number of bosonic operators, which
corresponds to orders of 1/

√
S. Terms with no boson operators can only

result from S
∥
i . Collecting all pure S

∥
i terms of the Hamiltonian (2.53)

and substituting the expansion (2.55c) then yields the constant part of the
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Hamiltonian,

H0 =
∑
i∈a

Sm · (W x +W y −W z − 3J3)Sm

+
∑
i∈c

(−Sm) · (−W x −W y +W z + 3J3)Sm

=− NS2

2
m · (−W x −W y +W z + 3J3)m .

Referring to the discussion of the classical zigzag ground state in section 2.4,
we note that this coincides with the classical ground state energy given in
Eq. (2.30). Because the magnetization vector m is the eigenvector with
largest positive eigenvalue λzigzag, we can write

H0 = −NS
2

2
λzigzag , (2.56)

which is consistent with Eq. (2.32).

Terms with one bosonic operator can result from the combination of one

S
∥
i with one S±

i . Collecting these terms from the full Hamiltonian (2.53)
results in

H1 =
S
√
2S

2

∑
i∈a
t− · (W x +W y −W z − 3J3)m bi

− S
√
2S

2

∑
i∈b
t− · (W x +W y −W z − 3J3)m b†i

− S
√
2S

2

∑
i∈c
t− · (W x +W y −W z − 3J3)m b†i

+
S
√
2S

2

∑
i∈d
t− · (W x +W y −W z − 3J3)m bi + h.c.

=0 , (2.57)

where h.c. stands for the hermitian conjugate of all preceding expressions.
Note that all terms vanish because m is an eigenvector of the matrix in
parenthesis and t− ·m = 0. This result is a necessary condition for the sta-
bility of the zigzag state: single creation and annihilation operators would
act as sources and sinks for magnetic excitations and the bosonic vacuum,
which is the zigzag state, would no longer be an eigenstate of the Hamilto-
nian.

The first nontrivial order in the 1/S expansion has two bosonic operators.

These terms are produced by combinations of the form S
∥
i ·S

∥
j and S±

i ·S±
j .
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Collecting these terms from the Hamiltonian (2.53) results in

H2 = −Sλzigzag
∑
i

ni +
S

2

{
W x

−+

(∑
i∈a

bib
†
i+x +

∑
i∈c

b†ibi+x

)

+W y
−+

(∑
i∈a

bib
†
i+y +

∑
i∈c

b†ibi+y

)

+W z
−+

(∑
i∈a

bibi+z +
∑
i∈c

b†ib
†
i+z

)

+W x
−−

(∑
i∈a

bibi+x +
∑
i∈c

b†ib
†
i+x

)

+W y
−−

(∑
i∈a

bibi+y +
∑
i∈c

b†ib
†
i+y

)

+W z
−−

(∑
i∈a

b†ibi+z +
∑
i∈c

b†ibi+z

)

+ 2J3
∑
α

(∑
i∈a

bibi−2α +
∑
i∈c

bibi−2α

)
+ h.c.

}
, (2.58)

where we defined the interaction matrix elements

Wα
σ σ′ ≡ tσ ·W α tσ

′
, (2.59)

where the matrices W α are given in Eq. (2.17) and σ and σ′ can both take
the values + or −. Note that Wα

+− = (Wα
−+)

∗ and Wα
++ = (Wα

−−)
∗.

Terms with three or more boson operators describe interactions and are
needed to calculate the magnon lifetime. We only consider the lowest order
of nontrivial interaction terms, which in our case are term with three boson
operators. These terms are generated by combinations with one S∥ and one
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S±. Collecting these terms gives

H3 =

√
S

2

{
W x

m+

(
−
∑
i∈a

nib
†
i+x +

∑
i∈c

nibi+x

)

+W y
m+

(
−
∑
i∈a

nib
†
i+y +

∑
i∈c

nibi+y

)

+W z
m+

(
−
∑
i∈a

nibi+z +
∑
i∈c

nib
†
i+z

)

+W x
−m

(
−
∑
i∈a

bini+x +
∑
i∈c

b†ini+x

)

+W y
−m

(
−
∑
i∈a

bini+y +
∑
i∈c

b†ini+y

)

+W z
−m

(∑
i∈a

bini+z −
∑
i∈c

b†ini+z

)
+ h.c.

}
, (2.60)

where we defined the interaction matrix elements

Wα
mσ ≡m ·W α tσ , (2.61a)

Wα
σm ≡ tσ ·W αm . (2.61b)

Note that Wα
mσ = Wα

σm and Wα
m+ = (Wα

m−)
∗ because the matrices W α

given in Eq. (2.17) are symmetric and real.

2.5.3 Fourier transformation

We define the Fourier transformation of the bosonic annihilation operators
as

bi =

√
4

N

∑
k

eik·Ri ×


ak if Ri ∈ a
bk Ri ∈ b
ck Ri ∈ c
dk Ri ∈ d

(2.62)

where Ri is the position vector of lattice site i and the coordinate origin
is chosen such that it coincides with a site of sublattice a. The sum over
the crystal momenta k iterates over the first Brillouin zone of the zigzag
lattice. Note that the operators bk, ck, dk are not periodic with respect to
the first Brillouin zone. This is because in the exponential of the Fourier
transformation, we chose the actual position vector of the lattice site Ri.
The more conventional choice would be the basis vector of the unit cell.
Calling these basis vectors R̃i, the position vectors are related to the basis
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vectors as

Ri =


R̃i if i ∈ a

R̃i + dz i ∈ b

R̃i + a1 i ∈ c

R̃i + dx i ∈ d

, (2.63)

as can be seen from Fig. 2.8. The Fourier transformation of bi on sublattice
b for instance can be written as

bi =

√
4

N

∑
k

eik·Ribk =

√
4

N

∑
k

eik·R̃ieik·dzbk , (2.64)

which has the inverse Fourier transform

eik·dzbk =

√
4

N

∑
i∈b

e−ik·R̃ibi ⇔ bk =

√
4

N
eik·dz

∑
i∈b

e−ik·R̃ibi . (2.65)

Consider a shift by a reciprocal lattice vectorG, i.e. bk+G. We haveG·R̃i =
0, but the termG·dz does not vanish. Hence, bk acquires a phase factor upon
shifting its momentum by a reciprocal lattice vector. As we will see later,
these phase factors become important when considering umklapp scattering.
Analogous relations hold for the other sublattices and we get

ak+G =ak , (2.66a)

bk+G =eiG·dzbk , (2.66b)

ck+G =eiG·a1ck , (2.66c)

dk+G =eiG·dxdk . (2.66d)

At first sight, this non-periodic choice of Fourier transformation seems to
make the calculations more complicated. It does however simplify the ana-
lytical expressions that appear in the special case Γ = K > 0 that we will
consider later.

We proceed by transforming H2 given in Eq. (2.58) term by term. We
begin with the sum over the number operators,

∑
i

ni =

(∑
i∈a

+
∑
i∈b

+
∑
i∈c

+
∑
i∈d

)
b†ibi . (2.67)
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On sublattice a, this is straightforward to transform,∑
i∈a

b†ibi =
∑
i∈a

4

N

∑
k

e−ik·Ria†k

∑
k′

eik
′·Riak′

=
4

N

∑
k,k′

a†kak′
∑
i∈a

ei(k
′−k)·Ri

=
4

N

∑
k,k′

a†kak′
N

4
δk,k′

=
∑
k

na,k , (2.68)

where we defined na,k = a†kak. Before transforming the sum over sublattice
b, we note that the position vectors of sublattice b can be obtained by
translating sublattice a by the vector dz, see Fig. 2.8. This leads to∑

i∈b
b†ibi =

∑
i∈b

4

N

∑
k

e−ik·Rib†k

∑
k′

eik
′·Ribk′

=
∑
i∈a

4

N

∑
k

e−ik·(Ri+dz)b†k

∑
k′

eik
′·(Ri+dz)bk′

=
4

N

∑
k,k′

b†kbk′ ei(k
′−k)·dz

∑
i∈a

ei(k
′−k)·Ri

=
4

N

∑
k,k′

b†kbk′ ei(k
′−k)·dz

N

4
δk,k′

=
∑
k

nb,k . (2.69)

The remaining number operators are transformed similarly, yielding∑
i

ni =
∑
k

(na,k + nb,k + nc,k + nd,k) . (2.70)

The remaining terms in H2 mix bosonic operators from different sublattices.
This introduces momentum dependent phase factors, as we show exemplarily
for ∑

i∈a
bib

†
i+x =

∑
i∈a

4

N

∑
k

eik·Riak
∑
k′

e−ik′·(Ri+dx)d†k′

=
4

N

∑
k,k′

akd
†
k′ e

−ik′·dx
∑
i∈a

ei(k−k′)·Ri

=
∑
k

akd
†
k e

−ik·dx . (2.71)
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In the first line we used the fact that the lattice site i+x belongs to sublattice
d if i belongs to sublattice a. The remaining terms of H2 are transformed
similarly, with the result

H2 =− Sλzigzag
∑
k

(na,k + nb,k + nc,k + nd,k)

+
S

2

∑
k

{(
W x

−+e
−ik·dx +W y

−+e
−ik·dy

)
akd

†
k

+
(
W x

−+e
ik·dx +W y

−+e
ik·dy

)
c†kbk

+W z
−−e

−ik·dzakb
†
k

+W z
−−e

ik·dzc†kdk

+

(
W z

−+e
ik·dz + 2J3

∑
α

e−2ik·dα

)
a−kbk

+

(
W z

−+e
−ik·dz + 2J3

∑
α

e2ik·dα

)
c†−kd

†
k

+
(
W x

−−e
ik·dx +W y

−−e
ik·dy

)
a−kdk

+
(
W x

−−e
−ik·dx +W y

−−e
−ik·dy

)
c†−kb

†
k + h.c.

}
. (2.72)

It is convenient to write this expression in matrix form as

H2 =
∑
k

∑
m,n

{
Amn

k a†kmakn +
1

2

[
Bmn

k a†kma
†
−kn + (Bnm

k )∗ a−kmakn

]}
,

(2.73)
where we now distinguish the sublattices by a subscript indexm,n = 1, 2, 3, 4
such that the annihilation operators are given by ak1 = ak, ak2 = bk,
ak3 = ck, ak4 = dk, and equivalently for the creation operators. Amn

k and
Bmn

k are the sublattice components of the 4× 4 matrices

Ak =


λ βk 0 αk

β∗k λ α∗
k 0

0 αk λ β∗−k

α∗
k 0 β−k λ

 , (2.74a)

Bk =


0 µk 0 νk
µ−k 0 ν∗k 0

0 ν∗−k 0 µk
ν−k 0 µ−k 0

 , (2.74b)
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with

λ =− Sλzigzag , (2.75a)

αk =SW x
+−e

ik·dx + SW y
+−e

ik·dy , (2.75b)

βk =SW z
++e

ik·dz , (2.75c)

µk =SW z
+−e

ik·dz + 2SJ3
∑
α

e−2ik·dα , (2.75d)

νk =SW x
++e

ik·dx + SW y
++e

ik·dy , (2.75e)

where we used the relations Wα
+− = (Wα

−+)
∗ and Wα

++ = (Wα
−−)

∗.
The Fourier transformation of H3 given in Eq. (2.60) involves terms of

the form∑
i∈a

nib
†
i+x =

∑
i∈a

(
4

N

) 3
2 ∑

k

e−ik·Ri a†k

∑
k′

eik
′·Ri ak′

∑
k′′

e−ik′′·(Ri+dx) d†k′′

=

(
4

N

) 3
2 ∑
k,k′,k′′

a†k ak′ d†k′′ e
−ik′′·dx

∑
i∈a

ei(−k+k′−k′′)·Ri . (2.76)

The last sum evaluates to one in all cases where (−k + k′ − k′′) equals a
reciprocal lattice vector. We write such terms as∑

i∈a
ei(k+k′+k′′)·Ri =

N

4

∑
G

δk+k′+k′′,G , (2.77)

where G iterates over all reciprocal lattice vectors. This distinction from a
single Kronecker delta is important because the vector (k + k′ + k′′) does
not always fall into the first Brillouin zone (umklapp-scattering). Thus, all
terms with k + k′ + k′′ = G contribute and a phase factor like e−ik′′·dx

cannot be expressed in terms of k,k′ without knowing the correct umklapp
vector G. This is because dx is not a lattice vector and hence G · dx ̸= 0.
These phase factors arise because of our non-periodic choice of the Fourier
transformation, as we explained after Eq. (2.62).

Fourier transforming H3 given in Eq. (2.60) then gives

H3 =

√
4

N

∑
kk′k′′

∑
G

δk+k′+k′′,G

{
−
[
Vkd

†
−k + U∗

−kb
†
−k

]
a†−k′ak′′

+eiG·dz

[
V ∗
k c

†
−k + U−ka

†
−k

]
b†−k′bk′′

+eiG·a1

[
V ∗
−kb

†
−k + Ukd

†
−k

]
c†−k′ck′′

−eiG·dx

[
V−ka

†
−k + U∗

kc
†
−k

]
d†−k′dk′′ + h.c.

}
,

(2.78)
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where we defined

Uk =

√
2S

2
W z

m+e
ik·dz , (2.79a)

Vk =

√
2S

2

(
W x

m+e
ik·dx +W y

m+e
ik·dy

)
. (2.79b)

To reach expression (2.78) we used the relations

eiG·dy =eiG·(dy−dx)eiG·dx = eiG·dx , (2.80a)

eiG·a2 =eiG·(a2−a1)eiG·a1 = eiG·a1 , (2.80b)

which hold because dy − dx as well as a2 − a1 are lattice vectors.

Next, we express the couplings in momentum space, i.e. λ, αk, βk, µk,
νk, Uk, Vk, in terms of the original model parameters J , K, Γ, J3. To do so,
we first fix the local basis {tx, ty,m} introduced in Eq. (2.47). We find that
every zigzag phase appearing in the phase diagrams in Fig. 2.7) is described
by the eigenvalue

λzigzag = λ6 = −J + 3J3 +
Γ

2
Γ +

R

2
(2.81)

given in Eq. 2.33c). Hence the direction of magnetization is given by

m = v6 =
sign(s)√
2 + s2

1
1
s

 . (2.82)

In order to correctly represent the spin components, the basis {tx, ty,m}
must be orthonormal and right handed which leaves a rotational freedom in
the choice of tx and ty. This gauge freedom results in a momentum inde-
pendent phase factor for the couplings. We find that it is most convenient
to fix the gauge and align the local basis {tx, ty,m} with the eigensystem
given in Eq. (2.33), i.e.

tx = v4 =
1√

2 + r2

1
1
r

 , (2.83a)

ty = v5 =
1√
2

−1
1
0

 . (2.83b)

It is then straightforward to evaluate the matrix elements Wα
σσ′ defined in

Eq. (2.59) and Wα
mσ′ defined in Eq. (2.61b) to express the couplings given
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in Eqs. (2.75) and (2.79) as

λ =S

[
J − 3J3 −

Γ

2
Γ− R

2

]
, (2.84a)

αk =S

[
J +

K

4

4 + r2

2 + r2
+ Γ

r

2 + r2

](
eik·dx + eik·dy

)
, (2.84b)

βk =− S

[
K

2

r2

2 + r2
+

Γ

2

4 + r2

2 + r2

]
eik·dz , (2.84c)

µk =S

[
J +

K − Γ

2

r2

2 + r2

]
eik·dz , (2.84d)

νk =S

{[
K

4

r2

2 + r2
− Γ

r

2 + r2

](
eik·dx + eik·dy

)
+ i

K − Γr

2

√
2

2 + r2

(
eik·dx − eik·dy

)}
, (2.84e)

and

Vk =

√
2S

2

sign(s)√
2 + s2

[
K − Γs√

2
(eik·dx − eik·dy)

+ i
Γ−K√
2 + r2

(eik·dx + eik·dy)

]
, (2.85a)

Uk =
√
2S

sign(s)√
2 + s2

Γ−K√
2 + r2

eik·dz . (2.85b)

Note that α−k = α∗
k and β−k = β∗k with our choice of basis, which implies

A−k = A∗
k for the matrix Ak defined in Eq. (2.74a). Because ν−k ̸= ν∗k,

a similar relation for the matrix Bk (2.74b) does not hold and Bk is not
hermitian in general. However, if the imaginary coefficient in the expres-
sion (2.84e) vanishes, Bk does become hermitian. This is fulfilled if

K = Γr , (2.86)

and will become important later when we identify the special parameter
region where the Bogolioubov transformation can be simplified.

2.6 Bogoliubov transformation and special param-
eter region

The quadratic Hamiltonian (2.73) of our model can be written in sym-
metrized matrix form as

H2 =
∑
k

(
ak
a∗−k

)†(
Ak Bk

B†
k AT

−k

)(
ak
a∗−k

)
, (2.87)
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where we defined the 4 dimensional operator-valued vectors

ak =


ak
bk
ck
dk

 . (2.88)

To diagonalize this Hamiltonian, we apply a canonical transformation(
ak
a∗−k

)
= Tk

(
bk
b∗−k

)
. (2.89)

The condition that the transformation must be canonical, i.e. that the
bosonic commutation relations must be preserved, translates to the condi-
tion that the transformation matrices Tk are pseudo-unitary,

Tk

(
1 0
0 −1

)
T†
k =

(
1 0
0 −1

)
. (2.90)

Here, 1 denotes the 4× 4 identity matrix. An algorithm that allows to find
these transformations by reducing the problem to a unitary diagonalization
can be found in the literature [63, 64] and in known by the name Colpa
algorithm. We presented this algorithm in Appendix A of our publication [1].
However, in this work we prefer to use a different method, the hermitian field
parametrization. The hermitian field parametrization has the advantage that
it allows us to identify the aforementioned special parameter region and
that it halves the dimensionality of the diagonalization problem. It has also
turned out to be useful in other magnetically ordered systems [52, 53, 54, 55],
and can in principle be applied to any bosonic Hamiltonian.

Our strategy is as follows. First, we introduce the hermitian field para-
metrization in Sec. 2.6.1. Working in the path integral formulation, we use
the hermitian field parametrization to transform the complex fields (which
represent the bosonic creation and annihilation operators) into the new her-
mitian fields. In Sec. 2.6.2 we identify a special parameter region where the
quadratic part of the action of the hermitian fields simplifies. In Sec. 2.6.3,
we derive analytical expressions for canonical transformation matrices which
diagonalize the quadratic part of this action. In Sec. 2.6.4, we invert the her-
mitian field parametrization, which results in an action for complex fields,
i.e. for bosons, which has a diagonal quadratic part. This means that we
succeeded in finding the Bogoliubov transformation and obtained the diag-
onal form of the free magnon propagator. For the readers orientation, we
show a summary of this string of transformations in Fig. 2.9. Lastly, in
Sec. 2.6.5, we apply the Bogoliubov transformation to the interaction ver-
tices, which we need later for the perturbative calculation of the magnon
damping in Sec. 2.7.
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Figure 2.9: The Bogoliubov transformation which diagonal-
izes the original bosonic fields (aK , ā−k)

T to the magnon modes
(bK , b̄−K)T is expressed by a matrix Tk. This transformation
is subdivided into three steps: (1) hermitian parametrization
(aK , ā−K)T = N · (XK ,PK)T , (2) canonical diagonalization of the
hermitian field (XK ,PK)T = Mk · (X ′

K ,P
′
K)T , (3) reparametriza-

tion to complex (bosonic) fields (X ′
K ,P

′
K)T = N−1 · (bK , b̄−k)

T .

2.6.1 Hermitian field parameterization

Going to the real space representation for a moment, we express the bosonic
operators bi and b

†
i at any lattice site i in terms of two hermitian operators

xi and pi as

bi =
1√
2
[xi + ipi] , (2.91a)

b†i =
1√
2
[xi − ipi] . (2.91b)

The hermitian operators are chosen in analogy to the harmonic oscillator,
they have the same commutation relations as position and momentum oper-
ators. Physically, the real fields established by xi and pi can be interpreted
as fluctuations of the transversal spin components. This can be seen by
noting that bi and b

†
i are approximately proportional to the spin ladder op-

erators by the Holstein-Primakoff transformation (2.55). Then, it becomes
clear that the relation (2.91) resembles the relation S± = Sx ± iSy between
spin ladder operators and transversal spin components.

We use the Fourier transformation defined in Eq. (2.62) to obtain the
hermitian parameterization in momentum space,

akm =
1√
2
[xkm + ipkm] , (2.92a)

a†−km =
1√
2
[xkm − ipkm ] , (2.92b)

where the Fourier transformed hermitian field operators satisfy

x−km = x†km , p−km = p†km . (2.93)
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Note that these operators fulfill the commutation relation

[xkm, pk′m′ ] = iδk,−k′δm,m′ . (2.94)

We will express the Bogoliubov transformation in the path integral formu-
lation [5, 6, 65], where the annihilation operators akm are represented by

complex fields aKm and the creation operators a†km are represented by the
complex conjugates āKm. The label K = (iω,k) summarizes the crystal mo-
mentum and the bosonic Matsubara frequency iω. The quadratic part of the
Euclidean action can be constructed from the quadratic Hamiltonian (2.95)
and reads

S2 = β
∑
K

∑
mn

{
(Amn

k − iωδmn)āKmaKn

+
1

2
[Bmn

k āKmā−Kn + (Bnm
k )∗a−KmaKn]

}
, (2.95)

where β is the inverse temperature. We define the vectors in flavor space

aK =


aK1

aK2

aK3

aK4

 , āK =


āK1

āK2

āK3

āK4

 (2.96)

and write the action (2.95) in block matrix form as

S2[a, ā] =
β

2

∑
K

(
aK
ā−K

)†(
Ak − iω Bk

B†
k AT

−k + iω

)(
aK
ā−K

)
. (2.97)

Since the bosons are now represented by complex numbers instead of op-
erators, we do not need to take the commutation relations into account
explicitly, they are encoded implicitly by the frequency dependence of the
action. The hermitian operators xi and pi become real fields and their
Fourier components XKm and PKm are defined by

aKm =
1√
2
[XKm + iPKm] , (2.98a)

ā−Km =
1√
2
[XKm − iPKm] , (2.98b)

with the restriction

X−Km = X∗
Km , P−Km = P ∗

Km . (2.99)

We write this transformation in block matrix form as(
aK
ā−K

)
= N

(
XK

PK

)
, (2.100)
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where we defined the 8× 8 matrix

N =
1√
2

(
1 i1
1 −i1

)
, (2.101)

and the vectors

XK =


XK1

XK2

XK3

XK4

 , PK =


PK1

PK2

PK3

PK4

 . (2.102)

Applying this transformation to the quadratic action (2.97) leads to

S2[X,P ] =
β

2

∑
K

(
X−K

P−K

)T (
Vk Wk + ω

W †
k − ω Tk

)(
XK

PK

)
, (2.103)

with the matrices

Tk =AR
k −BR

k , (2.104a)

Vk =AR
k +BR

k , (2.104b)

Wk =AI
k +BI

k. (2.104c)

Here, the matrices

AR
k =

Ak +AT
−k

2
, (2.105a)

AI
k =

Ak −AT
−k

2i
, (2.105b)

BR
k =

Bk +B†
k

2
, (2.105c)

BI
k =

Bk −B†
k

2i
, (2.105d)

are combinations of the matrices appearing in the momentum representation
of the quadratic Hamiltonian given in Eqs. (2.74). In the transformation
leading to Eq. (2.103), we used that (AI

k)
† = −AI

k which follows because
the Hamiltonian, and as a consequence also the matrix Ak, is hermitian.

2.6.2 Special parameter region

We note that the quadratic action (2.103) simplifies if the matrix Wk van-
ishes. Since in our case AI

k = 0, this happens if Bk is hermitian, as can be
seen from Eq. (2.105d). As we noted earlier in Sec. 2.5 before Eq. (2.86),
this is the case if the model parameters fulfill

K = Γr . (2.106)
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In this region the coupling νk (2.84e) satisfies the symmetry ν−k = ν∗k so that
the matrix Bk (2.74b) becomes hermitian. Eq. (2.106) has three solutions,

(1) Γ =0 and K < 0 , (2.107a)

(2) Γ =K > 0 , (2.107b)

(3) Γ =− 3

2
K < 0 . (2.107c)

The first solution constitutes the Heisenberg-Kitaev model which has been
studied in the literature [66, 67, 68] but is presently not of interest to us.
The third solution does not intersect the zigzag phase for any reasonable
choice of the third nearest neighbor coupling J3. The solution Γ = K > 0
does intersect the zigzag phase for J3 > 0. This can be seen in the phase
diagram depicted Fig. 2.7 b, where the region Γ = K > 0 is depicted by a
dashed line.

At Γ = K > 0, the variables r and s given in Eq. (2.35) simplify to r = 1
and s = −2, so that the couplings (2.75) and (2.79) are given by

λ =S (−J + 2K + 3J3) , (2.108a)

αk =S

(
J +

3

4
K

)(
eik·dx + eik·dy

)
, (2.108b)

βk =− SKeik·dz , (2.108c)

µk =SJeik·dz + SJ3
∑
α

e−2ik·dα , (2.108d)

νk =− 1

4
SK

(
eik·dx + eik·dy

)
, (2.108e)

and

Uk =0 , (2.109a)

Vk =−
√
6S

4
K(eik·dx − eik·dy) . (2.109b)

The magnetization vector (2.82) is then

m = e2 , (2.110)

with e2 given in Eq. (2.9a), i.e. the magnetization lies in the lattice plane.
In the remainder of this chapter our calculations will be restricted to this
region.

2.6.3 Diagonalization of H2 in hermitian field representation

In the region Γ = K > 0, where Wk = 0, the quadratic action (2.103)
simplifies to

S2[X,P ] =
β

2

∑
K

(
X−K

P−K

)T (
Vk ω
−ω Tk

)(
XK

PK

)
, (2.111)
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with Tk = Ak −Bk and Vk = Ak +Bk. We wish to diagonalize all four
blocks in the quadratic action by means of a canonical transformation(

XK

PK

)
= Mk

(
X ′

K

P ′
K

)
, (2.112)

where Mk is an 8 × 8 matrix. The fact that the two off-diagonal blocks
are proportional to a unit matrix due to our restriction Γ = K > 0 will
greatly simplify this task. A canonical transformation must preserve the
commutation relations (2.94) of the field operators. One finds that this
property is fulfilled if the matrix Mk is of the form

Mk =

(
Mk 0

0 (M †
k)

−1

)
. (2.113)

In the remainder of this subsection, we will derive an analytical expression
for the matrixMk. Since two successive canonical transformations constitute
again a cononical transformation, we subdivide this task into two. In a first
step, we find a canonical transformation which diagonalizes the lower left
4× 4 matrix Tk in the action (2.103) into a unit matrix. In the second step,
we will then diagonalize the transformed upper right block.

We find the first transformation by noting that Tk is a hermitian matrix,

which means that there is a hermitian matrix T
1/2
k which fulfills (T

1/2
k )2 = Tk.

Then, applying the canonical transformation(
XK

PK

)
=

(
T

1/2
k 0

0 T
−1/2
k

)(
X̃K

P̃K

)
(2.114)

to the action (2.103) diagonalizes the lower left block,

S2[X̃, P̃ ] =
β

2

∑
K

(
X̃−K

P̃−K

)T (
Ṽk ω
−ω 1

)(
X̃K

P̃K

)
, (2.115)

with
Ṽk = T

1/2
k Vk T

1/2
k . (2.116)

Note that the ω blocks are invariant with respect to this transformation since
they represent the matrix ω14×4. Before diagonalizing the matrix Ṽk by a
second canonical transformation, we need to find analytical expressions for

the first transformation. An analytical expression for the matrix T
1/2
k can be

constructed by first diagonalizing the matrix Tk by a unitary transformation
Uk,

U †
k TkUk =Dk diagonal. (2.117)

Given the matrix Tk = Ak −Bk with Ak and Bk given in Eq. (2.74) and
the matrix elements at Γ = K > 0 given in Eq. (2.108), a possible choice
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for Uk is

Uk =
1

2


−sign(η1,k) sign(η1,k) −sign(η2,k) sign(η2,k)

1 1 −1 −1
−sign(η1,k) sign(η1,k) sign(η2,k) −sign(η2,k)

1 1 1 1

 , (2.118)

where we defined the complex sign function

sign(z) ≡ z

|z| , (2.119)

and

η1,k =αk + βk − µk − νk , (2.120a)

η2,k =αk − βk + µk − νk . (2.120b)

The matrix Dk is then

Dk =


λ− |η1,k| 0 0 0

0 λ+ |η1,k| 0 0
0 0 λ− |η2,k| 0
0 0 0 λ+ |η2,k|

 . (2.121)

Because Dk is diagonal, we can simply take the square root of the diagonal

elements to construct the matrixD
1/2
k which fulfills (D

1/2
k )2 =Dk. Reversing

the unitary transformation Uk then yields

T
1/2
k = UkD

1/2
k U †

k , (2.122)

which we can write explicitly as

T
1/2
k =


t1,k t3,k t2,k t4,k
t∗3,k t1,k t∗4,k t2,k
t∗2,k t4,k t1,k t3,k
t∗4,k t∗2,k t∗3,k t1,k

 , (2.123)
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with the matrix elements

t1,k =
1

4

{√
λ− |η1,k|+

√
λ+ |η1,k|+

√
λ− |η2,k|+

√
λ+ |η2,k|

}
,

(2.124a)

t2,k =
1

4

{√
λ− |η1,k|+

√
λ+ |η1,k| −

√
λ− |η2,k| −

√
λ+ |η2,k|

}
,

(2.124b)

t3,k =
1

4

{
− sign(η1,k)

[√
λ− |η1,k| −

√
λ+ |η1,k|

]
+ sign(η2,k)

[√
λ− |η2,k| −

√
λ+ |η2,k|

]}
, (2.124c)

t4,k =
1

4

{
− sign(η1,k)

[√
λ− |η1,k| −

√
λ+ |η1,k|

]
− sign(η2,k)

[√
λ− |η2,k| −

√
λ+ |η2,k|

]}
. (2.124d)

We use this result to write down an explicit expression for the matrix Ṽk

given in Eq. (2.116),

Ṽk =


v1,k v2,k v3,k v4,k
v∗2,k v1,k v∗4,k v3,k
v∗3,k v4,k v1,k v2,k
v∗4,k v∗3,k v∗2,k v1,k

 , (2.125)

where we defined

v1,k = λ
(
t21,k + t22,k + |t3,k|2 + |t4,k|2

)
+ 2Re

{
(βk + µk)

(
t1,kt

∗
3,k + t2,kt

∗
4,k

)}
+ 2Re

{
(αk + νk)

(
t2,kt

∗
3,k + t1,kt

∗
4,k

)}
, (2.126a)

v2,k = 2λ (t1,kt3,k + t2,kt4,k)

+ (βk + µk)
(
t21,k + t22,k

)
+ (βk + µk)

∗ (t23,k + t24,k
)

+ 2 (αk + νk) t1,kt2,k + 2 (αk + νk)
∗ t3,kt4,k , (2.126b)

v3,k = 2λt1,kt2,k + 2Re
{
t3,kt

∗
4,k

}
+ 2Re

{
(βk + µk)

(
t2,kt

∗
3,k + t1,kt

∗
4,k

)}
+ 2Re

{
(αk + νk)

(
t1,kt

∗
3,k + t2,kt

∗
4,k

)}
, (2.126c)
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v4,k = 2λ (t1,kt4,k + t2,kt3,k)

+ 2 (βk + µk) t1,kt2,k + 2 (βk + µk)
∗ t3,kt4,k

+ (αk + νk)
(
t21,k + t22,k

)
+ (αk + νk)

∗ (t23,k + t24,k
)
. (2.126d)

Thus, we have successfully diagonalized the lower right block of the quadratic
action. Next, we diagonalize the matrix Ṽk in the top left block of the
quadratic action (2.115) by a second canonical transformation. We do this
by means of a unitary transformation Sk which fulfills

Sk Ṽk S
†
k = Ω2

k diagonal. (2.127)

A suitable transformation matrix is

Sk =
1

2


s1,k −s1,k −s2,k s2,k
−1 −1 1 1

−s1,k s1,k −s2,k s2,k
1 1 1 1

 , (2.128)

with

s1,k = sign(η2,k) sgn

(
2λ Re

{
(−αk + βk)sgn(η

∗
2,k)
}

+ 2i
√
λ2 − |η2,k|2 Im

{
(−αk + βk)sgn(η

∗
2,k)
})

, (2.129a)

s2,k = sign(η1,k) sgn

(
2λ Re

{
(αk + βk)sgn(η

∗
1,k)
}

+ 2i
√
λ2 − |η1,k|2 Im

{
(αk + βk)sgn(η

∗
1,k)
})

. (2.129b)

The resulting diagonal matrix is

Ω2
k =


(ωk,1)

2 0 0 0
0 (ωk,2)

2 0 0
0 0 (ωk,3)

2 0
0 0 0 (ωk,4)

2

 , (2.130)

which has the squares of the magnon energies as its elements as will become
clear later. Using the transformation (2.127) and our explicit expressions
for Ṽk and Sk we obtain the analytic expressions for the squared magnon
spectrum,

(ωk,1)
2 =(ω−

k,−)
2 , (2.131a)

(ωk,2)
2 =(ω−

k,+)
2 , (2.131b)

(ωk,3)
2 =(ω+

k,−)
2 , (2.131c)

(ωk,4)
2 =(ω+

k,+)
2 , (2.131d)
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ωk,1 ωk,2 ωk,3 ωk,4 Figure 2.10: Dispersions of the
four magnon branches given by
Eqs. (2.131) and (2.132) for the ar-
bitrary parameters J = −12meV,
K = Γ = 7meV, J3 = 3meV.
Shown is the spectrum on the e1-
axis perpendicular to the zigzag
stripes. The border of the first mag-
netic Brillouin zone is marked by the
thick dashed vertical lines. The in-
dividual functions ωkn are not peri-
odic within the first Brillouin zone,
but the full spectrum is.

where we defined

(ω+
k,±)

2 =λ2 + |αk + βk|2 − |µk + νk|2

±
√

2|αk + βk|2(2λ2 − |µk + νk|2) + 2Re[(αk + βk)2(µ
∗
k + ν∗k)

2] ,

(2.132a)

(ω−
k,±)

2 =λ2 + |αk − βk|2 − |µk − νk|2

±
√

2|αk − βk|2(2λ2 − |µk − νk|2) + 2Re[(αk − βk)2(µ
∗
k − ν∗k)

2] .

(2.132b)

For an exemplary set of model parameters J,K,Γ, J3, we show a plot of
the dispersion in Fig. 2.10. Note that the individual functions ωkn are
not periodic with respect to the magnetic Brillouin zone, but the set of all
branches is. This is again due to our choice of Fourier transformation (2.62)
which produces the phase factors discussed in Sec. 2.5.3. As a result, crossing
of the boundary of the Brillouin zone results in a permutation of the pairs
ωk,1 ↔ ωk,3 and ωk,2 ↔ ωk,4.

As long as we stay within the zigzag phase, it is safe to assume that
none of the energies are negative because a negative magnon energy would
imply an instability of the ordered ground state. We can therefore define
the dispersion matrix

Ωk =


ωk,1 0 0 0
0 ωk,2 0 0
0 0 ωk,3 0
0 0 0 ωk,4

 , (2.133)
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as well as its square root

Ω
1/2
k =


(ωk,1)

1/2 0 0 0

0 (ωk,2)
1/2 0 0

0 0 (ωk,3)
1/2 0

0 0 0 (ωk,4)
1/2

 , (2.134)

and inverse square root

Ω
−1/2
k =


(ωk,1)

−1/2 0 0 0

0 (ωk,2)
−1/2 0 0

0 0 (ωk,3)
−1/2 0

0 0 0 (ωk,4)
−1/2

 . (2.135)

We can then write the second canonical transformation as(
X̃K

P̃K

)
=

(
SkΩ

−1/2
k 0

0 SkΩ
1/2
k

)(
X ′

K

P ′
K

)
. (2.136)

The transformed action (2.115) then assumes the block diagonal form

S2[X
′, P ′] =

β

2

∑
K

(
X ′

−K

P ′
−K

)T (
Ωk ω
−ω Ωk

)(
X ′

K

P ′
K

)
. (2.137)

We summarize the overall canonical transformation given by Eqs. (2.114)
and (2.136) of the hermitian fields by(

XK

PK

)
=

(
T

1/2
k Sk Ω

−1/2
k 0

0 T
−1/2
k Sk Ω

1/2
k

)(
X ′

K

P ′
K

)
. (2.138)

The transformation matrix is of the form given in Eq. (2.113) with the
submatrices

Mk =T
1/2
k Sk Ω

−1/2
k , (2.139a)

(M †
k)

−1 =T
−1/2
k Sk Ω

1/2
k . (2.139b)

2.6.4 Reparametrization to complex fields

Having diagonalized the quadratic action in the hermitian field parametriza-
tion, we now want to invert the hermitian field parametrization and express
the action again in terms of complex fields b†Km and bKm associated with
bosonic creation and annihilation operators. We do this by applying the
inverse of the transformation (2.100), which reads(

X ′
K

P ′
K

)
= N−1

(
bK
b̄−K

)
, (2.140)
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with the 8× 8 matrix

N−1 =
1√
2

(
1 1

−i1 i1

)
. (2.141)

Using this transformation, the quadratic action (2.137) becomes

S2[b, b̄] =
β

2

∑
K

(
b̄K
b−K

)T (
Ωk − iω 0

0 Ωk + iω

)(
bK
b̄−K

)
=β
∑
K

b̄TK (Ωk − iω) bK , (2.142)

which is fully diagonal. In this expressions we see explicitly that the diagonal
matrixΩk does indeed contain the magnon energies as we claimed earlier. In
the last step we relabeled the summation index K → −K for the lower right
matrix block and used Ωk = Ω−k. The complete Bogoliubov transformation
from the Holstein-Primakoff bosons āK and aK to the spin wave modes b̄K
and bK can now be expressed in matrix form as(

aK
ā−K

)
= Tk

(
bK
b̄−K

)
, (2.143)

where the 8× 8 matrix Tk is given by

Tk =N
(
Mk 0

0 (M †
k)

−1

)
N−1

=
1

2

(
Mk + (M †

k)
−1 Mk − (M †

k)
−1

Mk − (M †
k)

−1 Mk + (M †
k)

−1

)
, (2.144)

and the matrices Mk and (M †
k)

−1 are given in Eqs. (2.139). Analytical
expressions for these matrices can be written as

Mk =
s1,kϑ

+
k − ϑ−k −ϑ−k − s1,kϑ

+
k −φ−

k − s2,kφ
+
k s2,kφ

+
k − φ−

k

s1,kϑ
−∗
k − ϑ+k −ϑ+k − s1,kϑ

−∗
k φ+

k + s2,kφ
−∗
k φ+

k − s2,kφ
−∗
k

ϑ−k − s1,kϑ
+
k ϑ−k + s1,kϑ

+
k −φ−

k − s2,kφ
+
k s2,kφ

+
k − φ−

k

ϑ+k − s1,kϑ
−∗
k ϑ+k + s1,kϑ

−∗
k φ+

k + s2,kφ
−∗
k φ+

k − s2,kφ
−∗
k

Ω
−1/2
k

(2.145a)

and

(M †
k)

−1 = q2,k(ϑ−
k +s1,kϑ

+
k ) q2,k(ϑ−

k −s1,kϑ
+
k ) q1,k(φ−

k −s2,kφ
+
k ) q1,k(φ−

k +s2,kφ
+
k )

−q2,k(ϑ+
k+s1,kϑ

−∗
k ) −q2,k(ϑ+

k−s1,kϑ
−∗
k ) q1,k(φ+

k−s2,kφ
−∗
k ) q1,k(φ+

k+s2,kφ
−∗
k )

−q2,k(ϑ−
k +s1,kϑ

+
k ) −q2,k(ϑ−

k −s1,kϑ
+
k ) q1,k(φ−

k −s2,kφ
+
k ) q1,k(φ−

k +s2,kφ
+
k )

q2,k(ϑ+
k+s1,kϑ

−∗
k ) q2,k(ϑ+

k−s1,kϑ
−∗
k ) q1,k(φ+

k−s2,kφ
−∗
k ) q1,k(φ+

k+s2,kφ
−∗
k )

Ω
1/2
k ,

(2.145b)
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where we leave the last multiplications with the diagonal matrices Ω
±1/2
k to

the reader’s imagination and defined

qi,k =
1√

λ2 − |ηi,k|2
, i = 1, 2, (2.146)

as well as

φ+
k =

1

4

(√
λ− |η1,k|+

√
λ+ |η1,k|

)
, (2.147a)

φ−
k =

1

4

(√
λ− |η1,k| −

√
λ+ |η1,k|

)
sgn(η1,k) , (2.147b)

ϑ+k =
1

4

(√
λ− |η2,k|+

√
λ+ |η2,k|

)
, (2.147c)

ϑ−k =
1

4

(√
λ− |η2,k| −

√
λ+ |η2,k|

)
sgn(η2,k) . (2.147d)

2.6.5 Transformation of H3

To calculate the magnon damping, we need to apply the Bogoliubov trans-
formation to the leading interaction. The leading interaction is given by the
three legged vertices represented by the cubic part of the Hamiltonian H3

given in Eq. (2.78). Written as a Euclidian action, this reads

S3 = β

√
4

N

∑
KK′K′′

∑
G

δk+k′+k′′,Gδω+ω′+ω′′,0

{
− Vk

[
d̄−K ā−K′aK′′ + dKaK′ ā−K′′

]
+ eiG·dzV ∗

k

[
c̄−K b̄−K′bK′′ + cKbK′ b̄−K′′

]
+ eiG·a1Vk

[
b̄−K c̄−K′cK′′ + bKcK′ c̄−K′′

]
− eiG·dxV ∗

k

[
ā−K d̄−K′dK′′ + aKdK′ d̄−K′′

]}
, (2.148)

where we used that Uk = 0 at Γ = K > 0 and Vk is given by Eq. (2.109b).
We will write the transformation of the Holstein-Primakoff bosons āK and
aK to the original spin wave modes b̄K and bK in tensor component form
and therefore define the 8-dimensional complex vectors

ϕK =

(
aK
ā−K

)
, ψK =

(
bK
b̄−K

)
. (2.149)

The Bogoliubov transformation (2.143) can then be written as

ϕµK =
∑
µ′

Tµµ′

k ψµ′

K , (2.150)
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where the matrix Tµµ′

k is defined in Eq. (2.144) and the Greek indices range
from 1 to 8 and enumerate the vector- and matrix components. Following
this logic, we rewrite the cubic action (2.148) in tensor form as

S3[ϕ] =β

√
4

N

∑
KK′K′′

∑
G

δk+k′+k′′,Gδω+ω′+ω′′,0

×
∑
µνλ

1

3!
Γµνλ(k,k′,k′′)ϕµKϕ

ν
K′ϕλK′′ . (2.151)

Here, the vertex Γµνλ(k,k′,k′) is symmetrized with respect to permutation
of the complex variables ϕµK , ϕ

ν
K′ , ϕλK′′ . Most of its 83 = 512 components

vanish, and there are only 48 non-zero components, namely

Γ851(k,k′,k′′) = Γ815(k,k′,k′′)

= Γ415(k,k′,k′′) = Γ451(k,k′,k′′) = −Vk, (2.152a)

Γ581(k,k′,k′′) = Γ185(k,k′,k′′)

= Γ145(k,k′,k′′) = Γ541(k,k′,k′′) = −Vk′ , (2.152b)

Γ518(k,k′,k′′) = Γ158(k,k′,k′′)

= Γ154(k,k′,k′′) = Γ514(k,k′,k′′) = −Vk′′ , (2.152c)

Γ762(k,k′,k′′) = Γ726(k,k′,k′′)

= Γ326(k,k′,k′′) = Γ362(k,k′,k′′) = ei(k+k′+k′′)·dzV ∗
k , (2.152d)

Γ672(k,k′,k′′) = Γ276(k,k′,k′′)

= Γ236(k,k′,k′′) = Γ632(k,k′,k′′) = ei(k+k′+k′′)·dzV ∗
k′ , (2.152e)

Γ627(k,k′,k′′) = Γ267(k,k′,k′′)

= Γ263(k,k′,k′′) = Γ623(k,k′,k′′) = ei(k+k′+k′′)·dzV ∗
k′′ , (2.152f)

Γ673(k,k′,k′′) = Γ637(k,k′,k′′)

= Γ237(k,k′,k′′) = Γ273(k,k′,k′′) = ei(k+k′+k′′)·a1Vk, (2.152g)

Γ763(k,k′,k′′) = Γ367(k,k′,k′′)

= Γ327(k,k′,k′′) = Γ723(k,k′,k′′) = ei(k+k′+k′′)·a1Vk′ , (2.152h)

Γ736(k,k′,k′′) = Γ376(k,k′,k′′)

= Γ372(k,k′,k′′) = Γ732(k,k′,k′′) = ei(k+k′+k′′)·a1Vk′′ , (2.152i)
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Γ584(k,k′,k′′) = Γ548(k,k′,k′′)

= Γ148(k,k′,k′′) = Γ362(k,k′,k′′) = −ei(k+k′+k′′)·dxV ∗
k , (2.152j)

Γ854(k,k′,k′′) = Γ458(k,k′,k′′)

= Γ418(k,k′,k′′) = Γ814(k,k′,k′′) = −ei(k+k′+k′′)·dxV ∗
k′ , (2.152k)

Γ845(k,k′,k′′) = Γ485(k,k′,k′′)

= Γ481(k,k′,k′′) = Γ841(k,k′,k′′) = −ei(k+k′+k′′)·dxV ∗
k′′ . (2.152l)

Using the Bogoliubov transformation in the tensor form given in Eq. (2.150),
we can write the action (2.151) as

S3[ψ] =β

√
4

N

∑
KK′K′′

∑
G

δk+k′+k′′,Gδω+ω′+ω′′,0

×
∑
µνλ

1

3!
Γ̃µνλ(k,k′,k′)ψµ

Kψ
ν
K′ψλ

K′′ , (2.153)

with the transformed vertices

Γ̃µνλ(k,k′,k′′) =
∑
µ′ν′λ′

Γµ′ν′λ′
(k,k′,k′′)Tµ′µ

k Tν′ν
k′ Tλ′λ

k′′ . (2.154)

The analytical expressions for Γ̃µνλ(k,k′,k′′) are long enough to discourage
us from proceeding analytically. When we calculate the magnon damping
in the next section, we will therefore translate our analytical expressions

for the transformation matrices Tµµ′

k to numerical matrices at the desired
values of k. Still, this leaves us with an advantage compared to a fully
numerical treatment, since we do not have to perform the diagonalization
for each k-point separately but can merely substitute numerical values in
our analytical expressions.

2.7 Magnon damping at zero temperature

Let us recall how quasiparticle damping is related to the imaginary part
of the self energy. The retarded Green’s function for the magnons can be
written as

Gret
kn(ω) =

1

ω − ωkn − Σret
kn(ω)

, (2.155)

where ωkn are the magnon energies and Σret
kn(ω) is the retarded self energy of

the magnons. The real time representation of the retarded Green’s function
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is given by the Fourier transform, and may be written as

Gret
kn(t) =

∫ ∞

−∞

dω

2π
Gret

kn(ω)e
−iωt

= e−iωknt

∫ ∞

−∞

dω

2π
Gret

kn(ωkn − ω)e−iωt

= e−iωknt

∫ ∞

−∞

dω

2π

−e−iωt

ω +Σret
kn(ωkn − ω)

. (2.156)

From the first to the second line, we shifted the integration variable ω →
ωkn − ω. In the simplest approximation, we neglect the momentum depen-
dence of the self energy in the integral, i.e. Σret

kn(ωkn − ω) ≈ Σret
kn(ωkn).

Anticipating that Im Σret
kn(ωkn) < 0, we can evaluate the Fourier transform

and write

Gret
kn(t) = −e−iωkntiθ(t) e−iΣret

kn(ωkn)t

= −iθ(t) e−i(ωkn+Rkn)t e−γknt , (2.157)

where we separated the real and imaginary part of Σret
kn(ωkn) as

Rkn ≡ ReΣret
kn(ωkn) , (2.158a)

γkn ≡ −ImΣret
kn(ωkn) . (2.158b)

We see that γkn is the decay rate of the retarded Green’s function. As long
as the decay rate is small compared to the frequency ωkn+Rkn, we may call
γkn the damping of the corresponding mode. The real part Rkn of the self
energy shifts the magnon energies and thus contributes to the damping only
at higher orders. We will neglect this part in our calculations and comment
on the implications of this approximation in the discussion in Sec. 2.9.1.

2.7.1 Born approximation

To proceed, we derive expressions for the magnon damping to leading order
in perturbation theory, which we refer to as the Born approximation. The
self energy is then given by the Feynman diagrams with two interaction
vertices and two external legs. Of these, only those diagrams where the
outer indices connect to different vertices produce an imaginary part. These
diagrams are given by

Σ(a)
n (K) =− 2

2β
(3!)2 , (2.159a)

Σ(b)
n (K) =− 1

2β
(3!)2 , (2.159b)

Σ(c)
n (K) =− 1

2β
(3!)2 . (2.159c)
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Here, a directed line between two vertices represents the free magnon prop-
agator,

G0
n(K) =

1

iω − ωkn
. (2.160)

The vertices are given by the cubic action (2.153). The factor of (3!)2 arises
because we symmetrized the three-point vertex in Eq. (2.151). This sym-
metry carries over to the transformed three-point vertex (2.154), giving (3!)
equivalent possibilities to connect the propagator indices to each vertex. We
write out the first contribution as

Σ(a)
n (K) =− 4β

N(3!)2

∑
K′

∑
n′m

(3!)2
1

β
G0

n′(K ′)
1

β
G0

m(G1 −K −K ′)

×
∣∣∣Γ̃nn′m+4(k,k′,G1 − k − k′)

∣∣∣2
=− 4

N

∑
k′

∑
n′m

∣∣∣Γ̃nn′m+4(k,k′,G1 − k − k′)
∣∣∣2

× 1

β

∑
ω′

1

ωk′n′ − iω′
1

ωG1−k−k′,m − iω − iω′ . (2.161)

Here we have defined the reciprocal lattice vector G1 via the requirement
that G1 − k − k′ lies within the first Brillouin zone. This is because in
the cubic action (2.153), momentum is conserved modulo reciprocal lattice
vectors and the momentum sums go over the first Brillouin zone. The indices
n′ andm sum over the four values 1, 2, 3, 4, and the indexm+4 consequently
takes the values 5, 6, 7, 8. The reason for a separate treatment of these
two sectors is that incoming propagator lines connect via Wick’s theorem
to a creation operator of the interaction vertex. In the collective variable
ψK (2.149), the creation operators are listed in the positions 1...4. Similarly,
the annihilation operators listed in the positions 5...8 correspond to outgoing
lines.

The sum over the bosonic Matsubara frequencies in above Eq. (2.161)
can be done analytically by using the residue theorem, giving

Σ(a)
n (K) =− 4

N

∑
k′

∑
n′m

∣∣∣Γ̃nn′m+4(k,k′,G1 − k − k′)
∣∣∣2

× n(ωk′n′)− n(ωG1−k−k′,m)

ωk′n′ − ωG1−k−k′,m + iω
, (2.162)

with the Bose function

n(E) =
1

eβE − 1
. (2.163)

The retarded self energy is obtained by the Wick rotation iω → ω + i0+,
where 0+ denotes an infinitesimal positive real number. Identifying the
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representation of the Dirac-delta by the Sokhotski–Plemelj formula,

1

x± i0+
= P

(
1

x

)
∓ iπδ(x) , (2.164)

where P denotes the principal value, we find

ImΣ(a),ret
n (k, ω) =ImΣ(a)

n (k, ω + i0+)

=π
4

N

∑
k′

∑
n′m

∣∣∣Γ̃nn′m+4(k,k′,G1 − k − k′)
∣∣∣2

× [n(ωk′n′)− n(ωG1−k−k′m)]

× δ (ω + ωk′n′ − ωG1−k−k′m) . (2.165a)

The other two contributions to the imaginary part of the self energy given
in Eqs. (2.159) can be evaluated analogously, with the results

ImΣ(b),ret
n (k, ω) =ImΣ(b)

n (k, ω + i0+)

=− π

2

4

N

∑
k′

∑
n′m

∣∣∣Γ̃n+4 n′m(−k,k′,G2 + k − k′)
∣∣∣2

× [1 + n(ωk′n′) + n(ωG2+k−k′m)]

× δ (ω − ωk′n′ − ωG2+k−k′m) , (2.165b)

ImΣ(c),ret
n (k, ω) =ImΣ(c)

n (k, ω + i0+)

=
π

2

4

N

∑
k′

∑
n′m

∣∣∣Γ̃nn′m(k,k′,G1 − k − k′)
∣∣∣2

× [1 + n(ωk′n′) + n(ωG1−k−k′m)]

× δ (ω + ωk′n′ + ωG1−k−k′m) . (2.165c)

Here, the reciprocal lattice vector G2 must be chosen such that G2+k−k′
lies within the first Brillouin zone.

In the lowest order approximation for the damping γkn given in Eq.
(2.158b), we need to evaluate the imaginary part of the self energy at

ω = ωkn. Then, the Dirac-delta in ImΣ
(c),ret
n (k, ωkn) vanishes because all

magnon energies are positive. Moreover, at zero temperature, the Bose func-
tions in the above expression vanish. We are thus left with only one term

stemming from ImΣ
(b),ret
n (k, ωkn), and get

γkn =
π

2

4

N

∑
k′

∑
n′m

∣∣∣Γ̃n+4 n′m(−k,k′,G2 + k − k′)
∣∣∣2

× δ (ωkn − ωk′n′ − ωG2+k−k′m) . (2.166)

A remark about the reciprocal lattice vector G2 appearing in the above
integral is appropriate here. Recall that that G2 ensures that all crystal
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momenta lie within the first Brillouin zone. This is so because all momen-
tum sums in the action go over momenta in the first Brillouin zone. In
principle however, the analytical expressions for the couplings (2.108, 2.109)
can be analytically continued beyond the first Brillouin zone. As discussed
in Sec. 2.6.3, crossing of the border of a Brillouin zone then corresponds to
switching the analytical expressions for the magnon branches pairwise with
one another. It seems plausible that a similar principle might hold for the
interaction vertices as well. Although we did not investigate this rigorously,
we found that omitting the vector G2 in the numerical calculation does not
alter the results up to switching of the magnon branches. In our publica-
tion [1] we used the results with G2 omitted in order to conform with our
collaborators. For the sake of consistency, we will keep G2 in this thesis.

In the thermodynamic limit of a large system, N → ∞, the crystal
momentum becomes a continuous variable and momentum sums become
integrals. The magnon damping (2.166) then reads

γkn =
π

2

∑
n′m

∫
BZ

d2k′

VBZ

∣∣∣Γ̃n+4 n′m(−k,k′,G2 + k − k′)
∣∣∣2

× δ (ωkn − ωk′n′ − ωk−k′m) , (2.167)

where the integral extends over the first Brillouin zone and

VBZ =
√
3

(
2π

3d

)2

(2.168)

is the volume of the first Brillouin zone.

For a given set of model parameters in the overlap of the special region
Γ = K > 0 with the zigzag phase, we can use our analytical expressions to
construct an efficient numerical algorithm to compute the magnon damping
given in Eq. (2.167). Substituting the model parameters and the relevant
crystal momenta into the expression for the the transformed three-point ver-
tices given in Eq. (2.154) and performing the tensor contraction numerically,
we obtain a numerical tensor for Γ̃n+4 n′m(−k,k′,G2 + k− k′) at arbitrary
k,k′. This procedure is much faster than a numerical diagonalization of the
8×8 propagator matrix at each point in k-space. The remaining problem is
then to solve the two-dimensional integral over the Brillouin zone appearing
in the expression (2.167) for the magnon damping.

2.7.2 Numerical integration by triangulation

The Brillouin zone integrals in Eq. (2.167) are of the form

I =

∫
A
f(k) δ(g(k)) dk1 dk2 . (2.169)
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In his doctoral thesis [69], Johannes Hick described a ’triangular method’
to solve such integrals. He divides the area A into small triangles and
approximates the functions f(k) and g(k) as linear on each triangle. These
linear functions are uniquely determined on each triangle by the function
values on the corners. If the triangles are small enough, this patchwork
of linear functions provides a good approximation for the function on the
whole area A. Consequently, the integral over the whole area A can be
approximated by the sum of the integrals over the single triangles. The
integral over a single triangle is simple because of the linearity of the involved
functions. We note that although it seems likely that such a procedure
has been used prior to Hick’s thesis, we are not aware of any additional
references. Hick formulated this procedure for a specific alignment of the
triangles, and we wish to generalize this approach now. For this, we consider
a general triangle with the coordinates of the corners given by

ka =

(
ka,1
ka,2

)
, kb =

(
kb,1
kb,2

)
, kc =

(
kc,1
kc,2

)
. (2.170)

We suppose that that the numerical values of the functions f(k) and g(k)
at the corners of the triangle are known and denote them by fa, fb, fc and
ga, gb, gc. Then the linearized version of f(k) can be defined as

fL(k) = f(ka) +∇fL · (k − ka) , (2.171)

where the constant gradient ∇fL is uniquely determined by fa, fb, fc and
the corner coordinates of the triangle. To find the relation between the
gradient and the function values fa, fb, fc, we write the linearized function
alternatively as

fL(β, γ) = fa + β(fb − fa) + γ(fc − fa) , (2.172)

where β and γ parameterize k such that

k = ka + β(kb − ka) + γ(kc − ka) . (2.173)

Note that β and γ are just different coordinates for the k-space, chosen such
that the corners of the triangle lie at (0, 0), (0, 1), and (1, 0). We define the
relative vectors

r(k) =k − ka , (2.174a)

rb =kb − ka , (2.174b)

rc =kc − ka , (2.174c)

and write the transformation (2.173) in matrix form as

r = (rb, rc)

(
β
γ

)
= A

(
β
γ

)
, (2.175)
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with the matrix

A =

(
rb,1 rc,1
rb,2 rc,2

)
. (2.176)

We invert the transformation (2.175) to find(
β
γ

)
=

1

detA

(
rc,2 −rc,1
−rb,2 rb,1

)
r , (2.177)

where

detA = rb,1rc,2 − rb,2rc,1 . (2.178)

We now substitute the expressions for β and γ given in the above trans-
formation (2.177) in the expression (2.172) for the linearized function and
find

fL(k) =fa +
rc,2r1 − rc,1r2

detA
(fb − fa) +

−rb,2r1 + rb,1r2
detA

(fc − fa)

=fa +
rc,2(fb − fa)− rb,2(fc − fa)

detA
r1

+
−rc,1(fb − fa) + rb,1(fc − fa)

detA
r2

=fa +
1

detA

[
(fb − fa)

(
rc,2
−rc,1

)
+ (fc − fa)

(
−rb,2
rb,1

)]
· r . (2.179)

Comparing this with the expression (2.171), we thus find

∇fL =
1

detA

[
(fb − fa)

(
rc,2
−rc,1

)
+ (fc − fa)

(
−rb,2
rb,1

)]
. (2.180)

In above derivation, one can of course replace f with g to find the linear
approximation and the gradient of the function g(k) on the triangle. To
evaluate the integral (2.169), we first rewrite it to

I =

∫
C

f(k(l))

|∇g(k(l))|dl , (2.181)

where the integral goes over those curves C which are defined by g(k) = 0 and
lie within the area A. dl is the corresponding line measure. We evaluate this
integral for one triangle by using the linearized functions fL(k) and gL(k)
as approximation, where fL(k) is given in Eq. (2.171) and gL(k) is defined
analogously. Then, the gradient is constant, and the curve C is just a straight
line. If this line does not cross the triangle, the integral vanishes. If C does
cross the triangle, we need to find the two points where the line intersects
the triangle. We call these points pa and pb as depicted in Fig. 2.11a. We
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a)

b)

Figure 2.11: a) Three ar-
bitrary points ka,kb,kc de-
fine the corners of a trian-
gle. The two points pa,pb
mark the intersection of the
triangle with the line where
gL(k) (the linearized ver-
sion of g(k) appearing in
the Dirac-delta in the inte-
gral (2.169)) vanishes.
b) Subdivision of the first
Brillouin zone into 4×n1×n2
triangles, here shown for the
case n1 = 3, n2 = 4.

thus get

I =
1

|∇gL|

∫ pb

pa

fL(k(l))dl

=
1

|∇gL|

[
fa|pb − pa|+∇fL ·

∫ pb

pa

(k(l)− ka)dl
]

=
|pb − pa|
|∇gL|

[
fa +∇fL ·

(
pa + pb

2
− ka

)]
, (2.182)

where the integral goes along the straight line connecting pa and pb and we
substituted expression (2.171) for fL(k).

2.7.3 Numerical calculation of the magnon damping

Having established an approximate expression for the integral over a single
triangle, we subdivide the first Brillouin zone into triangles as depicted ex-
emplarily in Fig. 2.11b. In the expression (2.167) for the magnon damping at
momentum k, we integrate over k′ and the function g(k′) appears as ωkn −
ωk′n′ − ωk−k′m and the function f(k′) as

∣∣∣Γ̃n+4 n′m(−k,k′,G2 + k − k′)
∣∣∣2.

We extract their numerical values for given k and for k′ on all triangle cor-
ners from our analytical expressions given in Eq. (2.154) and Eqs. (2.132).
To do so, we need to choose the model parameters first. With the restric-
tion that the model parameters lie on the line Γ = K > 0 and within the
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zigzag-phase, we arbitrarily choose

J =− 12meV, (2.183a)

K = Γ = 7meV, (2.183b)

J3 = 3meV. (2.183c)

The position of this point within the phase diagram is visualized in Fig. 2.12.
We want to plot the magnon damping for values of k along the path through

Figure 2.12: Phase diagram for
J3 = 0.193E , which includes the
point in parameter space given
by Eqs. (2.183) used for numer-
ical calculations. This point is
marked by the white dot. The
dashed line marks the region
where Γ = K.

k-space depicted in Fig. 2.13. This is the same path as was used in the prior
literature [2]. Note that for the magnon damping, there is some redundancy
in this choice of momentum path, because our Hamiltonian is periodic with
respect to the first magnetic Brillouin zone. The momentum path is however
adjusted for the Brillouin zone of the honeycomb lattice, which is twice as
large as the magnetic Brillouin zone. We thus expect that the periodicity
of the magnon damping leads to repeating patterns on path sections that
are equivalent modulo the magnetic Brillouin zone, i.e. the section between
X and Γ is equivalent to the section between Y and Γ′. We nevertheless
keep the redundant parts of the momentum path because later, we evaluate

Figure 2.13: The momentum-
space path used in our numerical
evaluation of the magnon damp-
ing. The rectangle indicates the
first magnetic Brillouin zone of
the zigzag ground state. Note
that the component k1 is per-
pendicular to the zigzag stripes.
The dashed hexagon indicates
the Brillouin zone of the honey-
comb lattice
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Figure 2.14: Top panel: Magnon energies along the momentum-contour depicted
in Fig. 2.13. The numbers to the right of the graph label the branch index n
as used in the analytical expressions. Lower panels: Magnon damping in Born
approximation (dashed) and in iDE approximation (dotted). Here, the damping
for each of the four magnon branches is shown in a separate graph.

the dynamical structure factor which is not periodic with respect to the
magnetic Brillouin zone. The resulting magnon damping for each of the
four branches is shown in Fig. 2.14.

2.7.4 Imaginary Dyson equation approach

The magnon damping in Born approximation shown in Fig. 2.14 shows van-
Hove singularities [4, 70] in the form of pronounced peaks where the gradient
of the argument in the Dirac-deltas in the expession for the magnon damp-
ing (2.167) vanishes. As these are unphysical artifacts of the Born approx-
imation, we will self consistently consider a higher order approximation.
Recall the approximate expression (2.157) for the retarded Greens func-
tion written in terms of the magnon energies and damping. In the deriva-
tion of this expression, we used an on-shell approximation Σret

kn(ωkn − ω) ≈
Σret
kn(ωkn). A better approximation would self-consistently take into account
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the renormalization of the magnon energies, i.e. Σret
kn(ωkn − ω) ≈ Σret

kn(ω̃kn)
with ω̃kn = ωkn+Σret

kn(ω̃kn). Neglecting the real part of the self energy leads
to ω̃kn = ωkn − iγkn. By the expression for the magnon damping in terms
of the imaginary part of the self energy given in Eq. (2.157), we then get a
self consistent equation for the magnon damping,

γkn = −ImΣret
kn(ωkn − iγkn) . (2.184)

This approximation was originally proposed as the imaginary Dyson equa-
tion (iDE) approach [71, 72], where the name refers to the fact that above for-
mula is the imaginary part of the Dyson equation. We already derived per-
turbative expressions for the imaginary part of the self energy in Sec. 2.7.1.
The substitution ωkn → ωkn − iγkn does not alter the derivation in a major
way. The only difference is that due to the imaginary part iγkn introduced
to the inverse propagator, the Wick rotation produces Lorentzians instead
of Dirac-Deltas in Eqs. (2.165). This can be taken into account by simply
interpreting the Dirac-Deltas with complex argument as Lorentzians, i.e.

δ(x− iy) ≡ 1

π

y

x2 + y2
. (2.185)

We thus find in analogy to Eq. (2.167) that

γkn =
π

2

∑
n′m

∫
BZ

d2k′

VBZ

∣∣∣Γ̃n+4 n′m(−k,k′,G2 + k − k′)
∣∣∣2

× δ (ωkn − iγkn − ωk′n′ − ωk−k′m) . (2.186)

This equation can be solved by successive iteration. We start with our
Born result for γkn. If γkn = 0, the iteration can already be terminated.
If γkn > 0, the Dirac-delta becomes a Lorenzian and the integral can be
solved numerically by the method of Gaussian quadratures. The new result
for γkn is then used in the next iteration. In our case, the iteration converged
everywhere after less than 30 iterations. We show the results as dotted lines
in Fig. 2.14.

2.8 Dynamical structure factor

The dynamical structure factor Sαβ(k, ω) plays a central role in connect-
ing the quasiparticle properties to experimental results. Most notably for
our purposes, it is straightforwardly connected to the neutron scattering
intensity I(k, ω) by

I(k, ω) = F 2(k)
∑
αβ

(
δαβ − kαkβ/k

2
)
Sαβ(k, ω) , (2.187)
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where F (k) is a molecular or atomic structure factor. A detailed derivation
can be found in Ref. [73]. The dynamical structure factor is the Fourier

transform of the two-spin correlation function ⟨Sα
i (t)S

β
j (0)⟩ and defined by

Sαβ(k, ω) =

∫ ∞

−∞

dt

2π

1

N

∑
ij

⟨Sα
i (t)S

β
j (0)⟩e−ik·(Ri−Rj)+iωt

=

∫
dt

2π
⟨Sα

−k(t)S
β
k(0)⟩eiωt . (2.188)

In the second line we have introduced the Fourier components of the spin
operators,

Sk(t) =
1√
N

∑
i

Si(t)e
−ik·Ri . (2.189)

In the planar basis {e1, e2, e3} given in Eq. (2.9), the components of the
Fourier transformed spin vector operators Sk(t) are

Sα
k = eα · Sk =

1√
N

∑
i

e−ik·Rieα · Si . (2.190)

We wish to express those in terms of the bosons defined by the 1/S ex-
pansion (2.55). Because the 1/S expansion in the zigzag phase is given in
terms of the local spin basis {txi , tyi ,mi} defined in Eq. (2.46), we need to
reexpress the basis vectors eα. Noting that in our special parameter region
Γ = K > 0 we have s = −2 and r = 1, we find from the explicit expressions
of the local basis vectors given in Eqs. (2.82), (2.83) and from their relations
to the global spin basis (2.47) that

e1 = −tx = −txi , (2.191a)

e2 =m =

{
mi for i on sublattices a, d ,

−mi for i on sublattices b, c ,
(2.191b)

e3 = t
y =

{
tyi for i on sublattices a, d ,

−tyi for i on sublattices b, c .
(2.191c)

With these relations, we can write the Fourier transformed spin operators
in the planar basis as

S1
k =− 1√

N

∑
i

e−ik·Ri txi · Si , (2.192a)

S2
k =

1√
N

∑
i∈a,d

e−ik·Ri mi · Si −
∑
i∈c,b

e−ik·Ri mi · Si

 , (2.192b)

S3
k =

1√
N

∑
i∈a,d

e−ik·Ri tyi · Si −
∑
i∈c,b

e−ik·Ri tyi · Si

 . (2.192c)
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In these expressions, we identify the spin components with the Holstein-
Primakoff bosons in the 1/S expansion (2.55) as

txi · Si = Sx
i =

1

2

(
S+
i + S−

i

)
=

√
2S

2

(
bi + b†i

)
+O

(
S0
)
, (2.193a)

tyi · Si = Sy
i =

1

2i

(
S+
i − S−

i

)
=

√
2S

2i

(
bi − b†i

)
+O

(
S0
)
, (2.193b)

mi · Si = S
∥
i = S − ni . (2.193c)

From these relations it is transparent that, as expected, the longitudinal
parts of the structure factor are of higher order in 1/S than the purely
transversal components, as to lowest order we get Sαβ ∝ S and the expecta-
tion value of the number operator vanishes as T → 0. We will therefore omit
the longitudinal spin components. Substituting the above relations (2.193)
into Eqs. (2.192) then yields for the transversal spin components

S1
k =−

√
2S

4

∑
i

e−ik·Ri

(
bi + b†i

)
, (2.194a)

S3
k =

√
2S

4i

∑
i∈a,d

e−ik·Ri

(
bi − b†i

)
−
∑
i∈c,b

e−ik·Ri

(
bi − b†i

) . (2.194b)

We can now identify the Fourier transformed bosons from Eq. (2.62). How-
ever, the structure factor is periodic with respect to the first Brillouin zone
of the lattice, which is twice as large as the magnetic Brillouin zone of
the zigzag ground state. We thus have to take into account the phase fac-
tors (2.66) associated with the non-periodicity of the boson operators. We
do this by writing

k = k̃ +G , (2.195)

such that G is a reciprocal lattice vector of the magnetic Bravais lattice and
k̃ lies in the first magnetic Brillouin zone. Then, the spin components (2.194)
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can be written as

S1
k =−

√
2S

4

[(
ak̃ + a†

−k̃

)
+ eiG·dx

(
bk̃ + b†

−k̃

)
+ eiG·a1

(
ck̃ + c†

−k̃

)
+ eiG·dz

(
dk̃ + d†

−k̃

)]
≡−

√
2S

4

∑
µ

νµG ϕ
µ

k̃
, (2.196a)

S3
k =

√
2S

4i

[(
ak̃ − a†

−k̃

)
− eiG·dx

(
bk̃ − b†

−k̃

)
− eiG·a1

(
ck̃ − c†

−k̃

)
+ eiG·dz

(
dk̃ − d†

−k̃

)]
≡
√
2S

4i

∑
µ

σµ ν
µ
G ϕ

µ

k̃
. (2.196b)

Here, we used the collective 8-component operator-valued vector

ϕµk = (ak, bk, ck, dk, a
†
−k, b

†
−k, c

†
−k, d

†
−k) (2.197)

in analogy to the definition (2.149) from the path integral approach, and
defined the vectors νµG and σµ with components

νµG =(1, eiG·dx , eiG·a1 , eiG·dz , 1, eiG·dx , eiG·a1 , eiG·dz) , (2.198)

σµ =(+1,−1,−1,+1,−1,+1,+1,−1) . (2.199)

In a next step, we use the Bogoliubov transformation (2.150) to express the
Holstein-Primakoff bosons ϕµ

k̃
in terms of the Bogoliubov bosons as

ϕµ
k̃
=
∑
µ′

Tµµ′

k̃
ψµ′

k̃
, (2.200)

where

ψµ
k = (bk1, bk2, bk3, bk4, b

†
−k1, b

†
−k2, b

†
−k3, b

†
−k4) , (2.201)

and bkn and b†kn are the annihilation and creation operators of the four
different magnon branches. We thus get

S1
k =−

√
2S

4

∑
µµ′

νµG Tµµ′

k̃
ψµ′

k̃
, (2.202a)

S3
k =

√
2S

4i

∑
µµ′

σµ ν
µ
G Tµµ′

k̃
ψµ′

k̃
. (2.202b)
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Substitution into the definition (2.188) of the dynamical structure factor
then yields for the transversal components

S11(k, ω) =
2S

16

∑
µµ′

νµ−G Tµµ′

−k̃

∑
νν′

ννG Tνν′

k̃

∫
dt

2π
⟨ψµ′

−k̃
(t)ψν′

k̃
(0)⟩eiωt , (2.203a)

S13(k, ω) =− 2S

16i

∑
µµ′

νµ−G Tµµ′

−k̃

∑
νν′

σνν
ν
G Tνν′

k̃

∫
dt

2π
⟨ψµ′

−k̃
(t)ψν′

k̃
(0)⟩eiωt ,

(2.203b)

S33(k, ω) =− 2S

16

∑
µµ′

σµν
µ
−G Tµµ′

−k̃

∑
νν′

σνν
ν
G Tνν′

k̃

∫
dt

2π
⟨ψµ′

−k̃
(t)ψν′

k̃
(0)⟩eiωt .

(2.203c)

The integrals appearing in these expressions are related to the imaginary
part of the retarded Green’s functions by the Kramers-Kronig-relations [8].
Some care has to be taken because ψµ

k lists both creation and annihilation
operators, see Eq. (2.201). In our approximation, the off diagonal elements
of the full propagator are of higher order in 1/S than the diagonal elements,
so we only take into account the diagonal elements, giving∫

dt

2π
⟨ψn+4

−k (t)ψn
k(0)⟩eiωt =

∫
dt

2π
⟨b†kn(t)bkn(0)⟩eiωt

=
1

e−βω − 1

1

π
ImGret

n (k, ω) , (2.204a)∫
dt

2π
⟨ψn

−k(t)ψ
n+4
k (0)⟩eiωt =

∫
dt

2π
⟨b−kn(t)b

†
−kn(0)⟩eiωt

=
1

e−βω − 1

1

π
ImGret

n (k,−ω) , (2.204b)

for n = 1, 2, 3, 4. At zero temperature, the Bose functions simplify and the
structure factor can be written compactly as

Sαβ(k, ω) = − 1

π

∑
n

Wαβ
kn Im Gret

n (k̃, ω) , (2.205)

where we defined the functions

W 11
kn =

S

8

(∑
µ

νµ−G Tµn

−k̃

)(∑
ν

ννG Tν n+4

k̃

)
, (2.206a)

W 13
kn =

S

8i

(∑
µ

νµ−G Tµn

−k̃

)(∑
ν

σν ν
ν
G Tν n+4

k̃

)
, (2.206b)

W 33
kn =− S

8

(∑
µ

σµ ν
µ
−G Tµn

−k̃

)(∑
ν

σν ν
ν
G Tν n+4

k̃

)
. (2.206c)
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Figure 2.15: Dynamical Structure factor computed from the result of the iDE
approximation for the magnon damping. This figure is republished from Ref. [1]
with permission of the American Physical Society.

From the Dyson equation (2.155) and the relation (2.158b) between self
energy and magnon damping γkn, we see that the imaginary part of the
retarded Green function within our Born approximation can be written as

ImGret
n (k, ω) ≈ −γkn

(ω − ωkn)2 + γ2kn
. (2.207)

Having numerical values for γkn from Sec. 2.7, the structure factor at zero
temperature can now be calculated from Eq. (2.205). In Fig. 2.15, we used
our results for the damping in the iDE approximation to visualize the dy-
namical structure factor along the momentum path given in Fig. 2.13.

2.9 Discussion

Our results for the magnon damping shown in Fig. 2.14 confirm the claim
made in Ref. [2] that magnon decays in the KHΓ model can become sig-
nificant due to the decay of single magnons into two-magnon states. This
mechanism leads to broad features in the structure factor shown in Fig. 2.15
and can potentially explain scattering continua in inelastic neutron scat-
tering experiments. While our results support the approximation done in
Ref. [2], our method is restricted to a region in parameter space which is not
compatible with the model parameters found Ref. [2]. In the following, we
want to elaborate on this issue as well as on the real part of the self energy,
which we neglected throughout our calculations.
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2.9.1 Purely imaginary self energy

Let us comment on the fact that in both of our approximations (Born and
iDE), we neglected the real part of the self energy. In case of the Born ap-
proximation the real and imaginary part of the self energy can be calculated
independently because they are calculated purely in terms of the bare prop-
agator and bare vertices. Hence, it is clear that while the real part of the self
energy will shift the magnon energies, it will not change our results for the
damping. The situation is more complicated with the iDE approximation.
The Dyson equation can be interpreted as a self consistent equation for the
self energy and a solution must in general include the real and imaginary
part. Neglecting the real part must be justified by suitable arguments. In
Refs. [71, 72], where the iDE approximation was introduced, it was shown
for a different model that the real part is much smaller than the imagi-
nary part, while in Ref. [2] the approximation was justified by agreement
with experiments and exact diagonalization results. Another argument was
suggested in the supplementary material of Ref. [2], namely that one can
regard the model parameters as renormalized couplings, which already take
into account the renormalization of the magnon energies. It is clear that
such an argument cannot be rigorous, since the magnon spectrum has many
more degrees of freedom than the (constant) coupling parameters. For in-
stance, one would expect the formation of energy gaps at some of the naked
band crossings, while in other places the spectrum might merely be shifted
more or less uniformly. An independent confirmation of the validity of the
iDE approximation in the KHΓ model would be desirable. Nevertheless,
the agreement with the measurements obtained in Ref. [2] can be seen as
evidence that the iDE approximation is indeed applicable.

2.9.2 Special parameter region

A weak point of our calculations is their restriction to couplings which fulfill
Γ = K > 0. While it is unlikely that this particular region in parame-
ter space will be relevant for a real material, our method can be used to
validate other approximations. One example is the approximation used in
Ref. [2], where the authors neglect the momentum dependence of the in-
teraction vertex. As mentioned in the introduction to this chapter, it was
our main motivation to validate this approximation. As we discuss in our
publication [1], our results verify the cruder approximation of Ref. [2] in a
qualitative way. More concretely, we verified that the magnon decay rates
from one-magnon to two-magnon states can be significant in large parts of
the Brillouin zone of the Kitaev-Heisenberg-Γ model, which can be seen from
the high damping rates in Fig. 2.14. Such magnon decay processes can in
principle explain broad incoherent features in inelastic neutron scattering
experiments, as was the claim in Ref. [2] and as can be inferred from the
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broad features in the dynamical structure factor shown in Fig. 2.15. There
is to our knowledge no feasible procedure that manages to produce reli-
able perturbative results for the magnon damping in KHΓ models or other
similarly complicated extended Kitaev models in the whole coupling space.
While magnon spectra can reliably be calculated by exact diagonalization,
it is only applicable for small systems made up of a few unit cells because
the computational cost scales exponentially with the system size due to the
exponential growth of the Hilbert space. Numerical perturbation theory,
i.e. diagonalization of the propagator matrix by the Colpa algorithm [63], is
computationally costly because in order to evaluate the damping to lowest
order perturbation, one must integrate over all momenta. This means that
the 8 × 8 propagator matrix needs to be diagonalized for a large number
of momenta in order to approximate this integral. With our approach, we
are able to systematically identify a region in the coupling space where the
problem is reduced to the diagonalization of 4× 4 matrices. This allows to
perform perturbation theory in more detail than before. We stress that this
systematic approach can in principle be applied to any bosonic model, and
might be useful to examine other complicated magnetic materials as well.
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Chapter 3

Discontinuous phase
transition in the SYK model

In this chapter, we examine a toy model with random all-to-all interaction,
the SYK model. We have already introduced this model in the introduction
in Sec. 1.2.2. Using the functional renormalization group (FRG), which
we have introduced in Sec. 1.2.1, we find an unexpected result: strongly
correlated critical fluctuations at a discontinuous quantum phase transition.

The structure of this chapter closely follows our publication [3]. In
Sec. 3.1, we define the Hamiltonian of the fermionic SYK model and discuss
some of the properties of its exact solution. Then, in Sec. 3.2, we perform a
disorder average over the random couplings of the SYK model to obtain an
average action, and argue that the RG flow of the average action is equivalent
to the average RG flow of the SYK model in the thermodynamic limit. We
then continue to derive RG flow equations for the average action in Sec. 3.3.
In Sec. 3.4, we introduce a sharp frequency cutoff and derive explicit flow
equations for the effective chemical potential and effective interaction. In
Sec. 3.5, we identify a fixed point which describes a discontinuous phase
transition of the SYK. In Sec. 3.6, we construct a method that allows us
to integrate the flow equations and plot the RG trajectories. Finally, in
Sec. 3.7, we discuss possible physical implications of our results.

3.1 The SYK model

The fermionic SYK model is defined by the Hamiltonian

H = −µ
∑
i

c†ici +
∑

i<j,k<l

Jij,klc
†
ic

†
jckcl. (3.1)

Here, µ is the chemical potential and c†i and ci are fermionic creation and
annihilation operators for a total of N fermionic modes. The indices i, j, k, l
iterate over the N fermionic modes in an arbitrary order. Note that there
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Figure 3.1: Melon diagram con-
tributing to leading order to the
average self energy. The dashed
line represents the average over

the random couplings, |Jij,kl|2 =
∆2.

are no spatial degrees of freedom. Jij,kl is a complex quenched random
interaction with Gaussian probability distribution

ρ(Jij,kl) =
1

π∆2
exp

{
−|Jij,kl|2

∆2

}
, (3.2)

where the mean of the interaction is zero and the variance is given in terms
of a fixed coupling energy J as

∆2 ≡ |Jij,kl|2 = 2J2/N3 . (3.3)

Besides the fermionic symmetries

Jij,kl = −Jji,kl = −Jij,lk , (3.4)

and hermiticity condition

Jij,kl = J∗
kl,ij , (3.5)

all components are statistically independent.
In the thermodynamic limit N → ∞, an exact solution for the single

mode dynamics can be constructed [14, 45, 46]. This is possible due to
the self averaging property of the SYK model: because all modes interact
randomly with each other, the sum in the interaction term of the Hamilto-
nian (3.1) is effectively an average over all modes. As a result, the dynamics
of any given mode is given by the average dynamics of all modes [14]. In the
following, we have to distinguish to different averages, the disorder average
over the random couplings and the mode average over all fermionic modes.
However, these two averages are deeply intertwined by the self averaging
property of the SYK-model: since in the thermodynamic limit, all fermionic
modes obey the same average dynamics, no physical quantities can depend
on the specific configuration of the couplings Jij,kl.

Among the Feynman diagrams for the disorder-averaged self energy, only
the so-called melon diagrams [14, 46] are of leading order in 1/N . We de-
picted this diagram in Fig. 3.1. Because the random couplings are statis-
tically independent, the two vertices in the melon diagram connected by
the dashed line must have the same indices. But this means that the outer
indices on the left and on the right coincide. As a result, the self energy,
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and hence also the full propagator, are diagonal to leading order in 1/N .
Considering the self averaging property of the SYK model, this is an ex-
pected result [74]. Due to the simplicity of the melon diagrams, a self con-
sistent equation for the mode-averaged self energy in imaginary time can be
found [14, 45, 46],

Σ(τ) = −J2G2(τ)G(−τ) , (3.6)

where G(τ) is the mode-averaged full propagator. The solution can then be
found by using the Dyson equation in imaginary frequency space,

G(ω) =
1

iω + µ− Σ(ω)
. (3.7)

As we have discussed in Sec. 1.2.2, the explicit form of the solution at low
temperatures depends on the chemical potential and leads to either the non-
Fermi liquid (nFL) or the integer valence (IV) phase, see Fig. 1.1. These
phases are separated by a discontinuous phase transition, which we wish to
study at zero temperature.

3.2 Disorder average

We are interested in the phase diagram of the SYK model in the thermody-
namic limit N → ∞. In this limit, the specific random values of the random
couplings do not matter because of the self-averaging property of the SYK
model. This allows us to simplify the problem by integrating out the random
couplings Jij,kl with the path integral formalism. However, there is a compli-
cation. In our FRG analysis, we use the tree expansion to describe the flow

of the n-point irreducible vertices Γ
(n)
i1,...,in

(ω1, ...ωn;J), where J summarizes
the random couplings Jij,kl. The vertices depend on the random couplings
Jij,kl as well as on the fermionic modes i1...in and the Matsubara frequencies
ω1...ωn. The generating functional of the irreducible vertices is the Legendre
transform of the generating functional of the connected Green’s functions,
and the latter is given by the logarithm of the generating functional of the
disconnected Green’s functions [75, 76]. While the disorder average of the
disconnected Green’s functions is relatively straightforward, the logarithm
poses a challenge for the evaluation of the average irreducible vertices. This
is because the logarithm and the average do not commute. This problem
can be tackled by the replica trick [5, 77, 78, 79, 80]. In the next subsec-
tion 3.2.1, we will use the replica trick to justify that the average RG flow
of the SYK model is given by the RG flow of an average action. Then, in
Sec. 3.2.2, we will determine the appropriate average action by integrating
over the probability distribution of the random couplings Jij,kl. Throughout
this section, we refer to the disorder average simply as the average.
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3.2.1 Replica trick

The replica trick can be expressed as

lnZ = lim
n→0

Zn − 1

n
, (3.8)

where Z is the partition function and the overline indicates an average. Usu-
ally, the right hand side of above equation is evaluated for generic integers
n > 0, and then analytically continued to the case n = 0. We can apply
this formula to our case by noting that the generating functional for the
disconnected Green’s functions [5, 75, 76],

Z[J , η̄,η] =

∫
Dc exp {−S[J , c, c] + η̄c+ ηc̄} , (3.9)

is a partition function with a functional dependence on the Grassmann
sources η̄,η and the average is over the random couplings J . In the above
expression, Dc denotes the Grassmann path integral over the fermionic de-
grees of freedom and S[J , c, c] is the bare action of the SYK model, which we
will define later. Note that the formula (3.8) for the replica trick contains an
n-th power of the partition function. Effectively, Zn is the partition function
describing n non-interacting copies - or replicas - of the model. However,
the average introduces an interaction between the replicas. To see this, we
write

(Z[J , η̄,η])n =

∫
Dc1 · · ·

∫
Dcn exp

{
− S[J , c1, c1] + η̄c1 + ηc̄1 − . . .

− S[J , cn, cn] + η̄cn + ηc̄n
}
. (3.10)

To perform the average over the random couplings Jij,kl, we integrate over
the probability measure DJ P (J) (which we specify later) and write

(Z[J , η̄,η])n =

∫
Dc1 · · ·

∫
Dcn

∫
DJ P (J)

× exp
{
− S[J , c1, c1] + η̄c1 + ηc̄1 − . . .

− S[J , cn, cn] + η̄cn + ηc̄n
}
, (3.11)

where we interchanged the order of integration over the fields with the inte-
gration over the random couplings. In general, the average of the exponential
function does not factorize,∫

DJ P (J) exp
{
− S[J , c1, c1]− · · · − S[J , cn, cn]

}
̸=
(∫

DJ P (J) exp
{
− S[J , c, c]

})n

, (3.12)
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which means that the averaging introduces an interaction between the n
replicas. However, the SYK model is replica diagonal in the thermodynamic
limit [14, 81, 82], which means that the average does factorize, giving

(Z[J , η̄,η])n =
(
Z[J , η̄,η]

)n
. (3.13)

Inserting this into the formula for the replica trick (3.8) and applying L’Hos-
pital’s rule then yields the simple relation

lnZ = lnZ . (3.14)

Because the functional derivative with respect to the sources commutes with
the average, the average generating functional for the disconnected Green’s
functions generates the average disconnected Green’s functions. But if Z is
the generating functional of the disconnected Green’s functions, then lnZ
is, up to normalization, the generating functional of the connected Green’s
functions [75, 76]. By virtue of Eq. (3.14), this means that the average
connected Green’s functions coincide with the connected Green’s functions
obtained from an average action S[c, c] defined by

exp
{
− S[c, c]

}
=

∫
DJ P (J) exp

{
− S[J , c, c]

}
. (3.15)

The generating functionals of the irreducible vertices and the connected
Green’s functions are related by a Legendre transform with respect to the
sources η, η̄ [75, 76]. But because the sources are external variables, and
hence the Legendre transform commutes with the averaging. Consequently,
the average irreducible vertices coincide with the irreducible vertices ob-
tained from the average action. This simplifies our task tremendously, be-
cause we only need to apply the FRG to the average action of the SYK
model to find the flow of the average irreducible vertices.

3.2.2 Average action

To find the average action, we write the random action corresponding to the
SYK-Hamiltonian (3.1) in imaginary time as

S[J , c, c] = S2[c, c] + S4[J , c, c] , (3.16)

with

S2[c, c] =
∑
i

∫ β

0
dτ ci(τ) (∂τ − µ) ci(τ) , (3.17)

and

S4[J , c, c] =
∑
i<j

∑
k<l

Jij,kl

∫ β

0
dτci(τ)cj(τ)ck(τ)cl(τ) , (3.18)
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where β is the inverse temperature. We define the Fourier transform of the
fermionic modes as

ci(τ) =
1

β

∑
ω

e−iωτ ci(ω) , (3.19)

where the sum iterates over the fermionic Matsubara frequencies ω. Written
in terms of Matsubara frequencies, the quadratic action reads

S2[c, c] =
1

β

∑
i

∑
ω

(−iω − µ) ci(ω)ci(ω) , (3.20)

and the quartic action reads

S4[J , c, c] =
∑
i<j

∑
k<l

Jij,kl
1

β4

∑
ω1...ω4

β δ12,34 ci(ω1)cj(ω2)ck(ω3) . (3.21)

Here, we used the abbreviations∑
ω1234

=
∑
ω1

∑
ω2

∑
ω3

∑
ω4

and δ12,34 = δω1+ω2,ω3+ω4 . (3.22)

We wish to calculate the average action S[c, c] defined in Eq. (3.15) by inte-
grating over the random couplings Jij,kl. We therefore define the integration
measure

DJ =
∏

i<j, (i)≤k<l

dJ∗
ij,kl dJij,kl

2π i
=

∏
i<j, (i)≤k<l

(
dJRe

ij,kl dJ
Im
ij,kl

)
, (3.23)

and the probability density

P (J) =
∏

i<j, (i)≤k<l

ρ(Jij,kl) , (3.24)

where ρ(Jij,kl) is the Gaussian probability distribution given in Eq. (3.2).
In the above expressions, the product goes over all quadruples i, j, k, l which
fulfill i < j and i ≤ k < l. These relations ensure that the symmetries
Jij,kl = −Jji,kl = −Jij,lk and Jij,kl = J∗

kl,ij given in Eqs. (3.4) and (3.5) are
respected without double counting of degrees of freedom. The superscripts
Re and Im denote the real and imaginary parts of the respective variable.
The integral over the random couplings can be evaluated explicitly. To
show this, we note that the quadratic part of the action is independent of
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the random couplings. For the quartic part, we write∫
DJ P (J) e−S4[J ,c,c]

=
∏

i<j, (i)≤k<l

(∫
dJ∗

ij,kl dJij,kl

2π i

1

π∆2
exp

{
− 1

∆2
J∗
ij,kl Jij,kl

− 1

β4

∑
ω1234

βδ12,34
[
Jij,kl ci(ω1)cj(ω2)ck(ω3)cl(ω4)

+ J∗
ij,kl ck(ω3)cl(ω4)ci(ω1)cj(ω2)

]})
. (3.25)

The integration over real and imaginary parts of Jij,kl can be separated,
giving ∫

DJ P (J) e−S4[J ,c,c] =
∏

i<j, (i)≤k<l

IRe
ij,kl[c, c] I

Im
ij,kl[c, c] (3.26)

with

IRe
ij,kl[c, c] =

∫
dJRe

ij,kl√
π∆

exp

{
−

(
JRe
ij,kl

)2
∆2

−
JRe
ij,kl

β4

∑
ω1234

βδ12,34

×
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4) + ck(ω3)cl(ω4)ci(ω1)cj(ω2)

]}
,

(3.27a)

IImij,kl[c, c] =

∫
dJ Im

ij,kl√
π∆

exp

{
−

(
J Im
ij,kl

)2
∆2

−
iJ Im

ij,kl

β4

∑
ω1234

βδ12,34

×
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)− ck(ω3)cl(ω4)ci(ω1)cj(ω2)

]}
.

(3.27b)

To solve those, we expand the exponentials into a power series,

IRe
ij,kl[c, c] =

∫
dJRe

ij,kl√
π∆

exp

−

(
JRe
ij,kl

)2
∆2


{ ∞∑

n=0

1

n!

(
−JRe

ij,kl

β4

)n

×
( ∑

ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)+ck(ω3)cl(ω4)ci(ω1)cj(ω2)

])n}
,

(3.28a)
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IImij,kl[c, c] =

∫
dJ Im

ij,kl√
π∆

exp

−

(
J Im
ij,kl

)2
∆2


{ ∞∑

n=0

1

n!

(
−i J Im

ij,kl

β4

)n

×
( ∑

ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)−ck(ω3)cl(ω4)ci(ω1)cj(ω2)

])n}
.

(3.28b)

The remaining integrals in these expressions evaluate to

∫
dJ√
π∆

e−
J2

∆2 Jn =

{ (
∆2

2

)n
2
(n− 1)!! n even

0 n odd
. (3.29)

We insert this into Eqs. (3.28) and rename the summation index n → 2n
(since all odd powers vanish), to obtain

IRe
ij,kl[c, c] =

{ ∞∑
n=0

(2n− 1)!!

(2n)!

( −∆√
2β4

)2n

×
( ∑

ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)+ck(ω3)cl(ω4)ci(ω1)cj(ω2)

])2n}
,

(3.30a)

IImij,kl[c, c] =

{ ∞∑
n=0

(2n− 1)!!

(2n)!

( −i∆√
2β4

)2n

×
( ∑

ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)−ck(ω3)cl(ω4)ci(ω1)cj(ω2)

])2n}
.

(3.30b)

Using

(2n− 1)!!

(2n)!
=

1

n!

1

2n
, (3.31)

we can rewrite the sums in Eqs. (3.28) as exponentials,

IRe
ij,kl[c, c] = exp

{
∆2

4β8

( ∑
ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)

+ ck(ω3)cl(ω4)ci(ω1)cj(ω2)
])2}

, (3.32a)
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IImij,kl[c, c] = exp

{
− ∆2

4β8

( ∑
ω1234

βδ12,34
[
ci(ω1)cj(ω2)ck(ω3)cl(ω4)

− ck(ω3)cl(ω4)ci(ω1)cj(ω2)
])2}

. (3.32b)

Evaluating the squares and using Eq. (3.26), we can write∫
DJ P (J) e−S4[J ,c,c] = e−S8[c,c] , (3.33)

where we defined

S8[c, c] =− ∆2

β8

∑
i<j, (i)≤k<l

∑
ω1234

β δ12,34
∑
ω′
1234

β δ1′2′,3′4′

× ci(ω1)cj(ω2)ck(ω3)cl(ω4)ck(ω
′
3)cl(ω

′
4)ci(ω

′
1)cj(ω

′
2) . (3.34)

For the average action defined in Eq. (3.15) we can thus write

S[c, c] = S2[c, c] + S8[c, c] . (3.35)

We conclude that the disorder average transforms the original four-point
interaction to an effective eight-point interaction given by S8. This is the
starting point of our FRG analysis: at the initial scale Λ = Λ0, all irreducible
vertices except the eight-point vertex vanish. As the scale Λ decreases,
additional vertices will be generated by the flow equations.

3.3 Flow equations at zero temperature

A detailed derivation of the flow equations for the irreducible vertices from a
general fermionic action is given in chapter 10 of Ref. [39]. In this section, we
use this procedure to find the flow equations for the disorder-averaged action
given in Eq. (3.35). From now on, we refer to the mode average simply as
the average, because the disorder average has already been performed in the
previous section. We simplify the flow equations by several approximations,
of which some become exact in the thermodynamic limit. First, in Sec. 3.3.1,
we determine the contributions to the flow equations which are leading in
orders of the inverse number of modes 1/N . Then, in Sec. 3.3.2, we discuss
the implications of the self averaging property of the SYK-model and derive
the flow equations for the average mode. Next, in Sec. 3.3.3, we restrict
the flow equations to zero temperature. In Sec. 3.3.4, we apply the Katanin
substitution, which is an approximation that simplifies our flow equations.
Finally, in Sec. 3.3.6, we expand the vertices for small frequencies, which
describe the macroscopic dynamics.
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3.3.1 1/N expansion

We start by writing the interacting part of the action S8 given in Eq. (3.34)
in a symmetrized form as

S8[c, c] =
−1

(4!)2 β8
1

N3

∑
ijkl

∑
i′j′k′l′

∑
ω1234

∑
ω′
1234

β δ1234,1′2′3′4′

× Γ
(8)
0,i′j′k′l′,lkji(ω

′
1, ω

′
2, ω

′
3, ω

′
4; ω4, ω3, ω2, ω1)

× ci(ω1)cj(ω2)ck(ω3)cl(ω4)cl(ω
′
4)ck(ω

′
3)cj(ω

′
2)ci(ω

′
1) , (3.36)

with the partially antisymmetric vertex

Γ
(8)
0,i′j′k′l′,lkji(ω

′
1, ω

′
2, ω

′
3, ω

′
4; ω4, ω3, ω2, ω1) =

Si′ω′
1,j

′ω′
2,k

′ω′
3,l

′ω′
4; lω4,kω3,jω2,iω1

(−(4!)2

8
2J2 δi′i δj′j δk′k δl′l βδ12,3′4′δ1′2′,34

)
.

(3.37)

Here, the operator Si′ω′
1,j

′ω′
2,k

′ω′
3,l

′ω′
4; lω4,kω3,jω2,iω1

antisymmetrizes the two
fermionic sectors separated by the semicolon. Following the procedure pre-
sented in chapter 10 of Ref. [39], we can now write down the flow equations
for the irreducible vertices. We note that the irreducible two point vertex
coincides with the self energy and hence, as we argued in Sec. 3.1, is diagonal
in the mode-indices to leading order in 1/N ,

Γ
(2)
Λ,i′i(ω

′, ω) = δi′,iδω′,ωΣΛ,i(ω) +O (1/N) . (3.38)

We recall that this also means that the full propagator is diagonal, and
obtain the flow equation for the self energy,

∂ΛΣΛ,i(ω1) =
1

β N

∑
j

∑
ω

ĠΛ,j(ω) Γ
(4)
Λ,ij,ji(ω1, ω; ω, ω1) , (3.39)

which is exact in the thermodynamic limit N → ∞. Here, we introduced
the diagonal single scale propagator [39] defined by

ĠΛ,j(ω) ≡ −GΛ,j(ω)
[
∂ΛG

−1
0,Λ,j(ω)

]
GΛ,j(ω) , (3.40)

where G−1
0,Λ,j is the inverse of the flowing free propagator. A graphical repre-

sentation of the flow equation for the two-point vertex is shown in Fig. 3.2.
The flow equation for the four-point vertex is given by

∂ΛΓ
(4)
Λ,i′j′,ji(ω

′
1, ω

′
2; ω2, ω1) = f (1) + f (2a) + f (2b) , (3.41)

where we abbreviated

f (1) =
1

β N

∑
k

∑
ω

ĠΛ,k(ω) Γ
(6)
Λ,i′j′k,kji(ω

′
1, ω

′
2, ω; ω, ω2, ω1) , (3.42)
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2 = 4

Figure 3.2: Diagrammatic representation of the
flow equation (3.39) for the irreducible two-point
vertex. The dot represents the derivative with re-
spect to the scale Λ, the directed lines represent
the full flowing propagators, and the slashed line
represents the single-scale propagator defined in
Eq. (3.40).

f (2a) = − 1

β2N2

∑
k,k′

∑
ω,ω′

ĠΛ,k(ω)GΛ,k′(ω
′)

× Γ
(4)
Λ,i′j′,k′k(ω

′
1, ω

′
2; ω

′, ω) Γ
(4)
Λ,kk′,ij(ω, ω

′; ω2, ω1) , (3.43)

f (2b) =
1

β2N2

∑
k,k′

∑
ω,ω′

[
ĠΛ,k(ω)GΛ,k′(−ω′) +GΛ,k(ω) ĠΛ,k′(−ω′)

]
×
[
Γ
(4)
Λ,i′k′,ki(ω

′
1, ω

′; ω, ω1) Γ
(4)
Λ,j′k,k′j(ω

′
2, ω; ω

′, ω2)

− Γ
(4)
Λ,i′k,k′j(ω

′
1, ω; ω

′, ω2) Γ
(4)
Λ,j′k′,k′i(ω

′
2, ω

′; ω, ω′
1)

]
. (3.44)

A diagrammatic representation of the flow equation for the four-point ver-
tex is shown in Fig. 3.3. In the thermodynamic limit N → ∞, only f (1)

contributes to the flow equation of the four-point vertex. To show this, we
anticipate that to leading order in 1/N , the incoming mode-indices of any
vertex coincide with the outgoing indices (up to permutation). Then, the
sum over the mode indices in f (2a) given in Eq. (3.43) collapses to 2 = O(1)
terms, so that the whole expression is subleading, f (2a) = O(1/N2). In
f (2b) given in Eq. (3.43), only one of the two sums collapses, and the whole
expression is still subleading, f (2b) = O(1/N). By the same argument, one
finds that the only leading contribution to the flow equation of any n-point
vertex is given by the (n+2)-point vertex with two legs joined by the single
scale propagator. Hence, the flow equations in the limit N → ∞ for the
four-point and the six-point vertex are given by

∂ΛΓ
(4)
Λ,i′j′,ji(ω

′
1, ω

′
2; ω2, ω1) =

1

β N

∑
k

∑
ω

ĠΛ,k(ω) Γ
(6)
Λ,i′j′k,kji(ω

′
1, ω

′
2, ω; ω, ω2, ω1) , (3.45)

∂ΛΓ
(6)
Λ,i′k′j′,kji(ω

′
1, ω

′
2, ω

′
3; ω3, ω2, ω1) =

1

β N

∑
l

∑
ω

ĠΛ,l(ω) Γ
(8)
Λ,i′j′k′l,lkji(ω

′
1, ω

′
2, ω

′
3, ω; ω, ω3, ω2, ω1) . (3.46)
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4 = 6

44 44

44

=

Figure 3.3: Diagrammatic representation of the flow equa-
tion (3.41) for the irreducible two-point vertex. the first diagram
on the right hand side of flow equation represents f (1) given in
Eq. (3.42), the second diagram represents f (2a) given in Eq. (3.43),
and the last two diagrams represent f (2b) given in Eq. (3.44). The
’×’ symbol sums up the two diagrams where one of the enclosing
propagators is replaced by a single scale propagator, as indicated
in the last row.

6 = 8

2 = 4

4 = 6

Figure 3.4: Diagram-
matic representations of
the FRG flow equations
to leading order in
1/N for the two-point,
four-point, and six-point
vertices as given in
Eqs. (3.39), (3.45),
and (3.46) respectively.

We show the diagrammatic representation of the flow equations for the two-
point, four-point, and six-point vertices in Fig 3.4.

Next, we want to justify our anticipation that only such vertices are
generated where the outgoing indices match the incoming indices. We first
note that this is trivially satisfied at the beginning of the flow, since in the
microscopic action the only non-vanishing vertex is the eight-point vertex
given by Eq. (3.37). Then, to leading order in 1/N , only the six-point vertex
is generated initially. From Fig. 3.4c, it is clear that the outgoing indices
of the generated six-point vertex match the incoming indices. The same
argument can now successively be repeated for the flow equations of the
four- and two-point vertices, leading to the conclusion that our anticipation
was correct. One consequence is that the eight-point vertex does not flow
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at all,

∂ΛΓ
(8)
Λ = 0 , (3.47)

where we omitted the mode-indices and frequencies for the sake of brevity.

3.3.2 Mode average

Because to leading order in 1/N , the incoming and the outgoing mode-
indices of all vertices match, we do not need to consider the flow equations
in their full generality. We only consider those parts of the flow equations
where all incoming and outgoing mode-indices of the vertices match. Fur-
thermore, we consider only those flow equations which contribute to the
flowing self energy. This means that we can set all primed frequencies in the
flow equations (3.39), (3.45) and (3.46) equal to the unprimed frequencies.
Moreover, as a consequence of the self-averaging property of the SYK-model,
all propagators, including the single scale propagator, are independent of the
mode-index,

G0,Λ,i(ω) =G0,Λ(ω) , (3.48a)

GΛ,i(ω) =GΛ(ω) , (3.48b)

ĠΛ,i(ω) =ĠΛ(ω) ≡ −G2
Λ(ω) ∂ΛG

−1
0,Λ(ω) . (3.48c)

The sum over the mode-indices in the flow equations (3.39), (3.45) and (3.46)
then only acts on the vertices. This sum can be identified as the average
vertices

Γ
(2k)
Λ (ω1, . . . , ωk) ≡

1

Nk

∑
i1...ik

Γ
(2k)
Λ,i1...ik,ik...i1

(ω1, . . . , ωk;ωk, . . . , ω1) . (3.49)

With these considerations, the flow equations can written as

∂ΛΣΛ(ω1) =
1

β

∑
ω

ĠΛ(ω) Γ
(4)
Λ (ω1, ω) , (3.50a)

∂ΛΓ
(4)
Λ (ω1, ω2) =

1

β

∑
ω

ĠΛ(ω) Γ
(6)
Λ (ω1, ω2, ω) , (3.50b)

∂ΛΓ
(6)
Λ (ω1, ω2, ω3) =

1

β

∑
ω

ĠΛ(ω) Γ
(8)
0 (ω1, ω2, ω3, ω) . (3.50c)

To solve this system of coupled differential equations, we need an explicit

expression for the average eight-point vertex Γ
(8)
0 (ω1, ω2, ω3, ω4). This can

be found by applying the vertex average (3.49) to the full eight-point vertex
given in Eq (3.37), which results in

Γ
(8)
0 (ω1, ω2, ω3, ω4) =− 1

4!
Sω1,ω2,ω3,ω4

(
(4!)2

8
2J2βδ12,34

)
= −2J2β (δ12,34 + δ13,24 + δ14,23) . (3.51)
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3.3.3 Zero temperature limit

At zero temperature, the Matsubara sums become integrals,

1

β

∑
ω

=

∫ ∞

−∞

dω

2π
, (3.52)

and the averaged flow equations read

∂ΛΣΛ(ω1) =

∫
dω2

2π
ĠΛ(ω2) Γ

(4)
Λ (ω1, ω2) , (3.53a)

∂ΛΓ
(4)
Λ (ω1, ω2) =

∫
dω3

2π
ĠΛ(ω3) Γ

(6)
Λ (ω1, ω2, ω3) , (3.53b)

∂ΛΓ
(6)
Λ (ω1, ω2, ω3) =

∫
dω4

2π
ĠΛ(ω4) Γ

(8)
0 (ω1, ω2, ω3, ω4) . (3.53c)

Noting that in the zero temperature limit βδ12,34 → 2π δ(ω1 + ω2 − ω3 −
ω3), the integral in the flow equation for the six-point vertex can easily be
evaluated by using the explicit expression (3.51) for the eight-point vertex,
giving

∂ΛΓ
(6)
Λ (ω1, ω2, ω3) = −2J2

[
ĠΛ(ω1 + ω2 − ω3) + ĠΛ(ω1 − ω2 + ω3)

+ ĠΛ(−ω1 + ω2 + ω3)

]
. (3.54)

The system of flow equations for the average two-, four- and six-point ver-
tices can be closed by noting that the single scale propagator is determined
by the self energy through Eq. (3.48c) and the Dyson equation,

G−1
Λ (ω) = G−1

0,Λ(ω)− ΣΛ(ω) . (3.55)

However, due to the many degrees of freedom represented by the Matsubara
frequencies, a straightforward analytical solution is impossible. Therefore,
we will resort to the Katanin substitution and a series of low frequency
expansions to simplify the flow equations.

3.3.4 Katanin substitution

We apply the Katanin substitution [83] on the flow equation (3.54) for the
six-point vertex. This amounts to the replacement of the single scale prop-
agator by a simple derivative of the full propagator,

ĠΛ(ω) → ∂ΛGΛ(ω) . (3.56)

With the Katanin substitution, the flow equation (3.54) for the six-point
vertex can directly be integrated to

Γ
(6)
Λ (ω1, ω2, ω3) = −2J2

[
GΛ(ω1 + ω2 − ω3) +GΛ(ω1 − ω2 + ω3)

+GΛ(−ω1 + ω2 + ω3)
]
. (3.57)
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With this result, the flow equation (3.53b) for the 4-vertex reads

∂ΛΓ
(4)
Λ (ω1, ω2) = −2J2

∫
dω3

2π
ĠΛ(ω3)

[
GΛ(ω1 + ω2 − ω3)

+GΛ(ω1 − ω2 + ω3) +GΛ(−ω1 + ω2 + ω3)
]
. (3.58)

To simplify our notation, we define the generalized susceptibilities

χΛ(ω) =

∫
dω3

2π
GΛ(ω3)GΛ(ω − ω3) , (3.59a)

ΠΛ(ω) =

∫
dω3

2π
GΛ(ω3)GΛ(ω3 − ω) , (3.59b)

and their single scale derivatives

χ̇Λ(ω) ≡
∫
dω3

2π

[
ĠΛ(ω3)GΛ(ω − ω3) +GΛ(ω3) ĠΛ(ω − ω3)

]
=2

∫
dω3

2π
ĠΛ(ω3)GΛ(ω − ω3) , (3.60a)

Π̇Λ(ω) ≡
∫
dω3

2π

[
ĠΛ(ω3)GΛ(ω3 − ω) +GΛ(ω3) ĠΛ(ω3 − ω)

]
=

∫
dω3

2π
ĠΛ(ω3) [GΛ(ω3 − ω) +GΛ(ω3 + ω)] . (3.60b)

With these expressions, we rewrite the flow equation (3.58) in the compact
form

∂ΛΓ
(4)
Λ (ω1, ω2) = −J2

[
χ̇Λ(ω1 + ω2) + 2Π̇Λ(ω1 − ω2)

]
. (3.61)

3.3.5 Validity of the Katanin substitution

The validity of the Katanin substitution may be questioned, as it is indeed
difficult to justify a priori. We note however, that the known exact solu-
tion (3.6) for the self energy can be recovered by repeated applications of
the Katanin substitution. To see this, we apply the Katanin substitution to
the flow equation (3.58) of the four-point vertex to find

∂ΛΓ
(4)
Λ (ω1, ω2) = −2J2

∫
dω3

2π
∂ΛGΛ(ω3)

[
GΛ(ω1 + ω2 − ω3)

+GΛ(ω1 − ω2 + ω3) +GΛ(−ω1 + ω2 + ω3)
]
. (3.62)
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We symmetrize the frequency arguments by shifts of the integration variable
ω3 and obtain

∂ΛΓ
(4)
Λ (ω1,ω2) = −J2

∫
dω3

2π

×
[
∂ΛGΛ(ω3)GΛ(ω1 + ω2 − ω3) + ∂ΛGΛ(ω1 + ω2 − ω3)GΛ(ω3)

∂ΛGΛ(ω3)GΛ(ω1 − ω2 + ω3) + ∂ΛGΛ(−ω1 + ω2 + ω3)GΛ(ω3)

∂ΛGΛ(ω3)GΛ(−ω1 + ω2 + ω3) + ∂ΛGΛ(ω1 − ω2 + ω3)GΛ(ω3)

]
,

(3.63)

which can be simplified with the reversed chain rule of differentiation,

∂ΛΓ
(4)
Λ (ω1, ω2) = −J2

∫
dω3

2π
∂Λ

[
GΛ(ω3)GΛ(ω1 + ω2 − ω3)

+GΛ(ω3)GΛ(ω1 − ω2 + ω3) +GΛ(ω3)GΛ(−ω1 + ω2 + ω3)

]
. (3.64)

Interchanging the order of the integration and differentiation, the four-point
vertex can then by integrated directly, giving

Γ
(4)
Λ (ω1, ω2) = −J2

∫
dω3

2π
GΛ(ω3)

[
GΛ(ω1 + ω2 − ω3)

+GΛ(ω1 − ω2 + ω3) +GΛ(−ω1 + ω2 + ω3)

]
. (3.65)

The four-point vertex can then be substituted in the flow equation (3.53a)
of the self energy, which, after an additional Katanin substitution, reads

∂ΛΣΛ(ω1) = −J2

∫
dω2 dω3

(2π)2
∂ΛGΛ(ω2)GΛ(ω3)

[
GΛ(ω1 + ω2 − ω3)

+GΛ(ω1 − ω2 + ω3) +GΛ(−ω1 + ω2 + ω3)

]
. (3.66)

In order to symmetrize the frequency arguments in this expression, we swap
the variable names ω2 ↔ ω3 in the second term and shift the integration
variable ω2 → ω2 + ω1 − ω3 in the third term, which results in

∂ΛΣΛ(ω1) = −J2

∫
dω2 dω3

(2π)2

[
∂ΛGΛ(ω2)GΛ(ω3)GΛ(ω1 + ω2 − ω3)

GΛ(ω2) ∂ΛGΛ(ω3)GΛ(ω1 + ω2 − ω3)

GΛ(ω2)GΛ(ω3) ∂ΛGΛ(ω1 + ω2 − ω3)

]
.

(3.67)
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Here, we identify again the reverse chain rule of differentiation. We swap
the differentiation with the integral, and integrate the self energy to get

ΣΛ(ω1) = −J2

∫
dω2 dω3

(2π)2
GΛ(ω2)GΛ(ω3)GΛ(ω1 + ω2 − ω3) . (3.68)

After Fourier transformation to imaginary time, this is exactly the solution
given in Eq. (3.6). Hence, it seems plausible that the Katanin substitution
preserves the underlying physics. However, one of our goals is to find the
anomalous dimension during the flow of the SYK model. As will become
clear later, the anomalous dimension is determined by the frequency depen-
dence of the flowing four-point vertex. Thus, in what follows, we do not
apply the additional Katanin substitutions and work with the flow equa-
tion (3.61) for the four-point vertex.

3.3.6 Frequency expansion of the self energy

In summary, we have to solve the two flow equations for the self energy and
the four-point vertex,

∂ΛΣΛ(ω1) =

∫
dω2

2π
ĠΛ(ω2) Γ

(4)
Λ (ω1, ω2) , (3.69a)

∂ΛΓ
(4)
Λ (ω1, ω2) =− J2

[
χ̇Λ(ω1 + ω2) + 2Π̇Λ(ω1 − ω2)

]
, (3.69b)

where χ̇Λ(ω) and Π̇Λ(ω) are given in Eqs. (3.60) and the single scale prop-
agator is given in Eq. (3.48c) and depends on the self energy via the Dyson
equation (3.55).

In order to further reduce the degrees of freedom, we expand the self
energy for small frequencies,

ΣΛ(ω) ≈ ΣΛ(0) + Σ′
Λ(0) iω , (3.70)

where we defined the prime in Σ′
Λ(ω) as derivative with respect to iω. For

later convenience, we express the frequency dependence in terms of the wave
function renormalization factor ZΛ [39] as

Σ′
Λ(0) = 1− 1

ZΛ
. (3.71)

Furthermore, we define the flowing chemical potential µΛ as

µΛ = ZΛ [µ− ΣΛ(0)] . (3.72)

The motivation is that we will be able to identify µΛ as the effective chemical
potential of the flowing action later on. Using the chain rule of differentia-
tion, the flow equation for µΛ can be written as

∂ΛµΛ = [µ− ΣΛ(0)] ∂ΛZΛ − ZΛ ∂ΛΣΛ(0) . (3.73)
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In this expression, we identify the anomalous dimension ηΛ in the form [39]

∂ΛZΛ =
ZΛ

Λ
ηΛ . (3.74)

Additionally, we substitute the flow equation (3.69a) for ∂ΛΣΛ(0) and ap-

proximate Γ
(4)
Λ to be independent of frequency, and obtain a flow equation

for the effective chemical potential,

∂ΛµΛ =
ZΛ

Λ
ηΛ − ZΛΓ

(4)
Λ

∫
dω

2π
ĠΛ(ω) . (3.75)

The flow equation for the static part Γ
(4)
Λ of the flowing 4-vertex can be

found by setting the frequencies in the flow equation (3.69b) to zero, so that
we find

∂ΛΓ
(4)
Λ = −J2

[
χ̇Λ(0) + 2 Π̇Λ(0)

]
. (3.76)

Note that here, we neglected the frequency dependence of the four-point

vertex Γ
(4)
Λ to obtain a flow equation for µΛ. As we will see later, it will

be crucial to keep the frequency dependence of Γ
(4)
Λ to find the anomalous

dimension ηΛ, which then by Eq. (3.74) determines the flow of ZΛ and hence
the leading low frequency dependence of the self energy.

3.4 Sharp cutoff

To solve the remaining simplified flow equations, we need to specify the
artificial scale dependence of the free propagator G0,Λ(ω). We recall from
Sec. 1.2.1 that it has to be chosen such that low frequency modes are sup-
pressed while high frequency modes have to coincide with the free propaga-
tor of the SYK model. We employ the simplest way to define such a scale
dependence, namely a sharp cutoff of the form

G0,Λ(ω) =
Θ(|ω| − Λ)

µ+ iω

=
Θ(ω − Λ) + Θ(−ω − Λ)

µ+ iω
, (3.77)

which simply cuts off all modes below the energy scale Λ.

3.4.1 Propagators

With the expression (3.77) for the flowing free propagator, we can use the
Dyson equation (3.55) to find an expression for the full flowing propagator,

GΛ(ω) =
[
G−1

0,Λ(ω)− ΣΛ(ω)
]−1

=
G0,Λ(ω)

1−G0,Λ(ω) ΣΛ(ω)

=

Θ(|ω|−Λ)
µ+iω

1− Θ(|ω|−Λ)ΣΛ(ω)
µ+iω

=
Θ(|ω| − Λ)

µ+ iω −Θ(|ω| − Λ)ΣΛ(ω)
. (3.78)
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Inserting the low frequency expansion (3.70) for the self energy, we find

GΛ(ω) ≈
ZΛΘ(|ω| − Λ)

µΛ + iω
, (3.79)

where ZΛ and µΛ were defined in Eqs. (3.71) and (3.72). The single scale
propagator (3.40) can be written as

ĠΛ(ω) =−G2
Λ(ω) ∂ΛG

−1
0,Λ(ω)

=
∂ΛG0,Λ(ω)

[1−G0,Λ(ω) ΣΛ(ω)]
2 . (3.80)

We evaluate the derivative of the free propagator (3.77) with respect to the
scale Λ as

∂ΛG0,Λ(ω) = −δ(ω − Λ) + δ(ω + Λ)

µ+ iω
, (3.81)

where we used ∂ΛΘ(ω − Λ) = −δ(ω − Λ) and ∂ΛΘ(−ω − Λ) = −δ(ω + Λ).
Substitution in Eq. (3.80) then leads to

ĠΛ(ω) =− δ(ω − Λ) + δ(ω + Λ)

(µ+ iω)
(
1− Θ(ω−Λ)+Θ(−ω−Λ)

µ+iω ΣΛ(ω)
)2

=− (µ+ iω) δ(ω − Λ)

[µ+ iω −Θ(ω − Λ)ΣΛ(ω)]
2 − (µ+ iω) δ(ω + Λ)

[µ+ iω −Θ(ω + Λ)ΣΛ(ω)]
2 .

(3.82)

To evaluate the combinations of Dirac-deltas and Heaviside step functions,
we use the Morris lemma [39, 43], which can be expressed as

δ(x) f(Θ(x)) = δ(x)

∫ 1

0
dt f(t) . (3.83)

Applied to Eq. (3.82), this results in

ĠΛ(ω) = −δ(ω − Λ) + δ(ω + Λ)

µ+ iω − ΣΛ(ω)
, (3.84)

where we can substitute again the low frequency expansion (3.70) of the self
energy to obtain

ĠΛ(ω) ≈ − ZΛ

µΛ + iω
[δ(ω − Λ) + δ(ω + Λ)] . (3.85)
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3.4.2 Generalized susceptibilities

Next, we evaluate the generalized susceptibilities given in Eqs. (3.60). In-
serting the explicit expressions for the low frequency propagator (3.79) and
the single scale propagator (3.82) in Eq. (3.60a) yields

χ̇Λ(ω) =− 2

∫
dω3

2π

ZΛ [δ(ω3 − Λ) + δ(ω3 + Λ)]

µΛ + iω3

ZΛΘ(|ω − ω3| − Λ)

µΛ + i(ω − ω3)

=− 1

π

ZΛ

µΛ + iΛ

ZΛ[Θ(−ω) + Θ(ω − 2Λ)]

µΛ + i(ω − Λ)

− 1

π

ZΛ

µΛ − iΛ

ZΛ[Θ(ω) + Θ(−ω − 2Λ)]

µΛ + i(ω + Λ)
. (3.86)

Here, we used

Θ(|ω − Λ| − Λ) = Θ(−ω) + Θ(ω − 2Λ) , (3.87)

Θ(|ω + Λ| − Λ) = Θ(ω) + Θ(−ω − 2Λ) . (3.88)

Defining σω ≡ signω, we simplify the expression (3.86) to

χ̇Λ(ω) = −Z
2
Λ

π

[
1

(µΛ − iσωΛ)(µΛ + iω + iσωΛ)

+
Θ(|ω| − 2Λ)

(µΛ + iσωΛ)(µΛ + iω − iσωΛ)

]
. (3.89a)

The other generalized susceptibility, Π̇Λ(ω) given in Eq. (3.60b), can be
evaluated analogously with the result

Π̇Λ(ω) = −Z
2
Λ

π
Re

{
1

(µΛ + iΛ)(µΛ + iΛ + i|ω|)

+
Θ(|ω| − 2Λ)

(µΛ + iΛ)(µΛ + iΛ− i|ω|)

}
. (3.89b)

3.4.3 Sharp cutoff flow equations

We wish to find the flow equations for the chemical potential µΛ and the

static part Γ
(4)
Λ of the two-point interaction. Therefore, we substitute the

single scale propagator with sharp cutoff given in Eq. (3.85) into the flow
equation (3.75) for µΛ. This amounts to evaluating a trivial frequency inte-
gral over two Dirac-deltas and results in

∂ΛµΛ =
µΛ
Λ
ηΛ +

Z2
Λ

2π

[
1

µΛ + iΛ
+

1

µΛ − iΛ

]
Γ
(4)
Λ

=
µΛ
Λ
ηΛ +

Z2
Λ

π

µΛ
µ2Λ + Λ2

Γ
(4)
Λ . (3.90)
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To find the flow equation for Γ
(4)
Λ , we insert the generalized susceptibilities

χ̇Λ(ω) and Π̇Λ(ω) given in Eqs. (3.89) in the flow equation (3.76). Doing so,
we need to evaluate the susceptibilities χ̇Λ(ω) and Π̇Λ(ω) at zero frequency.
Note that the expression (3.89a) for χ̇Λ(ω) includes a sign function in the
denominators, which is discontinuous at ω = 0. However, the zero frequency
limit of χ̇Λ(ω) is the same from above and below, giving

χ̇Λ(0) =− Z2
Λ

π

1

(µΛ − iΛ)(µΛ + iΛ)
, (3.91a)

Π̇Λ(0) =− Z2
Λ

π
Re

{
1

(µΛ + iΛ)2

}
. (3.91b)

This results in the flow equation

∂ΛΓ
(4)
Λ =

J2Z2
Λ

π

[
1

(µΛ − iΛ)(µΛ + iΛ)
+ 2Re

{
1

(µΛ + iΛ)2

}]
=
J2Z2

Λ

π

4

µ2Λ + Λ2

[
3

4
− Λ2

µ2Λ + Λ2

]
. (3.92)

3.4.4 Rescaled flow equations

First, we perform a scaling analysis of the action to find the scaling laws for
the coupling constants. The quadratic part of the action at zero temperature
in the thermodynamic limit can be written as

S2,Λ[c̄, c] = −
∑
i

∫
dω

2π
[(iω + µ)− ΣΛ(ω)] c̄i(ω)ci(ω) . (3.93)

We approximate the self energy with the low frequency expansion introduced
in Eq. (3.70),

ΣΛ(ω) ≈ ΣΛ(0) +

(
1− 1

ZΛ

)
iω . (3.94)

With this approximation, the quadratic action reads

S2,Λ[c̄, c] = −
∑
i

∫
dω

2π

[
iω

ZΛ
+ (µ− ΣΛ(0))

]
c̄i(ω)ci(ω) . (3.95)

Within the FRG, the Wilsonian rescaling can be incorporated by expressing
all couplings in units of the scale Λ [39]. We therfore define the dimensionless
frequencies

ω̃ =
ω

Λ
, (3.96)

and rewrite the quadratic action as

S2,Λ[c̄, c] = −
∑
i

∫
dω̃

2π

[
iω̃ +

µΛ
Λ

] Λ2

ZΛ
c̄i(Λω̃)ci(Λω̃) , (3.97)
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where we identified the flowing chemical potential µΛ as given in Eq. (3.72).
We notice that by rescaling the fields,

Λ√
ZΛ

ci(Λω̃) ≡ c̃i(ω̃) ,
Λ√
ZΛ

c̄i(Λω̃) ≡ ˜̄ci(ω̃) , (3.98)

and the chemical potential,

µ̃Λ ≡ µΛ
Λ

, (3.99)

we recover the bare form of the quadratic action in terms of dimensionless
variables,

S2,Λ[˜̄c, c̃] = −
∑
i

∫
dω̃

2π
(iω̃ + µ̃Λ) ˜̄ci(ω̃)c̃i(ω̃) . (3.100)

At this point, it becomes clear why ZΛ is called the wave function renor-
malization factor. A simple dimensional analysis would only yield a renor-
malization of the fields by a factor of Λ, and ZΛ can be understood as an
additional non-trivial contribution. The presence of ZΛ in the rescaled fields
in Eq. (3.98) thus leads to an anomalous contribution to the overall scaling
dimension of the fields. We already introduced this anomalous dimension
ηΛ in Eq. (3.74).

To proceed, we recall that the bare vertices of the Wilsonian action
for frequencies below the cutoff scale coincide with the irreducible vertices
generated by the FRG. Hence, we write the 2k-th order Wilsonian action as

S2k,Λ[c̄, c] = − 1

(k!)2Nk

∑
i1...ik

∑
i′1...i

′
k

∫
dω1 . . . dωk dω

′
k . . . dω

′
1

(2π)2k

× 2πδ(ω1 + · · ·+ ωk − ω′
k · · · − ω′

1)

× Γ
(2k)
Λ,i1...iki

′
k...i

′
1
(ω1 . . . ωn;ω

′
k . . . ω1)

× c̄i1(ω1) . . . c̄ik(ωk)cik(ωk) . . . ci1(ω1) . (3.101)

In order to express this in dimensionless form as

S2k,Λ[¯̃c, c̃] = − 1

(k!)2Nk

∑
i1...ik

∑
i′1...i

′
k

∫
dω̃1 . . . dω̃k dω̃

′
k . . . dω̃

′
1

(2π)2k

× 2πδ(ω̃1 + · · ·+ ω̃k − ω̃′
k · · · − ω̃′

1)

× Γ̃
(2k)
Λ,i1...iki

′
k...i

′
1
(ω̃1 . . . ω̃n; ω̃

′
k . . . ω̃1)

× ¯̃ci1(ω̃1) . . . ¯̃cik(ω̃k)˜̃cik(ω̃k) . . . ˜̃ci1(ω̃1) , (3.102)

we need to rescale the vertices as

Γ̃
(2k)
Λ,i1...iki

′
k...i

′
1
(ω̃1 . . . ω̃n; ω̃

′
k . . . ω̃1)

≡ Zk
Λ

Λ
Γ
(2k)
Λ,i1...iki

′
k...i

′
1
(Λω̃1 . . .Λω̃n; Λω̃

′
k . . .Λω̃1) . (3.103)
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To consider the limit Λ → 0, it is practical to introduce the logarithmic flow
parameter

l = −ln(Λ/Λ0) . (3.104)

With the preceeding scaling analysis in mind, we thus define the rescaled
chemical potential and the rescaled four-point vertex in terms of the new
flow parameter l as

µl =
µΛ
Λ

∣∣∣∣
Λ=Λ0e−l

, (3.105)

ul =
Z2
Λ

Λ
Γ
(4)
Λ

∣∣∣∣
Λ=Λ0e−l

. (3.106)

Note that ZΛ and ηΛ are dimensionless and we do not rescale them. We
therefore define

Zl = ZΛ

∣∣
Λ=Λ0e−l . (3.107)

ηl = ηΛ
∣∣
Λ=Λ0e−l . (3.108)

Using ∂l = −Λ∂Λ and the chain rule of differentiation, we find the flow
equations

∂lµl =µl − ∂ΛµΛ

=(1− ηl)µl −
1

π

µl
µ2l + 1

ul , (3.109)

and

∂lul =ul − 2ZΛΓ
(4)
Λ ∂ΛZΛ − Z2

Λ∂Λγ
(4)
Λ

=(1− 2ηl)ul +
4

π

J2Z4
Λ

Λ2

1

µ2l + 1

(
1

µ2l + 1
− 3

4

)
=(1− 2ηl)ul +

4

π

gl
µ2l + 1

(
1

µ2l + 1
− 3

4

)
, (3.110)

where we inserted the flow equations of the dimensionful couplings µΛ and

Γ
(4)
Λ given in Eqs. (3.90) and (3.92) and identified the anomalous dimension
ηl as given in Eq. (3.74). In the last line of Eq. (3.110) we defined a new
flowing variable

gl ≡
J2Z4

Λ

Λ2
, (3.111)

which has the flow equation

∂lgl = 2(1− 2ηl)gl . (3.112)

This auxiliary variable encodes the leading frequency dependence of the
flowing self energy by virtue of the definition of ZΛ given in Eq. (3.71).
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3.5 Discontinuity fixed point

We have not yet analyzed the flow of the anomalous dimension ηl. Neverthe-
less, we already notice that the flow equations (3.109), (3.110) and (3.112)
for the couplings µl, ul and gl simplify in the case η = 1/2 to

∂lµl =
1

2
µl −

1

π

µlul
µ2l + 1

, (3.113a)

∂lul =
4

π

gl
µ2l + 1

(
1

µ2l + 1
− 3

4

)
, (3.113b)

∂lgl =0 . (3.113c)

This would imply a fixed point at

µl = µ∗ ≡
1√
3
, (3.114a)

ul = u∗ ≡
2π

3
. (3.114b)

We will show in this section that this fixed point describes the discontinuous
phase transition between the IV and the nFL phase discussed in Sec. 1.2.2.
Adapting the terminology put forward in Ref. [84], we call this fixed point
discontinuity fixed point (DFP). We will postpone the more technical calcu-
lations until the next section, where we show that the anomalous dimension
is indeed given by η = 1/2 for the above fixed point. A more detailed anal-
ysis of the anomalous dimension is also needed to find the fixed point value
of the coupling gl, which we will determine in the next section as g∗ ≈ 8.52.

In this section, we investigate the RG flow in the vicinity of the DFP.
We start by plotting the RG flow given by the flow equations (3.113) in
Fig. 3.5, assuming that ηl = 1/2 and gl = g∗ are fixed. This is of course
an approximation because ηl and gl are flowing themselves. However, close
enough to the fixed point we expect this approximation to be sufficient for
a qualitative discussion. We see that in the µl, ul coupling space, the DFP
has one attractive (irrelevant) and one repulsive (relevant) direction. This
is indicative of a phase transition: the coupling space is divided into two
regions. For initial couplings on the left side of the dashed line in Fig. 3.5
(small chemical potential), the system flows towards the top left corner
during the RG flow. We will argue later that this corresponds to the nFL
phase described by the exact solution (3.6). For initial couplings to the right
of the dashed line in Fig. 3.5 (large chemical potential), the RG flow leads
to the lower right corner, which corresponds to the IV phase. Thus, the
DFP describes a phase transition between the nFL and the IV phase which
is controlled by the chemical potential, and it seems likely that this is the
discontinuous phase transition discussed in Sec. 1.2.2.

To verify this claim, we analyze the scaling behavior near the phase
transition. Probably the most celebrated feature of the Wilsonian RG is
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Figure 3.5: RG flow
near the DFP result-
ing from the flow equa-
tions (3.113). The
dashed line shows the
separatrix wich divides
the parameter space into
nFL and IV phase. The
star on the separatrix
marks the DFP.

its capability to derive the scaling laws near phase transitions. The scaling
exponents can be computed from the speed of the RG flow λ in the vicinity
the corresponding fixed point [33, 39]. In our case, the scaling law for the
singular part of the grand canonical potential can be written as

Ωsing(µ− µ∗) = e−lΩsing

(
eλl(µ− µ∗)

)
. (3.115)

We can find a power law for Ωsing(µ− µ∗) by choosing the flow parameter l
in Eq. (3.115) such that

eλl+(µ− µ∗) !
= δ+ if µ > µ∗ , (3.116a)

eλl−(µ− µ∗) !
= δ− if µ < µ∗ , (3.116b)

for some arbitrary energy differences δ+ > 0 above and δ− < 0 below the
phase transition. Solving these conditions for el+ and el− and substituting
them in the scaling law (3.115) then leads to the power law

Ωsing(µ− µ∗) =

(
µ− µ∗
δ±

) 1
λ

Ωsing(δ±) , (3.117)

where the (+) sign has to be taken for values µ > µ∗ and the (−) sign
for µ < µ∗. Note that the expression in the parenthesis is always positive
because the signs of (µ − µ∗) and δ± are the same. The contribution of
Ωsing(µ− µ∗) to the fermionic occupation number n is then given by

nsign =
∂Ωsing

∂(µ− µ∗)
=

1

λ

(
µ− µ∗
δ±

) 1
λ
−1

Ωsing(δ±) . (3.118)

This can be written in the more convenient form

nsign = B±|µ− µ∗|
1
λ
−1, (3.119)
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where we defined the constants

B± =
1

λ

(±1

δ±

) 1
λ
−1

Ωsing(δ±) . (3.120)

We see from Eq. (3.119), that a scaling exponent of λ = 1 would result in a
discontinuity in the occupation number of magnitude

∆n = B+ −B− . (3.121)

Note that this is also consistent with the discussion in Refs. [84, 85], where
it is argued that a scaling exponent equal to the rescaled spatial dimension
results in a discontinuous phase transition. In our case, we have no spatial
degrees of freedom but rescale the frequencies. Since in Euclidean field
theory the conjugate to the frequencies, the complex time parameter, is
effectively the same as a spatial dimension, we expect to find a scaling
exponent of λ = 1 at the DFP.

To find a numerical value for our scaling exponent λ, we linearize the
flow equations (3.113) in the vicinity of the DFP by introducing the small
deviations

δµl = µl − µ∗ , (3.122a)

δul = ul − u∗ . (3.122b)

The linearized flow equations of the deviations can be found by taking vari-
ational derivatives of the flow equations (3.113), leading to

∂l δµl =
δ (∂lµl)

δµl

∣∣∣∣
∗
δµl +

δ (∂lµl)

δul

∣∣∣∣
∗
δul , (3.123a)

∂l δul =
δ (∂lul)

δµl

∣∣∣∣
∗
δµl +

δ (∂lul)

δul

∣∣∣∣
∗
δul , (3.123b)

where the subscript |∗ indicates that the variational derivative is evaluated
at the DFP. After evaluating the variational derivatives, we write the flow
equations for the deviations (3.123) in matrix form as

∂l

(
δµl
δul

)
=

(
1
4 −

√
3

4π

−9
√
3

8π g∗ 0

)(
δµl
δul

)
. (3.124)

To obtain the scaling exponents, we need to find the eigenvalues and eigen-
vectors of the above matrix. To avoid the distinction between left and right
eigenvectors, we first symmetrize the matrix by the transformation

δul = 3

√
g∗
2
δyl , (3.125)
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which leads to

∂l

(
δµl
δyl

)
=

(
1
4 −a
−a 0

)(
δµl
δyl

)
, (3.126)

with

a =
3

4π

√
3g∗
2

. (3.127)

The eigenvalues λ± and eigenvectors v± are then given by

λ± =
1

8
±
√
a2 +

1

64
, (3.128a)

v± =

(
−λ±

a
1

)
. (3.128b)

With the numerical value g∗ ≈ 8.52 evaluated in the next section, this leads
to

λ+ ≈+ 0.987 , (3.129a)

λ− ≈− 0.737 . (3.129b)

We see that the relevant direction v+ is proportional to δµ = (µ − µ∗)
and hence determines the scaling behaviour of the free energy with respect
to the chemical potential. Moreover, the numerical value of the scaling
exponent λ+ is reasonably close to 1, confirming that the DFP does indeed
describe the discontinuous phase transition between the nFL and the IV
phase. The numerical error in the scaling exponent is most likely due to the
approximations used in the next section to calculate the fixed point value
g∗.

3.5.1 Anomalous dimension

In this subsection, we explicitly calculate the anomalous dimension at the
DFP. The anomalous dimension is determined by the linear frequency de-
pendence Σ′

Λ(0) of the self energy given in Eq. (3.71). Taking the Λ-
derivative of Eq. (3.71) leads to

∂ΛΣ
′
Λ(0) =

1

Z2
Λ

∂ΛZΛ

=
1

ΛZΛ
ηΛ , (3.130)

where we used Eq. (3.74) to identify the anomalous dimension in the last
equality. Rearranging the terms and writing Σ′

Λ(0) as a frequency derivative
of the self energy leads to

ηΛ = ΛZΛ∂Λ
∂ΣΛ(ω)

∂(iω)

∣∣∣∣
ω=0

. (3.131)
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Next, we substitute the flow equation (3.53a) for ΣΛ(ω) and get

ηΛ = ΛZΛ

∫
dω2

2π
ĠΛ(ω2)

∂Γ
(4)
Λ (ω1, ω2)

∂(iω1)

∣∣∣∣
ω1=0

. (3.132)

The above expression shows that the frequency dependence of the four-
point vertex determines the anomalous dimension. There are two possible
strategies to deal with this frequency dependence:

1. The frequency derivative of the four-point vertex can be integrated
using the flow equation (3.61) for the four-point vertex and the explicit
expressions for Π̇Λ(ω) and χ̇Λ(ω) given in Eqs. (3.91).

2. The frequency dependencies of the four-point vertex can be expressed
as additional couplings with corresponding flow equations.

It turns out that the second strategy is practical for a numerical evaluation
of flow trajectories, which we will do in Sec. 3.6. In this section, we want
to analyze the anomalous dimension at the DFP analytically, using the first
strategy. We begin by integrating the frequency derivative of the four-point
vertex,

∂Γ
(4)
Λ (ω1, ω2)

∂(iω1)

∣∣∣∣
ω1=0

=
∂

∂(iω1)

[∫ Λ

Λ0

dx ∂xΓ
(4)
x (ω1, ω2)

]
ω1=0

=

∫ Λ

Λ0

dx

[
∂

∂(iω1)
∂xΓ

(4)
x (ω1, ω2)

]
ω1=0

, (3.133)

where we swapped differentiation and integration in the second equality.
Inserting this and the single scale propagator (3.85) into the integral equa-
tion (3.132) for ηΛ, we get

ηΛ = −ΛZ2
Λ

2π

∫ Λ

Λ0

dx

[
1

µΛ + iΛ

∂

∂(iω1)
∂xΓ

(4)
x (ω1,Λ)

+
1

µΛ − iΛ

∂

∂(iω1)
∂xΓ

(4)
x (ω1,−Λ)

]
ω1=0

. (3.134)

Note that the ω2 integration disappeared due to the two Dirac-deltas in
the single scale propagator. Using the expression (3.61) for the flow of the
momentum dependent four-point vertex, we find

∂xΓ
(4)
x (ω1,±Λ) = −J2

[
χ̇x(ω1 ± Λ) + 2Π̇x(ω1 ∓ Λ)

]
. (3.135)

Taking the derivative with respect to ω1 yields

∂

∂(iω1)
∂xΓ

(4)
x (ω1,±Λ)

∣∣∣∣
ω1=0

= −J2
[
χ̇′
x(±Λ) + 2Π̇′

x(∓Λ)
]
, (3.136)
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where we defined

χ̇′
x(ω) ≡

∂χ̇x(ω)

∂(iω)
, (3.137a)

Π̇′
x(ω) ≡

∂Π̇x(ω)

∂(iω)
. (3.137b)

The latter two expressions can be evaluated by taking the derivatives of the
explicit sharp-cutoff expressions for χ̇x(ω) and Π̇x(ω) given in Eqs. (3.89a)
and (3.89b). At ω = ±Λ, they assume the values

χ̇′
x(±Λ) =

Z2
x

π

1

(µx ∓ ix) [µx ± i(Λ + x)]2
, (3.138a)

Π̇′
x(±Λ) =± Z2

x

π
i Im

{
1

(µx + ix) [µx + i(Λ + x)]2

}
. (3.138b)

Before putting everything together, we observe that

χ̇′
x(−Λ) =

(
χ̇′
x(+Λ)

)∗
, (3.139a)

Π̇′
x(−Λ) =

(
Π̇′

x(+Λ)
)∗

, (3.139b)

which by Eq. (3.136) implies

∂

∂(iω1)
∂xΓ

(4)
x (ω1,−Λ)

∣∣∣∣
ω1=0

=

(
∂

∂(iω1)
∂xΓ

(4)
x (ω1,+Λ)

∣∣∣∣
ω1=0

)∗

. (3.140)

This allows us to simplify the expression for the anomalous dimension (3.134)
to

ηΛ = −ΛZ2
Λ

π

∫ Λ

Λ0

dxRe

{
1

µΛ + iΛ

∂

∂(iω1)
∂xΓ

(4)
x (ω1,Λ)

}
ω1=0

. (3.141)

Inserting the flow equation of the frequency derivative of the four-point
vertex (3.136) and subsequently the explicit expressions (3.138) for χ̇′

x(Λ)
and Π̇′

x(−Λ) then results in

ηΛ =
ΛZ2

ΛJ
2

π2

∫ Λ

Λ0

dxZ2
x

[
Re

{
1

(µΛ + iΛ)(µx − ix)(µx + ix+ iΛ)2

}
− 2Re

{
i

µΛ + iΛ
Im

(
1

(µx + ix)(µx + ix+ iΛ)2

)}]
. (3.142)

Next, we employ an approximation for the integral by assuming that the
system has flown to the vicinity of the DFP, where the unrescaled chemical
potential µΛ vanishes and where we set Zx → ZΛ because the integral is
dominated by the region x ≈ Λ ≪ Λ0. This results in the simpler integral

ηΛ = −3
Z4
ΛJ

2

π2

∫ Λ

Λ0

dx
1

x(1 + x)2
, (3.143)
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which can straightforwardly be integrated, giving

ηΛ =
Z4
ΛJ

2

Λ2
c . (3.144)

Here, we neglected the contribution from the lower boundary Λ0 and defined
the numerical constant

c =
3

π2

(
ln 2− 1

2

)
≈ 0.0587 . (3.145)

The anomalous dimension ηΛ is related to the flow of ZΛ by Eq. (3.74),
which allows us to turn Eq. (3.144) into a differential equation for ZΛ,

∂ΛZΛ =
Z5
ΛJ

2

Λ3
c . (3.146)

This equation is solved by

ZΛ =

√
Λ

Λc

(
1 +

Λ2

Λ2
c

− Λ2

Λ2
0

)− 1
4

, (3.147)

where we chose the initial condition ZΛ0 = 1 and defined the crossover scale

Λc =
√
2c J . (3.148)

Differentiating the expression (3.147) with respect to Λ and using the rela-
tion (3.74) between the anomalous dimension and ZΛ, we find

ηΛ =
1

2

(
1 +

Λ2

Λ2
c

− Λ2

Λ2
0

)−1

. (3.149)

From this expression, it is evident that the anomalous dimension does indeed
assume the value η = 1/2 in the limit Λ → 0, validating our earlier analysis
in Sec. 3.5, where we took this result as an assumption. We plot ZΛ and ηΛ
in Fig. 3.6.

We can now also determine the value of gl at the DFP. In the expres-
sion (3.144) for ηΛ, we identify gl in the form given in Eq. (3.111). Given
that ηΛ = 1/2 at the DFP, we infer for gl the fixed point value

g∗ =
1

2c
≈ 8.52 . (3.150)

3.6 Global flow diagram

In the previous section, we were able to solve the integral equation for the
anomalous dimension ηΛ (3.142) with a crude approximation which was good
only in the vicinity of the DFP. To obtain flow trajectories throughout the
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Figure 3.6: Wave function
renormalization ZΛ and
anomalous dimension ηΛ
at the DFP as given in
Eqs. (3.147) and (3.149).
Note that we plot against the
flow parameter l = ln(Λ0/Λ)
defined in Eq. (3.104).
The vertical dotted line
marks the crossover scale
lc = ln(Λ0/Λc) defined by
Eq. (3.148).

coupling space and analyze the resulting phase diagram, we need to evaluate
the anomalous dimension in a more general way, which necessitates a nu-
merical approach. It turns out that numerically, there is a more convenient
way than solving the integral equation (3.142). We saw in the previous sec-
tion that we need to take the linear frequency dependence of the four-point
vertex into account. In this section, we do this by expanding the four-point
vertex as

Γ
(4)
Λ (ω1, ω2) ≈ uΛ(ω2) + γΛ(ω2)iω1 . (3.151)

Here, we introduced the frequency dependent expansion coefficients

uΛ(ω2) =Γ
(4)
Λ (0, ω2) (3.152a)

γΛ(ω2) =
∂Γ

(4)
Λ (ω1, ω2)

∂(iω1)

∣∣∣∣
ω1=0

, (3.152b)

which we will treat as additional couplings in the FRG flow. The general
integral equation (3.132) for the anomalous dimension can then be expressed
in terms of the expansion coefficient γΛ(ω2) as

ηΛ = ΛZΛ

∫
dω2

2π
ĠΛ(ω2)γΛ(ω2) . (3.153)

Substituting the single scale propagator (3.85), the integral is removed by
the two Dirac-deltas and we get

ηΛ =− ΛZ2
Λ

2π

(
γΛ(Λ)

µΛ + iΛ
+
γΛ(−Λ)

µΛ − iΛ

)
=− ΛZ2

Λ

π
Re

{
γΛ(Λ)

µΛ + iΛ

}
, (3.154)

where in the second equality we used that γΛ(ω) = (γΛ(−ω))∗. We will show
next that in order to evaluate γΛ(Λ), we have to solve differential equations
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for γΛ(ω) with ω < Λ, i.e. the problem can be transformed from solving
an integral equation to solving differential flow equations for infinitely many
couplings (one for each frequency ω < Λ). Recalling the scaling analysis
presented in Sec. 3.4.4, we define the rescaled couplings

γl(ω̃) ≡ Z2
ΛγΛ(ω̃Λ)

∣∣∣∣
Λ=Λ0e−l

, (3.155)

where ω̃ = ω/Λ is the rescaled frequency defined in Eq. (3.96). In terms of
rescaled quantities, the anomalous dimension (3.154) can be written as

ηl = − 1

π
Re

{
γl(1)

µl + i

}
. (3.156)

We take the scale derivative of γl(ω̃) given in Eq. (3.155) at fixed ω̃ and find
the flow equation

∂lγl(ω̃) =− Λ
d

dΛ

[
Z2
ΛγΛ(ω̃Λ)

]
=− Λ

(
∂ΛZ

2
Λ

)
γΛ(ω̃Λ)− ΛZ2

Λ ∂ΛγΛ(ω̃Λ)− ΛZ2
Λ

∂γΛ(ω)

∂ω

∣∣∣∣
ω=ω̃Λ

d(ω̃Λ)

dΛ

=− 2Z2
ΛηΛγΛ(ω̃Λ)− ΛZ2

Λ ∂ΛγΛ(ω̃Λ)− ΛZ2
Λ γ

′
Λ(ω̃Λ)ω̃ , (3.157)

where we defined γ′Λ(ω) = dγΛ(ω)/dω. We discuss the three terms on the
rightmost side separately:

• In the first term, we identify the rescaled coupling γl(ω̃) given in
Eq. (3.155) and write

−2Z2
ΛηΛγΛ(ω̃Λ) = −2ηl γl(ω̃) . (3.158)

• For the second term, we need the flow equation of the unrescaled
couplings γΛ(ω). We recall that by Eq. (3.152b), γΛ(ω) is a fre-
quency derivative of the four-point vertex ΓΛ(ω1, ω2). We therefore
take the frequency derivative of the flow equation of ΓΛ(ω1, ω2) given
in Eq. (3.61) and find

∂γΛ(ω) =
∂

∂ω1

[
∂ΛΓ

(4)
Λ (ω1, ω)

]
ω1=0

=− J2 ∂

∂ω1

[
χ̇Λ(ω1 + ω) + 2Π̇Λ(ω1 − ω)

]
ω1=0

. (3.159)

We have already evaluated the frequency derivatives of χ̇Λ(ω) and
Π̇Λ(ω) in Eqs. (3.138), and find

∂γΛ(ω) = −iJ2
[
χ̇′
Λ(ω)− 2Π̇′

Λ(ω)
]
. (3.160)
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The factor of i appears because χ̇′
Λ(ω) and Π̇′

Λ(ω) are defined in
Eqs. (3.137) as derivatives with respect to iω. Inserting the explicit
expressions for χ̇′

Λ(ω) and Π̇′
Λ(ω) given in Eqs. (3.138) and imposing

|ω| ≤ Λ then gives an explicit expression for the second term,

−ΛZ2
Λ∂ΛγΛ(ω̃Λ) =

J2Z4
ΛΛ

π

[
1

(µΛ − iσωΛ)(µΛ + iω + iσωΛ)2

− 2iσωIm

{
1

(µΛ + iΛ)(µΛ + iΛ + iσωω)2

}]
.

(3.161)

Here, we can identify the rescaled couplings µl and gl defined in
Eqs. (3.106) and (3.111) and write

−ΛZ2
Λ∂ΛγΛ(ω̃Λ) =

gl
π
f(ω̃, µl) , (3.162)

where we abbreviated

f(ω̃, µl) =
1

(µl − iσω)(µl + iω̃ + iσω)2

− 2iσωIm

{
1

(µl + i)(µl + i+ iσωω̃)2

}
. (3.163)

• The third term includes a frequency derivative of γΛ(ω). Noting that
ZΛ does not depend on frequency and that Λ ∂/∂ω = ∂/∂ω̃, we can
identify the rescaled coupling γl(ω̃) given in Eq. (3.155) and write

−ΛZ2
Λ γ

′
Λ(ω̃Λ)ω̃ = −ω̃ γ′l(ω̃) , (3.164)

where we defined γ′l(ω̃) = dγl(ω̃)/dω̃.

Putting all three terms together, we get the flow equation

∂lγl(ω̃) = −2ηlγl(ω̃) +
gl
π
f(ω̃, µl)− ω̃ γ′l(ω̃) . (3.165)

To proceed, one could now expand the γl(ω̃) around ω̃ = 1, treating γl(1)
and γ′l(1) as flowing couplings. The flow equation for γ′l(1) would then
include an additional frequency derivative, and ultimately this approach
would generate an infinite hierarchy of flow equations with infinitely high
orders of frequency derivatives. To avoid this complication, we employ a
different strategy, and take into account the full frequency dependence of
γl(ω̃) numerically by discretizing the frequency variable ω̃. For this purpose,
we rearrange the flow equation (3.165) for γl(ω̃) and write(

∂l + ω̃
∂

∂ω̃

)
γl(ω̃) = −2ηlγl(ω̃) +

gl
π
f(ω̃, µl) . (3.166)
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Figure 3.7: The directional
derivative describing the flow of
γl(ω̃) given in Eq. (3.166) is tan-
gent to the family of trajectories
given in Eq. (3.167) and parame-
terized by the endpoints l1.

Now, the right hand side is simply a directional derivative in the space
spanned by l and ω̃. As a consequence, the value γl1(1) for any given l1
can be found by solving an initial value problem. First, we note that the
directional derivative ∂l + ω̃∂ω̃ is tangent to the family of trajectories given
by

ω̃(l) = el−l1 , (3.167)

where l1 distinguishes the trajectories and marks the point where ω̃(l1) = 1.
We illustrated this in Fig. 3.7. Restricted to one of those trajectories, the
directional derivative in Eq. (3.166) can be written as a one-dimensional
total derivative, (

∂l + ω̃
∂

∂ω̃

)
γl(ω̃)

∣∣∣∣
ω̃=el−l1

=
d

dl
γl(e

l−l1) . (3.168)

Defining

γl,l1 ≡ γl(e
l−l1) , (3.169)

the flow equation (3.166) can then be written as

∂lγl,l1 = −2ηlγl,l1 +
gl
π
f(el−l1 , µl) . (3.170)

Provided that we know µl and gl for 0 < l < l1, we can simply integrate this
differential equation from l = 0 to l = l1. Because the flowing four-point
vertex vanishes at the start of the RG flow, the initial value at l = 0 is γ0,l1 =
0. After integration from this initial value, the solution for γl1,l1 = γl1(1)
can then be substituted in Eq. (3.156) to find the anomalous dimension ηl,
provided that the value for the chemical potential µl is known.

For the readers convenience, let us reprint the flow equations for the
rescaled couplings given in Eqs. (3.109), (3.110), and (3.112):

∂lµl =(1− ηl)µl −
1

π

µl
µ2l + 1

ul , (3.171a)

∂lul =(1− 2ηl)ul +
4

π

gl
µ2l + 1

(
1

µ2l + 1
− 3

4

)
, (3.171b)

∂lgl =2(1− 2ηl)gl . (3.171c)
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Using the procedure to find ηl as described previously, we can now employ
a modified Runge-Kutta method to integrate the flow equations. First, we
discretize the flow parameter l to the discrete set li where i ranges from 0
to some large number N . Suppose that we want to compute the couplings
µl, ul, gl, and ηl for some l = ln > 0 and that we already computed them
for the previous steps 0 ≤ i < n. The couplings at l = ln can then be
approximated as follows:

1. Perform one step of the Runge-Kutta method to compute µln , uln , gln
from the flow equations (3.171) using the known values µln−1 , uln−1 ,
gln−1 , and ηln−1 .

2. Numerically integrate the equation (3.170) for γl,ln from l = 0 to l = ln
with the initial condition γ0,ln = 0. To do so, we need the values for
µl, ul, and gl for l < ln. In fact, we know these values approximately
even up to l = ln from the previous step.

3. Using the result for µln from the first step and the result for γln,ln =
γln(1) from the second step, compute the anomalous dimension ηln
from Eq. (3.156).

Starting at l = 0 with the initial conditions, we can successively apply the
above algorithm to find the RG trajectories of the couplings µl, ul, gl, and
ηl. We integrated the flow equations for six trajectories which pass close to
the discontinuity fixed point and plotted the results in Fig. 3.8.

The flow of these trajectories confirms the physical picture worked out
in the preceding sections. Depending on the initial conditions, the RG flow
leads to one of the two sinks S+ or S−. At the sink S+, the effective chem-
ical potential µl vanishes, leading to a power-law in the propagator, while
the anomalous dimension takes the value η = 1/2 and gl assumes some fi-
nite fixed value. Recalling the discussion in Sec. 1.2.2, we conclude that
S+ describes the low energy behavior of the nFL phase. At the sink S−,
the anomalous dimension vanishes, which is consistent with the IV phase.
The basins of attraction for the sinks S± are separated by a surface in the
coupling space. The closer the initial conditions are to this separatrix, the
closer the RG trajectory will approach the DFP before being deflected to-
wards the relevant eigendirection. This confirms the RG picture discussed in
Sec. 3.5 where the DFP represents the phase transition between the IV and
the nFL phases. Most importantly, we confirm that the phase transition is
indeed described by the DFP with anomalous dimension η = 1/2.

3.7 Physical interpretation

Our result η = 1/2 for the anomalous dimension at the discontinuous phase
transition seems puzzling. Usually, one would expect a state of phase sepa-
ration right at a discontinuous phase transition, where each separate phase
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is perfectly non-critical, with no diverging correlation lengths. This view
seems to be contradictory to the RG description, where a consequence of
the scale invariance at a fixed point is that the correlation length has to
either diverge or vanish [33]. The scaling theory of discontinuous phase
transitions was worked out in Refs. [84, 85], where it is concluded that while
the phase transition is indeed described by the separatrix generated by the
relevant directions of the fixed point, the physical meaning of the fixed point
itself is somewhat elusive. Fisher and Berker [85] provide a possible inter-
pretation, where the scale invariance is not found in the separate phases,
but rather one level higher, in the spatial distribution of the phase regions.

In our case, we have a quantum phase transition at zero temperature and
have no spatial degrees of freedom, and Fisher and Berker’s interpretation
does not apply straightforwardly. In our paper [3], we discuss the possi-
bility that a quantum superposition of the nFL and IV phases is realized
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at the transition. The analogue of the diverging length scale would then
be a diverging tunneling time scale. However, this picture is far from com-
plete, mainly because it is not clear how our frequency cutoff Λ relates to
dynamical time scales. The scale Λ divides the Matsubara frequencies into
infrared and ultraviolet. However, the analytic continuation to real frequen-
cies does not preserve the cutoff and it becomes meaningless to think about
the RG flow as a result of integrating out fast (real time) modes. Rather,
the scale Λ manipulates the real frequency spectrum in a non-transparent
way dictated by the analytical continuation. Nevertheless, the scaling laws
survive the analytic continuation, because a rescaling of the imaginary fre-
quency axis is simply a multiplication by a real number, which analytically
continues to the real axis identically. Thus, we believe that the result of
η = 1/2 for the anomalous dimension of the fermionic modes is robust. A
finite anomalous dimension indicates strong coupling between critical fluc-
tuations [39]. Because of the above mentioned problem with the analytic
continuation however, it is not clear of which nature these fluctuations are.
An interesting question would be what physical implications our findings
would have. Fisher and Berker show that the scaling laws at a discontinuity
fixed point can be revealed by finite size scaling, where the phase transition
is rounded due to the finiteness of the system. In our derivation, the limit
N → ∞ was crucial to find the DFP. A generalization to finite N poses a
major complication, because the large N and the zero temperature limit of
the SYK model do not commute [86]. Consequently, other means of soft-
ening the transition would be necessary if one wanted to perform a similar
analysis.
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Appendix A

Deutsche Zusammenfassung

In dieser Arbeit befassen wir uns mit zwei Modellen, welche beide auf Alexei
Kitaev zurückgehen. Im Kitaev-Heisenberg-Γ-Modell berechnen wir die Zer-
fallsrate magnetischer Quasiteilchen [4, 5, 6, 7, 8] und bestätigen so ein vor-
heriges Ergebnis [2], welches breite Spektren in Neutronenstreuexperimenten
erklärt. Das zweite Modell ist das Sachdev-Ye-Kitaev Modell, welches in sei-
ner nicht-Fermiflüssigen Phase keine Quasiteilchenartigen Anregungungen
besitzt [14]. Hier untersuchen wir den Phasenübergang zu dieser exotischen
Phase mithilfe der Funktionalen Renormierungsgruppe [39, 40, 41, 42].

A.1 Zerfall von Magnonen im Kitaev-Heisenberg-
Γ-Modell

Mit einer wegweisenden Veröffentlichung [18] präsentierte Alexei Kitaev das
später nach ihm benannte Kitaev-Modell samt seiner exakten Lösung. Dies
stellt die erste bekannte rigorose Herleitung eines Quantenspinflüssigkeitszu-
standes [15] aus einem Magnetischen Hamiltonian dar. Das Interesse, einen
solchen Zustand in realen Materialien zu finden, ist immens. Dies ist nicht
nur allgemeiner akademischer Neugier geschuldet, sondern liegt auch an der
konkreten Aussicht, solche Materialien zum Bau topologischer Quantencom-
puter zu nutzen [19, 20].

A.1.1 Die Suche nach Kitaevs Quantenspinflüssigkeit

Eine wichtige Klasse möglicher Kitaev-Materialien umfasst magnetische Iso-
latoren mit starker Spin-Bahn-Kopplung der exponierten Elektronen [21]. In
realen Materialien treten jedoch neben den Wechselwirkungen des Kitaev-
Modells noch weitere magnetische Wechselwirkungen auf, wie zum Bei-
spiel die Heisenberg-Wechselwirkung. Dies führt dazu, dass mögliche Kitaev-
Materialien durch einen Hamiltonian mit zahlreichen Wechselwirkungster-
men beschrieben werden [22]. Wir betrachten hier das Kitaev-Heisenberg-
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Γ-Modell, welches zur Beschreibung des Materials α-RuCl3 geeignet ist [2,
49, 50, 51]. Dieses Modell ist definiert auf einem zweidimensionalen Honig-
wabengitter. Der Hamiltonian setzt sich aus drei verschiedenen Wechselwir-
kungstermen zusammen,

H = HHeisenberg +HKitaev +HΓ . (A.1)

Der Kitaev-Term HKitaev beschreibt eine Ising-Wechselwirkung zwischen
nächsten Nachbarn. Das besondere daran ist, dass die Richtung der Ising-
Wechselwirkung von der räumlichen Ausrichtung der Wechselwirkungspart-
ner zueinander abhängt, und somit zu magnetischer Frustration führt [18].
Diese Richtungsabhängigkeit kann geschrieben werden als

HKitaev = K
∑
α

∑
⟨ij⟩α

Sα
i S

α
j , (A.2)

wobei Sα
i die α-Komponente eines Spin-1/2 Operators an Gitterplatz i ist,

α die Richtungen x, y, z aufzählt und ⟨ij⟩α jene Nachbarpaare sind, welche
senkrecht zur α-Achse stehen (hierfür muss das Koordinatensystem (x, y, z)
natürlich passend zum Gitter gewählt werden, wie gezeigt in Fig. 2.1). Der
Heisenberg-Term HHeisenberg beschreibt die Heisenberg-Wechselwirkung zwi-
schen nächsten und dritt-nächsten Nachbarn und ist gegeben durch

HHeisenberg = J
∑
⟨ij⟩

Si · Sj + J3
∑

⟨⟨⟨ij⟩⟩⟩

Si · Sj , (A.3)

wobei ⟨ij⟩ Paare aus nächsten Nachbarn und ⟨⟨⟨ij⟩⟩⟩ Paare aus dritt-nächsten
Nachbarn auflistet. Der Term HΓ beschreibt eine weitere Wechselwirkung
zwischen nächsten Nachbarn, welche von der Ausrichtung der Paare abhängt,
und kann geschrieben werden als

HΓ =
∑
αβγ

Γα
βγ

∑
⟨ij⟩α

Sβ
i S

γ
j , (A.4)

wobei α, β, γ jeweils die Richtungen x, y, z aufzählen. Γα
βγ ist ein symme-

trischer Tensor mit den nichtverschwindenden Komponenten Γx
yz = Γx

zy =
Γy
zx = Γy

xz = Γz
xy = Γz

yx ≡ Γ.
Nun stellt sich heraus [23], dass das Material α-RuCl3 bei tiefen Tempe-

raturen magnetische Ordnung zeigt. Dies steht im Widerspruch zur Realisie-
rung einer Quantenspinflüssigkeit. Üblicherweise würde man erwarten, dass
die elementaren Anregungen in einem geordneten Magneten durch Spin-
wellen, auch Magnonen genannt, beschrieben werden [4, 8, 9]. Inkohärente
Sprektren in Neutronenstreuexperimenten deuten jedoch darauf hin [29,
30], dass die elementaren Anregungszustände in α-RuCl3 trotz magneti-
scher Ordnung gut durch Kitaevs Quantenspinflüssigkeit beschrieben wer-
den können. Um die zugrundeliegende Physik genauer zu untersuchen, bie-
tet sich eine Störungstheoretische Betrachtung der Magnonenspektren an.
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In Ref. [2] wurde auf diese Weise gezeigt, dass die inkohärenten Streuspek-
tren durch eine hohe Zerfallsrate der Magnonen begründet werden kann.
Jedoch wurde dabei eine grobe, heuristische Näherung verwendet, deren
Gültigkeit nicht offensichtlich ist. Uns ist es gelungen, einen Parameter-
bereich im Kitaev-Heisenberg-Γ-Modell zu finden, in welchem sich die Be-
rechnung der Zerfallsraten vereinfacht und somit eine genauere Berechnung
möglich wird. Innerhalb dieses Parameterbereichs kann dann die qualitative
Gültigkeit der Näherung aus Ref. [2] bestätigt werden, wie wir in unserer
Veröffentlichung [1] zeigen. Im Folgenden präsentieren wir die von uns ver-
wendete Methode, welche auch auf andere bosonische Modelle übertragen
werden kann.

A.1.2 Berechnung der magnonischen Zerfallsrate

Da α-RuCl3 bei tiefen Temperaturen eine magnetische Zickzack-Ordnung
ausbildet [29, 30], welche wir in Fig. 2.5 schematisch dargestellt haben, be-
schränken wir uns auf diese Phase des Kitaev-Heisenberg-Γ-Modells. Zunächst
bestimmen wir durch Minimierung der klassischen Grundzustandsenergie
die Ausrichtung der Spins in der Zickzackphase. Dann wählen wir für jeden
Gitterplatz eine lokale Basis, deren dritte Komponente wir mit ∥ bezeichnen
und welche entlang der Magnetisierung ausgerichtet ist. Dies erlaubt es uns,
die Spin-Operatoren mittels der Holstein-Primakoff-Transformation [62],

S+
i =

√
2S

(√
1− ni

2S

)
bi , (A.5a)

S−
i = b†i

√
2S

√
1− ni

2S
, (A.5b)

S
∥
i = S − ni , (A.5c)

auf die bosonischen Erzeuger b†i und Vernichter bi abzubilden. Die bosonische
Besetzungszahl ni beschreibt dann die Abweichung der Spinquantenzahl von
der vollständigen Magnetisierung. Bei hinreichend niedrigen Temperaturen
sind diese Angeregten Zustände nur spärlich besetzt, was eine Entwicklung
der Wurzeln in ni/S rechtfertigt,

S+
i =

√
2S

[
1− ni

4S
− n2i

32S2
+O

(
n3i
S3

)]
bi , (A.6a)

S−
i = b†i

√
2S

[
1− ni

4S
− n2i

32S2
+O

(
n3i
S3

)]
, (A.6b)

S
∥
i = S − ni . (A.6c)

Diese Entwicklung wird 1/S-Entwicklung genannt, obwohl, wie zum Beispiel
in unserem Fall mit S = 1/2, der Parameter 1/S nicht unbedingt klein ist.
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Als nächstes können wir so den Modellhamiltonian (A.1) durch die boso-
nischen Erzeuger und Vernichter ausdrücken. Zur quadratischen Ordnung
erhalten wir dann nach Fouriertransformation den effektiven freien Spinwel-
lenhamiltonian

H2 =
∑
k

∑
m,n

{
Amn

k a†kmakn +
1

2

[
Bmn

k a†kma
†
−kn + (Bnm

k )∗ a−kmakn

]}
.

(A.7)
Hier ist k der Kristallimpuls innerhalb der ersten Brillouin-Zone und die
Bandindizes m,n = 1, 2, 3, 4 rühren daher, dass die magnetische Einheits-
zelle vier Gitterplätze umfasst. a†kn ist der Erzeuger eines Magnons aus Band
n mit Kristallimpuls k, und akn ist der entsprechende Vernichter. Die Ma-
trizen Amn

k und Bmn
k sind in Gl. (2.74) gegeben. Den führenden Beitrag zur

Wechselwirkung zwischen den Magnonen finden wir zu dritter Ordnung, das
heißt wir erhalten analytische ausdrücke für die drei-Punkt-Wechselwirkung
Γµνλ(k,k′,k′′), wobei die Indizes µ, ν, λ die vier Bandindizes und die Art,
also Erzeuger oder Vernichter, aufzählen.

Es ist zu beachten, dass der freie Hamiltonian in der gegenwärtigen
Form (A.7) nicht diagonal ist, wir also im eigentlichen Sinne noch nicht
von Magnonenbändern sprechen können. Für die diagrammatische Störungs-
theorie müssen wir also den freien Hamiltonian diagonalisieren und ent-
sprechend auch den Vertex Γµνλ(k,k′,k′′) transformieren. Dafür brauchen
wir die explizite Form der Transformationsmatritzen. Dies stellt jedoch auf-
grund der hohen Zahl an Bandindizes sowohl numerisch als auch analytisch
eine Herausforderung dar. In Ref. [2] wird dieses Problem umgangen, indem
der Wechselwirkungsvertex Γµνλ(k,k′,k′′) als Band- und Impulsunabhängig
genähert wird. Diese Näherung wollen wir überprüfen. Dazu gehen wir die-
ses Problem anders an, nämlich indem wir die bosonischen Erzeuger und
Vernichter in ihre hermiteschen und antihermiteschen Teile zerlegen,

bi =
1√
2
[xi + ipi] , (A.8a)

b†i =
1√
2
[xi − ipi] . (A.8b)

Diese Darstellung erlaubt es, einen Parameterbereich der Kopplungskon-
stanten Γ = K > 0 zu identifizieren, welcher die analytischen Ausdrücke
stark vereinfacht. So finden wir für diesen Parameterbereich die Transforma-
tionsmatrizen und können die diagrammatische Störungstheorie anwenden,
um die Zerfallsrate der Magnonen zu berechnen.

Allgemein ist die Zerfallsrate γkn eines Quasiteilchens zu führender Ord-
nung gegeben durch den Imaginärteil der Selbstenergie [8],

γkn ≡ −ImΣret
kn(ωkn) . (A.9)
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Hier ist ωkn die Energie des entsprechenden Magnons. Am absoluten Tem-
peraturnullpunkt gibt es nur einen führenden Beitrag zum Imaginärteil der
Selbstenergie, welcher durch das Diagramm

(A.10)

gegeben ist. Zur Berechnung dieses Beitrages verwenden wir unsere analy-
tischen Ausdrücke um numerische Werte für die freien Propagatoren und
Wechselwirkungsvertizes zu generieren. Anschließend führen wir dann die
Integration über die innere Impulsvariable des Diagramms numerisch durch.
So erhalten wir Werte für die Zerfallsrate der Magnonen, welche dann mit
der gröberen Näherung aus Ref. [2] verglichen werden können.

A.2 FRG im SYK-Modell

Das Sachdev-Ye-Kitaev(SYK)-Modell wurde ursprünglich von Alexei Ki-
taev als einfaches Modell eingeführt [12], um das holografische Prinzip aus
der Quantengravitation zu beschreiben. Doch auch in der Festkörperphysik
ist das SYK-Modell interessant. Einerseits ist die Selbstenergie im thermo-
dynamischen Limes exakt bestimmbar [46]. Desweiteren zeichnet sich das
SYK-Modell durch die Existenz einer nicht-Fermiflüssigen Phase aus, in der
keinerlei Quasiteilchen existieren. Dies ist eine Schlüsseleigenschaft in der
bisher unzureichend verstandenen Theorie der seltsamen Metalle und der
Hochtemperatursupraleitung [14, 45], und daher von fundamentalem Inter-
esse.

A.2.1 Das SYK Modell

In seiner ursprünglichen Form beschreibt das SYK-Modell N wechselwirken-
de Majorana-Moden. Die Wechselwirkung ist dabei zufällig und findet zwi-
schen allen Moden statt. In der Festkörpertheorie wird gerne eine Variante
des SYK-Modells verwendet, welche durch Ersetzung der Majorana-Moden
durch herkömmliche Fermionen aus dem ursprünglichen SYK-Modell her-
vorgeht. Der Hamiltonian ist dann gegeben durch

H = −µ
∑
i

c†ici +
∑

i<j,k<l

Jij,klc
†
ic

†
jckcl. (A.11)

Hierbei sind ci und c
†
i die fermionischen Vernichter und Erzeuger, µ ist das

chemische Potential, und Jij,kl sind die zufälligen Wechselwirkungskonstan-
ten zwischen den Fermionen. Letztere sind Gaußsche Zufallsvariablen mit
Erwartungsvert 0 und Varianz 2J2/N3, wobei J eine beliebige Energieskala
ist. Weiterhin erfüllen Jij,kl die Symmetrien Jij,kl = −Jji,kl = −Jij,lk und
Jij,kl = J∗

kl,ij , sind sonst jedoch statistisch unabhängig voneinander.
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Bei niedrigen Temperaturen zeigt sich ein Phasenübergang erster Ord-
nung [46]. Dabei wird bei niedrigem chemischen Potential eine nicht-Fer-
miflüssigkeit realisiert, welche sich durch Skaleninvarianz und das Fehlen
von Quasiteilchen auszeichnet. Bei ausreichend hohem chemischen Poten-
tial findet ein Übergang zu einem Zustand mit vollständiger fermionischer
Besetzung statt (ein analoger Übergang zu einem vollständig unbesetztem
Zustand findet bei negativem chemischen Potential statt). In dieser Arbeit
untersuchen wir diesen Phasenübergang am absoluten Temperaturnullpunkt
mittels der Funktionalen Renormierungsgruppe (FRG).

A.2.2 Die Funktionale Renormierungsgruppe

In der von Kadanoff [34] und Wilson [35, 36, 37] entwickelten Formulierung
basiert die Renormierungsgruppe (RG) auf einer Vergröberung der Freiheits-
grade eines gegeben Modells. In der Regel werden dabei sukzessive Freiheits-
grade oberhalb einer stetig sinkenden Energie- oder Impulsskala ausinte-
griert, sodass nur noch Freiheitsgrade mit niedrigeren Energien oder Impul-
sen, also gröbere Freiheitsgrade, betrachtet werden. Durch das Ausintegrie-
ren verändern sich die effektiven Wechselwirkungen zwischen den gröberen
Freiheitsgraden, was zu einem Fluss im abstrakten Raum der Wechselwir-
kungskonstanten mit der Skala führt, dem Renormierungsgruppenfluss. Je
kleiner die Energie- oder Impulsskala ist, desto größer ist die Zeit- oder
Längenskala. Dies ermöglicht eine Herleitung makroskopischer Eigenschaf-
ten eines physikalischen Systems aus dessen mikroskopischer Theorie. Be-
sonders interessant ist dies in der Theorie der Phasenübergänge: Anhand
des Renormierungsgruppenflusses können das Phasendiagramm sowie die
kritischen Exponenten an den Phasenübergängen bestimmt werden [33].

Wir wollen diesen Formalismus nutzen, um den im vorigen Abschnitt
erwähnten Phasenübergang im SYK-Modell zu untersuchen. Dafür verwen-
den wir die Funktionale Renormierungsgruppe (FRG) [39, 40, 41, 42], welche
häufig auch exakte Renormierungsgruppe genannt wird und eine Formu-
lierung der Wilsonschen Renormierungsgruppe mittels Methoden aus der
Funktionalanalysis darstellt. In der FRG wird die Vergröberung der Frei-
heitsgrade mithilfe einer künstlich eingeführten Skalenabhängigkeit im freien
Propagator realisiert. Die erhaltenen Flussgleichungen für die Wechselwir-
kungskonstanten sind dabei äquivalent zu einer Ausintegration im Wilson-
schen Sinne [43].

A.2.3 Renormierungsgruppenfluss und kritischer Fixpunkt

Wir wenden die Funktionale Renormierungsgruppe auf das SYK-Modell im
thermodynamischen Limes N → ∞ an. Dabei kommen uns zwei Statis-
tische Eigenschaften zugute. Zum Einen ist das SYK-Modell im thermo-
dynamischen Limes selbsmittelnd, das heißt, dass die Dynamik jedes ein-
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zelnen Freiheitsgrades gleich der gemittelten Dynamik aller Freiheitsgrade
ist [14]. Des Weiteren ist das SYK-Modell Replikadiagonal [14, 81, 82], was
zur Konsequenz hat, dass alle gemittelten Korrelationsfunktionen durch die
über die zufällige Wechselwirkung Jij,kl gemittelte Wirkung bestimmt sind.
Es reicht also aus, den RG-Fluss für die gemittelte Wirkung zu betrach-
ten. Letztere bestimmen wir, indem wir die mikroskopische Wirkung, welche
aus dem Hamiltonian (A.11) resultiert, mittels des Pfadintegralformalismus
über die Zufallsvariablen Jij,kl integrieren. Durch die Integration erhalten
wir neben dem unberührten quadratischen Teil einen effektiven acht-Punkt-
Wechselwirkungsvertex, welcher in Gl. (3.34) gegeben ist.

Während des RG-Flusses mit der Energieskala generiert der acht-Punkt-
Vertex einen skalenabhängigen sechs-Punkt-Vertex, welcher wiederum einen
vier-Punkt-Vertex generiert, welcher dann einen Beitrag zum zwei-Punkt-
Vertex, also der Selbstenergie, liefert. Die Entsprechenden Flussgleichungen
sind in Gln. (3.50) gegeben und eine diagrammatische Darstellung findet
sich in Fig. 3.4. Um diese Flussgleichungen zu lösen, müssen diese zunächst
mithilfe einiger Näherungen vereinfacht werden. Zuerst verwenden wir die
sogenannte Katanin-Substitution [83], um die Flussgleichung für den sechs-
Punkt-Vertex direkt zu integrieren. Wir begründen die Gültigkeit dieser
Substitution damit, dass eine erneute Substitution in der Flussgleichung
für den vier-Punkt-Vertex die aus der Literatur bekannte exakte Lösung
für die Selbstenergie reproduziert. Als weitere Näherung entwickeln wir
die Frequenzabhängigkeiten der Wechselwirkungsvertizes für kleine Frequen-
zen, welche die uns interessierende makroskopische Physik beschreiben. Als
Nächstes wählen wir die künstliche Skalenabhängigkeit des freien Propaga-
tors so, dass Frequenzen unterhalb der Energieskala Λ vollkommen unter-
drückt werden, während der Propagator für höhere Frequenzen nicht modi-
fiziert wird (

”
scharfer Cutoff“). Nach Reparametrisierung der Skala durch

den logarithmischen Parameter l, gegeben durch Λ = Λ0e
−l, erhalten wir

die Flussgleichungen

∂lµl =(1− ηl)µl −
1

π

µl
µ2l + 1

ul , (A.12a)

∂lul =(1− 2ηl)ul +
4

π

gl
µ2l + 1

(
1

µ2l + 1
− 3

4

)
, (A.12b)

∂lgl =2(1− 2ηl)gl . (A.12c)

Hier ist µl das skalenabhängige effektive chemische Potential, ul ist der sta-
tische Teil der vier-Punkt-Wechselwirkung, und gl beschreibt die führende
Frequenzabhängigkeit der Selbstenergie. Die Anomale Dimension ηl ist ge-
geben durch die Integralgleichung (3.142).

Wir lösen das obige System aus Differential- und Integralgleichungen
numerisch und finden so den RG-Fluss in Fig. 3.8. Der RG-Fluss repro-
duziert das Bild des Phasenüberganges zwischen der nicht-Fermiflüssigkeit
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und des vollständig besetzten Zustandes. Der Phasenübergang wird durch
einen Fixpunkt beschrieben, welchen wir analytisch genauer untersuchen.
Hier finden wir ein unerwartetes Ergebnis: Obwohl ein Phasenübergang ers-
ter Ordnung vorliegt und damit eine Phasenseparation zu erwarten ist, ist
die Anomale Dimension positiv, und deutet damit auf stark korrelierte kri-
tische Fluktuationen hin. Die Interpretation dieses Ergebnisses ist uns zum
gegenwärtigen Zeitpunkt unklar. Die gute Übereinstimmung unserer Ergeb-
nisse mit der vorhergehenden Literatur deutet jedoch auf neuartige zugrun-
deliegende Physik hin.
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