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1. Introduction 

Viruses are obligate parasites as they require the host cell machinery for replication. 

The first step of the viral life cycle is the interaction of the viral components with cell 

surface molecules, either attachment factors and/or receptors, followed by the entry of 

the virus into the host cell. Thus, the development of antiviral drugs that can interfere 

with this step constitutes an attractive therapeutic approach. The present study focuses 

on the Zika virus (ZIKV), a mosquito-borne flavivirus that received public attention in 

2016 due to the sudden escalation of cases of congenital malformations in newborns 

and other neurological complications connected to ZIKV infection. Even though some 

molecules have been described to participate in the ZIKV entry, this process is still 

enigmatic and requires further research. In this study, the role of the human epidermal 

growth factor receptor (EGFR) in the ZIKV life cycle, with emphasis on viral entry, was 

investigated.  

1.1 Zika virus  

1.1.1 Taxonomic classification 

ZIKV is a re-emerging arthropod-borne virus (arbovirus) and taxonomically classified 

as a member of the genus Flavivirus within the Flaviviridae family. This family contains 

89 virus species grouped into four genera: Flavivirus, Hepacivirus, Pegivirus, and 

Pestivirus. Besides the hepatitis C virus (HCV) from the genus Hepacivirus, the relevant 

human pathogens from the Flaviviridae family, which are responsible for morbidity and 

mortality worldwide, are comprised within the genus Flavivirus.1,2 The 53 species that 

this genus is composed of can be categorized into four clusters: mosquito-borne, tick-

borne, no-known vector, and insect-specific flaviviruses. Each cluster is further divided 

into clades that combine viruses that have at least 69% of nucleotide sequence identity. 

ZIKV is a mosquito-borne virus and together with Spondweni virus (SPOV) constitute 

the clade X.3–5 Apart from SPOV, other phylogenetically related and of public health 

concern flaviviruses are dengue virus (DENV), Japanese encephalitis virus (JEV), West 

Nile virus (WNV), and yellow fever virus (YFV) (Figure 1).6,7   
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Figure 1 – Phylogenetic tree of the genus Flavivirus.  ZIKV (highlighted in red), which is closely related 
to SPOV, belongs to the cluster of mosquito-borne flaviviruses vectored by mosquitoes of the Aedes 
species. Within the genus Flavivirus and besides the mosquito-borne cluster, viruses can be categorized 
into tick-borne, insect-specific, or no-known vectors, depending on their vector of transmission. The 
phylogenetic relationships were based on the analysis of conserved sequences in the RNA polymerase 
NS5. The scale indicates 20% nucleotide sequence divergence. Retrieved from Weaver et al., 2016.8  

1.1.2 History and epidemiology 

ZIKV and several other arboviruses were first discovered during a study on the YFV at 

the Uganda Virus Research Institute (previously named the Yellow Fever Research 

Institute) in Entebbe, Uganda.8 Near this institute, in April 1947, in the Zika Forest, one 

of six rhesus monkeys (no. 766), which had been caged for research purposes, 

developed a fever. On the third day of fever, a blood sample was taken and the 

respective serum was injected intracerebrally or intraperitoneally into Swiss albino 

mice, and subcutaneously into another rhesus monkey. Only the mice that had been 

injected intracerebrally presented clinical signs and a transmissible pathogen was 

isolated from their brains. Later on, this pathogen was termed Zika virus according to 

the geographical origin of the isolate.9 Shortly after, neutralizing antibodies against 

ZIKV were detected in the sera of residents of Uganda and the United Republic of 

Tanzania, indicating a possible human transmission.10–12  

The first time that ZIKV was isolated from humans appears to be controversial. The 

virus was isolated from the serum of a 10-year-old girl in Nigeria in 1954. However, it 
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was reported that this isolated virus was more similar to SPOV than to ZIKV.13–15 One 

decade later, a researcher from the Uganda Virus Research Institute reported that it 

was him who originally isolated ZIKV from his serum after becoming infected possibly 

while he was working in the Zika Forest.13 In 1966, ZIKV was first isolated in the Asian 

continent, in Malaysia, from Aedes aegypti mosquitoes.16 The first human cases of 

symptomatic ZIKV disease on this continent were reported only in 1977.17 Nevertheless, 

serological tests performed in India, Malaysia, the Philippines, and Vietnam suggest the 

presence of the virus in the 1950s.12,18–20  

During the first 60 years since ZIKV discovery, documented human cases were rare and 

exclusive to Africa and Southeast Asia without any major clinical signs being reported. 

That being said, it came as a surprise when a “dengue-like illness” outbreak was 

reported by local physicians in the State of Yap, in the Federated States of Micronesia  

in April 2007. Even though a few patients tested positive for DENV using an IgM kit, 

the physicians believed that this disease was not the same as the one from the two 

previous DENV outbreaks that occurred in Yap Island. In June 2007, ZIKV infection was 

confirmed in serum samples collected from patients in the acute phase of infection.21,22  

During this entire time, ZIKV was disregarded by the scientific community due to the 

lack of large outbreaks and severe clinical manifestations. This changed when French 

Polynesia was hit by the largest outbreak that had been documented until that period. 

In October 2013, the first cases of ZIKV infection were reported.23 The number of 

symptomatic patients kept growing and by the end of the outbreak, which lasted about 

six months, there were 32.000 estimated cases (11.5% of the population) of ZIKV 

infection. Besides the mild symptoms previously experienced in other outbreaks, 74 

patients presented neurological and autoimmune complications. Among these, 42 

were diagnosed with Guillain-Barré syndrome (GBS) (explained in chapter 1.1.3).24–27 

Rapidly, ZIKV reached other islands in the Pacific. 28–30 

Cases of rash associated with mild fever and arthralgia (joint pain) started to 

exponentially increase in the Northeast of Brazil at the end of 2014.30–32 In March 2015, 

ZIKV infection was confirmed by the analysis of serum samples of acute-infected 

patients.33,34 Within a few months, ZIKV had spread to at least 18 Brazilian states and 

between 440.000 and 1.300.000 infectious cases were estimated until then, as 

announced in December 2015 by the Ministry of Health.35,36 Colombia reported the 

first case of ZIKV infection in October 2015 and by February 2016, cases of ZIKV 

transmission had been reported in 28 countries and territories in the American 

continent.37–39 Moreover, numerous cases of ZIKV infection in non-endemic countries 

were stated due to travelers that carried the virus. Among these are most European 
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countries, several states of the United States of America, Canada, Japan, China, 

Australia, New Zealand, and others.40–52  

Unlike the previous outbreaks in the Pacific, the epidemic in the Americas unveiled new 

neurological complications. Besides GBS, thousands of cases of microcephaly in 

newborns (explained in chapter 1.1.3) were connected to ZIKV infection.36,53,54 

Moreover, a retrospective study of the French Polynesia outbreak exposed various 

cases of microcephaly that had not been linked to ZIKV infection during the outbreak 

and before this epidemic.55 The fast spread of ZIKV in the Americas and the increase in 

the number of ZIKV-associated cases of microcephaly led the World Health 

Organization to declare ZIKV infection a public health emergency of international 

concern on February 1st, 2016.56 However, this only lasted 8 months due to the drastic 

reduction in the amount of ZIKV cases.57 After this epidemic, only a few minor 

outbreaks were reported in Cuba, India, and Angola.58–60 A representative overview of 

ZIKV spread worldwide is summarized in Figure 2. 

Figure 2 – Chronological map of ZIKV dissemination. ZIKV was discovered in the Zika Forest, in 
Uganda in 1947. The first human cases of ZIKV infection in the Asian continent were reported in 1977. 
The first outbreak occurred in the State of Yap, in the Federate States of Micronesia in 2007. ZIKV 
emerged in French Polynesia in 2013 where the largest outbreak until that time was documented. Shortly 
after, the first cases of ZIKV infection surged in Brazil in 2014. By 2016, ZIKV had rapidly spread all over 
the Americas with several cases appearing in non-endemic countries, including most European 
countries. Retrieved from Public Health Landscape website.61  

1.1.3 Clinical manifestations  

It is estimated that about 20-56% of ZIKV cases are symptomatic.62,63 ZIKV infection is 

typically presented as mild fever, exanthema (rash), arthralgia, conjunctivitis, myalgia 

(muscle pain), and headache.64,65 The incubation period of ZIKV is 3-14 days after the 

bite of an infected mosquito and the symptoms generally last in most cases from 2 to 

7 days.65 Besides these flu-like symptoms, neurological complications were linked to 

ZIKV infection. Approximately 75% of these complications in adults are GBS.64 GBS is 
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an acute immune-mediated disease that affects the peripheral nervous system, leading 

to progressive muscle weakness and even paralysis.66,67 Generally, the nerve damage is 

not permanent. However, persistent cases, which are approximately 20%, result in 

severe disability and respiratory failure with a mortality rate of 3-10%.67–69 Further 

neurological complications connected to ZIKV infection are meningoencephalitis and 

acute myelitis, among others.64,70,71 Pregnant women that are infected with ZIKV have 

an elevated chance of miscarriage, preterm birth, and stillbirth (fetal death before or 

during delivery).72,73 Moreover, multiple congenital malformations in fetuses and 

newborns were associated with ZIKV infection during pregnancy. These malformations 

are referred to as congenital ZIKV syndrome (CZS) and are mainly neurological, 

musculoskeletal, ophthalmological, and auditory.73–75 During the epidemic in the 

Americas, a drastic increase in the number of cases of microcephaly was reported.76 

Microcephaly is a neurological disorder in which the head size is smaller than what is 

expected for age, sex, and ethnicity (Figure 3).77 This condition can be correlated with 

an underdeveloped brain, impaired motor and cognitive functions, extracranial 

malformations, and facial distortion.78 Apart from fatalities related to the CZS in 

newborns and fetal death during pregnancy, ZIKV mortality is rare with only a few 

reported cases.79–82  

 

 

 

 

 

 

Figure 3 – Representative illustration of newborns with microcephaly.  Microcephaly is a 

neurological condition in which the head size of a newborn is smaller than expected. This disorder can 

be moderate or severe and was linked to ZIKV infection. Retrieved from Petersen et al., 2016.83 

1.1.4 Viral evolution 

Phylogenetic analyses disclose two major ZIKV lineages, the African and the Asian 

lineages that comprise innumerous viral strains (Figure 4).84,85 The African lineage is 

divided into the East African cluster, which contains the first isolated ZIKV strain 

(MR766) and its variants, and the West African cluster that covers all the West African 

strains, including the Nigeria strain.86 The Asian lineage encompasses all strains from 

Southeast Asia, the Pacific, and the American cluster.87 The ZIKV strains connected to 

human outbreaks share higher sequence homology with the mosquito strain P6-740 
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isolated in Malaysia in 1966 than the ones from the Nigerian cluster. This indicates that 

the strains responsible for the epidemic in the Americas and the birth defects evolved 

from this mosquito strain, belonging to the Asian lineage.88 Yet, the ZIKV strains from 

these two lineages share approximately 88% and 96% nucleotide and amino acid 

sequence identity, respectively.21,89 By contrast, the African lineage was rarely linked to 

human infection and was never detected outside the African continent nor connected 

to neurological disorders. The human outbreak and the CZS cases reported in Angola 

in 2016 were linked to the Asian lineage.58 The reason behind the lack of association of 

human outbreaks with the African lineage remains unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Phylogenetic tree of ZIKV lineages. ZIKV strains are divided into African and Asian lineages. 

Not all ZIKV strains are represented in the illustration. Strains isolated from humans, mosquitoes, and 

monkeys are labeled in blue, orange, and black circles, respectively. The phylogenetic relationships were 

based on the analysis of the complete coding sequence of ZIKV strains. The scale indicates 1% nucleotide 

sequence divergence. Retrieved from Wang et al., 2016.88 

It has been suggested that genetic changes in the viral genome during ZIKV 

dissemination could have resulted in increased transmission by mosquitoes, infectivity, 

and human pathogenesis.90,91 However, Aubry et al. revealed that the strains from the 

African lineage not only have higher transmissibility by mosquitoes but are also more 

lethal in immunocompromised adult mice than the strains from the Asian lineage.92 

These observations suggest that ZIKV re-emergence and evolution was not due to viral 

adaptation, but maybe because of arbitrary reunion of propitious epidemic conditions 

in the outbreak areas, namely increased air travel, immunologically naive human 
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populations, and high density of competent vectors.92,93 Moreover, strains from both 

lineages were described to be capable to cross the placenta barrier and generate 

congenital malformations.94,95 In fact, it was proposed that ZIKV strains from the Asian 

lineage might have become attenuated during viral evolution, increasing the number 

of birth defects instead of fetal deaths and consequently, explaining the absence of 

CZS cases linked to the African lineage.92,96  

1.1.5 Viral transmission  

As previously mentioned, ZIKV is an arbovirus and its main vector of transmission are 

the mosquitoes of the Culicidae family within the Aedes genus. The female mosquito 

is infected with ZIKV through the bite of an infected human or another mammal while 

the virus circulates in the bloodstream (viremia). After replication and spreading 

through the mosquito body until reaching the salivary glands, the virus present in the 

saliva of the mosquito is delivered into the dermis of the skin of the naive host during 

the blood-feeding.97,98 ZIKV is transmitted between non-human primates and arboreal 

mosquitoes in a sylvatic cycle. Sporadically, ZIKV can be transmitted to humans by 

arboreal mosquitoes in forests. By contrast, in an urban cycle, humans are the primary 

host, and the transmission is carried out by urban mosquitoes, mainly Aedes aegypti 

and Aedes albopictus.99 Aedes aegypti is the predominant vector of transmission in an 

urban environment as it is broadly distributed in Africa, America, Asia, and Oceania and 

has a superior vectorial capacity.100,101 While Aedes aegypti propagates in tropical and 

subtropical conditions, Aedes albopictus thrives as well in temperate climates, 

including North America and Europe.102 Besides these two mosquito species, Aedes 

hensilli and Aedes polynesiensis mosquitoes were linked to the outbreaks in the State 

of Yap and French Polynesia, respectively.103–105  

Besides being transmitted by mosquitoes, ZIKV can also be spread directly human-to-

human via body fluids. The most studied route of non-vector transmission is the 

maternal-fetal transmission due to the several cases of microcephaly and other 

congenital disorders associated with ZIKV infection. In this case, viral transmission 

occurs in the uterus through the placenta during pregnancy.106,107 Perinatal 

transmission in which the newborn was most likely infected during childbirth was also 

reported.108 Additionally, there is evidence of the presence of ZIKV infectious viral 

particles in breast milk, but viral transmission through this fluid has not been confirmed 

until now.109 Another mode of transmission, which is not common among flaviviruses, 

is through sexual contact.110 The majority of the reported cases of sexual transmission 

occurred from an infected male to a female.111–113 This observation might be correlated 

to the fact that ZIKV shedding has a higher incidence and lasts longer in the testis and 

semen than in the vaginal tract and secretions.114 Furthermore, viral transmission 
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through blood transfusion has been documented as well.115–117 Other possible ways of 

ZIKV transmission with sporadic occurrence are organ transplantation, laboratory 

incidents, and animal bites.118–121 A representative overview of the modes of ZIKV 

transmission is summarized in Figure 5. 

Figure 5 – Vector and non-vector borne routes of ZIKV transmission. In a sylvatic cycle, ZIKV is 

transmitted between non-human primates and arboreal mosquitoes, whereas in an urban cycle, the 

transmission occurs between humans and urban mosquitoes. ZIKV can also be transmitted human-to-

human by sexual contact, blood transfusion, and from mother to child. Retrieved from Rather et al., 

2017.122  

1.1.6 Diagnosis 

Up to 80% of the infected patients are asymptomatic and for those who exhibit clinical 

signs, the symptoms are often non-specific and similar to other infections caused by 

different arboviruses.123 In light of this, laboratory testing remains crucial for ZIKV 

diagnosis. The diagnosis can be performed based on both molecular and serological 

tests. Molecular tests consist of the direct detection of the genomic viral RNA mostly 

by real-time quantitative reverse transcription PCR (RT-qPCR).124–126 Although this 

nucleic acid amplification test is highly sensitive and specific, it is only valid during the 

early phase of infection due to the short viremic period of ZIKV.21 In most cases, ZIKV 

RNA can be detected in the serum up to 4 days after the symptoms appear, and as late 

as 11 days.21,127 Considering that whole blood needs to be analyzed shortly after 
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collection and the inconsistency of saliva, urine is usually collected as a secondary 

specimen. In fact, ZIKV RNA can persist longer than 10 days in urine after the initial 

symptoms.127,128 In children and newborns, as the blood collection tends to be more 

complicated, urine and saliva specimens are preferable.129 In addition, cerebrospinal 

fluid, amniotic fluid, breast milk, semen, vaginal secretion, and tissues can be 

considered as specimens as well (Figure 6).128–134 

On the other hand, serological tests reside on the detection of viral antigen-specific 

antibodies (IgM or IgG) mainly by enzyme-linked immunosorbent assay (ELISA) or 

immunofluorescence assay.21 IgM antibodies against ZIKV can be detected from day 5 

to almost 12 weeks after the first clinical manifestations, while IgG appears just after 

IgM and can last a lifetime (Figure 6).135–137  

Figure 6 – Chronology of ZIKV infection and respective diagnostic indication. Diagnosis of ZIKV 

infection can be made based on molecular and/or serological tests depending on the day after the onset 

of the symptoms that the samples are collected. Molecular tests, such as RT-qPCR, are only adequate 

while ZIKV RNA can be detected in the serum/plasma, which in most cases is up to 4 days after the 

symptoms appear. A urine sample is usually collected additionally as ZIKV tends to persist longer than 

in blood. From day 5 up to 12 weeks after the onset of the symptoms IgM antibodies against ZIKV can 

be measured by ELISA from a serum sample, whereas IgG can be detected about a week later and  can 

last several years. Retrieved from Jorge et al., 2020.138  

Nevertheless, the interpretation of these results can be challenging due to the cross-

reactivity of the antibodies that exists in patients that were previously infected with 

other flaviviruses or vaccinated against these.21,120,139 Therefore, positive results should 

be confirmed by plaque reduction neutralization test (PRNT). The plaque reduction 

neutralization assay can determine the virus-specific neutralizing antibody titer, but 
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requires extensive laboratory work partially because of the low throughput and longer 

time to obtain the results.140,141 Hence, this assay can be disadvantageous for patient 

diagnosis during a large outbreak. Due to the cross-reactivity still existing in this 

serological assay, the PRNT should be performed in parallel against other flaviviruses 

that have a high prevalence in the region where the exposure occurred. In light of this, 

a positive result is considered when the PRNT90 titer (dilution of the serum that is 

capable to reduce the number of plaques formed by a given virus by 90% in 

comparison to the free-serum control) against ZIKV is ≥10 and PRNT90 titer against 

other flaviviruses tested is <10.142,143  

1.1.7 Treatment and prevention 

Until the present day, there is neither a specific antiviral treatment nor a preventive 

vaccine against ZIKV infection. As viral infection will eventually clear, the treatment is 

directed to relieving the symptoms. Infected patients are advised to rest, hydrate with 

fluids, take antihistamines and acetaminophen (paracetamol) for the pruritic rash and 

to mitigate the fever and pain, respectively.144 If the symptoms aggravate, medical care 

should be sought. In the event of developing GBS, therapeutic plasma exchange or the 

administration of intravenous immunoglobulins can be used as treatment.145  

The development of antiviral drugs generally relies on targeting the host cell by 

interfering with crucial steps of the viral life cycle and thereby, hampering the formation 

of new infectious viral particles and affecting the viral spread. Alternatively, these 

compounds can target the viral components, mainly focusing on the RNA polymerase 

(NS5) or the viral protease (NS2B-NS3) (see chapter 1.1.8.1). Both approaches require 

an extensive comprehension of the molecular and cellular mechanisms of ZIKV 

pathogenesis and the identification of important virus-host interactions. The 

development and the approval of novel compounds requires a long time and therefore, 

repurposing already existent licensed drugs which are used for other clinical indications 

to treat ZIKV infection is preferable.146,147 Innumerous compounds including the 

antibiotic azithromycin, the antiparasitic drug nitazoxanide, the antimalaria drug 

chloroquine, the antiprotozoal drug emetine, and the antiviral drugs ribavirin and 

favipiravir have shown promising antiviral activity against ZIKV infection in vitro.148–152 

Still, only a few drugs have reached clinical trials, such as pinocembrin (post-entry 

process), galdesvir (viral polymerase inhibitor), ebselen (reactive oxygen species 

reductor), nordihydroguaiaretic acid (sterol regulatory element-binding proteins 

inhibitor), NITD008 (viral polymerase inhibitor), and 7-deaza-2’C-methyladenosine 

(viral polymerase inhibitor).153–158 Currently, only galdesvir and ebselen have completed 

phase I of the clinical trials. The nordihydroguaiaretic acid and pinocembrin continue 

in phase I of the clinical trials, whereas NITD008 and 7-deaza-2’C-methyladenosine 
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were not approved. 159–161 Nevertheless, there is not sufficient information on the 

effects of any of these drugs on pregnant women due to their exclusion in clinical trials.  

Due to the difficulties in the establishment of an effective and safe treatment, vector 

and personal preventive measures should be taken in ZIKV endemic countries. In the 

affected areas, the density of the viral vectors should be controlled by eliminating the 

breeding sites of mosquitoes and the human population should avoid mosquito bites 

by using insect repellents, long sleeves and pants, insect netting, and staying away from 

standing waters, for instance.162,163 In addition, couples should practice abstinence or 

have protected sexual intercourse, including returning travelers.164 To prevent the 

occurrence of microcephaly in fetuses or babies, pregnant women are not advised to 

travel to countries at risk and pregnancy should be avoided in high prevalence areas 

until the number of ZIKV cases undergoes a drastic reduction or complete 

eradication.165  

Developing a preventive ZIKV vaccine as well as any other arbovirus vaccine is 

challenging due to the irregular emergence and ceasing of the epidemics. Moreover, 

for certain flaviviruses, including ZIKV and DENV, the antibody-dependent 

enhancement (ADE) phenomenon is problematic in the development of a safe vaccine. 

ADE occurs when the antibodies produced during an immune response bind to the 

virus without neutralizing its activity.166,167 Subsequently, these antibodies can facilitate 

viral entry via Fc gamma receptors, increasing the immune response and illness 

severity.168–170 Thus, the cross-reactivity of the flavivirus antibodies and the pre-existing 

immunity, which can be obtained either through previous flavivirus infection or 

vaccination, are a concerning issue in the production of a vaccine. As DENV and ZIKV 

are prevalent in the same areas, it has been implicated that ADE could be responsible 

for the neurological disorders associated with ZIKV infection.171 Multiple candidate 

vaccines comprising live attenuated, purified inactivated, DNA, mRNA, virus-like 

particles, and viral vectors vaccines are in clinical trials.172–175 However, the decline of 

ZIKV cases and the unpredictability of the outbreaks are hampering phase 2 and phase 

3 of the clinical trials.  

1.1.8 Molecular virology 

1.1.8.1 Genome organization and functionality  

ZIKV is a non-segmented, single-stranded, positive-sense RNA virus with a genome 

varying from 10398 to 11520 nucleotides (nt), depending on the strain and/or isolate. 

Nevertheless, the most predominant size of the genome is 10.8 kilobase pairs (kb).176–

178 The 5’ and 3’ ends of the genomic RNA contain two untranslated regions (UTR) that 

flank a single open reading frame (ORF). The 5’ UTR with around 100 nt holds a cap 
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structure composed of a guanosine residue that is connected to the 5’ end of the RNA 

through a 5’-5’ triphosphate bond.179,180 This cap structure confers stability and 

protection to the viral RNA from degradation by exoribonucleases.181 The cap is 

methylated at the nitrogen in position 7 of the guanosine, allowing the recognition by 

the initiation factor eIF4E and consequently, the translation of the viral genome.182–184 

Additionally, the cap structure is further methylated at the 2’-oxygen atom (2’-O) of the 

N1 ribose, yielding a cap-1 structure. This methylation is thought to shield the viral 

genome from being detected by the host cell sensors that stimulate the production of 

interferon genes to restrict viral translation.185–187 The cap structure is followed by the 

conserved dinucleotide AG and two conserved stem-loop structures, SLA and SLB, 

which are separated by a poly(U) sequence (Figure 7).188,189 The SLA acts as the 

promoter for the viral genome replication by directly interacting with the viral 

polymerase NS5 and coordinates the addition of the cap structure in the nascent 

transcript.190,191 Its presence is also required for both N-7 and 2’-O methylation of the 

cap structure.192 The SLB is located near the ORF start codon and comprises the 5’ 

upstream AUG region (5’ UAR) sequence necessary for the interaction with the 3’ end 

of the viral genome.193,194 Downstream the SLB, in the capsid coding region, the 

downstream AUG region (5’DAR) is another important element for the interaction of 

the 5’ with the 3’ end of the genome as well as the cyclization sequence (CS). In between 

these two regions lies the capsid region hairpin (cHP) that facilitates the positioning of 

the ribosome close to the start codon, enhancing viral translation (Figure 7).195,196 The 

3’ UTR with approximately 400 nt lacks the poly(A) tail that is usually present in the 

host mRNA and terminates with the conserved dinucleotide CU sequence.197,198 It is 

composed of two stem-loops (SL-I and SL-II), two dumbbells (DB-1 and DB-2), and a 

small hairpin 3’ stem-loop (sHP-3’-SL) (Figure 7).199 Except for the sHP-3’-SL, the exact 

function of these structures remains unknown. Nonetheless, they seem important for 

viral replication and translation. The sHP-3’-SL serves as a binding site to the poly(A)-

binding protein and interacts with viral and other host proteins to control viral 

replication and translation.200–202 Furthermore, the stem-loop structures are resistant to 

the host 5’-3’ exoribonuclease 1 (XRN1) activity. As a result, non-coding subgenomic 

flavivirus RNA molecules (sfRNAs) are generated by the degradation of uncapped viral 

RNA that stall at these structures (Figure 8).203,204 These sfRNAs are crucial for viral 

replication and antagonization of the interferon response.205,206  Complementary 

sequences of the UAR, DAR, and CS can be found within the 3’ UTR. The base-pair 

interaction of the 5’UTR with the 3’UTR, namely 5’ CS-3’CS, 5’ UAR-3’ UAR, and 5’ DAR-

3’ DAR, results in the cyclization of the viral genome (Figure 7).207 The cyclization allows 
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the viral polymerase NS5, which is bound to the SLA in the 5’ UTR, to reach the 3’ end 

of the viral genome that is vital for the initiation of the RNA synthesis.207,208  

Figure 7 – Schematic representation of the linear and circular forms of the ZIKV genome. The ZIKV 

genome contains conserved RNA structures in the 5’ and 3’ untranslated regions (5’UTR and 3’UTR) that 

are specified in the representation. The 5’UTR comprises two stem-loops (SLA and SLB), a capsid region 

hairpin (cHP), and a cyclization sequence (CS) pseudoknot (DCS-PK), whereas the 3’UTR harbors two 

stem-loops (SL-I and SL-II), two dumbbells (DB-1 and DB-2), and a small hairpin 3’ stem-loop (sHP-3’-

SL). The 5’ end can interact with the 3’ end of the genome through the upstream AUG region (UAR), 

downstream AUG region (DAR) and the CS marked in orange, green, and red, respectively.  These 

interactions allow the cyclization of the viral genome. Retrieved from Li et al., 2020.207 

The ORF encodes a single large polyprotein of 3423 amino acid residues (aa). However, 

the polyprotein from the MR766 strain is shorter with 3419 aa, lacking a 4 aa N-

glycosylation motif (VNDT) in the envelope region that is thought to be lost during cell 

culture passaging since its isolation.177,178,209 The viral polyprotein is co- and post-

translationally processed by cellular host and viral proteases into three structural and 

seven non-structural proteins. The structural proteins are located at the N-terminal end 

of the polyprotein and are comprised of the capsid (C), the precursor of 

membrane/membrane (prM/M), and the envelope (E) proteins, followed by the non-

structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) positioned at the C-

terminal end (Figure 8).210 In the lumen of the endoplasmic reticulum (ER), the host 

signal peptidase splits the prM protein from the portion of the C protein that is 

integrated into the ER membrane (capsid anchor); the prM protein from the E protein; 
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the E protein from the NS1 protein; and NS4B protein from the hydrophobic region of 

NS4A protein (designated as 2k peptide). Meanwhile, on the cytoplasmic side, the viral 

serine protease (NS2B/NS3) cleaves the C/capsid anchor; the NS2A/NS2B; the 

NS2B/NS3; the NS3/NS4A; the NS4A/2k peptide, and the NS4B/NS5 junctions. In 

addition, an unknown host protease separates the NS1 protein from the NS2A protein. 

During the secretion of the viral particles, a furin protease resident in the trans-Golgi 

network (TGN) cleaves at the pr peptide and the M protein junction that is required for 

viral maturation (Figure 8).177,210    

The structural proteins, as the name indicates, structurally form the viral particle. The 

full-length C protein is composed of five helices (1-5) with the last helix (5), 

denominated as the capsid anchor, anchoring the protein to the ER membrane.211 The 

capsid anchor functions as a signal peptide that allows the translocation of the prM 

into the ER lumen. After cleavage by the viral protease (NS2B-NS3), the mature C 

protein, which is formed by the helices 1-4, is released in the cytoplasm and 

associates with the viral genome. The mature C protein with about 11 kDa exists as a 

dimer and has an asymmetric charge distribution.210,212 On the one side, it encompasses 

hydrophobic residues to interact with the viral lipid membrane. On the other side, it 

holds residues with a positive charge to interact with the negatively charged genomic 

RNA, acting as an RNA chaperone.211,212 Besides integrating the viral nucleocapsid and 

ensuring the correct assembly of the viral particles, the C protein might shield the viral 

genome from host nucleases and RNA sensors after entering the host cells.211,213 

Additionally, it was shown to have a role in the development of neurological disorders 

associated with ZIKV infection.214–216 The prM glycoprotein with around 26 kDa is 

subjected to cleavage by a furin protease in the TGN, generating the N-terminal pr 

peptide and the M protein. The latter is inserted into the viral lipid membrane. The prM 

interacts with the E protein to form heterodimers, assisting in its correct folding.217–219 

Both prM and E proteins have two transmembrane domains that serve as ER-retention 

signals and facilitate the formation of the lipid envelope of the viral particle.220–222 The 

pr peptide covers approximately 12 aa of the fusion loop of the E protein, preventing 

the premature fusion of the viral particle within the cell. After cleavage, the fusion loop 

is exposed and the pr peptide is released to the extracellular environment, together 

with the viral particle.223–225 The E protein is also a glycoprotein anchored to the 

membrane via its C-terminus.226 With about 53 kDa it is constituted by four domains. 

The domain I (DI) connects the domain II (DII) and the domain III (DIII) by disulfide 

bridges. The DII is involved in the dimerization of the E protein and has a conserved 

amino acid sequence at the extremity of this domain that interacts with the host 

endosomal membrane during membrane fusion (fusion loop). The domain III exhibits 

an immunoglobulin-like structure and is responsible for the virus-host interactions 
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during attachment and entry. 227,228 The fourth domain is comprised of a stem anchor 

and two transmembrane regions, anchoring the E protein to the ER membrane.229,230 

As the major component of the surface of the viral particles, the E protein, mainly DII 

and DIII, is the principal target of neutralizing antibodies.227,231  

The non-structural proteins are not part of the viral particle, but are crucial for the viral 

life cycle. The NS1 protein is a glycoprotein with approximately 46 kDa that exists in 

multiple forms. It is synthesized as a monomer and dimerizes within the ER lumen, 

inducing the reorganization of the ER membranes to form the sites of replication and 

assembly and integrating the replication complex (see chapter 1.1.8.2).232,233 

Additionally, the NS1 protein was associated with the suppression of interferon 

signaling.234–236 Part of the dimeric NS1 protein undergoes maturation in the TGN, 

being secreted into the extracellular space as a hexameric lipoprotein (sNS1).237–239 The 

sNS1 protein accumulates in the serum of patients during the acute phase of infection 

and thus, it is used as a diagnostic marker for viral infection.240 Furthermore, the NS2A 

is a protein residing in the ER with a size of about 22 kDa and is important for viral 

replication as a member of the replication complex.241 Besides being involved in viral 

replication, the NS2A protein has a central role in viral assembly. It binds to the 3’UTR 

of the newly synthesized viral RNA through its cytoplasmic loop and in addition recruits 

the uncleaved C-prM-E polyprotein and the viral protease (NS2B/NS3) to the assembly 

site, facilitating the formation of the nucleocapsid and the interaction with the 

remaining structural proteins.242 The NS2A protein can also suppress the interferon 

response and was found to be correlated with ZIKV-induced neurovirulence.234,243,244 

The NS2B protein is also an ER-resident protein with approximately 14 kDa and is 

known as a cofactor of NS3. It interacts with the NS3 protein to form the viral protease, 

anchoring this to the ER membrane and activating its protease activity.245–247  Moreover, 

the NS2B protein can also hamper the interferon response.235,248 The NS3 protein with 

about 70 kDa has several functions. The N-terminal end comprises the serine protease 

domain that together with the NS2B protein cleaves the viral polyprotein on the 

cytoplasmic side. The C-terminal end harbors the RNA helicase and the nucleoside 

triphosphatase domains. The RNA helicase dissociates the double-stranded RNA 

(dsRNA) intermediate during the synthesis of the viral RNA, whereas the nucleoside 

triphosphatase provides the energy for the RNA helicase to dissociate the RNA strands. 

246,249,250 Apart from playing a role in the maturation of the viral polyprotein and viral 

replication, the viral protease (NS2B/NS3) inhibits the interferon response and affects 

cytokinesis in neuronal cells, leading to a decrease in cell division and promoting 

cellular apoptosis.248,251,252 It also impairs the formation of stress granules to prevent 

the ceasing of the host translation machinery that is vital for the synthesis of the viral 

proteins.214 More recently, it was shown that the NS3 protein induces intracranial 
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calcification, a common fetal birth defect associated with ZIKV infection, and 

consequently, affects the brain development.253 The NS4A and NS4B proteins are also 

ER-resident proteins, similar to the NS2A and NS2B proteins, with approximately 16 

kDa and 27 kDa, respectively. The viral genome translates a hydrophobic segment 

denominated as the 2K peptide (2 kDa peptide) that is completely inserted in the ER 

membrane and located in between the NS4A and the NS4B proteins, functioning as a 

signal peptide for the NS4B protein.210,254 Both NS4A and NS4B proteins are part of the 

replication complex. Nevertheless, the exact function during viral replication is not 

known. It was suggested that like other flaviviruses, these proteins induce autophagy 

to generate membrane structures to serve as replication sites. The NS4A and NS4B 

proteins were linked to microcephaly and other neurological disorders by 

dysregulating the Akt/major target of rapamycin (mTOR) signaling pathway and 

hampering neurogenesis.255 Additionally, the NS4A protein impedes the interferon 

response and the formation of stress granules in a comparable manner as the viral 

protease NS2B-NS3.214,256,257 The NS4B protein can also suppress the interferon 

response.234,235 Lastly, the NS5 protein is the largest non-structural protein with about 

103 kDa. The N-terminal end encloses the methyltransferase (MTase) domain 

responsible for the methylation of the viral RNA cap, while the C-terminal end contains 

the RNA-dependent RNA polymerase (RdRp) domain that catalyzes the viral RNA 

synthesizes.258,259 The NS5 protein also antagonizes the interferon response by 

disrupting the Janus kinase/signal transducer and activator of transcription (JAK/STAT) 

signaling pathway and interacts with the NS3 protein to stimulate its helicase 

activity.250,260–262 Even though the viral replication occurs in the cytoplasm, the NS5 

protein was found mainly in the nucleus. This accumulation in the nucleus seems to 

protect the NS5 protein from cytoplasmic degradation, enabling its viral functions.263 
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Figure 8 – Schematic representation of the ZIKV genome and respective viral polyprotein. The 

ZIKV genomic RNA comprises a single open reading frame (ORF) with two untranslated regions at the 

5’ end and 3’ end of the genome. Non-coding subgenomic flavivirus RNA molecules (sfRNAs) are 

produced by the degradation of uncapped viral RNA by the host 5’-3’ exoribonuclease (XRN1) that stall 

at the stem-loop structures present at the 3’ end of the genome. The ORF encodes the viral polyprotein 

that is processed by host and viral proteases, originating three structural proteins (C, prM/M, and E) and 

seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). All cleavage sites are indicated 

with arrows as well as the respective proteases. The predicted membrane topology of the viral 

polyprotein is represented on the bottom. Retrieved from ViralZone website.264 

1.1.8.2 Structure of the viral particles 

Similar to other flaviviruses, ZIKV particles are enveloped, ranging from 50 nm (mature 

form) to 60 nm (immature form) in diameter.265–267 The surface of the immature viral 

particles consists of a host-derived lipid bilayer coated with 60 spikes. Each spike is 

formed by three copies of the prM protein and three copies of the E protein, yielding 

a total of 180 copies of each protein. After maturation, the 60 prM-E trimers are 

converted into 90 M-E dimers, flattening the surface of the virus and providing a 

smoother spherical appearance (Figure 9A). The M protein lies underneath the E 

protein layer. The E proteins are organized as dimers and displayed in raft configuration 

(Figure 9C). Each raft is made up of three dimers set out parallel to each other. In total, 

there are 30 rafts arranged in a herringbone pattern. Half of a raft represents an 

asymmetric unit with a total of 60 units in an icosahedral-like symmetry (Figure 9B) 
229,266. The inner core of 28-30 nm harbors the viral genome that is associated with 120 

copies of the C protein (60 C dimers), creating the viral nucleocapsid.211,268  
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Figure 9 – Schematic representations of ZIKV viral particle. (A) Schematic representation of the 

immature (left) and mature (right) forms of the ZIKV viral particle. After maturation, the 60 prM-E trimers 

are reorganized into 90 M-E dimers, flattening the surface of the virus. (B) The viral particle has in total 

30 rafts arranged in a herringbone pattern. Each raft is composed of three dimers set out parallel to each 

other (marked in white). Half of a raft represents an asymmetric unit (marked in black) with a total of 60 

units in an icosahedral-like symmetry. (C) Representation of the nucleotide sequence of the E protein 

color-coded by domains (top). The E proteins are organized as dimers and each E protein possesses 

three domains: domain I (DI), domain II (DII), and domain III (DIII) that are represented in red, yellow, 

and blue, respectively. Retrieved and adapted from Kostyuchenko et al., 2020, and Heinz and Stiasny, 

2017.229,269 

1.1.8.3 Viral life cycle 

The ZIKV life cycle is still poorly studied and thus, it is presumed to resemble the life 

cycle of other flaviviruses. The cycle begins with the interaction of the E glycoprotein 

with multiple cell surface molecules that allow the attachment and the concentration 

of the viral particles at the cell surface before their contact with the receptors.270 A 

variety of molecules were described to participate in this process. The binding of the 

viral particles to these attachment factors is relatively nonspecific and with low affinity. 

Glycosaminoglycans, such as heparan sulfate and chondroitin sulfate, were reported to 

be involved in ZIKV attachment.271 Shortly after, these data were contradicted by Gao 

et al. which showed that heparan sulfate is required for DENV attachment, but not for 

ZIKV.272 Concerning viral receptors, Hamel et al. identified the participation of the 

dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-

SIGN), the T cell immunoglobulin mucin (TIM)-1 and members of the Tyro3-AXL-MER 

(TAM) family of receptor tyrosine kinases (RTKs) in the ZIKV entry process, emphasizing 

AXL as a promising ZIKV receptor.273 Besides the direct interaction of the E protein with 

the cell surface receptors, the entry of ZIKV and other flaviviruses was shown to occur 

as well through exposed phosphatidylserines (PS) present on the viral membrane in the 

case of the PS receptors, TIM and TAM. For the TAM receptors, the contact is made 

indirectly via the receptor ligands, for instance, the growth-arrest-specific 6 (gas6) and 

protein S (pros1).274–276 However, there are conflicting data regarding the role of AXL 

A B C 
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in ZIKV entry that seems to be cell type-specific. While AXL appears to be essential for 

viral infection in human endothelial cells, skin cells, and brain glial cells, it is not 

required in human neuronal progenitor cells, cerebral organoids, and mice lacking 

interferon receptors.273,275–282 During the timeframe of the present study, other 

molecules were reported to play a role during ZIKV entry, including 2,3-linked sialic 

acid, heat shock protein 70 (Hsp70), integrin vβ5, neuronal cell adhesion molecule 

(NCAM1), and glucose-regulating protein 78 (GRP78).283–287 Still, the exact mechanism 

of how ZIKV enters the host cell involving all these receptors remains unknown. The 

viral attachment and entry into a host cell dictate to a certain extent the tropism and 

pathogenicity of a virus.288 In a conventional situation, a virus binds with high affinity 

to a specific receptor, mimicking its ligand and tricking the host cell into taking up the 

virus. However, for certain viruses, such as the flaviviruses, viral entry is a far more 

complex process and usually involves several cellular attachment factors and receptors. 

These can function either simultaneously, independently of each other, sequentially, or 

in a cell-type-specific manner.6,289 ZIKV enters the host cell by receptor-mediated 

endocytosis in clathrin-coated pits.290 Nevertheless, recent evidence indicates that 

internalization can also occur in caveolin-coated pits.291 After reaching the endosomal 

compartment, the acidic environment induces conformational changes of the E 

glycoprotein, triggering the fusion between the viral envelope and the endosomal 

membrane.266,292 Consequently, the disintegration of the viral capsid (uncoating) leads 

to the release of the viral genome into the cytoplasm, concluding the entry process. 

The genomic RNA acts as mRNA and serves as the template for both translation and 

replication. As the viral particles lack the non-structural proteins and the viral 

replication is dependent on the RdRp activity of the NS5 protein, the translation of the 

viral genome takes place before the viral replication. The translation occurs at the ER 

surface and is thought to be driven by a cap-dependent mechanism.210 Nonetheless, a 

recent study shows that ZIKV contains a short nucleotide sequence within the 5’UTR 

that functions as an internal ribosomal entry site (IRES).293 The N-terminus of the 

nascent polyprotein harbors an ER-localization signal that immediately directs the 

ribosomes to translocate the viral polyprotein into the ER, resulting in its embedding 

in the ER membrane.294 The polyprotein is cleaved co- and post-translationally into the 

structural and the non-structural proteins by both host and viral proteases (see chapter 

1.1.8.1).177,210 Mature C, NS3, and NS5 are soluble cytoplasmic proteins, whereas NS1 is 

expected to be a soluble ER luminal protein. Moreover, NS2A, NS2B, NS4A, and NS4B 

are ER-resident proteins, while prM and E are integral membrane proteins facing the 

ER lumen. Successively, the viral proteins induce the rearrangement of the ER 

membranes to form invaginations denominated as vesicle packets that will serve as the 

site for replication and assembly. Thus, allowing spatial compartmentalization between 
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these two events and protecting the replication machinery from cellular immune 

defense systems.295–297 Subsequently, the replication complex assembles in these sites 

and coordinates the viral replication. The NS5 protein binds to the SLA in the 5’ UTR, 

which acts as a promoter, and interacts with the 3’ end of the genomic RNA due to the 

cyclization of the viral genome (see chapter 1.1.8.1). Hence, the RdRp domain of the 

NS5 protein transcribes a complementary negative-sense strand RNA, forming a 

dsRNA intermediate.258,259 The helicase activity of the NS3 protein unwinds the dsRNA 

and the negative-sense strand RNA is used as a template for the synthesis of multiple 

copies of positive-sense strand RNA (asymmetric replication).250 The cyclization of the 

viral genome is not required for the synthesis of the positive-sense strand RNA. 

Following viral replication, the negative-sense strand RNA can undergo a new cycle of 

RNA synthesis, whereas the positive-sense strand RNA is capped and methylated at 

the 5’ end as a result of the NS3 helicase and the NS5 MTase activities (Figure 10).210  

 

 

 

 

 

 

 

 

 

 

Figure 10 – Schematic representation of the synthesis of the ZIKV genomic RNA. The viral genome 

is a positive-sense strand RNA. The RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein 

transcribes a complementary negative-sense strand RNA, generating a double-stranded RNA (dsRNA) 

intermediate. After the dissociation of the strands by the activity of the helicase domain of the NS3 

protein, multiple copies of the positive-sense strand RNA are synthetized from the negative-sense strand 

RNA template (asymmetric replication). The formed dsRNA intermediate can be recycled for a new cycle 

of replication, whereas the positive-sense strand RNA is capped and methylated to originate the 

genomic RNA by the helicase domain of the NS3 protein and by the methyltransferase (MTase) domain 

of the NS5 protein, respectively. Retrieved and adapted from Klema et al., 2015.298  

After being capped and methylated, the newly synthesized genomic RNA is either 

translated or assembled to generate a new viral particle. The exact mechanism of ZIKV 

assembly is still not completely elucidated. Zhang et al. showed that after viral 

replication, the genomic RNA, the viral protease NS2B-NS3, and unprocessed C-prM-

E complexes are escorted by the NS2A protein to the assembly sites, which are usually 
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at the opposite site of the pore of the replication vesicle. In these sites, the viral 

protease NS2B-NS3 and the host signal peptidase cleave the C-prM-E complex, 

releasing the C protein. Multiple copies of the mature C protein associate with the viral 

genome leading to its encapsidation. At this moment, the nucleocapsid buds into the 

ER lumen and consequently is wrapped by a lipid bilayer that contains the 60 trimers 

prM-E heterodimers.242,295,299 Once assembled, the immature viral particle migrates 

using the secretory pathway, passing through the TGN. The low pH of the TGN 

environment induces conformational changes on the viral particles, uncovering the 

cleavage site of the pr peptide that is cleaved by a furin protease. The now mature viral 

particle leaves the host cell by exocytosis, inducing the dissociation of the pr peptide 

due to the neutral pH of the extracellular environment.224,225,300 The released viral 

particles can then infect other cells and a new infection cycle starts. A summarized 

scheme of the viral life cycle is represented in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 – Schematic representation of the life cycle of flaviviruses. The viral life cycle initiates with 

the attachment and the uptake of the viral particle by receptor-mediated endocytosis in clathrin-coated 

pits. In the endosomal compartment, the low environmental pH triggers conformational changes of the 

viral particle, allowing the fusion between the viral envelope and the endosomal membrane. As a result, 

the viral genomic RNA is released into the cytoplasm where is translated into structural and nonstructural 
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proteins. The viral proteins induce ER-invaginations called vesicle packets that will serve as replication 

and assembly sites. The replication complex (RC), formed by the viral non-structural proteins (NS1, NS2A, 

NS2B, NS3, NS4A, NS4B, and NS5) and host factors (HF) assembles in these sites to coordinate viral 

replication. After viral replication, the genomic RNA associates with the C protein and bud into the ER 

lumen, acquiring a lipid bilayer coated with multiple E-prM heterodimers. Following assembly, the 

immature viral particle moves through the secretory pathway and undergoes maturation in the TGN, 

where a furin protease splits the pr peptide from the M protein due to pH-induced conformational 

changes. The infectious viral particle leaves the cell by exocytosis and the pr peptide is released from 

the viral particle. Retrieved and adapted from Pierson and Diamond, 2012, and Muller and Young, 

2013.301,302  

1.2 Epidermal growth factor receptor 

1.2.1 Classification and structure 

The human epidermal growth factor receptor (EGFR) is one of the four members of the 

ErbB/HER family within the superfamily of the receptor tyrosine kinases (RTKs).303,304 

The family name has its origin in the name of the avian erythroblastic leukemia viral 

oncogene B (erbb) that encodes an aberrant homolog of the human EGF receptor 

(HER).305,306 Besides the EGFR, also known as HER1 or ErbB1, the ErbB/HER family 

comprises the ErbB2 (HER2 or Neu), the ErbB3 (HER3), and the ErbB4 (HER4). Despite 

the human erbb genes being located in different chromosomes, the four molecules 

encoded by these possess similar structures.307–309 

The egfr sequence is highly conserved among different species. The human egfr is 

approximately 245 kb long and encodes a 1210 aa EGFR precursor protein that 

undergoes maturation.310 EGFR is a 170 kDa glycoprotein with 1186 aa residues that is 

composed of an N-terminal extracellular ligand-binding domain (the ectodomain), a 

single transmembrane domain, an intracellular juxtamembrane domain, a tyrosine 

kinase domain, and a C-terminal regulatory domain (Figure 12). The latter three 

domains are referred to as the endodomain.311 The extracellular segment is heavily N-

glycosylated at about 12 sites and comprises four subdomains: domain I (aa 1-165), 

domain II (aa 165-310), domain III (aa 310-480), and domain IV (aa 480-620), also 

denominated as L1, CR1, L2, and CR2 domains, respectively.311,312 The domains I and III 

participate in ligand binding (L1 and L2), whereas the homologous domains II and IV 

contain cysteine-rich motifs (CR1 and CR2) that are involved in disulfide bond 

formation during receptor dimerization (Figure 12).311 The extracellular region is 

connected to the intracellular juxtamembrane domain by a single transmembrane helix 

of about 23 aa residues, anchoring the receptor to the plasma membrane.312 The 

juxtamembrane segment with 42 aa residues regulates the receptor downregulation, 

sorting, signal specificity, and RTK activity.313–319 Moreover, this domain appears to be 

necessary for receptor dimerization and efficient ligand-induced receptor 
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internalization.320,321 The juxtamembrane region is followed by the tyrosine kinase (TK) 

domain. The TK domain is vital for the activation of the receptor as it catalyzes the 

transfer of a γ-phosphate of adenosine triphosphate (ATP) to the hydroxyl-group of a 

tyrosine residue and consequently, activating downstream signaling cascades. This 

domain possesses a bilobate structure with a smaller N-lobe and a larger C-lobe, 

separated by a catalytic cleft where ATP binds (Figure 12).322 The N-lobe contains the 

glycine-rich phosphate-binding loop (P-loop) that interacts with the phosphates of the 

ATP, whereas the C-lobe holds the activation loop (A-loop) that binds to the 

magnesium ion, which promotes ATP binding, and acts as a platform for docking the 

substrate peptide.322–324 Lastly, the C-terminal domain is a long tail segment, harboring 

multiple tyrosine residues that, when phosphorylated by the TK domain, function as 

binding sites for adaptor molecules and signaling proteins that transmit the signal 

further downstream.325,326 The proximal segment (first part) of the C-tail is associated 

with autoinhibitory effects that regulate the TK activity of the receptor.327,328 Within this 

segment, an α-helix, denominated as AP2 helix due to its interaction with the clathrin 

adaptor protein complex 2 (AP2), mediates EGFR internalization and 

downregulation.329 This domain also contains threonine and serine residues that are 

linked to receptor downregulation.330  

 

 

 

 

 

 

 

Figure 12 – Schematic representation of the EGFR structure. EGFR is a transmembrane protein with 

an N-terminal extracellular ligand-binding domain that is divided into four subdomains (domain I to IV). 

The domains I and III participate in ligand binding, whereas domains II and IV are involved in disulfide 

bond formation during receptor dimerization. The EGFR is anchored to the plasma membrane by a single 

transmembrane domain. The intracellular part of the receptor comprises the juxtamembrane domain, 

the tyrosine kinase domain, and the C-tail domain. The tyrosine kinase domain has a bilobate structure 

with a smaller N-lobe and a larger C-lobe, forming a catalytic cleft where ATP binds. The C-lobe harbors 

the activation loop that binds to the magnesium ion, which is required for ATP binding, and functions 

as a docking site for the substrate peptide. The C-terminal tail possesses several tyrosine residues that 
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can be phosphorylated and serve as docking sites for signaling molecules and consequently, activating 

downstream signaling cascades. Retrieved and adapted from Huang et al., 2016.331 

1.2.2 Activation  

EGFR and the other members of the ErbB/HER family are activated upon ligand binding. 

ErbB ligands can be divided into three groups based on their relative affinity to the 

ErbB/HER receptor. The first group is comprised of ligands that bind exclusively to 

EGFR, including the canonical ligand EGF, transforming growth factor α (TGFα), 

amphiregulin, and epigen.332–335 The second group includes heparin-binding EGF-like 

growth factor, betacellulin, and epiregulin, which can bind to EGFR and Erb4.336–338 The 

last group covers the neuroregulins that bind to Erb3 and Erb4 or exclusively to 

Erb4.339–341 More recently, angiogenin and connective tissue growth factor were 

identified as EGFR ligands, whereas prolidase as the only ligand of the ErbB2 receptor 

that was acknowledged until now.342–344 ErbB ligands are synthesized as type I 

transmembrane precursor proteins, similar to EGFR, and the extracellular domain is 

subjected to cleavage by metalloproteases at the plasma membrane, releasing 

functional soluble growth factors.345,346 These growth factors share an EGF-like motif 

with six conserved cysteine residues that are involved in the receptor binding, creating 

three intramolecular disulfide bridges with the domain.347,348 In the absence of ligand 

binding, EGFR is mainly present as a monomer at highly ordered portions of the plasma 

membrane called lipid rafts, which are rich in cholesterol and sphingolipids.349,350 A 

minor amount of EGFR dimers also exists, but ligand binding is required for the 

activation of downstream signaling cascades.351,352 Monomeric EGFR adopts a tethered 

conformation in which domain II interacts with domain IV, sequestering the 

dimerization loop and auto-inhibiting the receptor (Figure 13).353 Upon ligand binding 

to both domains I and III, the ectodomain is reorganized and the dimerization loop in 

the domain II is exposed, leading to a stable extended conformation. The uncovered 

dimerization loop can then interact with the dimerization loop of another ligand-bound 

receptor, forming a 2:2 ligand:receptor dimer with the ligands facing outwards from 

the dimer interface (Figure 13).354,355 EGFR can homodimerize or heterodimerize with 

other ErbB receptors, but the ErbB2 is the preferred dimerization partner due to its 

constant extended conformation, allowing dimerization in the absence of ligand.356,357 

The domain IV also contributes to EGFR dimerization, but less than the domain II.358 

These interactions cause the rotation of the transmembrane domains, parallel to the 

plane of the plasma membrane.359 Consequently, the intracellular symmetric inactive 

kinase dimer is dissociated and reoriented, forming an asymmetric active kinase dimer. 

In this asymmetric dimer configuration, the C-lobe of one monomer (activator kinase) 

interacts with the N-lobe of the other monomer (receiver kinase), activating it 

allosterically and inducing conformational changes in the N-lobe of the receiver kinase 
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(Figure 13). These conformational changes promote the “open configuration” of the 

A-loop, enabling the binding of ATP and substrate.360 The interaction between activator 

and receiver kinases is stabilized by the C-terminal juxtamembrane segment of the 

receiver kinase that binds to the C-lobe of the activator kinase.361,362 EGFR TK activation 

leads to autophosphorylation and transphosphorylation of the tyrosine residues in the 

C-terminal tails of the dimer.363,364 Certain tyrosine residues are phosphorylated by 

other kinases, namely c-Src and protein kinase C (PKC).365,366 These phosphorylated 

residues serve as docking sites for adaptor proteins that have Scr homology-2 (SH2) or 

phosphotyrosine binding (PTB) domains.367,368 These proteins can then recruit other 

signaling molecules that will be phosphorylated and transduce EGFR-mediated 

signals.369 Lipid rafts can assist in EGFR signaling transduction, acting as platforms to 

facilitate the crosstalk between signaling molecules.370 However, upon activation, EGFR 

leaves these sites to be internalized.371,372  

 

 

 

 

 

 

 

 
Figure 13 – Schematic representation of EGFR dimerization and activation. Upon ligand binding to 

domains I and III, such as EGF, the ectodomain undergoes conformational changes, which uncover the 

dimerization arm, promoting EGFR dimerization. EGFR dimerization causes the rotation of the 

transmembrane domain and allows the interaction of the C-lobe of the activator kinase (in yellow) with 

the N-lobe of the receiver kinase (in red), allosterically activating it. Activation of the EGFR tyrosine kinase 

results in the autophosphorylation and transphosphorylation of the tyrosine residues in the C-terminal 

tail (in blue), which act as docking sites for adaptor and signaling proteins. Retrieved and adapted from 

Huang et al., 2016.331 
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1.2.3 Signaling pathways 

Depending on the phosphorylation pattern of EGFR, different signal transduction 

pathways are activated, including the Ras/Raf/mitogen-activated protein kinase kinase 

(MEK)/ extracellular signal-regulated kinase (ERK) (hereafter referred to as MAPK/ERK) 

pathway, the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway, the phospholipase C 

gamma/protein kinase C (PLCγ/PKC) pathway, and the JAK/STAT pathway (Figure 14). 

Overall, these pathways regulate cell growth, proliferation, differentiation, migration, 

survival, angiogenesis, cytoskeleton organization, metabolism, immune and 

inflammatory response.373–377    

The MAPK/ERK pathway is initiated with the recruitment and binding of the growth 

factor receptor-binding protein 2 (Grb2) directly to the phosphorylated tyrosine 

residues (Y1068 and Y1086) in the C-terminal tail of EGFR via its SH2 domain or 

indirectly through the adaptor Src homology 2 domain-containing transforming 

protein (Shc). Shc binds to the phosphorylated tyrosine residues of EGFR (Y1173 and 

Y1148) via its PTB domain or (Y1173) its SH2 domain and is phosphorylated, allowing 

the binding of Grb2.378,379 Sequentially, Grb2 interacts via its SH3 domains with the Son 

of Sevenless protein 1 (SOS), a guanine nucleotide exchange factor, forming a 

complex.380 The formation of this complex facilitates SOS in exchanging guanosine 

diphosphate (GDP) for guanosine triphosphate (GTP) in Ras, a small GTPase anchored 

to the plasma membrane, resulting in Ras activation.381,382 Subsequently, Ras-GTP 

promotes the activation of the serine/threonine kinase c-Raf that phosphorylates and 

activates MEK1 and MEK2.383,384 MEK activation further phosphorylates and activates 

ERK1 and ERK2.385,386 Once activated, ERK1 and ERK2 can phosphorylate cytoplasmic 

proteins. Additionally, they can translocate to the nucleus, where they are responsible 

for phosphorylating and activating multiple transcription factors.387  

Furthermore, activation of the PI3K/Akt pathway occurs with the indirect binding of the 

p85 regulatory subunit of the PI3K to the phosphorylated tyrosine residues in the C-

terminal tail of EGFR through the adaptor Grb2-associated binding protein 1 (Gab1), 

which in turn binds to the adaptor protein Grb2 and the latter to EGFR.388,389 The bound 

p85 regulatory subunit recruits the p110 catalytic subunit, forming the fully active 

PI3K.390 The p110 catalytic subunit of PI3K can also be activated by binding to Ras-

GTP.391,392 Once activated, the p110 catalytic subunit of PI3K phosphorylates the 

phosphatidylinositol 4,5-biphosphate (PIP2) present in the plasma membrane, 

producing the second messenger phosphatidylinositol 3,4,5-triphosphate (PIP3).
393,394 

Consecutively, Akt, also known as protein kinase B, and the upstream 3-

phosphoinositol-dependent protein kinase 1 (PDK1) are recruited to the plasma 
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membrane and bind to PIP3.
395 PDK1 phosphorylates and activates Akt that in turn 

phosphorylates several proteins, activating or inhibiting them.396  

Moreover, the PLCγ directly interacts with the phosphorylated tyrosine residues (Y992 

and Y1173) in the C-terminal tail of EGFR and hydrolyzes PIP2, generating inositol 1,3,5-

triphosphate (IP3) and 1,2-diacylglycerol (DAG), two second messengers.397,398 First, IP3 

induces the release of calcium ions (Ca2+) from the ER.399 Ca2+ together with DAG can 

activate the classical PKC isoforms, which are responsible for phosphorylating several 

proteins crucial in multiple biological functions.400 

STAT proteins can bind directly to the phosphorylated tyrosine residues (Y954 and 

Y974) in the C-terminal tail of EGFR and become activated through phosphorylation by 

the EGFR TK domain.401,402 However, STAT proteins can also be activated downstream 

of EGFR by c-Src and JAKs.403,404  

Figure 14 – Schematic representation of the different signaling transduction pathways activated 

upon EGFR activation. Upon ligand binding, such as EGF, transforming growth factor α (TGFα), and 

amphiregulin (AR), several tyrosine residues of the C-terminal tail of EGFR are phosphorylated by the TK 

domain of EGFR or by other kinases (Src and PKC), serving as docking sites for adaptor proteins, namely 

Grb2, Shc, PI3K, and PLCγ. Subsequently, these proteins can recruit other signaling molecules that will 

be phosphorylated and transduce EGFR-mediated signals. EGFR activation leads to the activation of the 

following downstream signaling cascades: the Ras/Raf/MEK/ERK (MAPK/ERK), the PLCγ/DAG/PKC, the 

PI3K/AKT/mTOR, and the SRC/JAK/STAT pathways. These pathways control important cellular functions, 

including cell proliferation, angiogenesis, survival, and invasion/migration. Retrieved from Shostak and 

Chariot, 2016.405 
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1.2.4 Internalization and endocytic sorting 

Following activation, EGFR can be internalized by either clathrin-mediated endocytosis 

(CME) or clathrin-independent endocytosis (CIE) depending on the ligand, its 

concentration, and the number of receptors activated (Figure 15).406,407 In the presence 

of a lower concentration of ligand (<1-2 ng/mL), activated EGFR is recruited by the AP2 

adaptor complex to cluster in clathrin-coated pits and is internalized by CME.408–410 By 

contrast, higher concentrations of ligand (≥ 10 ng/mL) favor ubiquitination and CIE of 

EGFR.411 Consequently, ubiquitinated EGFR is targeted to lysosomal degradation, 

eliminating the exceeding amounts of activated receptors and counteracting excessive 

signaling within the cell.412 EGFR is ubiquitinated at multiple lysine residues of the TK 

domain by the E3 ubiquitin-ligase Cbl that can directly bind to the phosphorylated 

tyrosine residue Y1045 of EGFR or indirectly by forming a complex with Grb2 (Y1068 or 

Y1086).413–415 Once internalized, EGFR reaches the early endosomes where it is sorted. 

Ubiquitinated EGFR is recognized by the endosomal sorting complex required for 

transport (ESCRT) machinery and directed into the intraluminal vesicles of 

multivesicular bodies (MVBs).416 Then, MVBs fuse with lysosomes, resulting in EGFR 

degradation by the hydrolytic enzymes from the lysosome.417 Unlike the ubiquitinated 

EGFR, the non-ubiquitinated, which is the case of EGFR internalized by CME, is recycled 

back to the cell surface.418 CME seems to prolong EGFR signaling.419 Nevertheless, in 

both cases EGFR is dephosphorylated by tyrosine protein phosphatases that inactivate 

the receptor before it is transported to the plasma membrane or degraded.420,421  

Moreover, the intensity and the duration of the signal and the type of ligand can also 

influence the fate of EGFR.420,421 EGF-EGFR interaction is stable to endure the lower pH 

in the endosomes, enabling the receptor to be degraded. However, TGFα dissociates 

under these conditions and undergoes deubiquitination, escaping from lysosomal 

degradation and being recycled back to the plasma membrane.422,423  
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Figure 15 – Schematic representation of EGFR endocytic sorting. (A) With a low concentration of 

EGF, EGFR interacts with the adaptor protein complex 2 (AP2), promoting EGFR internalization by 

clathrin-mediated endocytosis (CME). (B) With a high concentration of EGF, EGFR is ubiquitinated (Ub), 

favoring EGFR internalization non-clathrin endocytosis (NCE). (C) In the early endosomes, EGFR is sorted. 

Non-ubiquitinated EGFR is recycled back to the cell surface. (D) Ubiquitinated EGFR is directed to 

intraluminal vesicles (ILVs) of the multivesicular bodies (MVBs) by the endosomal sorting complex 

required for transport (ESCRT) machinery. (E) MVBs fuse with lysosomes leading to the degradation of 

EGFR by lysosomal hydrolytic enzymes. Retrieved and adapted from Conte and Sigismund, 2016.424 

1.2.5 The role of EGFR in the life cycle of viruses 

EGFR regulates several crucial cellular processes as mentioned before. Therefore, it is 

an appealing host factor for viruses to exploit through direct binding by mimicking 

EGFR ligands or indirectly. Multiple viruses manipulate the EGFR-mediated endocytosis 

or the EGFR-mediated signaling to enter the host cells, to facilitate viral replication, or 

even to antagonize the host antiviral responses.6  

The plasma membrane and the actin cortex, which lay beneath the plasma membrane, 

are major barriers to virus entry. Nevertheless, viruses have found different ways to 

overcome these, namely by pH-independent fusion at the plasma membrane together 

with the modulation of EGFR signaling to reorganize the actin cortex, or by triggering 

receptor-mediated endocytosis. Human cytomegalovirus (HCMV) enters the host cells 

by pH-independent fusion at the cell surface and directly interacts with EGFR, activating 

PI3K-dependent RhoA and cofilin, and consequently, causing the reorganization of the 

actin filaments.425–427 Similar effect was described for herpes simplex virus type 1 (HSV-

1), and Epstein-Barr virus (EBV).428–430 However, most viruses enter the host cell by 

receptor-mediated endocytosis as it allows them to have direct transport to the 

replication sites, minimizing the exposure to immune surveillance molecules.431 
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Innumerous viruses rely on EGFR activation and endocytosis for viral entry. HCV 

activates EGFR and downstream signaling cascades via the tetraspanin CD81 and is co-

internalized with the CD81-EGFR receptor complex.432 In the case of the influenza A 

virus (IAV), EGFR is activated and promotes the IAV uptake due to the incapacity of the 

receptors sialic acids in transmitting signals across the plasma membrane.433 EGFR is 

also a co-receptor for the flavivirus JEV, human papillomavirus type 16 (HPV16), 

vaccinia virus (VACV), respiratory syncytial virus (RSV), hepatitis B virus (HBV), 

transmissible gastroenteritis virus (TGEV), adeno-associated virus serotype 6 (AAV6), 

among others.434–440 Besides viral entry, EGFR-mediated signaling cascades were 

described to facilitate viral replication and pathogenesis by inducing angiogenesis, 

protein synthesis, cytoskeleton reorganization, cell motility, and survival. This holds true 

for HCMV, EBV, human immunodeficiency virus 1 (HIV-1), severe acute respiratory 

syndrome coronavirus 1 (SARS-CoV-1), and more recently, for SARS-CoV-2.429,441–444 

Moreover, IAV-, rhinovirus (RV)-, HCV-, and RSV-induced activation of EGFR and 

downstream signaling cascades can promote inflammation and antagonize host 

antiviral responses by activating STAT proteins, stimulating the release of inflammatory 

mediators and reducing interferon production.445–449  

Viruses modulate EGFR signaling through the expression of viral or host proteins that 

alter egfr expression. On the one hand, the HBV X protein and the EBV lysosomal-

associated membrane protein 1 increase egfr expression.450,451 On the other hand, 

adenovirus E1A protein decreases egfr expression to promote host apoptosis, whereas 

HCMV activates a transcriptional repressor of egfr to obligate the infected cell to 

respond only to virus-mediated signals, optimizing viral production.452,453 Additionally, 

viruses control EGFR signaling by interfering with the degradation and recycling of 

EGFR. HIV-1, HPV16, and HCV diminish EGFR degradation to prolong EGFR-mediated 

signaling.454–456 Other viruses, such as adenovirus and HSV-1, contribute to EGFR 

degradation.457,458 
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2. Aim of the study 

The ZIKV life cycle is poorly understood and characterized. Understanding the viral life 

cycle and uncovering novel virus-host interactions are essential to the development of 

a specific antiviral therapy. Previous research work on the identification of suitable cell 

culture models to study ZIKV infection revealed that the Chinese hamster ovary (CHO) 

cells do not support viral infection.459 Given the absence of both ZIKV infection and 

endogenous EGFR in these cells, this study aimed to investigate the relevance of EGFR 

and of EGFR-dependent signaling for the ZIKV life cycle in vitro.   
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3. Materials 

3.1 Cells 

3.1.1 Bacterial cells 

Table 1 – Bacterial strain used in this study, the respective genotype and source. 

Bacterial strain Genotype Source 

Escherichia coli 

(E.coli) K12 

strain DH5α 

F– Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17(rk
-, mk

+) 

phoA supE44 thi-1 gyrA96 relA1 λ- 

Invitrogen, Carlsbad, USA 

 

3.1.2 Eukaryotic cells 

Table 2 – Eukaryotic cells required for this study, the respective description and origin. 

All cell lines were obtained from ATCC (Manassas, USA). 

Cell line Description Origin 

A549  Adenocarcinoma human alveolar 

basal epithelial cells 

Giard et al., 1962 460 

CHO Epithelial Chinese hamster ovary 

cells 

Kao and Puck, 1968 461 

Vero African green monkey kidney cells Yasumura and Kawakita, 

1962 462 

 

3.1.3 Stable cells 

Table 3 – Stable cells used in this study, the respective description, antibiotic 

concentration for cell selection and source. 

Cell line Description Selection Source 

A549-Off-

target #1  

A549 cells generated by CRISPR/Cas9 

system using non-specific single 

guide RNA that serves as control for 

EGFR knockout, clone no. 1  

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 
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Cell line Description Selection Source 

A549-Off-

target #2 

A549 cells generated by CRISPR/Cas9 

system using non-specific single 

guide RNA that serves as control for 

EGFR knockout, clone no. 2 

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 

A549-EGFR KO 

sgRNA 1 #5 

A549 cells generated by CRISPR/Cas9 

system using single guide RNA 1 that 

have EGFR knocked out, clone no. 5 

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 

A549-EGFR KO 

sgRNA 1 #16 

A549 cells generated by CRISPR/Cas9 

system using single guide RNA 1 that 

have EGFR knocked out, clone no. 16 

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 

A549-EGFR KO 

sgRNA 2 #8 

A549 cells generated by CRISPR/Cas9 

system using single guide RNA 2 that 

have EGFR knocked out, clone no. 8 

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 

A549-EGFR KO 

sgRNA 2 #10 

A549 cells generated by CRISPR/Cas9 

system using single guide RNA 2 that 

have EGFR knocked out, clone no. 10 

Puromycin  

[1.5 µg/mL] 

Generated 

during this 

work 

A549-ZIKV 

RLuc* 

 

A549 cells electroporated with in vitro 

transcribed capped ZIKV-Renilla 

Luciferase (ZIKV-RLuc) RNA and 

cultivated until a quasi-stable 

expression of the luciferase activity 

was obtained 

No selection Generated 

during this 

work 

CHO-EGFR 

#22.2 

CHO cells that stably overexpress 

EGFR, clone no. 22.2 

G418 

[0.5 mg/mL] 

Friedrich et 

al., 2013 463 

CHO-EGFR 

#45 

CHO cells that stably overexpress 

EGFR, clone no. 45 

G418 

[0.5 mg/mL] 

Friedrich et 

al., 2013 463 

* Since no selection was performed this cell line is only considered quasi-stable 
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3.2 Tissue 

Table 4 – Tissue required for this study and the respective origin. 

Tissue Origin 

Liver Golden Syrian hamster 

 

3.3 ZIKV strains 

Table 5 – ZIKV strains used in this study and the respective source. 

Strain Source 

976 Uganda 

 

European Virus Archive Global (EVAg), 

Marseille, FR 

H/PF/2013 French Polynesia European Virus Archive Global (EVAg), 

Marseille, FR 

FSS13025 Cambodia Shan et al., 2017 464 

 

3.4 Plasmids 

Table 6 – Plasmids required for this study, the respective description and source.  

Plasmid Description Source 

pACYC177 ZIKV-RLuc Renilla luciferase reporter ZIKV 

construct. Full-length ZIKV with 

the Renilla luciferase gene 

inserted downstream at the 

76th nucleotide of the viral 

capsid gene  

Shan et al., 2017 464  

pSpCas9(BB)-2A-Puro 

(PX459) V2.0 #62988 

CRISPR/Cas9 cloning vector Addgene, Massachusetts, 

USA; Ran et al., 2013 465 

PX459-Off Target CRISPR/Cas9 cloning vector 

coding for a non-specific single 

guide RNA 

Dr. Fabian Elgner, Paul-

Ehrlich-Institut 
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Plasmid Description Source 

PX459-EGFR sgRNA1   CRISPR/Cas9 cloning vector 

coding for an EGFR single 

guide RNA 1 

Matthias Dusemund, Paul-

Ehrlich-Institut 

 

 PX459-EGFR sgRNA2   CRISPR/Cas9 cloning vector 

coding for an EGFR single 

guide RNA 2 

Matthias Dusemund, Paul-

Ehrlich-Institut 

 

3.5 Oligonucleotides 

3.5.1 Cloning 

Table 7 – Oligonucleotides used in cloning and the respective sequence in the 5’  3’ 

direction. Oligonucleotides were synthesized by Biomers.net (Ulm, DE). 

Oligonucleotide Sequence (5’ 3’) 

sgRNA_off-target_fwd cac cgc act acc aga gct aac tca    

sgRNA_off-target_rev aaa ctg agt tag ctc tgg tag tgc  

sgRNA_EGFR_1_fwd cac cgt gag ctt gtt act cgt gcc t  

sgRNA_EGFR_1_rev aaa cag gca cga gta aca agc tca c   

sgRNA_EGFR_2_fwd cac cga gta aca agc tca cgc agt 

sgRNA_EGFR_2_rev aaa cac tgc gtg agc ttg tta ctc  

 

3.5.2 Polymerase chain reaction (PCR) 

Table 8 – Oligonucleotides used in PCR and the respective sequence in the 5’  3’ 

direction. Oligonucleotides were synthesized by Eurofins Genomics (Ebersberg, DE). 

Oligonucleotide Sequence (5’  3’) 

EGFR_seq_4_fwd att ttt tgc cta ctg gag ctc tta cag g 

EGFR_seq_4_rev ata ggc aaa tgg tgc aaa gca ggg 
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3.5.3 Real-time PCR (qPCR)  

Table 9 – Oligonucleotides used in qPCR and the respective sequence in the 5’  3’ 

direction. Oligonucleotides were synthesized by Biomers.net (Ulm, DE). 

Oligonucleotide Sequence (5’ 3’) 

EGFR_fwd tgg tta tgt cct cat tgc 

EGFR_rev aga taa gac tgc taa ggc 

GAPDH_fwd gac ccc ttc att gac ctc aac 

GAPDH_rev tgg act gtg gtc atg agt cc 

hRPL27_fwd aaa gct gtc atc gtg aag aac 

hRPL27_rev gct gct act ttg cgg ggg tag 

ZIKV_fwd aga tcc cgg ctg aaa cac tg 

ZIKV_rev ttg caa ggt cca tct gtc cc 

 

3.5.4 Sequencing 

Table 10 – Oligonucleotides used in sequencing and the respective sequence in the 5’ 

 3’ direction. Oligonucleotides were synthesized by Biomers.net (Ulm, DE) or by 

Eurofins Genomics (Ebersberg, DE). 

Oligonucleotide Sequence (5’  3’) 

Human U6 SeqF_Insert act atc ata tgc tta ccg taa c 

EGFR_seq_4_fwd* att ttt tgc cta ctg gag ctc tta cag g 

EGFR_seq_4_rev* ata ggc aaa tgg tgc aaa gca ggg 

* Same as used in PCR 
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3.6 Molecular weight markers 

3.6.1 DNA markers 

Table 11 – DNA markers used in this study and the respective manufacturer. 

DNA marker Manufacturer 

GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific, Waltham, USA 

GeneRuler 1 kb Plus DNA Ladder Thermo Fisher Scientific, Waltham, USA 

 

3.6.2 Protein markers  

Table 12 – Protein markers used in this study and the respective manufacturer. 

Protein marker Manufacturer 

PageRuler™ Prestained Protein Ladder Thermo Fisher Scientific, Waltham, USA 

PageRuler™ Plus Prestained Protein 

Ladder 

Thermo Fisher Scientific, Waltham, USA 

 

3.7 Antibodies 

3.7.1 Primary antibodies 

Table 13 – Primary antibodies required in this study and the respective species, 

clonality, dilution used in Western blot (WB) or immunofluorescence (IF) and 

manufacturer. 

Antibody Species Clonality Dilution 

(WB/IF) 

Manufacturer 

Anti-AXL (C89E7) 

#8661 

Rabbit Monoclonal 1:1000/

- 

Cell Signaling 

Technology, Danvers, 

USA 

Anti-β-Actin A5316 Mouse Monoclonal 1:10000

/- 

Sigma-Aldrich, 

St.Louis, USA 
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Antibody Species Clonality Dilution 

(WB/IF) 

Manufacturer 

Anti-EEA1 Rabbit Monoclonal -/1:200 Thermo Fisher 

Scientific, Waltham, 

USA 

Anti-EGFR (528) sc-120 Mouse Monoclonal -/1:50 Santa Cruz 

Biotechnology, Dallas, 

USA 

Anti-EGFR [EP38Y] 

(ab52894) 

Rabbit Monoclonal 1:3000/

1:250 

Abcam, Cambridge, UK 

Anti-ERK1/2 (137F5) 

#4695 

Rabbit Monoclonal 1:1000/

- 

Cell Signaling 

Technology, Danvers, 

USA 

Anti-Flavivirus Group 

Antigen clone D1-4G2-

4-15 

Mouse Monoclonal -/1:300 Merck Millipore, 

Darmstadt, DE 

Anti-phospho-EGFR 

(Tyr1068) #2234 

Rabbit Polyclonal 1:1000/

- 

Cell Signaling 

Technology, Danvers, 

USA 

Anti-phospho-ERK1/2 

(Thr202/Tyr204) #9106 

Mouse Monoclonal 1:1000/

- 

Cell Signaling 

Technology, Danvers, 

USA 

Anti-ZIKV E (K87) Rabbit Monoclonal 1:500/- Dr. Sami Akhras, Paul-

Ehrlich-Institut 466  
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3.7.2 Secondary antibodies 

Table 14 – Secondary antibodies required in this study and the respective species, 

clonality, dilution used in Western blot (WB) or immunofluorescence (IF) and 

manufacturer. 

Antibody Species Clonality Dilution 

(WB/IF) 

Manufacturer 

Anti-mouse IgG HRP Sheep Polyclonal 1:2000/- Cytiva, Marlborough, 

USA 

Anti-rabbit IgG HRP Donkey Polyclonal 1:2000/- Cytiva, Marlborough, 

USA 

Anti-mouse 

IRDye®680RD 

Donkey Polyclonal 1:5000/- LI-COR Biosciences, 

Lincoln, USA 

Anti-mouse 

IRDye®800CW 

Donkey Polyclonal 1:5000/- LI-COR Biosciences, 

Lincoln, USA 

Anti-rabbit 

IRDye®680RD 

Donkey Polyclonal 1:5000/- LI-COR Biosciences, 

Lincoln, USA 

Anti-rabbit 

IRDye®800CW 

Donkey Polyclonal 1:5000/- LI-COR Biosciences, 

Lincoln, USA 

Anti-mouse IgG-Alexa 

488 

Donkey Polyclonal -/1:1000 Invitrogen, Carlsbad, 

USA 

Anti-mouse IgG-Alexa 

546  

Donkey Polyclonal -/1:1000 Invitrogen, Carlsbad, 

USA 

Anti-rabbit IgG-Alexa 

488 

Donkey Polyclonal -/1:1000 Invitrogen, Carlsbad, 

USA 

Anti-rabbit IgG-Alexa 

546  

Donkey Polyclonal -/1:1000 Invitrogen, Carlsbad, 

USA 
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3.8 Fluorescent dyes 

Table 15 – Fluorescent dyes used in this study, the respective dilution used and 

manufacturer. 

Fluorescent dye Dilution Manufacturer 

DAPI (stock 100 µg/mL) 1:300 CARL ROTH GmbH + Co. KG, 

Karlsruhe, DE 

Phalloidin-Atto 633 (stock 20 µM) 1:400 Sigma-Aldrich, St.Louis, USA 

 

3.9 Inhibitors 

3.9.1 Kinase inhibitors 

Table 16 – Kinase inhibitors used in this study, the respective concentration used, target 

and manufacturer. 

Inhibitor Concentration Target Manufacturer 

Erlotinib 25 µM EGFR Selleckchem, Houston, USA 

Sorafenib 2 µM Raf Bayer, Leverkusen, DE 

PD98059 50 µM MEK Merck Millipore, Darmstadt, DE 

 

3.9.2 Lysosomal inhibitors 

Table 17 – Lysosomal inhibitors required in this study, the respective concentration 

used, target and manufacturer. 

Inhibitor Concentration Target Manufacturer 

Chloroquine 25 µM Endosomal and 

lysosomal 

acidification 

Sigma-Aldrich, St.Louis, USA 
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3.9.3 Phosphatase inhibitors 

Table 18 – Phosphatase inhibitors required in this study, the respective dilution used, 

target and manufacturer. 

Inhibitor Dilution Target Manufacturer 

Halt™ 

Phosphatase 

Inhibitor 

Cocktail (100x) 

1:100 Serine/threonine 

and protein 

tyrosine 

phosphatases 

Thermo Fisher Scientific, 

Waltham, USA 

Phosphatase 

cocktail 

inhibitor 2 

1:500 ATPases, alkaline, 

protein tyrosine, 

acid and 

phosphoprotein 

phosphatases 

Sigma-Aldrich, St.Louis, USA 

 

3.9.4 Protease inhibitors 

Table 19 – Protease inhibitors used in this study, the respective concentration used, 

target and manufacturer. 

Inhibitor Concentration Target Manufacturer 

Aprotinin 10 µg/mL Serine proteases AppliChem GmbH, 

Darmstadt, DE 

EDTA 2.5 mM Metalloproteases Paul-Ehrlich-Institut 

facilities, Langen, DE 

Halt™ Protease 

Inhibitor 

Cocktail, EDTA 

free (100x) 

1x Aspartic acid, 

cysteine and 

serine proteases 

Thermo Fisher Scientific, 

Waltham, USA 

Leupeptin 25 µg/mL Serine and 

cysteine 

proteases 

AppliChem GmbH, 

Darmstadt, DE 
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Inhibitor Concentration Target Manufacturer 

Pepstatin 20 µg/mL Acidic and 

aspartic proteases 

AppliChem GmbH, 

Darmstadt, DE 

PMSF 1 mM Serine proteases AppliChem GmbH, 

Darmstadt, DE 

 

3.9.5 Protein synthesis inhibitors 

Table 20 – Protein synthesis inhibitors required in this study, the respective 

concentration used, target and manufacturer. 

Inhibitor Concentration Target Manufacturer 

Cycloheximide 20 µg/mL Protein synthesis Sigma-Aldrich, St.Louis, USA 

 

3.10 Reagents for cell culture 

Table 21 – Reagents used in cell culture and the respective manufacturer. 

Reagent Manufacturer 

Dulbecco’s Modified Eagle’s Medium 

(DMEM) high glucose (4.5 g/L glucose)  

Sigma-Aldrich, St.Louis, USA 

Fetal bovine serum (FBS superior) Bio & Sell GmbH, Feucht, DE 

G418 (Geneticin) Merck Millipore, Darmstadt, DE 

L-glutamine  Bio & Sell GmbH, Feucht, DE 

Phosphate buffered saline (PBS) 

without Ca2+ and Mg2+ 

Paul-Ehrlich-Institut facilities, Langen, DE 

Penicillin/streptomycin Paul-Ehrlich-Institut facilities, Langen, DE 

Puromycin dihydrochloride Sigma-Aldrich, St.Louis, USA 

Trypsin/EDTA (0.05% Trypsin) Paul-Ehrlich-Institut facilities, Langen, DE 
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3.11 Kits 

Table 22 – Commercial kits required in this study and the respective manufacturer. 

Kit Manufacturer 

DNeasy Blood & Tissue kit QIAGEN, Hilden, DE 

Gaussia-GLOW Juice Luciferase Assay 

kit 

PJK GmbH, Kleinblittersdorf, DE 

Maxima™ SYBR™ Green qPCR Master 

Mix (2x) 

Thermo Fisher Scientific, Waltham, USA 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific, Waltham, USA 

PTK reagent kit PamGene International BV, Den Bosch, NL 

QIAGEN Plasmid Maxi Kit QIAGEN, Hilden, DE 

QIAprep Spin Miniprep Kit QIAGEN, Hilden, DE 

QIAquick PCR Purification Kit QIAGEN, Hilden, DE 

T7-Scribe Standard RNA IVT Kit CELLSCRIPT, Wisconsin, USA 

 

3.12 Enzymes 

Table 23 – Enzymes used in this study and the respective manufacturer. 

Enzyme Manufacturer 

ClaI New England Biolabs GmbH, Frankfurt am 

Main, DE 

T4 PNK New England Biolabs GmbH, Frankfurt am 

Main, DE 

FastDigest BbsI Thermo Fisher Scientific, Waltham, USA 

Q5 Hot Start DNA Polymerase New England Biolabs GmbH, Frankfurt am 

Main, DE 
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Enzyme Manufacturer 

RevertAid H Minus Reverse 

Transcriptase 

Thermo Fisher Scientific, Waltham, USA 

RQ1 RNase-free DNase  Promega GmbH, Walldorf, DE 

T7 DNA ligase New England Biolabs GmbH, Frankfurt am 

Main, DE 

 

3.13 Fine chemicals and reagents 

Table 24 – Fine chemicals and reagents required in this study and the respective 

manufacturer.  

Product Manufacturer 

3´-0-Me-m7G(5')ppp(5')G RNA Cap 

Structure Analog 

New England Biolabs GmbH, Frankfurt am 

Main, DE 

6-aminohexanoic acid CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Acetic acid CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Acetone CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Agarose LE Genaxxon bioscience GmbH, Ulm, DE  

Ampicillin CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

APS CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

ATP Thermo Fisher Scientific, Waltham, USA 

β-mercaptoethanol CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

BSA fraction V CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Bradford reagent Sigma-Aldrich, St.Louis, USA 

Bromophenol blue Sigma-Aldrich, St.Louis, USA 

Butanol CARL ROTH GmbH + Co. KG, Karlsruhe, DE 
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Product Manufacturer 

Calcium chloride CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Chloroform CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Crystal violet Sigma-Aldrich, St.Louis, USA 

DABCO Merck Millipore, Darmstadt, DE 

DEPC CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

DMSO Genaxxon bioscience GmbH, Ulm, DE 

dNTPs mix (10 mM each) Thermo Fisher Scientific, Waltham, USA 

DTT Biomol GmbH, Hamburg, DE 

EDTA CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

EGF Sigma-Aldrich, St.Louis, USA 

Ethanol (pure) CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Ethidium bromide AppliChem GmbH, Darmstadt, DE 

Formaldehyde (37.5%) CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Glycerol GERBU Biotechnik GmbH, Heidelberg, DE 

HEPES  CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Hydrochloric acid CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Isopropanol CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Immobilon® Forte Western HRP 

substrate 

Merck Millipore, Darmstadt, DE 

Immobilon™ Western HRP substrate  Merck Millipore, Darmstadt, DE 

Methyl-β-cyclodextrin  Sigma-Aldrich, St.Louis, USA 

Methanol CARL ROTH GmbH + Co. KG, Karlsruhe, DE 
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Product Manufacturer 

Mowiol 4-88 Sigma-Aldrich, St.Louis, USA 

peqGOLD Trifast Peqlab Biotechnologie GmbH, Erlangen, DE 

Phenol AppliChem GmbH, Darmstadt, DE 

PrestoBlue™ cell viability reagent Thermo Fisher Scientific, Waltham, USA 

Random hexamer primer Thermo Fisher Scientific, Waltham, USA 

Roti 40 acrylamide/bisacrylamide 

(29:1) 

CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Roti®-block (10x) CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

RQ1 DNase Stop Solution  Promega GmbH, Walldorf, DE 

SDS  CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

SeaPlaque™ agarose Lonza Group AG, Basel, CH 

Skim milk powder CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Sodium acetate CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Sodium chloride CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Sodium hydroxide CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Sodium deoxycholate CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

TEMED AppliChem GmbH, Darmstadt, DE 

Tris CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Triton X-100 Sigma-Aldrich, St.Louis, USA 

Tween 20 CARL ROTH GmbH + Co. KG, Karlsruhe, DE 
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3.14 Buffers, media and solutions 

3.14.1 Buffers 

Table 25 – Buffers required in this study and the respective composition. All buffers 

were prepared with ultrapure water unless indicated otherwise.  

Buffer Composition 

Anode buffer I 20% Ethanol (v/v) 

300 mM Tris base 

Anode buffer II 20% Ethanol (v/v) 

25 mM Tris base 

Cathode buffer 20% Ethanol (v/v) 

40 mM 6-aminohexanoic acid 

HEPES buffered saline (HeBS 2x)  

from Paul-Ehrlich-Institut facilities 

50 mM HEPES 

280 mM NaCl 

1.5 mM Na2HPO4 

pH 7.05 

Luciferase lysis buffer (1x) 50% Luciferase lysis-juice 2x (v/v) 

see chapter 3.10 

PBS without Ca2+ and Mg2+ 

from Paul-Ehrlich-Institut facilities 

 

 

137 mM NaCl 

2.7 mM KCl 

1.8 mM KH2PO4  

10 mM Na2HPO4 

pH 7.1  

PBST 0.5% Triton X-100 (v/v) 

in PBS 

Radioimmunoprecipitation assay (RIPA) 

buffer 

50 mM Tris-HCl pH 7.2 

150 mM NaCl 

0.1% SDS (w/v) 

1% Sodium deoxycholate (w/v) 

1% Triton X-100 (v/v) 
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Buffer Composition 

SDS running buffer (10x) 

from Paul-Ehrlich-Institut facilities 

250 mM Tris base 

2 M Glycine 

1% SDS (w/v) 

pH 8.3 

SDS loading buffer (4x) 4% SDS (w/v) 

125 mM Tris-HCl pH 6.8 

10% Glycerol (v/v) 

10% β-Mercaptoethanol (v/v) 

0.02% Bromophenol blue (w/v) 

Separating gel buffer 1.5 M Tris base 

0.4% SDS (w/v) 

pH 8.8 

Stacking gel buffer 0.5 M Tris 

0.4% SDS (w/v) 

pH 6.7 

TAE buffer (50x) 

from Paul-Ehrlich-Institut facilities 

2 M Tris base 

1 M NaAc 

50 mM EDTA 

pH 8 

TBST 

from Paul-Ehrlich-Institut facilities 

50 mM Tris 

150 mM NaCl 

0.05 or 0.1% Tween 20 (v/v) 

pH 7.8 

TFB1 buffer 100 mM RbCl2 

30 mM CH3CO2K 

10 mM CaCl2 

50 mM MnCl2 

15% Glycerol (v/v) 

pH 5.8 adjusted with acetic acid 
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Buffer Composition 

TFB2 buffer 10 mM MOPS 

10 mM RbCl2 

75 mM CaCl2 

15% Glycerol (v/v) 

pH 6.8 adjusted with acetic acid 

 

3.14.2 Commercial buffers 

Table 26 – Commercial buffers required in this study and the respective manufacturer.  

Buffer Manufacturer 

Cell lysis buffer (10x) Cell Signaling Technology, Danvers, USA 

CutSmart® buffer (10x) 
New England Biolabs GmbH, Frankfurt 

am Main, DE 

DNA Gel Loading Dye buffer (6x) Thermo Fisher Scientific, Waltham, USA 

FastDigest buffer (10x) Thermo Fisher Scientific, Waltham, USA 

M-PER™ Mammalian Extraction Buffer Thermo Fisher Scientific, Waltham, USA 

NEBuffer 2 (10x) 
New England Biolabs GmbH, Frankfurt 

am Main, DE 

Q5 reaction buffer (5x) 
New England Biolabs GmbH, Frankfurt 

am Main, DE 

Reverse Transcriptase reaction buffer 

(5x) 
Thermo Fisher Scientific, Waltham, USA 

RQ1 DNase reaction buffer (10x) Promega GmbH, Walldorf, DE 

T4 ligation buffer (10x) New England Biolabs GmbH, Frankfurt 

am Main, DE 
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3.14.3 Media 

Table 27 – Media used in this study and the respective composition.  

Medium Composition 

Freezing medium 70% growth medium (v/v) 

20% FBS superior (v/v) 

10% DMSO (v/v) 

Growth medium for A549, A549-

ZIKVRLuc, CHO, and Vero cells 

DMEM high glucose (4.5 g/L) 

10% FBS superior (v/v) 

1% Penicillin/Streptomycin (v/v) 

2 mM L-glutamine  

Growth medium for CHO-EGFR #22.2 

and #45 cells 

DMEM high glucose (4.5 g/L) 

10% FBS superior (v/v) 

1% Penicillin/Streptomycin (v/v) 

2 mM L-glutamine 

0.5 mg/mL G418 

Growth medium for A549-Off-target #1, 

A549-Off-target #2, A549-EGFR KO 

sgRNA1 #5, A549-EGFR KO sgRNA1 

#15, A549-EGFR KO sgRNA2 #8, and 

A549-EGFR KO sgRNA2 #10 

DMEM high glucose (4.5 g/L) 

10% FBS superior (v/v) 

1% Penicillin/Streptomycin (v/v) 

2 mM L-glutamine 

1.5 µg/mL puromycin 

Lysogeny broth medium (LB) 

from Paul-Ehrlich-Institut facilities 

1% Tryptone (w/v)  

0.5% Yeast extract (w/v) 

1% NaCl (w/v) 

pH 7.0 

Mounting medium 10% Mowiol 4-88 (w/v) 

25% Glycerol (v/v) 

2.5% DABCO (w/v) 

100 mM Tris-HCl pH 8.5 
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3.14.4 Solutions 

Table 28 – Solutions required in this study and the respective composition. All solutions 

were prepared with ultrapure water unless indicated otherwise.  

Solution Composition 

DEPC-H2O  0.1% DEPC (v/v) 

Crystal violet 0.1% Crystal violet (w/v) in 20% ethanol 

(v/v) 

SeaPlaque™ agarose  4% SeaPlaque™ agarose (w/v) 

Sodium acetate  3 M NaAc 

pH 5.2 adjusted with acetic acid 

Penicilillin/Streptomycin (100x) 10.000 U/mL Penicillin 

10 mg/mL Streptomycin 

 

3.15 Consumables 

Table 29 – Consumables used in this study and the respective manufacturer. 

Product Manufacturer 

Cell culture flasks (T25, T75, T175) Greiner Bio-One GmbH, Frickenhausen, DE 

Cell culture plates (6-well plates) Sarstedt AG, Nümbrecht, DE 

Cell culture plates (12-, 24-, 96-well 

plates) 

Greiner Bio-One GmbH, Frickenhausen, DE 

Cell scrapers A. Hartenstein GmbH, Würzburg, DE 

CryoPure tubes (2 mL) Sarstedt AG, Nümbrecht, DE 

Falcon tubes (15 mL, 50 mL) Greiner Bio-One GmbH, Frickenhausen, DE 

Fixer type F 1-2 C & L GmbH, Planegg, DE 

FrameStar® 96 PCR Plate for LC480 GeneON, Ludwigshafen, DE 
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Product Manufacturer 

Developer type E 1-3 C & L GmbH, Planegg, DE 

Electroporation cuvettes (4 mm) VWR International GmbH, Darmstadt, DE 

Gel-Loading pipet tips Corning Inc., Corning, USA 

Graduated pipettes (2 mL, 5 mL, 10 mL, 

25 mL) 

Greiner Bio-One GmbH, Frickenhausen, DE 

Glass beads 4 mm CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Hyperfilm ECL  Cytiva Europe GmbH, Freiburg, DE 

Microscope coverslips (18 mm) CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Microscope slides SuperFrost® Plus Thermo Fisher Scientific, Waltham, USA 

Omnifix®-F Syringes (1, 5, 10, 20 mL) B.Braun, Melsungen, DE 

Protein tyrosine kinase PamChip® PamGene International BV, Den Bosch, NL 

Parafilm Bemis, Bonn, DE 

PCR reaction tubes Sarstedt AG, Nümbrecht, DE 

Phase Lock Gel Heavy (2 mL) 5 PRIME GmbH, Hamburg, DE 

Pipette tips (10 µL, 100 µL, 300 µL, 1000 

µL) 

Sarstedt AG, Nümbrecht, DE 

Pipette tips with filter (10 µL, 100 µL, 300 

µL, 1000 µL) 

Sarstedt AG, Nümbrecht, DE 

Reaction tubes (1.5 mL, 2 mL) Sarstedt AG, Nümbrecht, DE 

RotiLabo® syringe filters (0.22 µm) CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Sterican® single-use hypodermic 

needles 

B.Braun, Melsungen, DE 
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Product Manufacturer 

Transfer membrane ROTI® PVDF 0.45 

µm 

CARL ROTH GmbH + Co. KG, Karlsruhe, DE 

Whatman paper 3 mm VWR International GmbH, Darmstadt, DE 

 

3.16 Devices 

Table 30 – Devices required in this study and the respective manufacturer.  

Device Manufacturer 

Accu-jet® pro pipette controller  BRAND GMBH + CO KG, Wertheim, DE 

AGFA Curix 60 X-ray film processor Agfa Healthcare GmbH, Mortsel, BE 

Avanti J-26 XPI centrifuge Beckman Coulter, Brea, USA  

Axiovert 40C inverted phase-contrast 

microscope 

Carl Zeiss, Oberkochen, DE 

Bacterial incubator Innova 44 New Brunswick Scientific Co., Inc., Edison, 

USA 

CO2 incubator Heracell™ 150i Thermo Fisher Scientific, Waltham, USA 

CO2 incubator Heraeus®BBD6220  Thermo Fisher Scientific, Waltham, USA 

Confocal laser scanning microscope LSM 

510 

Zeiss, Oberkochen, DE 

Confocal laser scanning microscope Leica 

TCS SP8 

Leica Camera AG, Wetzlar, DE 

Eclipse Ti Nikon, Minato City, JP 

Electrophoresis power supply EPS 301 Cytiva, Marlborough, USA 

Gene Pulser Xcell electroporation system Bio-Rad Laboratories, Hercules, USA 
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Device Manufacturer 

Hemocytometer CARL ROTH GmbH + Co. KG, Karlsruhe, 

DE 

Heraeus Fresco™ 17 microcentrifuge Thermo Fisher Scientific, Waltham, USA 

Heraeus™ Multifuge™ X1 centrifuge Thermo Fisher Scientific, Waltham, USA 

Heraeus™ Multifuge™ 1S-R centrifuge Thermo Fisher Scientific, Waltham, USA 

Heraeus™ Multifuge™ X3 FR centrifuge Thermo Fisher Scientific, Waltham, USA 

Hypercassette™ Cytiva, Marlborough, USA 

Horizontal electrophoresis system HE33 Cytiva, Marlborough, USA 

ImageQuant800 CCD Imager Cytiva, Marlborough, USA 

Infinite M1000 microplate reader Tecan, Männedorf, CH 

Intas gel documentation system Intas Science Imaging Instruments 

GmbH, Göttingen, DE 

LightCycler® 480 Instrument II Roche, Basel, CH 

Mini centrifuge Rotilabo®  CARL ROTH GmbH + Co. KG, Karlsruhe, 

DE 

Mr. Frosty™ Freezing Container Thermo Fisher Scientific, Waltham, USA 

NanoDrop™ One C Thermo Fisher Scientific, Waltham, USA 

Odyssey® CLx Imaging System LI-COR Biosciences, Lincoln, USA 

Orion II LB 965 Microplate Luminometer Berthold Technologies GmbH & Co. KG, 

Bad Wildbad, DE 

Pipettes Research Eppendorf AG, Hamburg 

PamStation®12 System PamGene International BV, Den Bosch, 

NL 
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Device Manufacturer 

Promax 1020 platform shaker Heidolph Instruments GmbH & Co. KG, 

Schwabach, DE 

RCT Classic magnetic stirrer heater IKA®, Staufen, DE 

S20 – SevenEasyTM pH meter Mettler Toledo, Columbus, USA 

Sartorius balance LP 6000 200S Sartorius, Göttingen, DE 

SONOPULS HD 2200 sonicator Bandelin, Berlin, DE 

Sorvall SLA1500 fixed angle rotor Thermo Fisher Scientific, Waltham, USA 

Standard incubator B 28 BINDER GmbH, Tuttlingen, DE 

Standard power pack P25 Biometra, Göttingen, DE 

SterilGard®III Advance The Baker Company, Maine, DE 

Stuart roller mixer SRT9 Bibby Scientific, Stone, UK 

TE77 ECL semi-dry transfer unit Cytiva, Marlborough, USA 

Thermocycler  VWR International GmbH, Darmstadt, DE 

Thermomixer compact  Eppendorf, Hamburg, DE 

Triple Wide Mini vertical electrophoresis 

system 

VWR International GmbH, Darmstadt, DE 

UV transilluminator UVT2020 Intas Science Imaging Instruments 

GmbH, Göttingen, DE 

VACUSAFE™ Vacuum Aspiration System INTEGRA Biosciences Deutschland 

GmbH, Biebertal, DE 

Vortex-Genie® 2 Scientific Industries, New York, DE 

Water bath WBU 45 Memmert GmbH + Co.KG, Schwabach, 

DE 
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3.17 Software 

Table 31 – Software required in this study and the respective manufacturer.  

Software Manufacturer 

BioNavigator PamGene International BV, Den Bosch, 

NL 

Evolve12 PamGene International BV, Den Bosch, 

NL 

Fiji (Image J) Open source 

Graph Pad Prism 8.4.2 GraphPad Software, La Jolla, USA 

i-control 1.8 Tecan, Männedorf, CH 

ImageQuantTL Cytiva, Marlborough, USA 

Image Studio LI-COR Biosciences, Lincoln, USA 

Image Studio Lite 5.2.5 LI-COR Biosciences, Lincoln, USA 

INTAS GDS Intas Science Imaging Instruments 

GmbH, Göttingen, DE 

LAS X Leica Camera AG, Wetzlar, DE 

Light Cycler 480 Software version 1.5 Roche, Basel, CH 

Mendeley Mendeley, London, UK 

MS Office Microsoft, Redmond, USA 

Simplicity 4.2 Berthold Technologies GmbH & Co. KG, 

Bad Wildbad, DE 

SnapGene viewer GSL Biotech, Chicago, USA 

ZEN 2012 black edition Zeiss, Oberkochen, DE 

ZEN 2012 blue edition Zeiss, Oberkochen, DE 
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4. Methods 

4.1 Cell Biology 

4.1.1 Bacterial cells 

4.1.1.1 Cultivation and selection of transformed E. coli  

In this study, E. coli K12 strain DH5α cells were used. Transformed bacteria were 

selected by the addition of 100 µg/mL ampicillin (w/v) to the LB medium. Single 

colonies of transformed bacteria carrying the desired plasmid were picked from the LB 

agar plates (see chapter 4.2.2), transferred into 2-5 mL of LB medium and cultivated for 

about 8 h at 37°C to generate a small bacterial culture. To produce overnight cultures 

of bacteria, LB medium was inoculated with transformed bacteria from a glycerol stock 

or with a small bacterial culture and cultivated aerobically for 16 h at 37°C in Erlenmeyer 

flasks with continuous shaking (150-200 rpm) in a bacterial incubator.   

4.1.1.2 Preservation of transformed E. coli  

To preserve transformed cells for a long duration, glycerol stocks were created. For this 

purpose, 10 mL of an overnight culture were centrifuged at 4.500 x g for 10 min at 4°C 

and the bacterial pellet was resuspended in 300 µL LB medium with ampicillin. 

Subsequently, the resuspended pellet was mixed with 700 µL of 100% glycerol (v/v) 

and stored in a cryotube at -80°C.  

4.1.1.3 Harvest of transformed E. coli  

To harvest transformed cells for plasmid DNA isolation, 5 (using QIAprep Spin Miniprep 

Kit) or 250 mL (using QIAGEN Plasmid Maxi Kit) of an overnight culture were 

centrifuged at 6.000 x g for 15 min at 4°C. The pellet was directly processed as 

described in chapter 4.2.3. 

4.1.2 Mammalian cells 

4.1.2.1 Cultivation and passaging 

All cell culture procedures were performed in biosafety cabinets with vertical laminar 

flow following aseptic techniques, which included the use of sterile equipment, 

reagents and media. Cells were grown in DMEM supplemented with 10% FBS superior 

(v/v), 1% penicillin/streptomycin (v/v), and 2 mM L-glutamine in an incubator at 37°C 

with a content of 5% CO2 and 90% relative humidity. Stably transfected cells were 

selected by adding either 1.5 µg/mL puromycin or 0.5 mg/mL G418 to the growth 

media. Adherent cells were passaged 2-3 times a week when cells reached 60%-90% 

confluency. During this process, the cells were gently washed with PBS and detached 

from the cell culture flasks or well-plates with a trypsin/EDTA solution for 5 min at 37°C. 
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The proteolytic activity of the trypsin was inactivated by the addition of 3 volumes of 

pre-warmed growth medium. Cells were resuspended and seeded in fresh growth 

medium at an appropriate split ratio (1:2-1:20) to maintain a propitious cell viability 

and growth rate. To perform the experiments, resuspended cells were counted using a 

hemocytometer and seeded consistently in well-plates or Petri-dishes at an adequate 

density.  

4.1.2.2 Cryopreservation  

For long-term storage of cultured cells, cryopreservation was performed. In light of this, 

cells with a low passage number and a 90% confluency were subjected to trypsinization, 

as described in 4.1.2.1. Resuspended cells were centrifuged for 5 min at 200 x g at 4°C 

and the cell pellet was washed with PBS. After repeating the same centrifugation step, 

the cell pellet was resuspended in a suitable amount of freezing medium, which has 

DMSO as a cryoprotective agent, and aliquoted into cryotubes. Consecutively, the 

cryotubes were placed into a cryo-freezing container with isopropanol and stored 

overnight at -80°C, allowing a slowly freezing process with a temperature reduction of 

about 1°C per minute. The following day, the cryotubes were transferred to the liquid 

nitrogen tank where they are stored at -170°C. When desired, cells were thawed by 

placing the cryovial in a water bath at 37°C for 1 min and transferred to a T75 flask for 

adhering. On the following day, the medium was changed. 

4.1.2.3 Infection with ZIKV 

All infection procedures and the maintenance of infectious cells were performed in a 

biosafety level 3 (BSL-3) facility. In this study, cells were infected with either H/PF/2013 

French Polynesia or 976 Uganda strains of ZIKV, hereafter referred to as the French 

Polynesia (FP) and the Uganda (U) strains. These strains represent the two types of 

pathogenesis linked to ZIKV infection. The Uganda strain is associated with a mild 

condition, while the French Polynesia strain with neurological disorders. To infect cells 

systematically with the same amount of virus, virus stocks were prepared and the virus 

titer was determined as described in chapter 4.1.2.4 and chapter 4.1.2.5, respectively. 

In this study, cells were either infected with a multiplicity of infection (MOI) of 0.1, 1, 

10, 20, and 50 depending on the goal of the experiment. MOI is the ratio of infectious 

viral particles added per cell. However, this does not reflect the exact number of viruses 

that will actually enter each cell.  
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4.1.2.4 Production of virus stocks from cell culture supernatant   

ZIKV was propagated in Vero cells due to their high permissiveness derived from the 

lack of interferon response upon viral infection.467,468 In this respective, multiple T175 

flasks with 4x106 seeded cells were infected with either the French Polynesia or the 

Uganda strain with a MOI of 0.1. Supernatants were collected at 2, and 5 days post-

infection (dpi). For each batch of supernatants, dead cells and cell debris resultant from 

viral infection were removed by a centrifugation step at 4.500 x g for 10 min at 4°C. 

Afterwards, the supernatants that belonged to the same batch were pooled, aliquoted 

and stored at -80°C. The viral titers of each batch were determined by plaque forming 

assay as described in chapter 4.1.2.5. 

4.1.2.5 Virus titration   

The amount of virus was titrated by plaque forming assay (hereafter designated as 

plaque assay). To determine the intracellular virus titer by plaque assay, cells were 

trypsinized with 200 µL of trypsin solution at 37°C. After 3-5 min incubation, the 

protease activity was neutralized with 800 µL of growth medium. Cells were collected 

into reaction tubes and lysed through three freeze-thaw cycles at -80°C and 37°C, 

respectively. Subsequently, the cell suspension was centrifuged for 10 min at 5000 x g 

at 4°C to obtain a clear supernatant for the assay. To titrate the virus stocks, one aliquot 

was thawed and directly used.   

To perform the plaque assay, 3x105 Vero cells seeded in each well of a 6-well plate 

were infected with 100 µL of 10-fold dilutions (10-1 to 10-6 and one dilution per well) of 

supernatant. Meanwhile, the SeaPlaque™ agarose solution was boiled in a microwave 

and cooled in a water-bath at 65°C. After 2 h of infection at 37°C, the medium was 

removed, including the unbound infectious viral particles, and cells were overlayed with 

a 1:10 dilution of the agarose solution in pre-warmed growth medium. The agarose 

layer was solidified after incubation at room temperature for 15 min to prevent viral 

diffusion through the medium, but not affect cell-to-cell infection. To allow the 

visualization of plaques, cells were incubated for 4 days at 37°C. Afterwards, cells were 

fixed with 3.7% formaldehyde (v/v) in PBS for 20 min at 37°C. After removing the 

agarose overlay together with the fixation solution, cells were stained with 

approximately 500 µL of crystal violet solution for 15 min. Then, cells were washed once 

with water and the plaques in each dilution were counted. Only the wells containing 

more than 5 and less than 120 plaques were used to calculate the viral titers. The viral 

titers are expressed in plaque-forming units per mL (pfu/mL) and calculated as follow: 

𝑉𝑖𝑟𝑎𝑙 𝑡𝑖𝑡𝑒𝑟 (
𝑝𝑓𝑢

𝑚𝐿
) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠 

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚 (0.1 𝑚𝐿)
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 4.1.2.6 Binding, entry, and post-entry assays  

In the binding assay, cells and the viral inoculum were pre-chilled at 4°C for 30 min. 

Afterwards, the cells were infected with the desired MOI at 4°C for 1 h, washed twice 

with PBS and lysed as described in chapter 4.1.2.15. In the entry assay, the cells were 

infected with the desired MOI at 37°C for 1 h, washed once with PBS and trypsinized 

with 200 µL of trypsin/EDTA solution for 3-5 min at 37°C to remove attached virus that 

are not fully internalized. 800 µL were added to each well to neutralize the trypsin 

activity and the cell suspension was collected into reaction tubes. Subsequently, the 

cells were pelleted for 10 min at 5000 x g at 4°C, washed once with PBS and centrifuged 

once more for 10 min at 5000 x g at 4°C. The cell pellet was lysed as described in 

chapter 4.1.2.15. For the post-entry assay, cells were infected with the desired MOI at 

37°C for 3 h. Trypsinization and cell lysis were performed in the same manner as 

described for the entry assay. The successful removal of attached viruses from the cell 

surface was controlled by the quantification of the viral genomes by qPCR of infected 

cells at 4°C and subjected to trypsinization.   

4.1.2.7 Electroporation 

Resuspended A549, CHO, CHO-EGFR-1808 #22.2, and CHO-EGFR-1808 #45, obtained 

as described in chapter 4.1.2.1., were washed with ice-cold PBS and centrifuged for 5 

min at 200 x g at 4°C. After performing this step twice and counting the cells using a 

hemocytometer, the concentration of cells was adjusted to 5x106 cells/mL with PBS. 

Then, 800 µL of the cell suspension were mixed with 10 µg of in vitro transcribed RNA 

(see chapter 4.2.6) and placed into a 4 mm cuvette. Directly, cells were electrically 

pulsed a single time at 300 V and 950 µF using the Gene Pulser Xcell. After a 10 min 

room temperature recovery, electroporated cells were diluted in 12 mL growth medium 

and seeded into a T75 flask or in well-plates at an appropriate density. About 4 to 6 

hours post-electroporation (hpe), when cells were adherent, the medium was changed 

to remove dead cells and cell debris derived from the electroporation procedure. Stable 

A549-ZIKV Renilla luciferase (A549-ZIKVRLuc) cells were generated by continuous 

cultivation of electroporated cells until a quasi-stable luciferase expression was 

achieved. Cells were cultivated in cell culture plates for 24 h before the onset of 

treatment (see chapter 4.1.2.14). 

4.1.2.8 Transfection with calcium phosphate 

A549 cells used for the generation of monoclonal EGFR knockout (KO) cells (see 

chapter 4.1.2.9) were transfected with calcium phosphate.469 For this purpose, 1 µg of 

the desired plasmid DNA was initially diluted in ultrapure water to a final volume of 50 

µL. Subsequently, the diluted DNA was mixed with 5.6 µL of 2.5 M of calcium chloride. 

Afterwards, the DNA-calcium chloride mixture was added drop-wise to 55.6 µL of 2x 
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HeBS buffer, allowing the formation of calcium phosphate-DNA co-precipitate. After 

20 min incubation at room temperature, the mixture was dispersed onto the cells 

seeded in 6-well plates. Before transfection, the growth medium was replaced by 

medium containing 25 µM chloroquine to prevent lysosomal degradation of the 

exogenous DNA. On the following day, the chloroquine was removed by changing the 

growth medium. 

4.1.2.9 Generation of monoclonal EGFR KO cells 

At 48 hours post-transfection (48 hpi), cells transfected (see chapter 4.1.2.8) with 

plasmids containing either one of the sgRNA or the off-target sequence were selected 

with 1.5 µg/mL puromycin until the formation of resistant cell colonies (approximately 

two weeks). To pick cell colonies, a phase-contrast microscope was placed into a 

biosafety cabinet with vertical laminar flow and cell colonies were gently scraped with 

10 µL trypsin solution and transferred to a 24-well plate containing growth medium. 

Each clone was expanded and the achievement of monoclonal EGFR KO cells was 

confirmed by Western blot, indirect immunofluorescence, and DNA sequencing. 

4.1.2.10 EGF stimulation 

To stimulate the cells with EGF, a 1:100 dilution in growth medium was primarily 

prepared. Then, the cells were stimulated for 30 min at 37°C with the chosen 

concentration of EGF also prepared in growth medium.   

4.1.2.11 Cell viability assay 

To choose an appropriate concentration for each inhibitor that does not affect the cell 

viability, the metabolic activity of treated cells was determined using the PrestoBlue™ 

Cell Viability reagent according to the manufacturer’s instructions. In short, A549 cells 

were seeded in 96-well plates with 1x104 cells per well and on the following day, cells 

were treated with a wide range of concentrations of each substance. At the desi red 

time, the medium was removed and cells were incubated with 100 µL of PrestoBlue™ 

Cell Viability reagent diluted 1:10 in growth medium for 1 h at 37°C. The reagent 

contains resazurin that is metabolically reduced into a fluorescent compound by viable 

cells. The fluorescence was measured in the Infinite M1000 (excitation wavelength: 560 

nm, 10 nm bandwidth; emission wavelength: 590 nm, 10 nm bandwidth). Cells treated 

with 2% of Triton X-100 were used as positive control. The fluorescence of the reagent 

was also measured to remove the background signal from all the measured values.   
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4.1.2.12 Determination of EGFR half-life 

To determine the half-life of EGFR in ZIKV-infected cells, A549 cells were infected with 

either the French Polynesia or the Uganda strain (MOI=1). After 16 hpi, cells were 

serum-starved for 2 h to maximize the amount of EGFR at the cell surface. 

Subsequently, cells were co-treated with 20 µg/mL of cycloheximide and 100 ng/mL of 

EGF to inhibit protein translation and target EGFR for degradation, respectively. After 

15, 30, 45, 60, 90, and 120 min of treatment, RIPA lysates were prepared as described 

in chapter 4.1.2.15 and analyzed by Western Blot. Untreated cells served as control (t=0 

min). The half-life of EGFR was calculated based on an exponential decay non-linear 

regression analysis, y(0)=1 and plateau of y=0, using the Graph Pad Prism.  

4.1.2.13 Cholesterol depletion from the plasma membrane 

To selectively deplete cholesterol from the plasma membrane, methyl-beta-

cyclodextrin (MβCD) was used. For this purpose, A549 cells were serum-starved for 24 

h and subsequently treated with MβCD diluted in growth medium free of serum for 1 

h at 37°C. Afterwards, cells were washed twice with PBS and either infected with ZIKV 

or treated with EGF.  

4.1.2.14 Inhibition of the kinase activity of EGFR and respective MAPK/ERK 

signaling cascade 

The kinase activity of EGFR and subsequent MAPK/ERK signaling cascade was inhibited 

with Erlotinib (EGFR inhibitor), Sorafenib (Raf inhibitor), and PD98059 (MEK inhibitor). 

A549 and A549-ZIKVRLuc cells were treated with 25 µM Erlotinib, 2 µM Sorafenib, and 

50 µM PD98059 in growth medium at 37°C during the desired time. As a vehicle 

control, cells were treated with the correspondent amount of DMSO.  

4.1.2.15 Cell lysis  

At the desired time, medium was removed and cells were washed once with PBS. 

Different cell lysis methods were performed depending on the purpose of the 

experiment. For indirect immunofluorescence, cells were fixed with 3.7% formaldehyde 

(v/v) in PBS for 20 min at room temperature, followed by a washing step with PBS. The 

fixed cells were stored at 4°C until required. For the isolation of total RNA by 

guanidinium thiocyanate-phenol-chloroform extraction, cells or pelleted cells were 

lysed with 400 µL of peqGOLD Trifast™ reagent and stored at -80°C until the RNA 

isolation was performed. For the luciferase assay, cells were lysed with 200 µL of 

luciferase lysis buffer, centrifuged at 17.000 x g for 5 min and stored at -20°C until 

required for the assay. For Western blot, cells were lysed with 200 µL of pre-chilled 

RIPA buffer freshly supplemented with protease inhibitors for 10 min on ice and 

subsequently sonicated 10 sec using 20% power. After 10 min centrifugation at 17.000 
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x g and at 4°C, cell lysates were stored at -20°C until required for Bradford assay. 

However, for Western blot of phosphoproteins, the cells were lysed with 200 µL of pre-

chilled cell lysis buffer (1x) freshly supplemented with protease inhibitors and 

phosphatase cocktail inhibitor 2. For the determination of the protein tyrosine kinase 

activity using the PamChip®peptide tyrosine kinase microarray system, cells were lysed 

with 200 µL pre-chilled M-PER™ Mammalian Extraction Buffer freshly supplemented 

with Halt™ Protease Inhibitor Cocktail (1x) and Halt™ Phosphatase Inhibitor Cocktail 

(1x) for 15 min on ice, followed by two centrifugations for 15 min at 17.000 x g and at 

4°C. The last supernatant was divided in 20 µL aliquots and immediately stored at -

80°C until required for the protein quantification using the Pierce™ BCA Protein Assay 

Kit.  

4.1.2.16 Tissue homogenization  

The liver of a golden Syrian hamster was kindly provided by Dr. Aileen Ebenig from the 

Division of Veterinary Medicine from the Paul-Ehrlich-Institut. The liver was rinsed a 

few times in PBS to remove the remaining blood. Afterwards, 100 mg of liver tissue was 

transferred to a douncer homogenizer and 2 mL pre-chilled RIPA buffer freshly 

supplemented with protease inhibitors were added. After a few manual strokes until 

tissue homogenization was achieved, the homogenate was incubated on ice for 10 min 

and subsequently centrifuged for 5000 x g for 10 min. 80 µL of the supernatant were 

used for Western blot analysis. 

4.2 Molecular biology 

4.2.1 Preparation of chemically competent E. coli 

To produce chemically competent DH5α cells, 100 mL of LB medium without antibiotic 

were inoculated with 100 µL of bacterial cells in an Erlenmeyer flask and incubated 

overnight at 37°C in a bacterial incubator with continuous shaking (150-200 rpm). On 

the following day, 200 mL of pre-warmed LB medium without antibiotics were 

inoculated with 5 mL of the overnight culture and incubated at 37°C until reaching an 

optical density at 600 nm (OD600) of 0.3-0.4. After 10 min incubation on ice, the bacterial 

culture was centrifuged for 10 min at 4.500 x g at 4°C. Afterwards, the pellet was 

resuspended in 80 mL of ice-cold transformation buffer 1 (TFB1) and subsequently 

incubated on ice for 15 min. Then, the bacterial cells were centrifuged again at 4.500 x 

g at 4°C for 10 min and the pellet was resuspended in 8 mL in TFB2. After 15 min 

incubation on ice, the cell suspension was divided into 100 µL aliquots and directly 

frozen using liquid nitrogen. The chemically competent cells were stored at -80°C.  
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4.2.2 Transformation of competent E. coli 

To transform competent DH5α cells, a complete ligation mixture or 50-100 ng of 

plasmid DNA diluted in 10 µL of ultrapure water were added to one aliquot of 

chemically competent cells (see chapter 4.2.1). After 30 min incubation on ice, the 

uptake of DNA by the competent cells was carried out by heat shock at 42°C for 45 

seconds and subsequently incubation on ice for 5 min. To enable the expression of the 

ampicillin resistance gene, 500 µL of pre-warmed LB medium without antibiotic was 

added to the transformed cells, following incubation for 1 h at 37°C with constant 

agitation at 700 rpm. Afterwards, the transformed cells were plated on a LB agar plate 

containing 100 µg/mL ampicillin (w/v) and incubated overnight at 37°C, allowing the 

selection of successfully transformed cells. 

4.2.3 Isolation of plasmid DNA 

The isolation of plasmid DNA from transformed cells was performed using the QIAprep 

Spin Miniprep Kit or the QIAGEN Plasmid Maxi kit according to the instructions of the 

manufacturer. The principle of the isolation is described in Birnboim and Doly.470 Briefly, 

the pelleted bacteria (see chapter 4.1.1.3) were lysed with an alkaline lysis buffer 

containing SDS and sodium hydroxide. After neutralization, the solution was 

centrifuged to pellet precipitated proteins, chromosomal DNA, and cell debris. The 

plasmid DNA in the supernatant was purified using silica columns. In the case of the 

QIAGEN Plasmid Maxi kit, the plasmid DNA was precipitated with isopropanol, and 

subsequently washed with 70% ethanol, air-dried and dissolved in ultrapure water. The 

plasmid DNA was stored at -20°C.  

4.2.4 Determination of the concentration of nucleic acids 

The concentration of DNA or RNA in solutions was determined spectrophotometrically 

by measuring the absorbance of each sample at a wavelength of 260 nm (A260) using 

the NanoDrop™ Onec. This is possible due to the presence of conjugated double bonds 

in purine and pyrimidine bases of the nucleic acids. The concentration of the nucleic 

acids is obtained using the Beer-Lambert law.471 Additionally, the absorbance at 230 

nm (A230) and 280 nm (A280) is measured as well by the device to detect contaminations 

of proteins or solvent residues derived from the extraction procedure. Samples are 

considered pure when A260/280 and A260/230 are between 1.8-2.0 and 2.0-2.2, respectively.  
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4.2.5 Restriction endonuclease digestion 

To linearize circular plasmids, restriction endonuclease digestion was performed. In 

light of this, 40 µg of pACYC177 ZIKV-RLuc were linearized with 40 U of ClaI in 1x 

CutSmart® buffer. Ultrapure water was used to adjust the final volume of the reaction 

to 50 µL. The enzymatic reaction occurred at 37°C for 2 h. 

4.2.6 In vitro run-off T7 transcription 

To generate ZIKV-Renilla luciferase genomic RNA for electroporation, in vitro run-off 

T7 transcription was performed using the T7 Scribe™ Standard RNA IVT Kit following 

the manufacturer’s instructions. Briefly, 4 µg of linearized plasmid DNA (see chapter 

4.2.5) were mixed with 1x T7-Scribe™ Transcription Buffer, 2 µL T7-Scribe™ Enzyme 

solution, 20 U of ScriptGuard™ RNase Inhibitor, 10 mM DTT, 7.5 mM ATP, 7.5 mM CTP, 

7.5 mM UTP, 1.5 mM GTP, and 6 mM 3´-0-Me-m7G(5')ppp(5')G RNA Cap Structure 

Analog. The ratio of cap analog: GTP used was 4:1. Ultrapure water was used to adjust 

the final volume to 20 µL. The enzymatic reaction took place at 37°C for 4 h. Afterwards, 

to degrade the template DNA 1 U RNase-Free DNase I was added to the reaction and 

incubated at 37°C for 15 min. Then, the in vitro transcribed RNA was purified by phenol-

chloroform extraction and the RNA was stored at -80°C in 10 µg aliquots. The quality 

of the RNA was analyzed by agarose gel electrophoresis. 

4.2.7 Agarose gel electrophoresis 

The integrity of in vitro transcribed RNA (see chapter 4.2.6), PCR products (see chapter 

4.2.14), and restriction endonuclease digestion products (see chapter 4.2.5) were 

analyzed by agarose gel electrophoresis. For this purpose, 0.7-2% LE agarose (w/v) was 

dissolved in 1x TAE buffer by heating in a microwave. Following the addition of 0.1 

µg/mL ethidium bromide, the solution was poured into a horizontal gel electrophoresis 

chamber. The ethidium bromide intercalates into the nucleic acids and becomes 

fluorescent under UV light, emitting orange-red light at 590 nm.472 After solidification, 

the agarose gel was covered with 1x TAE buffer and the samples, previously mixed with 

1x DNA Gel Loading Dye buffer, were loaded onto the gel. The nucleic acids were 

separated at 90-120 V, visualized with a UV-transilluminator (254 nm/365 nm) and 

imaged using the INTAS Imaging system.  

4.2.8 Phenol-chloroform extraction 

To purify linearized plasmid DNA (see chapter 4.2.5) and in vitro transcribed RNA (see 

chapter 4.2.6) from aqueous solutions, phenol-chloroform extraction was performed. 

For this purpose, 40 µL (1/10 volume) of the sodium acetate solution were added to 

each sample and DEPC-H2O was used to adjust the volume to a total of 400 µL. After 

the addition of 400 µL (1 volume) of phenol, samples were mixed by inversion and 
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centrifuged for 5 min. The upper phase was transferred to a fresh reaction tube and 

400 µL (1 volume) of chloroform were added and mixed by vortexing. After transferring 

the samples to Phase Lock Gel tubes and a 5 min centrifugation, the upper phase was 

collected into a new reaction tube. The DNA and RNA present in the upper phase were 

precipitated by the addition of 1 mL (2.5 volumes) of ethanol and 280 µL (7/10 volume) 

of isopropanol, respectively. After 30 min centrifugation, the nucleic acid pellet was 

washed with 500 µL of 70% ethanol, air dried, and resuspended in 10-40 µL of DEPC-

H2O, depending on the size of the pellet. All centrifugation steps were performed at 

17.000 x g and 4°C. 

4.2.9 Guanidinium thiocyanate-phenol-chloroform extraction  

Total RNA was isolated from cells using the peqGOLD Trifast™ reagent based on the 

method described by Chomczynski and Sacchi.473 This reagent contains guanidinium 

thiocyanate and acidic phenol. Guanidinium thiocyanate is a chaotropic agent that 

denatures proteins, including endogenous RNases, whereas the presence of the acidic 

phenol leads to DNA denaturation, allowing the separation between DNA and RNA. 

After homogenization, 80 µL of chloroform were added to each sample, followed by 

vortexing and 5 min incubation at room temperature. Then, the samples were 

transferred to Phase Lock Gel tubes and centrifuged for another 5 min. The Phase Lock 

Gel tubes hold a gel that acts as a barrier and facilitates the collection of the upper 

phase, eliminating the contamination of the remaining phases. The RNA present in the 

upper phase was recovered by precipitation with 200 µL of isopropanol. After vigorous 

vortexing and 10 min incubation at room temperature, samples were centrifuged for 

30 min. The RNA pellet was then washed with 500 µL of 75% ethanol, air-dried and 

resuspended in 10-15 µL of DEPC-H2O. All centrifugation steps were performed at 

17.000 x g and 4°C. 

4.2.10 cDNA synthesis 

To remove possible DNA contaminations resultant from the RNA isolation procedure, 

the samples were digested with DNase I. For this purpose, 4 µg of total RNA were 

incubated with 1 µL of RQ1 RNase-free DNase I, 1.1 µL of the corresponding 10x 

reaction buffer, and adjusted with DEPC-H2O to a final volume of 11 µL. The digestion 

occurred at 37°C for 1 h. Later, the enzyme was inactivated with 1 µL of RQ1 DNase 

Stop Solution, followed by incubation at 65°C for 10 min. To initiate reverse 

transcription, 1 µL of random hexamer primer was added to each sample and 

subsequently incubated for 5 min at 65°C. After cooling samples on ice to allow the 

annealing of the primers, 4 µL of 5x reaction buffer, 2 µL of dNTP mix (10 mM each), 

and 1 µL of RevertAid H Minus Reverse Transcriptase (200 U) were added. Then, 

samples were incubated for 10 min at room temperature, enabling the extension of the 
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primers before 1 h incubation at 42°C. Enzyme inactivation was achieved by 10 min 

incubation at 70°C. The cDNA samples were stored at -20°C.  

4.2.11 Real-time PCR (qPCR)  

To detect and quantify specific viral genomes and intracellular transcripts, qPCR was 

performed using the Maxima™ SYBR™ Green 2x qPCR Master Mix and the LightCycler® 

480 system. During the elongation step of the PCR, the SYBR Green dye binds to each 

new copy of dsDNA. Upon binding, this dye emits a fluorescence signal which is directly 

proportional to the amount of the target sequence amplified after each cycle. When 

the fluorescence signal overcomes the threshold level after a certain cycle, this cycle 

number is registered as a Ct (cycle threshold) value.474 A quantitative analysis of the 

specific transcripts was achieved by calculating the n-fold expression using the 2-ΔΔC
t 

method.475 GAPDH and hRPL27 were used as housekeeping genes. For each reaction, 

3 µL of cDNA diluted 1:10 were mixed with 5 µL of Maxima™ SYBR™ Green 2x qPCR 

Master Mix, 0.25 µL of each oligonucleotide (initial concentration of 10 µM), 1.5 µL 

nuclease-free ultrapure water into a FrameStar®96 PCR plate with a final volume of 10 

µL. Before placing into the LightCycler® 480 Instrument II, the plate was briefly 

centrifuged at 2000 x g. The qPCR program used is described in table 32.  

Table 32 – Description of the qPCR program used.  

Program Temperature (°C) Hold (s) Ramp rate (°C/s) Cycles 

Initial 

denaturation 
95 600 4.4 1 

Denaturation 95 15 4.4 

45 Annealing 56 30 2.2 

Elongation 72 30 4.4 

Melting 

95 60 4.4 

1 56 30 2.2 

97 - 0.1 

Cooling 37 30 2.2  
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4.2.12 Cloning sgRNAs into PX459 plasmid 

Single-guide RNAs (sgRNAs) sequences complementary to part of the EGFR DNA 

sequence were obtained from GenScript database and from those, oligonucleotides 

were designed by adding two overhangs required for cloning – forward 

oligonucleotide 5’ CACCG and reverse oligonucleotide 5’AAAC (see chapter 3.5.1).476 

After being synthetized, 10 µM of each pair of oligonucleotides were phosphorylated 

with 5 U of T4 Polynucleotide Kinase (T4 PNK) in 1x T4 Ligation buffer. The volume of 

the reaction was adjusted with ultrapure water to a final volume of 10 µL and the 

reaction occurred at 37°C for 30 min. Subsequently, the phosphorylated 

oligonucleotides were annealed in a thermocycler at 95°C for 5 min, followed by 

cooling down to 25°C at 5°C/min. Afterwards, in a unique digestion-ligation reaction, 

100 ng of the pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmid encoding for Cas9 were 

digested with 1 µL of FastDigest BbsI, 1x FastDigest buffer and 2 µL of the 

phosphorylated and annealed oligonucleotides previously diluted 1:250 and were 

ligated to the PX459 plasmid with 0.5 µL T7 DNA ligase, 1 µL DTT (1mM final 

concentration), and 1 µL ATP (1 mM final concentration). The reaction was adjusted 

with ultrapure water with a final volume of 20 µL. In a thermocycler, the ligation reaction 

was incubated for 5 min at 37°C, followed by 5 min at 23 °C. This cycle was repeated 

6x. Competent E.coli was transformed with the final ligation product (see chapter 4.2.2).  

4.2.13 Extraction of genomic DNA 

To confirm the achievement of monoclonal A549-EGFR KO cells, the genomic DNA of 

generated EGFR KO cells was extracted using the DNeasy Blood & Tissue kit according 

to the instructions of the manufacturer. 100 ng of genomic DNA were amplified by PCR 

and the purified PCR products (see chapter 4.2.15) were analyzed by DNA sequencing. 

4.2.14 PCR 

To amplify EGFR DNA fragments, 100 ng of genomic DNA extracted from cells (see 

chapter 4.2.13) were amplified with 0.5 µM of the appropriate oligonucleotides, 200 

µM of dNTPs, 1x Q5 reaction buffer, 0.02 U/µL Q5 Hot Start DNA polymerase. The 

volume of the reaction was adjusted with ultrapure water to a final volume of 50 µL 

and the reaction occurred in a thermocycler as described in table 33. 10 µL of the PCR 

product was analyzed by agarose gel electrophoresis. 
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Table 33 – Description of the PCR program used. 

Program Temperature (°C) Time (s) Cycles 

Initial denaturation 98 30 1 

Denaturation 98 5 

35 Annealing 50-72 10 

Elongation 72 20-60 

Final elongation 72 120-300 1 

Hold 4 -  

 

4.2.15 PCR purification 

After performing PCR and agarose gel electrophoresis analysis, the remaining PCR 

products were purified with the PCR purification Kit according to the instructions of the 

manufacturer.  

4.2.16 DNA sequencing 

To verify the DNA sequence of the monoclonal EGFR KO cell clones, 1.5 µL of the 

purified PCR products were mixed with 6 µL of the appropriate oligonucleotide diluted 

1:10 (initial concentration of 10 µM) and 7.5 µL of ultrapure water in a reaction tube to 

obtain a final volume of 15 µL. The reaction tubes were sent for sequencing. The 

nucleotide sequence was determined by capillary electrophoresis by Eurofins 

Genomics and the raw sequence data were aligned and analyzed with Snap Gene 

Viewer software. 

4.3 Protein biochemistry 

4.3.1 Protein quantification by Bradford assay 

To be able to compare different samples, the total protein concentration in cell lysates 

was determined using the Bradford reagent. In an acidic environment, the basic and 

the aromatic amino acids residues of the proteins bind to the Coomassie Brilliant G250 

dye that is present in this reagent. The formation of the protein-dye complex results in 

a shift of the maximum absorption of the dye from 465 to 595 nm, which can be 

spectrophotometrically measured.477 To perform this assay, 5 µL of each cell lysate were 

incubated with 100 µL of Bradford reagent in 96-well plates for 5 min at room 
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temperature. Afterwards, the absorbance was measured in the Infinite M1000. The 

protein amount was calculated using a standard curve generated with BSA.  

4.3.2 Protein quantification with Pierce™ BCA Protein Assay Kit 

As recommended by PamGene International BV, the total protein concentration in cell 

lysates analyzed by the PamChip®peptide tyrosine kinase microarray system was 

determined using the Pierce™ BCA Protein Assay Kit, according to the manufacturer’s 

instructions. Under alkaline conditions, peptides or proteins containing three or more 

amino acid residues reduce the Cu2+ ions from the copper(II) sulfate to Cu+ that is 

present in the reagent provided in the kit. The Cu+ ions formed in the biuret reaction 

react with the bicinchoninic acid, which is also present in the reagent, resulting in a 

purple complex that can be detected at 562 nm.478 The absorbance was measured in 

the Infinite 1000 and the protein amount was calculated using a standard curve 

generated with BSA.   

4.3.3 Polyacrylamide gel electrophoresis 

To separate proteins present in cell lysates based on their molecular weight, sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using 

the Laemmli system.479 For this purpose, equal amounts of protein (75-100 µg) were 

denatured and negatively charged by mixing with 1x SDS loading buffer and heated 

for 10 min at 95°C. After cooling, the samples and 4 µL of protein marker were loaded 

onto SDS-PAGE gels submerged in 1x SDS running buffer and the proteins were 

separated in a vertical chamber at 80-140 V. The SDS-PAGE gels were prepared with 

an acrylamide and bisacrylamide solution (29:1) and the polymerization was achieved 

with a 10% (w/v) ammonium persulfate (APS) solution and TEMED. Based on the 

molecular weight of proteins of interest, 8% or 10% of acrylamide/bisacrylamide were 

used for the separating gels and overlaid with stacking gels of 4%.  

4.3.4 Luciferase assay 

The luciferase activity of electroporated cells with in vitro transcribed ZIKV-Renilla 

luciferase RNA was determined using the Gaussia-GLOW Juice Kit according to the 

instructions of the manufacturer. The luciferase gene is inserted into the viral capsid 

coding sequence. Thus, the luciferase activity directly correlates with the rate of viral 

replication. In brief, 40 µL of cleared lysate were mixed with 20 µL of Gaussia GLOW-

Juice containing coelenterazine, the luminescent substrate of the Renilla luciferase. The 

bioluminescence was measured with the Orion II microplate luminometer. The 

luciferase values were normalized to the protein concentration of the corresponding 

lysate. 
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4.4 Immunological methods 

4.4.1 Western blot 

To enable the detection of proteins of interest, proteins separated by SDS-PAGE were 

transferred onto a methanol-activated PVDF membrane in a semi-dry blotter with a 

discontinuous buffer system, as illustrated in Figure 16. The transfer occurred for 1 h 

with an electric field of 1.3 mA/cm2.480 After transfer, the membrane was blocked for 1 

h at room temperature to prevent unspecific binding. The blocking solution alternated 

between 10% skim milk (w/v) in TBST (0.05% Tween 20) and 1x Roti®-Block solution, 

depending on the antibodies used. Subsequently, the membrane was incubated either 

overnight at 4°C or for 1 h at room temperature with primary antibodies diluted in the 

respective blocking solution. After washing 3x for 10 min with TBST (0.05% Tween 20), 

the membrane was incubated for 1 h at room temperature with secondary antibodies 

either conjugated with fluorescent dyes or horseradish peroxidase (HRP) diluted in the 

respective blocking solution. Afterwards, the membrane was washed 3x for 10 min with 

TBST (0.05% Tween 20) before detection. The incubation with the antibodies 

conjugated with fluorescent dyes was performed in a dark environment and also the 

following washing steps. When secondary antibodies conjugated with fluorescent dyes 

were used, the fluorescence was detected using the Odyssey® CLx Imaging System 

and the signal intensity was quantified using the Image Studio Lite software. In the case 

of the secondary antibodies conjugated with HRP, proteins were detected by using an 

enhanced luminol-based chemiluminescence (ECL) substrate that reacts with the HRP, 

emitting light at 428 nm.481 This light signal was then captured with an x-ray film or 

using the Image Quant 800 CCD imager and the signal intensity was quantified using 

the ImageQuantTL software.  

 

 

 

 

 

Figure 16 – Schematic representation of a semi-dry Western blot transfer system. In a semi-dry 

Western blot transfer system, the SDS polyacrylamide gel and the PVDF membrane are sandwiched 

between two stacks of Whatman paper and placed horizontally between two electrodes. The Whatman 

papers are soaked in the indicated buffers and the excess moisture and trapped air bubbles are removed 

during the assembling of the sandwich.  

Cathode (-) 

Anode (+) 

6x Whatman paper (Cathode buffer) 

4x Whatman paper (Anode buffer I) 

2x Whatman paper (Anode buffer II) 

SDS polyacrylamide gel 
PVDF membrane 
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4.4.2 Western blot of phosphoproteins 

To detect phosphoproteins, the procedure was the same as described in chapters 4.3.3 

and 4.4.1 with the following exceptions. The separation of the proteins by SDS-PAGE 

occurred at 4°C and the buffers used in the transfer were pre-chilled before usage. 

Moreover, the membrane was blocked with 5% BSA (w/v) in TBST (0.1% Tween 20) at 

4°C for 1 h and the washing steps were performed with ice-cold TBST (0.1% Tween 20). 

Both primary and secondary antibodies were diluted in ice-cold TBST (0.1% Tween 20) 

and the incubation with primary antibodies was carried out overnight at 4°C exclusively. 

Only secondary antibodies conjugated with HRP were used. 

4.4.3 Indirect immunofluorescence  

Subcellular localization and distribution of the proteins of interest were analyzed by 

indirect immunofluorescence and confocal laser scanning microscopy. For this 

purpose, cells were grown on 18 mm coverslips in 12 well-plates. At the desired time, 

cells were washed with PBS and fixed with a formaldehyde solution as described in 

chapter 4.1.2.15. The following steps were performed at room temperature and after 

each step, the cells were washed 3x 5min with PBS in a shaker. After fixation, cells were 

permeabilized with PBST for 10 min and blocked with 1% BSA (w/v) in PBS for 30 min. 

Primary and secondary antibodies diluted in PBS were incubated with the cells for 1 h 

in a humidified chamber and in case of the secondary antibodies, protected from light. 

Fluorescent dyes were incubated together with the secondary antibodies. Finally, the 

coverslips were mounted on microscope slides SuperFrost® Plus with mounting 

medium containing mowiol.  

4.4.4 Protein tyrosine kinase (PTK) activity with PamChip®peptide tyrosine 

kinase microarray system 

The kinase activity of EGFR was analyzed using the PamChip®peptide tyrosine kinase 

microarray system on the PamStation®12 instrument. The PTK PamChip® microarray 

comprises 196 individual peptide sequences 13 aa long that are immobilized on a 

porous membrane and act as a tyrosine kinase substrate. Cells were lysed as described 

in chapter 4.1.2.15 and the protein concentration was quantified with Pierce™ BCA 

Protein Assay Kit (see chapter 4.3.1). Per array, 5 µg of protein were mixed with a freshly 

prepared PTK Basic mix containing 4 µL of PK wash buffer (10x), 0.4 µL of BSA (100x), 

0.4 µL DTT, 4 µL of 4 mM ATP solution, 4 µL PTK additive and 0.6 µL anti -

phosphotyrosine FITC-conjugated antibody (clone PY20). The final volume was 

adjusted to 40 µL with ultrapure water. First, the arrays were blocked with 30 µL of a 

2% BSA solution for 30 cycles (30 min), following a washing step with PK wash buffer. 

Afterwards, 40 µL of the sample (PTK Basic mix mixed with 5 µg of protein) were applied 

to the array and pumped back and forward through the porous membrane for 60 
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cycles. The activity of the kinases present in the cell lysates is detected by the binding 

of the fluorescently labeled anti-phosphotyrosine antibody. Based on the peptides that 

are phosphorylated, a prediction of the differentially activated upstream kinases was 

performed using the BioNavigator software and integrated databases. In this case, only 

EGFR was considered. The normalized kinase statistic was calculated using the 

BioNavigator Analysis software tool and indicates the difference of activity between 

the analyzed infected samples and the uninfected control.   

4.5 Microscopy 

4.5.1 Confocal laser scanning microscopy (CLSM) 

Subcellular localization and distribution of the proteins of interest were analyzed by 

indirect immunofluorescence using a confocal laser scanning microscope (LSM 510 

Meta or the TCS SP8) and respective imaging software. A confocal laser scanning 

microscope enables the detection of fluorescent-labeled proteins in a defined plane of 

the cell as well as a three-dimensional reconstruction of the cell. The presence of a 

pinhole prevents that the light emitted from a different plane reaches the detector, 

allowing the visualization of only a specific plane of the cell. A  three-dimensional 

reconstruction of the cell can be obtained by assembling several  images of multiple 

plans of the cell (z-stack imaging). The colocalization of two proteins was quantified by 

calculating the threshold Mander’s overlap coefficient (tMOC) using the Fiji (Image J) 

software and a tMOC of 1 indicates a total overlapping between the analyzed proteins. 

4.6 Statistical analysis  

The results are presented as the mean value of at least three biological replicates (n≥3) 

unless stated otherwise. The error bars represent the corresponding standard 

deviation. In the graphs with the y-axis indicated as relative amount or number, the 

data was normalized and the fold change relative to the control group is represented. 

Hence, the control group is 1 and no standard deviation is shown. The statistical 

significance of the results was analyzed by two-tailed unpaired student’s t-test or in 

the case of multiple comparisons, by multiple t-test with a Holm-Sidak correction using 

the Graph Pad Prism software. The level of statistical significance indicated in the 

graphs are expressed with asterisks (*) that correspond to the following p-value (p): ns 

= not significant p>0.05; * p≤0.05; ** p≤0.01; *** p≤0.001; **** p≤0.0001. 

 

 

 



 

74 
 

5. Results 

5.1 CHO cells neither support ZIKV infection nor express EGFR 

From all the investigated cell lines by Himmelsbach and Hildt, the CHO cells were the 

only cell line that was not capable to support ZIKV infection.459 These cells lack 

endogenous EGFR.482 To confirm these findings, these cells were infected with either 

the French Polynesia or the Uganda strain with a multiplicity of infection of 1 (MOI 1) 

and analyzed at 48 hours post-infection (hpi) by Western blot and confocal laser 

scanning microscopy (CLSM). A549 cells were used as positive control, as they are 

permissive to ZIKV infection and express EGFR.483 Viral infection was assessed by using 

a specific antibody against the ZIKV envelope (E) visible in green, whereas EGFR was 

visualized in red. In contrast to A549 cells, neither ZIKV envelope nor EGFR could be 

detected in CHO cells (Figure 17 A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 – CHO cells neither support ZIKV infection nor express EGFR. (A) Representative Western 

blot of EGFR and ZIKV envelope (E) in cell lysates of A549- and CHO-infected cells with either the French 

Polynesia (FP) or the Uganda (U) strain with MOI 1 and analyzed at 48 hours post-infection (hpi). A549 

cells were used as positive control for ZIKV infection and EGFR expression, whereas uninfected cells (Ø) 
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were used as negative control for ZIKV infection. Detection of β-Actin served as the loading control. (B) 

CLSM analysis of A549- and CHO-infected cells with either the French Polynesia or the Uganda strain 

with MOI 1 and analyzed at 48 hpi. A549 cells were used as positive control for ZIKV infection and EGFR 

expression, while uninfected cells served as negative control for ZIKV infection. Nuclei were stained with 

DAPI in blue, EGFR and ZIKV E were visualized with specific antibodies in red and green, respectively. 

The scale bar represents 10 µm. 

Even though the EGFR-specific antibody used recognizes a sequence that is conserved 

between human and hamster, the possibility that the EGFR-specific antibody does not 

interact with hamster EGFR was investigated. In light of this, the liver tissue of a Syrian 

golden hamster was homogenized and the EGFR protein level was analyzed by Western 

blot.  EGFR could be detected in hamster liver tissue, but to a lesser extent than in A549 

cells, demonstrating that hamster EGFR is recognized by this antibody (Figure 18).  

 

 

 

Figure 18 – EGFR antibody recognizes hamster EGFR. Representative Western blot of EGFR in cell 

lysates of A549 and CHO cells as well as of EGFR in homogenized hamster liver tissue. A549 and CHO 

cells were used as positive and negative control for EGFR expression, respectively. Detection of β-Actin 

served as loading control. 

These data confirm that CHO cells neither support ZIKV infection nor express 

endogenous EGFR. 

5.2 ZIKV entry is affected in CHO cells 

To investigate which step of the viral life cycle is not supported in CHO cells, binding, 

entry, and post-entry assays were performed and the number of ZIKV genomes was 

quantified by qPCR. In the binding assay, the relative number of attached viral genomes 

did not differ between A549 and CHO cells for both ZIKV strains (Figure 19 A). On the 

contrary, the entry assay revealed a significant decrease in the relative number of 

internalized ZIKV genomes in CHO cells in comparison to the A549 cells (Figure 19 B). 

The same outcome could be observed in the post-entry assay (Figure 19 C). Overall, a 

higher relative number of ZIKV genomes was measured for the Uganda strain in the 

entry and especially in the post-entry assay. These results suggest that ZIKV entry is 

the step of the viral life cycle that is not sustained in CHO cells.   
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Figure 19 – ZIKV entry is affected in CHO cells. (A) Relative number of attached viral genomes of 

A549- and CHO-infected cells with the French Polynesia or the Uganda strain with MOI 1. The number 

of genomes was quantified by qPCR and normalized to the number of GAPDH transcripts after 

performing a binding assay. Uninfected cells of the respective cell line served as negative control and 

were used as the control group for the calculation of the fold change. (B) Relative number of internalized 

viral genomes of A549- and CHO-infected cells with the French Polynesia or the Uganda strain with MOI 

1. The number of genomes was quantified by qPCR and normalized to the number of GAPDH transcripts 

after performing an entry assay. Uninfected cells of the respective cell line served as negative control 

and were used as the control group for the calculation of the fold change. (C) Relative number of 

replicated viral genomes of A549- and CHO-infected cells with the French Polynesia or the Uganda strain. 

The number of genomes was quantified by qPCR and normalized to the number of GAPDH transcripts 

after performing a post-entry assay. Uninfected cells of the respective cell line served as negative control 

and were used as the control group for the calculation of the fold change. ns = not significant p>0.05; * 

p≤0.05; ** p≤0.01. 

5.3 EGFR is expressed in most ZIKV permissive cell lines unlike AXL 

As ZIKV entry is compromised in CHO cells and these cells lack endogenous EGFR, the 

relevance of EGFR for the ZIKV life cycle, with special emphasis on the viral entry, was 

investigated.  To evaluate whether EGFR can be considered an essential host factor for 

the ZIKV life cycle, the protein level of EGFR and AXL, one of the first described ZIKV 

receptors, was analyzed by Western blot in ZIKV permissive cell lines reported by 

Himmelsbach and Hildt.459 EGFR could be detected in all the analyzed cell lines, except 
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for the CHO and the HepG2/C3A cells. On the other hand, AXL was only detected in 

A549, HaCaT, HepG2/C3A, COS-7, and Vero cells (Figure 20). These observations 

indicate that EGFR is expressed in the majority of ZIKV permissive cell lines contrary to 

AXL, highlighting EGFR as a potential host factor relevant for the ZIKV life cycle. 

 

 

 

 

 

 

 

Figure 20 – EGFR expression is common to most ZIKV permissive cell lines contrary to AXL 

expression. Representative Western blot of EGFR and AXL in cell lysates of several cell lines infected 

with the French Polynesia (FP) strain with MOI 0.1 or that remained uninfected (Ø) and analyzed at 48 

hpi. The lysates were the same as the ones used by Himmelsbach and Hildt.459 A549 and CHO cells were 

used as positive and negative controls for EGFR expression, respectively. Detection of β-Actin served as 

loading control. The data is representative of n=1.  

5.4 CHO cells overexpressing EGFR are not permissive to ZIKV 

infection, but EGFR overexpression in CHO cells augments viral entry  

As previously mentioned, ZIKV entry is affected in CHO cells. To investigate whether 

the overexpression of EGFR in CHO cells can render these cells permissive to viral 

infection, CHO cells stably overexpressing EGFR were required. Two different cell clones 

expressing different amounts of EGFR were used in this study, CHO-EGFR #22.2 and 

CHO-EGFR #45. Initially, the functionality of EGFR molecules in these stable cells was 

investigated. For this purpose, CHO-EGFR #22.2 and CHO-EGFR #45 cells were 

stimulated with EGF, the canonical ligand of EGFR, and the phosphorylation levels of 

EGFR (p-EGFR) and downstream ERK (p-ERK 1/2) were analyzed by Western blot and 

quantified. A549 and CHO cells served as positive and negative control for EGFR 

functionality, respectively. Elevated levels of phosphorylated EGFR (p-EGFR) and ERK 

(p-ERK 1/2) were detected in CHO cells stably overexpressing EGFR upon EGF 

stimulation, but to a lesser extent than in A549 cells (Figure 21 A). Furthermore, 

densitometric quantification of the intensity of the signals unveiled a dose-dependent 

augmentation of phosphorylated EGFR (p-EGFR) and ERK (p-ERK 1/2) for A549 cells 

(Figure 21 B and F). This effect was not so pronounced in CHO cells overexpressing 

EGFR with the exception of phosphorylated EGFR (p-EGFR) in CHO-EGFR #22.2 cells 
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(Figure 21 D, E, H and I). As estimated, phosphorylated EGFR (p-EGFR) and 

downstream ERK (p-ERK 1/2) could not be observed in CHO cells upon EGF stimulation 

since they lack endogenous EGFR (Figure 21 C and G). The results demonstrate that 

EGFR and respective MAPK/ERK pathway can be activated in CHO-EGFR #22.2 and 

CHO-EGFR #45 cells, suggesting that EGFR molecules are functional in these stable 

cells. 
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Figure 21 – Activation of EGFR and respective MAPK/ERK pathway in CHO cells stably 

overexpressing EGFR. (A) Representative Western blot and (B - I) respective densitometric 

quantification of (B - E) p-EGFR/total EGFR and (F - I) p-ERK/total ERK amount in cell lysates of (B, F) 

A549, (C, G) CHO, (D, H) CHO-EGFR #22.2, and (E, I) CHO-EGFR #45 cells that were stimulated with 25, 

and 50 ng/mL of EGF for 30 min. Detection of β-Actin served as loading control. The amount of p-EGFR 

and p-ERK was first normalized to the respective amount of β-Actin, followed by normalization to the 

total amount of EGFR and ERK, respectively. Unstimulated cells were used as negative control and control 

group for the calculation of the fold change. ns = not significant p>0.05; ** p≤0.01; *** p≤0.001; **** 

p≤0.0001. 

To further corroborate these data, the subcellular localization and distribution of EGFR 

were analyzed by CLSM using an EGFR-specific antibody visible in red. Likewise, A549 

and CHO cells were used as positive and negative control  for EGFR functionality, 

respectively. Similar to A549, the CHO cells stably overexpressing EGFR stimulated with 

EGF displayed intracellular EGFR, characterized by the delocalization of EGFR from the 

plasma membrane and the formation of dot-like structures. However, the degree of 

internalized EGFR in CHO cells stably overexpressing EGFR was less pronounced than 

in A549 cells (Figure 22).   

 

 

 

 

 

 

 

 

 

Figure 22 – EGFR internalization in CHO cells stably overexpressing EGFR upon EGF stimulation. 

CLSM analysis of A549, CHO, CHO-EGFR #22.2, and CHO-EGFR #45 cells stimulated with 100 ng/mL of 
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EGF for 30 min. Unstimulated cells were used as negative control. A549 and CHO cells served as positive 

and negative control for EGFR expression, respectively. Nuclei were stained with DAPI in blue and EGFR 

was visualized with a specific antibody in red. The scale bar represents 20 µm.  

Taken together, these data demonstrate that EGFR in CHO cells stably overexpressing 

EGFR is functional. 

After confirmation of the functionality of EGFR in CHO stably overexpressing EGFR, 

these cells were infected with MOI 50 and the number of ZIKV-infected cells was 

analyzed at 24 hpi by CLSM using a ZIKV envelope-specific antibody visualized in 

green. The protein level of EGFR was controlled using an EGFR-specific antibody visible 

in red. Likewise, A549 and CHO were used as positive and negative control for viral 

infection, respectively. Unlike for A549 cells, no ZIKV envelope could be detected in 

CHO-EGFR #22.2 cells nor in CHO-EGFR #45 cells (Figure 23). These results indicate 

that overexpression of EGFR in CHO cells is not sufficient for the establishment of ZIKV 

infection. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 – CHO cells stably overexpressing EGFR cells do not sustain ZIKV infection similar to 

CHO cells. CLSM analysis of A549-, CHO-, CHO-EGFR #22.2-, and CHO-EGFR #45-infected cells with 

either the French Polynesia or the Uganda strain with MOI 50 and analyzed at 24 hpi. A549 and CHO 

cells were used as positive and negative control for ZIKV infection and EGFR expression, respectively. 

Nuclei were stained with DAPI in blue, EGFR and ZIKV E protein were visualized with specific antibodies 

in red and green, respectively. The scale bar represents 50 µm. 
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As ZIKV infection was unsuccessful in CHO cells stably overexpressing EGFR, the 

permissiveness of these cells as well as of the CHO cells was questioned. In light of this, 

CHO, CHO-EGFR #22.2, and CHO-EGFR #45 cells were electroporated with in vitro 

transcribed capped ZIKV-Renilla luciferase RNA and the number of ZIKV-infected cells 

was analyzed at 96 hours-post electroporation (hpe) by CLSM using a ZIKV envelope-

specific antibody visible in green. In contrast to A549 cells, no ZIKV-infected cells could 

be observed in CHO cells nor in CHO cells stably overexpressing EGFR (Figure 24 A). 

Moreover, the luciferase activity at 24, 48, 72, and 96 hours post-electroporation was 

determined by a luciferase assay. As the Renilla luciferase reporter is inserted into the 

viral genome, the luciferase activity directly correlates with the repl ication level. Even 

though luciferase activity could be measured at 24 hpe in CHO cells and CHO cells 

stably overexpressing EGFR, which reflects the initial translation of the electroporated 

ZIKV-Renilla luciferase RNA, this activity declined with time due to the absence of viral 

replication. Contrariwise, an increase in the luciferase activity over the analyzed time 

could be discerned for A549 cells. These data demonstrate that CHO cells as well as 

CHO cells stably overexpressing EGFR do not support ZIKV replication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 – CHO cells and CHO cells stably overexpressing EGFR fail to replicate ZIKV. (A) CLSM 

analysis of A549-, CHO-, CHO-EGFR #22.2-, and CHO-EGFR #45-electroporated cells with in vitro 

transcribed capped ZIKV-Renilla luciferase RNA and analyzed at 96 hours post-electroporation (hpe). 

A549 cells were used as positive control for viral replication. Nuclei were stained with DAPI in blue and 
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ZIKV E protein was visualized with a specific antibody in green. The scale bar represents 50 µm. (B) 

Luciferase activity of A549-, CHO-, CHO-EGFR #22.2-, and CHO-EGFR #45-electroporated cells with in 

vitro transcribed capped ZIKV-Renilla luciferase RNA and analyzed at 24, 48, 72, and 96 hpe. A549 cells 

served as positive control for viral replication. The luciferase activity is expressed in relative light units 

(RLU) per µg of protein. The results are presented on a log10 scale.    

Even though EGFR overexpression in CHO cells did not render these cells permissive to 

ZIKV infection, ZIKV entry in CHO cells stably overexpressing EGFR was investigated. 

For this purpose, an entry assay was performed and the number of ZIKV genomes in 

CHO-EGFR #22.2 and CHO-EGFR #45 cells was determined by qPCR and compared to 

CHO cells. The entry assay revealed a decrease in the relative number of internalized 

ZIKV genomes in CHO cells stably overexpressing EGFR relatively to CHO cells for both 

viral strains (Figure 25 A). To investigate whether the overexpression of EGFR in CHO 

cells could have an impact on ZIKV attachment to the cell surface and this way explain 

the observed decline in viral entry, a binding assay was performed and the number of 

ZIKV genomes was determined by qPCR. Similar to the entry assay, the binding assay 

displayed a reduction in the relative number of attached ZIKV genomes in CHO cells 

stably overexpressing EGFR (Figure 25 B), suggesting that the decrease in the viral 

entry could stem from an inadequate binding of ZIKV to the cell surface. Thus, to better 

assess ZIKV entry in CHO cells stably overexpressing EGFR, the number of internalized 

viral genomes was corrected with the corresponding number of attached viral 

genomes. An increment in the relative number of internalized ZIKV genomes could be 

discerned in CHO cells stably overexpressing EGFR in comparison to CHO cells (Figure 

25 C). 

Taken together, these results show that CHO cells as well as CHO cells overexpressing 

EGFR are not permissive to ZIKV infection since they are incapable to replicate ZIKV. 

Nonetheless, EGFR overexpression in CHO cells increases viral entry, implicating EGFR 

in the ZIKV entry process.  
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Figure 25 – ZIKV entry is increased in CHO cells stably overexpressing EGFR. (A) Relative number 

of internalized viral genomes of CHO-, CHO-EGFR #22.2-, and CHO-EGFR #45-infected cells with the 

French Polynesia or the Uganda strain with MOI 10. The number of genomes was quantified by qPCR 

and normalized to the number of GAPDH transcripts after performing an entry assay. CHO cells served 

as the control group for the calculation of the fold change. (B) Relative number of attached viral 

genomes of CHO-, CHO-EGFR #22.2-, and CHO-EGFR #45-infected cells with the French Polynesia or 

the Uganda strain with MOI 10. The number of genomes was quantified by qPCR and normalized to the 

number of GAPDH transcripts after performing a binding assay. CHO cells served as the control group 

for the calculation of the fold change. (C) Relative number of internalized viral genomes of CHO-, CHO-

EGFR #22.2-, and CHO-EGFR #45-infected cells with the French Polynesia or the Uganda strain corrected 

to the number of attached viral genomes. CHO cells served as the control group for the calculation of 

the fold change. ** p≤0.01. 

5.5. ZIKV infection increases the EGFR mRNA level but decreases the 

EGFR protein amount 

To further characterize the relevance of EGFR during ZIKV infection, the EGFR mRNA 

level and protein amount were analyzed in ZIKV-infected cells. For this purpose, A549 

cells were infected with either the French Polynesia or the Uganda strain using a low or 

a high MOI and analyzed at 1, 3, 6, 9, 12, 24, and 48 hpi. To verify the establishment of 

ZIKV infection, the number of viral genomes was quantified by qPCR. With the course 

of infection, a constant rise in the relative number of ZIKV genomes was measured for 

both viral strains and MOI, indicating that the infection was successful (Figure 26 A 

and B).  
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Figure 26 – Relative number of ZIKV genomes throughout infection. (A) Relative number of viral 

genomes of A549-infected cells with French Polynesia or the Uganda strain with MOI 1 and analyzed at 

the indicated times. The number of genomes was quantified by qPCR and normalized to the number of 

hRPL27 transcripts. Uninfected cells served as negative control and as the control group for the 

calculation of the fold change. The results are presented on a log10 scale. (B) Relative number of viral 

genomes of A549-infected cells with French Polynesia or the Uganda strain with MOI 10 and analyzed 

at the indicated times. The number of genomes was quantified by qPCR and normalized to the number 

of hRPL27 transcripts. Uninfected cells served as negative control and control group for the calculation 

of the fold change. The results are presented on a log10 scale.  

The number of EGFR specific transcripts was determined as well by qPCR. In general, a 

gradual increase of the relative EGFR mRNA level accompanied the progress of the 

infection. In cells infected with a low MOI (MOI 1), a considerable rise in the EGFR mRNA 

level could be observed at 24 hpi for both ZIKV strains when compared with the 

uninfected control. Nevertheless, for the French Polynesia strain, at 3 and 12 hpi  a 

significant increase in the mRNA level was measured (Figure 27 A). With MOI 10, 

elevated EGFR mRNA levels could be discerned as earlier as 3 and 6 hpi for the Uganda 

and French Polynesia strain, respectively (Figure 27 B). Taken together, these data 

indicate an increased egfr expression with ZIKV infection. 
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Figure 27 – Increase of EGFR mRNA level with ZIKV infection. (A) Relative EGFR mRNA level of A549-

infected cells with French Polynesia or the Uganda strain with MOI 1 and analyzed at the indicated times. 

The number of EGFR transcripts was quantified by qPCR and normalized to the number of hRPL27 

transcripts. Uninfected cells served as negative control and as the control group for the calculation of 

the fold change. (B) Relative EGFR mRNA level of A549 cells infected with French Polynesia or the 

Uganda strain with MOI 10 and analyzed at the indicated times. The number of EGFR transcripts was 

quantified by qPCR and normalized to the number of hRPL27 transcripts. Uninfected cells served as 

negative control and as control group for the calculation of the fold change. ns = not significant p>0.05; 

* p≤0.05; ** p≤0.01; *** p≤0.001. 

On the other hand, Western blot analysis revealed a reduction of the EGFR protein 

amount at 48 hpi for both MOI with lower levels for the Uganda strain (Figure 28 A). 

Nonetheless, the densitometric quantification of the intensity of the signals showed a 

significant increment of the EGFR amount in ZIKV-infected cells with higher MOI at 9 

and 24 hpi for the French Polynesia, and at 9 and 12 hpi for the Uganda strain (Figure 

28 B and C). The results indicate that ZIKV diminishes the EGFR protein amount at later 

times of infection.  
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Figure 28 – Decrease of EGFR amount at later times of ZIKV infection. (A) Representative Western 

blot of EGFR and ZIKV envelope (E) and (B, C) respective densitometric quantification of EGFR in cell 

lysates of A549-infected cells with either the French Polynesia (FP) or the Uganda (U) strain with MOI 1 

or MOI 10 and analyzed at the indicated times. Detection of β-Actin served as loading control. Uninfected 

cells (Ø) were used as negative control for ZIKV infection and as control group for the calculation of the 

fold change. ns = not significant p>0.05; * p≤0.05; ** p≤0.01; *** p≤0.001. 

5.6. ZIKV triggers EGFR internalization  

Moreover, the subcellular localization and distribution of EGFR throughout infection 

were analyzed by CLSM using the same conditions as described before. The 

progression of viral infection was controlled by using a ZIKV envelope-specific antibody 

visualized in green. In uninfected cells, EGFR was predominantly localized at the 

periphery of the cells, as visible in red. This is in agreement with the expected 

localization of EGFR at the plasma membrane. However, in infected cells with a higher 

MOI, a partial amount of EGFR was delocalized from the plasma membrane as 

discernible by the appearance of dot-like structures at 1 hpi for both ZIKV strains. The 

same could be perceived at 9 and 12 hpi, but to a lesser extent. Furthermore, the EGFR 

dot-like structures were more pronounced at 24 and 48 hpi for both low and high MOI 
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(Figure 29). These findings suggest that ZIKV infection changes the EGFR subcellular 

localization and distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29 – ZIKV infection alters EGFR subcellular localization and distribution. CLSM analysis of 

A549-infected cells with either the French Polynesia or the Uganda strain with MOI 1 or MOI 10 and 

analyzed at the indicated times. Uninfected cells were used as negative control for ZIKV infection. Nuclei 
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were stained with DAPI in blue, EGFR and ZIKV E protein were visualized with specific antibodies in red 

and green, respectively. The scale bar represents 10 µm. 

To investigate whether the previous observation of the appearance of EGFR dot-like 

structures corresponds to internalized EGFR, A549 cells were infected with the French 

Polynesia or the Uganda strain with MOI 1 and analyzed by CLSM at 16 hpi. As positive 

control, cells were stimulated with EGF. EGFR delocalization from the plasma 

membrane and formation of dot-like structures was visible in green in EGF-stimulated 

as well as in ZIKV-infected cells (Figure 30 A). Internalized EGFR was assessed by the 

colocalization of EGFR with the early endosome antigen 1 (EEA1), an effector protein 

that is localized only in early endosomes, visualized in red. The colocalization of EGFR 

with EEA1 is visible in yellow and was quantified by calculating the threshold Mander’s 

overlap coefficient (tMOC), in which 1 represents a total overlap of EGFR with EEA1 and 

0 the opposite. Low tMOC values were obtained for uninfected cells, indicating that 

EGFR and EEA1 weakly colocalize. Contrariwise, an elevated colocalization of EGFR with 

EEA1 was observed in EGF-stimulated and ZIKV-infected cells, as shown by the high 

tMOC values (Figure 30 B). Taken together, these data indicate that EGFR is 

internalized in ZIKV-infected cells. 
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Figure 30 – EGFR colocalizes with EEA1 in ZIKV-infected cells. (A) CLSM analysis of A549-infected 

cells with either the French Polynesia or the Uganda strain with MOI 1 and analyzed at 16 hpi. Uninfected 

and EGF-stimulated cells (50 ng/mL EGF) were used as negative and positive control, respectively. Nuclei 

were stained with DAPI in blue, EGFR and EEA1 were visualized with specific antibodies in green and red, 

respectively. The yellow square indicates the area that was amplified. The scale bar represents 5 µm. (B) 

The colocalization of EGFR (green signal) with EEA1 (red signal) was quantified by the threshold of 

Mander’s overlap coefficient (tMOC), in which 1 represents a total overlap and 0 the opposite. 

Quantification is based on at least 6 cells. **** p≤0.0001. 

As the delocalization of EGFR from the cell surface was perceptible at 1 hpi with high 

MOI (Figure 29), the subcellular localization and distribution of EGFR visible in green 

were analyzed by CLSM at early stages of infection – 5, 10, 30, 60, and 120 minutes 

post-infection (mpi). A549 cells were infected with either the French Polynesia or the 

Uganda strain with MOI 20 at 4°C to synchronize the infection, and subsequently 

shifted to 37°C to initiate endocytosis. EGFR subcellular localization and distribution in 

uninfected cells remained the same over time. By contrast, intracellular EGFR was 

recognized in ZIKV-infected cells at 30 mpi and to a lesser extent at 60 mpi by the 

formation of dot-like structures (Figure 31 A). To corroborate the previous results, z-

stack imaging of ZIKV-infected cells at 30 mpi was performed. The filaments of actin 

were stained with a Phalloidin-dye conjugate visualized in cyan, underlining the 

borders of the cells. A significant amount of intracellular EGFR, visualized in red and 

highlighted by the yellow arrows, was observed in infected cel ls in comparison to 

uninfected cells (Figure 31 B). Taken together, these results indicate that EGFR is 

rapidly internalized during ZIKV entry into the host cell.   
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Figure 31 – EGFR is internalized in ZIKV-infected cells. (A) CLSM analysis of A549-infected cells with 

either the French Polynesia or the Uganda strain with MOI 20 and analyzed at 5, 10, 30, 60, and 120 min 

post-infection (mpi). Infection was synchronized at 4°C. Uninfected cells were used as negative control. 

Nuclei were stained with DAPI in blue and EGFR was visualized with a specific antibody in green. The 

scale bar represents 5 µm. (B) Z-stack imaging of A549-infected cells with the French Polynesia strain 

with MOI 20 and analyzed at 30 mpi. The yellow arrows highlight the intracellular EGFR. Uninfected cells 

were used as negative control. Nuclei and F-actin were stained with DAPI (blue) and Phalloidin-Atto 633 

(cyan), whereas EGFR was visualized with a specific antibody in red. The scale bar represents 5 µm. 
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5.7. ZIKV activates EGFR and downstream MAPK/ERK signaling 

cascade 

Activation of EGFR and respective signaling cascades results in receptor internalization. 

To investigate whether ZIKV-dependent internalization of EGFR reflects receptor 

activation during viral entry, A549 cells were infected with MOI 10 with either the 

French Polynesia or the Uganda strain and analyzed by Western blot at 5, 10, 15, 30, 

60, and 120 mpi. Activation of EGFR and respective MAPK/ERK signaling cascade in 

ZIKV-infected cells was assessed by the degree of phosphorylation of EGFR at the 

tyrosine residue 1068 (p-EGFR) and of downstream ERK at the threonine residue 202 

and the tyrosine residue 204 (p-ERK 1/2). An elevation of the levels of phosphorylated 

EGFR and ERK (p-EGFR and p-ERK 1/2) was visible at early times of infection for both 

ZIKV strains when compared to the uninfected control (Figure 32 A). Quantitative 

analysis revealed increased amounts of phosphorylated EGFR (p-EGFR) at 5, 10, and 15 

mpi in ZIKV-infected cells (Figure 32 B and C). Overall, a higher level of 

phosphorylation of EGFR (p-EGFR) was detected for the Uganda strain (Figure 32 C). 

Concerning ERK activation, elevated amounts of phosphorylated ERK (p-ERK 1/2) were 

also discerned at 5, 10, and 15 min for both strains (Figure 32 D and E). Additionally, 

increased levels of phosphorylated ERK (p-ERK 1/2) were noticeable at 30 mpi 

exclusively in cells infected with the French Polynesia strain (Figure 32 D). 
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Figure 32 – Activation of EGFR and downstream ERK in ZIKV-infected cells. (A) Representative 

Western blot and (B - E) respective densitometric quantification of (B, C) p-EGFR/total EGFR and (D, E) 

p-ERK/total ERK in cell lysates of A549-infected cells with either the French Polynesia (FP) or the Uganda 

strain (U) with MOI 10 and analyzed at the indicated times. Detection of β-Actin served as loading 

control. The amounts of p-EGFR and p-ERK were first normalized to the respective amounts of β-Actin, 

followed by normalization to the total amount of EGFR and ERK, respectively. Uninfected cells (Ø) were 

used as negative control and as control group for the calculation of the fold change. ns = not significant 

p>0.05; * p≤0.05; ** p≤0.01. 

To further confirm these results and investigate whether the degree of activation is 

dependent on the number of infectious viral particles, A549 cells were infected with 

either MOI 10 or MOI 30 and at 15 mpi the EGFR kinase activity was analyzed using the 

PamChip® Peptide Microarray system. The normalized kinase statistic was calculated 

using the BioNavigator analysis software tool and represents the difference of activity 

between the analyzed infected samples and the uninfected control.  The kinase activity 

of EGFR was increased in infected cells for both strains in comparison to uninfected 

cells, as shown by the positive values of the normalized kinase statistic. In general, the 

normalized kinase statistic was slightly augmented for the Uganda strain. In addition, 
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the normalized kinase statistic was higher with MOI 30 than with MOI 10, indicating a 

MOI-dependent activation of EGFR (Figure 33). 

  

 

 

 

 

 

Figure 33 – EGFR kinase activity is increased in ZIKV-infected cells and is MOI-dependent. Kinase 

activity of EGFR in cell lysates of A549-infected cells with either the French Polynesia or the Uganda 

strain with MOI 10 or MOI 30 and analyzed at 15 mpi using the PamChip® Peptide Microarray system. 

The normalized kinase statistic was calculated by the BioNavigator anaylsis software and represents the 

difference of activity between the analyzed infected samples and the uninfected control group. The data 

were log2 transformed by the BioNavigator analysis software. The plotted data is relative to n=6 and 

n=2 for MOI 10 and MOI 30, respectively.  

These data indicate that ZIKV activates EGFR and subsequent MAPK/ERK signaling 

cascade in the early stages of infection. 

5.8. ZIKV-French Polynesia strain delays EGFR degradation 

Internalized EGFR is either recycled back to the cell surface or degraded in lysosomes. 

To investigate whether ZIKV infection affects EGFR half-life, A549 cells were infected 

with MOI 1 with either the French Polynesia or the Uganda strain. At 16 hpi, cells were 

serum-starved for 2 h to maximize the amount of EGFR at the cell surface, followed by 

co-treatment with EGF and cycloheximide to target EGFR for degradation and to 

prevent de novo protein synthesis, respectively. EGFR amount was analyzed by Western 

blot at 0, 15, 30, 60, 90, 120 min after treatment. The half-life was calculated using the 

one-phase exponential decay equation. In uninfected cells, after the addition of EGF, 

the EGFR half-life was approximately 53 min.  Similar results were obtained in Uganda-

infected cells with a half-life of about 55 min. However, the amount of EGFR was 

consistent throughout the time points investigated in French Polynesia-infected cells, 

as observed by the blot and respective quantitative analysis, with a half-life 

approximately three times longer (t1/2=~169 min) (Figure 34 A and B). These results 

suggest that the half-life of EGFR is prolonged in French-Polynesia infected cells when 

compared with uninfected cells or Uganda-infected cells. 
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Figure 34 – Delayed degradation of EGFR in French-Polynesia-infected cells, but not in Uganda-

infected cells. (A) Representative Western blot and (B) respective densitometric quantification of EGFR 

in cell lysates of A549-infected cells with either the French Polynesia or the Uganda strain with MOI 1 

for 16 h, co-treated with 20 µg/mL cycloheximide and 100 ng/mL EGF and analyzed at 0, 15, 30, 60, 90, 

and 120 min after the beginning of the treatment. Detection of β-Actin served as loading control. t=0 of 

each condition was used as the control group for the calculation of the fold change. The half-life of EGFR 

was calculated based on an exponential decay non-linear regression analysis, y(0)=1 and plateau of y=0. 

ns = not significant p>0.05; * p≤0.05. 

5.9. Inhibition of EGFR and the respective MAPK/ERK signaling 

cascade diminishes ZIKV infection 

To investigate whether EGFR activation and subsequent activation of downstream 

signaling cascades, in this case the MAPK/ERK pathway, is important for ZIKV infection, 

selective inhibitors namely Erlotinib (EGFR inhibitor), Sorafenib (Raf inhibitor) and 

PD98059 (MEK inhibitor) were used. Primarily, to avoid side effects derived from cell 

toxicity, the optimal working concentration of each compound was determined by cell 

viability assays. In light of this, a broad range of concentrations was chosen based on 

the available literature to treat A549 cells during 24 h. Except for Sorafenib, the 

concentrations tested were well tolerated by the cells (Figure 35). Based on previous 

studies and the cell viability assays, further experiments were performed with 25 µM 

Erlotinib, 2 µM Sorafenib, and 50 µM PD98059.484,485  
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Figure 35 – Cell viability assays after treatment with inhibitors of EGFR and the respective 

MAPK/ERK signaling cascade. (A - C) Relative metabolic activity of (A) Erlotinib-, (B) Sorafenib-, and 

(C) PD98059-treated cells determined using the PrestoBlue™ Cell Viability Reagent. The treatment lasted 

24 h. Cells treated with 2% Triton X-100 (TX-100) served as positive control. Untreated cells were used 

and negative control and as control group for the calculation of the fold change.  

Following the determination of the optimal working concentrations, A549 cells were 

pre-treated for 2 h with Erlotinib, Sorafenib, and PD98059 and infected with MOI 1 with 

either the French Polynesia or the Uganda strain for 4 h. After a short trypsinization 

step to remove attached but not fully internalized infectious viral particles, cells were 

cultivated in the presence of the inhibitors and the number of ZIKV genomes was 

quantified by qPCR at 24 hpi. A significant reduction of the relative number of ZIKV 

genomes for both strains could be observed in Erlotinib-, Sorafenib-, and PD98059-

treated cells in comparison to the DMSO-treated cells (Figure 36 A-C). 
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Figure 36 – Selective inhibitors of EGFR and the MAPK/ERK signaling cascade decrease the relative 

number of ZIKV genomes. (A – C) Relative number of viral genomes of A549 cells pre-treated for 2 h 

with (A) 25 µM Erlotinib, (B) 2 µM Sorafenib, and (C) 50 µM PD98059 and infected with either the French 

Polynesia or the Uganda strain with MOI 1. At 4 hpi, attached but not fully internalized viral particles 

were removed by trypsinization and the number of viral genomes was determined by qPCR at 24 hpi. 

The compounds were present during the entire experiment. The number of viral genomes was 

normalized to the number of hRPL27 transcripts. DMSO was used as vehicle control and as control group 

for the calculation of the fold change. * p≤0.05; ** p≤0.01. 

To further corroborate these findings, the amount of infectious viral particles was 

additionally determined by plaque assay. Comparable results could be discerned for 

the relative amount of infectious viral particles for both ZIKV strains (Figure 37 A-C). 

These data indicate that selective inhibitors of EGFR and the MAPK/ERK signaling 

cascade hamper ZIKV infection. 
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Figure 37 – Selective inhibitors of EGFR and of the MAPK/ERK signaling cascade reduce the 

relative amount of infectious ZIKV particles. (A – C) Relative amount of infectious viral particles (VPs) 

of A549 cells pre-treated for 2 h with (A) 25 µM Erlotinib, (B) 2 µM Sorafenib, and (C) 50 µM PD98059 

and infected with either the French Polynesia or the Uganda strain with MOI 1. At 4 hpi, attached but 

not fully internalized viral particles were removed by trypsinization and the amount of infectious viral 

particles was determined by plaque assay at 24 hpi. The compounds were present during the entire 

experiment. DMSO was used as vehicle control and as control group for the calculation of the fold 

change. * p≤0.05; ** p≤0.01; *** p≤0.001. 

Moreover, to investigate whether the observed effect on ZIKV infection is due to an 

impaired viral replication, A549-ZIKVRLuc cells were treated for 24 h under the same 

conditions as described previously and the luciferase activity was measured by 

luciferase assay. A minor increase of the relative luciferase activity was detected in 

Erlotinib-treated cells (Figure 38 A). Nonetheless, no changes could be observed in 

Sorafenib- and PD98059-treated cells relatively to DMSO-treated cells, rejecting the 

possibility of the inhibitory effect be on the viral replication (Figure 38 B and C). These 

findings demonstrate that activation of EGFR and the subsequent MAPK/ERK signaling 

cascade is essential during the early stages of ZIKV infection, but not for the replication 

of the viral genome. 
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Figure 38 – Selective inhibitors of EGFR and the MAPK/ERK signaling cascade do not diminish the 

relative luciferase activity. (A – C) Relative luciferase activity of ZIKV-luciferase-replicating A549 cells 

treated with (A) 25 µM Erlotinib, (B) 2 µM Sorafenib, and (C) 50 µM PD98059 for 24 h. The luciferase 

activity was determined by luciferase assay. DMSO was used as vehicle control and as control group for 

the calculation of the fold change. ns = not significant p>0.05; **** p≤0.0001. 

Due to the lack of impairment in viral replication (Figure 39), the effect of these 

inhibitors on the viral entry process was investigated. For this purpose, A549 cells were 

pre-treated with Erlotinib, Sorafenib, and PD98059 for 2 h and subsequently an entry 

assay was performed. The entry assay revealed a reduction in the relative number of 

internalized ZIKV genomes determined by qPCR in Erlotinib-treated cells relatively to 

the DMSO control (Figure 39 A), indicating that the TK activity of EGFR is required for 

an efficient viral entry. However, no impact could be observed in Sorafenib- and 

PD98059-treated cells (Figure 39 and C). 
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Figure 39 – EGFR selective inhibitor has an impact on viral entry, but not MAPK/ERK signaling 

cascade inhibitors. (A – C) Relative number of internalized viral genomes of A549 cells pre-treated for 

2 h with (A) 25 µM Erlotinib, (B) 2 µM Sorafenib, and (C) 50 µM PD98059 and infected with either the 

French Polynesia or the Uganda strain with MOI 10. The number of viral genomes was quantified by 

qPCR and normalized to the number of hRPL27 transcripts after performing an entry assay. The 

compounds were present during the entire experiment. DMSO was used as vehicle control and as control 

group for the calculation of the fold change. ns = not significant p>0.05; * p≤0.05; *** p≤0.001. 

Because of the absent effect of Sorafenib and PD98059 on the ZIKV entry process, the 

influence of these compounds on EGFR internalization was investigated by CLSM 

analysis using an EGFR-specific antibody visualized in red. Upon EGF stimulation, only 

Erlotinib was able to interfere and partially prevent EGFR internalization, indicating that 

the inhibitory effect of Sorafenib and PD98059 in ZIKV infection is not due to an 

impaired internalization of EGFR (Figure 40).  

 

 

 

 

 

 

 

 
Figure 40 – EGFR selective inhibitor prevents EGFR internalization upon EGF stimulation, but not 

MAPK/ERK signaling cascade inhibitors. CLSM analysis of A549 cells pre-treated with 25 µM Erlotinib, 

2 µM Sorafenib, and 50 µM PD98059 for 2 h and subsequently stimulated with 50 ng/mL of EGF for 30 
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min. Untreated unstimulated and untreated EGF-stimulated cells were used as negative and positive 

control for EGF treatment, respectively. DMSO-treated cells were used as vehicle control. Nuclei were 

stained with DAPI in blue and EGFR was visualized with a specific antibody in red. The scale bar 

represents 10 µm.  

Taken together, these findings indicate that EGFR activation is essential for the ZIKV 

entry process and the subsequent activation of the MAPK/ERK signaling cascade is 

relevant to steps of the viral life cycle prior to the onset of viral replication and 

morphogenesis, but after viral entry.   

5.10. Lipid raft disruption affects ZIKV binding and entry 

Despite the fact that lipid rafts promote interactions among signaling molecules, 

previous studies showed that the disruption of lipid rafts results in ligand-independent 

activation of EGFR and of downstream signaling cascades.486 To further study the 

importance of the activation of EGFR and of EGFR-mediated signaling cascades for 

ZIKV entry and to investigate whether the localization of EGFR in lipid rafts is relevant 

for ZIKV infection, methyl-β-cyclodextrin (MβCD), a cholesterol-depleting agent, was 

used to disrupt lipid rafts. To rule out that possible inhibitory effects might derive from 

cell toxicity, the metabolic activity upon treatment was determined by a cell viability 

assay. For this purpose, A549 cells were serum-starved for 24 h to lower the cellular 

cholesterol content, followed by treatment with a wide range of concentrations of 

MβCD for 1 h. Only the highest concentration (20 µM) affected the cellular metabolic 

activity (Figure 41). Hence, further experiments were performed with 1, 5, and 10 mM 

of MβCD.  

 

 

 

 

 

 
Figure 41 – Cell viability assay after treatment with MβCD. Relative metabolic activity of A549 cells 

serum-starved for 24 h and treated with MβCD for 1 h. The metabolic activity was determined using the 

PrestoBlue™ Cell Viability Reagent. Cells treated with 2% Triton X-100 (TX-100) served as positive control. 

Untreated cells were used as negative control and as control group for the calculation of the fold change.  
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Following the determination of an optimal range of concentrations, activation of EGFR 

and the MAPK/ERK signaling cascade upon MβCD treatment was evaluated. In light of 

this, serum-starved A549 cells were treated with the different concentrations of MβCD, 

as indicated previously, and the level of phosphorylated EGFR (p-EGFR) and 

downstream ERK (p-ERK 1/2) was assessed by Western blot analysis. In addition, cells 

were stimulated with EGF after MβCD treatment. In both unstimulated and EGF-

stimulated cells, an increase in the amount of phosphorylated EGFR (p-EGFR) and 

downstream ERK (p-ERK 1/2) was observed after MβCD treatment (Figure 42 A-C). 

These data confirm that the chosen concentrations of MβCD activate EGFR and the 

MAPK/ERK signaling cascade.   
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Figure 42 – Activation of EGFR and downstream ERK upon MβCD treatment. (A) Representative 

Western blot and (B, C) respective densitometric quantification of (B) p-EGFR/total EGFR and (C) p-

ERK/total ERK in cell lysates of serum-starved A549 cells treated for 1 h with 1, 5, and 10 mM MβCD and 

stimulated with EGF (50 ng/mL) for 30 min or left unstimulated. Detection of β-Actin served as loading 

control. The amounts of p-EGFR and p-ERK were first normalized to the respective amounts of β-Actin, 

followed by normalization to the total amount of EGFR and ERK, respectively. Unstimulated untreated 

cells were used as negative control and as control group for the calculation of the fold change.  

Ultimately, to investigate the impact of MβCD on the ZIKV entry, serum-starved A549 

cells were primarily treated with MβCD for 1 h. After complete removal of this 

cholesterol-depleting agent to avoid affecting the structure of the viral particles and 

thus, destroying them, cells were infected with either the French Polynesia or the 

Uganda strain with MOI 10 for 1 h. Afterwards, binding and entry assays were 

performed and the number of ZIKV genomes was determined by qPCR. While MβCD 

showed no effect on the relative number of attached ZIKV genomes in French 

Polynesia-infected cells, a dose-dependent decline was observed for the Uganda strain 

(Figure 43 A).  Regarding the entry assay, a gradual reduction of the relative number 

of ZIKV genomes was observed for both strains after treatment (Figure 43 B). These 

results suggest that lipid raft disruption by MβCD treatment disturbs ZIKV binding and 

entry. 
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Figure 43 – MβCD treatment disturbs ZIKV binding and entry. (A, B) Relative number of attached 

and internalized viral genomes of A549 cells serum-starved for 24 h, treated with 1, 5, and 10 mM MβCD 

and infected with either the French Polynesia or the Uganda strain with MOI 10. The number of genomes 

was quantified by qPCR and normalized to the number of hRPL27 transcripts after performing a binding 

and entry assay. Infected untreated cells were used as the control group for the calculation of the fold 

change. ns = not significant p>0.05; ** p≤0.05; **** p≤0.0001. 

Regardless of the activation of EGFR and the MAPK/ERK signaling cascade, ZIKV 

binding and entry were affected upon MβCD treatment. To better understand the 

effect of MβCD on ZIKV entry and to investigate whether this could be related to 

hampered EGFR internalization, EGFR subcellular localization was investigated under 

the same conditions as described above by CLSM analysis using an EGFR-specific 

antibody visible in red. While in unstimulated cells no impact on the localization of 

EGFR was noticeable after MβCD treatment, in EGF-stimulated cells higher 

concentrations of MβCD strongly impaired the amount of internalized EGFR, 

characterized by the decrease in the number of EGFR dot-like structures (Figure 44).  

 

0 1 5 10 0 1 5 10

0.0

0.5

1.0

1.5

2.0

French Polynesia

MßCD (mM)

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

Z
IK

V
 g

e
n

o
m

e
s

Binding

Entry
ns

ns

ns

ns

**

****

0 1 5 10 0 1 5 10

0.0

0.5

1.0

1.5

2.0

Uganda

MßCD (mM)

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

Z
IK

V
 g

e
n

o
m

e
s

Binding

Entry**

**

****

ns

****

****

A 

B 



 

105 
 

 

 

 

 

 

 

 

 

Figure 44 – MβCD treatment affects EGFR internalization upon EGF stimulation. CLSM analysis of 

serum-starved A549 cells treated with 1, 5, and 10 mM MβCD for 1 h and subsequently stimulated with 

50 ng/mL of EGF for 30 min. Untreated unstimulated and untreated EGF-stimulated cells were used as 

negative and positive control for EGF treatment, respectively. Nuclei were stained with DAPI in blue and 

EGFR was visualized with a specific antibody in red. The scale bar represents 10 µm.  

Taken together, these data indicate that EGFR activation alone is not sufficient for an 

efficient internalization of ZIKV. 

5.11. ZIKV infection is decreased in A549-EGFR KO cells  

To validate the relevance of EGFR for ZIKV infection, EGFR was knocked out of A549 

cells using the CRISPR/Cas9 system and stable cells were generated by selection with 

puromycin. Two different cell clones of transfected cells with the PX459 plasmid 

encoding either one of the EGFR sgRNA sequences were chosen for this study as well 

as two different cell clones of transfected cells with the PX459 plasmid encoding the 

off-target sequence. First, the production of monoclonal A549-EGFR KO cells was 

evaluated by CLSM analysis using an EGFR-specific antibody visible in red. 

Untransfected A549 cells were used to control possible side effects that originated from 

the transfection. CLSM analysis revealed a drastic reduction in the EGFR protein and 

the loss of membrane-associated EGFR level in the PX459-EGFR sgRNA1 or sgRNA 2-

transfected cells, demonstrating a successful generation of monoclonal A549-EGFR KO 

cells (Figure 45 A). Additionally, no major changes in the subcellular localization and 

protein level of EGFR were discerned between untransfected and off-target cells. The 

absence of EGFR was further confirmed by Western blot analysis (Figure 45 B).  
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Figure 45 – Successful generation of A549-EGFR KO cells. (A) CLSM analysis of A549-EGFR KO cells 

generated using the CRISPR/Cas9 system. A549 cells were transfected with the PX459 plasmid containing 

either one of the EGFR sgRNA sequences. A549 cells transfected with the PX459 plasmid containing the 

off-target sequence were used as negative control. A549 cells were used as untransfected control. Nuclei 

were stained with DAPI in blue and EGFR was visualized with a specific antibody in red. The scale bar 

represents 10 µm. (B) Representative Western blot of EGFR in cell lysates of A549-EGFR KO cells 

generated using the CRISPR/Cas9 system. A549 cells were transfected with the PX459 plasmid containing 

either one of the EGFR sgRNA sequences. A549 cells transfected with the PX459 plasmid containing the 

off-target sequence were used as negative control. A549 cells were used as untransfected control. 

Detection of β-Actin served as loading control.  

To validate the lack of EGFR functionality and subsequent activation of the MAPK/ERK 

signaling cascade, A549-EGFR KO cells were stimulated with EGF for 30 min and the 

levels of phosphorylation of EGFR and downstream ERK were analyzed by Western blot. 

Upon EGF stimulation, an increase in the amount of phosphorylated EGFR (p-EGFR) 

and ERK (p-ERK 1/2) was noticeable in the off-target control cells, but no changes were 

observed in the A549-EGFR KO cells in comparison to the correspondent unstimulated 

cells, corroborating the absence of EGFR activity in these cells (Figure 46).   
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Figure 46 – A549-EGFR KO cells lack EGFR functionality. Representative Western blot of p-EGFR, total 

EGFR, p-ERK, and total ERK in cell lysates of A549-EGFR KO cells generated using the CRISPR/Cas9 system 

and stimulated with EGF (50 ng/mL) for 30 min. A549 cells were transfected with the PX459 plasmid 

containing either one of the EGFR sgRNA sequences. A549 cells transfected with the PX459 plasmid 

containing the off-target sequence were used as negative control. Unstimulated cells were used as 

negative control for EGF stimulation. Detection of β-Actin served as loading control.  

Following the characterization and confirmation of the successful generation of A549-

EGFR KO cells, these cells were infected with either the French Polynesia or the Uganda 

strain with MOI 1 and the number of ZIKV genomes was determined by qPCR. A 

considerable reduction of the relative number of ZIKV genomes for both viral strains 

was detected in A549-EGFR KO cells in comparison to the off-target cells (Figure 47 A 

and B). 
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Figure 47 – EGFR KO in A549 cells diminishes the relative number of ZIKV genomes. (A, B) Relative 

number of viral genomes of A549-EGFR KO cells generated using the CRISPR/Cas9 system and infected 

with either the (A) French Polynesia or the (B) Uganda strain with MOI 1. A549 cells were transfected 

with the PX459 plasmid containing either one of the EGFR sgRNA sequences. A549 cells transfected with 

the PX459 plasmid containing the off-target sequence were used as negative control. The number of 

viral genomes was determined at 24 hpi by qPCR and normalized to the number of hRPL27 transcripts. 

The mean of the viral genomes quantified in the off-target cells was used for the calculation of the fold 

change. * p≤0.05; ** p≤0.01; *** p≤0.001; **** p≤0.0001. 

To further corroborate these results, the amount of infectious viral particles was 

determined by plaque assay. A decline in the relative amount of infectious viral particles 

was perceived as well for both ZIKV strains in the A549-EGFR KO cells (Figure 48 A 

and B). These data suggest that EGFR KO in A549 cells impairs ZIKV infection. 
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Figure 48 – EGFR KO in A549 cells reduces the relative amount of infectious ZIKV particles. (A, B) 

Relative amount of infectious viral particles (VPs) of A549-EGFR KO cells generated using the 

CRISPR/Cas9 system and infected with either the (A) French Polynesia or the (B) Uganda strain with MOI 

1. A549 cells were transfected with the PX459 plasmid containing either one of the EGFR sgRNA 

sequences. A549 cells transfected with the PX459 plasmid containing the off-target sequence were used 

as negative control. The amount of infectious viral particles was determined at 24 hpi by plaque assay. 

The mean of the viral genomes quantified in the off-target cells was used for the calculation of the fold 

change. * p≤0.05; ** p≤0.01; *** p≤0.001 

To further investigate the relevance of EGFR for the ZIKV entry process, A549-EGFR KO 

cells were infected with either the French Polynesia or the Uganda strain with MOI 10 

and subsequently an entry assay was performed. The entry assay revealed a decrease 

in the relative number of internalized ZIKV genomes determined by qPCR in A549-

EGFR KO cells in comparison to the off-target control (Figure 49). 

 

 

 

 

 

 
 

Figure 49 – EGFR KO in A549 cells declines ZIKV entry. (A, B) Relative number of internalized viral 

genomes of A549-EGFR KO cells generated using the CRISPR/Cas9 system and infected with either the 

(A) French Polynesia or the (B) Uganda strain with MOI 10. A549 cells were transfected with the PX459 

plasmid containing either one of the EGFR sgRNA sequences. A549 cells transfected with the PX459 

plasmid containing the off-target sequence were used as negative control. The number of viral genomes 
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was quantified by qPCR and normalized to the number of hRPL27 transcripts after performing an entry 

assay. The mean of the viral genomes quantified in the off-target cells was used for the calculation of 

the fold change. * p≤0.05; ** p≤0.01; *** p≤0.001. 

Taken together, these data show that EGFR KO in A549 cells affects ZIKV entry, 

indicating that EGFR is a relevant host factor during the early stages of the ZIKV life 

cycle.    
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6. Discussion 

Even though ZIKV was discovered in 1947, it only caught the interest of the scientific 

community in the last 10 years due to the outbreak in French Polynesia (2013-2014) 

and the epidemic in the Americas (2015-2016). These events revealed neurological 

complications associated with ZIKV infection including microcephaly in newborns and 

GBS in adults.  

Previous research work on the identification of suitable cell culture models to study 

ZIKV infection unveiled that the CHO cells do not support viral infection.459 However, it 

remained unclear which step of the viral life cycle was not sustained in these cells. In 

light of this, binding, entry, and post-entry assays were performed. In this study, two 

different ZIKV strains (the French Polynesia H/PF/2013 strain and the Uganda 976 

strain) were used to represent the distinct types of pathogenesis observed in the 

human population. The viral attachment to CHO cells did not significantly vary from 

A549, a highly ZIKV permissive cell line (Figure 19 A).225,459 This is not surprising, as 

elements of the extracellular matrix, such as glycosaminoglycans, have been described 

as viral attachment factors that concentrate the viral particles on the cell surface before 

their interaction with primary receptors. More precisely, heparan sulfate and 

chondroitin sulfate, which are present on the surface of CHO cells, have been shown to 

be involved in the ZIKV entry process.271,487 Contrariwise, the entry assay revealed a 

noteworthy discrepancy between A549 and CHO cells, which was also reflected in the 

post-entry assay (Figure 19 B and C). These results indicate that ZIKV entry is affected 

in CHO cells. It is known that the CHO cells lack endogenous EGFR.482,488 EGFR as an 

RTK is intimately involved in the regulation of crucial cellular processes such as 

proliferation, survival, differentiation, and migration. Given the broad range of cellular 

functions and its localization at the cell surface, several viruses are recognized to 

interact with EGFR, directly or indirectly through adaptors, and modulate its activity to 

facilitate their entry into the target cells, to increase viral replication, and even to 

counteract host antiviral responses.489 Considering this, the present study aimed to 

investigate the relevance of EGFR and of EGFR-dependent signaling for the ZIKV life 

cycle in vitro using A549 cells. 

Initially, the protein amount of EGFR and AXL, the latter is the initial reported primary 

receptor, was investigated in ZIKV permissive cell lines. Unlike for AXL, it was possible 

to detect EGFR on a protein level in all the cell lines studied, except in CHO and 

HepG2/C3A cells (Figure 20). As previously mentioned, CHO cells do not express 

endogenous EGFR and the results obtained are in accordance with this. Concerning the 

HepG2/C3A cells, a subclone of the HepG2 cells, there are contradictory data about 

EGFR expression.490,491 Nevertheless, it has been reported that some viruses, including 
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flaviviruses, are quite promiscuous in their options of host cell receptors and do not 

rely on a unique molecule to overcome the plasma membrane barrier. 289,492 Thus, it is 

possible that in this cell line another ErbB receptor or even another RTK might be 

replacing EGFR and its plausible role on ZIKV infection. This could explain the 

conflicting data in the literature regarding the relevance of AXL in ZIKV entry as 

well.273,279–281 Overall, these data concur with EGFR as a potential host factor relevant 

for the ZIKV life cycle since it is expressed in the majority of ZIKV permissive cell lines.  

As ZIKV entry was found to be compromised in CHO cells, viral infection was 

investigated in CHO cells stably overexpressing EGFR.463 EGFR overexpression in CHO 

cells did not render these cells permissive to ZIKV infection as shown by the absence 

of ZIKV-infected cells by CLSM analysis (Figure 23). Upon ligand binding, such as EGF, 

the EGFR tyrosine kinase domain is activated, leading to the phosphorylation of the 

tyrosine residues in the carboxyl tail of the dimerized receptor and consequently, 

activating downstream signaling cascades, such as the MAPK/ERK pathway. The 

functionality of EGFR molecules in CHO cells stably overexpressing EGFR was confirmed 

by the augmentation of the phosphorylation levels of EGFR and downstream ERK upon 

EGF stimulation by Western blot analysis (Figure 21) and also by the visualization of 

internalized EGFR by CLSM analysis (Figure 22). Due to the unsuccessful infection of 

the CHO cells stably overexpressing EGFR, the permissiveness of these and also of the 

CHO cells was investigated using a Renilla luciferase reporter virus.464 After transfection 

by electroporation, no ZIKV-infected cells nor a considerable luciferase activity was 

obtained in both CHO and CHO cells stably overexpressing EGFR, indicating lack of 

viral replication (Figure 24). Even though CHO cells are recurrently used in the 

production of recombinant proteins, they appear to be less permissive to viral 

infections when compared to other cell lines.493 Nonetheless, ZIKV entry was analyzed 

in CHO cells stably overexpressing EGFR and compared to CHO cells by performing an 

entry assay. Surprisingly, the relative number of internalized ZIKV genomes determined 

by qPCR was significantly reduced in the EGFR overexpressing cells (Figure 25 A). To 

better comprehend the outcome of this assay, the viral attachment was determined as 

well. Similarly, the relative number of attached ZIKV genomes was substantially 

diminished in the CHO cells stably overexpressing EGFR (Figure 25 B). These data 

suggest that the overexpression of EGFR severely affects ZIKV binding to the cell 

surface, explaining the decrease measured in the relative number of internalized viral 

genomes. Thus, to improve the assessment of ZIKV entry in CHO cells stably 

overexpressing EGFR, the number of internalized viral genomes was corrected with the 

correspondent number of attached viral genomes. After this adjustment, a 2-fold 

increment in the relative number of internalized viral genomes could be perceived in 

the EGFR overexpressing cells (Figure 25 C). Sole expression of EGFR in CHO cells did 
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not render these cells permissive to ZIKV infection, but was sufficient to improve viral 

entry in these cells, indicating that EGFR might be relevant for ZIKV entry. The reason 

why the CHO cells do not support viral infection remains unclear. As ZIKV can enter 

CHO cells and CHO-ZIKV-RLuc cells failed to sustain viral infection, the limiting step in 

CHO cells seems to occur after endosomal fusion and the uncoating of the viral 

genome. After analysis of the genomic sequence of the CHO cells, Xu et al. reported 

that several human homologous genes are present in these cells, but not expressed.494 

Most likely, one or multiple host factors crucial for viral synthesis and replication are 

not expressed in CHO cells and thus, they fail to support viral replication analogously 

to what is described for the vaccinia virus.495   

Furthermore, CLSM analysis of the EGFR subcellular localization and distribution in 

ZIKV-infected cells unveiled the appearance of dot-like structures delocalized from the 

plasma membrane in infected cells. EGFR dot-like structures were most evident at 24 

and 48 hpi for both MOI (Figure 29). Moreover, ZIKV-infected cells displayed an 

elevated degree of colocalization of EGFR dot-like structures with EEA1, an early 

endosomal marker (Figure 30 A and B), indicating that these structures correspond to 

intracellular EGFR. The subcellular localization and distribution of EGFR in ZIKV-infected 

cells were further investigated at the early stages of infection (up to 120 mpi) by CLSM 

analysis. Intracellular EGFR was exclusively visualized in infected cells at 30 mpi and to 

a lesser extent at 60 mpi (Figure 31 A), and further corroborated by z-stack imaging 

(Figure 31 B). These data suggest that ZIKV triggers EGFR internalization shortly after 

the introduction of the viral inoculum, coinciding with the expected time of ZIKV entry 

into the host cell.286,496 As the release of ZIKV genomic RNA into the cytoplasm requires 

the acidification of the endosomal compartment for membrane fusion, it would not be 

astonishing that ZIKV might utilize EGFR to enter the target cells by receptor-mediated 

endocytosis, gaining access to the endosomal system.225,497 Internalization of EGFR 

during viral infection is not unusual as many viruses such as HBV, IAV, HSV-1, HCMV, 

and TGEV exploit its internalization to overcome the plasma membrane 

barrier.428,433,438,439,441  

Internalization of EGFR occurs in response to its activation. Since EGFR was found to be 

internalized in ZIKV-infected cells, EGFR activation and activation of the MAPK/ERK 

pathway were investigated at the early stages of infection by Western blot analysis. 

Compared to uninfected cells, increased levels of phosphorylated EGFR and 

phosphorylated ERK were detectable in infected cells as early as 5 mpi and restored by 

30 mpi, except for the ERK phosphorylation level in French Polynesia-infected cells that 

only reestablished by 60 mpi (Figure 32). EGFR activation induced by ZIKV was further 

confirmed using the PamChip® Peptide Microarray system where an MOI-dependent 
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activation was observed (Figure 33). Considering that EGFR internalization in infected 

cells was visible at 30 mpi, activation of EGFR and ERK and subsequent 

dephosphorylation within this period is in accordance with this previous observation. 

Nonetheless, it remains uncertain whether ZIKV particles can directly or indirectly 

through an interaction partner, activate EGFR and induce its internalization. The direct 

interaction between ZIKV and EGFR was investigated by co-immunoprecipitation (data 

not shown). However, no clear results could be obtained from this. In the case of HCV, 

EGFR activation and internalization are accomplished indirectly through CD81, whereas 

IAV activates EGFR depending on the interaction with sialic acid.433,498 In addition, an 

increase in the level of phosphorylated EGFR was measured at 5-15 mpi in TGEV-, HSV-

1-, HCMV-, and JEV-infected cells.425,428,434,441,499 EGFR is a co-receptor mutual to all 

these viruses, reinforcing the possibility that EGFR might also participate in ZIKV entry.  

Furthermore, inhibition of the activation of EGFR by blocking the tyrosine kinase (TK) 

activity of EGFR with Erlotinib had a clear impact on the relative number of ZIKV 

genomes and on the relative amount of infectious viral particles determined by qPCR 

and plaque assay, respectively (Figure 36 and 37). However, the same trend could not 

be observed in ZIKV-luciferase-replicating cells by a luciferase assay, suggesting that 

the inhibitory effect would occur on a step of the viral life cycle before the onset of 

genome replication and viral morphogenesis (Figure 38). Direct assessment of the 

influence of Erlotinib on the ZIKV entry by an entry assay showed a decline in the 

relative number of internalized genomes, demonstrating that the TK activity of EGFR is 

essential for viral entry (Figure 39). Though, this reduction was only about 0.3-fold in 

comparison to the vehicle control, which can be derived from the mild inhibitory effect 

on the internalization of EGFR observed after CLSM analysis (Figure 40). In another 

study, Erlotinib was also used in ZIKV-infected cells, but no effect could be observed in 

the amount of infectious viral particles.500 The reason behind these results, besides the 

disparity between the cell lines used in both studies, could be because the cells were 

not pre-incubated with the compound, but rather infected and treated at the same 

time. Thus, making it highly possible that the viral particles were able to rapidly enter 

the cells while the inhibitory activity on EGFR was not established. Overall, these data 

support the hypothesis that EGFR is a relevant host factor for the ZIKV entry process.  

When targeting the MAPK/ERK pathway using Sorafenib and PD98059, which inhibit 

Raf and MEK, a reduction in the relative number of viral genomes and the relative 

amount of infectious viral particles was detected as well (Figure 36 and 37). These 

selective inhibitors besides displaying no effect on the viral replication (Figure 38), also 

showed no impact on the viral entry (Figure 39). While Erlotinib was able to partially 

hamper EGFR internalization upon EGF stimulation, no effect could be observed in 
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Sorafenib- and PD98059-treated cells (Figure 40). Contrary to Erlotinib, which directly 

prevented ZIKV internalization, the inhibitors used in this study to impede the 

activation of the MAPK/ERK pathway seem to affect the ZIKV life cycle in steps 

preceding the onset of the viral genome replication and morphogenesis, but after the 

viral entry. From these results, it can be deduced that hindering the activation of the 

MAPK/ERK signaling cascade as a consequence of the inhibition of the activation of 

EGFR by Erlotinib does not influence ZIKV entry. Hence, the effect exhibited by Erlotinib 

on the ZIKV entry might arise as a result of the impairment of EGFR internalization and 

without EGFR activation there is no receptor internalization and endocytic sorting. 

These findings corroborate the proposed premise that EGFR is involved in the ZIKV 

entry process. Nonetheless, this study could not provide a clear insight into the role of 

the MAPK/ERK pathway during the early stages of ZIKV infection and requires further 

investigation. Activation of this pathway leads to the phosphorylation of diverse 

cytoplasmic proteins and promotes the transcription of several genes linked to crucial 

cellular functions.373,387 Since the effect seems to be after viral entry but before the 

onset of genome replication, it can be speculated that the MAPK/ERK pathway might 

be essential to the ZIKV-induced reorganization of microtubules required for the 

formation of the replication factories as ERK 1/2 is responsible for the phosphorylation 

of microtubule-associated proteins 1, 2, and 4 (MAP1, MAP2, MAP4) that assist in the 

microtubules redistribution.501 The reorganization of the microtubules is also involved 

in protein synthesis and vesicle trafficking and thus, could aid during viral synthesis and 

trafficking to the replication sites.502 Alternatively, the MAPK/ERK signaling cascade 

could be directly involved in the viral translation through the activation of Mnk1 that 

directly phosphorylates a component of the cap-binding complex eIF4F, eIF4E, and 

thereby, regulates the translation of the viral genome and formation of the viral 

polyprotein. 503,504 ERK activation in ZIKV-infected cells was reported by Zhu et al. in 

Müller cells after 3 and 4 days post-infection, but in this cell culture system PD98059 

slightly increased the number of ZIKV genomes.505 As the cells were only subjected to 

PD98059 treatment 3 days after infection, at this point ZIKV infection was already fully 

established, the inhibitory effect during the early stages of infection could not be 

discerned. Moreover, Cheng et al. showed that U0126, a MEK inhibitor, displayed no 

impact on ZIKV infection when HUVEC cells were pre-treated with this inhibitor.506 On 

the one hand, as mentioned by the authors, the low concentrations of this inhibitor 

used in the study might not be sufficient to affect ZIKV infection. On the other hand, 

these results were normalized to untreated cells and not the appropriate vehicle control 

(DMSO). As DMSO can alter ZIKV infection, it is plausible that an eventual effect of this 

compound could not be perceived.225,504 
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To further investigate the importance of EGFR signaling for ZIKV infection, the EGFR 

protein half-life was investigated by subjecting ZIKV-infected cells simultaneously to 

EGF and cycloheximide treatment and thereby, targeting EGFR for degradation and 

inhibiting de novo synthesis. According to the literature, the half-life of EGFR is 

approximately 60 min in EGF-stimulated cells.507 Similar results were obtained in 

uninfected and Uganda-infected cells after the analysis of the protein level by Western 

blot throughout 2 h. However, when cells were infected with the French Polynesia 

strain, the half-life was prolonged by almost three times (Figure 34 A and B). This delay 

in EGFR degradation observed uniquely for the French Polynesia strain could reflect an 

additional necessity for an extended usurpation of the EGFR signaling, as it was 

observed that EGFR is still active in the endosomes.508 This can be supported by the 

fact that the ERK dephosphorylation in French Polynesia-infected cells occurred 

between 30 and 60 mpi, while in Uganda-infected cells between 15 and 30 mpi. 

Whether this occurrence could be related to the disparity of the clinical presentation 

and outcome between both viral strains cannot be concluded from this study and 

requires further investigation. Higher EGFR half-life was reported in HCV-infected cells 

as well.507  

Moreover, by disrupting lipid rafts with MβCD, which selectively depletes cholesterol 

from the plasma membrane, both ZIKV binding and entry were significantly reduced 

as quantified by qPCR (Figure 43). Exceptionally, no effect could be observed in the 

binding assay of French Polynesia-infected cells (Figure 43A). MβCD treatment led to 

an augmentation of both basal and EGF-stimulated activation of EGFR and the 

MAPK/ERK signaling cascade analyzed by Western blot (Figure 42). However, a clear 

inhibition of EGFR internalization in MβCD-treated cells was visible upon EGF 

stimulation by CLSM analysis (Figure 44). These results suggest that ZIKV does not 

depend exclusively on the activation of EGFR and the respective signaling cascade for 

an efficient viral entry. This observation can be corroborated by the absence of an effect 

on the ZIKV entry displayed by Raf and MEK inhibitors. Whether the lack of EGFR 

internalization in MβCD-treated cells is the unique reason for the impairment in ZIKV 

entry in these cells cannot be concluded from this, as additional factors can be affected 

by the depletion of cholesterol. This could explain the effect that MβCD treatment has 

on the attachment of ZIKV to the cell surface in the case of the Uganda strain. In the 

matter of HSV-1 and JEV, MβCD treatment decreased viral entry by disturbing lipid 

rafts and consequently, affecting the viral-induced activation of EGFR and downstream 

signaling cascades.428,434 The ZIKV-induced activation of EGFR and ERK was not 

investigated in MβCD-treated cells in the present study. Although JEV is closely related 

to ZIKV, the data in the present study suggest a different mode of action of this 

compound in ZIKV-infected cells. 
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For further characterization of the EGFR relevance during ZIKV infection, the mRNA 

level and the protein amount of EGFR were analyzed throughout 48 hours of infection 

by qPCR and Western blot analysis, respectively. While the relative number of EGFR 

specific transcripts continuously increased with ZIKV infection (Figure 27), a reduction 

of the protein level could be discerned at later times of infection (Figure 28). This 

increment of the number of EGFR transcripts could be due to ZIKV induction of the 

EGFR gene expression, as it was reported for HBV and EBV.450,452 The augment of EGFR 

gene expression could be a way for ZIKV to increase the number of EGFR molecules at 

the cell surface and further promote EGFR activation and consequently, stimulate 

survival signals in ZIKV-infected cells for efficient viral production. This induction might 

trigger the host cell to restore homeostasis by intensifying EGFR degradation, 

explaining the decrease of EGFR protein amount. Alternatively, if the internalized EGFR 

triggered by ZIKV infection is lysosomally degraded, the increment of EGFR gene 

expression could be a host compensatory mechanism in response to this. Thus, with 

the existent substantial amount of infectious viral particles at later times of infection, 

the number of EGFR molecules degraded might not be efficiently compensated by the 

host cell, leading to a visible decrease of EGFR protein amount. Equivalent EGFR 

transcriptional levels were reported by Jiang et al. at 6 hpi using neuronal progenitor 

ZIKV-infected cells. However, at 9, 12, and 24 hpi, no significant changes could be 

observed.509 As the majority of the changes in the EGFR mRNA level were visible using 

a higher MOI (MOI 10), the fact that neuronal progenitor cells were infected with MOI 

3 and the different cellular background could explain the dissimilarity between both 

studies. Concerning the EGFR protein level, a 1.24-fold change was reported by Jiang 

et al. at 1-day post-infection (in the present study this should correspond to 24 hpi).509 

Moreover, Sher et al. showed a 0.6-fold change of EGFR protein amount at 48 hpi in 

ZIKV-infected glioblastoma astrocytoma U-251 cells.510 These data were comparable 

to the ones in this study. 

To directly address the relevance of EGFR for ZIKV infection, EGFR was knocked out in 

A549 cells using the CRISPR/Cas9 system, and the successful generation of monoclonal 

EGFR KO cells and the lack of EGFR functionality was confirmed by Western blot and 

CLSM analyses (Figure 45 and 46). The number of viral genomes and the amount of 

infectious viral particles were diminished in A549-EGFR KO cells as determined by qPCR 

and plaque assay, respectively. To assess the impact of EGFR KO in A549 cells on the 

viral entry, the number of internalized viral genomes was quantified by qPCR after 

performing an entry assay. The entry assay unveiled a significant decline in the number 

of internalized viral genomes in A549-EGFR KO cells in comparison to the off-target 

control, supporting the previous findings that indicate that EGFR is relevant for the 

ZIKV entry process (Figure 48).  
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Taken together, this study provides unprecedented evidence that the EGFR and the 

MAPK/ERK signaling cascade play a role in the ZIKV life cycle, uncovering EGFR as a 

relevant host factor in the early stages of ZIKV infection in vitro. As ZIKV is a re-

emerging virus and without a preventive vaccine nor a specific antiviral drug against 

ZIKV, uncovering and understanding novel virus-host interactions is fundamental for 

the development of a specific antiviral therapy. EGFR is a well-characterized receptor 

and due to its role in cancer, several monoclonal antibodies and substances that target 

EGFR are available and licensed for therapy purposes. Hence, repurposing these 

compounds could constitute a novel antiviral approach and further studies can be 

performed to investigate their impact on ZIKV infection in vivo. Nevertheless, the 

crosstalk between ZIKV and EGFR in vitro still requires further investigation to elucidate 

the exact mechanism of their interaction and to deepen the knowledge about the ZIKV 

entry process. 
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7. Summary 

Zika virus (ZIKV) is a member of the Flaviviridae family that received public attention 

and scientific interest after the outbreak in French Polynesia (2013-2014) and the 

epidemic in the Americas (2015-2016). Even though only 20% of infected people 

exhibit clinical manifestations and they are predominantly flu-like symptoms, these 

events unveiled neurological complications associated with ZIKV infection, such as the 

Guillain-Barré syndrome in adults and microcephaly in newborns. Lacking a preventive 

vaccine and a specific antiviral therapy against ZIKV allied to the fact that this pathogen 

is a re-emerging virus, uncovering and comprehending novel virus-host interactions is 

crucial to the identification of new antiviral targets and the development of innovative 

antiviral approaches. Previous research work uncovered that the Chinese hamster ovary 

(CHO) cells do not support ZIKV infection.459 As this cell line does not express 

endogenous epidermal growth factor receptor (EGFR) , this study aimed to investigate 

whether EGFR and EGFR-dependent signaling are relevant for the ZIKV life cycle in 

vitro. 

In the first part of the study, viral infection was investigated in CHO cells and compared 

to A549 cells, a highly ZIKV permissive cell line. After performing binding and entry 

assays, ZIKV entry, but not the attachment, was significantly decreased in CHO cells in 

comparison to A549 cells. Additionally, in A549-EGFR KO cells, ZIKV entry was 

diminished relatively to the off-target control. These results show the clear impact that 

the absence of EGFR has on viral entry, implicating EGFR during this process. Even 

though EGFR overexpression in CHO cells could not render these cells permissive to 

ZIKV infection, as demonstrated by the lack of viral infection after electroporation with 

in vitro transcribed capped ZIKV-Renilla luciferase RNA, it was possible to rescue ZIKV 

entry. These findings suggest that there are additional elements, which are not 

expressed in CHO cells, required for viral replication.  

Furthermore, the impact of ZIKV infection on EGFR mRNA and protein levels as well as 

on the EGFR subcellular localization and distribution was evaluated. The relative 

number of EGFR specific transcripts continuously increased with ZIKV infection, 

whereas the EGFR protein level diminished at later times of infection. Moreover, 

changes in the subcellular localization of EGFR and its colocalization with the early 

endosomal marker EEA1 in ZIKV-infected cells revealed that ZIKV triggers EGFR 

internalization. The relevance of EGFR in the ZIKV entry process was further 

corroborated by the observation of EGFR internalization at 30 min post-infection (mpi) 

and to less extent at 60 mpi, which concurs with the expected time of ZIKV entry into 

the host cells.  



 

120 
 

In the remaining part of the study, the influence of ZIKV infection in EGFR-dependent 

signaling as well as the contribution of EGFR and EGFR signaling for viral infection were 

studied. Activation of EGFR and the MAPK/ERK signaling cascade was detected as early 

as 5 mpi and ceased within 30 mpi in ZIKV-infected cells. Taking into account that EGFR 

internalization was observed at 30 mpi in infected cells, the activation of EGFR and ERK 

and subsequent dephosphorylation within this period go along with this previous 

observation. Vice-versa, inhibition of the activation of EGFR and the MAPK/ERK 

pathway declines ZIKV infection. On the one hand, inhibition of EGFR activation by 

Erlotinib affected ZIKV entry, as a consequence of impaired EGFR internalization. On 

the other hand, Raf and MEK inhibitors reduced ZIKV infection without disturbing viral 

replication or viral entry. These data suggest that the activation of the MAPK/ERK 

signaling cascade is necessary for a step of the viral life cycle before the onset of 

genome replication and morphogenesis and after viral entry. The importance of EGFR 

signaling was additionally investigated by the determination of EGFR half-life in ZIKV-

infected cells upon EGF stimulation. While the EGFR half-life was similar in uninfected 

and Uganda-infected cells, a delay in EGFR degradation was observed in French 

Polynesia-infected cells. This observation might indicate an extended usurpation of the 

EGFR signaling since EGFR seems to still be active in the endosomes. Moreover, 

disruption of lipid rafts by MβCD, a cholesterol-depleting agent, hampered ZIKV entry. 

In uninfected cells, MβCD treatment led to the activation of EGFR, but at the same time 

prevented EGFR internalization, indicating that EGFR activation exclusively is not 

sufficient for an efficient ZIKV entry and further supporting the importance of EGFR 

internalization during the ZIKV entry process. 

Taken together, this study uncovers EGFR as a relevant host factor in the early stages 

of ZIKV infection, providing novel insights into the ZIKV entry process. Since numerous 

monoclonal antibodies and substances that target EGFR are licensed, repurposing 

these compounds might be a helpful tool for the establishment of an antiviral therapy 

in case of ZIKV re-emergence.  
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8. Zusammenfassung 

Das Zika-Virus (ZIKV) ist ein hochtransmissives Virus, das zur Gattung Flavivirus 

innerhalb der Familie der Flaviviridae gehört. Andere Flaviviren, die eng mit ZIKV 

verwandt sind, sind Krankheitserreger mit erheblicher Bedrohung für die menschliche 

Gesundheit, wie unter anderem das Gelbfiebervirus und das Denguevirus. Im April 1947 

wurde ZIKV bei einer Gelbfieber-Studie im Zika-Wald in Uganda entdeckt. In den 

folgenden 60 Jahren verbreitete sich das ZIKV nur gering mit einer niedrigen Anzahl 

von gemeldeten Fällen, aber erhöhten serologischen Nachweisen. Der erste ZIKV-

Ausbruch ereignete sich 2007 auf der Insel Yap in den Föderierten Staaten von 

Mikronesien und betraf schätzungsweise 75 % der Bevölkerung. Trotz der Entdeckung 

im Jahr 1947 hat ZIKV aufgrund des Ausbruchs in Französisch-Polynesien (2013-2014) 

und der Epidemie in Amerika (2015-2016) erst in den letzten 10 Jahren die 

Aufmerksamkeit der wissenschaftlichen Gemeinschaft auf sich gezogen. Obwohl nur 

20 % der Infizierten klinische Manifestationen aufwiesen und es sich überwiegend um 

grippeähnliche Symptome handelte, zeigten sich auch neurologische Komplikationen 

im Zusammenhang mit einer ZIKV-Infektion, wie das Guillain-Barré-Syndrom bei 

Erwachsenen und Mikrozephalie bei Neugeborenen. Als Arbovirus wird ZIKV 

hauptsächlich durch den Stich einer infizierten Mücke der Gattung Aedes übertragen. 

Die Übertragung kann jedoch auch direkt von Mensch zu Mensch durch 

Körperflüssigkeiten erfolgen, einschließlich von einer schwangeren Frau auf den Fötus 

über die Plazenta, Geschlechtsverkehr und Blutaustausch. Die schnelle weltweite 

Expansion des ZIKV und die Zunahme der dokumentierten Fälle von Mikrozephalie 

haben dazu geführt, dass die Weltgesundheitsorganisation im Februar 2016 das ZIKV 

zum öffentlichen Gesundheitsnotstand von internationaler Bedeutung erklärt hat. 

Dieser dauerte jedoch aufgrund des drastischen Rückgangs der Zahl der gemeldeten 

ZIKV-Fälle nur etwa 8 Monate an. In Ermangelung eines präventiven Impfstoffs und 

einer spezifischen antiviralen Therapie gegen ZIKV und der Tatsache, dass es sich bei 

diesem Erreger um ein wiederkehrendes Virus handelt, ist das Aufdecken und 

Verstehen neuer Virus-Wirt-Interaktionen entscheidend für die Identifizierung neuer 

antiviraler Angriffsziele und die Entwicklung innovativer antiviraler Ansätze. 

Wie andere Flaviviren besitzt ZIKV ein einzelsträngiges RNA Genom mit positiver 

Orientierung und einer Größe von ca. 11 kb. Das virale Genom kodiert für ein einzelnes 

Polyprotein, das von viralen und Wirtsproteasen in drei strukturelle Proteine – Kapsid 

(C), Hülle (E) und Vorläufer von Membran/Membran (prM/M) – und sieben nicht-

strukturelle Proteine (NS1, NS2A, NS2B, NS3, NS4A, NS4B und NS5) prozessiert wird. 

Das Viruspartikel besteht aus einem inneren Kern/Nukleokapsid, das von der 

genomischen RNA und dem C-Protein gebildet wird. Anschließend wird das 
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Nukleokapsid von einer Lipiddoppelschicht umgeben, die mit E- und M-Proteinen 

beschichtet ist. Der virale Zyklus ist noch nicht vollständig erforscht. Er beginnt mit der 

Interaktion des viralen E-Glykoproteins mit mehreren Zelloberflächenmolekülen, um in 

die Wirtszelle einzudringen. Somit stellt der virale Eintritt ein attraktives Ziel für die 

Entwicklung antiviraler Strategien dar. Es wurden mehrere Moleküle beschrieben, die 

den Eintritt von ZIKV in den Wirt vermitteln, einschließlich AXL. Dies ist jedoch immer 

noch ein rätselhafter Prozess, der nicht vollständig verstanden ist. 

Der epidermale Wachstumsfaktorrezeptor (EGFR) ist ein Mitglied der ErbB/HER-Familie 

innerhalb der Superfamilie der Rezeptortyrosinkinasen (RTKs). EGFR besteht 

hauptsächlich aus einer extrazellulären Rezeptordomäne, die durch Bindung 

spezifischer Liganden das Signal in die Zelle weiterleitet. EGFR besitzt eine hydrophobe 

Transmembrandomäne, eine intrazelluläre Tyrosinkinasedomäne und eine C-terminale 

regulatorische Schwanzdomäne. Eine beträchtliche Anzahl von EGFR-Molekülen und 

anderen Rezeptoren ist in Lipid-Rafts lokalisiert, da ihre Funktion bei der 

Signaltransduktion eng mit der Lokalisierung in diesen Mikrodomänen der 

Plasmamembran korreliert. Bei der Ligandenbindung dimerisiert ein einzelner Rezeptor 

mit einem anderen EGFR oder einem anderen Mitglied der ErBb-Familie, wodurch die 

intrazelluläre Tyrosinkinasedomäne aktiviert wird. Folglich werden die im C-terminalen 

Schwanz des dimerisierten Rezeptors vorhandenen Tyrosinreste einer Auto- und Trans-

Phosphorylierung ausgesetzt, was die Rekrutierung von Adapterproteinen und 

anderen Effektormolekülen begünstigt. Dies führt zur Aktivierung mehrerer 

Signalkaskaden, einschließlich der Ras-Raf-MEK-ERK (MAPK/ERK), JAK-STAT und PI3K-

AKT-mTOR-Pfade. Um die zellulären Signale herunterzuregulieren und die 

Homöostase in der Zelle wiederherzustellen, verlässt EGFR die Lipid-Rafts und wird 

durch Clathrin-vermittelte Endozytose internalisiert. In den endosomalen 

Kompartimenten kann der internalisierte Rezeptor beim Recycling von Endosomen an 

die Zelloberfläche zurückgeführt werden oder wird einem lysosomalen Abbau 

unterzogen. Dieser Schritt ist abhängig von der Art des Liganden und von der Dauer 

und Intensität des Signals. Aufgrund der zentralen Rolle bei der Zellproliferation, dem 

Überleben, der Hemmung von Apoptose, Endozytose und dem Umbau des 

Zytoskeletts manipulieren mehrere Viren, darunter Mitglieder der Familie der 

Flaviviridae, EGFR, um die Plasmamembranbarriere zu überwinden und in den Wirt 

einzudringen, um Zugang zu den Replikationsstellen zu erhalten und sogar um 

antivirale Reaktionen des Wirts zu antagonisieren. 

In einer früheren Studie wurde berichtet, dass die Ovarialzellen des Chinesischen 

Hamsters (CHO) die ZIKV-Infektion nicht unterstützen. Es ist bekannt, dass diesen 

Zellen endogene EGFR fehlt. Vor diesem Hintergrund zielte die vorliegende Studie 

darauf ab, die Relevanz von EGFR und EGFR-abhängiger Signalübertragung für den 

ZIKV-Lebenszyklus in vitro unter Verwendung von A549-Zellen, einer hoch ZIKV-
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permissiven Zelllinie, zu untersuchen. In dieser Arbeit haben wir die Stämme 

Französisch-Polynesiens und Ugandas verwendet, um die verschiedenen Arten der 

Pathogenese darzustellen. Während der Uganda-Stamm mit grippeähnlichen 

Symptomen in Verbindung gebracht wird, wird der Französisch-Polynesien-Stamm mit 

den bei der menschlichen Bevölkerung beobachteten neurologischen Komplikationen 

assoziiert. 

Im ersten Teil der Studie wurde die virale Infektion in CHO-Zellen untersucht und mit 

A549-Zellen verglichen. Nach Durchführung von Bindungs- und Eintrittsassays war der 

ZIKV-Eintritt, aber nicht die Anheftung, in CHO-Zellen im Vergleich zu A549-Zellen 

signifikant verringert. Diese Reduktion wurde auch nach einem Post-Entry-Assay 

beobachtet. Außerdem war in A549-EGFR-KO-Zellen der ZIKV-Eintritt relativ zur Off-

Target-Kontrolle verringert. Diese Ergebnisse zeigen den klaren Einfluss, den das 

Fehlen von EGFR auf den Viruseintritt hat. Darüber hinaus ergab die Western-Blot-

Analyse, dass EGFR in der Mehrheit der ZIKV-permissiven Zelllinien exprimiert wird, im 

Gegensatz zu AXL, einem der ersten berichteten ZIKV-Rezeptoren. Das Fehlen von 

EGFR in HepG2/C3A-Zellen und die Identifizierung mehrerer Moleküle, die am 

Eintrittsprozess beteiligt sind, legen nahe, dass der ZIKV-Eintritt nicht von einem 

einzelnen Rezeptor abhängt, sondern mit seinen Interaktionen mit dem Wirt, ähnlich 

wie bei anderen Flaviviren, eher promiskuitiv ist. Somit ist es möglich, dass in 

HepG2/C3A ein anderes ErbB oder RTK die EGFR-Funktionen ersetzen könnte. Auch 

wenn EGFR auf den ersten Blick eine Rolle beim Eintritt von ZIKV zu spielen scheint, 

konnte eine EGFR-Überexpression in CHO-Zellen diese Zellen nicht für eine ZIKV-

Infektion permissiv machen, wie das Fehlen einer Virusinfektion nach Elektroporation 

mit einem Luciferase-Reportervirus zeigt. Diese Ergebnisse legen nahe, dass zusätzliche 

Elemente, die in CHO-Zellen nicht exprimiert werden, für die virale Replikation 

erforderlich sind. Nichtsdestotrotz konnte die EGFR-Überexpression in CHO-Zellen den 

ZIKV-Eintritt ermöglichen, was die Beteiligung von EGFR an diesem Prozess 

unterstreicht. 

Darüber hinaus enthüllte die konfokale Laser-Scanning-Mikroskopie (CLSM) Analyse 

der subzellulären EGFR-Lokalisierung und -Verteilung das Auftreten von 

punktförmigen EGFR-Strukturen, die von der Plasmamembran in ZIKV-infizierten 

Zellen delokalisiert wurden und einen erhöhten Kolokalisationsgrad mit EEA1 

aufwiesen, einem frühen Endosomenmarker. Dies zeigt, dass diese punktförmigen 

Strukturen dem intrazellulären EGFR entsprechen. Intrazellulärer EGFR wurde in 

infizierten Zellen 30 min nach der Infektion (mpi) und in geringerem Ausmaß bei 60 

mpi beobachtet, was darauf hindeutet, dass ZIKV die EGFR-Internalisierung kurz nach 

der Einführung des viralen Inokulums auslöst und mit dem erwarteten Zeitpunkt des 

ZIKV-Eintritts in die Wirtszelle übereinstimmt. Diese Beobachtungen untermauern die 

Teilnahme von EGFR am ZIKV-Eintrittsprozess weiter. 
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Die Internalisierung von EGFR erfolgt als Reaktion auf seine Aktivierung. Da festgestellt 

wurde, dass EGFR in ZIKV-infizierten Zellen internalisiert wird, wurde die EGFR-

Aktivierung und die entsprechende nachgeschaltete Aktivierung des MAPK/ERK-

Signalwegs in frühen Stadien der Infektion durch Western-Blot-Analyse untersucht. Die 

Aktivierung von EGFR und der MAPK/ERK-Signalkaskade wurde bereits bei 5 mpi 

nachgewiesen und kehrte in ZIKV-infizierten Zellen auf basale Werte innerhalb von 30 

mpi zurück und war abhängig von der Anzahl infektiöser Viruspartikel, die für die 

Infektion verwendet wurden. In Anbetracht der Tatsache, dass die EGFR-

Internalisierung in infizierten Zellen bei 30 mpi sichtbar war, stimmt die EGFR- und ERK-

Aktivierung und die anschließende Herunterregulierung innerhalb dieses Zeitraums mit 

dieser vorherigen Beobachtung überein. Umgekehrt verringert die Hemmung der 

Aktivierung von EGFR und des MAPK/ERK-Signalwegs die ZIKV-Infektion. Einerseits 

beeinflusste die Hemmung der EGFR-Aktivierung durch Erlotinib den ZIKV-Eintritt als 

Folge einer gestörten EGFR-Internalisierung. Andererseits reduzierten Raf- und MEK-

Inhibitoren die ZIKV-Infektion ohne die Virusreplikation oder den Viruseintritt zu 

stören. Diese Daten legen nahe, dass die Aktivierung der MAPK/ERK-Signalkaskade für 

einen Schritt im viralen Lebenszyklus vor dem Beginn der Genomreplikation und 

Morphogenese und nach dem Viruseintritt notwendig ist. Die Bedeutung der EGFR-

Signalgebung wurde zusätzlich durch die Bestimmung der EGFR-Halbwertszeit in ZIKV-

infizierten Zellen nach EGF-Stimulation untersucht. Während die EGFR-Halbwertszeit in 

nicht infizierten und mit Uganda infizierten Zellen ähnlich war, wurde in mit 

Französisch-Polynesien infizierten Zellen eine Verzögerung des EGFR-Abbaus 

beobachtet. Dies könnte auf eine zusätzliche Notwendigkeit für eine erweiterte 

Usurpation der EGFR-Signalgebung hindeuten, da beobachtet wurde, dass EGFR in den 

Endosomen immer noch aktiv ist. Dies kann durch die Tatsache unterstützt werden, 

dass die ERK-Dephosphorylierung in mit Französisch-Polynesien infizierten Zellen bei 

30 bis 60 mpi auftrat, während sie in mit Uganda infizierten Zellen bei 15 bis 30 mpi 

stattfand. Ob dieses Auftreten mit der Ungleichheit der klinischen Präsentation und des 

Outcomes zwischen beiden Virusstämmen zusammenhängen könnte, lässt sich aus 

dieser Studie nicht ableiten und bedarf weiterer Untersuchungen. Darüber hinaus 

behinderte die Zerstörung von Lipid-Rafts mit Methyl-β-Cyclodextrin (MβCD), einem 

cholesterinsenkenden Mittel, den Eintritt von ZIKV. In nicht infizierten Zellen führte die 

MβCD-Behandlung zur Aktivierung von EGFR, verhinderte aber gleichzeitig die EGFR-

Internalisierung, was darauf hindeutet, dass die ausschließliche EGFR-Aktivierung für 

einen effizienten ZIKV-Eintritt nicht ausreicht und die Bedeutung von EGFR während 

des ZIKV-Eintrittsprozesses weiter unterstützt. 

 

Die Auswirkungen einer ZIKV-Infektion auf die EGFR-mRNA- und -Proteinspiegel 

wurden ebenfalls bewertet. Während die relative Zahl der EGFR-spezifischen 

Transkripte mit der ZIKV-Infektion kontinuierlich zunahm, konnte zu späteren 
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Zeitpunkten der Infektion eine Verringerung des Proteinspiegels festgestellt werden. 

Die Erhöhung der EGFR-Genexpression könnte für ZIKV eine Möglichkeit sein, die 

Anzahl der EGFR-Moleküle an der Zelloberfläche zu erhöhen und die EGFR-Aktivierung 

weiter zu fördern und folglich Überlebenssignale in ZIKV-infizierten Zellen für eine 

effiziente Virusproduktion zu stimulieren. Diese Induktion könnte die Wirtszelle 

veranlassen, die Homöostase wiederherzustellen, indem sie den EGFR-Abbau 

intensiviert, was die Abnahme der EGFR-Proteinmenge erklärt. Wenn alternativ der 

durch eine ZIKV-Infektion ausgelöste internalisierte EGFR lysosomal abgebaut wird, 

könnte die Zunahme der EGFR-Genexpression ein kompensatorischer Mechanismus 

des Wirts als Reaktion darauf sein. Bei der vorhandenen erheblichen Menge an 

infektiösen Viruspartikeln zu späteren Zeitpunkten der Infektion wird die Anzahl der 

abgebauten EGFR-Moleküle daher möglicherweise nicht effizient von der Wirtszelle 

kompensiert, was zu einer sichtbaren Abnahme der EGFR-Proteinmenge führt. 

Zusammenfassend liefert diese Studie beispiellose Beweise dafür, dass EGFR und die 

MAPK/ERK-Signalkaskade eine Rolle im ZIKV-Lebenszyklus spielen, und deckt EGFR als 

relevanten Wirtsfaktor in den frühen Stadien der ZIKV-Infektion in vitro auf. EGFR ist 

ein gut charakterisierter Rezeptor und mehrere monoklonale Antikörper und 

Substanzen, die auf EGFR abzielen, sind verfügbar und zugelassen. Daher könnte die 

Wiederverwendung dieser Verbindungen einen neuen antiviralen Ansatz darstellen 

und weitere Studien können durchgeführt werden, um ihren Einfluss auf die ZIKV-

Infektion in vivo zu untersuchen. Dennoch bedarf der Crosstalk zwischen ZIKV und 

EGFR in vitro noch weiterer Untersuchungen, um den genauen Mechanismus ihrer 

Interaktion aufzuklären und das Wissen über den ZIKV-Eintrittsprozess zu vertiefen. 
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