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Abstract. We propose an effective theory of SU(3) gluonic matter where interactions
between color-electric and color-magnetic gluons are constrained by the center and scale
symmetries. Through matching to the dimensionally-reduced magnetic theories, the mag-
netic gluon condensate qualitatively changes its thermal behavior above the critical tem-
perature. We argue its phenomenological consequences for the thermodynamics, in par-
ticular the dynamical breaking of scale invariance.

1 Magnetic confinement

In Yang-Mills (YM) theories at finite temperature T the magnetic screening mass is dynamically gen-
erated as a ultra-soft scale g2T [1, 2]. Consequently, the magnetic sector remains non-trivial in the high
temperature phase and in fact, the spatial string tension is non-vanishing for all temperatures [3, 4], in-
dicating certain confining properties. Due to this residual interaction, equations of state (EoS) deviate
from their Stefan-Boltzmann limit at high temperature. The interaction measure I(T )/T 2T 2

c obtained
from SU(3) lattice simulations is nearly constant above the deconfinement critical temperature Tc, in
the range Tc < T < 5Tc [5, 6].

Several scenarios have been proposed to explain this non-perturbative nature, see e.g. [7–11].
The major assumption in those models is an effective gluon mass being constant in the intermediate
T range. In [12] we propose a different effective theory where the non-trivial behavior of I(T )/T 2

emerges dynamically from chromomagnetic gluons, without relying on any assumption for the gluon
thermal mass.

Using the three-dimensional YM theories [13–16], thermal behavior of the magnetic gluon con-
densate at high temperature is found as [17]

〈H〉 = cH
(
g2(T )T

)4
, (1)

with

cH =
6
π
c2
σc2
m . (2)

The constants cσ and cm appear in the spatial string tension and in the magnetic gluon mass as
√
σs(T ) = cσg2(T )T , mg(T ) = cmg2(T )T . (3)
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For SU(3) YM theory cσ = 0.566 [5] and cm = 0.491 [18].
The non-vanishing string tension σs may support to consider a system where hadronic states, glue-

balls, can survive in deconfined phase. The scalar glueballs can be introduced as dilatons associated
with the scale symmetry breaking through the potential [19]

Vχ =
B
4

(
χ

χ0

)4 ⎡⎢⎢⎢⎢⎢⎣ln
(
χ

χ0

)4

− 1

⎤⎥⎥⎥⎥⎥⎦ , (4)

where B is the bag constant and χ0 is a dimensionful constant. The two parameters, B and χ0, are
fixed to reproduce the vacuum energy density E = 1

4B = 0.6 GeV fm−3 and the vacuum glueball mass
Mχ = 1.7 GeV [20, 21], leading to B = (0.368 GeV)4 and χ0 = 0.16 GeV.

The confinement-deconfinement phase transition is characterized by the Polyakov loop Φ,

Φ =
1
Nc

trL̂ , L̂ = P exp

[
i
∫ 1/T

0
dτA4(τ, �x)

]
, (5)

which is is an order parameter of dynamical breaking of Z(Nc) symmetry [22]. The two scalar fields,
χ and Φ, are mixed and their potential should be manifestly invariant under Z(Nc) and scale transfor-
mation. For Nc = 3, the most general form is given as [23],

Vmix = χ
4
(
G1Φ̄Φ +G2

(
Φ̄3 + Φ3

)
+G3

(
Φ̄Φ

)2
+ · · ·

)
, (6)

with unknown coefficients Gi. In the following calculation, we take only the first term.

2 Trace anomaly
We formulate the model accounting for a mixing between chromoelectric and chromomagnetic gluons
as

Ω = Ωg + ΩΦ + Vχ + Vmix + c0 . (7)

The color-electric gluon part Ωg is given in the presence of a uniform field A0 as

Ωg = 2T
∫

d3p
(2π)3

ln

⎛⎜⎜⎜⎜⎜⎜⎝1 +
8∑
n=1

Cn e−np/T
⎞⎟⎟⎟⎟⎟⎟⎠ , (8)

where the coefficients Cn are certain functions of the SU(3) group characters [24]. The Haar measure
part is

ΩΦ = −a0T ln
[
1 − 6Φ̄Φ + 4

(
Φ3 + Φ̄3

)
− 3

(
Φ̄Φ

)2
]
. (9)

We take the following mixing term,

Vmix = G
(
χ

χ0

)4

Φ̄Φ . (10)

Requiring that a first-order phase transition appears at Tc = 270 MeV as found in the lattice results [5],
one finds a0 = (0.184 GeV)3, c0 = (0.244 GeV)4 and G = (0.206 GeV)4.

At high temperature, the theory in four dimensions should match the three-dimensional effective
theory via dimensional reduction. We postulate the matching condition for the gluon condensate as

〈χ〉
χ0
=

( 〈H〉
H0

)1/4

. (11)
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We use the two-loop running coupling,

g−2(T ) = 2b0 ln
T
Λσ
+
b1

b0
ln

(
2 ln

T
Λσ

)
, b0 =

11
16π2

, b1 =
51

128π2
, (12)

with Λσ = 0.104Tc [5]. In this model, the changeover in the temperature dependence of the magnetic
condensate appears by construction. In YM theories, however, such behavior should emerge dynam-
ically. A qualitative change of the thermal gluon can be in fact seen in the spatial string tension at
T ∼ 2Tc [17].

This also affects the EoS. One finds an additional contribution to the interaction measure from 〈H〉
as

δI = −B 〈H〉
H0
+

(
2b0 +

b1

b0

1
ln (T/Λσ)

) 〈H〉
g4(T )H0

. (13)

The I/T 2T 2
c is monotonically decreasing even at high temperature when no matching to the 3-dim

YM is made. The magnetic contribution generates a T 2 dependence and this results in a plateau-like
behavior emerging in I/T 2T 2

c at moderate temperature, T/Tc ∼ 2-4. This property appears due to
the residual chromomagnetic interaction encoded in the dilaton, χ4 ∼ H. The obtained behavior of
I/T 2T 2

c with temperature qualitatively agrees with the latest lattice data [6].

3 Summary

We have presented an effective theory of SU(3) YM thermodynamics implementing the major global
symmetries, the center and scale symmetries. This naturally allows a mixing between the Polyakov
loop and the dilaton field. Consequently, the magnetic confinement is effectively embedded and results
in deviations of the EoS from their Stefan-Boltzmann limit at high temperature.

Matching to the 3-dimensional YM theory suggests the gluon condensate increasing with tem-
perature in deconfined phase. We have illustrated that this changeover becomes transparent in the
interaction measure I = E − 3P normalized by T 2T 2

c , rather than by T 4. We have found that the role
of the magnetic gluon is alternative to the Hard Thermal Loop contribution.
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