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Abstract. We describe how the study of resonances and fluctuations can help constrain
the thermal and chemical freezeout properties of the fireball created in heavy ion colli-
sions. This review is based on [1–5]

1 Introduction

The idea of modeling the abundance of hadrons using statistical mechanics techniques has a long and
distinguished history [6,7]. In a sense, any discussion of the thermodynamic properties of hadronic
matter (e.g. the existence of a phase transition) requires that statistical mechanics be applicable to this
system ( through not necessarily at the freeze-out stage).

That such a model can describe quantitatively the yield of most particles, including multi-strange
ones, has in fact been indicated by fits to average particle abundances at AGS,SPS and RHIC energies
[7–12]. The jump from noting the qualitative goodness of this description to ascertaining its limits,
and using it as a tool to study dense hadronic matter, is however a still ongoing process.

Some practitioners [6] interpret the statistical model results in terms of nothing more than phase
space dominance: For a process strongly enough interacting with enough particles in the final state,
dynamics “factors out” into a normalization constant, and the final state probabilities are dominated
by phase space. If this is the case, the applicability of the statistical model has nothing to do with a
genuine equilibration of the system. Others think that in soft QCD processes particles are “born in
equilibrium” [12], and the applicability of the statistical model to even smaller systems is a funda-
mental characteristic of QCD. Still others [8,13] believe that the applicability of the statistical model
is a sign of a phase transition, as the chemical equilibration of hadrons signals a regime in which
multi-particle processes and high-lying resonances dominate.

Obviously, the link between the QCD phase diagram, defined in the Grand Canonical limit, and ex-
perimental data can only be made in the last interpretation. Yet it is not clear how these interpretations
can be differentiated. Currently, the debate centers around the scope of application of the statistical
model [12,14] to smaller systems. Yet in every one of these cases an objective criterion for linking
the goodness of fit to the effective relevance of the underlying theory is still absent [12]: Since it is
clear that,in all regimes, non-statistical processes such as jet fragmentation and “corona physics” are
also present, and since error bars vary dramatically across system sizes for essentially experimental
reasons, excluding the statistical model from a raw χ2 analysis is highly nontrivial [12,14].

Two, related, observables which might lead to progress in this context are short-lived QCD reso-
nances [2,3] and event-by-event fluctuations [4,15].

Short-lived resonances go to the heart of this question because,in principle, their abundance can be
modified by elastic interactions of already formed hadrons. The abundance of hadrons stable against
strong decays, such as the Λ, is expected to be unchanged even if particles created at hadronization
continue to interact, because inelastic interactions (such as Λπ → pK) are suppressed w.r.t. purely
elastic scattering. Even purely elastic scattering, such as Λπ→ Σ∗ → Λπ could in principle create new
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Fig. 1. (Color online) Dependence of freeze-out temperature T and baryo-chemical potential μB on reaction
energy in the Equilibrium (panel (a), [9]) and non-equilibrium (panel (b),[19]) freeze-out. The arrow corresponds
to increasing

√
s. The Λ yield includes feed-down from weak decays of the Σ0

Σ∗s or make Σ∗s created at hadronization undetectable (since such particles are detectable by invari-
ant mass reconstruction only). Since the fitted hadronization temperature of T = 170 MeV generally
implies a non-negligible reinteraction phase for A-A collisions, but not for smaller systems, the appli-
cability of the statistical model to describe unstable resonances as a function of system size is a good
gauge to see to what extent the statistical model applies specifically at the hadronization stage.

As for fluctuations, it is a fundamental principle of statistical mechanics that variances around
averages scale w.r.t. averages in a way defined by the maximization of entropy under the constraints
specific to the ensemble. In our context “Averages” are particle multiplicities per event and fluctuations
are event-by-event fluctuations. For macroscopic systems, this principle ensures that fluctuations be-
come negligible and the expectation that the state of the system is the maximum entropy one is nearly
certain to be realized. O (100 − 1000) particles is not enough for this to be the case, but, if statistical
mechanics applies, one should still see that yields, fluctuations and higher cumulants scale in a way
calculable from the partition function.

These two classes of observables are actually related [5,16,17]: Even invisible resonances in the
medium, whose decay products are rescattered and thus undetectable by invariant mass reconstruc-
tion still continue to “exist” as a correlation between their decay products abundances. In contrast,
“regenerated” resonances do not change such correlations , because they are formed by particles al-
ready generated at hadronization. Comparing resonance abundances with fluctuation observables can
be used to gauge, from experimental observables, whether hadronization is where particle abundances
are fixed once and for all, or whether further dynamical evolution also impacts such abundances.

In the statistical model there are two types of chemical equilibrium [7].: all models assume relative
chemical equilibrium, but some also assume absolute chemical equilibrium, implying the presence of
the “right” abundances of valance up, down, and strange quark pairs to be present after hadronization.
In absolute chemical equilibrium at highest heavy ion reaction energy one obtains chemical freeze-out
temperature T ∼ 160 − 170 MeV, which goes down to ∼ 50 MeV at the lowest reaction energies [9].

The energy dependence of the freeze-out temperature [1] than follows the trend indicated in panel
(a) of figure 1: as the collision energy increases, the freeze-out temperature increases and the baryonic
density (here baryonic chemical potential μB) decreases [9]. An increase of freeze-out temperature
with

√
s is expected on general grounds, since with increasing reaction energy a greater fraction of the

energy is carried by mesons created in the collision, rather than pre-existing baryons [1].
Further refinements in the approach described above are often implemented, the more notable

ones are allowance for strangeness chemical nonequilibrium [10] at low
√

s and canonical effects for
small reaction volumes [18]. These effects do not materially alter the behavior of temperature and
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chemical potential shown in the panel (a) of Fig. 1. Such smooth variations fail to fully reproduce
the non-continuous features in the energy dependence of hadronic observables, such as the “kink” in
the multiplicity per number of participants and the “horn” [9,19] in certain particle yield ratios. In a
rapidly expanding fireball undergoing a change in microscopic degrees of freedom, it is a possibility
that absolute chemical equilibrium does not hold. Either super-cooling [7] or bulk viscosity-triggered
instabilities [20,21] could justify such lack of chemical equilibrium on microscopic grounds.

One can model this phenomenologically by removing the hypothesis of absolute chemical equi-
librium among hadrons produced. The systematic behavior of T with energy in this case is quite
different [19], as is shown in panel (b) of figure 1. The two higher T values at right are for 20 (lowest
SPS) and (most to right) 11.6 A GeV (highest AGS) reactions. In these two cases the source of particles
is a hot chemically under-saturated (T ∼ 170 MeV ) fireball. Such a system could be a conventional
hadron gas fireball that had not the time to chemically equilibrate.

At higher heavy ion reaction energies it is possible [7] to match the entropy of the emerging
hadrons with that of a system of nearly massless partons when one considers supercooling to T ∼ 140
MeV (essentially bringing chemical and thermal freeze-out close together, as seen in [22,23]), while
both light and strange quark phase space in the hadron stage acquire significant over-saturation with
the phase space occupancy γq=u,d > 1 and at higher energy also γs > 1. A drastic change in the non-
equilibrium condition occurs near 30 A GeV, corresponding to the dip point on right in panel (b) of
the figure 1 (marked by an asterisk). At heavy ion reaction energy below (i.e. to right in panel (b) of
figure 1) of this point, hadrons have not reached chemical equilibrium, while at this point, as well as,
at heavy ion reaction energy above (i.e. at and to left in panel (b) of figure 1), hadrons emerge from a
much denser and chemically more saturated system, as would be expected were QGP formed at and
above 30 A GeV. This is also the heavy ion reaction energy corresponding to the “kink”, which tracks
the QGP’s entropy density (higher w.r.t. a hadron gas), and the peak of the “horn”, which tracks the
strangeness over entropy ratio (also higher w.r.t. a hadron gas).

The main reason for the wider acceptance of the equilibrium approach γi = 1 is its greater sim-
plicity, there are fewer parameters. Moreover, considering the quality of the data the non-equilibrium
parameter γq is not necessary to pull the statistical significance above it’s generally accepted mini-
mal value of 5 %. On the other hand, the parameters γq and γs were introduced on physical grounds
[7], thus these are not arbitrary fit parameters. Moreover, these parameters, when used in a statisti-
cal hadronization fit, converge to theoretically motivated values. They also help to explain the trends
observed in the energy dependence of hadronic observables.

2 Resonances

Many strong interaction resonances, a set we denote by the collective symbol N∗ (such as K∗0(892),
Δ(1232), Σ∗(1385), Λ∗(1520), Ξ∗ (1530)) carry the same valance quark content as their ground-state
counter-parts N (corresponding: K, p, Σ, Λ, Ξ). N∗ typically decay by emission of a pion, N∗ →
N + π. Considering the particle yield ratio 〈N∗〉 / 〈N〉 in the Boltzmann approximation (appropriate
for the particles considered), we see that all chemical conditions and parameters (equilibrium and non-
equilibrium) cancel out, and the ratio of yields between the resonance and it’s ground state is a function
of the masses, and the freeze-out temperature, with second order effects coming from the cascading
decays of other, more massive resonances [7,11]:

〈N∗〉
〈N〉 �

gN∗W
(mN∗

T

)
+

∑
j→N∗ b jN∗ g jW

(mj
T

)
gRW

(
mR
T

)
+

∑
k→R bkR gkW

(
mk
T

) (1)

where W(x) = x2K2(x) is the (relativistic) reduced one particle phase space, K2(x) being a Bessel
function, g is the quantum degeneracy, and bjR is the branching ratio of resonance j decaying into R.

Because of the radically different energy dependence of freeze-out temperature in the scenarios of
[9] and [19], seen in figure 1, the prediction for the resonance ratios Eq. (1) vary greatly between these
two scenarios. In the equilibrium scenario the temperature goes up with heavy ion reaction energy,
and thus the resonance abundance should go smoothly up for all resonances. On the other hand, the
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nonequilibrium scenario, with a low temperature arising only in some limited reaction energy domain,
will lead to resonance abundance which should have a clear dip at that point, but otherwise remain
relatively large.

We have evaluated several resonance relative ratios shown in figure 2 within the two scenarios, us-
ing the statistical hadronization code SHARE [11,15]. For the non-equilibrium scenario, we have used
the parameters given in [19], table I. For the equilibrium scenario, we used the parametrization given
in [9] figures 3 and 4. In the latter case, the strangeness and isospin chemical potentials were obtained
by requiring net strangeness to be zero, and net charge per baryon to be the same as in the colliding
system. As seen in figure 2, the expected trend with

√
s is apparent in all considered resonance ratios,

though in cases where the mass difference is large, the effect is much more pronounced than in some
others. Indeed, for many of the ratios we present the experimental error may limit the usefulness of our
results However, because of the cancellation (to a good approximation) of the baryo- and strangeness
chemical potentials, the qualitative prediction for the energy dependence of the resonance yields within
the two models is robust. Namely, within the chemical equilibrium model the temperature of chemical
freeze-out must steadily increase and so does the 〈N∗〉 / 〈N〉 ratio. For the chemical non-equilibrium
model the 〈N∗〉 / 〈N〉 dip primarily relies on the response of T to the degree of chemical equilibration:
prior to chemical equilibrium for the valance quark abundance, at a relatively low reaction energy, the
freeze-out temperature T is relatively high. At a critical energy, T drops as the hadron yields move to
or even exceed light quark chemical equilibrium, yet reaction energy is still not too large, and thus the
baryon density is high and meson yield low. As reaction energy increases further, T increases and the
〈N∗〉 / 〈N〉 yield from that point on increases. The drop in 〈N∗〉 / 〈N〉 at critical T , would be completely
counter-intuitive in an equilibrium picture. It would hence provide evidence that non-equilibrium ef-
fects such as supercooling, where such a drop would be expected, are at play.

One difficulty of this approach is that, unlike for stable particles, pseudo-elastic processes such as
Nπ → N∗ → Nπ and post-decay N∗ → Nπ scattering of decay products in matter could potentially
considerably alter the observable final ratio of detectable N∗ to N. The combined effect of rescatter-
ing and regeneration has not been well understood. We have argued that the formation of additional
detectable resonances is negligible [2,3], while scattering of decay products can decrease the visi-
ble resonance yields except for sudden hadronization case. Transport simulations [24] confirm that
rescattering generally dominates over regeneration in a hadronic medium. This is not surprising: If
the number of reinteractions is small, rescattering generally dominates. If the number of reinteractions
is large, detailed balance would mean (K∗0 + K∗0)/(K+ + K−) would reequilibrate from the higher
chemical freeze-out to the lower thermal freeze-out temperature.

To obtain a further quantitative estimate, we then evolved in time the ratios using a model which
combines an average rescattering cross-section with dilution due to a constant collective expansion.
In this model, the initial resonances decay with width Γ through the process N∗ → NDπ. Their decay
products 〈ND〉 (〈ND〉 (t = 0) = 0) then undergo rescattering at a rate proportional to the medium’s
density as well as the average rescattering rate.

d 〈N∗〉
dt

= −Γ 〈N∗〉 , (2)

d 〈ND〉
dt

= Γ 〈N∗〉 − D
∑

j
〈σD jvD j〉ρ j

(
R0

R0 + vt

)3

. (3)

v is the expansion velocity, R0 is the hadronization radius, ρ j = n j(mj,T ) the initial hadron density and
〈σD jvD j〉 is the hadron average flow and interaction cross-section.

In this calculation, we have neglected the regeneration term R ∝ 〈σINEL
Di vDi〉ρi, since detectable

regenerated resonances need to be real (close to mass-shell) particles. Figure 3 shows how the ratios of
Σ∗/Λ and (K∗0+K∗0)/(K++K−) evolve with varying hadronization time within this model. Measuring
two such ratios simultaneously gives both the hadronization temperature and the time during which
rescattering is a significant effect. Figure 3 shows the application of this method to K∗, Λ(1520) and
Σ∗ [25,26]. While this assumption is of course imperfect, studies with a full hadronic dynamic model
seem to show rescattering dominates over regeneration at all energies and lifetimes [24]. Thus, qual-
itatively, Fig. 3 should be valid as a way to determine that there is a hadronic rescattering phase after
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Fig. 2. (Color online) Ratio of resonance to the stable particle. Thick lines for particles with strange quark content,
thin lines for particles with anti-strange quark content, as a function of energy. Solid black lines refer to the
equilibrium fits (γq,s = 1), with the parameters for AGS and SPS energies taken from [9]. Dashed red lines refer
to non-equilibrium fits (γq,s fitted), with the best fit parameters for AGS and SPS energies taken from [19]. The Λ
yield includes feed-down from weak decays of the Σ0
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Fig. 3. Two 〈N∗〉 / 〈N〉 diagrams over a mesh of temperature and lifespan. Straight lines give experimental results
[25,26].

freezeout; Quantitatively, however, Fig. 3 tends to underestimate the duration of the hadronic phase.
In the rest of this work we suggest ways to address this issue.

Assuming a long lived hadron phase, the energy dependence of most of the resonance ratios con-
sidered here has been calculated in a hadronic quantum molecular dynamics model. The result (figure
7 and 8 in [24]) is qualitatively similar to the chemical equilibrium results for resonance ratios, we see
a smooth rise with energy. Thus, in the case of chemical equilibrium, with a considerable separation
between chemical and thermal freeze-out inherent in Ref. [24] rescattering and regeneration will affect
the quantitative 〈N∗〉 / 〈N〉 ratio, but will not alter the dependence on heavy ion reaction energy shown
in figure 2.

Thus, while at a given energy the role of post-freezeout rescattering/regeneration is still somewhat
ambigous, an energy scan (experimentally conducted or planned around several labs [27–29]) of res-
onance production should ameliorate some of this ambiguity. In the next section we will explain how
fluctuations could make this ambiguity be experimentally resolvable at each given

√
s too.

3 Fluctuations

Before we discuss the significance of fluctuations in a statistical model, we need to discuss some issues
relevant to fluctuations and higher cumulants of particle distributions. Generic fluctuation observables
are non-trivially dependent both on non-statistical fluctuations in the systems volume, which can not
be described by the statistical model, and on acceptance limitations of the detector.
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Regarding the first issue, due to our incomplete understanding of how the initial state and dynamics
contribute to fluctuations at freeze-out, the best approach is to choose an observable which is insensi-
tive to any volume fluctuations. In the thermodynamic limit, where volume becomes a proportionality
constant at the level of the partition function, a tempting observable is the scaled variance of the ra-
tio of two particle multiplicities measured event by event. That this is in fact a good guess, and all
dependence of volume factorizes, can be proven in the thermodynamic limit to order ∼

〈
(ΔV)/ 〈V〉2

〉
[5]. The residual dependence of σN1/N2 on the average volume 〈V〉 can be in turn eliminated, in the
grand canonical ensemble, by focusing on Ψ = 〈N1〉σN1/N2

dyn , where 〈N1〉 and σdyn are to be measured
within the same acceptance. Note that this independence is specific to the grand-canonical ensemble,
so should not apply to scenarios where the “enhancement of strangeness” in A-A collisions is due to
the transition between the canonical limit in elementary processes and the grand canonical limit in
A-A [18]. In this scenario, the “strangeness correlation volume” should regulate Ψ as in [30].

A different problem is the effect of a detectors limited acceptance ( Particle (mis)identification,
Limited rapidity and momentum resolution, momentum cuts necessary to eliminate jets etc) on fluc-
tuation observables. These are much more difficult to model than averages, and once again an observ-
able needs to be constructed insensitive to them. Hence, the necessity of mixed event subtraction [31].
Mixed events here, are defined as events where no physical correlation from the original event are
left in. This means that any correlation seen is due to the imperfection of the detector (the fact that
detector acceptance excludes particles of pT > 1 GeV for both event A and B creates a correlation
between A and B). To a good approximation, examined in the next paragraph, the measured fluctua-
tion is σ2 = σ2

physics + σ
2
acceptance and the mixed event one is σ2

mix = σ
2
trivial + σ

2
acceptance. Therefore,

concentrating on σ2
dyn = σ

2 − σ2
mix should eliminate acceptance effects [31].

q,s
γ  >1T=140

γ  =1T=170
q,s

Fig. 4. K/π fluctuations in 200 GeV Au-Au collisions [33].

Particle abundances and fluctuations can be calculated from the first and second derivatives a par-
ticle’s partition function, and related to the fluctuation of a ratio via [15]

σ2
N1/N2

=

〈
(ΔN1)2

〉
〈N1〉2

+

〈
(ΔN2)2

〉
〈N2〉2

− 〈ΔN1ΔN2〉
〈N1〉 〈N2〉

(4)

σ2
mix = 〈N1〉−1 + 〈N2〉−1 (5)

As we discussed before, provided the chemical parameters do not change across systems, ΨN1
N1/N2

=

〈N1〉σN1/N2
dyn should be strictly independent of centrality and system size. This requirement is not satis-

fied by the SPS scan [34] since there μ/T does vary considerably. It is however satisfied by the RHIC
upper energies. Thus, the Grand-Canonical statistical model predicts a flat dependence with system
size at these energies. The canonical model, on the other hand, would predict a “kink” within the
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Fig. 5. (K∗0 + K∗0)/(K+ + K−) implied from fluctuations and directly measured in Au-Au collisions at
√

s = 200
GeV. Fluctuations and resonances are respectively from [33,25]

same centrality as when the strangeness correlation volume approaches the thermodynamic limit [18,
5]. Note that a scan in centrality and system size within the same energy should however produce the
same approximately horizontal bands in Ψ as are seen at RHIC, since thermal parameters are to a good
approximation independent of system size to the lowest centrality [35]: Each value of

√
s, and hence

μ/T , should produce a band when scanned in centrality and system size. The results can be seen on
Fig. 4. None of the models come out perfectly, but the Grand-Canonical model is qualitatively much
more similar to the data than the canonical one, as no kink is visible there. The discrepancy in Ψ be-
tween 200 GeV and 62 GeV, the slight upward trend in centrality, and the lack of scaling between A-A
and Cu-Cu should however be closely watched, as the slight increase of fluctuations with multiplicity
can not be accounted for by any statistical model, although one has to be careful as it could be an
artifact of the event mixing procedure [5]. Quantitatively, Ψ is modeled better with the inclusion of
the light-quark non-equilibrium parameter γq, due to Bose-Einstein enhancement of fluctuations [4].
It remains to be seen weather the measurement of fluctuations of more particles (Fig. 6 left panel) will
corroborate this conclusion.

We now turn to a potentially important use of fluctuations, the constraint on resonance reinteraction
between chemical freeze-out and thermal freeze-out [16]. The former can be estimated, to a good
approximation, by comparing the fluctuations of same-charged particles (uncorrelated) and opposite
charged particles (correlated by K∗)

〈NK∗0〉
〈NK−〉

� 3
4

(
Ψπ

−
K−/π− − Ψπ

−
K+/π−

)
(6)

Comparing the fluctuation estimate of K∗0
K− to a direct measurement should yield the amount of K0∗

destroyed by rescattering or regenerated through pseudo-elastic interactions.
This analysis is shown in Fig. 5,with resonance values are taken from [25]. Rescattering and re-

generation have,within error bar little or no effect on the final abundance of K∗s. Either chemical and
thermal freeze-out proceed very close to each other, so the amount of reinteraction is negligible, or
rescattering and regeneration of detectable resonances cancel each other out to the degree of approxi-
mation allowed by the error bars (10−15%). This margin appears somewhat below the estimates from
transport models, which are ∼ 40% [24], and inline with fits assuming sudden freezeout [22,23]. It
would be very interesting to investigate weather a transport model [32] could be tuned to simultane-
ously reproduce the fluctuation inference and direct measurement of K∗0

K− .
Unfortunately, the baroqueness of the resonance decay tree severely limits the feasibilness of such

graphic methods, as the right panel of Fig. 6 shows. K, π is a special pair of particles in that there is
only one type of resonances that decays into both, the K∗, and its lightest state is considerably lighter
than the heavier ones. No similar definition is possible for Σ∗/Λ, ρ/π and φ/K, since the resonance
decays equally into all pairs of decay products. For other resonances, cross-contamination destroys any
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value of fluctuations as a graphic tool of reinteraction time. This does not mean, however, that such
resonances are useless for constraining reinteraction time, since both fluctuations [4] and resonances
[2,3] provide a tight constraint on all statistical models. If a statistical model consistently describes
fluctuations, but over-predicts resonance abundances, it could be taken as an indication of a long
reinteraction times with detailed balance. A casual look at experimental data [25] shows this does not
seem to be the case, since most resonances are under-predicted by statistical models.
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Fig. 6. Equilibrium and non-equilibrium predictions from fluctuations (left panel) and resonances (right panel)
with the statistical parameters taken from [19]. In the bottom panel, Full symbols show the 〈N∗〉 /N ratio inferred
from the correlation in the two models, while empty symbols show, wherever possible, the estimate from σdyn
comparisons

In conclusion, we provided a review of the phenomenology of resonances and fluctuations within
the statistical model. We discussed how these observables should scale with different energies and
system sizes within various model implementations. We concluded that the energy dependence of the
ratios of the type 〈N∗〉 / 〈N〉, as well as a simultaneus description of fluctuations and particle yields,
can be very useful for clarifying present theoretical uncertainities.
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