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Abstract

Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and

future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed,

including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases.

We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building

for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new

developments in Artificial Intelligence geared towards the identification of different phases and transitions.
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1. Introduction

Gauge theories exist in a variety of different phases. The main focus of this manuscript is Quantum Chromo-Dynamics,

QCD, the gauge theory describing strong interactions in elementary particle physics. We will concentrate on an ab initio

approach, Lattice Field Theory (LFT), and also report on progress within first principles Functional Approaches to QCD

(FAs), as well as Effective Field theories (EFTs). We will describe the results that have been obtained, the current

challenges and the future prospects. This overview of the theoretical state of the art is accompanied with reports on the

experimental efforts.

We will consider QCD at finite temperature and/or density, as well as in external magnetic fields. In the space spanned

by these parameters symmetries may be realised in different ways, and the change of symmetry corresponds to phase

transitions.

At zero temperature the QCD chiral symmetry is spontaneously broken for massless quarks, with the appearance

of composite Goldstone bosons. Further, experimental searches for free quarks have been unsuccessful so far, and the

accepted wisdom is that in this regime QCD is confining. The interplay of chiral symmetry and confinement is still

poorly understood, and is an important subject of current research. When the lightest quarks have non-zero masses, the

pseudo-Goldstone become massive, with a definite prediction for their dependence on the quark masses.

Temperature induces the restoration of chiral symmetry, with an accompanying liberation of light degrees of freedom, a

dramatic phenomenon probed in heavy-ion collision experiments. The analysis of the transitions and their characteristics

is at the heart of this paper, and is described in section 2.

Equally important is the nature of the exotic phase(s) at the high temperatures probed in experiments: a difficult

important task is the connection between lattice results, obtained at equilibrium, and experimental observations from

heavy ion collisions with their non-equilibrium dynamics. The role of magnetic fields has been investigated as well. These

aspects are discussed in section 3. Dense matter poses specific problems: pairing phenomena have been investigated in a
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variety of approaches, considering different unbalances, making also natural a connection with condensed matter. Cold

and dense matter is not yet directly accessible with LFT simulations. Here our knowledge comes mostly from functional

approaches to QCD and low energy effective theories, with a wealth of interesting and important phenomena. Since in

this manuscript we focus on topics amenable to LFT studies, we will not further pursue these important issues.

The aspects of Strong Interactions outlined so far have experimental and phenomenological relevance. High tempera-

ture matter, up to temperatures of about 500 MeV, is created and explored in heavy ion collisions experiments. Pushing

the temperature at higher values, one reaches regions of cosmological relevance, traversed during the evolution of the

primordial Universe. Hypothetically, in this region the freeze-out of axions occurs: axions are dark matter candidates

motivated by a natural extension of QCD, originated by the breaking of an anomalous symmetry. The physics of gravita-

tional waves is an important close-by field. The physics of extremely high matter, beyond experimental capabilities, but

still far below the Electroweak Transition, in which the topology of QCD plays a major role, is described in section 6.

From a theoretical point of view, QCD is just one among infinitely many non-Abelian gauge theories with chiral

symmetries. By simply changing the parameters of the Lagrangian of Strong Interactions, such as the gauge group,

i.e. the number of color charges N , the matter field content (including the fermion representation and the number of quark

flavors Nf ), the spacetime dimension D, . . . it is possible to investigate different theories and the rich phenomenology

they exhibit. Such studies enrich our knowledge and provide helpful inspiration and guidance for devising viable theories

beyond the Standard Model. In this manuscript we will primarily discuss the physics of theories with large Nf : the

increase of the number of flavors triggers the restoration of chiral symmetry, and the chirally symmetric phase at large Nf

is conformally invariant in the infrared. Composite-Higgs models can be built in a specific region of the phase space, i.e.,

the one close to the conformal window. In the pre-conformal phase the thermal transition may well be stronger, making

these theories potentially interesting also for cosmology. These subjects are discussed in section 5.

Lattice methods require the positivity of the Action for the importance sampling involved. This is achieved by

rotating the time to the imaginary axes, thus making the metric Euclidean. Even in this case, the positivity of the Action

is violated if a chemical potential introduces an imbalance between baryon and anti-baryons, or if a CP violating θ term

is introduced. All these issues are generically known as sign problem, i.e. the failure of importance sampling due to a

complex statistical weight. We will highlight the major challenges and some promising avenues in section 4. Next, we will

discuss the application of modern artificial-intelligence (AI) techniques to the analysis of phase transitions in section 8.

This concerns both the recognition of phase transitions from data samples as well as supporting the importance sampling

with machine-learning.

Finally, in section 7 we will discuss methods from statistical field theory, which are an essential tool for the analysis

of phase transitions. Historically, the main approach to study the critical and near-critical behavior of a theory has

been based on the magnetic equation of state: the starting point is the identification of the order parameter and of the

symmetry-breaking pattern at the the transition. The key concept is universality and the theoretical framework is that

of the renormalization group. Recently, the standard approach has been critically reconsidered, with a deeper analysis of

the role of gauge symmetries. In recent years, conformal theories have taken center stage: studies of two-point correlation

functions may supplement the analysis of the order parameter, and the conformal bootstrap has led to exciting new

developments. We will focus on the very small subset of studies and recent developments that are potentially relevant in

the analysis of lattice results on phase transitions, without any pretense to cover all the vast subject of statistical field

theory.
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In short summary, in this manuscript we discuss how the properties of the strong interactions depend on the temper-

ature, on different chemical potentials, on the magnetic field, on the quark masses, and on the number of flavors. The

material is organised in several Sections, however our aim is to see and present it as different angles of the same phase

diagram. Hopefully the knowledge of the physical theory – Quantum Chromo-Dynamics with three families of quarks –

, which remains the main focus of these studies, will benefit from this broad view.

We dispense with introductory material (see e.g. [1] for a pedagogical introduction to LFTs and [2, 3] for recent LFT

reviews, [4, 5, 6] for recent reviews on functional approaches to QCD), and we concentrate on advanced, state-of-the-art

methods and results, as well as on promising novel research paths (without any claim to be exhaustive); occasionally the

same studies are mentioned in different sections, when they may be looked at from different points of view.

This paper grew out of the workshop “Phase Transitions in Particle Physics” organised at the GGI in Firenze in Spring

2022. The talks presented there are enlisted and referenced in a dedicated bibliography at the end.

2. Thermal Phase Transitions and Critical Points1

2.1. QCD Phase Diagram: Expectations

Thermal phase transitions and critical points are pieces of the QCD phase diagram puzzle. Figure 2.1 with three axes

denoting temperature T , baryon chemical potential µB , and mass mu,d of degenerate light up and down quarks represents

the conjectured QCD phase diagram, as discussed in [7] and references therein.

In the chiral plane, where mu,d vanishes, for vanishing µB , restoration of the spontaneously broken SU(2)L×SU(2)R

chiral symmetry group – which is isomorphic to O(4) – as a function of T is expected to be a genuine second order phase

transition belonging to 3-d, O(4) universality class occurring at Tc, which is represented by the red dot in Figure 2.1. In

the region of small baryon chemical potential, phase transition stays second order belonging to 3-d, O(4) universality class;

the transition temperature, Tc(µB) decreases with µB , which is clearly depicted by the bending of red curve originating

from Tc(0) towards µB axis. After Tc(µB) hits the purple tri-critical point at Ttri for some value of µB , the transition

becomes first order in the higher µB region shown by the black solid line.

Upon adding light quark mass direction to T -µB plane in the higher µB region, for a fixed mu,d value, transition stays

first order with decreasing µB – this transition would be a line in the grey first order plane starting from the zero T plane

– until it reaches a certain combination of T , µB such that it hits a point on the blue Z(2) critical line and becomes

second order belonging to 3-d, Z(2) universality class.

Due to the explicit breaking of the chiral symmetry, the transition is no longer a genuine phase transition for non-zero

mu,d but a crossover depicted by the black dashed line. Notice that at the physical value of the light quark masses – the

backward plane of the shown QCD phase diagram – and vanishing baryon chemical potential, the crossover transition

occurs at a pseudo-critical temperature, Tpc. This pseudo-critical temperature for the physical value of mu,d decreases as

a function of µB , and the transition remains a crossover until it meets the blue Z(2) critical line at the temperature Tcep

and chemical potential µcep, depicted with the blue dot. The existence of this critical endpoint and its location, (Tcep,

µcep), is the modern-day Holy Grail of the experimental as well as the theoretical physics community working on QCD

phase diagram and is further discussed in Section 5.

1Editor: Sipaz Sharma
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-critical lineO(4)
-critical lineZ(2)

-order plane1st

Tri-critical point

Figure 2.1: Hypothesized phase diagram of QCD assuming a O(4) universality class of the thermal transition in the massless up and

down quarks limit, and a physical strange mass. The axes denote the temperature T , the baryon-number chemical potential µB and

the light quark masses mu,d. In the front, the situation at zero light quark masses is shown, whereas in the back the phase diagram

for physical light quark masses is depicted. A hierarchy of important transition temperatures is indicated as Tpc > Tc > Ttri > Tcep,

with the pseudo-critical transition temperature at physical masses Tpc, the chiral phase-transition temperature Tc, the temperature

of the tri-critical point Ttri and the phase-transition temperature of the critical end-point at physical quark masses Tcep. Source [7]

2.2. Degree of Understanding

2.2.1. Lower Density Region

One of the ways to understand the phase diagram of QCD is by employing numerical simulations in the framework of

Lattice QCD. In the recent years, different lattice studies exploiting chiral observables and their universal scaling features

have converged on the value of crossover temperature, Tpc at around 156.5 MeV at vanishing µB [8, 9]. The value of Tc

has been found to be equal to 132+3
−6 MeV, and the same study argues that the phase transition indeed belongs to 3-d,

O(4) universality class [10]. Results with Wilson fermions find a compatible value for Tc and explore the limits of the

O(4) scaling window [11, 12].

Reference [8] is a very accurate study of the curvature of the crossover line in terms of Tpc as a function of µB using

Taylor expansion around µB = 0, which further boosts confidence in the expected phase diagram picture in the lower

density region. We will return to the discussion of the curvature of the crossover line in the next Section.

It is very important to understand the fate of UA(1) anomaly at the chiral phase transition of (2 + 1)-flavor QCD
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[13, 14, 15], [604]. Model studies can reveal the interplay of the dynamics of spontaneous and anomalous chiral symmetry

breaking, see e.g. [16, 17]. However, the issue can only be settled within full QCD as the strength of anomalous chiral

symmetry breaking and its dynamics is related to QCD topology or rather the topological density. This calls for lattice

QCD simulations or investigations in functional approaches to QCD, and more references and discussions will be given in

Section 6. From the viewpoint of this Section, we note that if in the chiral limit of (2 + 1)-flavor QCD – two degenerate

light quarks and physical strange quark – UA(1) remains broken at the phase transition, this will further support the

second order nature of the (2 + 1)-flavor chiral phase transition belonging to 3-d, O(4) universality class.

Hadronic correlators provide an important complement to the analysis based on the chiral order parameter, and pole

as well as screening masses are actively investigated [18, 19, 20][605]. Hadronic correlators in Euclidean time also serve

as input to spectral functions - further discussion can be found in Section 4.

Interestingly, an approximate SU(4) chiral spin-flavour symmetry was recently observed in multiplet patterns of QCD

mesonic correlation functions [21, 22]. This symmetry disappears at a temperature of about 300 MeV, approximatively

matching other fast crossovers [23, 12] in the medium which have not yet been completely understood.

Further interesting aspects concern “energy-like" observables which include purely gluonic observables like the Polyakov

loop, commonly used as an indicator of confinement/deconfinement crossover for dynamical quarks, as well as heavy quark

potential [24] [604, 606]. Analysis of flux tubes play an important role as well [25] in this context. Recent studies addressed

the sensitivity of these purely gluonic observables to the chiral phase transition [26].

2.2.2. Scaling Window

The standard picture of critical behaviour entails a crossover between the genuine critical behaviour and a mean field

region. The extent of the scaling window is in general regulated by the Ginzburg criterion, and is non-universal, hence it

needs to be settled by numerical simulations. From a phenomenological viewpoint, the scaling window is the region where

there is still a memory of the underlying critical behaviour. This issue has been studied with functional approaches to

QCD as well as in low energy EFTs ([607], and references therein). EFT studies with O(4)-models and the quark-meson

model in [27, 28], for a review see [29], suggest a small critical window with O(4)-scaling. Typically, these models assume

maximal axial U(1)-breaking and the approximations used support O(4) scaling. it has been also argued in these works,

that the regime of apparent scaling may be far larger, the difference being hard to extract if the statistical error of the

results is sizable. The investigations utilized the functional renormalization group (fRG) that allows for a direct access

to critical scaling. In these models, genuine O(4) scaling was only observed very close to the chiral limit, and it is lost

for pion masses mπ & 1 − 10MeV. These findings were corroborated within functional QCD studies in [30, 31], but a

conclusive analysis has not been done yet. The role of the light up and down quark masses, and the extent of the scaling

window, were also discussed Ref. [11, 12] [608]. Lattice data based on twisted mass Wilson fermions for higher pion

masses – (380-140) MeV – are consistent with O(4) critical scaling, and for pion masses down to the physical value 140

MeV, signatures of O(4) scaling can be observed in a temperature range from 120 to 300 MeV [608].

2.2.3. Many Flavor QCD at zero µB

The order of the chiral phase transition as a function of the number of massless flavors, Nf , has been investigated in [13],

based on the perturbative epsilon expansion applied to linear sigma models in three dimensions. One popular scenario

with up to Nf = 3, see e.g. [15], is depicted in the famous Columbia plot [32] shown in Figure 2.2 left. For Nf ≥ 3
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Figure 2.2: Columbia plot [left]. Alternative Columbia plot with a second order transition in the 3-flavor chiral limit [right], as

predicted in [33]. In this case, nothing is known yet about the universality class. Source [33].

massless quark flavors, according to these results, the chiral phase transition is expected to be of first order. The diagonal

of the Columbia plot corresponds to the case when all the three quark flavors, u, d, and s are degenerate with masses

given by mu = md = ms. When all the three quarks have mass equal to the physical value of the light quark mass

mu,d = mu = md, the transition is a crossover, but as the quark mass is decreased, one expects to hit a Z(2) boundary

- the blue line bounding the bottom-left first-order region painted yellow - at some critical mass value mc [32]. In this

scenario there is a tri-critical strange quark mass, where the chiral transition changes between first and second order.

Viewing the strange quark mass as a smooth interpolator between Nf = 2 and Nf = 3 mass degenerate quarks, this

corresponds to a situation with N tric
f < 3. For a recent review we refer to [2].

An interesting and surprising prediction about the second-order nature of the 3-flavor chiral phase transition was

made in [33][609]. This study considers a variable Nf ∈ [2, 8] for various lattice spacings and bare quark masses using

unimproved Wilson gauge and staggered fermion actions. According to the findings of the previous lattice studies over

the years, the first-order region shrinks with improved actions as well as with finer lattice spacings. In Reference [33], this

shrinkage was found to continue to zero, leading to the definite existence of a tri-critical point. In the four dimensional

space of inverse gauge coupling β, bare quark mass am, Nτ and Nf , the bare critical masses amc form a Z(2) critical

surface which separates the first-order region from the crossover. Tri-criticality in the plane of bare critical quark mass

amc and Nf at a fixed lattice spacing a translates to the existence of a N tri
f in the chiral limit; in the plane of amc and

N−1τ – where Nτ is the temporal lattice extent related to temperature T as N−1τ = aT – tri-criticality is encoded in aT tri

on the N−1τ axis. Ref. [33] found N tri
f > 6, implying the disappearance of the bottom-left first-order region as shown in

Figure 2.2 right.

Furthermore, Ref. [33] pointed out that the Nf = 3 data generated using O(a)-improved Wilson fermions [34] is also

consistent with tri-critical scaling leading to a finite aT tri in the chiral limit, and hence a second-order transition in the

continuum. The Nf = 3 scenario has been recently investigated using Highly Improved Staggered Quark (HISQ) action

[610]. The analysis [35] takes into account the temperature as well as the volume dependence of various chiral observables,
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such as 3-flavor chiral condensate, chiral susceptibility and observables constructed using some specific combinations of

those two. Finally, employment of universal finite-size scaling techniques provides a 3-flavor chiral phase transition

temperature for non-vanishing value of lattice spacing to be Tc = 98+3
−6 MeV [35][610]. Furthermore, no evidence for

the first order phase transition is found in the pion mass range explored from 80 MeV up to physical pion mass value

of about 140 MeV, and the results are compatible with 3-d O(2) universality class, and therefore with a second order

phase transition in the 3-flavor chiral limit. Similarly, no evidence for a first-order transition is seen in the early results

of a Nf = 3 study using Möbius domain wall fermions with physical quark masses [36]. A recent 5-flavor study [37],

based on Machine Learning approach – extensively discussed in Section 8 – finds a non-zero critical endpoint mass

marking the boundary of a first-order region in the plane of β and am, at a fixed temporal lattice extent of Nτ = 6. It

would be interesting to see how this approach plays out in the four-dimensional space of (β, am,Nτ , Nf ). Finally, new

analytic studies of effective theories along the lines of [13], but using functional renormalization group [38] or conformal

bootstrap [39] methods, also find the possibility of a second-order chiral transition for Nf = 3 under certain conditions.

In conclusion, according to [33] [609], the continuum chiral phase transition is second-order for all Nf ∈ [2, 6], but

no remarks could be made about the universality class of the chiral phase transition. It is also suggested that the phase

transition might stay second-order up to the onset of the conformal window at 9 . N∗f . 12. These studies connect

naturally to the conformal window of strong interactions [40, 41, 42], to be further discussed in Section 5.

In [43], the importance of gauge degrees of freedom in producing a stable fixed point is emphasized, leading to

a continuous transition for the antiferromagnetic CPN−1 models when N ≥ 4. A standard Landau-Ginzburg-Wilson

(LGW) field-theoretical approach, based on constructing a most general symmetry obeying effective Lagrangian using

a gauge-invariant order parameter, predicts a first order transition in such a scenario, whereas numerical results do not

sustain this mean field prediction. Furthermore, as pointed out in [44], ferromagnetic CPN−1 models in the large N limit

behave like an effective Abelian Higgs model for a N component complex scalar field coupled to a U(1) gauge field. This

leads to the appearance of a stable fixed point with the possibility of a continuous transition, which again is in contrast

to first order prediction of LGW. Possibly, all of the above arguments can be extended to finite temperature QCD for Nf

massless flavors, which might settle the disagreements between lattice simulations and theoretical mean-field predictions.

We will return to this discussion in Section 7.

2.2.4. High Density Region

As discussed above, the region of high baryon density and lower temperatures is not accessible at the moment to lattice

simulations of QCD. In this region we have to rely on functional approaches to QCD, or on low energy EFTs. Alternatively,

one may opt to work in QCD-like models such as two-color QCD, or in some (unrealistic) region of the phase space: a

dense isospin matter, with zero baryon density. In the following we discuss some examples of these different situations,

to give a flavour of the current research.

EFTs with different degrees of sophistication are of course an important playground. Phenomena such as di-quark

condensation and color superconductivity were discovered thanks to these analysis, see e.g. Ref. [45] for a classic review.

A more recent comprehensive report is give in Ref. [46]. Topics which are close to the discussions on chiral symmetries

are highlighted in Refs. [47, 48, 49][611]. A special emphasis is put on the manifestation of (partially) restored chiral

symmetry via parity doubling of baryons and mesons in heavy-ion collisions and astrophysical observations.

There are important cases which do not suffer from sign problem on the lattice [50]: isospin dense matter, and QCD
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Figure 2.3: Lattice results for the phase diagram of QCD in the temperature-chemical potential for isospin plane, from Ref[52].

with two colors. Isospin symmetry is a SU(2) rotation in flavour space (QCD interactions are flavour-blind) acting on

up and down quarks. In the real world, isospin symmetry is explicitly broken by the (small) mass difference between up

and down quarks. In lattice studies, up and down quarks are usually taken as degenerate and an appropriate chemical

potential is introduced to create an isospin imbalance [51]. The phase diagram at finite density of isospin has been studied

on the lattice by various authors [52, 53, 54, 55]. An interesting feature – see Figure 2.3 – is that the critical line T = T (µI)

has a very small slope – it is almost horizontal. So, simulations performed at fixed temperature varying µI are very likely

crossing the pion condensation line unless the temperature is really close to Tc. Note that in nuclear matter and in

astrophysics isospin imbalance is very important, but smaller than the baryon one. Lattice studies [56, 52, 57, 55, 58, 59]

which consider µI 6= 0, µB = 0 are thus to some extent artificial, but still interesting : for instance one can observe

(1) signatures of the superconducting BCS phase expected on perturbation theory grounds, and (2) the role of pion

condensation in the early universe evolution at non vanishing lepton flavour asymmetries [60, 56][612].

Two-color QCD is free from the sign problem at nonzero baryon density thanks to its enlarged chiral symmetry:

from the SU(Nf ) × SU(Nf ) × U(1)B to SU(2Nf ). Intuitively, baryon and isospin are basically the same symmetry for

two colors. For this reason, di-quarks are stable in two color QCD. Studies of two color matter have been reported in

[61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. These studies have confirmed that baryonic matter forms at an onset µo = mπ/2,

whereupon matter is superfluid. Current studies focus on the understanding of lattice artifacts, [70], [613]. High quality

lattice data allow the study of the interrelation between different pairing patterns, chiral symmetries and gauge dynamics,

including signatures of deconfinement.

Finally, one may consider a chemical potential, µ5 ≡ (µR − µL)/2 associated with the non-conserved axial current,

ψ̄iγ5ψ [71]. Early lattice studies of chiral density were performed having in mind a toy model for the chiral magnetic

effect in heavy ion collisions [72]. One first systematic study of the phase diagram at equilibrium appeared in Ref. [71].

Since then the field is developing, also due to the relation with the elusive Chiral Magnetic Effect [73]. Since the axial

current is not conserved, the associated chemical potential, and the related results, need to be taken with some care.
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2.3. The Road Ahead

The analysis of the symmetries, their patterns and the imprints on phenomenology of the related critical points remains

an important subject, with several open issues. In particular, we have seen that the nature of the phase transition as a

function of the number of flavors, and the fate of the axial symmetry are under debate. The nature of the transition with

increasing Nf has also a potential relevance for phenomenology, as models for strong electroweak breaking often capitalize

on the strong first order transition expected for large Nf . Theoretically, if indeed a second order transition persists till

the conformal window, we will have to understand how a 3D infrared fixed point would morph with 4D conformality.

This latter point – fate of the anomaly – is related to the topological aspects of QCD, which will be further discussed in

Section 5.

Figure 1 shows that, besides the theoretical interest, the chiral behaviour in QCD may well constrain the phase

diagram, in particular the location of the critical point at non-zero density which we will discuss in the Sections 3, 5.

There is a growing interest in the approximate SU(4) symmetry observed at high temperatures. We may speculate

that quarks and gluons are not the right degrees-of-freedom for the quark-gluon plasma (QGP) because they are not

compatible with this symmetry. Should this be true, it would question all the present transport approaches, which will

be further discussed in Section 3. The crossover from SU(4) symmetry to the SU(2)XSU(2) symmetry of the QGP

occurs at a temperature of about 300 MeV, close to other crossover of an apparent different nature. An open question

is to understand whether there is a common origin. Several hypotheses have been put forward, none of them completely

satisfactory yet. One important aspect of future research is to clarify this point.

Finally, much of the discussions of this section was focused on chiral symmetry. A proper definition of confinement,

and its relation, if any, with chiral symmetry, is an important theoretical open problem, going beyond the scope of this

review. Here we just note that steps in this directions require analysis of gauge dynamics, and several studies focusing on

monopole dynamics, flux tubes and its interrelation with the static potential have appeared, see e.g. [74, 75][606]. These

analysis may also help in understanding of the nature of a threshold in the Quark Gluon Plasma at a temperature of

about 300 MeV.

It is of crucial importance for our final understanding of QCD under extreme conditions that all the issues discussed

are clarified. Although the results are still not fully conclusive they clearly indicate the research priorities in QCD under

extreme conditions in the next future.

3. Nature and Phenomenology of the Quark-Gluon Plasma2

Strong interaction matter under extreme conditions can be formed in laboratory: see e.g. [76] for an authoritative overview,

as well as the Proceedings of the Quark Matter Conference for updates. A rich and clear discussion with focus on relevant

experimental observables for understanding the phase structure of QCD at high µB , including a region which is difficult

to study on the lattice, can be found in Ref. [614].

In this section we will discuss the region which is still accessible to lattice studies. In particular the focus is on the

search for the much wanted QCD critical point. This has motivated a dedicated collaboration, the Beam Energy Scan

Theory (BEST) collaboration [615]. The BEST Collaboration "will construct a theoretical framework for interpreting

2Editor: Jana N. Guenther
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the results from the ongoing Beam Energy Scan program at the Relativistic Heavy Ion Collider (RHIC). The main goals

of this program are to discover, or put constraints on the existence, of a critical point in the QCD phase diagram, and

to locate the onset of chiral symmetry restoration by observing correlations related to anomalous hydrodynamic effects

in quark gluon plasma.". The WEB page of the BEST Collaboration provides important information, which is reviewed

later in this Section.

Central in this discussion is the role of fluctuations: lattice results on fluctuations are reviewed in the next Subsection.

Phenomenological applications of lattice studies are discussed next. Let us single out here a specific point: the calculation

of spectral functions. Spectral functions are an important input for phenomenology; unfortunately their calculation

poses specific technical problems, which is discussed in a dedicated Section 4. Before turning to lattice results, we

would like to mention the cosmological aspects of high temperatures. Temperatures of cosmological relevance may not be

accessible in numerical simulations (see however Sec. 6), but they are amenable to analytic studies or numerical simulations

in dimensionally-reduced EFTs. They access phenomena of enormous relevance, including the thermal production of

gravitational waves or the existence of electroweak phase transitions beyond the Standard Model. Strictly speaking, this

goes beyond the scope of the report, which focuses on strong interactions, however the two field are next to each other

and may be bridged by thermal perturbation theory [77, 78, 79][616, 617].

3.1. Fluctuations

Fluctuations are important probes of a phase transition. They are expected to grow large in the critical region, and the

lattice results may be contrasted with predictions from different universality classes [80][618].

Most importantly, they can also be used to construct various quantities that can be compared to measurements from

heavy ion collision experiments. The ratios of various fluctuations can be used to express the cumulants of the Baryon

number distribution. This offers an observable for comparisons with heavy ion collision measurements of the proton

number distribution.

Fluctuations are defined as the derivatives of the pressure with respect to various chemical potentials:

χB,Q,Si,j,k =
∂i+j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q)j(∂µ̂S)k
, µ̂ =

µ

T
(3.1)

While fluctuations to various order have previously published on finite lattices for example in Ref. [81, 82, 83, 84, 85],

now new continuum extrapolated results are available in Ref. [86, 87]. These results are obtained by the Taylor method

and continuum extrapolated from lattices with temporal extend Nt = 6, 8, 12 and 16 with HISQ fermions. The precision

of these results is high enough to allow for a comparison to different models with detailed studies for example on inclusion

or exclusion of various states in a Hadron Resonance Gas (HRG) model. To match the lattice results, for example for

χBS11 , it is necessary to add states from quark models to the list of resonances from the PDG [88]. On the other hand in

Refs [89, 90] the coefficients of the fugacity expansion from imaginary chemical potential

p

T 4
=

∞∑
j=0

∞∑
k=0

PBSjk cosh(jµ̂B − kµ̂S) (3.2)

are presented. The results are continuum estimates obtained with stout smeared staggered fermions on Nt = 8, 10 and 12

lattices. The analysis is based on a two dimensional fugacity expansion with imaginary µB and µS . The PBS21 coefficient

includes contributions from N − Λ and N − Σ scattering where the negative trend indicates the presence of an repulsive

interaction that cannot be described with the addition of more resonances.
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Lattice data can also bee used as input for parametrizations as done for example in [91, 92]. The lattice input is

especially well suited for the temperature range around the crossover between the hadronic phase that can often be

described by the HRG and the QGP-phase.

Moreover, lattice data for fluctuations at low and vanishing density serve as benchmark results for functional QCD

computations of fluctuations and that in QCD-assisted EFTs, [93, 94, 95][607]. This allows for an extrapolation of low

density lattice results to larger densities, including the regime of the potential critical end point.

As stated at the beginning of this Section, the ratios of various fluctuations can be used to express the cumulants

of the Baryon number distribution. This offers an observable for comparisons with heavy ion collision measurements of

the proton number distribution. At the current precision level this can only be a rough comparison. These cumulants

have been published in Refs. [84, 85, 89]. If the precision is further increased in the future, other effects should be

taken into account, like the continuum limit on the lattice side, or volume fluctuations and non-equilibrium effects on the

experimental side (see for example Ref. [96]). However, if the comparisons are done with the necessary care, a deviation

between the extrapolated results from the lattice and the experimental measurements can be a hint, that the physics in

that area is longer described by an analytic function.

3.2. Equation of State

The equation of state is an important quantity both from the purely theoretical point of view as well as input quantity

to various models which describe the Quark Gluon plasma. The equation of state at vanishing baryochemical potential

µB is known from lattice QCD simulations in the continuum limit (Refs. [97, 98, 99]) up to high enough temperatures

to be matched to perturbative results (Refs. [100, 101, 102]). Its continuation to finite density has posed a significant

challenge for several years. When extrapolated to finite µB with a Taylor expansion up to µ6
B it shows an increase in the

error around the transition temperature, which leaves room for unexpected behavior. This has been observed by different

groups and on different data sets (Refs. [83, 103]) and with new high precision data (Ref. [87]) one can observe an increase

of the difference between the expansion up to µ4
B and µ6

B . Some resummation methods (Refs. [103, 104]) hope to mitigate

this influence. A comparison in a small volume with direct methods (Ref. [104]) shows, that the unexpected behavior

does not appear with either the new resummation schemes or higher orders and high precision of the Taylor expansion.

3.3. Influence of a Magnetic Field3

When trying to match the situation in heavy-ion colliders, an additional important influence on the phase transition is

driven by the magnetic field generated in non-central collisions [105, 106, 107]. The simulation of QCD with a magnetic

field on the lattice has been a very active field in the last decade (see, e.g. Refs. [108, 109, 110, 111, 112, 113, 114, 115,

116, 117]). Early results, not yet extrapolated to the continuum limit, showed an increase of the transition temperature

as a function of the magnetic field intensity B; this agreed well with the expectation resulting from the so-called magnetic

catalysis, which describes that at zero temperature chiral symmetry breaking is enhanced by the magnetic field. However,

properly continuum extrapolated results revealed a drop of the transition temperature as a function of B, an effect

which is related to the so-called inverse magnetic catalysis, i.e., the decrease of the chiral condensate in a growing

magnetic field for temperatures around and above Tc [109]. Such a phenomenon induces, furthermore, a strengthening

3Prepared by Lorenzo Maio
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Figure 3.1: (Ref. [104]) Comparison of different extrapolation approaches with direct results on a fixed lattice and in small volume.

of the crossover, making the gap in the observables between the different phases higher and steeper. This effect was

predicted to result, eventually, in the appearance of a real, first order phase transition for magnetic field intensities of

the order of eB ∼ 10 GeV2 [118]. Furthermore, studies with various pion masses (Refs. [119, 115]) suggested that the

decrease of the pseudocritical temperature with B could be a deconfinement (rather than chirally) driven phenomenon.

Indeed, the magnetic field was shown to affect confinement properties, making the string tension anisotropic, in many

studies [120, 121, 122].

Very recent lattice results on chiral and confinement properties of Nf = 2 + 1 QCD at the physical point in both

the vanishing and high temperature cases have been obtained in the presence of unprecedented strong magnetic fields,

namely eB = 4 and 9 GeV2 [123, 124] [619]. Concerning chirality, it was shown that magnetic catalysis maintains its

linear behavior in eB in the zero temperature regime, fitting very well to the lowest Landau level prediction. Moreover,

the onset of inverse magnetic catalysis is driven to lower and lower temperatures as the magnetic field grows, leading to

a drop in the transition temperature larger than expected. Thus, the QGP can be found down to temperatures as low

as ∼ 60 MeV in a eB = 9 GeV2 magnetic background. Moreover, in the 9 GeV2 magnetic field simulations, the authors

noticed the transition region being extremely narrow. Thus, a deep study on the nature of the transition was performed,

through dedicated simulations, providing the first evidence for a first order phase transition of Nf = 2 + 1 QCD at the

physical point in a magnetic background.

On the confinement side, previous work suggested an anisotropic deconfinement [121] in the zero temperature regime

for magnetic fields ranging up to eB = 4 GeV2. It was shown that this prediction is not verified and, furthermore, such a

partial deconfinement does not happen even for the largest explored magnetic background, i.e. eB = 9 GeV2 [123]. The

authors also studied the confining potential at finite temperature around the phase transition found in [124]. They found,
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Figure 3.2: Updated QCD phase diagram in an external magnetic field, based on new facts that emerged in [123, 124]. The

(pseudo)critical temperature continues its steady drop as a function of B, and the transition switches from a crossover to first order

at a critical end point located in the range 4 GeV2 < eBE < 9 GeV2 (or alternatively 65 MeV< TE < 95 MeV). The fate of the

critical temperature in the asymptotic magnetic field limit remains an open question.

as expected, that the chirally broken phase exhibits confinement in all the directions, while the chirally restored phase

appears to be deconfined. To summarize all findings reported above, they proposed an updated version of the Nf = 2 + 1

QCD phase diagram at the physical point, as can be seen in Fig. 3.2.

The effects of a magnetic field are an active topic [125, 126, 127, 128]. In addition to studying a magnetic field at

zero or finite temperature, also systems where a background magnetic field is considered in combination with a finite

density [129, 125, 126] or a finite rotation [130, 131, 132] are, currently, under investigation. Moreover, recently, also

inhomogeneous magnetic backgrounds are taken into consideration because of their phenomenological relevance in the

context of heavy-ion scattering experiments [133].

3.4. BEST Efforts4

While direct comparison between lattice and experiments is challenging, lattice data can also serve as input or bench-

mark for hydrodynamic evolution models. The matter created in heavy-ion collisions can be well-described by relativistic

viscous hydrodynamics, which can provide a framework to search for the QCD critical point, if modified to take critical

phenomena into account. The BEST-collaboration combines first-principles lattice QCD calculations and phenomenolog-

4Prepared by Claudia Ratti
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ical approaches, to create a framework for the analysis of experimental data at low collision energies [615],[134]. They

computed an equation of state that reproduces the lattice QCD one up O(µ̂4
B) and contains a critical point in the 3D

Ising model universality class [135] from which they can compute the thermodynamic quantities at various chemical po-

tentials (for example with the strangeness neutrality setting [136]). The equation of state can then be used as an input

for hydrodynamical simulations.

To definitively claim or rule out the presence of a QCD critical point or anomalous transport requires a comprehensive

framework for modeling the salient features of heavy ion collisions at BES energies, which allows for a quantitative

description of the data. BEST developed initial conditions, which connect the pre-equilibrium stage of the system to

hydrodynamics on a local collision-by-collision basis [137, 138, 139]. A quantitative understanding of fluctuations near

the critical point needs to be developed as well. In fact, the evolution of the long wavelength fluctuations of the order

parameter field close to the critical point is not captured by hydrodynamics. Two approaches have been followed within

BEST: a stochastic approach with noise [140], and a deterministic approach in which correlation functions are treated

as additional variables, together with the hydrodynamics ones [141]. The numerical implementation of the latter are

underway [142, 143].

The efforts of the BEST-collaboration also include the particlization after the hydrodynamic phase. The aim is to

develop an interface between the hydrodynamic evolution model and the hadronic transport phase, in a way that it

preserves fluctuations (see Refs. [144, 145, 146]).

3.5. Transport Properties5

Experimental and phenomenological aspects of transport are discussed in depth in Ref. [620]. The evolution of the QGP

phase has been successfully described within hybrid approaches based on relativistic hydrodynamics and transport theory,

such as iEBE-VISHNU [155], vHLLE + UrQMD/SMASH [156, 157] and MUSIC+UrQMD [158, 139]. Nevertheless some

advanced transport approaches, such as AMPT [159] and PHSD [160, 161] can provide the whole evolution of HIC,

including the QGP phase. In order to perform hydrodynamical simulations of the time evolution of the quark-gluon

matter at finite baryon chemical potential, one needs to estimate first the EoS and the transport coefficients of the matter

in this region. The transport coefficients depend on the underlying microscopic theory which describes the interaction

between quarks and gluons, however it is notoriously difficult to evaluate microscopic properties of the QGP matter at

finite T and µB from first principles. Transport coefficients serve as a bridge between the microscopic transport and

hydrodynamics approaches. One can evaluate the transport coefficients by methods of kinetic theory and apply them in

the hydrodynamical simulations.

To examine transport coefficients at finite µB where the phase transition is possibly changing from a crossover to

a 1st order one it is necessary to resort to effective models which describe the chiral phase transition. While most of

the effective models have similar equations of state (EoS), which match well with available lattice data, the transport

coefficients can vary significantly already at µB = 0 [162, 163, 164, 165, 161, 154, 166]. Therefore, it would be beneficial

for the hydrodynamic and transport simulations of the strongly interacting matter for the moderate and high T and µB

to have predictions for transport coefficients from lQCD calculations in this region of phase diagram.

The transport coefficients of the QGP medium have been computed for a wide range of baryon chemical potential

5Prepared by Olga Soloveva
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Figure 3.3: Specific shear viscosity as a function of the scaled temperature T/Tc at µB = 0 (left) and at finite µB (right). The

symbols corresponds to the lQCD results for pure SU(3) gauge theory (black squares) [147], (green triangles and magenta circles)

[148], (cyan stars) [149]. The dash-dotted gray line demonstrates the Kovtun–Son–Starinets bound (η/s)KSS = 1/(4π) [150].

The grey area represents the model-averaged results from a Bayesian analysis of experimental heavy-ion data [151]. The red line

corresponds to the DQPM results [152], while the dashed blue line displays η/s parametrisation used in hydrodynamic simulations

within MUSIC in [139]. The model results, obtained by the RTA approach with the interaction rate, for finite µB: DQPM-CP

results [153](solid lines) are compared to the estimates from the Nf = 3 PNJL model (dashed lines) [154] as a function of scaled

temperature T/Tc(µB).

for two models with a similar phase structure: the extended Nf = 3 Polyakov Nambu-Jona-Lasinio (PNJL) model and

Dynamical QuasiParticle Model with a CEP (DQPM-CP), where the hypothetical CEP located at µB = 0.96 GeV.

The specific shear viscosity for the QGP phase are shown in Fig. 3.3 as a function of scaled temperature T/Tc at µB = 0

(left) and at finite µB (right). At µB = 0 we show results from the DQPM [152] (solid red line), in comparison with

the lQCD results for pure SU(3) gauge theory [147, 148, 149], model-averaged results from a Bayesian analysis of the

experimental heavy-ion data [151] (grey area) and η/s employed in hydrodynamic simulations in [139] (dashed blue line).

For finite µB ≥ 0 we show the results from the PNJL model and DQPM-CP models obtained by the RTA approach with

the interaction rate. The estimations from both models show an increase of specific shear viscosities η/s and electric

conductivities σQQ/T with µB . While the specific shear viscosities are in agreement for moderate µB in the vicinity of

the phase transition, there is a clear difference in the electric conductivity essentially due to the different description of

partonic degrees of freedom [153].

Furthermore, it has been found that for fixed µB , where the phase transition is a rapid crossover, transport coefficients

show a smooth temperature dependence while approaching the (pseudo)critical temperature from the high temperature

region. The presence of a first order phase transition changes the temperature dependence of the transport coefficients

drastically.

In order to take into account a proper non-equilibrium description of the entire dynamics through possibly different

phases up to the final asymptotic hadronic states, a microscopic treatment is needed. The Parton-Hadron-String Dynamics

(PHSD) transport approach [167, 160, 168, 161] is an off-shell transport approach based on the Kadanoff-Baym equations in

first-order gradient expansion which allows for simulations of both the hadronic and the partonic phases. The microscopic
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Figure 3.4: Overview over future and past experiments taking data from heavy ion collisions [170, 171, 172].

properties of quarks and gluons are described by the DQPM with a crossover phase transition, where the microscopic

characteristics of partonic quasiparticles and their differential cross sections depend not only on temperature T but also

on the chemical potential µB explicitly. We find that HICs results from the extended PHSD transport approach, where

in QGP phase we found that transport coefficients have noticeable T and µB dependence, have been in agreement with

the BES STAR data in case of bulk observables and elliptic flow of charged particles [169], and reasonably agrees with

the results from hybrid approach [139]. It is important to note that, η/s used for hydrodynamic evolution is close to the

DQPM estimations as shown in Fig. 3.3 (left). However, results from the PHSD transport approach have shown rather

small influence of the µB-dependence of the QGP interactions on the elliptic flow than hybrid simulations [161, 169].

This small sensitivity of final observables to the influence of baryon density on the QGP dynamics can be explained by

the fact that at high energies, where the matter is dominated by the QGP phase, one probes the QGP at a very small

baryon chemical potential µB , whereas at lower energies, where µB becomes larger, the fraction of the QGP drops rapidly.

Therefore, the final observables for lower energies at order of 1 − 10 GeV are in total dominated by the hadrons which

participated in hadronic rescattering and thus the information about their QGP origin is washed out or lost.

3.6. Experimental Efforts6

There is a huge experimental experimental effort to study the QGP specifically with dileptons [614]. Similar as on the

theory side, the search for a first order transition and a possible QCD critical endpoint are important research points as

well as the general properties of QCD matter around a deconfinement and/or chiral transition. In the near future many

6Prepared by Tetyana Galatyuk
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experiments are expected to take high statistic data (see figure 3.4 from Ref. [614]) which will allow new inside from

statistic hungry probes like dileptons and photons. Dileptons for example allow answering the fundamental questions

related to the mechanism of chiral symmetry restoration in QCD matter and the transition from hadronic to partonic

degrees of freedom, the total lifetime of the interacting medium and its average temperature, the evolution of collectivity

and the nature of the electromagnetic emission, as well as the transport properties of the medium (i.e., the electrical

conductivity).

3.7. The Road Ahead7

We close the Section with a summary of the lattice issues which the phenomenological/experimental community considers

most urgent:

1. The study of fluctuations to identify phase transitions and possible QCD critical point should be further pursued.

As it clearly appeared from the previous discussion, this requires a vigorous collaboration between experiments and

theoretical work. An important contribution is expected from lattice investigations, but these are hampered by the

so-called sign problem, which actually dominates the region of interest in the phase diagram. The solution (or at

least an effective mitigation) of the sign problem is thus crucial: this point is addressed in Section 4. It has to be

noted that even existing methods may be stretched to reach the a region candidate for the critical endpoint.

Moreover, functional approaches (FA) to QCD offer direct computational results at larger density. In particular,

they can be understood as muB-exptrapolations of lattice results at lower densities with the maximal dynamical

information of QCD in comparison to other extrapolations. This opens a promising route towards a combined

LFT-FA analysis of the high density regime of QCD.

2. The equation of state should be provided for a broad range in temperature and baryon chemical potential. Also the

influence of other parameters like a strangeness chemical potential or a magnetic field should be explored.

3. Essential for all phenomenological approaches are the temperature dependence of the pole masses of pseudo scalar

and vector bosons with zero or finite momentum. This has been partially accomplished however it requires a solid

understanding of spectral functions for the identification of pole masses.

4. There are measurements of transport coefficients of heavy quarks in the medium likeDs but the results from different

lattice groups do not agree ( may be because quenched and not quenched approaches give different results). In

addition, in the transport approaches we need these coefficients at finite momentum of the heavy quark (with respect

to the medium). An improvement of this situation would be welcomed. These issues call also for methodological

improvements in the computation of spectral functions which will be reviewed in Section 4.

5. Another quantities we should urgently know is the pole mass and stability of protons as a function of the temperature.

Work in this direction has been done in Ref. [173], however limited to the pole mass. Information on the stability

would be important as well. To settle this with a physical pion mass would be of great help.

6. A precise determination of the density (baryon, strangeness) as a function of the temperature - namely of the

first derivative of the partition function - would be important. This would allow to establish ( what also Nambu-

Jona-Lasinio models predict) whether the hadronization temperature of strange quarks differs from that of light

quarks.

7Prepared by Joerg Aichelin and Elena Bratkovskaya
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7. Any information about the underlying degrees of freedom of a QGP would be of great help. Recent work on unusual

symmetries (Ref. [21]), already mentioned in Section 2 should be further explored.

4. Methodological Challenges: Spectral Functions and Sign Problem8

While lattice QCD has been quite successful at Euclidean space-time geometry and zero chemical potential over the

past decades, it suffers from severe limitations once it comes to the calculation of expectation values at non-zero baryon

number density or quantities related to real time. This is due to the fact that lattice QCD calculations crucially rely

on the interpretation of the Boltzmann factor as a probability density for the numerical sampling of the path integral.

Once the Boltzmann factor is no longer strictly positive, or even becomes genuine complex, this interpretation is lost

and standard Monte Carlo methods for the calculation of the path integral cease working. This is called the QCD sign

problem. To deal with or to circumvent the sign problem and to reach out to the expected QCD critical point bears huge

methodological challenges. Similarly this is true for the calculation of spectral functions, which provide a way to extract,

e.g., transport coefficients, but are also of interest for many other reasons (for example, also at zero temperature several

observable quantities are related to spectral densities). In the following we will discuss some of those challenges in more

detail.

4.1. Spectral Functions as an Inverse Problem

The computation of spectral functions begins with lattice correlators [174, 175]. It is an ill-posed or at least ill-conditioned

problem as the task is to reconstruct salient features of the spectral functions (peaks, typically) from a smooth function

which is only known in a limited amount of points, with limited accuracy.

Bottomonium has been used as an important case study [176, 177]: first, it is of great physical interest due to

the rich production at the LHC. Secondly, the inversion required to compute spectral functions is a “simple” inverse

Laplace transform, for which a wealth of methods has been designed. Lattice studies predict the sequential suppression

of bottomonium in the QGP, which has been observed in experiments [178]. Despite a qualitative coherence among the

results, a quantitative agreement has not been reached yet. A comparison of the different methods may be found in

Ref.[179].

Numerical inversion of the Laplace transform on the real axis is an inverse and ill-posed problem. Usually, methods

for the inversion problem require the evaluation of the Laplace function F on some knots; this could be an issue if a closed

form of F is not available. In lattice QCD applications, the Laplace transform is known only on pre-assigned samples or

measures (and with errors) and an accepted strategy is to design fitting models able to represent this function [621].

Ref. [622] is a mathematical introduction into inverse Laplace transforms aimed at physicists. Besides a comprehensive

discussion of different methods, many of them not yet tried in this context, it presents the main numerical issues about

the Laplace inversion formulas in the discrete data framework and discusses how to estimate the main sources of errors.

Very important in this context is the interpolation of a discrete data set. This latter point is discussed in Ref. [623],

another mathematical review prepared for a physics audience. Spline models have been widely used in many areas of

science and engineering, such as signal and image processing, computer graphics, deep learning, neural networks, or data

8Editors: Chris Allton and Christian Schmidt
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representation, as important tools to model and predict data trends. Ref. [623] aims at providing an introduction to

basic spline models-smoothing, regression, and penalized splines-based on polynomial splines but also on exponential-

polynomial splines. The latter are particularly suitable for data showing exponential trends as in the framework of

the Laplace transform inversion. In particular, Ref. [623] discusses HP-splines, a recently defined penalized regression

model, generalization of P-spline, in which polynomial B-splines are replaced by hyperbolic-polynomial bell-shaped basis

functions, and a suitably tailored penalization term replaces the classical second-order forward difference operator.

4.2. Spectral Functions and Effective Field Theories9

Most important for the control of the results, and to monitor the approach to the continuum limit, is the interface between

lattice and effective field theories. Nonperturbative correlators emerge in the nonrelativistic effective field theory (NR

EFT) factorization [180] that should be calculated on the lattice. Ref. [624] presents lattice calculation of some of these.

In particular, the EFT called potential nonrelativistic QCD (pNRQCD) at finite temperature [181] gives a framework

to define the potential, calculate it and systematically calculate energy levels and widths [182]. Calculations have been

made in (resummed) perturbation theory and then used to compare and check lattice results, for example in the case of

the Polyakov loop and the Polyakov correlator [183, 184] establishing the region in which the screening regime is active.

Moreover, combining pNRQCD and an open quantum system [185], it is possible to describe the nonequilibrium

evolution of small quarkonia systems (bottomonium) inside the strongly coupled Quark Gluon Plasma with an evolution

equation for the singlet and octet density matrix of the Lindblad type on the basis of two transport coefficients defined

as appropriate correlators of electric fields at finite temperature [186, 187]. In this way the EFT works as an intermediate

layer that allows to use lattice QCD equilibrium input to study the nonequilibrium evolution of bottomonium inside the

QGP. One can also relate these transport coefficients to the thermal modification of the energy levels and to the thermal

widths of quarkonium, which allows us to use unquenched lattice calculations of the thermal modification of the mass and

the width of quarkonium [188] as input. Gradient flow is particularly suitable for the direct lattice calculation of these

transport coefficients [189, 190]. Besides the methodological importance, these studies also provide an important input to

phenomenology as already mentioned. The same interface between NR EFTs and lattice may be used to study a number

of problems ranging from the study of the exotics X Y Z [191, 192] to quarkonium production [193]. This novel alliance

of EFTs and lattice, with lattice correlators defined inside the EFT appears to be a novel and promising avenue.

4.3. QCD at Non-Zero Density: From Taylor Expansions to Lee–Yang Zeros

The Taylor expansion method [194] is one of many approaches to circumvent the QCD sign problem and has been very

successful in the past. Although limited to small baryon chemical potentials µ̂B ≡ µB

T . 2, some results close to the

continuum limit have been presented on the QCD equation of state [83, 103], the curvature of the transition line [8, 9] and

fluctuations of conserved charges [85, 86]. The main idea is the expansion of the dimensionless pressure p/T 4 in terms of

the three chemical potentials for baryon number, strangeness and electric charge, µ̂B , µ̂Qµ̂S ,

p

T 4
=
∑
i,j,k

1

i!j!k!
χB,Q,Si,j,k µ̂iBµ̂

j
Qµ̂

k
S , (4.1)

9Prepared by Nora Brambilla
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Figure 4.1: Poles in the complex µ̂B plane from the [4, 4]-Padé re-summation of the Taylor series about µ̂B = 0 (left) and from

the multi-point Padé approach applied to lattice QCD data at imaginary µB (right). Also shown in the right panel is the expected

scaling behaviour of the Lee-Yang edge singularities for different critical points, indicated by dashed lines/bands.

where the expansion coefficients are defined as in Eq. (3.1). The series is even, i.e., the summation runs over all {i, j, k}
with (i + j + k) mod 2 = 0. It is very tempting to estimate the radius of convergence of the expansion above since, by

definition, the radius would be limited by the elusive critical point in the QCD phase diagram. However, the limiting

singularity can also be located in the complex µ̂B plane. A famous example are the Lee-Yang edge singularities [195], in

the context of lattice QCD and the QCD phase diagram first discussed by [196, 197]. Estimating the radius of convergence

from the lattice results of the Taylor coefficients χB,Q,Si,j,k is very challenging, due to the limited number of coefficients,

usually (i+ j + k) ≤ 8, and the increasing statistical error. A simple rational estimator has been used frequently in the

past [198, 83], even though it is known to converge slowly [199].

A discussion of Taylor expansions in (2+1)-flavor QCD for the pressure, net baryon-number and the variance of the

distribution on net-baryon number fluctuations is given in [87], [625]. The authors obtain series expansions from an eighth

order expansion of the pressure, Eq. (4.1), which is re-summed by a [2, 2] and [4, 4] diagonal Padé. The poles of those

Padés correspond to the Mercer-Roberts estimator [200] of the radius of convergence. The poles are indeed located in

the complex µ̂B plane as shown in Fig. 4.1 (left) and show an apparent approach to the real µB axis with decreasing

temperature. Corresponding results for a re-organized expansion with zero net-strangeness (nS = 0) are also discussed.

Due to the limited number of Taylor coefficients one has at hand for the series about µB = 0, one needs strategies to

compute the Lee-Yang zeros from multi-point Padé approximants obtained from simulations at imaginary µ̂B [201, 202],

[626]. This may be achieved by combining continuation from imaginary chemical potential via Padé approximants[203, 204]

with Taylor expansion. Analytic continuation in combination with Taylor expansion was proposed in Refs. [205, 206]. For

further interesting resummation schemes see [207]. The results are shown in Fig. 4.1 (right). Also shown is the expected

scaling behaviour of the Lee-Yang edge singularities associated with the Roberge-Weiss, the chiral and the QCD critical

point. Interestingly, at temperatures close to, but below the Roberge-Weiss transition temperature (T . TRW ) the poles

follow the expected Roberge-Weiss scaling. At temperatures T . 170 MeV, a qualitative change in the behavior of the

singularities is found: they start to approach the real axis. If it can be established that the scaling behaviour follows the

one expected for the QCD critical point, the location of the QCD critical point can be determined by a scaling analysis.
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This method has been successfully applied in the Gross-Neveu model [208], see also [209] for further investigations in

low energy EFTs with and without fluctuations see [210, 209, 211, 212, 213]. In particular, the scaling behavior of the

location of the edge singularity has been established in [210, 211, 212]

It is thus important to understand that these studies not only highlight different numerical strategies to calculate

observables at nonvanishing chemical potential via a re-summation of the Taylor series and thus might enhance the results

presented in the Section on fluctuations. They also provide, and that is what we have focused on here, a mechanism to

locate the elusive QCD critical point (which has been mentioned at the beginning, and will be further discussed in the

Section devoted to conformal theories.)

Important input to methodological developments come from the results on models without the sign problem, as already

mentioned. The same models can also be used as a test-bed. A typical case study is two-color QCD, see Refs. [214] [627].

4.4. QCD at Non-Zero Density: Combining Lattice and Functional Approaches10

Lattice formulations of QCD are based on the formulation of Euclidean QCD on a discrete space-time lattice. The task of

solving the the infinite-dimensional path integral is converted into controlling both, the thermodynamic and continuum

limits of Monte-Carlo simulations of finite but high dimensional numerical integrals. Typically, these limits have a

polynomial scaling of the numerical costs with the lattice size. However, simulations for real-time QCD, or finite chemical

potential require the importance sampling of measures with complex actions, causing sign problems with potentially

exponential scaling of the numerical costs that are hard to overcome. This has led to the common strategy for an indirect

access to QCD at larger density: One simply extrapolates lattice results for a class of correlation functions, mostly the

equation of state and higher order fluctuations of conserved charges, at vanishing, small and imaginary chemical potential

to larger values by either Taylor expansions, Padé resummations or similar resummation schemes by also taking into

account the universality class of the potential CEP. This is a standard inverse problem, and as those encountered for the

reconstruction of spectral functions or real-time correlation functions it is ill-conditioned.

Diagrammatic functional approaches to QCD convert the task of solving the path integral into controlling the infinite

hierarchy limit of the solution of a finite hierarchy of closed coupled integral (DSE) or integral-differential equations

(fRG) of correlation functions. The numerical costs of this limit are related to the rapidly increasing number of diagrams

at higher orders of the hierarchy as well as the linear rise of the interpolation dimension of momenta of higher order

correlation functions. While apparent convergence and quantitative agreement with respective lattice results has been

seen for many correlation functions in the vacuum and finite temperature, the systematic error control remains an intricate

issue which is hard to control.

In turn, at finite density and for real-time QCD, functional methods allow for direct computations as they are not

obstructed by the sign problem. Specifically, finite density or chemical potential correlation functions computed from

self-consistent approximations to the hierarchy of correlation functions in functional approaches define analytic functions

of the chemical potential that carry all required analytic properties of QCD as well as QCD dynamics at larger density.

In short, for sufficiently advanced approximations, the results for correlation functions from functional approaches such

as the EoS and fluctuations of conserved charges match those obtained from lattice simulations in the validity regime of

the latter.

10Prepared by Jan M. Pawlowski
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This suggests a very promising combined approach towards QCD at finite density as well as for real-time computations:

one uses the results of functional approaches that meet lattice benchmarks, taking into account their systematic error

estimates, for estimates and later predictions of QCD at large chemical potentials, and in particular the existence and

location of the potential critical end point, see [607] and references therein. We emphasise, that even if only seen as a

means of extrapolation of the low density lattice results, functional approaches offer the qualitatively best extrapolation

possible: functional large density results certainly carry the complex structure of QCD as well as the maximal amount of

QCD dynamics at large densities accessible.

This combined approach allows for systematic improvements and hence a reduction of the systematic error. Its results

at large density can be readily used as input for transport models, hydrodynamics and the critical dynamics close to the

potential critical end point, hence playing an important rôle for the experimental/theoretical understanding of QCD at

large densities.

4.5. The Road Ahead

The motivation for going beyond simple importance sampling is very strong and comes from collider experiments and

astrophysics. New methods have been developed and are currently vigorously pursued, and oldish methods are con-

tinuously improved. We feel that continual interactions with colleagues pursuing analytic approaches on one side, and

mathematicians developing advanced methods on the other are beneficial and should be further pursued. We have to

face strong technical problems, but this is a road we have to go through. While the material in this Section is the most

technical one, much progress actually depends on an effective handling of the open problems we addressed (see e.g. the

conclusions of last Section 3).

Density of States may be a promising approach to the solution of sign problem. In this approach, the Euclidean

path integral (or, similarly, the partition function) of a system is evaluated as the integral over the density of a relevant

observable (e.g., the action or the Hamiltonian). Similar manipulations [215] can be performed to evaluate expectations

of observables. The interest in this approach stems from the fact that a powerful algorithm has been devised [216]

that enables one to evaluate the density of states with exponential error reduction. The method has the potential to

overcome most of the limitations of importance sampling, such as topological freezing [217] and - crucially - the sign

problem [218, 219][628]. In the latter case, further developments are needed before the method can be applied to QCD.

Last but not least: there is an ebullient activity in the field of quantum computing. Quantum link models [220][629]

may well be a successful line of approach.

5. Conformal Invariance11

The conformal group is defined as the group of transformations that leave the spacetime metric invariant, up to a local

rescaling. In D > 2 spacetime dimensions, it is an extension of the Lorentz–Poincaré group to include special conformal

transformations and dilations. In general, conformally invariant field theories represent the ultraviolet or infrared limits

of the renormalization group of quantum field theories. Of special interest are strongly coupled conformally invariant

theories, which have many important realizations in condensed matter, but also in fundamental particle physics, such as

11Editor: Marco Panero
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the examples that we describe in the following subsections.

5.1. The QCD Critical Endpoint

It is believed that the phase diagram of quantum chromodynamics, as a function of the baryon-number chemical potential

µ and the temperature T , features a critical endpoint exhibiting conformal symmetry [15, 221, 222]. Note that here we

are referring to QCD for physical values of the quark masses; for the case of QCD with massless quarks, which is discussed

in detail in Section 2, instead, a tricritical endpoint [223] and other interesting features are expected [13, 224].

For QCD with finite quark masses, the conjecture of the existence of a critical endpoint arises from the fact that,

while at low net baryon densities the ground state of the theory, characterized by confinement and chiral-symmetry

breaking, turns into a deconfined and chirally symmetric quark-gluon-plasma phase through a smooth crossover as the

temperature is increased [225, 226], at large densities many phenomenological models predict a first-order transition

line separating the hadronic phase from the QGP and possibly more exotic phases [227]. This line is expected to bend

towards the temperature axis, ending at a critical endpoint (µcr, Tcr) where the transition should be a continuous one,

exhibiting conformal invariance. Although the existence of a critical endpoint is not an ab initio prediction of QCD,

if it really exists, it would leave remarkable signatures [228, 229, 230, 231], and this has triggered intense experimental

activity [232, 233, 234, 235, 236, 237, 238, 239], as summarized in Sections 3 and 4.

The QCD critical endpoint is expected to be in the conformal universality class of the Ising model in three dimensions

(3D) [240, 241]. Despite the deceptively simple nature of the Ising model (a spin model with nearest-neighbor interactions

and global invariance under the cyclic group of order two) and the fact that its solution in two dimensions has been

known for many decades [242] and can be considered as the prototype for integrable models [243, 244], it has proven

analytically very hard in three dimensions. Until recently, Monte Carlo calculations were the tool to derive the most

precise predictions for the 3D Ising model, but this has drastically changed with the new developments in the conformal

bootstrap approach [245, 246, 247] and in the functional renormalization group approach [248, 249]. The description

of the QCD critical endpoint in terms of the conformal universality class of the 3D Ising model is an active line of

research [250, 251, 135, 134]. An important goal consists in identifying the “directions” (in the QCD phase diagram)

that correspond to perturbations by “thermal” and “magnetic” operators in the Ising model [252, 253, 254]; this, in

particular, would allow one to derive analytical predictions in a finite neighborhood of the critical endpoint using conformal

perturbation theory [255, 256, 257, 258, 259].

First-principles lattice studies of the QCD critical endpoint are particularly challenging, due to the notorious sign

problem affecting simulations at finite µ [260, 261, 262, 263]. Popular techniques to tackle the sign problem include

Taylor expansions [194, 264, 265, 83, 8, 266], reweighting [267, 268, 269] (which can be interpreted as a limiting case of

non-equilibrium simulations [270, 271, 272, 273, 274]), the complex-Langevin method [275, 276], Lefschetz thimbles [277]

(built on an idea originally used for the computation of the partition function of three-dimensional Chern-Simons theory

for complex parameters [278]), the density-of-states method [279, 216], analytical continuation from imaginary values of

the chemical potential [50, 280, 281, 9], simulations at finite isospin density [51, 282], and simulations in the canonical

ensemble [283, 284, 285], but none of them provides the final solution to this problem—perhaps for profound reasons [286].

Nevertheless, recently significant progress has been achieved, for example, in the lattice study of fluctuations of conserved

charges at finite µ values [287, 288, 82], which lead to critical fluctuations in the hadron multiplicity distributions observed

in experiments and thus provide an important probe to search for the QCD critical endpoint [229, 289]. Other theoretical
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studies of the QCD phase diagram are based on functional approaches to QCD [290, 291, 292, 293, 294] or on the

gauge/string duality [295, 296, 297, 298]: some recent examples can be found in Refs. [299, 300, 301, 302].

We conclude this subsection with a word of caution. The quest for the QCD critical endpoint, and the unambiguous

characterization of its properties, is still an open challenge, both from the theoretical and the experimental point of view:

as shown, for example, in Ref. [303, Fig. 8], theoretical predictions obtained with different methods and experimental

hints are still scattered across a very wide region of the QCD phase diagram.

5.2. Conformal Dynamics in Models for Dynamical Electroweak Symmetry Breaking

Another class of elementary-particle theories in which the existence of a conformal phase plays a prominent rôle are the

theories that may describe physics beyond the Standard Model. Of particular interest are non-supersymmetric, non-

Abelian gauge theories, in which a conformally invariant phase exists for some matter field contents (i.e., for suitable

gauge group, number of fermion species, and their representation under the gauge group). For the current status of

various aspects of this research area, see Ref. [630], summarizing the state-of-the-art of strongly coupled theories for

physics beyond the Standard Model, Ref. [631], which discusses an interesting example of a model for dark matter, and

Ref. [632], reporting a calculation of scattering amplitudes in an SU(2) gauge theory coupled to matter fields in the

fundamental representation of the gauge group.

One of the early motivations to investigate strongly coupled gauge theories for physics beyond the Standard Model

stems from the fact that they may provide a dynamical realization of the electroweak symmetry breaking mechanism.

Given an asymptotically free, strongly coupled gauge theory with fermionic matter fields whose left-handed components

are Standard Model weak doublets and form a condensate at a dynamically generated energy scale ΛTC, the ensuing dy-

namical symmetry-breaking of the theory leads to Nambu–Goldstone bosons, which can be interpreted as the longitudinal

components of the electroweak gauge bosons of the Standard Model. This is the old idea of “technicolor” [304, 305]; while

it does not require the existence of a fundamental scalar, it allows one to interpret the experimentally observed Higgs bo-

son as the lightest scalar state in the spectrum (i.e., as the analogue of the σ meson in QCD). In a related class of models,

the Higgs boson itself is interpreted as a composite particle and as a pseudo-Nambu–Goldstone boson [306, 307, 308]. To

accommodate the existing masses of quarks and leptons, technicolor has to be generalized to an “extended technicolor”

model [309, 310], with a larger gauge symmetry that is broken down to the technicolor gauge group at an energy scale

ΛETC (which, due to phenomenological constraints on flavor-changing neutral currents, is expected to be significantly

higher than ΛTC); the quark and lepton masses then arise in the low-energy effective theory obtained by integrating out

the heavy degrees of freedom of the extended technicolor theory, through terms suppressed by some inverse power of the

ΛETC scale. In order to generate the masses of heavy quarks, the fermion condensate should be enhanced by (approximate)

scale invariance of the theory between the ΛTC and ΛETC scales, with a sufficiently large mass anomalous dimension γ,

which would realize a “walking technicolor” scenario [311, 312, 313]. This is indeed possible in the presence of a number

of fermion species that is sufficiently large to drive the β function of the theory (close) to an infrared-stable fixed point,

without exceeding the value that would cause the loss of asymptotic freedom; this defines the so-called “conformal win-

dow” [314, 315, 316, 317]. In fact, in an approximately conformal technicolor model an electroweak-symmetry-breaking

condensate also breaks scale invariance, and the associated “dilaton” may then have properties (and, in particular, a mass)

compatible with the one observed experimentally for the Higgs boson [318, 319, 320, 321, 322, 323, 324, 325, 326, 327].

The literature on strongly coupled models for electroweak symmetry breaking is vast [328, 329, 40]. As reviewed in
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Refs. [330, 331, 332, 333, 334, 335, 336, 40, 337], in this field lattice calculations remain an essential tool to investigate the

properties of candidate theories at a non-perturbative level and from first principles (although interesting complementary

approaches, such as holography [338, 339, 340, 341, 301, 342, 343, 344, 345, 346, 347] and functional approaches [348, 42,

349], have also been used).

The key questions that lattice studies can answer include: Is a theory confining or nearly conformal in the infrared?

What is the phase structure, as a function of the parameters of the theory? What is the spectrum of physical states?

What is the value of the mass anomalous dimension? One of the theories that have been most extensively studied through

lattice calculations is the SU(2) gauge theory with two fermions in the adjoint representation of the gauge group, also

known as “minimal walking technicolor”, see Ref. [314]. In the latter work it was also pointed out that for fermions

in higher-dimensional representations the conformal window would already appear in the presence of a small number

of fermions. The phenomenological implications of these models were further elaborated upon in Refs. [350, 351, 352].

The first lattice study of minimal walking technicolor was reported in Ref. [353], which was soon followed by several

other works [354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371]. The study of these

models also led one to realize that even an SU(2) theory with just two flavors of Dirac fermions in the fundamental

representation could have interesting applications in the context of model building for dark matter [372], due to the

pattern of chiral-symmetry breaking observed in lattice simulations [373].

The SU(2) gauge theory with different numbers of fundamental fermions has been further investigated in Refs. [374,

375, 376, 377, 378]. Similar studies have been carried out also for the SU(3) gauge theory with a different number of

quark flavors [379, 354, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398,

399, 400, 401, 402, 403] or with fermions in a larger representation of the gauge group, such as the two-index symmetric

(sextet) representation [404, 405, 406, 407, 408, 409, 410] or the adjoint representation [411], and for the SU(4) theory

with fermions in the two-index symmetric (decuplet) representation [412, 411, 413] or with fermions in two distinct

representations [414, 415, 416, 417, 418, 419].

The study of a (nearly) conformal phase for strongly interacting gauge theories coupled with elementary fermionic fields

remains a non-trivial problem in lattice field theory. However, novel, promising techniques have been recently proposed to

tackle the challenges in such computations; these include, for example, discretization techniques with a potential to treat

multiple length scales in an efficient way [420, 421, 422, 423], or methods to extract the anomalous dimensions associated

with different operators [424, 425, 426, 427, 428].

Finally, we mention that recently a novel method to evaluate the conformal data of conformal theories has been

proposed, which is based on a large-charge approach [429, 430, 431, 432, 433]; potentially interesting applications include

the analysis of a topological θ term and axion physics [434, 435].

5.3. The Road Ahead

The study of conformal dynamics remains a central issue in elementary particle physics. Its relevance extends from the

“low” energy domain of quantum chromodynamics, with the search for a critical endpoint in the phase diagram discussed in

Ref. [615], to the “high” energy domain of candidate theories for physics beyond the Standard Model discussed in Ref. [630].

In both of these research directions, significant progress has been achieved during the past few years. Crucially, this has

been possible through the combination of analytical insights with numerical calculations; it is reasonable to expect that

this type of “hybrid” approach will lead to further progress in the forthcoming years.
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6. Cosmology, Topology and Axions12

6.1. The Peccei–Quinn Axion and QCD Topology

One of the most intriguing open problems in particle physics is the so-called strong CP problem. While it is well known

experimentally that weak interactions are not invariant under the CP symmetry (consisting of a parity inversion P

plus a charge conjugation C), so far no evidence of CP symmetry breaking from the strong sector has been observed

experimentally. From the theoretical point of view, however, QCD allows for an explicit breaking of this symmetry

because of the existence of the dimensionless θ parameter, coupling the the CP-odd topological charge

Q =
1

16π2

∫
Tr
{
Fµν(x)F̃µν(x)

}
d4x (6.1)

to the CP-conserving ordinary QCD action. Experimental measures of the neutron electric dipole moment put the

extremely stringent upper bound |θ| . 10−9 − 10−10 on this parameter [436, 437, 438, 439], but there is no theoretical

reason within the Standard Model (SM) for this parameter to vanish exactly, or to be so unnaturally small13.

A particularly interesting solution proposed by Peccei, Quinn, Weinberg and Wilczek to solve this issue is the ax-

ion [444, 445, 446, 447], a hypothetical pseudo-scalar particle introduced as the pseudo Nambu–Goldstone Boson (NGB)

of the spontaneous breaking of a new global U(1)PQ axial symmetry, the Peccei–Quinn (PQ) symmetry, which is anoma-

lous under SU(3)color. Under these assumptions, the axion field, by anomaly matching, directly couples to the QCD

topological charge (6.1) and, by virtue of being a NGB, possesses a shift symmetry which dynamically relaxes θ to zero,

solving exactly the strong CP problem. This is, in brief, the so-called PQ mechanism and it constitutes a very simple,

yet powerful, and natural solution to the strong-CP problem which requires to supplement the SM with just a few new

ingredients.

This is not the only intriguing aspect making the PQ axion a promising and well-motivated SM extension. Soon after

its introduction, this hypothetical particle has also been recognized as a possible Dark Matter candidate, its couplings

with SM particles being suppressed by the axion scale fa, which is expected to be extremely large from astrophysical

and cosmological bounds: 108 GeV . fa . 1012 GeV [448, 449, 450, 451]. Therefore, the introduction of the PQ axion,

motivated by the strong-CP problem, would also naturally explain (at least partially) a further fundamental missing piece

of the SM.

Another crucial property of the PQ mechanism is that, being rooted on anomaly matching and on general properties

of NGBs, it holds at low energy scales Λ� fa independently of the underlying Ultra-Violet (UV) fundamental dynamics,

i.e., of the particular UV-complete SM extension one is considering. In these respects, a particularly well-motivated class

of models which has been widely considered in the phenomenology literature to explain PQ axions assumes the existence

of a confining strongly-coupled dark sector which possesses an accidental global PQ symmetry [452, 453, 454, 455] [631].

This way, the global U(1)PQ is not imposed ad hoc but naturally emerges within the newly-introduced non-abelian gauge

sector (similarly to flavor symmetries in QCD). In this framework, the axion is described as a composite particle which

is made cosmologically stable by the accidental U(1)PQ symmetry [452, 453, 454, 455] [631].

An intriguing aspect of this class of models is that it is in principle amenable to be probed by future experimental

12Editor: Claudio Bonanno
13The θ angle would be vanishing in the presence of a zero-mass quark, but this scenario has been ruled out by lattice simulations [440, 441]

and experiments [442]. Other exotic scenarios to explain the vanishing of θ within QCD have been considered, e.g., in [443].
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interferometric Gravitational Wave (GW) observations, since the spontaneous breaking of the PQ symmetry will create a

GW signature [456] [633], as it is expected on general grounds for a first-order phase transition [616]. More precisely, from

the analysis of the GW spectra it is possible to infer several interesting properties about the confining strongly coupled

dark sector and of its related axion [456] [633], thus making GW observations a fascinating tool, alternative to collider

experiments, to possibly detect the existence of such hypothetical particle.

Finally, a fundamental aspect of axion physics is constituted by its relation with the topological properties of QCD

at finite temperature. As a matter of fact, since the axion field is directly coupled to the topological charge (6.1), it

is possible to relate the temperature-dependent axion effective mass to the QCD topological susceptibility χ(T ) via the

well-known relation:

m2
a(T )f2a = χ(T ) = lim

V→∞

〈Q2〉(T )

V
, (6.2)

where V is the 4D space-time volume and T is the temperature. Apart from the unknown constant fa, the value of the

axion mass in Eq. (6.2) is completely fixed by the QCD topological susceptibility χ. Moreover, this quantity accounts for

the whole temperature dependence of ma(T ). This implies the possibility, once the temperature dependence of the QCD

topological susceptibility is known and some cosmological assumptions are made, to put a more stringent upper bound on

the value of fa (which is a priori unknown in this model) through the so-called misalignement mechanism [448, 449, 450].

For this reason, the PQ axion has renewed interest in the study of the temperature dependence of the QCD topo-

logical susceptibility, as the knowledge of χ(T ) appears to be an essential input for the computation of interesting axion

phenomenological observables, which are of the utmost importance for its current and future experimental searches (see,

e.g., Refs. [457, 458] for recent reviews).

Given the non-perturbative nature of the topological properties of gauge theories, results about the behavior of χ(T )

in QCD can be obtained analytically only by adopting suitable approximations.

In Chiral Perturbation Theory (ChPT) at leading order and with 2 light quark flavors, it is possible to obtain the

following prediction [459, 460, 461, 462, 463, 464, 465] [634]:

χChPT(T )

χChPT(T = 0)
=

[
1− 3

2

T 2

f2π
J1

(
T 2

m2
π

)]
, (6.3)

χChPT(T = 0) =
mu

mu +md
m2
πf

2
π , (6.4)

J1(x) ≡ 1

π2

∂

∂x

{∫ ∞
0

dq q2 log
(

1− e−
√
q2+x

)}
.

In the literature, also the NLO results χ1/4
ChPT(T = 0) = 75.5(5) MeV (for physical u, d quarks) and χ

1/4
ChPT(T = 0) =

77.8(4) MeV (for degenerate u, d quarks) have been computed [463, 464] (see also [466] for a discussion about NNLO and

QED corrections to χChPT(T = 0)). However, while the T = 0 ChPT result is expected (and confirmed from Monte Carlo

simulations) to be reliable, leading in particular to the cold axion mass prediction ma = 5.70(6) µeV (1012 GeV/fa) [463],

the finite-temperature ChPT result is expected to be unreliable close and above the crossover temperature Tc ' 155 MeV,

since the chiral condensate and thus ChPT are expected to break down in this regime.

Another possible strategy, which is instead expected to be reliable at asymptotically-high temperatures, is to compute

χ(T ) by semiclassical methods via the so-called Dilute Instanton Gas Approximation (DIGA). Assuming that instantons

can be treated as identical non-interacting pseudo-particles, it is possible to compute χ(T ) at leading order in perturbation
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theory by performing a Gaussian integration of the fluctuations around a one-instanton configuration, obtaining [467, 468]:

χDIGA(T ) ∼ T−d, (6.5)

where d ≈ 8 for 3 light quark flavors.

Although this simple prediction has been customarily used in several computations due to its simplicity and due to

the lack of more reliable results, it is expected (and confirmed by numerical simulations) that the DIGA result is not

reliable for temperatures close to the crossover and even up to the few GeV region, where deviations from perturbative

calculations are still pronounced and non-perturbative effects are still not completely negligible. Corrections to the DIGA

due to multi-instanton contribution can be computed systematically [469]. However, since the temperature-dependence

of ma(T ) in this temperature range is needed to accurately compute axion cosmology [470], it has been pointed out in the

literature that an independent and fully non-perturbative computation of χ(T ) from lattice simulations would be needed

to obtain full control on ma(T ) [471, 472]. For this reason, the numerical calculation of χ(T ) has been the goal of several

lattice studies in recent years [457, 464, 473, 474, 475, 476, 477] [635].

6.2. The QCD Topological Susceptibility at Finite Temperature from the Lattice: Current

Status and Future Challenges

The lattice numerical computation of the topological susceptibility in full QCD at finite temperature is a challenging task

in several respects. In the following we will address some of the most severe problems that have to be faced to this end.

One serious numerical problem is posed by the presence of dynamical fermions. In the continuum theory, the contribu-

tion of non-zero topological charge configurations in the path integral is suppressed by the fermion determinant as powers

of the light quark mass due to the existence of chiral zero-modes in the spectrum of /D. On the lattice, typically-employed

quark discretizations (such as the Wilson or staggered ones) do not preserve the chiral symmetry, which is partially or

fully broken explicitly at finite lattice spacing and is only properly recovered in the continuum limit. The explicit break-

ing of the chiral symmetry prevents the spectrum of the lattice Dirac operator to have exact zero-modes, meaning that

lowest-lying modes are shifted by lattice artifacts. This results in somewhat large corrections to the continuum limit when

χ is computed from a standard gluonic definition, because the determinant of the lattice Dirac operator does not provide

an efficient suppression as in the continuum. Moreover, it is observed that this problem hits hard already at moderate

values of T/Tc due to the strong suppression of χ above the crossover (cf. Eq. (6.5)), making it difficult to obtain reliable

continuum extrapolations in the high-temperature regime.

Another infamous problem regards the proper sampling of the topological charge distribution during the Monte Carlo

evolution. The standard computation of the susceptibility via χ = 〈Q2〉/V requires a meaningful sampling of the different

relevant topological sectors, i.e., to observe a reasonable number of topological fluctuations during the Monte Carlo

evolution. On typically-employed lattice volumes, however, 〈Q2〉 = χV � 1 due to the strong suppression of χ above

Tc, meaning that the observed Q distribution is largely dominated by the Q = 0 sector, and fluctuations of Q above

zero become extremely rare. Thus, unreasonably long Monte Carlo histories are needed to compute χ with reasonable

statistical accuracy.

Finally, a notorious and rather general computational problem affects all standard local updating algorithms custom-

arily employed in lattice simulations: the so-called topological critical slowing down. On general grounds, local algorithms

are expected to become less and less ergodic as the continuum limit is approached, leading the Monte Carlo evolution of
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all observables to experience a critical slowing down. While for non-topological observables such slowing down is typically

polynomial in the inverse lattice spacing, there is plenty of numerical evidence that it is exponential, and thus much more

severe, for topological ones [478, 479, 480, 481, 482, 483, 484, 485, 486, 487]. In practice, the Monte Carlo Markov chain

tends to remain trapped in a fixed topological sector, meaning that the Monte Carlo evolution of the topological charge

suffers from unbearably long auto-correlation times. For this reason, this issue is also known as topological freezing. Con-

cerning finite-temperature QCD, going below lattice spacings of the order of ∼ 0.03 fm is extremely challenging because

of the freezing problem. Since in the Monte Carlo approach the temperature T = 1/(aNt) is fixed by the product between

the lattice temporal extent and the lattice spacing, this implies that reaching temperatures of the order of ∼ 700 MeV −
1 GeV or above is a seriously difficult task on typical lattices with Nt ∼ 12− 16, requiring extremely fine lattice spacings

of the order of 0.01 fm or less.

From this brief summary, it is already clear that adopting suitable strategies to deal with such obstacles is necessary

for a reliable numerical computation of χ(T ) from the lattice. In recent years, several lattice determinations of χ(T )

in finite temperature QCD have appeared in the literature, differing in the methods employed to tackle the difficulties

presented so far.

The authors of Ref. [474], for example, give up the sampling of higher-topological-charge sectors and reduce to the

computation of χ from just the Q = 0 and |Q| = 1 sectors, which is justified on the basis of the DIGA itself, in order to

avoid sampling problems related to the dominance of the Q = 0 sector and/or to the topological freezing:

χ ∼ 2Z1

V Z0
, Zn =

∫
Q=n

[dA]e−SYM[A]
∏
f

det{ /D[A] +mf}. (6.6)

In this approach, the computation of χ reduces to the computation of the relative weight Z1/Z0 as a function of T . To

this end, the authors of Ref. [474] compute suitable observables for lower values of T that still allow to observe jumps

from Q = 0 to Q = ±1 sectors, and obtain Z1/Z0 at higher values of T by means of a temperature extrapolation.

Moreover, a reweighting method, based on the expected continuum zero eigenvalues of the Dirac operator, is employed

in [474] to restore a posteriori the suppression due to the determinant of the continuum Dirac operator and thus to reduce

the magnitude of lattice artifacts affecting the gluonic susceptibility:

χ =
1

V
〈Q2〉 → 1

V

〈Q2w(Q)〉
〈w(Q)〉 , (6.7)

where the weight reads

w(Q) =
∏
f

2|Q|∏
i=1

(
m2
f

m2
f + λ2i

)nf/4

, (6.8)

with λi the lowest-lying eigenvalues of the staggered operator Dstag and nf the number of quark species with flavor f .

The authors of Ref. [475], instead, adopt a fermionic discretization of the topological susceptibility based on the

disconnected chiral susceptibility χ(disc):

χ = m2
l χ

(disc) =
m2
l

V

[
〈(ψlψl)2〉 − 〈ψlψl〉2

]
. (6.9)

A similar strategy has been adopted also in Refs. [488, 457, 11]. Such definition is based on the assumption that the

U(1)A flavor symmetry is effectively restored in the deconfined phase, so that the exact continuum relation [489, 490, 491]

χ = m2
l χ

(disc)
5 =

m2
l

V

〈(
Tr{γ5( /D +ml)

−1}
)2〉 (6.10)
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can be approximated with Eq. (6.9), being χ(disc) = χ
(disc)
5 by U(1)A invariance.

In Ref. [477], instead, the authors adopt a different fermionic definition of χ, based on spectral projectors [492, 493,

494, 495, 496] on the eigenmodes of the staggered Dirac operator [497] [635], where the same discretizations for sea and

valence quarks are taken. In a few words, the bare topological charge is defined as the sum of the pseudo-chiralities of the

lowest-lying eigenmodes of Dstag up to a certain cut-off M , whose value is irrelevant in the continuum limit but allows to

control the magnitude of discretization corrections to the continuum limit of χ:

Q
(bare)
SP =

1

4

∑
|λ|≤M

u†λγ
(stag)
5 uλ, iDstaguλ = λuλ, (6.11)

with γ(stag)5 the staggered definition of the Dirac γ5 matrix. Introducing the spectral projector PM ≡
∑
|λ|≤M uλu

†
λ, the

discretized susceptibility is:

χSP = Z
(SP)
Q

2 〈Q(bare)
SP

2
〉

V
=

1

16
Z

(SP)
Q

2 〈Tr2{PMγ(stag)5 }〉
V

, (6.12)

Z
(SP)
Q

2
=

〈Tr{PM}〉
〈Tr{PMγ(stag)5 PMγ(stag)5 }〉

(6.13)

In addition, to restore a proper sampling of suppressed topological sectors, the authors of [477] employ a multicanonical

algorithm, consisting in the inclusion of a topological bias potential in the gluonic action [476, 498, 499, 500]. The bias

is chosen so as to enhance the probability of visiting suppressed topological sectors, and expectation values with respect

to the original distribution are recovered through a standard reweighting procedure.

These recent determinations with Nf = 2 + 1 flavors are displayed and compared in Fig. 6.1. Roughly speaking,

there is qualitatively a general common agreement that, for temperatures T & 300 MeV (i.e., T/Tc & 2) the behavior

of χ(T ) is compatible with a power-law as predicted by the DIGA, with a compatible exponent χ1/4(T ) ∼ (T/Tc)
2.

However, results of Ref. [474] find a very good agreement with the DIGA exponent already soon after the crossover, while

Refs. [457, 475, 477] point out a change in the effective exponent for T/Tc & 2.

Since in recent times several works gathered evidence for the existence of a phase of QCD close to the crossover and

below T ≈ 300 MeVs where non-perturbative effects are dominating [23, 501, 502, 503], this aspect surely deserves to be

further investigated in the near future, with dedicated studies aiming at addressing the behavior of QCD close to the

crossover (see also Ref. [457]).

Nonetheless, we can still fairly conclude that, while the one-instanton semiclassical computation is likely to be not

reliable in the range currently reached by lattice simulations (for example, the authors of Ref. [474] find that the DIGA

prediction is about one order of magnitude smaller than their lattice determinations), the assumption of non-interacting

instantons becomes reasonably reliable when considering temperatures T & 300 MeV. This is also in agreement with results

of Refs. [504, 474, 464, 476], where determinations of the quartic coefficient (related to the quartic axion auto-interaction

term)

b2 ≡ −
1

12

〈Q4〉 − 3〈Q2〉2
〈Q2〉 (6.14)

for T/Tc & 2 are in very good agreement with the well-known DIGA prediction b(DIGA)
2 (T ) = −1/12, which only stems

from the assumption of dilute instantons alone, and is unrelated to the semi-classical calculation needed in addition

to the latter to compute χDIGA(T ) (see also Fig. 7 of Ref. [457] for a comparison of different high-temperature lattice

determinations of b2 in full QCD).
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Figure 6.1: Comparison of different determinations of the fourth root of the topological susceptibility χ1/4 in Nf = 2+1 QCD from

lattice simulations. Diamond points are taken from [477], round points from Ref. [11], triangle points from Ref. [474] (removing the

isospin-breaking factor), while the shaded area represents results of Ref. [475] obtained from the chiral susceptibility for unphysical

pion mass and rescaled according to the DIGA prediction χ1/4 ∼ mπ. For the crossover temperature the reference value Tc =

155 MeV is assumed. For comparison we also report results obtained below the crossover, as well as the NLO two-flavor T = 0

ChPT prediction for degenerate up-down quarks χ1/4
ChPT(T = 0) = 77.8(4) MeV.

As for a quantitative agreement on the value of the topological susceptibility, no conclusive consensus on its exact

behavior as a function of T from different computations performed with different strategies has been reached yet, as it is

manifest from Fig. 6.1. Therefore, the determination of χ(T ) in full QCD from the lattice above the crossover still poses

a difficult yet stimulating challenge, and certainly deserves to be further investigated in the near future.

However, it is interesting to observe that, although the underlined differences exist, their impact on axion mass

windows is not so pronounced. Solving the axion equation of motion in the background of the Friedmann–Lemaître–

Robertson–Walker metric, and using the simple DIGA parametrization for the θ-dependence of the QCD free energy

fDIGA(θ) = A

(
T

Tc

)−d
cos(θ), (6.15)

it is possible to derive:
ΩA

ΩDM
' Cm−

3.053−d/2
2.027−d/2

a , (6.16)
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where ΩA is the relic axion energy density, ΩDM is the observed Dark Matter energy density, and C is a pre-factor

depending weakly on the decay constant d and mainly and on the pre-factor A appearing in Eq. (6.15), as well as on the

details of the axion model. More details on the derivation of Eq. (6.16) can be found, e.g., in Refs. [457, 488, 11, 505].

Using the parametrization (6.16), it is possible to show that even by changing d by a factor of 2 or A by four orders of

magnitude, the axion mass predictions stay essentially in the same ballpark [457, 488, 11], cf. also Fig. 6.2.
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Figure 6.2: Figure taken from Ref. [11]. Dependence of the ratio ΩA/ΩDM on the axion mass according to Eq. (6.16) for

physical [11] and unphysical [488] pion mass ensembles. For the mπ ' 140 MeV ensemble, parameters A and d obtained from the

best fit of data of Ref. [11] to Eq. (6.5) are varied as written in the legend.

Nonetheless, further studies to clarify the high-temperature behavior of the QCD topological susceptibility would be

welcome, and the current state of the art can be improved in several directions. For instance, it would be interesting to

refine existing results closer to the crossover, where non-perturbative effects are more pronounced, and where most of the

current tensions take place. It would also be intriguing to probe higher temperatures from lattice simulations, as most of

the results obtained so far, with only the exception of Ref. [474], were limited to the 160 MeV . T . 600 MeV range. In

particular, it would be extremely interesting to reach temperatures of the order of ∼ 1 GeV or above (i.e., T/Tc ∼ 10),

which is also necessary to study axion cosmology.

However, probing such high temperatures is at present an extremely tough challenge from the numerical point of view,

because of the topological freezing problem. At present, several promising proposals have appeared in the literature to

deal with the topological slowing down in simpler models. As an example, in Ref. [506], machine-learning techniques via

the so-called Equivariant Flows are employed to mitigate freezing in the 2D U(1) gauge theory, and extensions to more

complex gauge theories are expected in the near future. Another proposal can be found in Ref. [217] (see also [628]),

a strategy based on the adoption of a parallel tempering scheme on the inverse gauge coupling β in combination with

the Density of States approach has been adopted in the pure SU(3) gauge theory to reduce the large auto-correlation

times affecting the Monte Carlo evolution of Q [217]. Another promising solution is the parallel tempering on boundary

conditions proposed by M. Hasenbusch for 2D large-N CPN−1 models [507] and adopted both in the latter case [487, 508]

and in 4D large-N SU(N) pure-gauge theories [509, 510] to mitigate the effects of the topological slowing down by reducing

the auto-correlation times of Q by up to several orders of magnitude.
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6.3. The Road Ahead

Topology in QCD plays a central role in determining the non-perturbative properties of the theory, and has been further

revived by the quest for QCD axions. Further discussions on topology will be included in the contributions to a dedicated

series of workshops that are planned to be held in Europe in 2023 and following years. For instance, NA6 participants

are involved in the new EU COST “CosmicWISPers”, involving both Claudio Bonanno and Maria Paola Lombardo.

Moreover, topology will also be the main topic of the dedicated series of workshops “Gauge Topology”, co-led by Massimo

D’Elia, that is held in ECT? in Trento every two years. Finally, the QCD axion physics will also be covered during the

“Lattice Gauge Theory Contributions to New Physics Searches” workshop in Madrid, which includes Claudio Bonanno in

the organizing committee. In the near future, we foresee a more robust limit on the QCD axion mass, as well as more

in-depth studies of the axion potential. Such studies will also help in clarifying the role of topology in the Quark Gluon

Plasma phase (see also the discussion in Sec. 3).

7. Statistical Field Theory14

In this section we discuss three topics which show how strong the connection between Quantum Field Theories and

Condensed Matter/Statistical Mechanics Models is. These advanced topics were covered in [636, 637, 638]. Discussions

on applications of universality classes for continuum transitions and conformal theories are in Sections 2, 5.

7.1. Phase Diagram of Three-Dimensional Abelian-Higgs Models

Three-dimensional Abelian gauge theories coupled to scalar matter (Abelian-Higgs models) have recently drawn significant

attention, as they arise as low-energy effective field theories describing unconventional states of matter with fractionalized

quantum numbers occurring in two-dimensional strongly-correlated quantum systems. They are relevant for supercon-

ductors, superfluids, and quantum SU(N) antiferromagnets [511, 512, 513, 514, 515, 516, 517, 518]. In particular, they

are expected to describe the transition between the Néel and the valence-bond-solid state in two-dimensional antiferro-

magnetic SU(2) quantum systems [519, 520, 521, 522, 523, 524, 525, 526], which represents the paradigmatic model for

the so-called deconfined quantum criticality [527]. The behavior in the presence of massless fermionic excitations is also

equally relevant in, e.g., high-Tc superconductors and spin liquids; see Refs. [528, 529, 530, 531, 532, 533, 534, 535] and

references therein.

In the lattice scalar Abelian-Higgs (AH) model the scalar fields are N -component vectors φx defined on the sites of

a lattice. As for the gauge fields, two different formulations are possible. In the noncompact model the gauge field is a

real field Ax,µ defined on the sites of the lattice (for definiteness we consider cubic lattices, so that each link is labelled

by a lattice site x and a direction µ) and the gauge group is the additive group of the real numbers R. In the compact

formulation, the gauge field is a complex phase Ux,µ and the gauge group is U(1). The action is S = Sφ + Sg, where the

matter-field part is

Sφ = −J
∑
xµ

φ∗x · φx+µ̂ UQx,µ +
∑
x

V (|φx|), (7.1)

where V (x) is a generic potential [most of the numerical work considered fixed-length fields, corresponding to V (x) =

δ(x− 1)]. Here Q is the integer charge of the fields (it is only relevant in the compact case) and Ux,µ = exp(iAx,µ) in the

14Editors: Michele Caselle with Andrea Pelissetto and Marianna Sorba
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noncompact case. The gauge action Sg is the standard Wilson action in the compact case; otherwise we set

Sg = κ
∑

x,µ>ν

(∇µAx,ν −∇νAx,µ)2, (7.2)

where ∇µf(x) = f(x + µ̂) − f(x) is the lattice nearest-neighbor derivative. The model is invariant under U(1)/R local

and SU(N) global transformations.

AH models have been extensively studied, see Refs. [536, 537, 538, 539, 540, 541] and references therein. The phase

diagram turns out to depend in a nontrivial fashion on the compact/noncompact nature of the gauge interactions and

also the charge of the scalar fields (see Ref. [542] for a discussion of the charge-dependence of the phase diagram). Here

we will summarize the behavior along two different transition lines where the scalar field condenses and the global SU(N)

symmetry of the theory is broken.

For small values of κ, there is an order-disorder transition at a finite value Jc(κ) of the scalar coupling J . Such a

transition is always discontinuous, except for N = 2. For N = 2 the transition is continuous, in the O(3) universality class,

irrespective of Q and of the nature of the gauge fields. These small-κ transitions are an example of Landau-Ginzburg-

Wilson (LGW) transitions. In this case, an effective description is obtained by considering a gauge-invariant scalar field

Ψ that represents a coarse-grained version of the microscopic order parameter that signals the onset of long-range order.

The effective action is then the most general Ψ4 theory that is invariant under the global symmetry group of the AH

model. At LGW transitions the gauge group and the nature of the gauge fields do not play any role. Gauge invariance

is only relevant in defining the set of observables that show a critical behavior.

For large values of κ, AH systems also undergo an order-disorder transition, but in this case model details are relevant.

For the compact model with Q = 1, the transition has the same nature as for small κ: it is an LGW transition. On the

other hand, in the noncompact case or in the compact case with charge-Q fields, Q ≥ 2, a critical transition is observed

for N ≥ 7(2) [539, 540, 541]. This transition is associated with a stable fixed point of the renormalization-group flow of

the continuum AH field theory. The fixed point is charged—the renormalized gauge coupling is nonvanishing at the fixed

point—signalling that gauge fields play a role in determining the critical behavior.

It is important to extend the present analysis to AH models with fermions, which are relevant to understand the

finite-temperature QCD transition. The analysis pioneered by Pisarski and Wilczek [13] effectively assumes that this

transition is a LGW one in which only the global symmetry group is relevant. However, we cannot exclude a priori the

existence of continuous transitions with critical gauge excitations as it occurs in the scalar AH model for N & 7. Further

work is clearly needed to settle this issue.

7.2. Interfaces Near Criticality: Results from Field Theory

In statistical systems exhibiting a phase transition, the coexistence of different phases at criticality naturally leads to the

formation of an interface. On the other hand, in particle physics, the confinement of quarks into hadrons is effectively

described in terms of a string spanning an interface over time. Since duality relates a lattice gauge theory to a spin

model, the two problems turns out to be deeply connected and both conveniently addressed using the Ising model as a

base system.

We thus consider the three-dimensional Ising model in its broken Z2 symmetry phase below the critical temperature

Tc, where an interface separating coexisting phases of opposite magnetization is easily induced by a suitable choice of

the boundary conditions. The linear size R of the interface must be much larger than the correlation length ξ, in order
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that the two distinct phases emerge over bulk fluctuations. In [543] the phenomenon is studied for a slab geometry of

size L × L × R (with L → ∞), in which the magnetization tends to the pure values ±M as x → ±∞ hence creating an

interface running between the lines x = 0, z = ±R/2. Conversely, only the half-volume x ≥ 0 is considered in [544] with

the interface pinned along the boundary condition changing lines z = ±R/2 on the impenetrable wall x = 0. Working

in the scaling limit slightly below Tc, universal properties emerge and both systems are described by a field theory that

admits a particle description. As a consequence, the interface is depicted as the propagation of a string of particle modes

and this provides insight on the interfacial tension (i.e. the free energy of the interface per unit area), which is found for

both geometries to be related to the particle density along the string and to be fully consistent with an independent Monte

Carlo estimation provided in [545]. It is then possible to derive analytically the expectation value of any observable with

the given boundary conditions 〈Φ(x, y, z)〉±, using the asymptotic n-particle states |p1, ...,pn〉 of the bulk field theory

as a basis on which generic excitations can be expanded. More specifically, the configurational averages are expressed

in momentum space and the condition R � ξ selects the low energy particle modes. The analytic results for the order

parameter profile 〈s(x, y, z)〉± are on one side [543] explicitly confirmed by means of Monte Carlo simulations performed

for different values of R and T . Tc, in total absence of adjustable parameters; on the other side [544], they allow for

a simple probabilistic interpretation of the interface as a sharp separation between the two phases. Moreover, in the

half-volume system [544], the particle formalism explains the transition from a fluctuating to a binding regime of the

interface with respect to the wall, when their interaction becomes sufficiently attractive. Thanks to scattering theory,

some key parameters characterizing the binding transition are computed and compared with numerical data coming from

the phenomenological wetting theory.

As already anticipated, the study of interfaces in spin models can be useful even when dealing with lattice gauge

theories. Concerning the three-dimensional Ising model, we know that it is mapped by duality into the three-dimensional

Ising gauge model and, for instance, the interface free energy is analogous to the Wilson loop expectation value. We could

hence expect our exact formulation of interfaces close to criticality to be valuable also in characterizing observables close to

the critical point in the three-dimensional Ising gauge model. Otherwise, an effective description of the interface behaviour

can be adopted, resulting in capillary wave theory for the spin model and effective string theory for the corresponding

lattice gauge model. In particular the capillary wave model corresponds (see [546, 547] for a discussion of this point) to

the well known Nambu-Goto effective string theory [548, 549], which has been shown in the last few years to give a very

precise description of Wilson loops thanks to the so-called low energy universality theorem (see [550, 551] for a review).

7.3. Infrared Finiteness of Three-Dimensional Super-Renormalisable QFTs

Three-dimensional super-renormalisable scalar QFTs with fields in the adjoint representation of the SU(N) group attracted

lot of interest in the past as effective (dimensionally reduced) theories describing the high-temperature limit of four-

dimensional Yang-Mills theories (see, for example, [552, 553, 554, 555, 556, 557]). More recently these theories attracted

a renewed interest as candidate holographic models for the very early universe [558].

A relevant open problem in this context is represented by the fact that massless super-renormalisable quantum field

theories suffer from severe infrared (IR) divergences in perturbation theory: the same power counting argument that

implies good ultraviolet (UV) behavior also implies bad IR behavior. These IR singularities were discussed several years

ago in [559, 552] where it was conjectured that such theories are nonperturbatively IR finite. The lattice regularization

offers a perfect setting to address this issue, which was recently discussed in [560] in the particular case of scalar QFTs
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with a φ4 interaction and fields in the adjoint representation of the SU(N) group with N = 2, 4.

When studied in lattice perturbation theory, these theories exhibit a logarithmic IR divergence for the critical mass

at the two-loop level. However this divergence was not present in the lattice simulations of [560] thus providing strong

evidence for the IR-finiteness of the full theory. From the lattice results it was also possible to obtain a nonperturbative

determination of the critical masses which turns out to agree with 2-loop perturbation theory, and a determination of the

critical exponent which turns out to be close to the leading-order effective theory prediction [560].

These results open the way to a better understanding of the infrared properties of this class of models which could

have remarkable implications both for the high T description of Yang–Mills theories and for candidate holographic models

of the early Universe.

7.4. The Road Ahead

The three examples discussed in this section show how powerful the Statistical Field Theory approach can be when

combined with simulations. This is particularly true for critical systems and more generally for systems in the neighbour-

hood of a phase transition which are the main focus of this report. Statistical Field Theory allows to propose effective

description for the systems of interest (LGW models for the phase diagram of Abelian Higgs models, effective strings for

the interfaces, holografic models for the early universe...) which can then be tested and refined with Monte Carlo simula-

tions. With the improvement of computing power and algorithms (see the next section for a discussion of the remarkable

performances of new, machine learning based, algorithms), this virtuous circle between effective theories and simulations

will lead to more and more refined models also for QCD related phase transitions and, what is more important, to a more

precise description of the relevant degrees of freedom in this context.

8. Machine Learning15

8.1. Introduction

Recent advances in the implementation of Machine Learning (ML) techniques for physical systems, especially those which

can be formulated on lattices, appear to be suitable for observing the corresponding underlying phase structure of the

aforementioned systems [561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578]. This, was

firstly observed in the novel work by J. Carrasquilla and R. G. Melko in 2017 [579] where they used supervised machine

learning architectures with fully connected and convolutional neural networks to identify phases and phase transitions

in a variety of condensed-matter Hamiltonians. For instance, they can estimate to an adequate precision the critical

exponents as well as the critical temperature for the 2D ferromagnetic Ising model. The above advance was followed by

a plethora of investigations using Principal Component Analysis (PCA) [563, 562, 567, 580, 581], Supervised Machine

Learning (ML)[564, 571, 582], Restricted Boltzmann Machines (RBMs) [583, 584], as well as autoencoders [567, 566]

which appear to successfully identify different phase regions of classical statistical system. Since Quantum Field Theories

can be represented in the form of statistical systems it would be reasonable to expect that such methods could apply in

Quantum Field Theories. So far only a few investigations dealt with the phase structure of Quantum Field Theories on

the lattice. These works will be reviewed throughout this next chapter.

15Editor: Andreas Athenodorou with Gert Aarts, Biagio Lucini and Dimitrios Bachtis
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8.2. Phase Transition Recognition in SU(N) Gauge Theories and QCD

The first investigation which has provided a successful identification of the confining-deconfining transition in SU(2)

gauge theory using Machine Learning techniques has been reported in Ref. [585]. Namely, the authors using Principal

Component Analysis (PCA) on configurations produced for a range of values of β, demonstrated that even though the

SU(2) order parameter Polyakov loop is non-linear, PCA captures indications of a phase transition at the range of β ∈
[1.8, 2.2]. This has been achieved by probing the “average mean squared error reconstruction loss” as well as the “average

norm of the PC”. Surprisingly, at the same time they demonstrated that there is no correlation between the Polyakov loop

and the principal components. Bear in mind that SU(2) link matrices can be mapped to four real numbers multiplying

the 3 Pauli matrices and the unity.

Subsequently, the authors turned to the investigation of the phase structure using the Correlation Probing Neural

Network. The Correlation Probing Neural Network consists of three types of neural networks stacked on top of each other.

The localization network is a fully convolutional neural network which prohibits connections outside of the receptive field of

each output neuron. The averaging layer averages over the input from the localization network. The prediction network

is a fully connected neural network, which transforms the output of the averaging layer to a prediction probability.

The authors trained the correlation probing neural network in a supervised manner on SU(2) Monte Carlo-sampled

configurations at lattice couplings β ∈ [1, 1.2] in the deconfining phase and β ∈ [3.3, 3.5] in the confining phase. Then,

they tested the neural network for values of lattice coupling β ∈ [1.3, 3.2] and they predicted a phase transition at

β = 1.99± 0.10 for lattice of T × Lx × Ly × Lz = 2× 1× 1× 1 and β = 1.97± 0.10 for a lattice of 2× 8× 8× 8 while a

conventional lattice calculation gives a critical value of β = 1.880± 0.025. This result has been obtained by probing the

average prediction probability.

Finally, the authors move to the more conclusive part of their investigation where they trained a new neural network

on the local data samples in order to classify the phases of each local sample. This enables the local neural network to

associate a prediction to each patch. The authors performed polynomial regression on the latent prediction of the local

neural network. By extracting the weights of the regression they demonstrated that the parameter which quantifies the

phase transition is nothing else but the Polyakov loop on a single spatial lattice site! Subsequently, by acting on the full

lattice the decision function takes the form of the Polyakov loop as the argument on a Sigmoid function on the full lattice.

This is a clear evidence that supervised machine learning can predict the correct order parameter of the theory.

The work of Ref. [585] was followed by the investigation of the phase structure of SU(2) and SU(3) in Ref. [586]. The

authors have developed a supervised Machine Learning network capable of identifying the order parameter of the theory,

namely the Polyakov loop. The architecture of the neural network they used can be summarised in the next couple of lines.

SU(2) is parametrized by four real numbers while for SU(3) the authors used the full set of 9 complex numbers. Consider

a gauge field with
[
Nt, Ns, Ns, Ns,Dim, ~vSU(N)

]
, where Nt, Ns = Nx = Ny = Nz the temporal and spatial lattice extents,

Dim the direction µ of the matrix Uµ(x) at every lattice site [Nt, Ns, Ns, Ns] and ~vSU(N) the vector of the representation

with size 4 and 9 for SU(2) and SU(3) respectively. The architecture of the neural network for the prediction of the

Polyakov loop in the SU(N) gauge theory is expressed as first for Nt = 2: Inputlayer: (Nt, Ns × Ns, Ns,DimU) →
Convolutional3D (Nt, Ns × Ns, Ns,DimU) → AveragePooling3D (Nt, Ns × Ns, Ns, 16) → Flatten (1, 1, 1, 16) → Dense

(16) → 1 while for Nt = 4: Inputlayer: (Nt, Ns × Ns, Ns,DimU) → Convolutional3D (Nt, Ns × Ns, Ns,DimU) →
Convolutional3D (2, Ns ×Ns, Ns, 256) → AveragePooling3D (1, 1, 1, 32) → Flatten (1, 1, 1, 16) → Dense (32) → 1.

For training purposes the authors generated 9000 lattice configurations at the one value of β of the lattice coupling,
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β = 4 for SU(2) and β = 10 for SU(3), for lattices with the spatial sizes Ns = 8, 16, 32 and the temporal sizes Nt = 2, 4.

In addition for prediction purposes they also generated 100 configurations for a number of points at lower values of the

coupling β, that the neural network does not use for training but rather for prediction.

The network is being trained on the lattice configurations generated in the (volume-induced) deconfinement phase at

a point of β which is far from the phase transition point. The neural network is trained to predict correctly the value of

the Polyakov loop that is already known from the Monte Carlo simulations. The training is done in batches of 10 - 50

configurations. The authors used the mean squared error (MSE) as a loss function.

The overall findings resulted out of this investigation demonstrate that the neural network which was trained on a value

of β located deep in the deconfinement region reproduces the Polyakov loop with a perfect agreement with Monte-Carlo

data at all other values of the lattice coupling constant including the region of the true deconfinement transition. Hence,

what the authors demonstrated is that the neural network serves as a successful predictor of the confining-deconfining

phase transition obtained by reconstructing the gauge-invariant order parameter in the whole physical region of the β-

parameter space after one performs training on lattice configurations at one unphysical point in this space. It would have

been useful to extent this work from the second order phase structure of SU(2) and the weakly first order phase structure

of SU(3) to SU(N > 3) where the phase structure is strongly first order.

Recently, the authors of the Lattice 2021 Proceedings [587] published results on the investigation of the critical

temperature on pure SU(3) gauge theory as well as in Nf = 2 + 1 + 1 QCD using Machine Learning techniques.

Instead of probing the actual SU(3) configurations which can be reduced down to eight real numbers, per lattice point

and per Euclidean direction, the authors extracted the temporal Polyakov loop for each time slice. The above set-up

corresponds effectively to a 3-dimensional system where the basic degrees of freedom are the values of the Polyakov loop

at each point of the effective 3D grid.

To classify configurations of Polyakov loops at different temperatures, the authors built a 3D-convolutional autoencoder

using TensorFlow [588] and Keras [589]. The autoencoder is trained, as a whole, to reproduce as output its own input.

When this is achieved, the encoded classifier effectively encodes the most important feature(s) describing the variety of

the input. The authors simplified the process, by performing a semi-supervised training by pinning some of the input

configurations at extreme temperatures to predefined values of the encoded classifier.

For the pure SU(3) gauge theory the authors used configurations of size T ×Nx ×Ny ×Nz = 4× 8× 8× 8 produced

using the MILC code. For this choice of geometry and action the pseudocritical coupling is βC = 5.69(2) giving a

critical temperature of TC ∼ 260 MeV. The authors analysed 30 configurations for each temperature. The configurations

span a wide range of the coupling parameter β from strong to very weak coupling. By training the autoencoder as an

unsupervised and semi-supervised classification problem the authors obtained an encoded classifier clearly related to the

order parameter which in this case is the Polyakov loop. As a matter of fact two phase sectors are identified by the

encoded classifier, one below TC and one above. Namely, above TC the unsupervised scheme highlights the Z3 symmetry

breaking with three different values of the encoded classifier being equally probable while below Tc there is only one

possibility with the encoded classifier being zero. When it comes to the semi-supervised learning problem, the authors

pinned a fraction of ∼ 20% of the training configurations at the lowest and highest values of T by assigning an encoded

classifier of 0 and 1 for confining and de-confining phase respectively. The network appears to successfully recognise the

phase transition at T ' TC .
Regarding full QCD with Nf = 2 + 1 + 1 fermions, the configurations have been produced with Wilson fermions at
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maximal twist on a lattice of 323 spatial volume with the strange and charm masses having their physical values while the

pion mass being Mπ ∼ 370 MeV. The pseudocritical temperature is Mπ ∼ 200 MeV. For each temperature the authors

used 200 Polyakov loops configurations. For the case of QCD, the Polyakov loop is no longer an order parameter and

the identification of a phase transition based on the Polyakov loop is not theoretically justified as before. The authors

studied the semi-supervised problem by assigning to the configurations at low temperatures an encoded classifier of 1 and

at higher temperatures of 0. The resulting encoded classifier turns out to be a much smoother function compared to the

one for the pure gauge theory. This is somehow expected since the phase transition for the QCD configurations is known

to be a crossover. From the encoded classifier the authors could identify two classes separated at temperature T ∼ 1.5TC .

The authors have successfully used the Convolutional neural networks trained as either unsupervised or semi-supervised

classifiers to identify different phases of gauge theories in both pure gauge as well as full QCD. Further work needs to be

carried out, namely by moving to a finer temperature scan, a finite-size scaling and continuum limit. This will improve

the performance of the autoencoder. Finally, this will hopefully provide further insight into Machine-Learning approaches

to the study of phase transitions.

Recently, in Ref. [37] the authors used Normalizing Flows instead of the traditional rewriting in β in order to interpolate

the chiral condensate obtained from QCD simulations with five degenerate quarks. Namely, the authors performed

calculations in five-flavor QCD (Nf = 5) using the HISQ action with quark masses in the range 0.001 ≤ ml ≤ 0.016 and

gauge couplings β = 4.5 − 5.4. They used 4-dimensional lattices with volume N3
sNt, with temporal extent Nt = 6 and

spatial volumes N3
s = 163, 243. Subsequently, they performed the classical reweighing in β to provide an interpolation of

the chiral condensate in β.

Lattice QCD calculations typically are done at a few values of the gauge coupling beta and reweigthing in beta is a

popular method for interpolating lattice results. This method requires a large number of measurements, performed at a

large number of beta values since the observable we are interested in is extracted via the 2D histogram of the action and

the observable. As explained before the observable under investigation is the chiral condensate and the interpolation is

done in the direction of beta. Applying reweighting reveals reasonable results for small masses (0.002 ≤ ml ≤ 0.005), but

exhibits over-fitting for larger values of masses (ml = 0.006, 0.008).

Followingly, authors turned to normalizing flows which are state-of-the-art ML tools for modeling probability dis-

tributions in physical systems. They made use of MAF (Masked Autoregressive Flow) [590] model with eight MADE

(Masked Autoencoder for Distribution Estimation) [591] blocks. Compared to the classical reweighting, this method has

the advantage of allowing to interpolate in any parameter. As a matter of fact, in this process there is no need for

overlapping distributions of the action density and the method is able to process continuous data. The cost to pay in

order to visualize the learned probability distribution is the fact that one needs to draw a large number of samples from

the model to fill a two dimensional histogram. In practice, the model learns to transform a 2D-Gaussian distribution to

expectations of the chiral condensate and action (ψ̄ψ, S) conditioned on the parameters (Ns, ml, β). The evaluation of

the model was performed for All the integer values of Ns ∈ [16, 24], β ∈ [4.5, 5.4] in steps of 0.001 and ml ∈ [0.001, 0.006]

in steps of 0.001 and for the larger masses ml ∈ [0.008, 0.016] in steps of 0.002. This allowed the authors to fit the entire

data set with a single function p(ψ̄ψ, S|Ns,ml, β) in contrast to the β-reweighting according to which one needs to do

independent reweighting for each mass and volume. A comparison to the reweighting method reveals that the normalizing

flow results appear to give a better fit since now the data points support each other also in ml and Ns-directions and not

just in β. As a result, the method of normalizing flows removes over-fitting appearing in the traditional β-reweighting.
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A glimpse at the 2D histogram in the ψ̄ψ−S plane as well as at the 1D histogram in ψ̄ψ reveal two phases in the small

quark mass regime while only one at the large mass regime which manifest as two and one peaks respectively. The double

peaks signal the occurrence of a first order phase transition. To determine the quark mass dependence of the double peaks

the authors turned to the phase diagram 〈ψ̄ψ〉 in the ml-β plane. This enabled them to demonstrate evidence that the

first order region ends in a second order end point at about mc
l ' 0.0045. As the gap between the peaks at low and high

values β becomes smaller, larger lattices will be needed to resolve these two peaks and establish a gap between them. To

locate the end point the authors used another ML based approach called the EOS-meter.

According to the Equation-of-State (EOS) meter, one can use convolutional neural network model to create density

plots [592]. The authors used a recent approach call the transformer model [593], which is solely based on attention

mechanisms and has been shown to outperform convolutional neural networks in translation tasks. The density plots

revealed, at the smallest masses, a two peak behaviour with a clear gap which is characterized as “first-order” while in the

largests masses one peak behaviour has been spootted characterized as “crossover”. “Firstorderness” and “crossoverness”

were implemented as categories in one-hot-encoding. The resulting EOS-meter shows that the critical masses marking

the borders between first order and crossover regions, extracted via logistic fits to the “firstorderness”, indicate a critical

mass at mc ' 0.005(1).

As a further investigation, one should move to the extraction of the phase diagram of QCD with Nf flavours in the

continuum. To this purpose one should use larger values of Nt. One can also extend the set of interpolating parameters

to (Nf , Ns, Nt,ml, β), however this would require a large amount of training data.

8.3. Phase Transition Recognition in Other Theories

We now turn to additional investigations which are focussing mostly on simpler theories such as the φ4 scalar field theory

as well as the Ising model.

First, we present the work of Refs. [639] and [594], where the authors discussed the adoption of Euclidean quantum

field theories in machine learning algorithms, which makes inference and learning possible using quantum field dynamics.

To do so, it was first demonstrated that the φ4 scalar field theory satisfies the Hammersley–Clifford theorem. As a result,

the quantum field theory can be recast as a machine learning algorithm within the mathematically rigorous framework

of Markov random fields. Various applications are then possible. For a fixed target distribution, the parameters of

the best approximating φ4 model are obtained by minimising the Kullbach–Leibler divergence (which is an asymmetric

distance) between the two. In practical applications, the effectiveness of the minimisation is an indicator of the goodness

of the approximation. Through re-weighting, the analysis can be extended to complex-valued actions with longer-range

interactions. Moreover, neural networks architectures derived from the φ4 theory can be viewed as generalisations of

conventional neural networks. It is noted that the aims of this work are two-fold: the approach can provide a new

perspective on machine learning with continuous degrees of freedom using the language of quantum fields, while also

providing a new look at quantum fields when employed as building blocks in neural networks.

Subsequently, we present the work of Refs. [640] and [595] which discusses deep learning autoencoders for the un-

supervised recognition of phase transitions in physical systems formulated on a lattice. Their work elaborates on the

applicability and limitations of this deep learning model in terms of extracting the relevant physics. Their results are

presented in the context of 2D, 3D and 4D Ising models as well as the XY model, and the focus is on the analysis of the

critical quantities at 2D (anti)ferromagnetic Ising Model. The authors defined as a quasi-order parameter, the absolute

42



average latent variable, which enabled them to predict the critical temperature to an adequate precision. In this way one

can define a latent susceptibility from the latent variable and use it to quantify the value of the critical temperature Tc(L)

at different lattice sizes and that these values suffer from smaller finite scaling effects compared to what one obtains from

the magnetic susceptibility. Hence, the deep learning autoencoder could potentially provide a tool which can enable the

extraction of physical parameters with much better accuracy that the traditional ways.

Finally, we briefly present the work which can be found in [641]. This project demonstrates that the combination

of renormalization group methods and machine learning algorithms opens up the opportunity to overcome fundamental

problems in computational studies of phase transitions, such as the critical slowing down effect. In this work, the authors

discuss applications of machine learning for phase transitions and presents a construction of inverse renormalization

group transformations that enables the generation of configurations for increasing lattice volumes in absence of the

critical slowing down effect. Results are presented for the two-dimensional Ising model and the φ4 theory.

Specifically, the authors demonstrate that the inclusion of a neural network function within the Hamiltonian of the

two-dimensional Ising model is able to induce a phase transition by breaking or restoring its symmetry [596]. Another

topic of discussion concerns the implementation of a machine learning approach, based on a set of transposed convolutions,

to invert a standard renormalization group transformation in the case of the φ4 theory [597]. The inverse transformations

are then applied consecutively to iteratively increase the volume of the system, without experiencing the critical slowing

down effect. Both methods result in accurate calculations of multiple critical exponents for the aforementioned systems

using renormalization group techniques based on matching observables on lattices of different sizes. These methodological

advances rely on the observation that machine learning quantities can be interpreted as statistical-mechanical observables.

Consequently the opportunity to apply histogram reweighting to extrapolate them in parameter space is additionally

explored [598]. Finally, an application of a machine learning technique called transfer learning is discussed, which indicates

similarities in order-disorder phase transitions [599]. These similarities extend beyond the notions of symmetry and

dimensionality which generally characterise the concept of universality.

8.4. The Road Ahead

In summary, machine learning implementations, when combined with renormalization group approaches, are capable of

providing significant computational benefits and novel physical insights into studies of phase transitions. These include

the evasion of the critical slowing down effect with the inverse renormalization group, and the inclusion of neural networks

within Hamiltonians to induce symmetry-breaking phase transitions in systems. As a result, one envisages the benefits of

extending the methods discussed here to more complicated and physically relevant systems, such as lattice gauge theories.

A future workshop Machine Learning approaches in Lattice QCD - An interdisciplinary exchange organised by Nora

Brambilla and others at the Institute for Advanced Study of the Technische Universität München will further investigate

this topic. The work Density of States approach conducted by Biagio Lucini in [628] should also be further discussed. For

a recent flow-based density of states application to complex actions see [600].

9. Parting Remarks

We have inserted a few comments at the end of each Section, and we would not reiterate them here.

We just summarize that this work highlights, and motivates further, interactions with experimentalists and phenome-
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nologists active in relativistic heavy ion collisions; and with the nuclear astrophysics community, towards the calculation

of the equation of state of dense matter and its impact on gravitational waves analysis. Away from these core hadron

physics fields, relevant directions include physics beyond the standard model, in particular those aspects related with a

strongly coupled Higgs Sector, and the broad field of axions and dark matter. The methodological obstacles related with

the sign problem would clearly benefit from closer exchanges with mathematicians and computer scientists.

From the point of view of computational techniques, it is worth remarking that new developments in the rapidly

expanding field of quantum computing could lead to major scientific breakthroughs in the coming decades. As already

envisioned by Richard P. Feynman in his 1982 work [601] and remarked in Ref. [629] (see also Ref. [220]), the use of

intrinsically quantum computing devices to simulate the quantum field theories describing the elementary constituents

of the physical world could have disruptive scientific potential. In particular, it may open the path to solve some of the

most challenging problems, including the study of real-time dynamics of strongly coupled theories, the derivation of the

properties of systems at finite fermionic densities, and the strong CP problem.

More generally, the computational aspects remain of crucial relevance for the research topics covered in this review,

at the time of the transition between PRACE and EuroHPC [602], and the progress towards Exascale computing [642].

These issues are also relevant for Open Science policies in the LFT community [603],

The lattice community may provide crucial input to this discussion, and in return greatly benefit from the new

developments.

Acknowledgements

This review has been prepared within the framework of the LatticeHadrons Network of STRONG-2020 “The Strong

Interaction at the Frontier of Knowledge: Fundamental Research and Applications” as deliverable D17.2. STRONG-2020

has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement

No. 824093.

The layout and general content of the manuscript were discussed during the meeting Phase Transitions in Particle

Physics held in GGI, Firenze, 28th March – 1st April 2022.

The manuscript has been prepared by some of the organisers and the speakers, and we warmly thank all the other

participants16 and organisers17 for the talks and discussions which have been most useful for this work. In particular we

16Workshop participants: Gert Aarts, Joerg Aichelin, Chris Allton, Andreas Athenodorou, Dimitrios Bachtis, Claudio Bonanno, Vitaly

Bornyakov, Nora Brambilla, Elena Bratkovskaya, Costanza Conti, Roberto Contino, Salvatore Cuomo, Francesca Cuteri, Tetyana Galatyuk,

Jacopo Ghiglieri, Jana N. Guenther, Tim Harris, Rachel Houtz, Frithjof Karsch, Benjamin Kitching-Morley, Andrey Yu. Kotov, Ilya Kudrov,

Anirban Lahiri, Biagio Lucini, Lorenzo Maio, Jan Pawlowski, Michael J. Peardon, Andrea Pelissetto, Owe Philipsen, Antonio Rago, Claudia

Ratti, Michele Redi, Roman Rogalyov, Sinéad Ryan, Francesco Sannino, Chihiro Sasaki, Philipp Schicho, Christian Schmidt-Sonntag, Sipaz

Sharma, Olga Soloveva, Marianna Sorba, Giovanni Villadoro, Uwe-Jens Wiese
17Workshop organisers: Claudio Bonati, Mattia Bruno, Michele Caselle, Leonardo Cosmai, Massimo D’Elia, Petros Dimopoulos, Francesco

44

http://www.strong-2020.eu/
https://www.ggi.infn.it/showevent.pl?id=430
https://www.ggi.infn.it/showevent.pl?id=430


are grateful to Vitaly Bornyakov, Roman Rogaliov and Ilya Kudrov.

It is a pleasure to thank the other members of the LatticeHadrons Network core group Mike Peardon, Gunnar Bali,

Gregorio Herdoíza, and Hartmut Wittig for their help and support.

The GGI hospitality and perfect organization of the workshop are gratefully acknowledged.

Gert Aarts and Chris Allton are supported by the UKRI Science and Technology Facilities Council (STFC) Consoli-

dated Grant No. ST/T000813/1.

Andreas Athenodorou has been financially supported by the European Union’s Horizon 2020 research and innovation

programme “Tips in SCQFT” under the Marie Skłodowska-Curie grant agreement No. 791122 as well as by the NI4OS-

Europe funded by the European Commission under the Horizon 2020 European research infrastructures grant agreement

no. 857645.

Claudio Bonanno acknowledges the support of the Italian Ministry of Education, University and Research under the

project PRIN 2017E44HRF, “Low dimensional quantum systems: theory, experiments and simulations”. The work of

Claudio Bonanno is also supported by the Spanish Research Agency (Agencia Estatal de Investigación) through the grant

IFT Centro de Excelencia Severo Ochoa CEX2020-001007-S and, partially, by grant PID2021-127526NB-I00, both funded

by MCIN/AEI/10.13039/501100011033. Claudio Bonanno also acknowledges support from the project H2020-MSCAITN-

2018-813942 (EuroPLEx) and the EU Horizon 2020 research and innovation programme, STRONG-2020 project, under

grant agreement No 824093.

Nora Brambilla acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence “ORI-

GINS” under Germany’s Excellence Strategy - EXC-2094 - 390783311 and from the DFG Project-ID 196253076 - TRR

110.

Elena Bratkovskaya, Frithjof Karsch, Christian Schmidt, Olga Soloveva and Sipaz Sharma acknowledge support by

the Deutsche Forschungsgemeinschaft (DFG) through the grant CRC-TR 211 “Strong-interaction matter under extreme

conditions” - project number 315477589 - TRR 211.

The research of Mattia Bruno is funded through the MUR program for young researchers “Rita Levi Montalcini”.

The work of Francesco Di Renzo has received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant agreement No. 813942 (EuroPLEx).

Tetyana Galatyuk acknowledges support by the DFG CRC-TR 211, HFHF, ELEMENTS:500/10.006, GSI F&E,

EMMI.

Frithjof Karsch and Christian Schmidt acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) through

the grant 315477589-TRR 211 “NFDI 39/1” for the PUNCH4NFDI consortium and from the grant EU H2020-MSCA-

ITN-2018-813942 (EuroPLEx) of the European Union.

The work of Biagio Lucini was supported by the UKRI Science and Technology Facilities Council (STFC) Consolidated

Grant ST/T000813/1, by the Royal Society Wolfson Research Merit Award WM170010, by the Leverhulme Foundation

Research Fellowship RF-2020-461\9 and by the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme under grant agreement No 813942.

Jan M. Pawlowski is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under

Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and the

Collaborative Research Centre SFB 1225 (ISOQUANT).

Di Renzo, Leonardo Giusti, Maria Paola Lombardo, Marco Panero, Mauro Papinutto, Michele Pepe

45



Claudia Ratti acknowledges support by the US National Science Foundation under grants no. PHY1654219, PHY2208724

and PHY-2116686. Her work was supported in part by the US National Science Foundation (NSF) within the framework

of the MUSES collaboration, under grant number OAC-2103680. This material is based upon work supported in part by

the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy

Scan Theory (BEST) Topical Collaboration.

Chihiro Sasaki acknowleges partial support by the Polish National Science Centre (NCN) under OPUS Grant No.

2018/31/B/ST2/01663, and by the World Premier International Research Center Initiative (WPI) through MEXT, Japan.

Philipp Schicho has been supported by the European Research Council, grant no. 725369, and by the Academy of

Finland, grant no. 1322507.

The research of Uwe-Jens Wiese is supported by the Schweizerischer Nationalfonds.

Open Access Statement – For the purpose of Open Access the authors have applied a Creative Commons Attribution

(CC BY) licence to any Author Accepted Manuscript version arising.

Author contributions

The manuscript has been elaborated and discussed with the authors. The main responsibilities are enlisted below, and

specific contributions are indicated as footnotes in the text.

Report coordinators

Claudio Bonanno, Michele Caselle, Leonardo Cosmai, Massimo D’Elia, Francesco Di Renzo, Maria Paola Lombardo,

Marco Panero

Editors

• Sec. 1, Maria Paola Lombardo

• Sec. 2, Sipaz Sharma

• Sec. 3, Jana N. Guenther

• Sec. 4, Chris Allton, Christian Schmidt

• Sec. 5, Marco Panero

• Sec. 6, Claudio Bonanno

• Sec. 7, Michele Caselle

• Sec. 8, Andreas Athenodorou

References

[1] C. Gattringer, C. B. Lang, Quantum Chromodynamics on the Lattice - An Introductory Presentation, Vol. 788,

Springer, Berlin, 2010. doi:10.1007/978-3-642-01850-3.

46

https://doi.org/10.1007/978-3-642-01850-3


[2] O. Philipsen, Lattice Constraints on the QCD Chiral Phase Transition at Finite Temperature and Baryon Density,

Symmetry 13 (11) (2021) 2079. arXiv:2111.03590, doi:10.3390/sym13112079.

[3] J. N. Guenther, Overview of the QCD phase diagram: Recent progress from the lattice, Eur. Phys. J. A 57 (4)

(2021) 136. arXiv:2010.15503, doi:10.1140/epja/s10050-021-00354-6.

[4] C. S. Fischer, QCD at finite temperature and chemical potential from Dyson–Schwinger equations, Prog. Part.

Nucl. Phys. 105 (2019) 1–60. arXiv:1810.12938, doi:10.1016/j.ppnp.2019.01.002.

[5] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier, N. Wschebor, The nonperturbative

functional renormalization group and its applications, Phys. Rept. 910 (2021) 1–114. arXiv:2006.04853, doi:

10.1016/j.physrep.2021.01.001.

[6] W.-j. Fu, QCD at finite temperature and density within the fRG approach: an overview, Commun. Theor. Phys.

74 (9) (2022) 097304. arXiv:2205.00468, doi:10.1088/1572-9494/ac86be.

[7] F. Karsch, Critical behavior and net-charge fluctuations from lattice QCD, PoS CORFU2018 (2019) 163. arXiv:

1905.03936, doi:10.22323/1.347.0163.

[8] A. Bazavov, et al., Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019)

15–21. arXiv:1812.08235, doi:10.1016/j.physletb.2019.05.013.

[9] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pásztor, C. Ratti, K. K. Szabó,

QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125 (5) (2020) 052001.

arXiv:2002.02821, doi:10.1103/PhysRevLett.125.052001.

[10] H. T. Ding, et al., Chiral Phase Transition Temperature in ( 2+1 )-Flavor QCD, Phys. Rev. Lett. 123 (6) (2019)

062002. arXiv:1903.04801, doi:10.1103/PhysRevLett.123.062002.

[11] A. Y. Kotov, A. Trunin, M. P. Lombardo, QCD topology and axion’s properties from Wilson twisted mass lattice

simulations, PoS LATTICE2021 (2022) 032. arXiv:2111.15421, doi:10.22323/1.396.0032.

[12] A. Y. Kotov, M. P. Lombardo, A. Trunin, Finite temperature QCD phase transition and its scaling window from

Wilson twisted mass fermions, EPJ Web Conf. 258 (2022) 05012. doi:10.1051/epjconf/202225805012.

[13] R. D. Pisarski, F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984)

338–341. doi:10.1103/PhysRevD.29.338.

[14] K. Rajagopal, F. Wilczek, Static and dynamic critical phenomena at a second order QCD phase transition, Nucl.

Phys. B 399 (1993) 395–425. arXiv:hep-ph/9210253, doi:10.1016/0550-3213(93)90502-G.

[15] K. Rajagopal, F. Wilczek, The Condensed matter physics of QCD, World Scientific, 2000. arXiv:hep-ph/0011333,

doi:10.1142/9789812810458{$\_$}0043.

[16] A. Butti, A. Pelissetto, E. Vicari, On the nature of the finite temperature transition in QCD, JHEP 08 (2003) 029.

arXiv:hep-ph/0307036, doi:10.1088/1126-6708/2003/08/029.

[17] S. Resch, F. Rennecke, B.-J. Schaefer, Mass sensitivity of the three-flavor chiral phase transition, Phys. Rev. D

99 (7) (2019) 076005. arXiv:1712.07961, doi:10.1103/PhysRevD.99.076005.

47

http://arxiv.org/abs/2111.03590
https://doi.org/10.3390/sym13112079
http://arxiv.org/abs/2010.15503
https://doi.org/10.1140/epja/s10050-021-00354-6
http://arxiv.org/abs/1810.12938
https://doi.org/10.1016/j.ppnp.2019.01.002
http://arxiv.org/abs/2006.04853
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
http://arxiv.org/abs/2205.00468
https://doi.org/10.1088/1572-9494/ac86be
http://arxiv.org/abs/1905.03936
http://arxiv.org/abs/1905.03936
https://doi.org/10.22323/1.347.0163
http://arxiv.org/abs/1812.08235
https://doi.org/10.1016/j.physletb.2019.05.013
http://arxiv.org/abs/2002.02821
https://doi.org/10.1103/PhysRevLett.125.052001
http://arxiv.org/abs/1903.04801
https://doi.org/10.1103/PhysRevLett.123.062002
http://arxiv.org/abs/2111.15421
https://doi.org/10.22323/1.396.0032
https://doi.org/10.1051/epjconf/202225805012
https://doi.org/10.1103/PhysRevD.29.338
http://arxiv.org/abs/hep-ph/9210253
https://doi.org/10.1016/0550-3213(93)90502-G
http://arxiv.org/abs/hep-ph/0011333
https://doi.org/10.1142/9789812810458{$_$}0043
http://arxiv.org/abs/hep-ph/0307036
https://doi.org/10.1088/1126-6708/2003/08/029
http://arxiv.org/abs/1712.07961
https://doi.org/10.1103/PhysRevD.99.076005


[18] P. Lowdon, O. Philipsen, Non-perturbative insights into the spectral properties of QCD at finite temperature, in:

15th Conference on Quark Confinement and the Hadron Spectrum, 2022. arXiv:2211.12073.

[19] J.-I. Skullerud, et al., Hadrons at high temperature: an update from the FASTSUM collaboration, in: 15th Con-

ference on Quark Confinement and the Hadron Spectrum, 2022. arXiv:2211.13717.

[20] M. Dalla Brida, L. Giusti, T. Harris, D. Laudicina, M. Pepe, Non-perturbative thermal QCD at all temperatures:

the case of mesonic screening masses, JHEP 04 (2022) 034. arXiv:2112.05427, doi:10.1007/JHEP04(2022)034.

[21] C. Rohrhofer, Y. Aoki, G. Cossu, H. Fukaya, C. Gattringer, L. Y. Glozman, S. Hashimoto, C. B. Lang, S. Prelovsek,

Symmetries of spatial meson correlators in high temperature QCD, Phys. Rev. D 100 (1) (2019) 014502. arXiv:

1902.03191, doi:10.1103/PhysRevD.100.014502.

[22] O. Philipsen, L. Y. Glozman, P. Lowdon, R. D. Pisarski, On chiral spin symmetry and the QCD phase diagram,

in: 39th International Symposium on Lattice Field Theory, 2022. arXiv:2211.11628.

[23] A. Alexandru, I. Horváth, Possible New Phase of Thermal QCD, Phys. Rev. D 100 (9) (2019) 094507. arXiv:

1906.08047, doi:10.1103/PhysRevD.100.094507.

[24] V. G. Bornyakov, I. Kudrov, R. N. Rogalyov, Decomposition of the SU(2) gauge field in the maximal Abelian gauge,

Phys. Rev. D 105 (5) (2022) 054519. arXiv:2101.04196, doi:10.1103/PhysRevD.105.054519.

[25] M. Baker, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa, Unveiling confinement in pure gauge SU(3): flux tubes,

fields, and magnetic currents, Eur. Phys. J. C 82 (10) (2022) 937. arXiv:2207.08797, doi:10.1140/epjc/

s10052-022-10848-2.

[26] D. A. Clarke, O. Kaczmarek, F. Karsch, A. Lahiri, M. Sarkar, Sensitivity of the Polyakov loop and related observables

to chiral symmetry restoration (8 2020). arXiv:2008.11678.

[27] J. Braun, B. Klein, Finite-Size Scaling behavior in the O(4)-Model, Eur. Phys. J. C 63 (2009) 443–460. arXiv:

0810.0857, doi:10.1140/epjc/s10052-009-1098-8.

[28] J. Braun, B. Klein, P. Piasecki, On the scaling behavior of the chiral phase transition in QCD in finite and infinite

volume, Eur. Phys. J. C 71 (2011) 1576. arXiv:1008.2155, doi:10.1140/epjc/s10052-011-1576-7.

[29] B. Klein, Modeling Finite-Volume Effects and Chiral Symmetry Breaking in Two-Flavor QCD Thermodynamics,

Phys. Rept. 707-708 (2017) 1–51. arXiv:1710.05357, doi:10.1016/j.physrep.2017.09.002.

[30] J. Braun, W.-j. Fu, J. M. Pawlowski, F. Rennecke, D. Rosenblüh, S. Yin, Chiral susceptibility in ( 2+1 )-flavor

QCD, Phys. Rev. D 102 (5) (2020) 056010. arXiv:2003.13112, doi:10.1103/PhysRevD.102.056010.

[31] F. Gao, J. M. Pawlowski, Phase structure of (2+1)-flavor QCD and the magnetic equation of state, Phys. Rev. D

105 (9) (2022) 094020. arXiv:2112.01395, doi:10.1103/PhysRevD.105.094020.

[32] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, L. I. Unger, A. Vaccarino, On the

existence of a phase transition for qcd with three light quarks, Phys. Rev. Lett. 65 (1990) 2491–2494. doi:

10.1103/PhysRevLett.65.2491.

URL https://link.aps.org/doi/10.1103/PhysRevLett.65.2491

48

http://arxiv.org/abs/2211.12073
http://arxiv.org/abs/2211.13717
http://arxiv.org/abs/2112.05427
https://doi.org/10.1007/JHEP04(2022)034
http://arxiv.org/abs/1902.03191
http://arxiv.org/abs/1902.03191
https://doi.org/10.1103/PhysRevD.100.014502
http://arxiv.org/abs/2211.11628
http://arxiv.org/abs/1906.08047
http://arxiv.org/abs/1906.08047
https://doi.org/10.1103/PhysRevD.100.094507
http://arxiv.org/abs/2101.04196
https://doi.org/10.1103/PhysRevD.105.054519
http://arxiv.org/abs/2207.08797
https://doi.org/10.1140/epjc/s10052-022-10848-2
https://doi.org/10.1140/epjc/s10052-022-10848-2
http://arxiv.org/abs/2008.11678
http://arxiv.org/abs/0810.0857
http://arxiv.org/abs/0810.0857
https://doi.org/10.1140/epjc/s10052-009-1098-8
http://arxiv.org/abs/1008.2155
https://doi.org/10.1140/epjc/s10052-011-1576-7
http://arxiv.org/abs/1710.05357
https://doi.org/10.1016/j.physrep.2017.09.002
http://arxiv.org/abs/2003.13112
https://doi.org/10.1103/PhysRevD.102.056010
http://arxiv.org/abs/2112.01395
https://doi.org/10.1103/PhysRevD.105.094020
https://link.aps.org/doi/10.1103/PhysRevLett.65.2491
https://link.aps.org/doi/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://link.aps.org/doi/10.1103/PhysRevLett.65.2491


[33] F. Cuteri, O. Philipsen, A. Sciarra, On the order of the QCD chiral phase transition for different numbers of quark

flavours, JHEP 11 (2021) 141. arXiv:2107.12739, doi:10.1007/JHEP11(2021)141.

[34] Y. Kuramashi, Y. Nakamura, H. Ohno, S. Takeda, Nature of the phase transition for finite temperature Nf = 3

QCD with nonperturbatively O(a) improved Wilson fermions at Nt = 12, Phys. Rev. D 101 (5) (2020) 054509.

arXiv:2001.04398, doi:10.1103/PhysRevD.101.054509.

[35] L. Dini, P. Hegde, F. Karsch, A. Lahiri, C. Schmidt, S. Sharma, Chiral phase transition in three-flavor QCD from

lattice QCD, Phys. Rev. D 105 (3) (2022) 034510. arXiv:2111.12599, doi:10.1103/PhysRevD.105.034510.

[36] Y. Zhang, Y. Aoki, S. Hashimoto, I. Kanamori, T. Kaneko, Y. Nakamura, Finite temperature QCD phase transition

with 3 flavors of Möbius domain wall fermions, 2022. arXiv:2212.10021.

[37] F. Karsch, A. Lahiri, M. Neumann, C. Schmidt, A machine learning approach to the classification of phase transitions

in many flavor QCD, in: 39th International Symposium on Lattice Field Theory, 2022. arXiv:2211.16232.

[38] G. Fejos, Second-order chiral phase transition in three-flavor quantum chromodynamics?, Phys. Rev. D 105 (7)

(2022) L071506. arXiv:2201.07909, doi:10.1103/PhysRevD.105.L071506.

[39] S. R. Kousvos, A. Stergiou, CFTs with U(m) × U(n) Global Symmetry in 3D and the Chiral Phase Transition of

QCD (9 2022). arXiv:2209.02837.

[40] G. Cacciapaglia, C. Pica, F. Sannino, Fundamental Composite Dynamics: A Review, Phys. Rept. 877 (2020) 1–70.

arXiv:2002.04914, doi:10.1016/j.physrep.2020.07.002.

[41] A. Y. Kotov, M. P. Lombardo, A. Trunin, Gliding Down the QCD Transition Line, from Nf = 2 till the Onset of

Conformality, Symmetry 13 (10) (2021) 1833. arXiv:2111.00569, doi:10.3390/sym13101833.

[42] J. Braun, C. S. Fischer, H. Gies, Beyond Miransky Scaling, Phys. Rev. D 84 (2011) 034045. arXiv:1012.4279,

doi:10.1103/PhysRevD.84.034045.

[43] A. Pelissetto, A. Tripodo, E. Vicari, Landau-Ginzburg-Wilson approach to critical phenomena in the presence of

gauge symmetries, Phys. Rev. D 96 (3) (2017) 034505. arXiv:1706.04365, doi:10.1103/PhysRevD.96.034505.

[44] M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: A Review, Phys. Rept. 385 (2003) 69–228.

arXiv:hep-th/0306133, doi:10.1016/S0370-1573(03)00263-1.

[45] T. Schäfer, E. V. Shuryak, Phases of QCD at high baryon density, Lect. Notes Phys. 578 (2001) 203–217. arXiv:

nucl-th/0010049.

[46] D. Blaschke, K. Redlich, C. Sasaki, L. Turko (Eds.), Understanding the Origin of Matter: Perspectives in Quantum

Chromodynamics, Vol. 999, 2022. doi:10.1007/978-3-030-95491-8.

[47] C. Sasaki, Signatures of chiral symmetry restoration in dilepton production, Phys. Lett. B 801 (2020) 135172.

arXiv:1906.05077, doi:10.1016/j.physletb.2019.135172.

[48] M. Marczenko, K. Redlich, C. Sasaki, Chiral symmetry restoration and ∆ matter formation in neutron stars, Phys.

Rev. D 105 (10) (2022) 103009. arXiv:2203.00269, doi:10.1103/PhysRevD.105.103009.

49

http://arxiv.org/abs/2107.12739
https://doi.org/10.1007/JHEP11(2021)141
http://arxiv.org/abs/2001.04398
https://doi.org/10.1103/PhysRevD.101.054509
http://arxiv.org/abs/2111.12599
https://doi.org/10.1103/PhysRevD.105.034510
http://arxiv.org/abs/2212.10021
http://arxiv.org/abs/2211.16232
http://arxiv.org/abs/2201.07909
https://doi.org/10.1103/PhysRevD.105.L071506
http://arxiv.org/abs/2209.02837
http://arxiv.org/abs/2002.04914
https://doi.org/10.1016/j.physrep.2020.07.002
http://arxiv.org/abs/2111.00569
https://doi.org/10.3390/sym13101833
http://arxiv.org/abs/1012.4279
https://doi.org/10.1103/PhysRevD.84.034045
http://arxiv.org/abs/1706.04365
https://doi.org/10.1103/PhysRevD.96.034505
http://arxiv.org/abs/hep-th/0306133
https://doi.org/10.1016/S0370-1573(03)00263-1
http://arxiv.org/abs/nucl-th/0010049
http://arxiv.org/abs/nucl-th/0010049
https://doi.org/10.1007/978-3-030-95491-8
http://arxiv.org/abs/1906.05077
https://doi.org/10.1016/j.physletb.2019.135172
http://arxiv.org/abs/2203.00269
https://doi.org/10.1103/PhysRevD.105.103009


[49] C. Sasaki, Anomaly-induced chiral mixing in cold and dense matter, Phys. Rev. D 106 (5) (2022) 054034. arXiv:

2207.00274, doi:10.1103/PhysRevD.106.054034.

[50] M. G. Alford, A. Kapustin, F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice, Phys.

Rev. D 59 (1999) 054502. arXiv:hep-lat/9807039, doi:10.1103/PhysRevD.59.054502.

[51] D. T. Son, M. A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592–595. arXiv:hep-ph/

0005225, doi:10.1103/PhysRevLett.86.592.

[52] B. B. Brandt, G. Endrodi, S. Schmalzbauer, QCD phase diagram for nonzero isospin-asymmetryarXiv:1712.08190.

[53] B. B. Brandt, G. Endrodi, QCD phase diagram with isospin chemical potential, PoS LATTICE2016 (2016) 039.

arXiv:1611.06758, doi:10.22323/1.256.0039.

[54] V. G. Bornyakov, A. A. Nikolaev, R. N. Rogalyov, A. S. Terentev, Gluon propagators in 2 + 1 lattice QCD with

nonzero isospin chemical potential, Eur. Phys. J. C 81 (8) (2021) 747. arXiv:2102.07821, doi:10.1140/epjc/

s10052-021-09526-6.

[55] V. V. Braguta, A. Y. Kotov, A. A. Nikolaev, Lattice Simulation Study of the Properties of Cold Quark Matter with

a Nonzero Isospin Density, JETP Lett. 110 (1) (2019) 1–4. doi:10.1134/S0021364019130083.

[56] B. B. Brandt, F. Cuteri, G. Endrődi, S. Schmalzbauer, The Dirac spectrum and the BEC-BCS crossover in QCD at

nonzero isospin asymmetry, Particles 3 (1) (2020) 80–86. arXiv:1912.07451, doi:10.3390/particles3010007.

[57] B. B. Brandt, F. Cuteri, G. Endrodi, S. Schmalzbauer, Exploring the QCD phase diagram via reweighting from

isospin chemical potential, PoS LATTICE2019 (2019) 189. arXiv:1911.12197, doi:10.22323/1.363.0189.

[58] W. Detmold, K. Orginos, Z. Shi, Lattice QCD at non-zero isospin chemical potential, Phys. Rev. D 86 (2012)

054507. arXiv:1205.4224, doi:10.1103/PhysRevD.86.054507.

[59] P. Cea, L. Cosmai, M. D’Elia, A. Papa, F. Sanfilippo, The critical line of two-flavor QCD at finite isospin or

baryon densities from imaginary chemical potentials, Phys. Rev. D 85 (2012) 094512. arXiv:1202.5700, doi:

10.1103/PhysRevD.85.094512.

[60] V. Vovchenko, B. B. Brandt, F. Cuteri, G. Endrődi, F. Hajkarim, J. Schaffner-Bielich, Pion Condensation in the

Early Universe at Nonvanishing Lepton Flavor Asymmetry and Its Gravitational Wave Signatures, Phys. Rev. Lett.

126 (1) (2021) 012701. arXiv:2009.02309, doi:10.1103/PhysRevLett.126.012701.

[61] S. Hands, J. B. Kogut, M.-P. Lombardo, S. E. Morrison, Symmetries and spectrum of SU(2) lattice gauge the-

ory at finite chemical potential, Nucl. Phys. B 558 (1999) 327–346. arXiv:hep-lat/9902034, doi:10.1016/

S0550-3213(99)00364-8.

[62] B. Alles, M. D’Elia, A. Di Giacomo, Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory,

Nucl. Phys. B 494 (1997) 281–292, [Erratum: Nucl.Phys.B 679, 397–399 (2004)]. arXiv:hep-lat/9605013, doi:

10.1016/S0550-3213(97)00205-8.

[63] M.-P. Lombardo, M. L. Paciello, S. Petrarca, B. Taglienti, Glueballs and the superfluid phase of Two-Color QCD,

Eur. Phys. J. C 58 (2008) 69–81. arXiv:0804.4863, doi:10.1140/epjc/s10052-008-0718-z.

50

http://arxiv.org/abs/2207.00274
http://arxiv.org/abs/2207.00274
https://doi.org/10.1103/PhysRevD.106.054034
http://arxiv.org/abs/hep-lat/9807039
https://doi.org/10.1103/PhysRevD.59.054502
http://arxiv.org/abs/hep-ph/0005225
http://arxiv.org/abs/hep-ph/0005225
https://doi.org/10.1103/PhysRevLett.86.592
http://arxiv.org/abs/1712.08190
http://arxiv.org/abs/1611.06758
https://doi.org/10.22323/1.256.0039
http://arxiv.org/abs/2102.07821
https://doi.org/10.1140/epjc/s10052-021-09526-6
https://doi.org/10.1140/epjc/s10052-021-09526-6
https://doi.org/10.1134/S0021364019130083
http://arxiv.org/abs/1912.07451
https://doi.org/10.3390/particles3010007
http://arxiv.org/abs/1911.12197
https://doi.org/10.22323/1.363.0189
http://arxiv.org/abs/1205.4224
https://doi.org/10.1103/PhysRevD.86.054507
http://arxiv.org/abs/1202.5700
https://doi.org/10.1103/PhysRevD.85.094512
https://doi.org/10.1103/PhysRevD.85.094512
http://arxiv.org/abs/2009.02309
https://doi.org/10.1103/PhysRevLett.126.012701
http://arxiv.org/abs/hep-lat/9902034
https://doi.org/10.1016/S0550-3213(99)00364-8
https://doi.org/10.1016/S0550-3213(99)00364-8
http://arxiv.org/abs/hep-lat/9605013
https://doi.org/10.1016/S0550-3213(97)00205-8
https://doi.org/10.1016/S0550-3213(97)00205-8
http://arxiv.org/abs/0804.4863
https://doi.org/10.1140/epjc/s10052-008-0718-z


[64] S. Hands, S. Kim, J.-I. Skullerud, A Quarkyonic Phase in Dense Two Color Matter?, Phys. Rev. D 81 (2010) 091502.

arXiv:1001.1682, doi:10.1103/PhysRevD.81.091502.

[65] S. Hands, P. Kenny, Topological Fluctuations in Dense Matter with Two Colors, Phys. Lett. B 701 (2011) 373–377.

arXiv:1104.0522, doi:10.1016/j.physletb.2011.05.065.

[66] S. Hands, P. Kenny, S. Kim, J.-I. Skullerud, Lattice Study of Dense Matter with Two Colors and Four Flavors, Eur.

Phys. J. A 47 (2011) 60. arXiv:1101.4961, doi:10.1140/epja/i2011-11060-1.

[67] N. Y. Astrakhantsev, V. G. Bornyakov, V. V. Braguta, E. M. Ilgenfritz, A. Y. Kotov, A. A. Nikolaev, A. Rothkopf,

Lattice study of static quark-antiquark interactions in dense quark matter, JHEP 05 (2019) 171. arXiv:1808.06466,

doi:10.1007/JHEP05(2019)171.

[68] K. Iida, E. Itou, T.-G. Lee, Two-colour QCD phases and the topology at low temperature and high density, JHEP

01 (2020) 181. arXiv:1910.07872, doi:10.1007/JHEP01(2020)181.

[69] N. Astrakhantsev, V. V. Braguta, E. M. Ilgenfritz, A. Y. Kotov, A. A. Nikolaev, Lattice study of thermodynamic

properties of dense QC2D, Phys. Rev. D 102 (7) (2020) 074507. arXiv:2007.07640, doi:10.1103/PhysRevD.102.

074507.

[70] A. Begun, V. G. Bornyakov, V. A. Goy, A. Nakamura, R. N. Rogalyov, Study of two color QCD on large lattices,

Phys. Rev. D 105 (11) (2022) 114505. arXiv:2203.04909, doi:10.1103/PhysRevD.105.114505.

[71] V. V. Braguta, V. A. Goy, E. M. Ilgenfritz, A. Y. Kotov, A. V. Molochkov, M. Muller-Preussker, B. Petersson,

Two-Color QCD with Non-zero Chiral Chemical Potential, JHEP 06 (2015) 094. arXiv:1503.06670, doi:10.1007/

JHEP06(2015)094.

[72] A. Yamamoto, Chiral magnetic effect in lattice qcd with a chiral chemical potential, Physical Review Letters 107 (3)

(Jul 2011). doi:10.1103/physrevlett.107.031601.

URL http://dx.doi.org/10.1103/PhysRevLett.107.031601

[73] T. G. Khunjua, K. G. Klimenko, R. N. Zhokhov, Influence of chiral chemical potential µ5 on phase structure of the

two-color quark matter, Phys. Rev. D 106 (4) (2022) 045008. arXiv:2105.04952, doi:10.1103/PhysRevD.106.

045008.

[74] V. G. Bornyakov, E. M. Ilgenfritz, B. V. Martemyanov, Density and correlations of topological objects near the

transition temperature in lattice gluodynamics, Phys. Rev. D 101 (11) (2020) 114510. arXiv:1908.08709, doi:

10.1103/PhysRevD.101.114510.

[75] C. Bonati, S. Cali, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Flux tubes in Nf = 2 + 1 QCD

with external magnetic fields, EPJ Web Conf. 175 (2018) 12008. arXiv:1710.09215, doi:10.1051/epjconf/

201817512008.

[76] W. Busza, K. Rajagopal, W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann.

Rev. Nucl. Part. Sci. 68 (2018) 339–376. arXiv:1802.04801, doi:10.1146/annurev-nucl-101917-020852.

[77] J. Ghiglieri, G. D. Moore, P. Schicho, N. Schlusser, The force-force-correlator in hot QCD perturbatively and from

the lattice, JHEP 02 (2022) 058. arXiv:2112.01407, doi:10.1007/JHEP02(2022)058.

51

http://arxiv.org/abs/1001.1682
https://doi.org/10.1103/PhysRevD.81.091502
http://arxiv.org/abs/1104.0522
https://doi.org/10.1016/j.physletb.2011.05.065
http://arxiv.org/abs/1101.4961
https://doi.org/10.1140/epja/i2011-11060-1
http://arxiv.org/abs/1808.06466
https://doi.org/10.1007/JHEP05(2019)171
http://arxiv.org/abs/1910.07872
https://doi.org/10.1007/JHEP01(2020)181
http://arxiv.org/abs/2007.07640
https://doi.org/10.1103/PhysRevD.102.074507
https://doi.org/10.1103/PhysRevD.102.074507
http://arxiv.org/abs/2203.04909
https://doi.org/10.1103/PhysRevD.105.114505
http://arxiv.org/abs/1503.06670
https://doi.org/10.1007/JHEP06(2015)094
https://doi.org/10.1007/JHEP06(2015)094
http://dx.doi.org/10.1103/PhysRevLett.107.031601
https://doi.org/10.1103/physrevlett.107.031601
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://arxiv.org/abs/2105.04952
https://doi.org/10.1103/PhysRevD.106.045008
https://doi.org/10.1103/PhysRevD.106.045008
http://arxiv.org/abs/1908.08709
https://doi.org/10.1103/PhysRevD.101.114510
https://doi.org/10.1103/PhysRevD.101.114510
http://arxiv.org/abs/1710.09215
https://doi.org/10.1051/epjconf/201817512008
https://doi.org/10.1051/epjconf/201817512008
http://arxiv.org/abs/1802.04801
https://doi.org/10.1146/annurev-nucl-101917-020852
http://arxiv.org/abs/2112.01407
https://doi.org/10.1007/JHEP02(2022)058


[78] J. Ghiglieri, A. Kurkela, M. Strickland, A. Vuorinen, Perturbative Thermal QCD: Formalism and Applications,

Phys. Rept. 880 (2020) 1–73. arXiv:2002.10188, doi:10.1016/j.physrep.2020.07.004.

[79] A. Ekstedt, P. Schicho, T. V. I. Tenkanen, DRalgo: a package for effective field theory approach for thermal phase

transitions (5 2022). arXiv:2205.08815.

[80] J. N. Guenther, Overview of recent lattice QCD results: phase diagram, fluctuations and strangeness, EPJ Web

Conf. 259 (2022) 02002. doi:10.1051/epjconf/202225902002.

[81] C. Schmidt, Baryon number and charge fluctuations from lattice QCD, Nucl. Phys. A 904-905 (2013) 865c–868c.

arXiv:1212.4278, doi:10.1016/j.nuclphysa.2013.02.152.

[82] M. D’Elia, G. Gagliardi, F. Sanfilippo, Higher order quark number fluctuations via imaginary chemical potentials

in Nf = 2 + 1 QCD, Phys. Rev. D 95 (9) (2017) 094503. arXiv:1611.08285, doi:10.1103/PhysRevD.95.094503.

[83] A. Bazavov, et al., The QCD Equation of State to O(µ6
B) from Lattice QCD, Phys. Rev. D 95 (5) (2017) 054504.

arXiv:1701.04325, doi:10.1103/PhysRevD.95.054504.

[84] S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K. Szabo, A. Pasztor, I. Portillo, C. Ratti, Higher order

fluctuations and correlations of conserved charges from lattice QCD, JHEP 10 (2018) 205. arXiv:1805.04445,

doi:10.1007/JHEP10(2018)205.

[85] A. Bazavov, et al., Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions

from lattice QCD confront high-statistics STAR data, Phys. Rev. D 101 (7) (2020) 074502. arXiv:2001.08530,

doi:10.1103/PhysRevD.101.074502.

[86] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, P. Scior, Second order

cumulants of conserved charge fluctuations revisited: Vanishing chemical potentials, Phys. Rev. D 104 (7) (2021).

arXiv:2107.10011, doi:10.1103/PhysRevD.104.074512.

[87] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, P. Scior, Taylor expan-

sions and Padé approximants for cumulants of conserved charge fluctuations at nonvanishing chemical potentials,

Phys. Rev. D 105 (7) (2022) 074511. arXiv:2202.09184, doi:10.1103/PhysRevD.105.074511.

[88] P. A. Zyla, et al., Review of Particle Physics, PTEP 2020 (8) (2020) 083C01. doi:10.1093/ptep/ptaa104.

[89] R. Bellwied, S. Borsanyi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pasztor, D. Pesznyak, C. Ratti,

K. K. Szabo, Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at

finite density, Phys. Rev. D 104 (9) (2021) 094508. arXiv:2102.06625, doi:10.1103/PhysRevD.104.094508.

[90] R. Bellwied, S. Borsányi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pásztor, D. Pesznyák, C. Ratti,

K. K. Szabó, Quantifying corrections to the hadron resonance gas with lattice QCD, PoS LATTICE2021 (2022)

186. arXiv:2112.02402, doi:10.22323/1.396.0186.

[91] J. Noronha-Hostler, P. Parotto, C. Ratti, J. M. Stafford, Lattice-based equation of state at finite baryon number,

electric charge and strangeness chemical potentials, Phys. Rev. C 100 (6) (2019) 064910. arXiv:1902.06723,

doi:10.1103/PhysRevC.100.064910.

52

http://arxiv.org/abs/2002.10188
https://doi.org/10.1016/j.physrep.2020.07.004
http://arxiv.org/abs/2205.08815
https://doi.org/10.1051/epjconf/202225902002
http://arxiv.org/abs/1212.4278
https://doi.org/10.1016/j.nuclphysa.2013.02.152
http://arxiv.org/abs/1611.08285
https://doi.org/10.1103/PhysRevD.95.094503
http://arxiv.org/abs/1701.04325
https://doi.org/10.1103/PhysRevD.95.054504
http://arxiv.org/abs/1805.04445
https://doi.org/10.1007/JHEP10(2018)205
http://arxiv.org/abs/2001.08530
https://doi.org/10.1103/PhysRevD.101.074502
http://arxiv.org/abs/2107.10011
https://doi.org/10.1103/PhysRevD.104.074512
http://arxiv.org/abs/2202.09184
https://doi.org/10.1103/PhysRevD.105.074511
https://doi.org/10.1093/ptep/ptaa104
http://arxiv.org/abs/2102.06625
https://doi.org/10.1103/PhysRevD.104.094508
http://arxiv.org/abs/2112.02402
https://doi.org/10.22323/1.396.0186
http://arxiv.org/abs/1902.06723
https://doi.org/10.1103/PhysRevC.100.064910


[92] A. Monnai, B. Schenke, C. Shen, Equation of state at finite densities for QCD matter in nuclear collisions, Phys.

Rev. C 100 (2) (2019) 024907. arXiv:1902.05095, doi:10.1103/PhysRevC.100.024907.

[93] W.-j. Fu, J. M. Pawlowski, F. Rennecke, B.-J. Schaefer, Baryon number fluctuations at finite temperature and

density, Phys. Rev. D 94 (11) (2016) 116020. arXiv:1608.04302, doi:10.1103/PhysRevD.94.116020.

[94] W.-j. Fu, X. Luo, J. M. Pawlowski, F. Rennecke, R. Wen, S. Yin, Hyper-order baryon number fluctuations at finite

temperature and density, Phys. Rev. D 104 (9) (2021) 094047. arXiv:2101.06035, doi:10.1103/PhysRevD.104.

094047.

[95] J. Bernhardt, C. S. Fischer, P. Isserstedt, Finite-volume effects in baryon number fluctuations around the QCD

critical endpoint (8 2022). arXiv:2208.01981.

[96] P. Braun-Munzinger, A. Rustamov, J. Stachel, Bridging the gap between event-by-event fluctuation measurements

and theory predictions in relativistic nuclear collisions, Nucl. Phys. A 960 (2017) 114–130. arXiv:1612.00702,

doi:10.1016/j.nuclphysa.2017.01.011.

[97] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, K. K. Szabo, The QCD equation of

state with dynamical quarks, JHEP 11 (2010) 077. arXiv:1007.2580, doi:10.1007/JHEP11(2010)077.

[98] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, K. K. Szabo, Full result for the QCD equation of state

with 2+1 flavors, Phys. Lett. B 730 (2014) 99–104. arXiv:1309.5258, doi:10.1016/j.physletb.2014.01.007.

[99] A. Bazavov, et al., Equation of state in ( 2+1 )-flavor QCD, Phys. Rev. D 90 (2014) 094503. arXiv:1407.6387,

doi:10.1103/PhysRevD.90.094503.

[100] K. Kajantie, M. Laine, K. Rummukainen, Y. Schroder, The Pressure of hot QCD up to g6 ln(1/g), Phys. Rev. D

67 (2003) 105008. arXiv:hep-ph/0211321, doi:10.1103/PhysRevD.67.105008.

[101] J. O. Andersen, L. E. Leganger, M. Strickland, N. Su, NNLO hard-thermal-loop thermodynamics for QCD, Phys.

Lett. B 696 (2011) 468–472. arXiv:1009.4644, doi:10.1016/j.physletb.2010.12.070.

[102] J. O. Andersen, L. E. Leganger, M. Strickland, N. Su, Three-loop HTL QCD thermodynamics, JHEP 08 (2011)

053. arXiv:1103.2528, doi:10.1007/JHEP08(2011)053.

[103] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pásztor, C. Ratti, K. K. Szabó, Lattice

QCD equation of state at finite chemical potential from an alternative expansion scheme, Phys. Rev. Lett. 126 (23)

(2021) 232001. arXiv:2102.06660, doi:10.1103/PhysRevLett.126.232001.

[104] S. Borsanyi, Z. Fodor, M. Giordano, J. N. Guenther, S. D. Katz, A. Pasztor, C. H. Wong, Equation of state of a

hot-and-dense quark gluon plasma: lattice simulations at real µB vs. extrapolations (8 2022). arXiv:2208.05398.

[105] D. E. Kharzeev, L. D. McLerran, H. J. Warringa, The Effects of topological charge change in heavy ion collisions:

’Event by event P and CP violation’, Nucl. Phys. A 803 (2008) 227–253. arXiv:0711.0950, doi:10.1016/j.

nuclphysa.2008.02.298.

[106] V. Skokov, A. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod.

Phys. A 24 (2009) 5925–5932. arXiv:0907.1396, doi:10.1142/S0217751X09047570.

53

http://arxiv.org/abs/1902.05095
https://doi.org/10.1103/PhysRevC.100.024907
http://arxiv.org/abs/1608.04302
https://doi.org/10.1103/PhysRevD.94.116020
http://arxiv.org/abs/2101.06035
https://doi.org/10.1103/PhysRevD.104.094047
https://doi.org/10.1103/PhysRevD.104.094047
http://arxiv.org/abs/2208.01981
http://arxiv.org/abs/1612.00702
https://doi.org/10.1016/j.nuclphysa.2017.01.011
http://arxiv.org/abs/1007.2580
https://doi.org/10.1007/JHEP11(2010)077
http://arxiv.org/abs/1309.5258
https://doi.org/10.1016/j.physletb.2014.01.007
http://arxiv.org/abs/1407.6387
https://doi.org/10.1103/PhysRevD.90.094503
http://arxiv.org/abs/hep-ph/0211321
https://doi.org/10.1103/PhysRevD.67.105008
http://arxiv.org/abs/1009.4644
https://doi.org/10.1016/j.physletb.2010.12.070
http://arxiv.org/abs/1103.2528
https://doi.org/10.1007/JHEP08(2011)053
http://arxiv.org/abs/2102.06660
https://doi.org/10.1103/PhysRevLett.126.232001
http://arxiv.org/abs/2208.05398
http://arxiv.org/abs/0711.0950
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
http://arxiv.org/abs/0907.1396
https://doi.org/10.1142/S0217751X09047570


[107] W.-T. Deng, X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev.

C 85 (2012) 044907. arXiv:1201.5108, doi:10.1103/PhysRevC.85.044907.

[108] M. D’Elia, S. Mukherjee, F. Sanfilippo, QCD Phase Transition in a Strong Magnetic Background, Phys. Rev. D 82

(2010) 051501. arXiv:1005.5365, doi:10.1103/PhysRevD.82.051501.

[109] G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz, S. Krieg, A. Schafer, K. Szabo, The QCD phase diagram

for external magnetic fields, JHEP 02 (2012) 044. arXiv:1111.4956, doi:10.1007/JHEP02(2012)044.

[110] G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz, A. Schafer, QCD quark condensate in external magnetic

fields, Phys. Rev. D 86 (2012) 071502. arXiv:1206.4205, doi:10.1103/PhysRevD.86.071502.

[111] I. A. Shovkovy, Magnetic Catalysis: A Review, Lect. Notes Phys. 871 (2013) 13–49. arXiv:1207.5081, doi:

10.1007/978-3-642-37305-3_2.

[112] E. M. Ilgenfritz, M. Muller-Preussker, B. Petersson, A. Schreiber, Magnetic catalysis (and inverse catalysis) at

finite temperature in two-color lattice QCD, Phys. Rev. D 89 (5) (2014) 054512. arXiv:1310.7876, doi:10.1103/

PhysRevD.89.054512.

[113] V. Bornyakov, P. Buividovich, N. Cundy, O. Kochetkov, A. Schäfer, Deconfinement transition in two-flavor lattice

QCD with dynamical overlap fermions in an external magnetic field, Phys. Rev. D 90 (3) (2014) 034501. arXiv:

1312.5628, doi:10.1103/PhysRevD.90.034501.

[114] G. Bali, F. Bruckmann, G. Endrödi, S. Katz, A. Schäfer, The QCD equation of state in background magnetic fields,

JHEP 08 (2014) 177. arXiv:1406.0269, doi:10.1007/JHEP08(2014)177.

[115] G. Endrodi, M. Giordano, S. D. Katz, T. Kovács, F. Pittler, Magnetic catalysis and inverse catalysis for heavy

pions, JHEP 07 (2019) 007. arXiv:1904.10296, doi:10.1007/JHEP07(2019)007.

[116] A. Tomiya, H.-T. Ding, X.-D. Wang, Y. Zhang, S. Mukherjee, C. Schmidt, Phase structure of three flavor QCD in

external magnetic fields using HISQ fermions, PoS LATTICE2018 (2019) 163. arXiv:1904.01276, doi:10.22323/

1.334.0163.

[117] H. T. Ding, S. T. Li, A. Tomiya, X. D. Wang, Y. Zhang, Chiral properties of (2+1)-flavor QCD in strong magnetic

fields at zero temperature, Phys. Rev. D 104 (1) (2021) 014505. arXiv:2008.00493, doi:10.1103/PhysRevD.104.

014505.

[118] G. Endrodi, Critical point in the QCD phase diagram for extremely strong background magnetic fields, JHEP 07

(2015) 173. arXiv:1504.08280, doi:10.1007/JHEP07(2015)173.

[119] M. D’Elia, F. Manigrasso, F. Negro, F. Sanfilippo, QCD phase diagram in a magnetic background for different values

of the pion mass, Phys. Rev. D 98 (5) (2018) 054509. arXiv:1808.07008, doi:10.1103/PhysRevD.98.054509.

[120] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Anisotropy of the quark-antiquark potential

in a magnetic field, Phys. Rev. D 89 (11) (2014) 114502. arXiv:1403.6094, doi:10.1103/PhysRevD.89.114502.

54

http://arxiv.org/abs/1201.5108
https://doi.org/10.1103/PhysRevC.85.044907
http://arxiv.org/abs/1005.5365
https://doi.org/10.1103/PhysRevD.82.051501
http://arxiv.org/abs/1111.4956
https://doi.org/10.1007/JHEP02(2012)044
http://arxiv.org/abs/1206.4205
https://doi.org/10.1103/PhysRevD.86.071502
http://arxiv.org/abs/1207.5081
https://doi.org/10.1007/978-3-642-37305-3_2
https://doi.org/10.1007/978-3-642-37305-3_2
http://arxiv.org/abs/1310.7876
https://doi.org/10.1103/PhysRevD.89.054512
https://doi.org/10.1103/PhysRevD.89.054512
http://arxiv.org/abs/1312.5628
http://arxiv.org/abs/1312.5628
https://doi.org/10.1103/PhysRevD.90.034501
http://arxiv.org/abs/1406.0269
https://doi.org/10.1007/JHEP08(2014)177
http://arxiv.org/abs/1904.10296
https://doi.org/10.1007/JHEP07(2019)007
http://arxiv.org/abs/1904.01276
https://doi.org/10.22323/1.334.0163
https://doi.org/10.22323/1.334.0163
http://arxiv.org/abs/2008.00493
https://doi.org/10.1103/PhysRevD.104.014505
https://doi.org/10.1103/PhysRevD.104.014505
http://arxiv.org/abs/1504.08280
https://doi.org/10.1007/JHEP07(2015)173
http://arxiv.org/abs/1808.07008
https://doi.org/10.1103/PhysRevD.98.054509
http://arxiv.org/abs/1403.6094
https://doi.org/10.1103/PhysRevD.89.114502


[121] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Magnetic field effects on the

static quark potential at zero and finite temperature, Phys. Rev. D 94 (9) (2016) 094007. arXiv:1607.08160,

doi:10.1103/PhysRevD.94.094007.

[122] C. Bonati, S. Calì, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Effects of a strong magnetic field on

the QCD flux tube, Phys. Rev. D 98 (5) (2018) 054501. arXiv:1807.01673, doi:10.1103/PhysRevD.98.054501.

[123] M. D’Elia, L. Maio, F. Sanfilippo, A. Stanzione, Confining and chiral properties of QCD in extremely strong

magnetic fields, Phys. Rev. D 104 (11) (2021) 114512. arXiv:2109.07456, doi:10.1103/PhysRevD.104.114512.

[124] M. D’Elia, L. Maio, F. Sanfilippo, A. Stanzione, Phase diagram of QCD in a magnetic background, Phys. Rev. D

105 (3) (2022) 034511. arXiv:2111.11237, doi:10.1103/PhysRevD.105.034511.

[125] V. Braguta, A. Y. Kotov, D. Kuznedelev, A. Roenko, Lattice study of the confinement/deconfinement transition in

rotating gluodynamics, PoS LATTICE2021 (2022) 125. arXiv:2110.12302, doi:10.22323/1.396.0125.

[126] N. Y. Astrakhantsev, V. V. Braguta, N. V. Kolomoyets, A. Y. Kotov, A. A. Roenko, Equation of State of dense

QCD in external magnetic field, PoS LATTICE2021 (2022) 432. arXiv:2112.01032, doi:10.22323/1.396.0432.

[127] A. Tomiya, H. T. Ding, S. T. Li, X. Wang, Y. Zhang, Chiral properties of (2+1)-flavor qcd in background magnetic

fields at zero temperature, Talk Lattice 2021 (2021).

URL https://indico.cern.ch/event/1006302/contributions/4371160/

[128] H. T. Ding, S. T. Li, Q. Shi, X. D. Wang, Fluctuations and correlations of net baryon number, electric charge

and strangeness in a background magnetic field, Eur. Phys. J. A 57 (6) (2021) 202. arXiv:2104.06843, doi:

10.1140/epja/s10050-021-00519-3.

[129] V. Braguta, M. Chernodub, A. Y. Kotov, A. Molochkov, A. Nikolaev, Finite-density QCD transition in a magnetic

background field, Phys. Rev. D 100 (11) (2019) 114503. arXiv:1909.09547, doi:10.1103/PhysRevD.100.114503.

[130] K. Fukushima, Extreme matter in electromagnetic fields and rotation, Prog. Part. Nucl. Phys. 107 (2019) 167–199.

arXiv:1812.08886, doi:10.1016/j.ppnp.2019.04.001.

[131] H.-L. Chen, X.-G. Huang, J. Liao, QCD phase structure under rotation, Lect. Notes Phys. 987 (2021) 349–379.

arXiv:2108.00586, doi:10.1007/978-3-030-71427-7_11.

[132] A. Yamamoto, Overview of external electromagnetism and rotation in lattice QCD, Eur. Phys. J. A 57 (6) (2021)

211. arXiv:2103.00237, doi:10.1140/epja/s10050-021-00530-8.

[133] B. B. Brandt, F. Cuteri, G. Endrődi, G. Markó, A. D. M. Valois, Lattice QCD with an inhomogeneous magnetic

field background, PoS LATTICE2021 (2022) 083. arXiv:2111.13100, doi:10.22323/1.396.0083.

[134] X. An, et al., The BEST framework for the search for the QCD critical point and the chiral magnetic effect, Nucl.

Phys. A 1017 (2022) 122343. arXiv:2108.13867, doi:10.1016/j.nuclphysa.2021.122343.

[135] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer,

M. Stephanov, QCD equation of state matched to lattice data and exhibiting a critical point singularity, Phys.

Rev. C 101 (3) (2020) 034901. arXiv:1805.05249, doi:10.1103/PhysRevC.101.034901.

55

http://arxiv.org/abs/1607.08160
https://doi.org/10.1103/PhysRevD.94.094007
http://arxiv.org/abs/1807.01673
https://doi.org/10.1103/PhysRevD.98.054501
http://arxiv.org/abs/2109.07456
https://doi.org/10.1103/PhysRevD.104.114512
http://arxiv.org/abs/2111.11237
https://doi.org/10.1103/PhysRevD.105.034511
http://arxiv.org/abs/2110.12302
https://doi.org/10.22323/1.396.0125
http://arxiv.org/abs/2112.01032
https://doi.org/10.22323/1.396.0432
https://indico.cern.ch/event/1006302/contributions/4371160/
https://indico.cern.ch/event/1006302/contributions/4371160/
https://indico.cern.ch/event/1006302/contributions/4371160/
http://arxiv.org/abs/2104.06843
https://doi.org/10.1140/epja/s10050-021-00519-3
https://doi.org/10.1140/epja/s10050-021-00519-3
http://arxiv.org/abs/1909.09547
https://doi.org/10.1103/PhysRevD.100.114503
http://arxiv.org/abs/1812.08886
https://doi.org/10.1016/j.ppnp.2019.04.001
http://arxiv.org/abs/2108.00586
https://doi.org/10.1007/978-3-030-71427-7_11
http://arxiv.org/abs/2103.00237
https://doi.org/10.1140/epja/s10050-021-00530-8
http://arxiv.org/abs/2111.13100
https://doi.org/10.22323/1.396.0083
http://arxiv.org/abs/2108.13867
https://doi.org/10.1016/j.nuclphysa.2021.122343
http://arxiv.org/abs/1805.05249
https://doi.org/10.1103/PhysRevC.101.034901


[136] J. M. Karthein, D. Mroczek, A. R. Nava Acuna, J. Noronha-Hostler, P. Parotto, D. R. P. Price, C. Ratti, Strangeness-

neutral equation of state for QCD with a critical point, Eur. Phys. J. Plus 136 (6) (2021) 621. arXiv:2103.08146,

doi:10.1140/epjp/s13360-021-01615-5.

[137] C. Shen, B. Schenke, Dynamical initial state model for relativistic heavy-ion collisions, Phys. Rev. C 97 (2) (2018)

024907. arXiv:1710.00881, doi:10.1103/PhysRevC.97.024907.

[138] L. Du, U. Heinz, G. Vujanovic, Hybrid model with dynamical sources for heavy-ion collisions at BES energies, Nucl.

Phys. A 982 (2019) 407–410. arXiv:1807.04721, doi:10.1016/j.nuclphysa.2018.09.015.

[139] C. Shen, S. Alzhrani, Collision-geometry-based 3D initial condition for relativistic heavy-ion collisions, Phys. Rev.

C 102 (1) (2020) 014909. arXiv:2003.05852, doi:10.1103/PhysRevC.102.014909.

[140] M. Nahrgang, M. Bluhm, T. Schaefer, S. A. Bass, Diffusive dynamics of critical fluctuations near the QCD critical

point, Phys. Rev. D 99 (11) (2019) 116015. arXiv:1804.05728, doi:10.1103/PhysRevD.99.116015.

[141] M. Stephanov, Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys.

Rev. D 98 (3) (2018) 036006. arXiv:1712.10305, doi:10.1103/PhysRevD.98.036006.

[142] K. Rajagopal, G. Ridgway, R. Weller, Y. Yin, Understanding the out-of-equilibrium dynamics near a critical point

in the QCD phase diagram, Phys. Rev. D 102 (9) (2020) 094025. arXiv:1908.08539, doi:10.1103/PhysRevD.

102.094025.

[143] L. Du, U. Heinz, K. Rajagopal, Y. Yin, Fluctuation dynamics near the QCD critical point, Phys. Rev. C 102 (5)

(2020) 054911. arXiv:2004.02719, doi:10.1103/PhysRevC.102.054911.

[144] D. Oliinychenko, V. Koch, Microcanonical Particlization with Local Conservation Laws, Phys. Rev. Lett. 123 (18)

(2019) 182302. arXiv:1902.09775, doi:10.1103/PhysRevLett.123.182302.

[145] M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, Freezing out fluctuations in Hydro+ near the QCD critical point,

Phys. Rev. D 106 (3) (2022) 036017. arXiv:2204.00639, doi:10.1103/PhysRevD.106.036017.

[146] A. Sorensen, V. Koch, Phase transitions and critical behavior in hadronic transport with a relativistic density

functional equation of state, Phys. Rev. C 104 (3) (2021) 034904. arXiv:2011.06635, doi:10.1103/PhysRevC.

104.034904.

[147] N. Astrakhantsev, V. Braguta, A. Kotov, Temperature dependence of shear viscosity of SU(3)–gluodynamics within

lattice simulation, JHEP 04 (2017) 101. arXiv:1701.02266, doi:10.1007/JHEP04(2017)101.

[148] A. Nakamura, S. Sakai, Transport coefficients of gluon plasma, Phys. Rev. Lett. 94 (2005) 072305. arXiv:hep-lat/

0406009, doi:10.1103/PhysRevLett.94.072305.

[149] H. B. Meyer, A Calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76 (2007) 101701. arXiv:

0704.1801, doi:10.1103/PhysRevD.76.101701.

[150] P. Kovtun, D. T. Son, A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole

physics, Phys. Rev. Lett. 94 (2005) 111601. arXiv:hep-th/0405231, doi:10.1103/PhysRevLett.94.111601.

56

http://arxiv.org/abs/2103.08146
https://doi.org/10.1140/epjp/s13360-021-01615-5
http://arxiv.org/abs/1710.00881
https://doi.org/10.1103/PhysRevC.97.024907
http://arxiv.org/abs/1807.04721
https://doi.org/10.1016/j.nuclphysa.2018.09.015
http://arxiv.org/abs/2003.05852
https://doi.org/10.1103/PhysRevC.102.014909
http://arxiv.org/abs/1804.05728
https://doi.org/10.1103/PhysRevD.99.116015
http://arxiv.org/abs/1712.10305
https://doi.org/10.1103/PhysRevD.98.036006
http://arxiv.org/abs/1908.08539
https://doi.org/10.1103/PhysRevD.102.094025
https://doi.org/10.1103/PhysRevD.102.094025
http://arxiv.org/abs/2004.02719
https://doi.org/10.1103/PhysRevC.102.054911
http://arxiv.org/abs/1902.09775
https://doi.org/10.1103/PhysRevLett.123.182302
http://arxiv.org/abs/2204.00639
https://doi.org/10.1103/PhysRevD.106.036017
http://arxiv.org/abs/2011.06635
https://doi.org/10.1103/PhysRevC.104.034904
https://doi.org/10.1103/PhysRevC.104.034904
http://arxiv.org/abs/1701.02266
https://doi.org/10.1007/JHEP04(2017)101
http://arxiv.org/abs/hep-lat/0406009
http://arxiv.org/abs/hep-lat/0406009
https://doi.org/10.1103/PhysRevLett.94.072305
http://arxiv.org/abs/0704.1801
http://arxiv.org/abs/0704.1801
https://doi.org/10.1103/PhysRevD.76.101701
http://arxiv.org/abs/hep-th/0405231
https://doi.org/10.1103/PhysRevLett.94.111601


[151] D. Everett, et al., Phenomenological constraints on the transport properties of QCD matter with data-driven model

averaging, Phys. Rev. Lett. 126 (24) (2021) 242301. arXiv:2010.03928, doi:10.1103/PhysRevLett.126.242301.

[152] O. Soloveva, P. Moreau, E. Bratkovskaya, Transport coefficients for the hot quark-gluon plasma at finite chemical

potential µB , Phys. Rev. C 101 (4) (2020) 045203. arXiv:1911.08547, doi:10.1103/PhysRevC.101.045203.

[153] O. Soloveva, J. Aichelin, E. Bratkovskaya, Transport properties and equation-of-state of hot and dense QGP matter

near the critical endpoint in the phenomenological dynamical quasiparticle model, Phys. Rev. D 105 (5) (2022)

054011. arXiv:2108.08561, doi:10.1103/PhysRevD.105.054011.

[154] O. Soloveva, D. Fuseau, J. Aichelin, E. Bratkovskaya, Shear viscosity and electric conductivity of a hot and dense

QGP with a chiral phase transition, Phys. Rev. C 103 (5) (2021) 054901. arXiv:2011.03505, doi:10.1103/

PhysRevC.103.054901.

[155] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion

collisions, Comput. Phys. Commun. 199 (2016) 61–85. arXiv:1409.8164, doi:10.1016/j.cpc.2015.08.039.

[156] A. Schäfer, I. Karpenko, X.-Y. Wu, J. Hammelmann, H. Elfner, Particle production in a hybrid approach for a

beam energy scan of Au+Au/Pb+Pb collisions between
√
sNN = 4.3 GeV and

√
sNN = 200.0 GeV (12 2021).

arXiv:2112.08724.

[157] I. A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Estimation of the shear viscosity at finite net-baryon density

from A + A collision data at
√
sNN = 7.7 − 200 GeV, Phys. Rev. C 91 (6) (2015) 064901. arXiv:1502.01978,

doi:10.1103/PhysRevC.91.064901.

[158] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S. Jeon, C. Gale, Importance of the Bulk Viscosity

of QCD in Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 115 (13) (2015) 132301. arXiv:1502.01675,

doi:10.1103/PhysRevLett.115.132301.

[159] K.-J. Sun, C. M. Ko, Z.-W. Lin, Light nuclei production in a multiphase transport model for relativistic heavy ion

collisions, Phys. Rev. C 103 (6) (2021) 064909. arXiv:2005.00182, doi:10.1103/PhysRevC.103.064909.

[160] W. Cassing, E. Bratkovskaya, Parton-Hadron-String Dynamics: an off-shell transport approach for relativistic

energies, Nucl. Phys. A 831 (2009) 215–242. arXiv:0907.5331, doi:10.1016/j.nuclphysa.2009.09.007.

[161] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, Exploring the partonic phase at finite

chemical potential within an extended off-shell transport approach, Phys. Rev. C 100 (1) (2019) 014911. arXiv:

1903.10257, doi:10.1103/PhysRevC.100.014911.

[162] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, H. Berrehrah, Transport coefficients from the Nambu-Jona-

Lasinio model for SU(3)f , Phys. Rev. C 88 (2013) 045204. arXiv:1305.7180, doi:10.1103/PhysRevC.88.045204.

[163] M. Haas, L. Fister, J. M. Pawlowski, Gluon spectral functions and transport coefficients in Yang–Mills theory, Phys.

Rev. D 90 (2014) 091501. arXiv:1308.4960, doi:10.1103/PhysRevD.90.091501.

[164] N. Christiansen, M. Haas, J. M. Pawlowski, N. Strodthoff, Transport Coefficients in Yang–Mills Theory and QCD,

Phys. Rev. Lett. 115 (11) (2015) 112002. arXiv:1411.7986, doi:10.1103/PhysRevLett.115.112002.

57

http://arxiv.org/abs/2010.03928
https://doi.org/10.1103/PhysRevLett.126.242301
http://arxiv.org/abs/1911.08547
https://doi.org/10.1103/PhysRevC.101.045203
http://arxiv.org/abs/2108.08561
https://doi.org/10.1103/PhysRevD.105.054011
http://arxiv.org/abs/2011.03505
https://doi.org/10.1103/PhysRevC.103.054901
https://doi.org/10.1103/PhysRevC.103.054901
http://arxiv.org/abs/1409.8164
https://doi.org/10.1016/j.cpc.2015.08.039
http://arxiv.org/abs/2112.08724
http://arxiv.org/abs/1502.01978
https://doi.org/10.1103/PhysRevC.91.064901
http://arxiv.org/abs/1502.01675
https://doi.org/10.1103/PhysRevLett.115.132301
http://arxiv.org/abs/2005.00182
https://doi.org/10.1103/PhysRevC.103.064909
http://arxiv.org/abs/0907.5331
https://doi.org/10.1016/j.nuclphysa.2009.09.007
http://arxiv.org/abs/1903.10257
http://arxiv.org/abs/1903.10257
https://doi.org/10.1103/PhysRevC.100.014911
http://arxiv.org/abs/1305.7180
https://doi.org/10.1103/PhysRevC.88.045204
http://arxiv.org/abs/1308.4960
https://doi.org/10.1103/PhysRevD.90.091501
http://arxiv.org/abs/1411.7986
https://doi.org/10.1103/PhysRevLett.115.112002


[165] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, C. Ratti, Dynamical versus equilibrium properties of

the QCD phase transition: A holographic perspective, Phys. Rev. D 96 (1) (2017) 014032. arXiv:1704.05558,

doi:10.1103/PhysRevD.96.014032.

[166] J. Grefa, M. Hippert, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont, Transport coefficients

of the quark-gluon plasma at the critical point and across the first-order line, Phys. Rev. D 106 (3) (2022) 034024.

arXiv:2203.00139, doi:10.1103/PhysRevD.106.034024.

[167] W. Cassing, E. Bratkovskaya, Parton transport and hadronization from the dynamical quasiparticle point of view,

Phys. Rev. C 78 (2008) 034919. arXiv:0808.0022, doi:10.1103/PhysRevC.78.034919.

[168] E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, Parton-Hadron-String Dynamics at Relativistic Collider

Energies, Nucl. Phys. A 856 (2011) 162–182. arXiv:1101.5793, doi:10.1016/j.nuclphysa.2011.03.003.

[169] O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Exploring the partonic

phase at finite chemical potential in and out-of equilibrium, Particles 3 (1) (2020) 178–192. arXiv:2001.05395,

doi:10.3390/particles3010015.

[170] T. Galatyuk, https://github.com/tgalatyuk/interaction_rate_facilities/blob/main/hist_rates_

detectors_2022_jun.pdf (2022).

[171] T. Galatyuk, Future facilities for high µB physics, Nucl. Phys. A 982 (2019) 163–169. doi:10.1016/j.nuclphysa.

2018.11.025.

[172] T. Ablyazimov, et al., Challenges in QCD matter physics –The scientific programme of the Compressed Bary-

onic Matter experiment at FAIR, Eur. Phys. J. A 53 (3) (2017) 60. arXiv:1607.01487, doi:10.1140/epja/

i2017-12248-y.

[173] G. Aarts, C. Allton, D. De Boni, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud, Light baryons below and above

the deconfinement transition: medium effects and parity doubling, JHEP 06 (2017) 034. arXiv:1703.09246,

doi:10.1007/JHEP06(2017)034.

[174] M. Asakawa, T. Hatsuda, Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog.

Part. Nucl. Phys. 46 (2001) 459–508. arXiv:hep-lat/0011040, doi:10.1016/S0146-6410(01)00150-8.

[175] O. Kaczmarek, H.-T. Shu, Spectral and Transport Properties from Lattice QCD, Lect. Notes Phys. 999 (2022)

307–345. arXiv:2206.14676, doi:10.1007/978-3-030-95491-8_8.

[176] A. Rothkopf, Heavy Quarkonium in Extreme Conditions, Phys. Rept. 858 (2020) 1–117. arXiv:1912.02253,

doi:10.1016/j.physrep.2020.02.006.

[177] G. Aarts, S. Kim, M. Lombardo, M. Oktay, S. Ryan, D. Sinclair, J.-I. Skullerud, Bottomonium above deconfinement

in lattice nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 061602. arXiv:1010.3725, doi:10.1103/PhysRevLett.

106.061602.

[178] M. Strickland, Bottomonium suppression and flow in heavy-ion collisions, EPJ Web Conf. 259 (2022) 04001. arXiv:

2108.08160, doi:10.1051/epjconf/202225904001.

58

http://arxiv.org/abs/1704.05558
https://doi.org/10.1103/PhysRevD.96.014032
http://arxiv.org/abs/2203.00139
https://doi.org/10.1103/PhysRevD.106.034024
http://arxiv.org/abs/0808.0022
https://doi.org/10.1103/PhysRevC.78.034919
http://arxiv.org/abs/1101.5793
https://doi.org/10.1016/j.nuclphysa.2011.03.003
http://arxiv.org/abs/2001.05395
https://doi.org/10.3390/particles3010015
https://github.com/tgalatyuk/interaction_rate_facilities/blob/main/hist_rates_detectors_2022_jun.pdf
https://github.com/tgalatyuk/interaction_rate_facilities/blob/main/hist_rates_detectors_2022_jun.pdf
https://doi.org/10.1016/j.nuclphysa.2018.11.025
https://doi.org/10.1016/j.nuclphysa.2018.11.025
http://arxiv.org/abs/1607.01487
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1140/epja/i2017-12248-y
http://arxiv.org/abs/1703.09246
https://doi.org/10.1007/JHEP06(2017)034
http://arxiv.org/abs/hep-lat/0011040
https://doi.org/10.1016/S0146-6410(01)00150-8
http://arxiv.org/abs/2206.14676
https://doi.org/10.1007/978-3-030-95491-8_8
http://arxiv.org/abs/1912.02253
https://doi.org/10.1016/j.physrep.2020.02.006
http://arxiv.org/abs/1010.3725
https://doi.org/10.1103/PhysRevLett.106.061602
https://doi.org/10.1103/PhysRevLett.106.061602
http://arxiv.org/abs/2108.08160
http://arxiv.org/abs/2108.08160
https://doi.org/10.1051/epjconf/202225904001


[179] T. Spriggs, et al., A comparison of spectral reconstruction methods applied to non-zero temperature NRQCD meson

correlation functions, EPJWeb Conf. 258 (2022) 05011. arXiv:2112.04201, doi:10.1051/epjconf/202225805011.

[180] N. Brambilla, A. Pineda, J. Soto, A. Vairo, Effective Field Theories for Heavy Quarkonium, Rev. Mod. Phys. 77

(2005) 1423. arXiv:hep-ph/0410047, doi:10.1103/RevModPhys.77.1423.

[181] N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D

78 (2008) 014017. arXiv:0804.0993, doi:10.1103/PhysRevD.78.014017.

[182] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto, A. Vairo, Heavy Quarkonium in a weakly-coupled quark-gluon

plasma below the melting temperature, JHEP 09 (2010) 038. arXiv:1007.4156, doi:10.1007/JHEP09(2010)038.

[183] N. Brambilla, J. Ghiglieri, P. Petreczky, A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-

next-to-leading order, Phys. Rev. D 82 (2010) 074019. arXiv:1007.5172, doi:10.1103/PhysRevD.82.074019.

[184] A. Bazavov, N. Brambilla, H. T. Ding, P. Petreczky, H. P. Schadler, A. Vairo, J. H. Weber, Polyakov loop in

2+1 flavor QCD from low to high temperatures, Phys. Rev. D 93 (11) (2016) 114502. arXiv:1603.06637, doi:

10.1103/PhysRevD.93.114502.

[185] N. Brambilla, M. A. Escobedo, J. Soto, A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (7)

(2018) 074009. arXiv:1711.04515, doi:10.1103/PhysRevD.97.074009.

[186] N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, J. H. Weber, Bottomonium suppression

in an open quantum system using the quantum trajectories method, JHEP 05 (2021) 136. arXiv:2012.01240,

doi:10.1007/JHEP05(2021)136.

[187] N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, J. H. Weber, Bottomonium production

in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy, Phys. Rev.

D 104 (9) (2021) 094049. arXiv:2107.06222, doi:10.1103/PhysRevD.104.094049.

[188] N. Brambilla, M. A. Escobedo, A. Vairo, P. Vander Griend, Transport coefficients from in medium quarkonium

dynamics, Phys. Rev. D 100 (5) (2019) 054025. arXiv:1903.08063, doi:10.1103/PhysRevD.100.054025.

[189] N. Brambilla, V. Leino, J. Mayer-Steudte, P. Petreczky, Heavy quark diffusion coefficient with gradient flow (6

2022). arXiv:2206.02861.

[190] N. Brambilla, V. Leino, P. Petreczky, A. Vairo, Lattice QCD constraints on the heavy quark diffusion coefficient,

Phys. Rev. D 102 (7) (2020) 074503. arXiv:2007.10078, doi:10.1103/PhysRevD.102.074503.

[191] N. Brambilla, Effective Field Theories and Lattice QCD for the X Y Z frontier, PoS LATTICE2021 (2022) 020.

arXiv:2111.10788, doi:10.22323/1.396.0020.

[192] N. Brambilla, Quark Nuclear Physics with Heavy Quarks (4 2022). arXiv:2204.11295.

[193] N. Brambilla, H. S. Chung, A. Vairo, X.-P. Wang, Production and polarization of P wave quarkonia in potential

nonrelativistic QCD, Phys. Rev. D 105 (11) (2022) L111503. arXiv:2203.07778, doi:10.1103/PhysRevD.105.

L111503.

59

http://arxiv.org/abs/2112.04201
https://doi.org/10.1051/epjconf/202225805011
http://arxiv.org/abs/hep-ph/0410047
https://doi.org/10.1103/RevModPhys.77.1423
http://arxiv.org/abs/0804.0993
https://doi.org/10.1103/PhysRevD.78.014017
http://arxiv.org/abs/1007.4156
https://doi.org/10.1007/JHEP09(2010)038
http://arxiv.org/abs/1007.5172
https://doi.org/10.1103/PhysRevD.82.074019
http://arxiv.org/abs/1603.06637
https://doi.org/10.1103/PhysRevD.93.114502
https://doi.org/10.1103/PhysRevD.93.114502
http://arxiv.org/abs/1711.04515
https://doi.org/10.1103/PhysRevD.97.074009
http://arxiv.org/abs/2012.01240
https://doi.org/10.1007/JHEP05(2021)136
http://arxiv.org/abs/2107.06222
https://doi.org/10.1103/PhysRevD.104.094049
http://arxiv.org/abs/1903.08063
https://doi.org/10.1103/PhysRevD.100.054025
http://arxiv.org/abs/2206.02861
http://arxiv.org/abs/2007.10078
https://doi.org/10.1103/PhysRevD.102.074503
http://arxiv.org/abs/2111.10788
https://doi.org/10.22323/1.396.0020
http://arxiv.org/abs/2204.11295
http://arxiv.org/abs/2203.07778
https://doi.org/10.1103/PhysRevD.105.L111503
https://doi.org/10.1103/PhysRevD.105.L111503


[194] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, L. Scorzato, The QCD

thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507. arXiv:

hep-lat/0204010, doi:10.1103/PhysRevD.66.074507.

[195] T. D. Lee, C.-N. Yang, Statistical theory of equations of state and phase transitions. 2. Lattice gas and Ising model,

Phys. Rev. 87 (1952) 410–419. doi:10.1103/PhysRev.87.410.

[196] S. Ejiri, Lee-Yang zero analysis for the study of QCD phase structure, Phys. Rev. D 73 (2006) 054502. arXiv:

hep-lat/0506023, doi:10.1103/PhysRevD.73.054502.

[197] M. A. Stephanov, QCD critical point and complex chemical potential singularities, Phys. Rev. D 73 (2006) 094508.

arXiv:hep-lat/0603014, doi:10.1103/PhysRevD.73.094508.

[198] R. V. Gavai, S. Gupta, The Critical end point of QCD, Phys. Rev. D 71 (2005) 114014. arXiv:hep-lat/0412035,

doi:10.1103/PhysRevD.71.114014.

[199] M. Giordano, A. Pásztor, Reliable estimation of the radius of convergence in finite density QCD, Phys. Rev. D

99 (11) (2019) 114510. arXiv:1904.01974, doi:10.1103/PhysRevD.99.114510.

[200] G. N. Mercer, A. J. Roberts, A centre manifold description of contaminant dispersion in channels with varying flow

properties, SIAM J. Appl. Math. 50 (1990) 1547. doi:xx.

[201] P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt, S. Singh, K. Zambello, F. Ziesché,

Contribution to understanding the phase structure of strong interaction matter: Lee-Yang edge singularities from

lattice QCD, Phys. Rev. D 105 (3) (2022) 034513. arXiv:2110.15933, doi:10.1103/PhysRevD.105.034513.

[202] C. Schmidt, D. A. Clarke, P. Dimopoulos, J. Goswami, G. Nicotra, F. Di Renzo, S. Singh, K. Zambello, Detecting

critical points from Lee-Yang edge singularities in lattice QCD (9 2022). arXiv:2209.04345.

[203] M. P. Lombardo, Series representation: Pade’ approximants and critical behavior in QCD at nonzero T and mu,

PoS LAT2005 (2006) 168. arXiv:hep-lat/0509181, doi:10.22323/1.020.0168.

[204] P. Cea, L. Cosmai, M. D’Elia, C. Manneschi, A. Papa, Analytic continuation of the critical line: Suggestions for

QCD, Phys. Rev. D 80 (2009) 034501. arXiv:0905.1292, doi:10.1103/PhysRevD.80.034501.

[205] R. Falcone, E. Laermann, M. P. Lombardo, Study of finite temperature QCD with 2+1 flavors via Taylor expansion

and imaginary chemical potential, PoS LATTICE2010 (2010) 183. arXiv:1012.4694, doi:10.22323/1.105.0183.

[206] E. Laermann, F. Meyer, M. P. Lombardo, Making the most of Taylor expansion and imaginary µ, J. Phys. Conf.

Ser. 432 (2013) 012016. arXiv:1304.3247, doi:10.1088/1742-6596/432/1/012016.

[207] S. Mondal, S. Mukherjee, P. Hegde, Lattice QCD Equation of State for Nonvanishing Chemical Potential by Resum-

ming Taylor Expansions, Phys. Rev. Lett. 128 (2) (2022) 022001. arXiv:2106.03165, doi:10.1103/PhysRevLett.

128.022001.

[208] G. Basar, Universality, Lee-Yang Singularities, and Series Expansions, Phys. Rev. Lett. 127 (17) (2021) 171603.

arXiv:2105.08080, doi:10.1103/PhysRevLett.127.171603.

60

http://arxiv.org/abs/hep-lat/0204010
http://arxiv.org/abs/hep-lat/0204010
https://doi.org/10.1103/PhysRevD.66.074507
https://doi.org/10.1103/PhysRev.87.410
http://arxiv.org/abs/hep-lat/0506023
http://arxiv.org/abs/hep-lat/0506023
https://doi.org/10.1103/PhysRevD.73.054502
http://arxiv.org/abs/hep-lat/0603014
https://doi.org/10.1103/PhysRevD.73.094508
http://arxiv.org/abs/hep-lat/0412035
https://doi.org/10.1103/PhysRevD.71.114014
http://arxiv.org/abs/1904.01974
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/xx
http://arxiv.org/abs/2110.15933
https://doi.org/10.1103/PhysRevD.105.034513
http://arxiv.org/abs/2209.04345
http://arxiv.org/abs/hep-lat/0509181
https://doi.org/10.22323/1.020.0168
http://arxiv.org/abs/0905.1292
https://doi.org/10.1103/PhysRevD.80.034501
http://arxiv.org/abs/1012.4694
https://doi.org/10.22323/1.105.0183
http://arxiv.org/abs/1304.3247
https://doi.org/10.1088/1742-6596/432/1/012016
http://arxiv.org/abs/2106.03165
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevLett.128.022001
http://arxiv.org/abs/2105.08080
https://doi.org/10.1103/PhysRevLett.127.171603


[209] S. Mukherjee, F. Rennecke, V. V. Skokov, Analytical structure of the equation of state at finite density: Re-

summation versus expansion in a low energy model, Phys. Rev. D 105 (1) (2022) 014026. arXiv:2110.02241,

doi:10.1103/PhysRevD.105.014026.

[210] A. Connelly, G. Johnson, F. Rennecke, V. Skokov, Universal Location of the Yang-Lee Edge Singularity in O(N)

Theories, Phys. Rev. Lett. 125 (19) (2020) 191602. arXiv:2006.12541, doi:10.1103/PhysRevLett.125.191602.

[211] F. Rennecke, V. V. Skokov, Universal location of Yang–Lee edge singularity for a one-component field theory in

1≤d≤4, Annals Phys. 444 (2022) 169010. arXiv:2203.16651, doi:10.1016/j.aop.2022.169010.

[212] G. Johnson, F. Rennecke, V. V. Skokov, Universal location of Yang-Lee edge singularity in classic O(N) universality

classes (11 2022). arXiv:2211.00710.

[213] F. Ihssen, J. M. Pawlowski, Functional flows for complex effective actions (7 2022). arXiv:2207.10057.

[214] A. Begun, V. G. Bornyakov, N. V. Gerasimeniuk, V. A. Goy, A. Nakamura, R. N. Rogalyov, V. Vovchenko, Quark

Density in Lattice QC2D at Imaginary and Real Chemical Potential (3 2021). arXiv:2103.07442.

[215] K. Langfeld, B. Lucini, R. Pellegrini, A. Rago, An efficient algorithm for numerical computations of continuous

densities of states, Eur. Phys. J. C 76 (6) (2016) 306. arXiv:1509.08391, doi:10.1140/epjc/s10052-016-4142-5.

[216] K. Langfeld, B. Lucini, A. Rago, The density of states in gauge theories, Phys. Rev. Lett. 109 (2012) 111601.

arXiv:1204.3243, doi:10.1103/PhysRevLett.109.111601.

[217] G. Cossu, D. Lancaster, B. Lucini, R. Pellegrini, A. Rago, Ergodic sampling of the topological charge using the

density of states, Eur. Phys. J. C 81 (4) (2021) 375. arXiv:2102.03630, doi:10.1140/epjc/s10052-021-09161-1.

[218] K. Langfeld, B. Lucini, Density of states approach to dense quantum systems, Phys. Rev. D 90 (9) (2014) 094502.

arXiv:1404.7187, doi:10.1103/PhysRevD.90.094502.

[219] O. Francesconi, M. Holzmann, B. Lucini, A. Rago, Free energy of the self-interacting relativistic lattice Bose gas at

finite density, Phys. Rev. D 101 (1) (2020) 014504. arXiv:1910.11026, doi:10.1103/PhysRevD.101.014504.

[220] U.-J. Wiese, From quantum link models to D-theory: a resource efficient framework for the quantum simulation

and computation of gauge theories, Phil. Trans. A. Math. Phys. Eng. Sci. 380 (2216) (2021) 20210068. arXiv:

2107.09335, doi:10.1098/rsta.2021.0068.

[221] M. A. Stephanov, QCD phase diagram and the critical point, Prog. Theor. Phys. Suppl. 153 (2004) 139–156.

arXiv:hep-ph/0402115, doi:10.1142/S0217751X05027965.

[222] K. Fukushima, T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001. arXiv:

1005.4814, doi:10.1088/0034-4885/74/1/014001.

[223] M. A. Stephanov, K. Rajagopal, E. V. Shuryak, Signatures of the tricritical point in QCD, Phys. Rev. Lett. 81

(1998) 4816–4819. arXiv:hep-ph/9806219, doi:10.1103/PhysRevLett.81.4816.

[224] A. Pelissetto, E. Vicari, Relevance of the axial anomaly at the finite-temperature chiral transition in QCD, Phys.

Rev. D 88 (10) (2013) 105018. arXiv:1309.5446, doi:10.1103/PhysRevD.88.105018.

61

http://arxiv.org/abs/2110.02241
https://doi.org/10.1103/PhysRevD.105.014026
http://arxiv.org/abs/2006.12541
https://doi.org/10.1103/PhysRevLett.125.191602
http://arxiv.org/abs/2203.16651
https://doi.org/10.1016/j.aop.2022.169010
http://arxiv.org/abs/2211.00710
http://arxiv.org/abs/2207.10057
http://arxiv.org/abs/2103.07442
http://arxiv.org/abs/1509.08391
https://doi.org/10.1140/epjc/s10052-016-4142-5
http://arxiv.org/abs/1204.3243
https://doi.org/10.1103/PhysRevLett.109.111601
http://arxiv.org/abs/2102.03630
https://doi.org/10.1140/epjc/s10052-021-09161-1
http://arxiv.org/abs/1404.7187
https://doi.org/10.1103/PhysRevD.90.094502
http://arxiv.org/abs/1910.11026
https://doi.org/10.1103/PhysRevD.101.014504
http://arxiv.org/abs/2107.09335
http://arxiv.org/abs/2107.09335
https://doi.org/10.1098/rsta.2021.0068
http://arxiv.org/abs/hep-ph/0402115
https://doi.org/10.1142/S0217751X05027965
http://arxiv.org/abs/1005.4814
http://arxiv.org/abs/1005.4814
https://doi.org/10.1088/0034-4885/74/1/014001
http://arxiv.org/abs/hep-ph/9806219
https://doi.org/10.1103/PhysRevLett.81.4816
http://arxiv.org/abs/1309.5446
https://doi.org/10.1103/PhysRevD.88.105018


[225] F. Karsch, Lattice results on QCD thermodynamics, Nucl. Phys. A 698 (2002) 199–208. arXiv:hep-ph/0103314,

doi:10.1016/S0375-9474(01)01365-3.

[226] Y. Aoki, G. Endrődi, Z. Fodor, S. D. Katz, K. K. Szabó, The Order of the quantum chromodynamics transition

predicted by the standard model of particle physics, Nature 443 (2006) 675–678. arXiv:hep-lat/0611014, doi:

10.1038/nature05120.

[227] M. Buballa, NJL model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205–376. arXiv:hep-ph/

0402234, doi:10.1016/j.physrep.2004.11.004.

[228] M. A. Stephanov, K. Rajagopal, E. V. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD

critical point, Phys. Rev. D 60 (1999) 114028. arXiv:hep-ph/9903292, doi:10.1103/PhysRevD.60.114028.

[229] M. A. Stephanov, Non-Gaussian fluctuations near the QCD critical point, Phys. Rev. Lett. 102 (2009) 032301.

arXiv:0809.3450, doi:10.1103/PhysRevLett.102.032301.

[230] S. Mukherjee, R. Venugopalan, Y. Yin, Real time evolution of non-Gaussian cumulants in the QCD critical regime,

Phys. Rev. C 92 (3) (2015) 034912. arXiv:1506.00645, doi:10.1103/PhysRevC.92.034912.

[231] X. Luo, N. Xu, Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-

Ion Collisions at RHIC: An Overview, Nucl. Sci. Tech. 28 (8) (2017) 112. arXiv:1701.02105, doi:10.1007/

s41365-017-0257-0.

[232] P. Spiller, G. Franchetti, The FAIR accelerator project at GSI, Nucl. Instrum. Meth. A 561 (2006) 305–309.

doi:10.1016/j.nima.2006.01.043.

[233] R. A. Lacey, N. N. Ajitanand, J. M. Alexander, P. Chung, W. G. Holzmann, M. Issah, A. Taranenko, P. Danielewicz,

H. Stöcker, Has the QCD Critical Point been Signaled by Observations at RHIC?, Phys. Rev. Lett. 98 (2007) 092301.

arXiv:nucl-ex/0609025, doi:10.1103/PhysRevLett.98.092301.

[234] A. N. Sissakian, A. S. Sorin, The nuclotron-based ion collider facility (NICA) at JINR: New prospects for heavy

ion collisions and spin physics, J. Phys. G 36 (2009) 064069. doi:10.1088/0954-3899/36/6/064069.

[235] M. M. Aggarwal, et al., An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical

Point and the Onset of De-confinement (7 2010). arXiv:1007.2613.

[236] Z. Citron, et al., Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC

with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7 (2019) 1159–1410. arXiv:1812.06772, doi:

10.23731/CYRM-2019-007.1159.

[237] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Mapping the Phases of Quantum Chromodynamics

with Beam Energy Scan, Phys. Rept. 853 (2020) 1–87. arXiv:1906.00936, doi:10.1016/j.physrep.2020.01.005.

[238] J. Adamczewski-Musch, et al., Proton-number fluctuations in
√
sNN = 2.4 GeV Au + Au collisions studied with

the High-Acceptance DiElectron Spectrometer (HADES), Phys. Rev. C 102 (2) (2020) 024914. arXiv:2002.08701,

doi:10.1103/PhysRevC.102.024914.

62

http://arxiv.org/abs/hep-ph/0103314
https://doi.org/10.1016/S0375-9474(01)01365-3
http://arxiv.org/abs/hep-lat/0611014
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
http://arxiv.org/abs/hep-ph/0402234
http://arxiv.org/abs/hep-ph/0402234
https://doi.org/10.1016/j.physrep.2004.11.004
http://arxiv.org/abs/hep-ph/9903292
https://doi.org/10.1103/PhysRevD.60.114028
http://arxiv.org/abs/0809.3450
https://doi.org/10.1103/PhysRevLett.102.032301
http://arxiv.org/abs/1506.00645
https://doi.org/10.1103/PhysRevC.92.034912
http://arxiv.org/abs/1701.02105
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1016/j.nima.2006.01.043
http://arxiv.org/abs/nucl-ex/0609025
https://doi.org/10.1103/PhysRevLett.98.092301
https://doi.org/10.1088/0954-3899/36/6/064069
http://arxiv.org/abs/1007.2613
http://arxiv.org/abs/1812.06772
https://doi.org/10.23731/CYRM-2019-007.1159
https://doi.org/10.23731/CYRM-2019-007.1159
http://arxiv.org/abs/1906.00936
https://doi.org/10.1016/j.physrep.2020.01.005
http://arxiv.org/abs/2002.08701
https://doi.org/10.1103/PhysRevC.102.024914


[239] T. Hachiya, J-PARC heavy ion experiment, Int. J. Mod. Phys. E 29 (11) (2020) 2040005. doi:10.1142/

S0218301320400054.

[240] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov, J. J. M. Verbaarschot, On the phase diagram of

QCD, Phys. Rev. D 58 (1998) 096007. arXiv:hep-ph/9804290, doi:10.1103/PhysRevD.58.096007.

[241] J. Berges, K. Rajagopal, Color superconductivity and chiral symmetry restoration at nonzero baryon density and

temperature, Nucl. Phys. B 538 (1999) 215–232. arXiv:hep-ph/9804233, doi:10.1016/S0550-3213(98)00620-8.

[242] L. Onsager, Crystal statistics. 1. A Two-dimensional model with an order disorder transition, Phys. Rev. 65 (1944)

117–149. doi:10.1103/PhysRev.65.117.

[243] C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function inter-

action, Phys. Rev. Lett. 19 (1967) 1312–1314. doi:10.1103/PhysRevLett.19.1312.

[244] R. J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193–228. doi:10.1016/

0003-4916(72)90335-1.

[245] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, Solving the 3D Ising Model with

the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022. arXiv:1203.6064, doi:10.1103/PhysRevD.86.025022.

[246] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, Solving the 3d Ising Model

with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys. 157 (2014) 869.

arXiv:1403.4545, doi:10.1007/s10955-014-1042-7.

[247] F. Gliozzi, A. Rago, Critical exponents of the 3d Ising and related models from Conformal Bootstrap, JHEP 10

(2014) 042. arXiv:1403.6003, doi:10.1007/JHEP10(2014)042.

[248] I. Balog, H. Chaté, B. Delamotte, M. Marohnić, N. Wschebor, Convergence of Nonperturbative Approximations

to the Renormalization Group, Phys. Rev. Lett. 123 (24) (2019) 240604. arXiv:1907.01829, doi:10.1103/

PhysRevLett.123.240604.

[249] G. De Polsi, I. Balog, M. Tissier, N. Wschebor, Precision calculation of critical exponents in the O(N) universality

classes with the nonperturbative renormalization group, Phys. Rev. E 101 (4) (2020) 042113. arXiv:2001.07525,

doi:10.1103/PhysRevE.101.042113.

[250] C. Nonaka, M. Asakawa, Hydrodynamical evolution near the QCD critical end point, Phys. Rev. C 71 (2005)

044904. arXiv:nucl-th/0410078, doi:10.1103/PhysRevC.71.044904.

[251] B. Kämpfer, M. Bluhm, R. Schulze, D. Seipt, U. Heinz, QCD matter within a quasi-particle model and the critical

end point, Nucl. Phys. A 774 (2006) 757–760. arXiv:hep-ph/0509146, doi:10.1016/j.nuclphysa.2006.06.131.

[252] M. Caselle, N. Magnoli, A. Nada, M. Panero, M. Scanavino, Conformal perturbation theory confronts lattice results

in the vicinity of a critical point, Phys. Rev. D 100 (3) (2019) 034512. arXiv:1904.12749, doi:10.1103/PhysRevD.

100.034512.

[253] M. Caselle, M. Sorba, Charting the scaling region of the Ising universality class in two and three dimensions, Phys.

Rev. D 102 (1) (2020) 014505. arXiv:2003.12332, doi:10.1103/PhysRevD.102.014505.

63

https://doi.org/10.1142/S0218301320400054
https://doi.org/10.1142/S0218301320400054
http://arxiv.org/abs/hep-ph/9804290
https://doi.org/10.1103/PhysRevD.58.096007
http://arxiv.org/abs/hep-ph/9804233
https://doi.org/10.1016/S0550-3213(98)00620-8
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1016/0003-4916(72)90335-1
https://doi.org/10.1016/0003-4916(72)90335-1
http://arxiv.org/abs/1203.6064
https://doi.org/10.1103/PhysRevD.86.025022
http://arxiv.org/abs/1403.4545
https://doi.org/10.1007/s10955-014-1042-7
http://arxiv.org/abs/1403.6003
https://doi.org/10.1007/JHEP10(2014)042
http://arxiv.org/abs/1907.01829
https://doi.org/10.1103/PhysRevLett.123.240604
https://doi.org/10.1103/PhysRevLett.123.240604
http://arxiv.org/abs/2001.07525
https://doi.org/10.1103/PhysRevE.101.042113
http://arxiv.org/abs/nucl-th/0410078
https://doi.org/10.1103/PhysRevC.71.044904
http://arxiv.org/abs/hep-ph/0509146
https://doi.org/10.1016/j.nuclphysa.2006.06.131
http://arxiv.org/abs/1904.12749
https://doi.org/10.1103/PhysRevD.100.034512
https://doi.org/10.1103/PhysRevD.100.034512
http://arxiv.org/abs/2003.12332
https://doi.org/10.1103/PhysRevD.102.014505


[254] F. Caristo, M. Caselle, N. Magnoli, A. Nada, M. Panero, A. Smecca, Fine corrections in the effective string de-

scribing SU(2) Yang-Mills theory in three dimensions, JHEP 03 (2022) 115. arXiv:2109.06212, doi:10.1007/

JHEP03(2022)115.

[255] A. B. Zamolodchikov, Renormalization Group and Perturbation Theory Near Fixed Points in Two-Dimensional

Field Theory, Sov. J. Nucl. Phys. 46 (1987) 1090.

[256] R. Guida, N. Magnoli, All order IR finite expansion for short distance behavior of massless theories perturbed by

a relevant operator, Nucl. Phys. B 471 (1996) 361–388. arXiv:hep-th/9511209, doi:10.1016/0550-3213(96)

00175-7.

[257] M. R. Gaberdiel, A. Konechny, C. Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J.

Phys. A 42 (2009) 105402. arXiv:0811.3149, doi:10.1088/1751-8113/42/10/105402.

[258] M. Caselle, G. Costagliola, N. Magnoli, Conformal perturbation of off-critical correlators in the 3D Ising universality

class, Phys. Rev. D 94 (2) (2016) 026005. arXiv:1605.05133, doi:10.1103/PhysRevD.94.026005.

[259] A. Amoretti, N. Magnoli, Conformal perturbation theory, Phys. Rev. D 96 (4) (2017) 045016. arXiv:1705.03502,

doi:10.1103/PhysRevD.96.045016.

[260] O. Philipsen, The QCD phase diagram at zero and small baryon density, PoS Lattice 2005 (2006) 016. arXiv:

hep-lat/0510077, doi:10.22323/1.020.0016.

[261] P. de Forcrand, Simulating QCD at finite density, PoS Lattice 2009 (2009) 010. arXiv:1005.0539, doi:10.22323/

1.091.0010.

[262] G. Aarts, Introductory lectures on lattice QCD at nonzero baryon number, J. Phys. Conf. Ser. 706 (2) (2016)

022004. arXiv:1512.05145, doi:10.1088/1742-6596/706/2/022004.

[263] C. Gattringer, K. Langfeld, Approaches to the sign problem in lattice field theory, Int. J. Mod. Phys. A 31 (22)

(2016) 1643007. arXiv:1603.09517, doi:10.1142/S0217751X16430077.

[264] S. Basak, et al., QCD equation of state at non-zero chemical potential, PoS Lattice 2008 (2008) 171. arXiv:

0910.0276, doi:10.22323/1.066.0171.

[265] F. Karsch, B.-J. Schaefer, M. Wagner, J. Wambach, Towards finite density QCD with Taylor expansions, Phys.

Lett. B 698 (2011) 256–264. arXiv:1009.5211, doi:10.1016/j.physletb.2011.03.013.

[266] C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, K. Zambello, Curvature of the pseudocritical line in QCD: Taylor

expansion matches analytic continuation, Phys. Rev. D 98 (5) (2018) 054510. arXiv:1805.02960, doi:10.1103/

PhysRevD.98.054510.

[267] Z. Fodor, S. D. Katz, A New method to study lattice QCD at finite temperature and chemical potential, Phys.

Lett. B 534 (2002) 87–92. arXiv:hep-lat/0104001, doi:10.1016/S0370-2693(02)01583-6.

[268] F. Csikor, G. I. Egri, Z. Fodor, S. D. Katz, K. K. Szabó, A. I. Tóth, Equation of state at finite temperature

and chemical potential, lattice QCD results, JHEP 0405 (2004) 046. arXiv:hep-lat/0401016, doi:10.1088/

1126-6708/2004/05/046.

64

http://arxiv.org/abs/2109.06212
https://doi.org/10.1007/JHEP03(2022)115
https://doi.org/10.1007/JHEP03(2022)115
http://arxiv.org/abs/hep-th/9511209
https://doi.org/10.1016/0550-3213(96)00175-7
https://doi.org/10.1016/0550-3213(96)00175-7
http://arxiv.org/abs/0811.3149
https://doi.org/10.1088/1751-8113/42/10/105402
http://arxiv.org/abs/1605.05133
https://doi.org/10.1103/PhysRevD.94.026005
http://arxiv.org/abs/1705.03502
https://doi.org/10.1103/PhysRevD.96.045016
http://arxiv.org/abs/hep-lat/0510077
http://arxiv.org/abs/hep-lat/0510077
https://doi.org/10.22323/1.020.0016
http://arxiv.org/abs/1005.0539
https://doi.org/10.22323/1.091.0010
https://doi.org/10.22323/1.091.0010
http://arxiv.org/abs/1512.05145
https://doi.org/10.1088/1742-6596/706/2/022004
http://arxiv.org/abs/1603.09517
https://doi.org/10.1142/S0217751X16430077
http://arxiv.org/abs/0910.0276
http://arxiv.org/abs/0910.0276
https://doi.org/10.22323/1.066.0171
http://arxiv.org/abs/1009.5211
https://doi.org/10.1016/j.physletb.2011.03.013
http://arxiv.org/abs/1805.02960
https://doi.org/10.1103/PhysRevD.98.054510
https://doi.org/10.1103/PhysRevD.98.054510
http://arxiv.org/abs/hep-lat/0104001
https://doi.org/10.1016/S0370-2693(02)01583-6
http://arxiv.org/abs/hep-lat/0401016
https://doi.org/10.1088/1126-6708/2004/05/046
https://doi.org/10.1088/1126-6708/2004/05/046


[269] Z. Fodor, S. D. Katz, Critical point of QCD at finite T and mu, lattice results for physical quark masses, JHEP 04

(2004) 050. arXiv:hep-lat/0402006, doi:10.1088/1126-6708/2004/04/050.

[270] C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett. 78 (14) (1997) 2690–2693.

arXiv:cond-mat/9610209, doi:10.1103/PhysRevLett.78.2690.

[271] C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach,

Phys. Rev. E56 (1997) 5018–5035. arXiv:cond-mat/9707325, doi:10.1103/PhysRevE.56.5018.

URL http://link.aps.org/doi/10.1103/PhysRevE.56.5018

[272] R. M. Neal, Annealed Importance Sampling, Statistics and Computing (1998). arXiv:physics/9803008.

[273] M. Caselle, A. Nada, M. Panero, QCD thermodynamics from lattice calculations with nonequilibrium methods:

The SU(3) equation of state, Phys. Rev. D 98 (5) (2018) 054513. arXiv:1801.03110, doi:10.1103/PhysRevD.98.

054513.

[274] M. Caselle, E. Cellini, A. Nada, M. Panero, Stochastic normalizing flows as non-equilibrium transformations, JHEP

07 (2022) 015. arXiv:2201.08862, doi:10.1007/JHEP07(2022)015.

[275] G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS Lattice 2012 (2012)

017. arXiv:1302.3028.

[276] D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys. Lett. B 729 (2014)

108–111. arXiv:1307.7748, doi:10.1016/j.physletb.2014.01.019.

[277] M. Cristoforetti, F. Di Renzo, L. Scorzato, New approach to the sign problem in quantum field theories: High

density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506. arXiv:1205.3996, doi:10.1103/PhysRevD.

86.074506.

[278] E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347–446. arXiv:

1001.2933.

[279] Z. Fodor, S. D. Katz, C. Schmidt, The Density of states method at non-zero chemical potential, JHEP 03 (2007)

121. arXiv:hep-lat/0701022, doi:10.1088/1126-6708/2007/03/121.

[280] M. D’Elia, M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505.

arXiv:hep-lat/0209146, doi:10.1103/PhysRevD.67.014505.

[281] M. D’Elia, F. Di Renzo, M. P. Lombardo, The Strongly interacting quark gluon plasma, and the critical behaviour

of QCD at imaginary mu, Phys. Rev. D 76 (2007) 114509. arXiv:0705.3814, doi:10.1103/PhysRevD.76.114509.

[282] D. T. Son, M. A. Stephanov, QCD at finite isospin density: From pion to quark - anti-quark condensation, Phys.

Atom. Nucl. 64 (2001) 834–842. arXiv:hep-ph/0011365, doi:10.1134/1.1378872.

[283] A. Alexandru, M. Faber, I. Horváth, K.-F. Liu, Lattice QCD at finite density via a new canonical approach, Phys.

Rev. D 72 (2005) 114513. arXiv:hep-lat/0507020, doi:10.1103/PhysRevD.72.114513.

[284] P. de Forcrand, S. Kratochvila, Finite density QCD with a canonical approach, Nucl. Phys. B Proc. Suppl. 153

(2006) 62–67. arXiv:hep-lat/0602024, doi:10.1016/j.nuclphysbps.2006.01.007.

65

http://arxiv.org/abs/hep-lat/0402006
https://doi.org/10.1088/1126-6708/2004/04/050
http://arxiv.org/abs/cond-mat/9610209
https://doi.org/10.1103/PhysRevLett.78.2690
http://link.aps.org/doi/10.1103/PhysRevE.56.5018
http://arxiv.org/abs/cond-mat/9707325
https://doi.org/10.1103/PhysRevE.56.5018
http://link.aps.org/doi/10.1103/PhysRevE.56.5018
http://arxiv.org/abs/physics/9803008
http://arxiv.org/abs/1801.03110
https://doi.org/10.1103/PhysRevD.98.054513
https://doi.org/10.1103/PhysRevD.98.054513
http://arxiv.org/abs/2201.08862
https://doi.org/10.1007/JHEP07(2022)015
http://arxiv.org/abs/1302.3028
http://arxiv.org/abs/1307.7748
https://doi.org/10.1016/j.physletb.2014.01.019
http://arxiv.org/abs/1205.3996
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.86.074506
http://arxiv.org/abs/1001.2933
http://arxiv.org/abs/1001.2933
http://arxiv.org/abs/hep-lat/0701022
https://doi.org/10.1088/1126-6708/2007/03/121
http://arxiv.org/abs/hep-lat/0209146
https://doi.org/10.1103/PhysRevD.67.014505
http://arxiv.org/abs/0705.3814
https://doi.org/10.1103/PhysRevD.76.114509
http://arxiv.org/abs/hep-ph/0011365
https://doi.org/10.1134/1.1378872
http://arxiv.org/abs/hep-lat/0507020
https://doi.org/10.1103/PhysRevD.72.114513
http://arxiv.org/abs/hep-lat/0602024
https://doi.org/10.1016/j.nuclphysbps.2006.01.007


[285] S. Ejiri, Canonical partition function and finite density phase transition in lattice QCD, Phys. Rev. D 78 (2008)

074507. arXiv:0804.3227, doi:10.1103/PhysRevD.78.074507.

[286] M. Troyer, U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte

Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201. arXiv:cond-mat/0408370, doi:10.1103/PhysRevLett.

94.170201.

[287] S. Borsányi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, K. Szabó, Fluctuations of conserved charges at finite temper-

ature from lattice QCD, JHEP 01 (2012) 138. arXiv:1112.4416, doi:10.1007/JHEP01(2012)138.

[288] A. Bazavov, et al., Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A compar-

ison of lattice QCD results with the hadron resonance gas model, Phys. Rev. D 86 (2012) 034509. arXiv:1203.0784,

doi:10.1103/PhysRevD.86.034509.

[289] M. A. Stephanov, On the sign of kurtosis near the QCD critical point, Phys. Rev. Lett. 107 (2011) 052301. arXiv:

1104.1627, doi:10.1103/PhysRevLett.107.052301.

[290] C. S. Fischer, J. Luecker, C. A. Welzbacher, Phase structure of three and four flavor QCD, Phys. Rev. D 90 (3)

(2014) 034022. arXiv:1405.4762, doi:10.1103/PhysRevD.90.034022.

[291] W.-j. Fu, J. M. Pawlowski, F. Rennecke, QCD phase structure at finite temperature and density, Phys. Rev. D

101 (5) (2020) 054032. arXiv:1909.02991, doi:10.1103/PhysRevD.101.054032.

[292] F. Gao, J. M. Pawlowski, QCD phase structure from functional methods, Phys. Rev. D 102 (3) (2020) 034027.

arXiv:2002.07500, doi:10.1103/PhysRevD.102.034027.

[293] F. Gao, J. M. Pawlowski, Chiral phase structure and critical end point in QCD, Phys. Lett. B 820 (2021) 136584.

arXiv:2010.13705, doi:10.1016/j.physletb.2021.136584.

[294] P. J. Gunkel, C. S. Fischer, Locating the critical endpoint of QCD: Mesonic backcoupling effects, Phys. Rev. D

104 (5) (2021) 054022. arXiv:2106.08356, doi:10.1103/PhysRevD.104.054022.

[295] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2

(1998) 231–252. arXiv:hep-th/9711200, doi:10.1023/A:1026654312961.

[296] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253–291. arXiv:hep-th/

9802150, doi:10.4310/ATMP.1998.v2.n2.a2.

[297] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.

B 428 (1998) 105–114. arXiv:hep-th/9802109, doi:10.1016/S0370-2693(98)00377-3.

[298] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity,

Phys. Rept. 323 (2000) 183–386. arXiv:hep-th/9905111, doi:10.1016/S0370-1573(99)00083-6.

[299] O. DeWolfe, S. S. Gubser, C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005. arXiv:1012.1864,

doi:10.1103/PhysRevD.83.086005.

[300] N. Evans, A. Gebauer, M. Magou, K.-Y. Kim, Towards a Holographic Model of the QCD Phase Diagram, J. Phys.

G 39 (2012) 054005. arXiv:1109.2633, doi:10.1088/0954-3899/39/5/054005.

66

http://arxiv.org/abs/0804.3227
https://doi.org/10.1103/PhysRevD.78.074507
http://arxiv.org/abs/cond-mat/0408370
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
http://arxiv.org/abs/1112.4416
https://doi.org/10.1007/JHEP01(2012)138
http://arxiv.org/abs/1203.0784
https://doi.org/10.1103/PhysRevD.86.034509
http://arxiv.org/abs/1104.1627
http://arxiv.org/abs/1104.1627
https://doi.org/10.1103/PhysRevLett.107.052301
http://arxiv.org/abs/1405.4762
https://doi.org/10.1103/PhysRevD.90.034022
http://arxiv.org/abs/1909.02991
https://doi.org/10.1103/PhysRevD.101.054032
http://arxiv.org/abs/2002.07500
https://doi.org/10.1103/PhysRevD.102.034027
http://arxiv.org/abs/2010.13705
https://doi.org/10.1016/j.physletb.2021.136584
http://arxiv.org/abs/2106.08356
https://doi.org/10.1103/PhysRevD.104.054022
http://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9802150
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802109
https://doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9905111
https://doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/1012.1864
https://doi.org/10.1103/PhysRevD.83.086005
http://arxiv.org/abs/1109.2633
https://doi.org/10.1088/0954-3899/39/5/054005


[301] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, C. Rosen, K. Tuominen, A holographic model for QCD in the

Veneziano limit at finite temperature and density, JHEP 04 (2014) 124, [Erratum: JHEP 02, 033 (2015)]. arXiv:

1312.5199, doi:10.1007/JHEP04(2014)124.

[302] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont, Critical point in the phase diagram

of primordial quark-gluon matter from black hole physics, Phys. Rev. D 96 (9) (2017) 096026. arXiv:1706.00455,

doi:10.1103/PhysRevD.96.096026.

[303] T. Czopowicz, Overview of experimental critical point search, Springer Proc. Phys. 250 (2020) 379–388. arXiv:

2001.01944, doi:10.1007/978-3-030-53448-6_60.

[304] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974–996, [Addendum:

Phys.Rev.D 19, 1277–1280 (1979)]. doi:10.1103/PhysRevD.19.1277.

[305] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979)

2619–2625. doi:10.1103/PhysRevD.20.2619.

[306] D. B. Kaplan, H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183–186.

doi:10.1016/0370-2693(84)91177-8.

[307] D. B. Kaplan, H. Georgi, S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187–190. doi:

10.1016/0370-2693(84)91178-X.

[308] T. Banks, Constraints on SU(2) × U(1) Breaking by Vacuum Misalignment, Nucl. Phys. B 243 (1984) 125–130.

doi:10.1016/0550-3213(84)90389-4.

[309] S. Dimopoulos, L. Susskind, Mass Without Scalars, Nucl. Phys. B 155 (1979) 237–252. doi:10.1016/

0550-3213(79)90364-X.

[310] E. Eichten, K. D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125–130.

doi:10.1016/0370-2693(80)90065-9.

[311] B. Holdom, Raising the Sideways Scale, Phys. Rev. D 24 (1981) 1441. doi:10.1103/PhysRevD.24.1441.

[312] K. Yamawaki, M. Bando, K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett.

56 (1986) 1335. doi:10.1103/PhysRevLett.56.1335.

[313] T. W. Appelquist, D. Karabali, L. C. R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current

Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957. doi:10.1103/PhysRevLett.57.957.

[314] F. Sannino, K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901.

arXiv:hep-ph/0405209, doi:10.1103/PhysRevD.71.051901.

[315] D. D. Dietrich, F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional repre-

sentations, Phys. Rev. D 75 (2007) 085018. arXiv:hep-ph/0611341, doi:10.1103/PhysRevD.75.085018.

[316] F. Sannino, Conformal Windows of Sp(2N) and SO(N) Gauge Theories, Phys. Rev. D 79 (2009) 096007. arXiv:

0902.3494, doi:10.1103/PhysRevD.79.096007.

67

http://arxiv.org/abs/1312.5199
http://arxiv.org/abs/1312.5199
https://doi.org/10.1007/JHEP04(2014)124
http://arxiv.org/abs/1706.00455
https://doi.org/10.1103/PhysRevD.96.096026
http://arxiv.org/abs/2001.01944
http://arxiv.org/abs/2001.01944
https://doi.org/10.1007/978-3-030-53448-6_60
https://doi.org/10.1103/PhysRevD.19.1277
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1016/0370-2693(84)91177-8
https://doi.org/10.1016/0370-2693(84)91178-X
https://doi.org/10.1016/0370-2693(84)91178-X
https://doi.org/10.1016/0550-3213(84)90389-4
https://doi.org/10.1016/0550-3213(79)90364-X
https://doi.org/10.1016/0550-3213(79)90364-X
https://doi.org/10.1016/0370-2693(80)90065-9
https://doi.org/10.1103/PhysRevD.24.1441
https://doi.org/10.1103/PhysRevLett.56.1335
https://doi.org/10.1103/PhysRevLett.57.957
http://arxiv.org/abs/hep-ph/0405209
https://doi.org/10.1103/PhysRevD.71.051901
http://arxiv.org/abs/hep-ph/0611341
https://doi.org/10.1103/PhysRevD.75.085018
http://arxiv.org/abs/0902.3494
http://arxiv.org/abs/0902.3494
https://doi.org/10.1103/PhysRevD.79.096007


[317] M. Mojaza, C. Pica, T. A. Ryttov, F. Sannino, Exceptional and Spinorial Conformal Windows, Phys. Rev. D 86

(2012) 076012. arXiv:1206.2652, doi:10.1103/PhysRevD.86.076012.

[318] M. Bando, K.-i. Matumoto, K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308–312. doi:10.1016/

0370-2693(86)91516-9.

[319] W. A. Bardeen, C. N. Leung, S. T. Love, The Dilaton and Chiral Symmetry Breaking, Phys. Rev. Lett. 56 (1986)

1230. doi:10.1103/PhysRevLett.56.1230.

[320] G. V. Dzhikiya, The dilaton as the analog of the Higgs boson in composite models, Sov. J. Nucl. Phys. 45 (1987)

1083–1087.

[321] W. D. Goldberger, B. Grinstein, W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron

Collider, Phys. Rev. Lett. 100 (2008) 111802. arXiv:0708.1463, doi:10.1103/PhysRevLett.100.111802.

[322] M. G. Ryskin, A. G. Shuvaev, Higgs Boson as a Dilaton, Phys. Atom. Nucl. 73 (2010) 965–970. arXiv:0909.3374,

doi:10.1134/S1063778810060104.

[323] T. Appelquist, Y. Bai, A Light Dilaton in Walking Gauge Theories, Phys. Rev. D 82 (2010) 071701. arXiv:

1006.4375, doi:10.1103/PhysRevD.82.071701.

[324] B. Grinstein, P. Uttayarat, A Very Light Dilaton, JHEP 07 (2011) 038. arXiv:1105.2370, doi:10.1007/

JHEP07(2011)038.

[325] B. A. Campbell, J. Ellis, K. A. Olive, Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and

Electroweak Baryons, JHEP 03 (2012) 026. arXiv:1111.4495, doi:10.1007/JHEP03(2012)026.

[326] S. Matsuzaki, K. Yamawaki, Techni-dilaton at 125 GeV, Phys. Rev. D 85 (2012) 095020. arXiv:1201.4722,

doi:10.1103/PhysRevD.85.095020.

[327] D. Elander, M. Piai, The decay constant of the holographic techni-dilaton and the 125 GeV boson, Nucl. Phys. B

867 (2013) 779–809. arXiv:1208.0546, doi:10.1016/j.nuclphysb.2012.10.019.

[328] C. T. Hill, E. H. Simmons, Strong Dynamics and Electroweak Symmetry Breaking, Phys. Rept. 381 (2003) 235–402,

[Erratum: Phys.Rept. 390, 553–554 (2004)]. arXiv:hep-ph/0203079, doi:10.1016/S0370-1573(03)00140-6.

[329] F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon. B 40 (2009) 3533–3743.

arXiv:0911.0931.

[330] L. Del Debbio, The conformal window on the lattice, PoS Lattice 2010 (2014) 004. arXiv:1102.4066, doi:

10.22323/1.105.0004.

[331] J. Giedt, Lattice gauge theory and physics beyond the standard model, PoS Lattice 2012 (2012) 006. doi:10.

22323/1.164.0006.

[332] J. Kuti, The Higgs particle and the lattice, PoS Lattice 2013 (2014) 004. doi:10.22323/1.187.0004.

[333] T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys. 88 (2016) 015001. arXiv:

1510.05018, doi:10.1103/RevModPhys.88.015001.

68

http://arxiv.org/abs/1206.2652
https://doi.org/10.1103/PhysRevD.86.076012
https://doi.org/10.1016/0370-2693(86)91516-9
https://doi.org/10.1016/0370-2693(86)91516-9
https://doi.org/10.1103/PhysRevLett.56.1230
http://arxiv.org/abs/0708.1463
https://doi.org/10.1103/PhysRevLett.100.111802
http://arxiv.org/abs/0909.3374
https://doi.org/10.1134/S1063778810060104
http://arxiv.org/abs/1006.4375
http://arxiv.org/abs/1006.4375
https://doi.org/10.1103/PhysRevD.82.071701
http://arxiv.org/abs/1105.2370
https://doi.org/10.1007/JHEP07(2011)038
https://doi.org/10.1007/JHEP07(2011)038
http://arxiv.org/abs/1111.4495
https://doi.org/10.1007/JHEP03(2012)026
http://arxiv.org/abs/1201.4722
https://doi.org/10.1103/PhysRevD.85.095020
http://arxiv.org/abs/1208.0546
https://doi.org/10.1016/j.nuclphysb.2012.10.019
http://arxiv.org/abs/hep-ph/0203079
https://doi.org/10.1016/S0370-1573(03)00140-6
http://arxiv.org/abs/0911.0931
http://arxiv.org/abs/1102.4066
https://doi.org/10.22323/1.105.0004
https://doi.org/10.22323/1.105.0004
https://doi.org/10.22323/1.164.0006
https://doi.org/10.22323/1.164.0006
https://doi.org/10.22323/1.187.0004
http://arxiv.org/abs/1510.05018
http://arxiv.org/abs/1510.05018
https://doi.org/10.1103/RevModPhys.88.015001


[334] D. Nógrádi, A. Patella, Strong dynamics, composite Higgs and the conformal window, Int. J. Mod. Phys. A 31 (22)

(2016) 1643003. arXiv:1607.07638, doi:10.1142/S0217751X1643003X.

[335] B. Svetitsky, Looking behind the Standard Model with lattice gauge theory, EPJ Web Conf. 175 (2018) 01017.

arXiv:1708.04840, doi:10.1051/epjconf/201817501017.

[336] O. Witzel, Review on Composite Higgs Models, PoS Lattice 2018 (2019) 006. arXiv:1901.08216, doi:10.22323/

1.334.0006.

[337] K. Rummukainen, K. Tuominen, Lattice Computations for Beyond Standard Model Physics, Universe 8 (3) (2022)

188. doi:10.3390/universe8030188.

[338] M. Järvinen, F. Sannino, Holographic Conformal Window - A Bottom Up Approach, JHEP 05 (2010) 041. arXiv:

0911.2462, doi:10.1007/JHEP05(2010)041.

[339] M. Järvinen, E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012) 002. arXiv:

1112.1261, doi:10.1007/JHEP03(2012)002.

[340] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, K. Tuominen, On finite-temperature holographic QCD in the

Veneziano limit, JHEP 01 (2013) 093. arXiv:1210.4516, doi:10.1007/JHEP01(2013)093.

[341] R. Alvares, N. Evans, K.-Y. Kim, Holography of the Conformal Window, Phys. Rev. D 86 (2012) 026008. arXiv:

1204.2474, doi:10.1103/PhysRevD.86.026008.

[342] T. Alho, N. Evans, K. Tuominen, Dynamic AdS/QCD and the Spectrum of Walking Gauge Theories, Phys. Rev.

D 88 (2013) 105016. arXiv:1307.4896, doi:10.1103/PhysRevD.88.105016.

[343] J. Erdmenger, N. Evans, W. Porod, K. S. Rigatos, Gauge/gravity dual dynamics for the strongly coupled sector of

composite Higgs models, JHEP 02 (2021) 058. arXiv:2010.10279, doi:10.1007/JHEP02(2021)058.

[344] J. Erdmenger, N. Evans, W. Porod, K. S. Rigatos, Gauge/gravity dynamics for composite Higgs models and the

top mass, Phys. Rev. Lett. 126 (7) (2021) 071602. arXiv:2009.10737, doi:10.1103/PhysRevLett.126.071602.

[345] D. Elander, M. Frigerio, M. Knecht, J.-L. Kneur, Holographic models of composite Higgs in the Veneziano limit.

Part I. Bosonic sector, JHEP 03 (2021) 182. arXiv:2011.03003, doi:10.1007/JHEP03(2021)182.

[346] D. Elander, M. Frigerio, M. Knecht, J.-L. Kneur, Holographic models of composite Higgs in the Veneziano limit.

Part II. Fermionic sector, JHEP 05 (2022) 066. arXiv:2112.14740, doi:10.1007/JHEP05(2022)066.

[347] D. Elander, M. Piai, Towards top-down holographic composite Higgs: minimal coset from maximal supergravity,

JHEP 03 (2022) 049. arXiv:2110.02945, doi:10.1007/JHEP03(2022)049.

[348] J. Braun, H. Gies, Scaling laws near the conformal window of many-flavor QCD, JHEP 05 (2010) 060. arXiv:

0912.4168, doi:10.1007/JHEP05(2010)060.

[349] M. Hopfer, C. S. Fischer, R. Alkofer, Running coupling in the conformal window of large-Nf QCD, JHEP 11 (2014)

035. arXiv:1405.7031, doi:10.1007/JHEP11(2014)035.

69

http://arxiv.org/abs/1607.07638
https://doi.org/10.1142/S0217751X1643003X
http://arxiv.org/abs/1708.04840
https://doi.org/10.1051/epjconf/201817501017
http://arxiv.org/abs/1901.08216
https://doi.org/10.22323/1.334.0006
https://doi.org/10.22323/1.334.0006
https://doi.org/10.3390/universe8030188
http://arxiv.org/abs/0911.2462
http://arxiv.org/abs/0911.2462
https://doi.org/10.1007/JHEP05(2010)041
http://arxiv.org/abs/1112.1261
http://arxiv.org/abs/1112.1261
https://doi.org/10.1007/JHEP03(2012)002
http://arxiv.org/abs/1210.4516
https://doi.org/10.1007/JHEP01(2013)093
http://arxiv.org/abs/1204.2474
http://arxiv.org/abs/1204.2474
https://doi.org/10.1103/PhysRevD.86.026008
http://arxiv.org/abs/1307.4896
https://doi.org/10.1103/PhysRevD.88.105016
http://arxiv.org/abs/2010.10279
https://doi.org/10.1007/JHEP02(2021)058
http://arxiv.org/abs/2009.10737
https://doi.org/10.1103/PhysRevLett.126.071602
http://arxiv.org/abs/2011.03003
https://doi.org/10.1007/JHEP03(2021)182
http://arxiv.org/abs/2112.14740
https://doi.org/10.1007/JHEP05(2022)066
http://arxiv.org/abs/2110.02945
https://doi.org/10.1007/JHEP03(2022)049
http://arxiv.org/abs/0912.4168
http://arxiv.org/abs/0912.4168
https://doi.org/10.1007/JHEP05(2010)060
http://arxiv.org/abs/1405.7031
https://doi.org/10.1007/JHEP11(2014)035


[350] D. K. Hong, S. D. H. Hsu, F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004)

89–93. arXiv:hep-ph/0406200, doi:10.1016/j.physletb.2004.07.007.

[351] N. Evans, F. Sannino, Minimal walking technicolour, the top mass and precision electroweak measurements (12

2005). arXiv:hep-ph/0512080.

[352] D. D. Dietrich, F. Sannino, K. Tuominen, Light composite Higgs from higher representations versus electroweak

precision measurements: Predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001. arXiv:hep-ph/0505059,

doi:10.1103/PhysRevD.72.055001.

[353] S. Catterall, F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504. arXiv:0705.1664,

doi:10.1103/PhysRevD.76.034504.

[354] T. Appelquist, G. T. Fleming, E. T. Neil, Lattice study of the conformal window in QCD-like theories, Phys.

Rev. Lett. 100 (2008) 171607, [Erratum: Phys.Rev.Lett. 102, 149902 (2009)]. arXiv:0712.0609, doi:10.1103/

PhysRevLett.100.171607.

[355] S. Catterall, J. Giedt, F. Sannino, J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks,

JHEP 11 (2008) 009. arXiv:0807.0792, doi:10.1088/1126-6708/2008/11/009.

[356] A. J. Hietanen, J. Rantaharju, K. Rummukainen, K. Tuominen, Spectrum of SU(2) lattice gauge theory with two

adjoint Dirac flavours, JHEP 05 (2009) 025. arXiv:0812.1467, doi:10.1088/1126-6708/2009/05/025.

[357] L. Del Debbio, A. Patella, C. Pica, Higher representations on the lattice: Numerical simulations. SU(2) with adjoint

fermions, Phys. Rev. D 81 (2010) 094503. arXiv:0805.2058, doi:10.1103/PhysRevD.81.094503.

[358] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, T. Pickup, Mass anomalous dimension in SU(2) with two adjoint

fermions, Phys. Rev. D 81 (2010) 014505. arXiv:0910.4535, doi:10.1103/PhysRevD.81.014505.

[359] L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Conformal versus confining scenario in SU(2) with adjoint

fermions, Phys. Rev. D 80 (2009) 074507. arXiv:0907.3896, doi:10.1103/PhysRevD.80.074507.

[360] A. J. Hietanen, K. Rummukainen, K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory

with two adjoint fermions, Phys. Rev. D 80 (2009) 094504. arXiv:0904.0864, doi:10.1103/PhysRevD.80.094504.

[361] L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, The infrared dynamics of Minimal Walking Technicolor,

Phys. Rev. D 82 (2010) 014510. arXiv:1004.3206, doi:10.1103/PhysRevD.82.014510.

[362] L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Mesonic spectroscopy of Minimal Walking Technicolor,

Phys. Rev. D 82 (2010) 014509. arXiv:1004.3197, doi:10.1103/PhysRevD.82.014509.

[363] T. DeGrand, Y. Shamir, B. Svetitsky, Infrared fixed point in SU(2) gauge theory with adjoint fermions, Phys. Rev.

D 83 (2011) 074507. arXiv:1102.2843, doi:10.1103/PhysRevD.83.074507.

[364] S. Catterall, L. Del Debbio, J. Giedt, L. Keegan, MCRG Minimal Walking Technicolor, Phys. Rev. D 85 (2012)

094501. arXiv:1108.3794, doi:10.1103/PhysRevD.85.094501.

70

http://arxiv.org/abs/hep-ph/0406200
https://doi.org/10.1016/j.physletb.2004.07.007
http://arxiv.org/abs/hep-ph/0512080
http://arxiv.org/abs/hep-ph/0505059
https://doi.org/10.1103/PhysRevD.72.055001
http://arxiv.org/abs/0705.1664
https://doi.org/10.1103/PhysRevD.76.034504
http://arxiv.org/abs/0712.0609
https://doi.org/10.1103/PhysRevLett.100.171607
https://doi.org/10.1103/PhysRevLett.100.171607
http://arxiv.org/abs/0807.0792
https://doi.org/10.1088/1126-6708/2008/11/009
http://arxiv.org/abs/0812.1467
https://doi.org/10.1088/1126-6708/2009/05/025
http://arxiv.org/abs/0805.2058
https://doi.org/10.1103/PhysRevD.81.094503
http://arxiv.org/abs/0910.4535
https://doi.org/10.1103/PhysRevD.81.014505
http://arxiv.org/abs/0907.3896
https://doi.org/10.1103/PhysRevD.80.074507
http://arxiv.org/abs/0904.0864
https://doi.org/10.1103/PhysRevD.80.094504
http://arxiv.org/abs/1004.3206
https://doi.org/10.1103/PhysRevD.82.014510
http://arxiv.org/abs/1004.3197
https://doi.org/10.1103/PhysRevD.82.014509
http://arxiv.org/abs/1102.2843
https://doi.org/10.1103/PhysRevD.83.074507
http://arxiv.org/abs/1108.3794
https://doi.org/10.1103/PhysRevD.85.094501


[365] F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini, A. Patella, C. Pica, T. Pickup, A. Rago, Improved

Lattice Spectroscopy of Minimal Walking Technicolor, Phys. Rev. D 84 (2011) 034506. arXiv:1104.4301, doi:

10.1103/PhysRevD.84.034506.

[366] J. Giedt, E. Weinberg, Finite size scaling in minimal walking technicolor, Phys. Rev. D 85 (2012) 097503. arXiv:

1201.6262, doi:10.1103/PhysRevD.85.097503.

[367] J. Rantaharju, K. Rummukainen, K. Tuominen, Running coupling in SU(2) with adjoint fermions, in: KMI-GCOE

Workshop on Strong Coupling Gauge Theories in the LHC Perspective, 2014, pp. 443–447. arXiv:1301.2373,

doi:10.1142/9789814566254_0054.

[368] L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, Large volumes and spectroscopy of walking theories, Phys.

Rev. D 93 (5) (2016) 054505. arXiv:1512.08242, doi:10.1103/PhysRevD.93.054505.

[369] J. Rantaharju, T. Rantalaiho, K. Rummukainen, K. Tuominen, Running coupling in SU(2) gauge theory with two

adjoint fermions, Phys. Rev. D 93 (9) (2016) 094509. arXiv:1510.03335, doi:10.1103/PhysRevD.93.094509.

[370] J. Rantaharju, Gradient Flow Coupling in the SU(2) gauge theory with two adjoint fermions, Phys. Rev. D 93 (9)

(2016) 094516. arXiv:1512.02793, doi:10.1103/PhysRevD.93.094516.

[371] G. Bergner, P. Giudice, G. Münster, I. Montvay, S. Piemonte, Spectrum and mass anomalous dimension of SU(2)

adjoint QCD with two Dirac flavors, Phys. Rev. D 96 (3) (2017) 034504. arXiv:1610.01576, doi:10.1103/

PhysRevD.96.034504.

[372] T. A. Ryttov, F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010.

arXiv:0809.0713, doi:10.1103/PhysRevD.78.115010.

[373] R. Lewis, C. Pica, F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Funda-

mental Flavors, Phys. Rev. D 85 (2012) 014504. arXiv:1109.3513, doi:10.1103/PhysRevD.85.014504.

[374] T. Karavirta, J. Rantaharju, K. Rummukainen, K. Tuominen, Determining the conformal window: SU(2) gauge

theory withNf = 4, 6 and 10 fermion flavours, JHEP 05 (2012) 003. arXiv:1111.4104, doi:10.1007/JHEP05(2012)

003.

[375] M. Hayakawa, K.-I. Ishikawa, S. Takeda, N. Yamada, Running coupling constant and mass anomalous dimension

of six-flavor SU(2) gauge theory, Phys. Rev. D 88 (9) (2013) 094504. arXiv:1307.6997, doi:10.1103/PhysRevD.

88.094504.

[376] T. Appelquist, et al., Two-Color Gauge Theory with Novel Infrared Behavior, Phys. Rev. Lett. 112 (11) (2014)

111601. arXiv:1311.4889, doi:10.1103/PhysRevLett.112.111601.

[377] V. Leino, K. Rummukainen, J. M. Suorsa, K. Tuominen, S. Tähtinen, Infrared fixed point of SU(2) gauge theory

with six flavors, Phys. Rev. D 97 (11) (2018) 114501. arXiv:1707.04722, doi:10.1103/PhysRevD.97.114501.

[378] J. Rantaharju, T. Rindlisbacher, K. Rummukainen, A. Salami, K. Tuominen, Spectrum of SU(2) gauge theory at

large number of flavors, Phys. Rev. D 104 (11) (2021) 114504. arXiv:2108.10630, doi:10.1103/PhysRevD.104.

114504.

71

http://arxiv.org/abs/1104.4301
https://doi.org/10.1103/PhysRevD.84.034506
https://doi.org/10.1103/PhysRevD.84.034506
http://arxiv.org/abs/1201.6262
http://arxiv.org/abs/1201.6262
https://doi.org/10.1103/PhysRevD.85.097503
http://arxiv.org/abs/1301.2373
https://doi.org/10.1142/9789814566254_0054
http://arxiv.org/abs/1512.08242
https://doi.org/10.1103/PhysRevD.93.054505
http://arxiv.org/abs/1510.03335
https://doi.org/10.1103/PhysRevD.93.094509
http://arxiv.org/abs/1512.02793
https://doi.org/10.1103/PhysRevD.93.094516
http://arxiv.org/abs/1610.01576
https://doi.org/10.1103/PhysRevD.96.034504
https://doi.org/10.1103/PhysRevD.96.034504
http://arxiv.org/abs/0809.0713
https://doi.org/10.1103/PhysRevD.78.115010
http://arxiv.org/abs/1109.3513
https://doi.org/10.1103/PhysRevD.85.014504
http://arxiv.org/abs/1111.4104
https://doi.org/10.1007/JHEP05(2012)003
https://doi.org/10.1007/JHEP05(2012)003
http://arxiv.org/abs/1307.6997
https://doi.org/10.1103/PhysRevD.88.094504
https://doi.org/10.1103/PhysRevD.88.094504
http://arxiv.org/abs/1311.4889
https://doi.org/10.1103/PhysRevLett.112.111601
http://arxiv.org/abs/1707.04722
https://doi.org/10.1103/PhysRevD.97.114501
http://arxiv.org/abs/2108.10630
https://doi.org/10.1103/PhysRevD.104.114504
https://doi.org/10.1103/PhysRevD.104.114504


[379] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, T. Yoshié, Phase structure of lattice QCD for general number of flavors,

Phys. Rev. D 69 (2004) 014507. arXiv:hep-lat/0309159, doi:10.1103/PhysRevD.69.014507.

[380] A. Deuzeman, M. P. Lombardo, E. Pallante, The Physics of eight flavours, Phys. Lett. B 670 (2008) 41–48. arXiv:

0804.2905, doi:10.1016/j.physletb.2008.10.039.

[381] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Schroeder, Nearly conformal gauge theories in finite volume, Phys.

Lett. B 681 (2009) 353–361. arXiv:0907.4562, doi:10.1016/j.physletb.2009.10.040.

[382] A. Deuzeman, M. P. Lombardo, E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, Phys. Rev.

D 82 (2010) 074503. arXiv:0904.4662, doi:10.1103/PhysRevD.82.074503.

[383] A. Hasenfratz, Investigating the critical properties of beyond-QCD theories using Monte Carlo Renormalization

Group matching, Phys. Rev. D 80 (2009) 034505. arXiv:0907.0919, doi:10.1103/PhysRevD.80.034505.

[384] T. Appelquist, G. T. Fleming, E. T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys.

Rev. D 79 (2009) 076010. arXiv:0901.3766, doi:10.1103/PhysRevD.79.076010.

[385] T. Appelquist, et al., Toward TeV Conformality, Phys. Rev. Lett. 104 (2010) 071601. arXiv:0910.2224, doi:

10.1103/PhysRevLett.104.071601.

[386] A. Hasenfratz, Conformal or Walking? Monte Carlo renormalization group studies of SU(3) gauge models with

fundamental fermions, Phys. Rev. D 82 (2010) 014506. arXiv:1004.1004, doi:10.1103/PhysRevD.82.014506.

[387] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Schroeder, K. Holland, J. Kuti, D. Nógrádi, C. Schroeder, Twelve

massless flavors and three colors below the conformal window, Phys. Lett. B 703 (2011) 348–358. arXiv:1104.3124,

doi:10.1016/j.physletb.2011.07.037.

[388] T. Appelquist, G. T. Fleming, M. F. Lin, E. T. Neil, D. A. Schaich, Lattice Simulations and Infrared Conformality,

Phys. Rev. D 84 (2011) 054501. arXiv:1106.2148, doi:10.1103/PhysRevD.84.054501.

[389] A. Cheng, A. Hasenfratz, D. Schaich, Novel phase in SU(3) lattice gauge theory with 12 light fermions, Phys. Rev.

D 85 (2012) 094509. arXiv:1111.2317, doi:10.1103/PhysRevD.85.094509.

[390] K. Miura, M. P. Lombardo, E. Pallante, Chiral phase transition at finite temperature and conformal dynamics in

large Nf QCD, Phys. Lett. B 710 (2012) 676–682. arXiv:1110.3152, doi:10.1016/j.physletb.2012.03.017.

[391] K. Miura, M. P. Lombardo, Lattice Monte-Carlo study of pre-conformal dynamics in strongly flavoured QCD in

the light of the chiral phase transition at finite temperature, Nucl. Phys. B 871 (2013) 52–81. arXiv:1212.0955,

doi:10.1016/j.nuclphysb.2013.02.008.

[392] C. J. D. Lin, K. Ogawa, H. Ohki, E. Shintani, Lattice study of infrared behaviour in SU(3) gauge theory with twelve

massless flavours, JHEP 08 (2012) 096. arXiv:1205.6076, doi:10.1007/JHEP08(2012)096.

[393] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai, H. Ohki, A. Shibata, K. Yamawaki, T. Yamazaki,

Walking signals in Nf = 8 QCD on the lattice, Phys. Rev. D 87 (9) (2013) 094511. arXiv:1302.6859, doi:

10.1103/PhysRevD.87.094511.

72

http://arxiv.org/abs/hep-lat/0309159
https://doi.org/10.1103/PhysRevD.69.014507
http://arxiv.org/abs/0804.2905
http://arxiv.org/abs/0804.2905
https://doi.org/10.1016/j.physletb.2008.10.039
http://arxiv.org/abs/0907.4562
https://doi.org/10.1016/j.physletb.2009.10.040
http://arxiv.org/abs/0904.4662
https://doi.org/10.1103/PhysRevD.82.074503
http://arxiv.org/abs/0907.0919
https://doi.org/10.1103/PhysRevD.80.034505
http://arxiv.org/abs/0901.3766
https://doi.org/10.1103/PhysRevD.79.076010
http://arxiv.org/abs/0910.2224
https://doi.org/10.1103/PhysRevLett.104.071601
https://doi.org/10.1103/PhysRevLett.104.071601
http://arxiv.org/abs/1004.1004
https://doi.org/10.1103/PhysRevD.82.014506
http://arxiv.org/abs/1104.3124
https://doi.org/10.1016/j.physletb.2011.07.037
http://arxiv.org/abs/1106.2148
https://doi.org/10.1103/PhysRevD.84.054501
http://arxiv.org/abs/1111.2317
https://doi.org/10.1103/PhysRevD.85.094509
http://arxiv.org/abs/1110.3152
https://doi.org/10.1016/j.physletb.2012.03.017
http://arxiv.org/abs/1212.0955
https://doi.org/10.1016/j.nuclphysb.2013.02.008
http://arxiv.org/abs/1205.6076
https://doi.org/10.1007/JHEP08(2012)096
http://arxiv.org/abs/1302.6859
https://doi.org/10.1103/PhysRevD.87.094511
https://doi.org/10.1103/PhysRevD.87.094511


[394] K.-I. Ishikawa, Y. Iwasaki, Y. Nakayama, T. Yoshié, Global Structure of Conformal Theories in the SU(3) Gauge

Theory, Phys. Rev. D 89 (11) (2014) 114503. arXiv:1310.5049, doi:10.1103/PhysRevD.89.114503.

[395] M. P. Lombardo, K. Miura, T. J. Nunes da Silva, E. Pallante, On the particle spectrum and the conformal window,

JHEP 12 (2014) 183. arXiv:1410.0298, doi:10.1007/JHEP12(2014)183.

[396] R. C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, O. Witzel, Composite Higgs model at a conformal fixed point,

Phys. Rev. D 93 (7) (2016) 075028. arXiv:1512.02576, doi:10.1103/PhysRevD.93.075028.

[397] Y. Aoki, et al., Light flavor-singlet scalars and walking signals in Nf = 8 QCD on the lattice, Phys. Rev. D 96 (1)

(2017) 014508. arXiv:1610.07011, doi:10.1103/PhysRevD.96.014508.

[398] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nógrádi, C. H. Wong, Fate of the conformal fixed point with twelve

massless fermions and SU(3) gauge group, Phys. Rev. D 94 (9) (2016) 091501. arXiv:1607.06121, doi:10.1103/

PhysRevD.94.091501.

[399] A. Hasenfratz, C. Rebbi, O. Witzel, Nonperturbative determination of β functions for SU(3) gauge theories with

10 and 12 fundamental flavors using domain wall fermions, Phys. Lett. B 798 (2019) 134937. arXiv:1710.11578,

doi:10.1016/j.physletb.2019.134937.

[400] T. Appelquist, et al., Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors, Phys.

Rev. D 99 (1) (2019) 014509. arXiv:1807.08411, doi:10.1103/PhysRevD.99.014509.

[401] A. Hasenfratz, C. Rebbi, O. Witzel, Gradient flow step-scaling function for SU(3) with twelve flavors, Phys. Rev.

D 100 (11) (2019) 114508. arXiv:1909.05842, doi:10.1103/PhysRevD.100.114508.

[402] A. Hasenfratz, C. Rebbi, O. Witzel, Gradient flow step-scaling function for SU(3) with ten fundamental flavors,

Phys. Rev. D 101 (11) (2020) 114508. arXiv:2004.00754, doi:10.1103/PhysRevD.101.114508.

[403] A. Hasenfratz, Emergent strongly coupled ultraviolet fixed point in four dimensions with eight Kähler-Dirac

fermions, Phys. Rev. D 106 (1) (2022) 014513. arXiv:2204.04801, doi:10.1103/PhysRevD.106.014513.

[404] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Schroeder, Chiral properties of SU(3) sextet fermions, JHEP 11

(2009) 103. arXiv:0908.2466, doi:10.1088/1126-6708/2009/11/103.

[405] T. DeGrand, Y. Shamir, B. Svetitsky, Running coupling and mass anomalous dimension of SU(3) gauge theory

with two flavors of symmetric-representation fermions, Phys. Rev. D 82 (2010) 054503. arXiv:1006.0707, doi:

10.1103/PhysRevD.82.054503.

[406] D. K. Sinclair, J. B. Kogut, New results with colour-sextet quarks, PoS Lattice 2010 (2010) 071. arXiv:1008.2468,

doi:10.22323/1.105.0071.

[407] J. B. Kogut, D. K. Sinclair, Thermodynamics of lattice QCD with 3 flavours of colour-sextet quarks, Phys. Rev. D

85 (2012) 054505. arXiv:1111.3353, doi:10.1103/PhysRevD.85.054505.

[408] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Schroeder, C. H. Wong, Can the nearly conformal sextet gauge model

hide the Higgs impostor?, Phys. Lett. B 718 (2012) 657–666. arXiv:1209.0391, doi:10.1016/j.physletb.2012.

10.079.

73

http://arxiv.org/abs/1310.5049
https://doi.org/10.1103/PhysRevD.89.114503
http://arxiv.org/abs/1410.0298
https://doi.org/10.1007/JHEP12(2014)183
http://arxiv.org/abs/1512.02576
https://doi.org/10.1103/PhysRevD.93.075028
http://arxiv.org/abs/1610.07011
https://doi.org/10.1103/PhysRevD.96.014508
http://arxiv.org/abs/1607.06121
https://doi.org/10.1103/PhysRevD.94.091501
https://doi.org/10.1103/PhysRevD.94.091501
http://arxiv.org/abs/1710.11578
https://doi.org/10.1016/j.physletb.2019.134937
http://arxiv.org/abs/1807.08411
https://doi.org/10.1103/PhysRevD.99.014509
http://arxiv.org/abs/1909.05842
https://doi.org/10.1103/PhysRevD.100.114508
http://arxiv.org/abs/2004.00754
https://doi.org/10.1103/PhysRevD.101.114508
http://arxiv.org/abs/2204.04801
https://doi.org/10.1103/PhysRevD.106.014513
http://arxiv.org/abs/0908.2466
https://doi.org/10.1088/1126-6708/2009/11/103
http://arxiv.org/abs/1006.0707
https://doi.org/10.1103/PhysRevD.82.054503
https://doi.org/10.1103/PhysRevD.82.054503
http://arxiv.org/abs/1008.2468
https://doi.org/10.22323/1.105.0071
http://arxiv.org/abs/1111.3353
https://doi.org/10.1103/PhysRevD.85.054505
http://arxiv.org/abs/1209.0391
https://doi.org/10.1016/j.physletb.2012.10.079
https://doi.org/10.1016/j.physletb.2012.10.079


[409] J. B. Kogut, D. K. Sinclair, Thermodynamics of lattice QCD with 3 flavours of colour-sextet quarks II. Nt = 6 and

Nt = 8, Phys. Rev. D 90 (1) (2014) 014506. arXiv:1406.1524, doi:10.1103/PhysRevD.90.014506.

[410] A. Hasenfratz, Y. Liu, C. Y.-H. Huang, The renormalization group step scaling function of the 2-flavor SU(3) sextet

model (7 2015). arXiv:1507.08260.

[411] T. DeGrand, Y. Shamir, B. Svetitsky, Near the Sill of the Conformal Window: Gauge Theories with Fermions in Two-

Index Representations, Phys. Rev. D 88 (5) (2013) 054505. arXiv:1307.2425, doi:10.1103/PhysRevD.88.054505.

[412] T. DeGrand, Y. Shamir, B. Svetitsky, SU(4) lattice gauge theory with decuplet fermions: Schrödinger functional

analysis, Phys. Rev. D 85 (2012) 074506. arXiv:1202.2675, doi:10.1103/PhysRevD.85.074506.

[413] T. DeGrand, Y. Liu, E. T. Neil, Y. Shamir, B. Svetitsky, Spectroscopy of SU(4) gauge theory with two flavors of

sextet fermions, Phys. Rev. D 91 (2015) 114502. arXiv:1501.05665, doi:10.1103/PhysRevD.91.114502.

[414] V. Ayyar, T. DeGrand, M. Golterman, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, B. Svetitsky, Spectroscopy

of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D 97 (7) (2018) 074505.

arXiv:1710.00806, doi:10.1103/PhysRevD.97.074505.

[415] V. Ayyar, T. Degrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, B. Svetitsky, Baryon spectrum of SU(4)

composite Higgs theory with two distinct fermion representations, Phys. Rev. D 97 (11) (2018) 114505. arXiv:

1801.05809, doi:10.1103/PhysRevD.97.114505.

[416] V. Ayyar, T. DeGrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, B. Svetitsky, Finite-temperature phase

structure of SU(4) gauge theory with multiple fermion representations, Phys. Rev. D 97 (11) (2018) 114502. arXiv:

1802.09644, doi:10.1103/PhysRevD.97.114502.

[417] V. Ayyar, T. DeGrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, B. Svetitsky, Partial compositeness and

baryon matrix elements on the lattice, Phys. Rev. D 99 (9) (2019) 094502. arXiv:1812.02727, doi:10.1103/

PhysRevD.99.094502.

[418] G. Cossu, L. Del Debbio, M. Panero, D. Preti, Strong dynamics with matter in multiple representations: SU(4)

gauge theory with fundamental and sextet fermions, Eur. Phys. J. C 79 (8) (2019) 638. arXiv:1904.08885,

doi:10.1140/epjc/s10052-019-7137-1.

[419] L. Del Debbio, A. Lupo, M. Panero, N. Tantalo, Multi-Representation Dynamics of SU(4) Composite Higgs Models:

Chiral Limit and Spectral Reconstructions (11 2022). arXiv:2211.09581.

[420] R. C. Brower, G. T. Fleming, H. Neuberger, Lattice Radial Quantization: 3D Ising, Phys. Lett. B 721 (2013)

299–305. arXiv:1212.6190, doi:10.1016/j.physletb.2013.03.009.

[421] H. Neuberger, Lattice radial quantization by cubature, Phys. Rev. D 90 (11) (2014) 114501. arXiv:1410.2820,

doi:10.1103/PhysRevD.90.114501.

[422] H. Neuberger, Wavelets and Lattice Field Theory, EPJ Web Conf. 175 (2018) 11002. arXiv:1707.09623, doi:

10.1051/epjconf/201817511002.

74

http://arxiv.org/abs/1406.1524
https://doi.org/10.1103/PhysRevD.90.014506
http://arxiv.org/abs/1507.08260
http://arxiv.org/abs/1307.2425
https://doi.org/10.1103/PhysRevD.88.054505
http://arxiv.org/abs/1202.2675
https://doi.org/10.1103/PhysRevD.85.074506
http://arxiv.org/abs/1501.05665
https://doi.org/10.1103/PhysRevD.91.114502
http://arxiv.org/abs/1710.00806
https://doi.org/10.1103/PhysRevD.97.074505
http://arxiv.org/abs/1801.05809
http://arxiv.org/abs/1801.05809
https://doi.org/10.1103/PhysRevD.97.114505
http://arxiv.org/abs/1802.09644
http://arxiv.org/abs/1802.09644
https://doi.org/10.1103/PhysRevD.97.114502
http://arxiv.org/abs/1812.02727
https://doi.org/10.1103/PhysRevD.99.094502
https://doi.org/10.1103/PhysRevD.99.094502
http://arxiv.org/abs/1904.08885
https://doi.org/10.1140/epjc/s10052-019-7137-1
http://arxiv.org/abs/2211.09581
http://arxiv.org/abs/1212.6190
https://doi.org/10.1016/j.physletb.2013.03.009
http://arxiv.org/abs/1410.2820
https://doi.org/10.1103/PhysRevD.90.114501
http://arxiv.org/abs/1707.09623
https://doi.org/10.1051/epjconf/201817511002
https://doi.org/10.1051/epjconf/201817511002


[423] W. N. Polyzou, Wavelet representation of light-front quantum field theory, Phys. Rev. D 101 (9) (2020) 096004.

arXiv:2002.02311, doi:10.1103/PhysRevD.101.096004.

[424] L. Del Debbio, R. Zwicky, Hyperscaling relations in mass-deformed conformal gauge theories, Phys. Rev. D 82

(2010) 014502. arXiv:1005.2371, doi:10.1103/PhysRevD.82.014502.

[425] L. Del Debbio, R. Zwicky, Scaling relations for the entire spectrum in mass-deformed conformal gauge theories,

Phys. Lett. B 700 (2011) 217–220. arXiv:1009.2894, doi:10.1016/j.physletb.2011.04.059.

[426] A. Patella, A precise determination of the psibar-psi anomalous dimension in conformal gauge theories, Phys. Rev.

D 86 (2012) 025006. arXiv:1204.4432, doi:10.1103/PhysRevD.86.025006.

[427] A. Cheng, A. Hasenfratz, G. Petropoulos, D. Schaich, Scale-dependent mass anomalous dimension from Dirac

eigenmodes, JHEP 07 (2013) 061. arXiv:1301.1355, doi:10.1007/JHEP07(2013)061.

[428] A. Carosso, A. Hasenfratz, E. T. Neil, Nonperturbative Renormalization of Operators in Near-Conformal Systems

Using Gradient Flows, Phys. Rev. Lett. 121 (20) (2018) 201601. arXiv:1806.01385, doi:10.1103/PhysRevLett.

121.201601.

[429] S. Hellerman, D. Orlando, S. Reffert, M. Watanabe, On the CFT Operator Spectrum at Large Global Charge,

JHEP 12 (2015) 071. arXiv:1505.01537, doi:10.1007/JHEP12(2015)071.

[430] L. Alvarez-Gaume, O. Loukas, D. Orlando, S. Reffert, Compensating strong coupling with large charge, JHEP 04

(2017) 059. arXiv:1610.04495, doi:10.1007/JHEP04(2017)059.

[431] D. Banerjee, S. Chandrasekharan, D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett.

120 (6) (2018) 061603. arXiv:1707.00711, doi:10.1103/PhysRevLett.120.061603.

[432] D. Orlando, S. Reffert, F. Sannino, Near-Conformal Dynamics at Large Charge, Phys. Rev. D 101 (6) (2020) 065018.

arXiv:1909.08642, doi:10.1103/PhysRevD.101.065018.

[433] D. Orlando, S. Reffert, F. Sannino, Charging the Conformal Window, Phys. Rev. D 103 (10) (2021) 105026.

arXiv:2003.08396, doi:10.1103/PhysRevD.103.105026.

[434] J. Bersini, A. D’Alise, F. Sannino, M. Torres, The θ-angle and axion physics of two-color QCD at fixed baryon

charge. Part II: Approaching the conformal window (8 2022). arXiv:2208.09227.

[435] J. Bersini, A. D’Alise, F. Sannino, M. Torres, The θ-angle and axion physics of two-color QCD at fixed baryon

charge, JHEP 11 (2022) 080. arXiv:2208.09226, doi:10.1007/JHEP11(2022)080.

[436] R. J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, Chiral Estimate of the Electric Dipole Moment of the

Neutron in Quantum Chromodynamics, Phys. Lett. B 88 (1979) 123, [Erratum: Phys.Lett.B 91, 487 (1980)].

doi:10.1016/0370-2693(79)90128-X.

[437] F.-K. Guo, U.-G. Meissner, Baryon electric dipole moments from strong CP violation, JHEP 12 (2012) 097. arXiv:

1210.5887, doi:10.1007/JHEP12(2012)097.

[438] C. Abel, et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett. 124 (8)

(2020) 081803. arXiv:2001.11966, doi:10.1103/PhysRevLett.124.081803.

75

http://arxiv.org/abs/2002.02311
https://doi.org/10.1103/PhysRevD.101.096004
http://arxiv.org/abs/1005.2371
https://doi.org/10.1103/PhysRevD.82.014502
http://arxiv.org/abs/1009.2894
https://doi.org/10.1016/j.physletb.2011.04.059
http://arxiv.org/abs/1204.4432
https://doi.org/10.1103/PhysRevD.86.025006
http://arxiv.org/abs/1301.1355
https://doi.org/10.1007/JHEP07(2013)061
http://arxiv.org/abs/1806.01385
https://doi.org/10.1103/PhysRevLett.121.201601
https://doi.org/10.1103/PhysRevLett.121.201601
http://arxiv.org/abs/1505.01537
https://doi.org/10.1007/JHEP12(2015)071
http://arxiv.org/abs/1610.04495
https://doi.org/10.1007/JHEP04(2017)059
http://arxiv.org/abs/1707.00711
https://doi.org/10.1103/PhysRevLett.120.061603
http://arxiv.org/abs/1909.08642
https://doi.org/10.1103/PhysRevD.101.065018
http://arxiv.org/abs/2003.08396
https://doi.org/10.1103/PhysRevD.103.105026
http://arxiv.org/abs/2208.09227
http://arxiv.org/abs/2208.09226
https://doi.org/10.1007/JHEP11(2022)080
https://doi.org/10.1016/0370-2693(79)90128-X
http://arxiv.org/abs/1210.5887
http://arxiv.org/abs/1210.5887
https://doi.org/10.1007/JHEP12(2012)097
http://arxiv.org/abs/2001.11966
https://doi.org/10.1103/PhysRevLett.124.081803


[439] C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou, A. Todaro, Neutron electric dipole moment using lattice

QCD simulations at the physical point, Phys. Rev. D 103 (5) (2021) 054501. arXiv:2011.01084, doi:10.1103/

PhysRevD.103.054501.

[440] C. Alexandrou, J. Finkenrath, L. Funcke, K. Jansen, B. Kostrzewa, F. Pittler, C. Urbach, Ruling Out the Massless

Up-Quark Solution to the Strong CPCPCP Problem by Computing the Topological Mass Contribution with Lattice QCD,

Phys. Rev. Lett. 125 (23) (2020) 232001. arXiv:2002.07802, doi:10.1103/PhysRevLett.125.232001.

[441] Y. Aoki, et al., FLAG Review 2021, Eur. Phys. J. C 82 (10) (2022) 869. arXiv:2111.09849, doi:10.1140/epjc/

s10052-022-10536-1.

[442] P. D. Group, P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer, D. E. Groom, C. J. Lin, K. S. Lugovsky,

E. Pianori, D. J. Robinson, C. G. Wohl, W. M. Yao, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli,

E. C. Aschenauer, D. M. Asner, H. Baer, S. Banerjee, L. Baudis, C. W. Bauer, J. J. Beatty, V. I. Belousov, S. Bethke,

A. Bettini, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena,

A. Ceccucci, A. Cerri, D. Chakraborty, R. S. Chivukula, G. Cowan, G. D’Ambrosio, T. Damour, D. de Florian,

A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser, M. Drees, H. K.

Dreiner, P. Eerola, U. Egede, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster,

A. Freitas, H. Gallagher, L. Garren, H. J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A.

Godizov, M. C. Gonzalez-Garcia, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, M. Grünewald, A. Gurtu,

T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J.

Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, J. Huston, T. Hyodo, K. F. Johnson,

M. Kado, M. Karliner, U. F. Katz, M. Kenzie, V. A. Khoze, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss,

M. Kreps, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L. P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C. Lipp-

mann, T. M. Liss, L. Littenberg, C. Lourengo, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V.

Manohar, W. J. Marciano, A. Masoni, J. Matthews, U. G. Meißner, M. Mikhasenko, D. J. Miller, D. Milstead, R. E.

Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neu-

bert, P. Nevski, Y. Nir, K. A. Olive, C. Patrignani, J. A. Peacock, S. T. Petcov, V. A. Petrov, A. Pich, A. Piepke,

A. Pomarol, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, H. Ramani, M. Ramsey-Musolf, B. N.

Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka,

M. Ryskin, R. A. Ryutin, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz,

J. Schwiening, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, G. F.

Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S. L. Stone, Y. Sumino, T. Sumiyoshi, M. J. Syphers,

F. Takahashi, M. Tanabashi, J. Tanaka, M. Taševský, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator,

M. Titov, N. P. Tkachenko, D. R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Ve-

nanzoni, L. Verde, M. G. Vincter, P. Vogel, W. Vogelsang, A. Vogt, V. Vorobyev, S. P. Wakely, W. Walkowiak,

C. W. Walter, D. Wands, M. O. Wascko, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq,

C. L. Woody, R. L. Workman, M. Yokoyama, R. Yoshida, G. Zanderighi, G. P. Zeller, O. V. Zenin, R. Y. Zhu, S. L.

Zhu, F. Zimmermann, J. Anderson, T. Basaglia, V. S. Lugovsky, P. Schaffner, W. Zheng, Review of Particle Physics,

Progress of Theoretical and Experimental Physics 2020 (8), 083C01 (08 2020). doi:10.1093/ptep/ptaa104.

URL https://doi.org/10.1093/ptep/ptaa104

76

http://arxiv.org/abs/2011.01084
https://doi.org/10.1103/PhysRevD.103.054501
https://doi.org/10.1103/PhysRevD.103.054501
http://arxiv.org/abs/2002.07802
https://doi.org/10.1103/PhysRevLett.125.232001
http://arxiv.org/abs/2111.09849
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104


[443] W.-Y. Ai, J. S. Cruz, B. Garbrecht, C. Tamarit, Consequences of the order of the limit of infinite spacetime volume

and the sum over topological sectors for CP violation in the strong interactions, Phys. Lett. B 822 (2021) 136616.

arXiv:2001.07152, doi:10.1016/j.physletb.2021.136616.

[444] R. D. Peccei, H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440–1443.

doi:10.1103/PhysRevLett.38.1440.

[445] R. D. Peccei, H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D

16 (1977) 1791–1797. doi:10.1103/PhysRevD.16.1791.

[446] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279–282.

doi:10.1103/PhysRevLett.40.279.

[447] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226. doi:10.1103/PhysRevLett.40.223.

[448] J. Preskill, M. B. Wise, F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127–132. doi:

10.1016/0370-2693(83)90637-8.

[449] L. F. Abbott, P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133–136. doi:

10.1016/0370-2693(83)90638-X.

[450] M. Dine, W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137–141. doi:10.1016/0370-2693(83)

90639-1.

[451] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51–71. arXiv:hep-ph/0611350, doi:

10.1007/978-3-540-73518-2\_3.

[452] R. Contino, A. Mitridate, A. Podo, Beyond the standard model with strong dynamics, Frascati Phys. Ser. 65 (2017)

1–8.

[453] R. Contino, A. Podo, F. Revello, Composite Dark Matter from Strongly-Interacting Chiral Dynamics, JHEP 02

(2021) 091. arXiv:2008.10607, doi:10.1007/JHEP02(2021)091.

[454] R. Contino, A. Podo, F. Revello, Chiral models of composite axions and accidental Peccei-Quinn symmetry, JHEP

04 (2022) 180. arXiv:2112.09635, doi:10.1007/JHEP04(2022)180.

[455] M. K. Gaillard, M. B. Gavela, R. Houtz, P. Quilez, R. Del Rey, Color unified dynamical axion, Eur. Phys. J. C

78 (11) (2018) 972. arXiv:1805.06465, doi:10.1140/epjc/s10052-018-6396-6.

[456] D. Croon, R. Houtz, V. Sanz, Dynamical Axions and Gravitational Waves, JHEP 07 (2019) 146. arXiv:1904.10967,

doi:10.1007/JHEP07(2019)146.

[457] M. P. Lombardo, A. Trunin, Topology and axions in QCD, Int. J. Mod. Phys. A 35 (20) (2020) 2030010. arXiv:

2005.06547, doi:10.1142/S0217751X20300100.

[458] L. Di Luzio, M. Giannotti, E. Nardi, L. Visinelli, The landscape of QCD axion models (3 2020). arXiv:2003.01100.

[459] P. Di Vecchia, G. Veneziano, Chiral Dynamics in the Large n Limit, Nucl. Phys. B 171 (1980) 253–272. doi:

10.1016/0550-3213(80)90370-3.

77

http://arxiv.org/abs/2001.07152
https://doi.org/10.1016/j.physletb.2021.136616
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
http://arxiv.org/abs/hep-ph/0611350
https://doi.org/10.1007/978-3-540-73518-2_3
https://doi.org/10.1007/978-3-540-73518-2_3
http://arxiv.org/abs/2008.10607
https://doi.org/10.1007/JHEP02(2021)091
http://arxiv.org/abs/2112.09635
https://doi.org/10.1007/JHEP04(2022)180
http://arxiv.org/abs/1805.06465
https://doi.org/10.1140/epjc/s10052-018-6396-6
http://arxiv.org/abs/1904.10967
https://doi.org/10.1007/JHEP07(2019)146
http://arxiv.org/abs/2005.06547
http://arxiv.org/abs/2005.06547
https://doi.org/10.1142/S0217751X20300100
http://arxiv.org/abs/2003.01100
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0550-3213(80)90370-3


[460] H. Leutwyler, A. V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46

(1992) 5607–5632. doi:10.1103/PhysRevD.46.5607.

[461] Y.-Y. Mao, T.-W. Chiu, Topological Susceptibility to the One-Loop Order in Chiral Perturbation Theory, Phys.

Rev. D 80 (2009) 034502. arXiv:0903.2146, doi:10.1103/PhysRevD.80.034502.

[462] F.-K. Guo, U.-G. Meißner, Cumulants of the QCD topological charge distribution, Phys. Lett. B 749 (2015) 278–282.

arXiv:1506.05487, doi:10.1016/j.physletb.2015.07.076.

[463] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034.

arXiv:1511.02867, doi:10.1007/JHEP01(2016)034.

[464] C. Bonati, M. D’Elia, M. Mariti, G. Martinelli, M. Mesiti, F. Negro, F. Sanfilippo, G. Villadoro, Axion phe-

nomenology and θ-dependence from Nf = 2 + 1 lattice QCD, JHEP 03 (2016) 155. arXiv:1512.06746,

doi:10.1007/JHEP03(2016)155.

[465] F. Luciano, E. Meggiolaro, Study of the theta dependence of the vacuum energy density in chiral effective Lagrangian

models at zero temperature, Phys. Rev. D 98 (7) (2018) 074001. arXiv:1806.00835, doi:10.1103/PhysRevD.98.

074001.

[466] M. Gorghetto, G. Villadoro, Topological Susceptibility and QCD Axion Mass: QED and NNLO corrections, JHEP

03 (2019) 033. arXiv:1812.01008, doi:10.1007/JHEP03(2019)033.

[467] D. J. Gross, R. D. Pisarski, L. G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981)

43. doi:10.1103/RevModPhys.53.43.

[468] A. Boccaletti, D. Nogradi, The semi-classical approximation at high temperature revisited, JHEP 03 (2020) 045.

arXiv:2001.03383, doi:10.1007/JHEP03(2020)045.

[469] F. Rennecke, Higher topological charge and the QCD vacuum, Phys. Rev. Res. 2 (3) (2020) 033359. arXiv:

2003.13876, doi:10.1103/PhysRevResearch.2.033359.

[470] O. Wantz, E. P. S. Shellard, Axion Cosmology Revisited, Phys. Rev. D 82 (2010) 123508. arXiv:0910.1066,

doi:10.1103/PhysRevD.82.123508.

[471] E. Berkowitz, M. I. Buchoff, E. Rinaldi, Lattice QCD input for axion cosmology, Phys. Rev. D 92 (3) (2015) 034507.

arXiv:1505.07455, doi:10.1103/PhysRevD.92.034507.

[472] A. Notari, F. Rompineve, G. Villadoro, Improved hot dark matter bound on the QCD axion (11 2022). arXiv:

2211.03799.

[473] J. Frison, R. Kitano, H. Matsufuru, S. Mori, N. Yamada, Topological susceptibility at high temperature on the

lattice, JHEP 09 (2016) 021. arXiv:1606.07175, doi:10.1007/JHEP09(2016)021.

[474] S. Borsanyi, et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,

Nature 539 (7627) (2016) 69–71. arXiv:1606.07494, doi:10.1038/nature20115.

[475] P. Petreczky, H.-P. Schadler, S. Sharma, The topological susceptibility in finite temperature QCD and axion cos-

mology, Phys. Lett. B 762 (2016) 498–505. arXiv:1606.03145, doi:10.1016/j.physletb.2016.09.063.

78

https://doi.org/10.1103/PhysRevD.46.5607
http://arxiv.org/abs/0903.2146
https://doi.org/10.1103/PhysRevD.80.034502
http://arxiv.org/abs/1506.05487
https://doi.org/10.1016/j.physletb.2015.07.076
http://arxiv.org/abs/1511.02867
https://doi.org/10.1007/JHEP01(2016)034
http://arxiv.org/abs/1512.06746
https://doi.org/10.1007/JHEP03(2016)155
http://arxiv.org/abs/1806.00835
https://doi.org/10.1103/PhysRevD.98.074001
https://doi.org/10.1103/PhysRevD.98.074001
http://arxiv.org/abs/1812.01008
https://doi.org/10.1007/JHEP03(2019)033
https://doi.org/10.1103/RevModPhys.53.43
http://arxiv.org/abs/2001.03383
https://doi.org/10.1007/JHEP03(2020)045
http://arxiv.org/abs/2003.13876
http://arxiv.org/abs/2003.13876
https://doi.org/10.1103/PhysRevResearch.2.033359
http://arxiv.org/abs/0910.1066
https://doi.org/10.1103/PhysRevD.82.123508
http://arxiv.org/abs/1505.07455
https://doi.org/10.1103/PhysRevD.92.034507
http://arxiv.org/abs/2211.03799
http://arxiv.org/abs/2211.03799
http://arxiv.org/abs/1606.07175
https://doi.org/10.1007/JHEP09(2016)021
http://arxiv.org/abs/1606.07494
https://doi.org/10.1038/nature20115
http://arxiv.org/abs/1606.03145
https://doi.org/10.1016/j.physletb.2016.09.063


[476] C. Bonati, M. D’Elia, G. Martinelli, F. Negro, F. Sanfilippo, A. Todaro, Topology in full QCD at high temperature:

a multicanonical approach, JHEP 11 (2018) 170. arXiv:1807.07954, doi:10.1007/JHEP11(2018)170.

[477] A. Athenodorou, C. Bonanno, C. Bonati, G. Clemente, F. D’Angelo, M. D’Elia, L. Maio, G. Martinelli, F. Sanfilippo,

A. Todaro, Topological susceptibility of Nf = 2 + 1 QCD from staggered fermions spectral projectors at high

temperatures, JHEP 10 (2022) 197. arXiv:2208.08921, doi:10.1007/JHEP10(2022)197.

[478] B. Alles, G. Boyd, M. D’Elia, A. Di Giacomo, E. Vicari, Hybrid Monte Carlo and topological modes of full QCD,

Phys. Lett. B 389 (1996) 107–111. arXiv:hep-lat/9607049, doi:10.1016/S0370-2693(96)01247-6.

[479] L. Del Debbio, G. M. Manca, E. Vicari, Critical slowing down of topological modes, Phys. Lett. B 594 (2004)

315–323. arXiv:hep-lat/0403001, doi:10.1016/j.physletb.2004.05.038.

[480] S. Schaefer, R. Sommer, F. Virotta, Critical slowing down and error analysis in lattice QCD simulations, Nucl.

Phys. B 845 (2011) 93–119. arXiv:1009.5228, doi:10.1016/j.nuclphysb.2010.11.020.

[481] C. Bonati, M. D’Elia, A. Scapellato, θ dependence in SU(3) Yang-Mills theory from analytic continuation, Phys.

Rev. D 93 (2) (2016) 025028. arXiv:1512.01544, doi:10.1103/PhysRevD.93.025028.

[482] C. Bonati, M. D’Elia, P. Rossi, E. Vicari, θ dependence of 4D SU(N) gauge theories in the large-N limit, Phys.

Rev. D 94 (8) (2016) 085017. arXiv:1607.06360, doi:10.1103/PhysRevD.94.085017.

[483] C. Bonati, M. D’Elia, Topological critical slowing down: variations on a toy model, Phys. Rev. E 98 (1) (2018)

013308. arXiv:1709.10034, doi:10.1103/PhysRevE.98.013308.

[484] C. Bonanno, C. Bonati, M. D’Elia, Topological properties of CPN−1 models in the large-N limit, JHEP 01 (2019)

003. arXiv:1807.11357, doi:10.1007/JHEP01(2019)003.

[485] M. Berni, C. Bonanno, M. D’Elia, θ-dependence in the small-N limit of 2d CPN−1 models, Phys. Rev. D 102 (2020)

114519. arXiv:2009.14056, doi:10.1103/PhysRevD.102.114519.

[486] T. Eichhorn, C. Hoelbling, P. Rouenhoff, L. Varnhorst, Topology changing update algorithms for SU(3) gauge

theory (10 2022). arXiv:2210.11453.

[487] C. Bonanno, Lattice determination of the topological susceptibility slope χ′ of 2d CPN−1 models at large N (12

2022). arXiv:2212.02330.

[488] F. Burger, E.-M. Ilgenfritz, M. P. Lombardo, A. Trunin, Chiral observables and topology in hot QCD with two

families of quarks, Phys. Rev. D 98 (9) (2018) 094501. arXiv:1805.06001, doi:10.1103/PhysRevD.98.094501.

[489] J. B. Kogut, J. F. Lagae, D. K. Sinclair, Topology, fermionic zero modes and flavor singlet correlators in finite

temperature QCD, Phys. Rev. D 58 (1998) 054504. arXiv:hep-lat/9801020, doi:10.1103/PhysRevD.58.054504.

[490] A. Bazavov, et al., The chiral transition and U(1)A symmetry restoration from lattice QCD using Domain Wall

Fermions, Phys. Rev. D 86 (2012) 094503. arXiv:1205.3535, doi:10.1103/PhysRevD.86.094503.

[491] M. I. Buchoff, et al., QCD chiral transition, U(1)A symmetry and the dirac spectrum using domain wall fermions,

Phys. Rev. D 89 (5) (2014) 054514. arXiv:1309.4149, doi:10.1103/PhysRevD.89.054514.

79

http://arxiv.org/abs/1807.07954
https://doi.org/10.1007/JHEP11(2018)170
http://arxiv.org/abs/2208.08921
https://doi.org/10.1007/JHEP10(2022)197
http://arxiv.org/abs/hep-lat/9607049
https://doi.org/10.1016/S0370-2693(96)01247-6
http://arxiv.org/abs/hep-lat/0403001
https://doi.org/10.1016/j.physletb.2004.05.038
http://arxiv.org/abs/1009.5228
https://doi.org/10.1016/j.nuclphysb.2010.11.020
http://arxiv.org/abs/1512.01544
https://doi.org/10.1103/PhysRevD.93.025028
http://arxiv.org/abs/1607.06360
https://doi.org/10.1103/PhysRevD.94.085017
http://arxiv.org/abs/1709.10034
https://doi.org/10.1103/PhysRevE.98.013308
http://arxiv.org/abs/1807.11357
https://doi.org/10.1007/JHEP01(2019)003
http://arxiv.org/abs/2009.14056
https://doi.org/10.1103/PhysRevD.102.114519
http://arxiv.org/abs/2210.11453
http://arxiv.org/abs/2212.02330
http://arxiv.org/abs/1805.06001
https://doi.org/10.1103/PhysRevD.98.094501
http://arxiv.org/abs/hep-lat/9801020
https://doi.org/10.1103/PhysRevD.58.054504
http://arxiv.org/abs/1205.3535
https://doi.org/10.1103/PhysRevD.86.094503
http://arxiv.org/abs/1309.4149
https://doi.org/10.1103/PhysRevD.89.054514


[492] M. Lüscher, Topological effects in QCD and the problem of short distance singularities, Phys. Lett. B 593 (2004)

296–301. arXiv:hep-th/0404034, doi:10.1016/j.physletb.2004.04.076.

[493] L. Giusti, M. Luscher, Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks,

JHEP 03 (2009) 013. arXiv:0812.3638, doi:10.1088/1126-6708/2009/03/013.

[494] M. Lüscher, F. Palombi, Universality of the topological susceptibility in the SU(3) gauge theory, JHEP 09 (2010)

110. arXiv:1008.0732, doi:10.1007/JHEP09(2010)110.

[495] K. Cichy, E. Garcia-Ramos, K. Jansen, K. Ottnad, C. Urbach, Non-perturbative Test of the Witten-Veneziano

Formula from Lattice QCD, JHEP 09 (2015) 020. arXiv:1504.07954, doi:10.1007/JHEP09(2015)020.

[496] C. Alexandrou, A. Athenodorou, K. Cichy, M. Constantinou, D. P. Horkel, K. Jansen, G. Koutsou, C. Larkin,

Topological susceptibility from twisted mass fermions using spectral projectors and the gradient flow, Phys. Rev.

D 97 (7) (2018) 074503. arXiv:1709.06596, doi:10.1103/PhysRevD.97.074503.

[497] C. Bonanno, G. Clemente, M. D’Elia, F. Sanfilippo, Topology via spectral projectors with staggered fermions, JHEP

10 (2019) 187. arXiv:1908.11832, doi:10.1007/JHEP10(2019)187.

[498] B. A. Berg, T. Neuhaus, Multicanonical ensemble: A New approach to simulate first order phase transitions, Phys.

Rev. Lett. 68 (1992) 9–12. arXiv:hep-lat/9202004, doi:10.1103/PhysRevLett.68.9.

[499] P. T. Jahn, G. D. Moore, D. Robaina, χtop(T � Tc) in pure-glue QCD through reweighting, Phys. Rev. D 98 (5)

(2018) 054512. arXiv:1806.01162, doi:10.1103/PhysRevD.98.054512.

[500] C. Bonanno, M. D’Elia, F. Margari, The topological susceptibility of the 2d CP1 (O(3) non-linear σ) model: to ∞
or not to ∞? (7 2022). arXiv:2208.00185.

[501] A. Alexandru, I. Horváth, Unusual Features of QCD Low-Energy Modes in the Infrared Phase, Phys. Rev. Lett.

127 (5) (2021) 052303. arXiv:2103.05607, doi:10.1103/PhysRevLett.127.052303.

[502] A. Y. Kotov, M. P. Lombardo, A. Trunin, QCD transition at the physical point, and its scaling window from

twisted mass Wilson fermions, Phys. Lett. B 823 (2021) 136749. arXiv:2105.09842, doi:10.1016/j.physletb.

2021.136749.

[503] M. Cardinali, M. D’Elia, A. Pasqui, Thermal monopole condensation in QCD with physical quark masses (7 2021).

arXiv:2107.02745.

[504] C. Bonati, M. D’Elia, H. Panagopoulos, E. Vicari, Change of θ Dependence in 4D SU(N) Gauge Theories

Across the Deconfinement Transition, Phys. Rev. Lett. 110 (25) (2013) 252003. arXiv:1301.7640, doi:10.1103/

PhysRevLett.110.252003.

[505] M. S. Turner, Cosmic and local mass density of “invisible” axions, Phys. Rev. D 33 (1986) 889–896. doi:10.1103/

PhysRevD.33.889.

URL https://link.aps.org/doi/10.1103/PhysRevD.33.889

80

http://arxiv.org/abs/hep-th/0404034
https://doi.org/10.1016/j.physletb.2004.04.076
http://arxiv.org/abs/0812.3638
https://doi.org/10.1088/1126-6708/2009/03/013
http://arxiv.org/abs/1008.0732
https://doi.org/10.1007/JHEP09(2010)110
http://arxiv.org/abs/1504.07954
https://doi.org/10.1007/JHEP09(2015)020
http://arxiv.org/abs/1709.06596
https://doi.org/10.1103/PhysRevD.97.074503
http://arxiv.org/abs/1908.11832
https://doi.org/10.1007/JHEP10(2019)187
http://arxiv.org/abs/hep-lat/9202004
https://doi.org/10.1103/PhysRevLett.68.9
http://arxiv.org/abs/1806.01162
https://doi.org/10.1103/PhysRevD.98.054512
http://arxiv.org/abs/2208.00185
http://arxiv.org/abs/2103.05607
https://doi.org/10.1103/PhysRevLett.127.052303
http://arxiv.org/abs/2105.09842
https://doi.org/10.1016/j.physletb.2021.136749
https://doi.org/10.1016/j.physletb.2021.136749
http://arxiv.org/abs/2107.02745
http://arxiv.org/abs/1301.7640
https://doi.org/10.1103/PhysRevLett.110.252003
https://doi.org/10.1103/PhysRevLett.110.252003
https://link.aps.org/doi/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.33.889
https://link.aps.org/doi/10.1103/PhysRevD.33.889


[506] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C. Hackett, S. Racanière, D. J. Rezende, P. E. Shanahan,

Equivariant flow-based sampling for lattice gauge theory, Phys. Rev. Lett. 125 (12) (2020) 121601. arXiv:2003.

06413, doi:10.1103/PhysRevLett.125.121601.

[507] M. Hasenbusch, Fighting topological freezing in the two-dimensional CPN-1 model, Phys. Rev. D 96 (5) (2017)

054504. arXiv:1706.04443, doi:10.1103/PhysRevD.96.054504.

[508] M. Berni, C. Bonanno, M. D’Elia, Large-N expansion and θ-dependence of 2d CPN−1 models beyond the leading

order, Phys. Rev. D 100 (11) (2019) 114509. arXiv:1911.03384, doi:10.1103/PhysRevD.100.114509.

[509] C. Bonanno, C. Bonati, M. D’Elia, Large-N SU(N) Yang-Mills theories with milder topological freezing, JHEP 03

(2021) 111. arXiv:2012.14000, doi:10.1007/JHEP03(2021)111.

[510] C. Bonanno, M. D’Elia, B. Lucini, D. Vadacchino, Towards glueball masses of large-N SU(N) pure-gauge theories

without topological freezing, Phys. Lett. B 833 (2022) 137281. arXiv:2205.06190, doi:10.1016/j.physletb.

2022.137281.

[511] N. Read, S. Sachdev, Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antifer-

romagnets, Phys. Rev B 42 (1990) 4568.

[512] S. Takashima, I. Ichinose, T. Matsui, Deconfinement of spinons on critical points: Multiflavor CP1+U(1) lattice

gauge theory in three dimension, Phys. Rev. B 73 (2006) 075119.

[513] R. K. Kaul, Quantum phase transitions in bilayer SU(N) antiferromagnets, Phys. Rev. B 85 (2012) 180411(R).

[514] R. K. Kaul, A. W. Sandvik, Lattice model for the SU(N) Néel to valence-bond solid quantum phase transition at

large N , Phys. Rev. Lett. 108 (2012) 137201.

[515] M. S. Block, R. G. Melko, R. K. Kaul, Fate of CPN−1 fixed point with q monopoles, Phys. Rev. Lett. 111 (2013)

137202.

[516] A. Nahum, J. T. Chalker, P. Serna, M. O. no, A. M. Somoza, Deconfined quantum criticality, scaling violations,

and classical loop models, Phys. Rev. X 5 (2015) 041048.

[517] C. Wang, A. Nahum, M. A. Metliski, C. Xu, T. Senthil, Deconfined quantum critical points: Symmetries and

dualities, Phys. Rev. X 7 (2017) 031051.

[518] S. Sachdev, Topological order, emergent gauge fields, and Fermi surface reconstruction, Rep. Prog. Phys. 82 (2019)

014001.

[519] A. W. Sandvik, Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin

interactions, Phys. Rev. Lett. 98 (2007) 227202.

[520] R. G. Melko, R. K. Kaul, Scaling in the fan of an unconventional quantum critical point, Phys. Rev. Lett. 100

(2008) 017203.

[521] F. J. Jiang, M. Nyfeler, S. Chandrasekharan, U. J. Wiese, From an antiferromagnet to a valence bond solid: Evidence

for a first-order phase transition, J. Stat. Mech.: Th. Expt. (2008) P02009.

81

http://arxiv.org/abs/2003.06413
http://arxiv.org/abs/2003.06413
https://doi.org/10.1103/PhysRevLett.125.121601
http://arxiv.org/abs/1706.04443
https://doi.org/10.1103/PhysRevD.96.054504
http://arxiv.org/abs/1911.03384
https://doi.org/10.1103/PhysRevD.100.114509
http://arxiv.org/abs/2012.14000
https://doi.org/10.1007/JHEP03(2021)111
http://arxiv.org/abs/2205.06190
https://doi.org/10.1016/j.physletb.2022.137281
https://doi.org/10.1016/j.physletb.2022.137281


[522] A. W. Sandvik, Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two

dimensions: Evidence for logarithmic corrections to scaling, Phys. Rev. Lett. 104 (2010) 177201.

[523] K. Harada, T. Suzuki, T. Okubos, H. Matsuo, J. Lou, H. Watanabe, S. Todo, N. Kawashima, Possibility of

deconfined criticality in SU(N) Heisenberg models at small N , Phys. Rev. B 88 (2013) 220408.

[524] K. Chen, Y. Huang, Y. Deng, A. B. Kuklov, N. V. Prokof’ev, B. Svistunov, Deconfined criticality flow in the

Heisenberg model with ring-exchange interactions, Phys. Rev. Lett. 110 (2013) 185701.

[525] S. Pujari, K. Damle, F. Alet, Nèel-state to valence-bond-solid transition on the honeycomb lattice: Evidence for

deconfined criticality, Phys. Rev. Lett. 111 (2013) 087203.

[526] H. Shao, W. Guo, A. W. Sandvik, Quantum criticality with two length scales, Science 352 (2016) 213.

[527] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, M. P. A. Fisher, Quantum criticality beyond the Landau-

Ginzburg-Wilson paradigm, Phys. Rev. B 70 (2004) 144407.

[528] P. A. Lee, N. Nagaosa, Gauge theory of the normal state of high-Tc superconductors, Phys. Rev. B 46 (1992) 5621.

[529] D. H. Kim, P. A. Lee, Theory of spin excitations in undoped and underdoped cuprates, Ann. Phys.(N.Y.) 272 (1999)

130.

[530] W. Ratner, X.-G. Wen, Electron spectral function and algebraic spin liquid for the normal state of underdoped

high-Tc superconductors, Phys. Rev. Lett. 86 (2001) 3871.

[531] T. Senthil, P. A. Lee, Cuprates as doped U(1) spin liquids, Phys. Rev. B 71 (2005) 174515.

[532] P. Ghaemi, T. Senthil, Néel order, quantum spin liquids, and quantum criticality in two dimensions, Phys. Rev. B

73 (2006) 054415.

[533] P. A. Lee, From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics,

Rep. Prog. Phys. 71 (2008) 012501.

[534] D. Chowdhury, S. Sachdev, Higgs criticality in a two-dimensional metal, Phys. Rev. B 91 (2015) 115123.

[535] S. Sachdev, Emergent gauge fields and the high-temperature superconductors, Phil. Trans. R. Soc. A 374 (2016)

20150248.

[536] A. Pelissetto, E. Vicari, Multicomponent compact Abelian-Higgs lattice models, Phys. Rev. E 100 (4) (2019) 042134.

arXiv:1909.04137, doi:10.1103/PhysRevE.100.042134.

[537] A. Pelissetto, E. Vicari, Large-N behavior of three-dimensional lattice CPN−1 models, J. Stat. Mech. 2003 (3)

(2020) 033209. arXiv:1912.04597, doi:10.1088/1742-5468/ab7747.

[538] A. Pelissetto, E. Vicari, Three-dimensional monopole-free CPN−1 models, Phys. Rev. E 101 (6) (2020) 062136.

arXiv:2003.14075, doi:10.1103/PhysRevE.101.062136.

[539] C. Bonati, A. Pelissetto, E. Vicari, Lattice Abelian-Higgs model with noncompact gauge fields, Phys. Rev. B 103 (8)

(2021) 085104. arXiv:2010.06311, doi:10.1103/PhysRevB.103.085104.

82

http://arxiv.org/abs/1909.04137
https://doi.org/10.1103/PhysRevE.100.042134
http://arxiv.org/abs/1912.04597
https://doi.org/10.1088/1742-5468/ab7747
http://arxiv.org/abs/2003.14075
https://doi.org/10.1103/PhysRevE.101.062136
http://arxiv.org/abs/2010.06311
https://doi.org/10.1103/PhysRevB.103.085104


[540] C. Bonati, A. Pelissetto, E. Vicari, Higher-charge three-dimensional compact lattice Abelian-Higgs models, Phys.

Rev. E 102 (6) (2020) 062151. arXiv:2011.04503, doi:10.1103/PhysRevE.102.062151.

[541] C. Bonati, A. Pelissetto, E. Vicari, Critical behaviors of lattice U(1) gauge models and three-dimensional Abelian-

Higgs gauge field theory, Phys. Rev. B 105 (8) (2022) 085112. arXiv:2201.01082, doi:10.1103/PhysRevB.105.

085112.

[542] E. H. Fradkin, S. H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979)

3682–3697. doi:10.1103/PhysRevD.19.3682.

[543] G. Delfino, W. Selke, A. Squarcini, Particles, string and interface in the three-dimensional Ising model, Nucl. Phys.

B 958 (2020) 115139. arXiv:1906.03176, doi:10.1016/j.nuclphysb.2020.115139.

[544] G. Delfino, M. Sorba, A. Squarcini, Interface in presence of a wall. Results from field theory, Nucl. Phys. B 967

(2021) 115396. arXiv:2103.05370, doi:10.1016/j.nuclphysb.2021.115396.

[545] M. Caselle, M. Hasenbusch, M. Panero, The Interface free energy: Comparison of accurate Monte Carlo results

for the 3D Ising model with effective interface models, JHEP 09 (2007) 117. arXiv:0707.0055, doi:10.1088/

1126-6708/2007/09/117.

[546] M. Caselle, R. Fiore, F. Gliozzi, M. Hasenbusch, K. Pinn, Rough interfaces beyond the Gaussian approximation,

Nucl.Phys. B432 (1994) 590–620. arXiv:hep-lat/9407002, doi:10.1016/0550-3213(94)90035-3.

[547] M. Billo, M. Caselle, L. Ferro, The Partition function of interfaces from the Nambu-Goto effective string theory,

JHEP 0602 (2006) 070. arXiv:hep-th/0601191, doi:10.1088/1126-6708/2006/02/070.

[548] Y. Nambu, Strings, Monopoles and Gauge Fields, Phys. Rev. D10 (1974) 4262. doi:10.1103/PhysRevD.10.4262.

[549] T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of

dual resonance model, Prog.Theor.Phys. 46 (1971) 1560–1569. doi:10.1143/PTP.46.1560.

[550] O. Aharony, Z. Komargodski, The Effective Theory of Long Strings, JHEP 1305 (2013) 118. arXiv:1302.6257,

doi:10.1007/JHEP05(2013)118.

[551] M. Caselle, Effective String Description of the Confining Flux Tube at Finite Temperature, Universe 7 (6) (2021)

170. arXiv:2104.10486, doi:10.3390/universe7060170.

[552] T. Appelquist, R. D. Pisarski, High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromo-

dynamics, Phys. Rev. D 23 (1981) 2305. doi:10.1103/PhysRevD.23.2305.

[553] K. Farakos, K. Kajantie, K. Rummukainen, M. E. Shaposhnikov, 3-D physics and the electroweak phase transition:

Perturbation theory, Nucl. Phys. B 425 (1994) 67–109. arXiv:hep-ph/9404201, doi:10.1016/0550-3213(94)

90173-2.

[554] K. Kajantie, M. Laine, K. Rummukainen, M. E. Shaposhnikov, The Electroweak phase transition: A Nonperturba-

tive analysis, Nucl. Phys. B 466 (1996) 189–258. arXiv:hep-lat/9510020, doi:10.1016/0550-3213(96)00052-1.

[555] M. Caselle, A. D’Adda, S. Panzeri, The Kazakov-Migdal model as a high temperature lattice gauge theory, Phys.

Lett. B 302 (1993) 80–86. arXiv:hep-th/9212074, doi:10.1016/0370-2693(93)90639-Y.

83

http://arxiv.org/abs/2011.04503
https://doi.org/10.1103/PhysRevE.102.062151
http://arxiv.org/abs/2201.01082
https://doi.org/10.1103/PhysRevB.105.085112
https://doi.org/10.1103/PhysRevB.105.085112
https://doi.org/10.1103/PhysRevD.19.3682
http://arxiv.org/abs/1906.03176
https://doi.org/10.1016/j.nuclphysb.2020.115139
http://arxiv.org/abs/2103.05370
https://doi.org/10.1016/j.nuclphysb.2021.115396
http://arxiv.org/abs/0707.0055
https://doi.org/10.1088/1126-6708/2007/09/117
https://doi.org/10.1088/1126-6708/2007/09/117
http://arxiv.org/abs/hep-lat/9407002
https://doi.org/10.1016/0550-3213(94)90035-3
http://arxiv.org/abs/hep-th/0601191
https://doi.org/10.1088/1126-6708/2006/02/070
https://doi.org/10.1103/PhysRevD.10.4262
https://doi.org/10.1143/PTP.46.1560
http://arxiv.org/abs/1302.6257
https://doi.org/10.1007/JHEP05(2013)118
http://arxiv.org/abs/2104.10486
https://doi.org/10.3390/universe7060170
https://doi.org/10.1103/PhysRevD.23.2305
http://arxiv.org/abs/hep-ph/9404201
https://doi.org/10.1016/0550-3213(94)90173-2
https://doi.org/10.1016/0550-3213(94)90173-2
http://arxiv.org/abs/hep-lat/9510020
https://doi.org/10.1016/0550-3213(96)00052-1
http://arxiv.org/abs/hep-th/9212074
https://doi.org/10.1016/0370-2693(93)90639-Y


[556] M. Billo, M. Caselle, A. D’Adda, S. Panzeri, Toward an analytic determination of the deconfinement temperature in

SU(2) LGT, Nucl. Phys. B 472 (1996) 163–193. arXiv:hep-lat/9601020, doi:10.1016/0550-3213(96)00223-4.

[557] M. Billo, M. Caselle, A. D’Adda, S. Panzeri, Finite temperature lattice QCD in the large N limit, Int. J. Mod.

Phys. A 12 (1997) 1783–1846. arXiv:hep-th/9610144, doi:10.1142/S0217751X97001158.

[558] P. McFadden, K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301. arXiv:0907.5542, doi:

10.1103/PhysRevD.81.021301.

[559] R. Jackiw, S. Templeton, How Superrenormalizable Interactions Cure their Infrared Divergences, Phys. Rev. D 23

(1981) 2291. doi:10.1103/PhysRevD.23.2291.

[560] G. Cossu, L. Del Debbio, A. Juttner, B. Kitching-Morley, J. K. L. Lee, A. Portelli, H. B. Rocha, K. Skenderis,

Nonperturbative Infrared Finiteness in a Superrenormalizable Scalar Quantum Field Theory, Phys. Rev. Lett.

126 (22) (2021) 221601. arXiv:2009.14768, doi:10.1103/PhysRevLett.126.221601.

[561] J. Carrasquilla, R. G. Melko, Machine learning phases of matter, Nature Physics 13 (2017) 431 EP –. arXiv:

1605.01735.

URL https://doi.org/10.1038/nphys4035

[562] E. van Nieuwenburg, Y.-H. Liu, S. Huber, Learning phase transitions by confusion, Nature Physics 13 (2017) 435

EP –. arXiv:1610.02048.

URL https://doi.org/10.1038/nphys4037

[563] L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94 (2016) 195105. arXiv:1606.

00318, doi:10.1103/PhysRevB.94.195105.

URL https://link.aps.org/doi/10.1103/PhysRevB.94.195105

[564] P. Broecker, J. Carrasquilla, R. G. Melko, S. Trebst, Machine learning quantum phases of matter beyond the fermion

sign problem, Scientific Reports 7 (1) (2017) 8823. arXiv:1608.07848, doi:10.1038/s41598-017-09098-0.

URL https://doi.org/10.1038/s41598-017-09098-0

[565] K. Ch’ng, J. Carrasquilla, R. G. Melko, E. Khatami, Machine learning phases of strongly correlated fermions,

Physical Review X 7 (3) (2017) 031038. arXiv:1609.02552.

[566] S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoen-

coders, Phys. Rev. E 96 (2017) 022140. arXiv:1703.02435, doi:10.1103/PhysRevE.96.022140.

URL https://link.aps.org/doi/10.1103/PhysRevE.96.022140

[567] W. Hu, R. R. P. Singh, R. T. Scalettar, Discovering phases, phase transitions, and crossovers through unsupervised

machine learning: A critical examination, Phys. Rev. E 95 (2017) 062122. arXiv:1704.00080, doi:10.1103/

PhysRevE.95.062122.

URL https://link.aps.org/doi/10.1103/PhysRevE.95.062122

[568] P. Broecker, F. F. Assaad, S. Trebst, Quantum phase recognition via unsupervised machine learning, arXiv e-prints

(2017) arXiv:1707.00663arXiv:1707.00663.

84

http://arxiv.org/abs/hep-lat/9601020
https://doi.org/10.1016/0550-3213(96)00223-4
http://arxiv.org/abs/hep-th/9610144
https://doi.org/10.1142/S0217751X97001158
http://arxiv.org/abs/0907.5542
https://doi.org/10.1103/PhysRevD.81.021301
https://doi.org/10.1103/PhysRevD.81.021301
https://doi.org/10.1103/PhysRevD.23.2291
http://arxiv.org/abs/2009.14768
https://doi.org/10.1103/PhysRevLett.126.221601
https://doi.org/10.1038/nphys4035
http://arxiv.org/abs/1605.01735
http://arxiv.org/abs/1605.01735
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
http://arxiv.org/abs/1610.02048
https://doi.org/10.1038/nphys4037
https://link.aps.org/doi/10.1103/PhysRevB.94.195105
http://arxiv.org/abs/1606.00318
http://arxiv.org/abs/1606.00318
https://doi.org/10.1103/PhysRevB.94.195105
https://link.aps.org/doi/10.1103/PhysRevB.94.195105
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
http://arxiv.org/abs/1608.07848
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
http://arxiv.org/abs/1609.02552
https://link.aps.org/doi/10.1103/PhysRevE.96.022140
https://link.aps.org/doi/10.1103/PhysRevE.96.022140
http://arxiv.org/abs/1703.02435
https://doi.org/10.1103/PhysRevE.96.022140
https://link.aps.org/doi/10.1103/PhysRevE.96.022140
https://link.aps.org/doi/10.1103/PhysRevE.95.062122
https://link.aps.org/doi/10.1103/PhysRevE.95.062122
http://arxiv.org/abs/1704.00080
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevE.95.062122
https://link.aps.org/doi/10.1103/PhysRevE.95.062122
http://arxiv.org/abs/1707.00663


[569] N. Yoshioka, Y. Akagi, H. Katsura, Learning disordered topological phases by statistical recovery of symmetry,

Phys. Rev. B 97 (2018) 205110. arXiv:1709.05790, doi:10.1103/PhysRevB.97.205110.

URL https://link.aps.org/doi/10.1103/PhysRevB.97.205110

[570] J. Venderley, V. Khemani, E.-A. Kim, Machine learning out-of-equilibrium phases of matter, Phys. Rev. Lett. 120

(2018) 257204. arXiv:1711.00020, doi:10.1103/PhysRevLett.120.257204.

URL https://link.aps.org/doi/10.1103/PhysRevLett.120.257204

[571] W. Zhang, J. Liu, T.-C. Wei, Machine learning of phase transitions in the percolation and XY models, arXiv e-prints

(2018) arXiv:1804.02709arXiv:1804.02709.

[572] R. B. Jadrich, B. A. Lindquist, T. M. Truskett, Unsupervised machine learning for detection of phase transitions

in off-lattice systems. I. Foundations, jcp 149 (2018) 194109. arXiv:1808.00084, doi:10.1063/1.5049849.

[573] D. Kim, D.-H. Kim, Smallest neural network to learn the ising criticality, Phys. Rev. E 98 (2018) 022138. arXiv:

1804.02171, doi:10.1103/PhysRevE.98.022138.

URL https://link.aps.org/doi/10.1103/PhysRevE.98.022138

[574] X. L. Zhao, L. B. Fu, Machine Learning Phase Transition: An Iterative Proposal, arXiv e-prints (2018)

arXiv:1808.01731arXiv:1808.01731.

[575] K. Kashiwa, Y. Kikuchi, A. Tomiya, Phase transition encoded in neural network, PTEP 2019 (8) (2019) 083A04.

arXiv:1812.01522, doi:10.1093/ptep/ptz082.

[576] C. Giannetti, B. Lucini, D. Vadacchino, Machine Learning as a universal tool for quantitative investigations of phase

transitions, Nucl. Phys. B 944 (2019) 114639. arXiv:1812.06726, doi:10.1016/j.nuclphysb.2019.114639.

[577] K. Zhou, G. Endrődi, L.-G. Pang, H. Stöcker, Regressive and generative neural networks for scalar field theory,

Phys. Rev. D 100 (1) (2019) 011501. arXiv:1810.12879, doi:10.1103/PhysRevD.100.011501.

[578] S. Blücher, L. Kades, J. M. Pawlowski, N. Strodthoff, J. M. Urban, Towards novel insights in lattice field theory with

explainable machine learning, Phys. Rev. D 101 (9) (2020) 094507. arXiv:2003.01504, doi:10.1103/PhysRevD.

101.094507.

[579] J. Carrasquilla, R. G. Melko, Machine learning phases of matter, Nature Physics 13 (5) (2017) 431–434.

[580] S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoen-

coders, Physical Review E 96 (2) (2017) 022140. arXiv:1703.02435.

[581] S. Foreman, J. Giedt, Y. Meurice, J. Unmuth-Yockey, Examples of renormalization group transformations for image

sets, Phys. Rev. E98 (5) (2018) 052129. arXiv:1807.10250, doi:10.1103/PhysRevE.98.052129.

[582] A. Morningstar, R. G. Melko, Deep learning the ising model near criticality, Journal of Machine Learning Research

18 (163) (2018) 1–17. arXiv:1708.04622.

URL http://jmlr.org/papers/v18/17-527.html

85

https://link.aps.org/doi/10.1103/PhysRevB.97.205110
http://arxiv.org/abs/1709.05790
https://doi.org/10.1103/PhysRevB.97.205110
https://link.aps.org/doi/10.1103/PhysRevB.97.205110
https://link.aps.org/doi/10.1103/PhysRevLett.120.257204
http://arxiv.org/abs/1711.00020
https://doi.org/10.1103/PhysRevLett.120.257204
https://link.aps.org/doi/10.1103/PhysRevLett.120.257204
http://arxiv.org/abs/1804.02709
http://arxiv.org/abs/1808.00084
https://doi.org/10.1063/1.5049849
https://link.aps.org/doi/10.1103/PhysRevE.98.022138
http://arxiv.org/abs/1804.02171
http://arxiv.org/abs/1804.02171
https://doi.org/10.1103/PhysRevE.98.022138
https://link.aps.org/doi/10.1103/PhysRevE.98.022138
http://arxiv.org/abs/1808.01731
http://arxiv.org/abs/1812.01522
https://doi.org/10.1093/ptep/ptz082
http://arxiv.org/abs/1812.06726
https://doi.org/10.1016/j.nuclphysb.2019.114639
http://arxiv.org/abs/1810.12879
https://doi.org/10.1103/PhysRevD.100.011501
http://arxiv.org/abs/2003.01504
https://doi.org/10.1103/PhysRevD.101.094507
https://doi.org/10.1103/PhysRevD.101.094507
http://arxiv.org/abs/1703.02435
http://arxiv.org/abs/1807.10250
https://doi.org/10.1103/PhysRevE.98.052129
http://jmlr.org/papers/v18/17-527.html
http://arxiv.org/abs/1708.04622
http://jmlr.org/papers/v18/17-527.html


[583] G. Cossu, L. Del Debbio, T. Giani, A. Khamseh, M. Wilson, Machine learning determination of dynamical param-

eters: The Ising model case, Phys. Rev. B 100 (6) (2019) 064304. arXiv:1810.11503, doi:10.1103/PhysRevB.

100.064304.

[584] S. Shiba Funai, D. Giataganas, Thermodynamics and Feature Extraction by Machine Learning, Phys. Rev. Res.

2 (3) (2020) 033415. arXiv:1810.08179, doi:10.1103/PhysRevResearch.2.033415.

[585] S. J. Wetzel, M. Scherzer, Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice

Gauge Theory, Phys. Rev. B96 (18) (2017) 184410. arXiv:1705.05582, doi:10.1103/PhysRevB.96.184410.

[586] D. L. Boyda, M. N. Chernodub, N. V. Gerasimeniuk, V. A. Goy, S. D. Liubimov, A. V. Molochkov, Finding the

deconfinement temperature in lattice Yang-Mills theories from outside the scaling window with machine learning,

Phys. Rev. D 103 (1) (2021) 014509. arXiv:2009.10971, doi:10.1103/PhysRevD.103.014509.

[587] A. Palermo, L. Anderlini, M. P. Lombardo, A. Y. Kotov, A. Trunin, Machine learning approaches to the QCD

transition, PoS LATTICE2021 (2022) 030. arXiv:2111.05216, doi:10.22323/1.396.0030.

[588] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, software available from

tensorflow.org (2015).

URL https://www.tensorflow.org/

[589] F. Chollet, et al., Keras, https://keras.io (2015).

[590] G. Papamakarios, T. Pavlakou, I. Murray, Masked autoregressive flow for density estimation, Advances in neural

information processing systems 30 (2017).

[591] M. Germain, K. Gregor, I. Murray, H. Larochelle, Made: Masked autoencoder for distribution estimation, in:

International conference on machine learning, PMLR, 2015, pp. 881–889.

[592] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker, X.-N. Wang, An equation-of-state-meter of quantum

chromodynamics transition from deep learning, Nature Commun. 9 (1) (2018) 210. arXiv:1612.04262, doi:

10.1038/s41467-017-02726-3.

[593] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all

you need, Advances in neural information processing systems 30 (2017).

[594] D. Bachtis, G. Aarts, B. Lucini, Quantum field-theoretic machine learning, Phys. Rev. D 103 (7) (2021) 074510.

arXiv:2102.09449, doi:10.1103/PhysRevD.103.074510.

[595] C. Alexandrou, A. Athenodorou, C. Chrysostomou, S. Paul, The critical temperature of the 2D-Ising model

through Deep Learning Autoencoders, Eur. Phys. J. B 93 (12) (2020) 226. arXiv:1903.03506, doi:10.1140/

epjb/e2020-100506-5.

86

http://arxiv.org/abs/1810.11503
https://doi.org/10.1103/PhysRevB.100.064304
https://doi.org/10.1103/PhysRevB.100.064304
http://arxiv.org/abs/1810.08179
https://doi.org/10.1103/PhysRevResearch.2.033415
http://arxiv.org/abs/1705.05582
https://doi.org/10.1103/PhysRevB.96.184410
http://arxiv.org/abs/2009.10971
https://doi.org/10.1103/PhysRevD.103.014509
http://arxiv.org/abs/2111.05216
https://doi.org/10.22323/1.396.0030
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
http://arxiv.org/abs/1612.04262
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1038/s41467-017-02726-3
http://arxiv.org/abs/2102.09449
https://doi.org/10.1103/PhysRevD.103.074510
http://arxiv.org/abs/1903.03506
https://doi.org/10.1140/epjb/e2020-100506-5
https://doi.org/10.1140/epjb/e2020-100506-5


[596] D. Bachtis, G. Aarts, B. Lucini, Adding machine learning within Hamiltonians: Renormalization group trans-

formations, symmetry breaking and restoration, Phys. Rev. Res. 3 (1) (2021) 013134. arXiv:2010.00054,

doi:10.1103/PhysRevResearch.3.013134.

[597] D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Inverse Renormalization Group in Quantum Field Theory, Phys. Rev.

Lett. 128 (8) (2022) 081603. arXiv:2107.00466, doi:10.1103/PhysRevLett.128.081603.

[598] D. Bachtis, G. Aarts, B. Lucini, Extending machine learning classification capabilities with histogram reweighting,

Phys. Rev. E 102 (3) (2020) 033303. arXiv:2004.14341, doi:10.1103/PhysRevE.102.033303.

[599] D. Bachtis, G. Aarts, B. Lucini, Mapping distinct phase transitions to a neural network, Phys. Rev. E 102 (5)

(2020) 053306. arXiv:2007.00355, doi:10.1103/PhysRevE.102.053306.

[600] J. M. Pawlowski, J. M. Urban, Flow-based density of states for complex actions (3 2022). arXiv:2203.01243.

[601] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982) 467–488. doi:10.1007/

BF02650179.

[602] EuroHPC, https://eurohpc-ju.europa.eu/.

[603] A. Athenodorou, Bennett, J. Lenz, E. Papadopoullou, Open Science in Lattice Gauge Theory community, in: 39th

International Symposium on Lattice Field Theory, 2022. arXiv:2212.04853.

Workshop “Phase Transitions in Particle Physics” Talks

[604] A. Lahiri, QCD towards the chiral limit – where are we?, [Slides], 2022.

[605] T. Harris, Computation of QCD meson screening masses at high temperature, [Slides], 2022.

[606] I. Kudrov, Decomposition of the gauge field in the maximal abelian gauge, [Slides], 2022.

[607] J. M. Pawlowski, Overview on the QCD phase structure from functional approaches, [Slides], 2022.

[608] A. Kotov, QCD thermal phase transition, its scaling window and novel order parameter, [Slides], 2022.

[609] O. Philipsen, The order of the QCD chiral phase transition as a function of quark masses and Nf , [Slides], 2022.

[610] S. Sharma, The chiral phase transition in 3-flavor QCD, [Slides], 2022.

[611] C. Sasaki, Parity doubling in cold and dense QCD, [Slides], 2022.

[612] F. Cuteri, Isospin-asymmetric QCD matter, [Slides], 2022.

[613] V. Bornyakov, Deconfinement transition in Nc = 2 lattice QCD at low temperature and high quark density, [Slides],

2022.

[614] T. Galatyuk, Decoding the phase structure of QCD at high µB, [Slides], 2022.

[615] C. Ratti, Overview of the BEST collaboration and status of Lattice QCD, [Slides], 2022.

87

http://arxiv.org/abs/2010.00054
https://doi.org/10.1103/PhysRevResearch.3.013134
http://arxiv.org/abs/2107.00466
https://doi.org/10.1103/PhysRevLett.128.081603
http://arxiv.org/abs/2004.14341
https://doi.org/10.1103/PhysRevE.102.033303
http://arxiv.org/abs/2007.00355
https://doi.org/10.1103/PhysRevE.102.053306
http://arxiv.org/abs/2203.01243
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://eurohpc-ju.europa.eu/
http://arxiv.org/abs/2212.04853
https://www.ggi.infn.it/talkfiles/slides/slides5831.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5847.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5836.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5823.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5833.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5830.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5832.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5854.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5828.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5856.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5820.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5821.pdf


[616] J. Ghiglieri, Thermal Field Theory and Cosmology, [Slides], 2022.

[617] P. Schicho, (Non-)perturbative jet dispersion in hot QCD, [Slides], 2022.

[618] J. N. Guenther, Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and

beyond, [Slides], 2022.

[619] L. Maio, Phase diagram of QCD in strong magnetic field, [Slides], 2022.

[620] O. Soloveva, Influence of a phase transition on the transport properties of QCD matter, [Slides], 2022.

[621] C. Allton, Methods and results for spectral functions – why do we care about inverse Laplace transform?, [Slides],

2022.

[622] S. Cuomo, Models for the real Laplace transform inversion, [Slides], 2022.

[623] C. Conti, Spline models for data representation, [Slides], 2022.

[624] N. Brambilla, Heavy quarkonium: exploring the QGP with an alliance of effective field theories and lattice, [Slides],

2022.

[625] F. Karsch, Taylor expansions and Padé approximations in finite density QCD, [Slides], 2022.

[626] C. Schmidt, The phase structure of strong interaction matter from Lee–Yang edge singularities in Lattice QCD,

[Slides], 2022.

[627] R. Rogalyov, QC2D as a probe of the analytic continuation methods, [Slides], 2022.

[628] B. Lucini, Ergodic Sampling with the Density of States, [Slides], 2022.

[629] U.-J. Wiese, Quantum link models: a resource-efficient approach to the quantum simulation and quantum compu-

tation of gauge theories, [Slides], 2022.

[630] F. Sannino, The future of composite dynamics, [Slides], 2022.

[631] R. Contino, Accidental Dark Matter, [Slides], 2022.

[632] A. Rago, A template for Composite Higgs models – SU(2) gauge theory with Nf = 2 fundamental fermions, [Slides],

2022.

[633] R. Houtz, Dynamical Axions and Gravitational Waves, [Slides], 2022.

[634] G. Villadoro, Overview of Chiral Perturbation Theory at Finite Temperature, [Slides], 2022.

[635] C. Bonanno, The Topological Susceptibility in High-T Full QCD from Staggered Spectral Projectors, [Slides], 2022.

[636] A. Pelissetto, Charged fixed points in 3D U(1) scalar gauge theories, [Slides], 2022.

[637] M. Sorba, Interfaces near criticality: results from field theory, [Slides], 2022.

[638] B. Kitching-Morley, Nonperturbative infrared finiteness in super-renormalizable scalar quantum field theory, [Slides],

2022.

88

https://www.ggi.infn.it/talkfiles/slides/slides5826.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5849.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5822.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5834.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5848.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5843.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5844.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5845.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5846.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5837.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5838.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5839.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5860.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5840.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5825.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5827.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5855.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5829.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5824.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5835.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5851.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5852.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5853.pdf


[639] G. Aarts, Quantum fields and machine learning, [Slides], 2022.

[640] A. Athenodorou, Critical temperature from unsupervised deep learning autoencoders, [Slides], 2022.

[641] D. Bachtis, Machine learning and the inverse renormalization group, [Slides], 2022.

[642] S. Ryan, From PRACE to EuroHPC, [Slides], 2022.

[643] M. Peardon, NT6 and Strong-2020, [Slides], 2022.

89

https://www.ggi.infn.it/talkfiles/slides/slides5858.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5859.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5857.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5841.pdf
https://www.ggi.infn.it/talkfiles/slides/slides5819.pdf

	1 Introduction
	2 Thermal Phase Transitions and Critical PointsEditor: Sipaz Sharma
	2.1 QCD Phase Diagram: Expectations
	2.2 Degree of Understanding
	2.2.1 Lower Density Region
	2.2.2 Scaling Window
	2.2.3 Many Flavor QCD at zero B
	2.2.4 High Density Region

	2.3 The Road Ahead

	3 Nature and Phenomenology of the Quark-Gluon PlasmaEditor: Jana N. Guenther
	3.1 Fluctuations
	3.2 Equation of State
	3.3 Influence of a Magnetic FieldPrepared by Lorenzo Maio
	3.4 BEST EffortsPrepared by Claudia Ratti
	3.5 Transport PropertiesPrepared by Olga Soloveva
	3.6 Experimental EffortsPrepared by Tetyana Galatyuk
	3.7 The Road AheadPrepared by Joerg Aichelin and Elena Bratkovskaya

	4 Methodological Challenges: Spectral Functions and Sign ProblemEditors: Chris Allton and Christian Schmidt
	4.1 Spectral Functions as an Inverse Problem
	4.2 Spectral Functions and Effective Field TheoriesPrepared by Nora Brambilla
	4.3 QCD at Non-Zero Density: From Taylor Expansions to Lee–Yang Zeros
	4.4 QCD at Non-Zero Density: Combining Lattice and Functional ApproachesPrepared by Jan M. Pawlowski
	4.5 The Road Ahead

	5 Conformal InvarianceEditor: Marco Panero
	5.1 The QCD Critical Endpoint
	5.2 Conformal Dynamics in Models for Dynamical Electroweak Symmetry Breaking
	5.3 The Road Ahead

	6 Cosmology, Topology and AxionsEditor: Claudio Bonanno
	6.1 The Peccei–Quinn Axion and QCD Topology
	6.2 The QCD Topological Susceptibility at Finite Temperature from the Lattice: Current Status and Future Challenges
	6.3 The Road Ahead

	7 Statistical Field TheoryEditors: Michele Caselle with Andrea Pelissetto and Marianna Sorba 
	7.1 Phase Diagram of Three-Dimensional Abelian-Higgs Models
	7.2 Interfaces Near Criticality: Results from Field Theory
	7.3 Infrared Finiteness of Three-Dimensional Super-Renormalisable QFTs
	7.4 The Road Ahead

	8 Machine LearningEditor: Andreas Athenodorou with Gert Aarts, Biagio Lucini and Dimitrios Bachtis
	8.1 Introduction
	8.2 Phase Transition Recognition in `39`42`"613A``45`47`"603ASU(N) Gauge Theories and QCD
	8.3 Phase Transition Recognition in Other Theories
	8.4 The Road Ahead

	9 Parting Remarks

