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Abstract. The quark confinement in QCD is achieved by concentration of the

chromoelectric field between the quark-antiquark pair into a flux tube, which

gives rise to a linear quark-antiquark potential. We study the structure of the

flux tube created by a static quark-antiquark pair in the pure gauge SU(3) the-

ory, using lattice Monte-Carlo simulations. We calculate the spatial distribution

of all three components of the chromoelectric field and perform the "zero curl

subtraction" procedure to obtain the nonperturbative part of the longitudinal

component of the field, which we identify as the part responsible for the forma-

tion of the flux tube. Taking the spatial derivatives of the obtained field allows

us to extract the electric charge and magnetic current densities in the flux tube.

The behavior of these observables under smearing and with respect to contin-

uum scaling is investigated. Finally, we briefly discuss the role of magnetic

currents in the formation of the string tension.

1 Introduction

Color confinement remains an open problem of Quantum Chromodynamics (QCD). A strict

analytical proof of confinement is still missing not only for full QCD, but also for the pure

gauge SU(2) or SU(3) theories. Moreover, there is no clear agreement on the features of the

theory that is responsible for the confinement. A review of the confinement problem in QCD

can be found in [1].

A large number of numerical studies provide evidence of confinement both in pure gauge

SU(2) and SU(3) theories [2–29], and, more recently, in full QCD [30–33]. From these stud-

ies, we know that at temperatures below the deconfinement temperature Tdec, the interaction

between a static quark and antiquark is governed by a linear potential, that is observed for

quark-antiquark separation d ≥ 0.5 fm. For the pure gauge theories, this linear potential

extends to arbitrarily large d, while in full QCD it extends up to d ≈ 1.4 fm, where string
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breaking takes place due to the screening of the potential by dynamical quarks [34–37]. The

chromoelectric field of the quark-antiquark pair is concentrated in a tube-like structure, where

the field is mainly longitudinal i.e. aligned with the quark-antiquark axis. This structure is

called a “flux tube” and the energy density of the field in it gives rise to a linear quark-

antiquark potential

We report on our studies of the spatial structure of the field in pure gauge SU(3) flux

tube created by a static quark-antiquark pair at zero temperature, and the field derivatives

describing the chromoelectric charge density and the chromomagnetic current density. In our

previous papers [38, 39], we described the field obtained in the lattice simulation as a sum

of the “perturbative” part governing the short-range behavior of the potential, and the “non-

perturbative” part that is strictly aligned with the quark-antiquark axis, the flux tube being

identified with the nonperturbative field part. Here we extend the analysis with a calculation

of the derivatives of the “nonperturbative” field. A more detailed description of our latest

results can be found in [40].

2 Observables and lattice setup

We simulated pure SU(3) lattice gauge theory with standardWilson action in four dimensions,

using the publicly available MILC code, modified to introduce the field observables and the

smearing procedure.

We measure the field distributions using a connected correlator ρconnW,μν [6, 7, 41] between a

plaquette UP = Uμν(x), lying in the μν plane, and a Wilson loop W in the 4̂1̂ plane, connected

by a Schwinger line L (see Figure 1),

ρconnW,μν =
〈tr (WLUPL∗)〉

〈tr W〉 − 1

3

〈tr UP tr W〉
〈tr W〉 . (1)

Then the lattice definition of the field strength tensor Fμν is taken as

Fμνlat =
1

ga2
ρconnW,μν . (2)

The component of the field is defined by the plane μν of the plaquette UP. Since we consider

the quark-antiquark axis to lie along 1̂ (x axis), and the transverse displacement to be along

2̂ (y axis), we can write El ≡ Ex ≡ F4̂1̂, Et ≡ Ey ≡ F4̂2̂. In practice, the measurements were

averaged over all equivalent rotations (relabelings) of the lattice axes to reduce the stochastic

noise.

The simulations were performed at three values of the gauge coupling β, with d =
8a, 12a, 16a while keeping the distance in physical units constant (see Table 1). The physical

scale for the lattice spacing a was set according to [42],

a(β) = r0×exp
[
c0 + c1(β−6) + c2(β−6)2 + c3(β−6)3

]
,

r0 = 0.5 fm,

c0 = −1.6804 , c1 = −1.7331 ,
c2 = 0.7849 , c3 = −0.4428 . (3)

To improve the signal-to-noise ratio of the correlator, a smearing procedure was imple-

mented that consisted of one step of 4-dimensional Hypercubic smearing [43] on the temporal

links (HYPt), with smearing parameters (α1, α2, α3) = (1.0, 1.0, 0.5), and NHYP3d steps of hy-

percubic smearing restricted to the three spatial directions (HYP3d) with (αHYP3d
1

, αHYP3d
3

) =
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Figure 1. The connected correlator (1) (subtraction in ρconnW, μν not explicitly drawn) and the geometry of

the system.

Table 1. Lattice setup.

lattice β = 6/g2 a(β) [fm] d [fm] statistics

484 6.240 0.0639 8a = 0.511 268

484 6.544 0.0426 12a = 0.511 508

484 6.769 0.0320 16a = 0.511 303

(0.75, 0.3). For each observable and each location x = (xl, xt) an optimal number of spatial

smearing steps was estimated by considering the value at which the maximum of the signal

is reached. The smearing procedure also acts as an effective renormalization. This, together

with the validity of our “optimal smearing step” estimation, is verified by checking the scaling

of the observables in our three lattice setups (see Figure 2).

3 Perturbative field subtraction

After estimating the values of full longitudinal and transverse chromoelectric fields Ex and

Ey, we need to separate it into the perturbative and nonperturbative parts. For that, we assume

that the nonperturbative part is purely longitudinal

ENP
y (x) = 0 , EP

y (x) = Ey(x) , (4)

and that the curl of the perturbative part is zero:

�∇ × �EP = 0 , EP
x (xl, xt) =

xtmax∑
ξ=xt

(Ey(xl, ξ) − Ey(xl + 1, ξ) , (5)

where the last equation assumes also that xtmax is large enough that EP
x (xl, xtmax) is negligibly

small.
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Figure 2. Dependence of the full and nonperturbative chromoelectric field at xl = xt = d/2 (left) and

magnetic current density at xl = d/4, xt = d/2 (right) for the three different lattice setups on the number

of smearing steps sm = NHYP3d.

After finding the perturbative component, we can perform the subtraction to extract the

nonperturbative component.

Figure 3. Continuum scaling of the longitudinal component of the non-perturbative field ENP
x at a

transverse plane xl = d/4 ≈ 0.128 fm.

4 Field derivatives in the Maxwell picture

In [39] we introduced the Maxwell stress tensor

Tαβ = FαλFβλ − 1

4
δαβFμλFμλ , (6)

and shown that the string tension
√
σ obtained by integrating the stress tensor Txx over the

transverse midplane is close to the value
√
σ = 0.464 GeV, defined for our scale setting func-

tion. This implies that the main contribution to the string tension comes from the Maxwell
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stress tensor, with much smaller (if any) part coming from the fluctuations in color space.

Following this picture, we can write the force density in the flux tube

fβ ≡ ∂

∂xα
Tαβ = Fβλ

∂

∂xα
Fαλ − Fμλ

2
(∂βFμλ + ∂μFλβ + ∂λFβμ) , (7)

as a sum of the electric and magnetic Lorentz force densities

fβ = −FβλJelλ − Fμλ
1

2
εαβμλJ

mag
α , (8)

where

Jmag
α ≡ 1

2
εαβμλ

∂Fμλ
∂xβ
, (ε4123 = 1) . (9)

Writing the field strength tensors Fμν in terms of Ek = F4̂k, and Bi =
1
2
εi, j, kF jk we can write

the currents as

Jel ≡ (ρel, �Jel) =
⎛⎜⎜⎜⎜⎝�∇ · �E, �∇ × �B − ∂�E

∂x4

⎞⎟⎟⎟⎟⎠ ,

Jmag ≡ (ρmag, �Jmag) =

⎛⎜⎜⎜⎜⎝�∇ · �B, �∇ × �E − ∂�B
∂x4

⎞⎟⎟⎟⎟⎠ . (10)

Taking into account the system symmetries we see �B = 0, ∂
�E
∂x4
= 0. That means

Jel ≡ (ρel, �Jel) =
(
�∇ · �E, 0

)
,

Jmag ≡ (ρmag, �Jmag) =
(
0, �∇ × �E

)
, (11)

resulting in the following Lorentz force density

�f = ρel �E + �Jmag × �E . (12)

From the analysis in [14], we expect that the electric charge density is zero, while there could

be nonzero magnetic currents. Our data supports this – electric charge density is close to zero,

already a couple of lattice steps away from the sources (and the charge density close to the

sources does not exhibit scaling, indicating that it is probably a lattice artifact). The rotational

symmetry leaves only one possibility for the magnetic current – only
(
Jmag

)
z
=
∂Ey
∂x − ∂Ex

∂y
can

be nonzero, creating circular currents going around the system axis. The values of
(
Jmag

)
z
,

together with the scaling analysis can be seen in Figure 4.

Now we can finally rewrite Eq. (12) as

�f = −�ey
(
Jmag

)
z

Ex . (13)

So the Lorentz force densities are directed toward the axis of the flux tube, “squeezing” the

flux tube. If we divide the space by a plane that contains the tube axis, the total “confining”

force F acting on one of the two halves equals

�F = −
d∫

0

dxl

∞∫
0

dxt xt

π/2∫
−π/2

dθ(cos θ êy + sin θ êz) f (xl, xt) =

= −êy

(
2

∫ d

0

dxl

∫ ∞

0

dxt xt f (xl, xt)

)
. (14)
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Figure 4. Spatial distribution for β = 6.240 (left) and scaling plot at a transverse plane xl = d/4 ≈
0.128 fm (right) for the chromomagnetic current density Jz.

Table 2. Forces in the flux tube.

β
√

F [GeV]
√
σ [GeV]

6.240 0.4859(8)+645 0.4742(15)

6.544 0.5165(15)+611−214 0.4692(23)

6.769 0.530(4)+547−322 0.467(7)

Calculating the integral in (13) numerically gives the results collected in Table 2. The

systematic error estimates for
√

F are obtained by taking into account the difference in the

integration ranges available with the three lattice setups, and asymmetry of the extracted field,

and especially current density distribution under reflection with respect to the midplane. One

can see that the magnitude of the confining force F is compatible within systematic errors

with the magnitude of the string tension extracted from integration of Txx over the midplane.

The string tension in the third column has a good agreement with the one expected for our

scaling function:
√
σ = 0.464 GeV.

5 Conclusions

We have extracted the nonperturbative flux tube field from simulations of the field created

by the quark-antiquark pair separated by d = 0.511 fm on three lattices with different gauge

coupling constants (and thus different lattice spacings). The curl subtraction procedure works

well even for such small distance resulting in a flux tube with a stable transverse section and a

good scaling of the field values for different lattice setups. The string tension extracted from

the nonperturbative field at midplane is in good agreement with the expected value.

Similar analysis of the chromoelectric charge density and the chromomagnetic current

density extracted from the divergence and curl of the nonperturbative field, respectively shows

that the electric charge density is close to zero at points at least a couple lattice steps away

from the sources, and does not exhibit scaling close to the sources. The magnetic current

density is nonzero, forming circular currents around the quark-antiquark axis.

The Maxwell picture approach employed in this work provides a good quantitative de-

scription of the fields, currents, and charges in the flux tube.

Interaction of the chromomagnetic current with the chromoelectric fields creates the

Lorentz forces directed to the quark-antiquark axis. The magnitude of the total Lorentz force
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acting on a half-space is compatible within systematic errors with the magnitude of the string

tension.
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