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Abstract. The ALICE experiment at the Large Hadron Collider (LHC) at
CERN is planned to be operated in a continuous data-taking mode in Run 3.
This will allow to inspect data from all Pb-Pb collisions at a rate of 50 kHz,
giving access to rare physics signals embedded in a large background.
Based on experience with real-time reconstruction of particle trajectories and
event properties in the ALICE High Level Trigger, the ALICE O2 facility is
currently designed and developed to support processing of a continuous, trigger-
less stream of data segmented into entities referred to as timeframes.
Both raw data input into the ALICE O2 system and the actual processing of
aggregated timeframes are distributed among multiple processes on a many-
node cluster. Process communication is based on the asynchronous message
passing paradigm.
This paper presents the basic concept for identification of data in the distributed
system together with prototype implementations and performance measure-
ments.

1 Introduction

For the LHC Run 3 period, a new detector readout concept will be applied for the ALICE
experiment [1] at CERN. As a primary goal, the inspection of all collisions delivered by the
accelerator is planned, which will take place at a rate of 50 kHz for Pb-Pb collisions. This
requires to operate some of the detectors in a continuous readout mode which will increase
data rate significantly. The total data rate delivered by the different detectors of the ALICE
experiment will be about 3 TByte/s. In order to cope with the large amount of data, the
ALICE O2 collaboration is currently developing a combined online-offline data processing
system [2], with O2 indicating the joint online-offline effort.

As a consequence of the continuous readout scheme, a time based data organization has
been introduced in ALICE O2. For data processing, the traditional entity of an event, i.e. one
triggered collision, has been replaced by a so-called timeframe which is a container for data
delivered within a period of time. These data include both data delivered by the detectors as
well as temporary and permanent results of the processing and reconstruction.

Individual compute tasks will be carried out concurrently by individual processes. The
computing resources to run several thousands of these processes are provided by the ALICE
O2 Online Cluster of about 1800 compute nodes.
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The message passing paradigm is applied for synchronization and communication be-
tween processes. A flexible and appropriate implementation is provided by the FairMQ
package of the ALFA software framework [3].

After aggregation of all data forming a timeframe in the event processing stage, algo-
rithms need to efficiently navigate through large data sets and have to be able to add new
data to the data stream. Both data format and software framework have been designed and
implemented with emphasis on lightweight data organization and optimized in-memory data
format, supporting an efficient pipelined data processing.

This paper introduces online data processing for ALICE in LHC Run 3 in Section 2 and
outlines the requirements for the data organization. The implementation is presented and
discussed in Section 3. Section 4 summarizes the conclusions of the paper.

2 Online Data Processing in ALICE Run 3

2.1 Overview

As already mentioned, the ALICE O2 facility combines the traditional online and offline
domains in a common data processing system. The data flow is illustrated in Figure 1.

The ALICE O2 Online Cluster consists of two types of compute nodes, the so called
First Level Processors (FLP) and the Event Processing Nodes (EPN). Data from the different
detectors are received by the dedicated FLP nodes, which host the Common Readout Unit
(CRU) as the hardware interface to the detector frontend. The CRU has access to the memory
of the FLP to write data via Direct Memory Access (DMA) transactions, a feature which
allows access to the main system memory independently of the central processing unit. In
total there will be 270 FLP nodes in the O2 Online Cluster. At the level of the FLP there is
a data rate reduction from 3.4 TByte/s to 500 GByte/s achieved by partial reconstruction of
the data on hardware co-processors and using appropriate data formats and compression for
transmitting the data. All data on the FLP, i.e. raw data and the result of local synchronous
processing tasks, are organized in sub-timeframes.

Figure 1. A logical view of the O2 online data flow.

The Data Distribution Service running on FLPs and EPNs is responsible for the transport
of sub-timeframes from FLPs to EPNs. A 500 GByte/s switching network comprises the
hardware backbone of the data distribution [4].

The 1500 Event Processing Nodes of the O2 facility provide the computational resources
for data reconstruction in ALICE O2. Complete timeframes are aggregated on single EPNs
for the first pass of reconstruction, referred to as synchronous reconstruction. The syn-
chronous reconstruction includes a variety of tasks depending on the detector, like cluster-
ization and tracking for individual detectors, global matching of track data, calibration tasks
and final data compression algorithms. Such sets of algorithms are applied to the incoming
data set and new intermediate data are produced and added to each timeframe.

At the end of the synchronous reconstruction, timeframe data are written in compressed
format, the Compressed Timeframe, to disk in the persistent on-site storage. Until this point,
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hardware backbone of the data distribution [4].

The 1500 Event Processing Nodes of the O2 facility provide the computational resources
for data reconstruction in ALICE O2. Complete timeframes are aggregated on single EPNs
for the first pass of reconstruction, referred to as synchronous reconstruction. The syn-
chronous reconstruction includes a variety of tasks depending on the detector, like cluster-
ization and tracking for individual detectors, global matching of track data, calibration tasks
and final data compression algorithms. Such sets of algorithms are applied to the incoming
data set and new intermediate data are produced and added to each timeframe.

At the end of the synchronous reconstruction, timeframe data are written in compressed
format, the Compressed Timeframe, to disk in the persistent on-site storage. Until this point,

all data are only in the memory of the compute nodes. The asynchronous reconstruction pass
will at a later time produce the physics-ready data on the basis of the compressed timeframe
data and additional condition data like e.g. updated calibration.

2.2 Requirements and Tasks for Data Handling

ALICE O2 defines a streaming model for the data transport. All data are wrapped into mes-
sages. The FairMQ package [5] of the ALFA project, a common software project between
FAIR and ALICE, is used as the underlying transport layer. FairMQ implements an abstrac-
tion layer to the basic message passing functionality via channels, leaving it to the application
to add a protocol or data model on top of the basic communication. The package supports a
variety of messaging solutions like e.g. ZeroMQ for inter-node communication at the same
time as shared memory for intra-node communication. FairMQ implements the asynchronous
message passing paradigm which allows the different processes to run independently from
each other.

ALICE O2 serves several independent tasks like raw data processing, detector reconstruc-
tion, quality control, and data analysis. Raw data comes from different detector systems, each
of them requiring specific reconstruction algorithms. Furthermore, each of the tasks might
also produce intermediate data sets. It’s difficult to describe all data in advance. As the sys-
tem is under development in an agile manner, new data structures will emerge and the O2

facility has to deal with many kinds of data.
Considered all these different use cases and requirements, the aim is to define a flexible

scheme to describe a set of data as a container with unique identification of data and
capability to efficiently navigate within the container. In particular, a timeframe can be
defined in such a scheme as a container for data within a certain period of time.

An essential part of such a description is data annotation as a prerequisite to uniquely
identify data parts. The data annotation scheme has to fulfill the following requirements:

• Coherent annotation for all types of data

• Support aggregation of data

• Raw data annotation without copying or parsing

• Allow for accumulation of data

• Support for addons to the annotation

• Provide timing information

• Support for simple scatter/gather I/O

In the following section we introduce an implementation currently used in ALICE O2 to
support these requirements.

3 Implementation

3.1 The Data Model for Transport

As already mentioned, the individual processes carrying out the various tasks in the O2 sys-
tem exchange data via messages. For our data model we define an O2Message object as a
collection of annotated data payloads in logical blocks, see Figure 2. Each logical block -
O2DataBlock - consists of header message and payload message. Each individual message
is a FairMQMessage.

3

EPJ Web of Conferences 214, 01035 (2019)	 https://doi.org/10.1051/epjconf/201921401035
CHEP 2018



Currently, the data model is using the ability of grouping messages by the transport.
The FairMQParts container is used to build up the O2Message from individual messages.
However, this is not a restriction to a specific implementation, but can simply be seen as a tool
for maintaining a sequence of messages. FairMQMessage and FairMQParts are primitives
of the FairMQ package.
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Figure 2. The O2 data model defines the O2Message as a sequence of header - payload pairs. The actual
place in memory where individual messages are stored is independent from the sequence maintained in
the container. Headers can be single DataHeader objects as well as a stack of multiple headers.

In this model, all information necessary for the routing is stored in the header message.
In order to fulfill the requirement of flexibility, the header message is composed of a variable
number of headers in a stack.

3.2 Data Annotation

The main task of the data annotation is to provide a descriptive information uniquely iden-
tifying a piece of data in the stream. It also has to ensure navigation within data sets. The
annotation has to take account of the fact that most of the data have a time context, but some
do not, some are temporary, and some are intended for storage.

By separating the header message from the payload message, data can be sent from the
initial hardware device without the need for copying or moving data. This takes account of
the fact that the FLP memory region for receiving the readout data from the CRU is entirely
reserved for this kind of communication. There are no reserved regions where annotations
could be inserted, nor would a variable-length annotation be easy to implement.

By policy, each header message starts with the DataHeader which identifies all types
of data in a unified way. This header contains the general identifying properties, like origin
of data and a descriptive ID for the type. A further sub-specification allows to identify data
of the same origin and description but e.g. originating from different geometrical regions.
Figure 3 shows a memory dump of a DataHeader object.

All identifiers are integral numbers of a fixed width. The values of the specific IDs are
built at compile time from strings making a memory dump readable at the same time as
integral numbers can be used for comparison of values.
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Figure 2. The O2 data model defines the O2Message as a sequence of header - payload pairs. The actual
place in memory where individual messages are stored is independent from the sequence maintained in
the container. Headers can be single DataHeader objects as well as a stack of multiple headers.

In this model, all information necessary for the routing is stored in the header message.
In order to fulfill the requirement of flexibility, the header message is composed of a variable
number of headers in a stack.

3.2 Data Annotation

The main task of the data annotation is to provide a descriptive information uniquely iden-
tifying a piece of data in the stream. It also has to ensure navigation within data sets. The
annotation has to take account of the fact that most of the data have a time context, but some
do not, some are temporary, and some are intended for storage.

By separating the header message from the payload message, data can be sent from the
initial hardware device without the need for copying or moving data. This takes account of
the fact that the FLP memory region for receiving the readout data from the CRU is entirely
reserved for this kind of communication. There are no reserved regions where annotations
could be inserted, nor would a variable-length annotation be easy to implement.

By policy, each header message starts with the DataHeader which identifies all types
of data in a unified way. This header contains the general identifying properties, like origin
of data and a descriptive ID for the type. A further sub-specification allows to identify data
of the same origin and description but e.g. originating from different geometrical regions.
Figure 3 shows a memory dump of a DataHeader object.

All identifiers are integral numbers of a fixed width. The values of the specific IDs are
built at compile time from strings making a memory dump readable at the same time as
integral numbers can be used for comparison of values.

0x41c8b270 4f 32 4f 32 50 00 00 00 00 00 00 00 01 00 00 00 O2O2P...........
0x41c8b280 44 61 74 61 48 65 61 64 4e 4f 4e 45 00 00 00 00 DataHeadNONE....
0x41c8b290 43 4c 55 53 54 45 52 00 00 00 00 00 00 00 00 00 CLUSTER.........
0x41c8b2a0 54 50 43 00 ff ff ff ff 4e 4f 4e 45 00 00 00 00 TPC.....NONE....
0x41c8b2b0 2a 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 *...............

Figure 3. Example for a memory dump of a DataHeader object. It identifies the type of data by origin,
data description, and a sub-specification. The integral IDs are build from strings at compile time. This
allows for an easy recognition of patterns in memory. Here we see the general O2 header identifier
O2O2, the header id DataHead, the data origin TPC and description CLUSTER. Both header and payload
messages are not serialized indicated by the serialization ID NONE.

3.3 Header Stack

Flexibility has been an important requirement for the design of the data annotation. In order
to take into account the different needs of the individual detector systems, data annotations
have to be flexible in size and content. They also can be extended over the lifetime of the
project. Examples are origin-specific or trigger-specific headers.

For this particular reason, the Header Stack concept has been introduced which allows to
extend the header message. A stack is composed from an arbitrary sequence of headers.

HeaderStack stack{h1, h2, h3, ...};

It has to be noted that the composition of a stack happens directly in the allocated memory,
thus avoiding additional copy operations. The implementation comes with tools to iterate and
extract individual headers. Figure 4 shows a memory dump of a header stack.

Extracted DataHeader, 80 bytes:
0x19bd500 4f 32 4f 32 50 00 00 00 01 00 00 00 01 00 00 00 O2O2P...........
0x19bd510 44 61 74 61 48 65 61 64 4e 4f 4e 45 00 00 00 00 DataHeadNONE....
0x19bd520 53 4f 4d 45 44 41 54 41 00 00 00 00 00 00 00 00 SOMEDATA........
0x19bd530 54 53 54 00 ff ff ff ff 4e 4f 4e 45 00 00 00 00 TST.....NONE....
0x19bd540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Extracted NameHeader, 40 bytes:
0x19bd550 4f 32 4f 32 28 00 00 00 01 00 00 00 01 00 00 00 O2O2(...........
0x19bd560 4e 61 6d 65 48 65 61 64 4e 4f 4e 45 00 00 00 00 NameHeadNONE....
0x19bd570 4e 41 4d 45 44 48 44 00 NAMEDHD.

Extracted NameHeader, 40 bytes:
0x19bd550 4f 32 4f 32 28 00 00 00 00 00 00 00 01 00 00 00 O2O2(...........
0x19bd560 4e 61 6d 65 48 65 61 64 4e 4f 4e 45 00 00 00 00 NameHeadNONE....
0x19bd570 4e 41 4d 45 44 48 44 00 NAMEDHD.

Figure 4. Example of a header stack memory dump. In this example the header message consists of 3
individual headers.

3.4 Applying Processing Pipelines - The Data Processing Layer

The ALICE O2 Data Processing Layer (DPL) is a framework providing declarative workflow
definition to establish data processing pipelines. It is an integral part of the ALICE Software
Framework for LHC Run 3 and beyond ([6]).

The key concepts of the Data Processing Layer are as follows:
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• Definition of processors in terms of inputs, outputs and algorithm

• Based on the input and output definitions, processors are connected in a workflow

• Deployment of workflow on computing resource using a control tool

The DPL uses the data annotation scheme to describe input and output specifications
as well as to identify routing of data. This abstraction of a computation described by input,
output and algorithm specifications introduces a great flexibility in ALICE O2 and, moreover,
the ability to handle complex workflows efficiently.

As flexibility comes at a cost, the impact of the framework data handling on the total
processing time has been assessed. A simple, yet realistic model which uses an example
process with a very generic and fast algorithm has been evaluated. The TPC hardware cluster
decoder is a good candidate, as it is a simple data parsing algorithm with the purpose of
decoding and reformatting data. The data object holding the information of a reconstructed
space point in the TPC is referred to as a TPC cluster. Naturally, the processing time depends
on the input size, i.e. the number of cluster objects in the data set. Furthermore, the input data
set can be split into several parts, making each part a subset of the total data set. This follows
the FLP-EPN setup in ALICE O2. The number of FLPs, 270 in the current design, describes
the order of magnitude for the number of parts a data set can be split into. The result of
the tests are shown in detail in Figure 5. We summarize that less than 2% are consumed by
framework functionality for a very simple algorithm. It can thus be concluded that the impact
is negligible for more complex algorithms.

Figure 5. Processing time spent in the framework functionality relative to the total processing time of
the TPC hardware cluster decoder as an example for a simple and fast algorithm.

3.5 Raw Data access

Some important aspects of the ALICE O2 readout are briefly introduced in the following.
Details on this topic can be found in [7]. Data are written by the hardware input device in
raw page format into the FLP shared memory. The shared memory section is allocated by the
specific readout process and provided to the driver. Raw pages have a fixed size of currently
8 kByte. Each raw page starts with the RawDataHeader (RDH).
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3.5 Raw Data access

Some important aspects of the ALICE O2 readout are briefly introduced in the following.
Details on this topic can be found in [7]. Data are written by the hardware input device in
raw page format into the FLP shared memory. The shared memory section is allocated by the
specific readout process and provided to the driver. Raw pages have a fixed size of currently
8 kByte. Each raw page starts with the RawDataHeader (RDH).

In many cases the data will be in the form of discrete objects of the same data type,
possibly grouped into blocks with a common data attribute. Because of the fixed size of
raw pages and the mandatory RawDataHeader in the beginning of each page, a sequence of
objects either stays within pages or wraps over to next page(s). This also depends on the sizes
of attribute and object data type.

A generic RAW data parser/decoder, templated on a PageHeader type and ElementType
has been implemented to support data access for a large variety of detectors with a single
simple implementation. Figure 6 illustrates the working principles of the decoder.

Figure 6. Schematic view of the access of data elements through generic raw decoder. The elements
of a type T are sequentially stored in raw pages starting with the RawDataHeader. Elements can either
wrap over page boundaries or as many elements as possible are stored in each page, eventually adding
padding to fill the page. In either case the data can be accessed in a sequential view using the raw
decoder.

The decoder produces an iterable view on data elements and supports groups of data
objects described by a GroupHeader type. It also supports multiple non-contiguous pages.
An example how to setup and use the decoder is given in the following code listing:

using PageHeaderType = o2::header::RAWDataHeader;
// set up the decoder for some element type
RawParser<PageHeaderType, 8192, ElementType> RawParser;
RawParser parser(ptr, size);
for (const auto& element : parser) {
// do something with element

}

4 Summary

In this article we have introduced message passing as a core feature of the ALICE O2 system
and have derived requirements for the data handling. For the various types of data treated in
the system a uniform annotation scheme has been developed based on the basic object of a
header-payload message pair. The annotation scheme ensures efficient routing of data in the
system. All necessary information for the actual routing is contained in the header message.
Payload data only needs to be parsed and interpreted by algorithms, and are thus forwarded
and routed by the framework independently of nature and content. The annotation scheme has
been the basis for a higher-level descriptive framework, the Data Processing Layer, which is
capable of defining and creating complex workflows in terms of process definitions together
with their input and output. We have shown that the impact of the framework functional-
ity on the performance is negligible for processes implementing realistic algorithms. The
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complexity of processing topologies requires a higher-level multi-processing framework in
order to scale the system from simple prototypes with a few parallel processes to a dynamic
processing topology of thousands of processes on many-node compute clusters. The data
model and data annotation have been proven to be important core functionality of such an
implementation in ALICE O2.
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