
Testing a non-perturbative mechanism for elementary fermion
mass generation: numerical results

Stefano Capitani1, Giulia Maria De Divitiis2, Petros Dimopoulos2,3,�, Roberto Frezzotti2, Marco
Garofalo4, Bastian Knippschild5, Bartosz Kostrzewa5, Ferenc Pittler5, Giancarlo Rossi2,3, and
Carsten Urbach5

1Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik, Max-von-Laue-
Strasse 1 D-60438 Frankfurt am Main, Germany
2Dipartimento di Fisica, Università di Roma “Tor Vergata" and INFN, Sezione di Roma 2, Via della Ricerca
Scientifica - 00133 Rome, Italy
3Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Compendio del Viminale,
Piazza del Viminiale 1, I-00184, Rome, Italy
4Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh,
Edinburgh EH9 3JZ, Scotland, UK
5Helmholtz Institut für Strahlen-und Kernphysik (Theorie), Nussallee 14-16 Bethe Center for Theoretical
Physics, Nussallee 12 Universität Bonn, D-53115 Bonn, Germany

Abstract. Based on a recent proposal according to which elementary particle masses
could be generated by a non-perturbative dynamical phenomenon, alternative to the Higgs
mechanism, we carry out lattice simulations of a model where a non-abelian strongly
interacting fermion doublet is also coupled to a doublet of complex scalar fields via a
Yukawa and an “irrelevant" Wilson-like term. In this pioneering study we use naive
fermions and work in the quenched approximation. We present preliminary numerical re-
sults both in the Wigner and in the Nambu-Goldstone phase, focusing on the observables
relevant to check the occurrence of the conjectured dynamical fermion mass generation
effect in the continuum limit of the critical theory in its spontaneously broken phase.

1 Introduction

In Refs. [1, 2] a novel approach to the mass generation of elementary particles and the mass hierarchy
problem has been proposed. It is based on a Non-Perturbative (NP) mechanism whose existence
can be tested by studying, with the help of Lattice QCD (LQCD) simulations, the properties of a non-
Abelian (SU(3) gauge) toy-model where an isospin doublet of strongly interacting fermions is coupled
to a complex scalar field via Yukawa and Wilson-like terms. The Lagrangian of the toy-model reads:
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Ltoy(Ψ, A,Φ) = Lkin(Ψ, A,Φ) +V(Φ) +LWil(Ψ, A,Φ) +LYuk(Ψ,Φ) , (1)

Lkin(Ψ, A,Φ) =
1
4

(F · F) + Ψ̄L �DΨL + Ψ̄R �DΨR +
1
2

tr
[
∂µΦ

†∂µΦ
]

(2)

V(Φ) =
µ2

0

2
tr
[
Φ†Φ
]
+
λ0

4
(

tr
[
Φ†Φ
])2 (3)

LYuk(Ψ,Φ) = η
(
Ψ̄LΦΨR + Ψ̄RΦ

†ΨL
)
, (4)

LWil(Ψ, A,Φ) =
b2

2
ρ
(
Ψ̄L
←−DµΦDµΨR + Ψ̄R

←−DµΦ†DµΨL
)
, (5)

where b−1 = ΛUV is the UV-cutoff. We denote with ΨL = (uL dL)T and ΨR = (uR dR)T the fermion
iso-doublets. The Yukawa and Wilson-like terms are given by Eqs. (4) and (5), respectively. The latter
is a six-dimensional operator multiplied by b2 for dimensional reasons. The Yukawa coupling and the
Wilson-like parameter are denoted by η and ρ, respectively. The scalar field Φ = (φ,−iτ2φ∗) is a 2× 2
matrix with φ an iso-doublet of complex scalar fields. It obeys a quartic scalar potential denoted by
the term V(Φ) of eq. (3) where µ2

0 and λ0 are, respectively, the (bare) values for the squared mass
and the self-interaction coupling constant of the scalar field. Moreover Fa

µν is the field strength for the
gluon field (Aa

µ with a = 1, 2, . . . ,N2
c − 1). Finally, the covariant derivatives are given by:

Dµ = ∂µ − igsλ
aAa
µ ,

←−Dµ =
←−
∂ µ + igsλ

aAa
µ , (6)

A study of the unification of electroweak and strong interactions based on the above proposal has been
presented in Ref. [3]. On-going work on the toy-model has been reported in Ref. [4].

2 Symmetries and properties of the model

The toy-model respects Lorentz, gauge, and C, P, T and CPF2 symmetries (see Ref. [1]). Moreover
it enjoys an exact symmetry under the global transformations χL and χR defined as:

χL : χ̃L ⊗ (Φ→ ΩLΦ), χR : χ̃R ⊗ (Φ→ ΩRΦ),
with χ̃L : ΨL → ΩLΨL, χ̃R : ΨR → ΩRΨR,

Ψ̄L → Ψ̄LΩ
†
L, Ψ̄R → Ψ̄RΩ

†
R,

where ΩL ∈ S U(2)L, ΩR ∈ S U(2)R.
(7)

The toy-model (1), similarly to the LQCD case, is power-counting renormalizable with counter-terms
constrained by the exact symmetries of the Lagrangian. In particular, thanks to the exact χ ≡ χL ⊗ χR

symmetry, owing to the inclusion of the scalar field in the Wilson term, there is no power divergent
fermion mass terms, unlike to the Wilson-LQCD case. However the pure fermionic chiral transfor-
mations, χ̃ ≡ χ̃L ⊗ χ̃R, do not constitute a symmetry of Ltoy due to the presence of the Yukawa and
Wilson terms (for non-zero values of η and ρ).

The physical implications of the toy-model depend crucially on the phase, Wigner or Nambu-
Goldstone (NG), of the scalar potential V(Φ). Following the line of argument of Ref. [1] it can
be shown that χ̃-symmetry enhancement takes place in the Wigner phase at a critical value of the
Yukawa coupling. In fact by working in a way analogous to Ref. [5] one can get the renormalised
Schwinger-Dyson equation (SDE) under χ̃L transformations1:

1Thanks to parity symmetry a similar equation holds for the χ̃R transformations.
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∂µ〈Z∂J̃ J̃L,i
µ (x) Ô(0)〉= 〈∆̃i

LÔ(0)〉δ(x) − (η − η) 〈OL,i
Yuk(x) Ô(0)〉 + . . . + O(b2) , (8)

in which the operator mixing under renormalisation of the d=6 operators with the two d=4 ones
has been taken into account and the current (the four-divergence of which is renormalised by Z∂J̃ ≡
Z∂J̃(η; g2

s , ρ, λ0)) is defined by:

J̃L ,i
µ = Ψ̄Lγµ

τi

2
ΨL −

b2

2
ρ
(
Ψ̄L
τi

2
ΦDµΨR − Ψ̄R

←−DµΦ†
τi

2
ΨL

)
. (9)

Notice that thanks to the χ-symmetry discretisation effects in Eq. (8) are of O(b2) while the ellipses
stand for possible contributions owing to possible NP operator mixing. The SDE of Eq. (8) becomes
a WTI at a critical value of the Yukawa coupling, η = ηcr(g2

s , ρ, λ0), obtained by ηcr(g2
s , ρ, λ0) −

η̄(ηcr; g2
s , ρ, λ0) = 0. In this case χ̃-symmetry restoration occurs, up to discretisation effects of O(b2),

scalars get decoupled from quark and gluons, fermion mass is expected to vanish, and Eq. (8) be-
comes:

∂µ〈Z∂J̃ J̃L,i
µ (x) Ô(0)〉= 〈∆̃i

LÔ(0)〉δ(x) + O(b2) , (10)

In the Wigner phase no spontaneous symmetry breaking (SSB) effect takes place, so the operator
mixing is expected to follow perturbation theory arguments; as a consequence there are no ellipses
in Eq. (10). In the NG phase instead, a χ̃SSB effect is expected to occur triggered by residual cutoff
effects of O(b2), yielding new operator mixing terms of NP nature. In that case it is conjectured that
Eq. (8) takes the form:

∂µ〈Z∂J̃ J̃L,i
µ (x) Ô(0)〉ηcr = 〈∆̃i

LÔ(0)〉ηcrδ(x) +C1Λs〈[ΨL
τi

2
UΨR + h.c.]Ô(0)〉 + O(b2) (11)

whereU is a dimensionless non-analytic function of Φ given by

U = Φ
√
Φ†Φ

=
v + σ + i−→τ −→π√
(v + σ)2 + −→π −→π

. (12)

The RGI term C1ΛsΨ̄L
τi

2UΨR is χL ⊗χR invariant2 and is well defined only in the NG phase in which
〈Φ〉 = v � 0. Λs stands for the scale of strong interactions that in our simulation setup (see next
section) is identified with ΛQCD.

3 Lattice simulations and results

In this preliminary numerical study of the toy-model we have performed lattice simulations in the
quenched approximation, where gauge and scalar fields can be generated independently. The verifica-
tion or falsification process of the NP mechanism for fermionic mass generation is totally unaffected
by the present choice to carry out simulations within the (computationally cheap) quenched fermion
approximation. We have employed naive Dirac fermions for which the χL⊗χR symmetry is exact. We
have used the symmetric covariant derivative, ∇̃µ, throughout because with this choice the Wilson-
like action term has symmetry properties (see [7], sect. 2) such that, even in the presence of fermion
doublers, the value of ηcr is unique. In order to avoid exceptional configurations due to the possible
presence of fermionic zero modes the twisted mass term, iµQΨ̄γ5τ

3Ψ, has been added in the lattice
action (see Ref. [6]). The soft χL ⊗ χR symmetry breaking owing to the presence of the twisted mass
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η = −1.255
η = −1.236
η = −1.177
η = −1.137
η = −1.098

t/b

C
J̃
D̃
(x
)

353025201510

1.5e-04

1.0e-04

5.0e-05

0.0e+00

-5.0e-05

-1.0e-04

-1.5e-04

(a) An example of the behaviour of the correlation function
CJ̃D̃(x) ≡ 〈J̃V, 3

0 (x)D̃S , 3(0)〉 against the Euclidean time for
several values of η at a certain value of bµQ = 0.0224.

ηcr = −1.208(4)

η

r W
I

-1.0-1.1-1.2-1.3

0.0e+00

-2.0e-02

-4.0e-02

-6.0e-02

(b) Extrapolation of the ratio of correlation functions de-
fined in Eq. (17) with respect to η. Results shown here
have already been determined in the limit µQ → 0. Red-
square symbol indicates our estimate for ηcr .

Figure 1. Results concerning the determination of the critical Yukawa coupling in the Wigner phase.

term is eliminated in the limit µQ → 0. For full discussion of the lattice setup we refer the reader to
the companion contribution at this conference [7].

In these proceedings we present a preliminary status of the simulations and analysis of the results.
We have performed simulations on a lattice volume 163 × 40 at one value of the gauge coupling
(β = 5.85) which corresponds to a lattice spacing of about a = 0.123 fm. Our lattice scale is given by
r0 = 0.5 fm determined in quenched LQCD in Refs [8] and [9]. For simulations in the Wigner and
NG phases we keep fixed the value of the Wilson parameter (ρ = 1.961), the renormalised values of
the σ-mass and the renormalised scalar coupling, i.e. r2

0m2
σ = 1.276(6) and λR =

m2
σ

2v2R
= 0.4377(31).

The statistics are 240 gauge × scalar configurations for several values of the Yukawa coupling, η, and
at least three values of the twisted mass parameter, µQ for each value of η. For noise reduction we
have used locally smeared scalar fields in the lattice action.

3.1 Determination of the critical Yukawa coupling in the Wigner phase

In order to avoid unnecessary contributions in the SDEs due to the presence of the twisted mass
regulator in our lattice action, we employ the vector combination of L-handed and R-handed isotriplet
currents, which obeys the following renormalized SDE (for x � 0):

∂µ〈ZJ̃ J̃V,3
µ (x) D̃S ,3(0)〉= (η − ηcr) 〈D̃S ,3(x) D̃S ,3(0)〉 + O(b2) (13)

where we have defined:

J̃V, 3
0 (x) = J̃L, 3

0 (x) + J̃R, 3
0 (x),

D̃S , 3(x) = Ψ̄L(x)
[
Φ,
τ3

2

]
ΨR(x) − Ψ̄R(x)

[
τ3

2
,Φ†
]
ΨL(x) (14)

and

J̃L/R, 3
0 (x) =

1
2

[
Ψ̄L/R(x − 0̂)γ0

τ3

2
U0(x − 0̂)ΨL/R(x) + Ψ̄L/R(x)γ0

τ3

2
U†0(x − 0̂)ΨL/R(x − 0̂)

]
. (15)

2Note that a mass term of the form [Ψ̄LΨR + Ψ̄RΨL] is not invariant under χL ⊗ χR transformations.

4

EPJ Web of Conferences 175, 08008 (2018)	 https://doi.org/10.1051/epjconf/201817508008
Lattice 2017



η = −1.255
η = −1.236
η = −1.177
η = −1.137
η = −1.098

t/b

C
J̃
D̃
(x
)

353025201510

1.5e-04

1.0e-04

5.0e-05

0.0e+00

-5.0e-05

-1.0e-04

-1.5e-04

(a) An example of the behaviour of the correlation function
CJ̃D̃(x) ≡ 〈J̃V, 3

0 (x)D̃S , 3(0)〉 against the Euclidean time for
several values of η at a certain value of bµQ = 0.0224.

ηcr = −1.208(4)

η

r W
I

-1.0-1.1-1.2-1.3

0.0e+00

-2.0e-02

-4.0e-02

-6.0e-02

(b) Extrapolation of the ratio of correlation functions de-
fined in Eq. (17) with respect to η. Results shown here
have already been determined in the limit µQ → 0. Red-
square symbol indicates our estimate for ηcr .

Figure 1. Results concerning the determination of the critical Yukawa coupling in the Wigner phase.

term is eliminated in the limit µQ → 0. For full discussion of the lattice setup we refer the reader to
the companion contribution at this conference [7].

In these proceedings we present a preliminary status of the simulations and analysis of the results.
We have performed simulations on a lattice volume 163 × 40 at one value of the gauge coupling
(β = 5.85) which corresponds to a lattice spacing of about a = 0.123 fm. Our lattice scale is given by
r0 = 0.5 fm determined in quenched LQCD in Refs [8] and [9]. For simulations in the Wigner and
NG phases we keep fixed the value of the Wilson parameter (ρ = 1.961), the renormalised values of
the σ-mass and the renormalised scalar coupling, i.e. r2

0m2
σ = 1.276(6) and λR =

m2
σ

2v2R
= 0.4377(31).

The statistics are 240 gauge × scalar configurations for several values of the Yukawa coupling, η, and
at least three values of the twisted mass parameter, µQ for each value of η. For noise reduction we
have used locally smeared scalar fields in the lattice action.

3.1 Determination of the critical Yukawa coupling in the Wigner phase

In order to avoid unnecessary contributions in the SDEs due to the presence of the twisted mass
regulator in our lattice action, we employ the vector combination of L-handed and R-handed isotriplet
currents, which obeys the following renormalized SDE (for x � 0):

∂µ〈ZJ̃ J̃V,3
µ (x) D̃S ,3(0)〉= (η − ηcr) 〈D̃S ,3(x) D̃S ,3(0)〉 + O(b2) (13)

where we have defined:

J̃V, 3
0 (x) = J̃L, 3

0 (x) + J̃R, 3
0 (x),

D̃S , 3(x) = Ψ̄L(x)
[
Φ,
τ3

2

]
ΨR(x) − Ψ̄R(x)

[
τ3

2
,Φ†
]
ΨL(x) (14)

and

J̃L/R, 3
0 (x) =

1
2

[
Ψ̄L/R(x − 0̂)γ0

τ3

2
U0(x − 0̂)ΨL/R(x) + Ψ̄L/R(x)γ0

τ3

2
U†0(x − 0̂)ΨL/R(x − 0̂)

]
. (15)

2Note that a mass term of the form [Ψ̄LΨR + Ψ̄RΨL] is not invariant under χL ⊗ χR transformations.

In the Wigner phase at η = ηcr the correlation function CJ̃D̃(x0) ≡ ∑�x〈J̃V,3
0 (x)D̃S ,3(0)〉 is expected

to vanish thanks to the restoration of the χ̃–symmetry. This behaviour can be noticed, as a tendency,
by looking at the data in Fig. 1(a), where the correlator CJ̃D̃(x0) is shown for several values of η at a
certain value of bµQ = 0.0224 (in lattice units). The vanishing of limµQ→0 CJ̃D̃(x0) at η = ηcr implies,
in the absence of massless particles (which we explicitly check in our simulations), that all the on-shell
matrix elements of J̃V,3

0 must vanish in the same limit.
These remarks in turn suggest to determine ηcr by looking at the renormalized SDE of vector-τ3 χ̃

transformations, namely

∂λ J̃
V,3
λ (x) = kJ̃(η − ηcr)D̃S ,3(x) + O(b2) , kJ̃ = Z−1

∂J̃

η − η̄
η − ηcr

(16)

with kJ̃ analytic in η at η = ηcr and O(1) (see [7] about Z∂J̃). This being an operator equation (with
the form of a Ward Identity at η = ηcr) that holds on-shell for arbitrary intermediate states, it looks
convenient to study the ratio

rWI(x0) =
∂0
∑
�x 〈J̃V,3

0 (x)DS ,3(0)〉∑
�x 〈DS ,3(x)DS ,3(0)〉 = kJ̃(η − ηcr) + O(b2) . (17)

Indeed taking the average of rWI(x0) over a x0–window where only few low-lying states contribute to
the correlators in the ratio one gets a quantity,

r[τ1,τ2]
WI (η, µQ) ≡ 1

τ2 − τ1

τ2∑
x0=τ1

rWI(x0; [τ1, τ2]) , (18)

with reduced statistical noise and small O(b2Λ2
s) deviations from kJ̃(η − ηcr). In particular, if ηcr is

determined by imposing the condition

r[τ1,τ2]
WI (η = ηcr; µQ = 0) = 0 (19)

for an appropriate time window [τ1, τ2] kept fixed in physical units at different lattice spacings, the
O(b2Λ2

s) cutoff effect in eq. (17), and the resulting one on the estimate of ηcr at each β, by construction
will scale nicely towards zero as b2 → 0, thereby having no impact on the properties of the critical
model that are established in the continuum limit.

The extrapolation of r[τ1,τ2]
WI (η, µQ) to µQ = 0 is easy in the Wigner phase, where absence of sponta-

neous symmetry breaking of χ-symmetry 3 and parity invariance entail an analytic dependence of rWI

on µ2
Q, which happens to be numerically small and comparable to the statistical errors in the explored

µQ-range (bµQ = 0.0224, 0.0316, 0.0387).
The resulting values of r[τ1,τ2]

WI (η; µQ = 0), for [τ1, τ2] = [1.72, 2.21] fm are shown in Fig. 1(b). Our
preliminary result for the critical value of the Yukawa coupling determined in this way at β = 5.85 is
ηcr = −1.208(4).

3.2 Dynamically generated fermion mass in the NG phase

In the NG phase the χL ⊗ χR symmetry is broken to the χV -symmetry. Moreover, at ηcr the χ̃L ⊗ χ̃R

symmetry, according to our conjecture, is expected to be spontaneously broken due to O(b2) effects.

3The study of the present toy model in the Wigner phase is possibly the first example in the literature of a local field theory
where confinement due to strong interactions takes place in the absence of spontaneous chiral symmetry breaking.
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(a) Bare values of the fermion mass, 2r0mWT I , in units of
r0 = 0.5 fm at several values of η. All results have been
extrapolated to zero twisted mass. The straight line pass-
ing from the points is to guide the eye. We indicate the
rough numerical estimate for the non-perturbatively gen-
erated fermion mass at ηcr and the value of η, namely, η∗

at which the fermion mass vanishes.

(b) Results for M2
PS in units of r2

0 at the same values of η as
in the left panel. All results have been extrapolated to zero
twisted mass. We explicitly indicate in physical units the
estimates for MPS at ηcr and η∗ (see the text for details).

Figure 2. Results (preliminary) for 2r0mWT I and (r0 MPS)2 in the NG phase at several values of the Yukawa
coupling.

In Ref. [1] it has been argued that in the NG phase the local effective action density of the model4

reads:

ΓNG =
1
4

(F ·F)+Q̄ �DQ+
1
2

Tr
[
∂µΦ

†∂µΦ
]
+Vµ2

Φ
<0(Φ)+(η−ηcr)(Ψ̄L〈Φ〉ΨR+h.c.)+c1Λs(Ψ̄LUΨR+h.c.).

(20)
We also note that in the NG phase the Wilson-like term gets effectively a form analogous to the one of
the Wilson term in Lattice QCD. Indeed by setting r = bvρ (with v the scalar field vev) and neglecting
quantum field fluctuations the Wilson-like term in the toy model lattice action can be rewritten in the
form

LQCD
Wil (Ψ, A) = −br

2

(
Ψ̄LD2ΨR + h.c.

)
.

Simulations in the NG phase are performed by employing the same values for the set of the parameters
(β, λR, ρ) and the lattice volume as in the Wigner phase.

The effective quark mass (in the µQ = 0 limit) can be read off from the axial χ̃WTI, e.g.

2mWT I =
b−1∂0〈0|J̃A±

0 |MPS ±〉
〈0|P±|MPS ±〉

(21)

where

J̃A±
0 (x) = Ψ̄(x − 0̂)γ0γ5

τ1 ± iτ2

2
U0(x − 0̂)Ψ(x) + Ψ̄(x)γ0γ5

τ1 ± iτ2

2
U†0(x − 0̂)Ψ(x − 0̂)

4The scalar potential here, Vµ2
Φ
<0(Φ), is written in terms of the renormalised parameters µ2

Φ
and λ̂. In the expression (20)

one could add one or more kinds of kinetic term of U that are proportional to Λs. However, for v � Λs which is the typical
regime for our mechanism these terms will be negligible.
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(a) Bare values of the fermion mass, 2r0mWT I , in units of
r0 = 0.5 fm at several values of η. All results have been
extrapolated to zero twisted mass. The straight line pass-
ing from the points is to guide the eye. We indicate the
rough numerical estimate for the non-perturbatively gen-
erated fermion mass at ηcr and the value of η, namely, η∗

at which the fermion mass vanishes.

(b) Results for M2
PS in units of r2

0 at the same values of η as
in the left panel. All results have been extrapolated to zero
twisted mass. We explicitly indicate in physical units the
estimates for MPS at ηcr and η∗ (see the text for details).

Figure 2. Results (preliminary) for 2r0mWT I and (r0 MPS)2 in the NG phase at several values of the Yukawa
coupling.

In Ref. [1] it has been argued that in the NG phase the local effective action density of the model4

reads:

ΓNG =
1
4

(F ·F)+Q̄ �DQ+
1
2

Tr
[
∂µΦ

†∂µΦ
]
+Vµ2

Φ
<0(Φ)+(η−ηcr)(Ψ̄L〈Φ〉ΨR+h.c.)+c1Λs(Ψ̄LUΨR+h.c.).

(20)
We also note that in the NG phase the Wilson-like term gets effectively a form analogous to the one of
the Wilson term in Lattice QCD. Indeed by setting r = bvρ (with v the scalar field vev) and neglecting
quantum field fluctuations the Wilson-like term in the toy model lattice action can be rewritten in the
form

LQCD
Wil (Ψ, A) = −br

2

(
Ψ̄LD2ΨR + h.c.

)
.

Simulations in the NG phase are performed by employing the same values for the set of the parameters
(β, λR, ρ) and the lattice volume as in the Wigner phase.

The effective quark mass (in the µQ = 0 limit) can be read off from the axial χ̃WTI, e.g.

2mWT I =
b−1∂0〈0|J̃A±

0 |MPS ±〉
〈0|P±|MPS ±〉

(21)

where

J̃A±
0 (x) = Ψ̄(x − 0̂)γ0γ5

τ1 ± iτ2

2
U0(x − 0̂)Ψ(x) + Ψ̄(x)γ0γ5

τ1 ± iτ2

2
U†0(x − 0̂)Ψ(x − 0̂)

4The scalar potential here, Vµ2
Φ
<0(Φ), is written in terms of the renormalised parameters µ2

Φ
and λ̂. In the expression (20)

one could add one or more kinds of kinetic term of U that are proportional to Λs. However, for v � Λs which is the typical
regime for our mechanism these terms will be negligible.

is the one-point-split current associated to the fermionic (χ̃) axial transformations and P±(x) =

Ψ̄(x)γ5
τ1 ± iτ2

2
Ψ(x) is the pseudoscalar density.

In Fig. 2(a) we show results for the bare quark mass (multiplied by a factor of two) in units of
r0 against the Yukawa coupling. The results have been obtained using Eq. (21) at several values of
(η, µQ). For each value of η a linear extrapolation to µQ = 0 has been performed. Small deviations
from linearity are possible and their impact is presently under study by extra simulations at further
µQ values and more elaborate fits. At η = ηcr, where the Yukawa quark mass term gets cancelled,
the mWT I is expected to be equal to the conjectured quark mass of NP origin, c1Λs. As it can be
seen from that figure, based on our preliminary data, a rough estimate of the bare quark mass5 in r0
units is −2r0c1Λs � 0.06. Passing now to Fig. 2(b) where (r0MPS)2 is shown against the Yukawa
coupling we notice that at η = ηcr the corresponding value for the pseudoscalar mass is rather large
(of about 320 MeV or larger). We would also like to draw the attention to an interesting feature which
occurs at the value of the Yukawa coupling, namely η∗, at which mWT I vanishes. With the help of the
effective action density of Eq. (20) one can deduce that, defining mWT I ≡ (η∗ −ηcr)v+c1Λs = 0 entails
η∗ = ηcr − c1Λs/v. Our data gives evidence that η∗ − ηcr � 0 which further supports the conclusion
that the dynamically generated quark mass is non-zero6.

4 Summary and further developments

We have discussed a toy-model that exemplifies a novel NP mechanism proposed in Ref. [1] for
dynamical fermion mass generation. The fundamental property of the mechanism consists in the en-
hancement of the QCD symmetries in such a way that fermion masses emerge in a natural way [11],
being independent from the Yukawa interaction and the scalar field. Thanks to the NP character of the
mechanism the physical implications and predictions of the associated toy-model can be tested with
the help of simulations on the lattice. We have presented preliminary results based on simulations in
the quenched approximation at one value of the lattice spacing. Our results for the dynamically gen-
erated effective fermion mass and the associated pseudoscalar meson mass in the NG phase, barring
cutoff effects, are of O(Λs). Since the presentation at the conference we have performed more simu-
lations at the present lattice spacing and improved our methods of analysis. We have also carried out
simulations at a second value of the lattice spacing in order to be able to check the scaling behaviour
both of the fermion mass and the pseudoscalar meson mass. All these results that show rather smooth
scaling properties will be presented soon in [10].
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5The work for the quark mass renormalisation is on-going. The method is described in the companion contribution [7].
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which strenghtens the evidence in favour of the dynamical fermion mass generation mechanism that is discussed here, see [10].
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