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Abstract. The quantum van der Waals (QvdW) extension of the ideal hadron reso-
nance gas (HRG) model which includes the attractive and repulsive interactions between
baryons – the QvdW-HRG model – is applied to study the behavior of the baryon num-
ber related susceptibilities in the crossover temperature region. Inclusion of the QvdW
interactions leads to a qualitatively different behavior of susceptibilities, in many cases
resembling lattice QCD simulations. It is shown that for some observables, in particular
for χBQ

11 /χ
B
2 , effects of the QvdW interactions essentially cancel out. It is found that the

inclusion of the finite resonance widths leads to an improved description of χB
2 , but it also

leads to a worse description of χBQ
11 /χ

B
2 , as compared to the lattice data. On the other hand,

inclusion of the extra, unconfirmed baryons into the hadron list leads to a simultaneous
improvement in the description of both observables.

1 Introduction

Lattice QCD simulations provide the equation of state of strongly interacting matter at zero net
baryon density [1, 2]. A smooth crossover-type transition between hadronic and partonic matter is
observed [3]. A common model for the hadronic phase – the ideal hadron resonance gas (IHRG)
model – successfully describes many lattice observables at lower temperatures, T ∼ 100 − 150 MeV.
Agreement of the IHRG model with lattice data rapidly breaks down at T � 150 − 160 MeV for
fluctuations and correlations of conserved charges [4]. Sometimes, this breakdown was interpreted as
a signal for deconfinement [4, 5].

On the other hand, it has recently been shown that the onset of deviations of IHRG from the lattice
data can well be explained by the QvdW-type interactions between baryons [6]. In this work we assess
simultaneous effects of QvdW interactions, the modeling of the finite widths of the resonances, and
also the HRG hadron list. The importance of the potentially missing hadron states in the hadron list
was pointed out in several recent publications, in the context of the IHRG model [7–10] and also in
the context of the excluded volume (EV) HRG model [11], while the effects due to the finite widths
of the resonances were barely discussed at all. None of the two effects were studied simultaneously
with the presence of the QvdW interactions.
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2 Model
QvdW extension. The Quantum van der Waals extension of the HRG model of Ref. [6] – the QvdW-
HRG model – is based on the following assumptions:

1. QvdW interactions exist between all pairs of baryons and between all pairs of antibaryons. The
QvdW parameters a and b for all (anti)baryons taken to be equal to those of nucleons, as obtained
from the fit to the ground state of nuclear matter [12]: a � 329 MeV fm3 and b � 3.42 fm3.

2. The baryon-antibaryon, meson-meson, and meson-(anti)baryon QvdW interactions are ne-
glected. Note that the model still contains, by construction, the meson-related hadronic interactions
that lead to the formation of resonances.

The QvdW-HRG model contains basic nuclear matter physics, in contrast to IHRG, and it yields
the liquid-gas first-order phase transition in the symmetric nuclear matter with a critical point located
at Tc � 19.7 MeV and µc � 908 MeV (nc � 0.07 fm3 = 0.45 n0).

The QvdW-HRG consists of three sub-systems: Ideal gas of mesons, QvdW gas of baryons, and
QvdW gas of antibaryons. The total pressure reads p(T,µ) = pM(T,µ) + pB(T,µ) + pB̄(T,µ) with

pM(T,µ) =
∑
j∈M

pid
j (T, µ j), pB(B̄)(T,µ) =

∑

j∈B(B̄)

pid
j (T, µB(B̄)∗

j ) − a n2
B(B̄), (1)

where M stands for mesons, B(B̄) for (anti)baryons, µ = (µB, µS , µQ) are the chemical potentials for
net baryon number B, strangeness S , and electric charge Q, µB(B̄)∗

j = µ j − b pB(B̄) − a b n2
B(B̄)
+ 2 a nB(B̄),

µ j = Bj µB + S j µS + Qj µQ is the chemical potential for hadron species j, with Bj, S j, and Qj being
its corresponding quantum numbers. nB and nB̄ are total densities of baryons and antibaryons.

The calculation of mesonic pressure pM(T,µ) is straightforward. The shifted chemical potentials
µB(B̄)∗

j of (anti)baryons depend explicitly on (anti)baryon pressure pB(B̄) and on total (anti)baryon den-
sity nB(B̄). By taking the derivatives of pB(B̄) with respect to the baryochemical potential one obtains
additional equation for the total (anti)baryon densities: nB(B̄) = (1 − b nB(B̄))

∑
j∈B(B̄) nid

j (T, µB(B̄)∗
j ) .

At given T and µ, the above equations are solved numerically, yielding pB(B̄)(T,µ) and nB(B̄)(T,µ).
The entropy density is s = (∂p/∂T )µ, and the energy density is obtained from the Gibbs relation.

Finite widths of the resonances. The ideal Fermi or Bose gas pressures pid
i (T, µi) in Eq. (1) contain

the additional integration over hadron’s mass:

pid
i (T, µi) =

di

6π2

∫ mi+2Γi

mmin
i

dm ρi(m)
∫

dk
k4

√
m2 + k2

exp


√

m2 + k2 − µi

T

 ± 1


−1

. (2)

For nid
j (T, µi) the expressions are analogous to (2). The function ρi(m) is the properly normalized

mass distribution for hadron type i. For stable hadrons, or whenever the zero width approximation is
applied, one has ρi(m) = δ(m − mi). The finite widths of the resonances are taken into account in a
simplified way, by the integration over their relativistic Breit-Wigner shapes (see, e.g., Refs. [13, 14]):

ρi(m) =
2 m mi Γi

(m2 − m2
i )2 + m2

i Γ
2
i

/ 
∫ mi+2Γi

mmin
i

dm̃
2 m̃ mi Γi

(m̃2 − m2
i )2 + m2

i Γ
2
i

 , (3)

where mmin
i = max(mi − 2Γi,mthr

i ) with mthr
i the minimum decay threshold mass for resonance i.

Hadron list. In the standard scenario, the hadron list includes all established (3- and 4-star) strange
and non-strange hadrons which are listed in the Particle Data Tables [15]. This list is denoted as PDG
and it contains about 380 different hadron species. In addition, we also consider an extended PDG-
based list, which also includes unconfirmed hadron states. This PDG+ list contains about 580 hadron
species. Using the PDG and PDG+ lists we test the sensitivity of the results to the input hadron list.
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Figure 1. The temperature dependence of (a) net baryon number susceptibility χB
2 , (b) baryon-electric charge

correlator χBQ
11 , and (c) χBQ

11 /χ
B
2 , calculated within IHRG (dashed black lines) and QvdW-HRG (solid blue lines)

with PDG hadron list. Calculations with finite (zero) widths of the resonances are depicted by the thick (thin)
lines. QvdW-HRG calculations with PDG+ hadron list are exhibited by the dash-dotted red lines. Lattice QCD
results of the Wuppertal-Budapest [16, 17] and HotQCD [9, 18, 19] collaborations are shown, respectively, by
black symbols and green bands/symbols.

3 Results

We consider temperature dependence of the conserved charges susceptibilities at µ = 0, defined as

χBS Q
lmn =

∂l+m+n p/T 4

∂(µB/T )l ∂(µS /T )m ∂(µQ/T )n . (4)

We focus on the net baryon susceptibility χB
2 , baryon-electric charge correlator χBQ

11 , and the ratio χBQ
11

/ χB
2 . The temperature dependences of these quantities are shown in Fig. 1, along with the lattice data.
The inclusion of QvdW interactions between baryons leads to a qualitatively different behavior of

χB
2 and χBQ

11 at high temperatures, as seen from comparison between the dashed black lines (IHRG)
and the solid blue lines (QvdW-HRG) in Fig. 1. Some qualitative features seen in lattice simulations,
such as the inflection point in the temperature dependence of χB

2 and the peak in χBQ
11 are reproduced

by the QvdW-HRG model, as reported previously in Ref. [6].
It is interesting that the ratio χBQ

11 / χ
B
2 (Fig. 1c) is virtually unaffected by the QvdW interactions.

This result can be proved analytically for the Boltzmann approximation. In this case the ratio ni/nid
i

between the density ni of the baryon species i in the QvdW-HRG model and the corresponding ideal
gas density nid

i is the same for all baryons and is a function of the total density of baryons nB only. At
µB = 0 one has nB̄ = nB, therefore the modification factor is the same for baryons and antibaryons.
Therefore, the effects of QvdW interactions between baryons cancel out in the ratio χBQ

11 / χ
B
2 at µB = 0:

(
χBQ

11 /χ
B
2

)
QvdW

=

∑
i∈B Qi nid

i∑
i∈B nid

i

=
(
χBQ

11 /χ
B
2

)
id
. (5)

This explains the results shown in Fig. 1c. Note that, in general, there is no such cancellation if the
QvdW interaction parameters would be assumed to be different for different baryon-baryon pairs [11].

All three observables, including the ratio χBQ
11 /χ

B
2 , are sensitive to the modeling of the finite widths

of the resonances, in particular the ∆ and N∗ resonances. Applying the prescription given by Eqs. (2)
and (3) one obtains an improved description of χB

2 , but also a worse description of χBQ
11 and χBQ

11 /χ
B
2 ,

within both the IHRG and QvdW-HRG models. The influence of the finite resonance widths is also
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the likely source of the discrepancy between the IHRG and QvdW-HRG results for χBQ
11 /χ

B
2 reported

in Ref. [18]. Present results imply a necessity for a more involved modeling of the resonances in a
HRG. One possibility is to use the S-matrix approach [20].

The description of all the considered observables is improved when an extended PDG+ hadron list,
which contains additional baryons, is used. The improvement is rather modest, and the lattice data
for the χBQ

11 /χ
B
2 ratio are still not described well by all the considered models. A notably improved

description can be obtained by using the quark model states [18]. Another interesting possibility, also
presented at this conference, are the in-medium mass modifications for the negative-parity states [21,
22]. It would be interesting to compare and combine these modifications with the QvdW approach.

To summarize, the effects of quantum van der Waals interactions in the HRG model on the baryon
number susceptibilities are studied simultaneously with the effects of finite resonance widths and input
hadron list. QvdW interactions lead to a qualitatively different behavior of χB

2 and χBQ
11 , some features

resembling the lattice data, but they cancel out in the ratio χBQ
11 /χ

B
2 . The inclusion of finite resonance

widths via the relativistic Breit-Wigner distribution improves the description for χB
2 , but also leads to

a worse agreement for χBQ
11 and χBQ

11 /χ
B
2 . Inclusion of the extra, unconfirmed hadron states from PDG

appears to improve slightly the agreement for all the observables considered.
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