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Data‑science based analysis 
of perceptual spaces of odors 
in olfactory loss
Jörn Lötsch1,2*, Alfred Ultsch3, Antje Hähner4, Vivien Willgeroth4, Moustafa Bensafi5, 
Andrea Zaliani6 & Thomas Hummel4

Diminished sense of smell impairs the quality of life but olfactorily disabled people are hardly 
considered in measures of disability inclusion. We aimed to stratify perceptual characteristics and 
odors according to the extent to which they are perceived differently with reduced sense of smell, as 
a possible basis for creating olfactory experiences that are enjoyed in a similar way by subjects with 
normal or impaired olfactory function. In 146 subjects with normal or reduced olfactory function, 
perceptual characteristics (edibility, intensity, irritation, temperature, familiarity, hedonics, 
painfulness) were tested for four sets of 10 different odors each. Data were analyzed with (i) a 
projection based on principal component analysis and (ii) the training of a machine‑learning algorithm 
in a 1000‑fold cross‑validated setting to distinguish between olfactory diagnosis based on odor 
property ratings. Both analytical approaches identified perceived intensity and familiarity with the 
odor as discriminating characteristics between olfactory diagnoses, while evoked pain sensation 
and perceived temperature were not discriminating, followed by edibility. Two disjoint sets of odors 
were identified, i.e., d = 4 “discriminating odors” with respect to olfactory diagnosis, including cis‑
3‑hexenol, methyl salicylate, 1‑butanol and cineole, and d = 7 “non‑discriminating odors”, including 
benzyl acetate, heptanal, 4‑ethyl‑octanoic acid, methional, isobutyric acid, 4‑decanolide and p‑cresol. 
Different weightings of the perceptual properties of odors with normal or reduced sense of smell 
indicate possibilities to create sensory experiences such as food, meals or scents that by emphasizing 
trigeminal perceptions can be enjoyed by both normosmic and hyposmic individuals.

Olfaction is an important component of quality of  life1–3. Olfactory deficits reduce the pleasure of eating, influ-
ence the relationship with food and increase the risk of accidents in the  household3,4. Furthermore, reduced or 
missing sense of smell is associated with  depression5,6 and has effects on sexual and social  life7. The perceived loss 
of olfactory function is a reason for an estimated 80,000 people per year in the German-speaking countries to 
see a  doctor8, with an estimated 5% incidence of total loss of olfactory function  worldwide9. Olfactory function 
is routinely tested in clinical practice with test batteries that focus on the sensory perception of odors, which 
is clinically useful and can be applied quickly, especially when using one of their many shortened  versions10–12. 
However, this testing reduces the perception of odors to the sensory dimension, which has prompted considera-
tion of other ways to more fully characterize olfactory loss, including measurements of olfactory recognition, 
identification, sizing, and  hedonics13,14.

Odor perception is based on the binding of ligands (odorous molecules) to olfactory receptors that are thought 
to recognize specific molecular features. An important rule for this interaction is that a given odorant can acti-
vate one or several odorant receptors. This combinatorial coding is then processed by higher brain structures, 
resulting in odor percepts. A major challenge is how to integrate the physicochemical properties of odor and 
its perceptual qualities (e.g., intensity, familiarity, pleasantness, and enjoyability). The physicochemical space 
of odors is defined by properties such as the type of atoms, the length of the carbon chain, the type of bonds or 
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functional groups, etc.15. The perceptual space of odors is defined by the  pleasantness16,  intensity17,  familiarity18, 
or edibility of the odor  source19. In addition to olfactory features, irritating or cooling sensations can also be 
elicited by odors, referring to a "trigeminal perceptual space"20.

Hence, the present study aimed to investigate the influence of reduced olfactory sensory function diagnosed 
by a standard clinical test on other dimensions of olfactory perception. Therefore, subjects with normal or 
reduced olfactory sensory acuity were asked to evaluate a wide range of different odors with respect to perceptual 
characteristics, selected based on previous publications on the dimensionality of  odors21–23. The study addressed 
the changes in the perceptual space of  smell24 when olfactory function deteriorates. Its focus was on the question 
of which dimensions of perception are most or least influenced by the loss of olfactory function and to which 
odors this applies most often. For the latter, the hypothesis was investigated whether odors with the most or least 
perceptual changes fall into groups of chemical properties. Regarding the methodological approach, we chose 
machine learning to provide a relatively unbiased view of the olfactory spaces of patients with loss of olfactory 
function.

Methods
Study setting and design. This was a prospective cohort study performed in a specialized smell and taste 
clinic. The study was performed in accordance to the Declaration of Helsinki on Biomedical Studies Involving 
Human Subjects. The study was approved by the ethics committee at the University Clinic of Dresden (approval 
number EK 390102014). All participants provided informed written consent. All patients were referred or self-
referred to the Clinic for Smell and Taste of the Department of Otolaryngology, TU Dresden. Since familiarity 
and hedonicity are sensitive to cultural factors, caution should therefore be exercised in generalizing the study 
results for these specific parameters to other cultural contexts.

Participants. A total of 172 volunteers participated; 106 of them were healthy normosmic subjects recruited 
via flyers and 66 of them were patients with loss of olfactory function who presented themselves at the Smell 
& Taste Dysfunction outpatient clinic. Inclusion criteria were age 18 years and older, non-smoking, absence 
of pregnancy, absence of a neurodegenerative disease such as Parkinson’s or Alzheimer’s. In addition, at least 
residual olfactory function was required, i.e., only subjects with normosmia or hyposmia as olfactory diagnoses 
were included while anosmia, the third of the three commonly accepted olfactory diagnoses, was an exclu-
sion criterion. Causes of olfactory dysfunction included upper respiratory tract infections (n = 28), head trauma 
(n = 4), sinunasal disease (e.g., chronic rhinosinusitis, nasal allergies: n = 9), idiopathic causes (n = 23), and other 
causes (n = 2; myasthenia gravis, herpes encephalitis).

All participants underwent a standardized diagnostic procedure that included a detailed, medical history and 
a detailed physical otorhinolaryngological  examination25,26. In addition, olfactory function of all participants 
was assessed using an established clinical  test27,28 (“Sniffin’ Sticks”, Burghart Instruments, Wedel, Germany), 
which evaluated three sensory dimensions of odors comprising odor threshold (to phenylethylalcohol), odor 
discrimination (16 pairs of odors) and odor identification (16 odors). The olfactory functional diagnosis was 
obtained from the sum of scores for Threshold, Discrimination and Identification (TDI) subtests, with a range 
between 1 and 48 points and allows to categorize subjects as normosmic (> 30.5), hyposmic (16.5–30.5), and 
functionally anosmic (< 16.5), based on normative scores obtained in more than 9000 healthy  subjects29. At the 
end of the measurements, participants were also asked whether they felt hungry or not. Among patients, 76% 
reported not feeling hungry, compared to 65% among controls (t.-test: p = 0.11). This indicated that the feeling 
of hunger was not comparable between the two groups.

Variables and measurements. Perceptual ratings of odors. A total of 40 odorants (Table 1; obtained 
from Sigma-Aldrich, Taufkirchen, Germany), which cover a wide range of the stimulus space of  odor22, were 
dispensed with an air dilution  olfactometer30. Odors were chosen to represent the multidimensionality of 
odors, which includes chemical, olfactory, and trigeminal perceptual features. Potentially, there are billions of 
 odorants31. Therefore, odorants were selected from standard  atlases32,33 that reference hundreds of odorants to 
roughly cover these dimensions.

Experiments in a panel of 10 experienced subjects, trained before the actual experiments, ascertained that 
the odors presented during the main experiment were of similar intensity. For this purpose, odorous substances 
were diluted in propylene glycol if necessary (vol/vol concentrations in the liquid phase). Subsequently, the 
odors were presented using the specially designed computer-controlled  olfactometer34, at a total flow rate of 2 l/
min (Table 1). Four sets of 10 stimuli each were used, ensuring that each participant was randomly tested with 
a single set (Supplementary Fig. S1). Each odorant was presented birhinally through a flexible polyurethane 
tube that reached about 1 cm into the nasal cavity to release odors beyond the nasal valve. An additional nasal 
cannula (AirLife™, tube with 2.8 mm inner diameter) was used to monitor breathing (AWM2100V, Honeywell, 
MN, USA), so that olfactory stimuli of 5 s duration were emitted at the beginning of an inspiration phase. The 
order of the odorants was random. Each odor was presented in three repetitions at an interval of 40–60 s. The 
sequence of odor presentations was also randomized for each of the three blocks of presentations.

After each stimulus presentation, the participants were asked to rate seven different perceptual properties of 
the odors, at a randomized order comprising edibility, intensity, irritation, temperature, familiarity, hedonics, 
and painfulness, selected based on previous publications on the dimensionality of  odors21–23. These dimensions 
were coded with grades from 1 to 5. The ends of the scales were labeled with the following (left hand end—right 
hand end): Edibility (“how much would like to eat something that smells like this”: “not at all”—“very much”), 
intensity (“how intense is the odor”: “barely perceptible”—“very intense”), irritation (“how irritating do you find 
the odor”: “not at all irritating”—“very irritating”), temperature (“how cool/warm do you find the odor”: “very 
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cool”—“very warm”), familiarity (“how familiar are you with the odor”: “not familiar at all”—“very familiar”), 
hedonics (“how much do you like the odor”: “very unpleasant”—“very pleasant”) and pain (“how painful do you 
find the odor”: “not painful at all”—“very painful”). Each odor was rated twice on a computer monitor. Thus, the 
odors were presented 3 times, but not all ratings were made after each stimulus, so that in the end there were, 
for example, 2 ratings for each of the perceptual properties.

Data analysis. Quantitative variables. The data set initially originally included n = 173 subjects and 
d = 4 × 10 × 7 = 280 variables. The variables resulted from the design of the study where 4 different sets of 10 dif-
ferent odors each were rated with respect to 7 properties including edibility, intensity, irritation, temperature, 
familiarity, hedonics and painfulness. For each subject, the data set contained an additional variable that carried 
the olfactory diagnosis of normosmia or hyposmia. Missing odor ratings were imputed for subjects who had 
performed at least two thirds of the required evaluations, using k-nearest neighbors (kNN) with k = 3 within the 

Table 1.  Composition of the four odor test sets, including concentrations used and CAS numbers of the 
chemicals.

Set # Component Smell
Concentration [ % vol:vol 
mineral oil] CID CAS-No

1 Isoamylacetat Banana, pear 0.032 31,276 123-92-2

1 Cineol Eucalyptus 0.5 2758 470-82-6

1 Geraniol Fruity, rose Pure 637,566 106-24-1

1 Methylsalicylat Bubble gum, wintergreen 7.26 4133 119-36-8

1 trans-Anethol Liquorice, anise 4.17 637,563 4180-23-8

1 Ethylacetat Sweet, "pear drops" 10 8857 141-78-6

1 Propionic acid Stinging, vinegar, acidic 0.041 1032 79-09-4

1 Eugenol Clove pure 3314 97-53-0

1 2-Nonanone Fruity, cheesy 1 13,187 821-55-6

1 Indole Sweet, unpleasant 0.161 798 120-72-9

2 Benzaldehyde Marzipan, cherry, almond 0.015 240 100-52-7

2 Butyric acid Rancid butter, parmesan 
cheese, vomit 0.001 264 107-92-6

2 p-Cresole Livestock waste 0.018 2879 106-44-5

2 Guajacole Band aid, sweet, creamy 2.09 460 90-05-1

2 (+)-Linalool Lemon, lime 2.17 6549 126-90-9

2 (+)-Fenchone Minty, camphor-like pure 1,201,521 4695-62-9

2 HMHA Sweaty 0.01 16,666,688 58,888-76-9

2 Amyl caproate Banana, fruity 0.56 31,266 540-07-8

2 2, 3-Butandione Butter, perspiration 3E-05 650 431-03-8

2 Citronellal Lemon 0.014 7794 106-23-0

3 cis-3-Hexenol Grass 0.002 5,281,167 928-96-1

3 1-Butanol Cheese, sweat pure 263 71-36-3

3 4-Ethyl octanoic acid Goaty pure 61,840 16493-80-4

3 β-ionone Lilac 7.27 638,014 79-77-6

3 2-Methyl propanal Wet cereal or straw 1E-06 6561 78-84-2

3 Terpinene-4-ol Musty pure 11,230/5,325,830 562-74-3

3 Isobutyric acid Rancid butter 1 6590 79-31-2

3 4-Decanolid Peachy 10 12,813 706-14-9

3 Citronellol Lemony 17.85 8842 106-22-9

3 3-Methyl-3-sulfanylhexan-
1-ol Sweaty 0.01 10,130,039 307964-23-4

4 D-(+)-Limonene Lemony pure 440,917 5989-27-5

4 alpha-Pinene Woody, pine, resinous pure 440,968 80-56-8

4 Methional Potato 0.001 18,635 3268-49-3

4 Benzyl acetate Yasmin, fruity, ylang 1.55 8785 140-11-4

4 1-Octen-3-ol Mushrooms 0.56 18,827 3391-86-4

4 trans-2-Hexenyl acetate Fruity, apple, waxy 10 17,243 2497-18-9

4 L-Carvone (−) Caraway pure 439,570 6485-40-1

4 Beta-Caryophyllen Peppery, spicy, resinous pure 5,281,515 87-44-5

4 Heptanal Fruity, sharp 1 8130 111-71-7

4 2-Butanone Cheese 0.01 6569 78-93-3
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respective olfactory set, calculated with the R-library "DMwR". (https:// cran.r- proje ct. org/ packa ge= DMwR35). 
In addition, it was examined whether the subjects assigned to the four separate odor sets showed equal distribu-
tions of age, sex and odor diagnoses, using Kruskal–Wallis36 and χ237 tests, respectively. However, due to the 
small sample size per odor set and olfactory diagnosis, they were not considered further.

Assessment of the significance of perceptual odor ratings for olfactory diagnosis. To obtain an internal valida-
tion of the findings, two separate approaches were used to analyze whether the property evaluations of odors 
provide differences among normosmic and hyposmic subjects. Firstly, the input space was submitted to unsuper-
vised analyses implemented as a projection method (principal component analysis,  PCA38,39). This was aimed at 
detecting structures that supported a separation of the olfactory diagnoses. Secondly, the data space was submit-
ted to supervised analysis where a machine-learning based classifier was trained with the task to find a mapping 
of the odor ratings to the olfactory diagnoses. If the trained classifier performed better than guessing on data 
not used for training, it can be assumed that the ratings of olfactory characteristics contain relevant information 
for the olfactory diagnosis. The analyzes were performed using the R software package (version 4.0.3 for Linux; 
https:// CRAN.R- proje ct. org/40 on an Intel Core i9® (Intel Corporation, Santa Clara, CA, USA) computer run-
ning Ubuntu Linux 20.04.1 LTS 64-bit (Canonical, London, UK)).

Unsupervised analysis of odor property ratings for structures reflection olfactory diagnostic groups. To ana-
lyze whether the olfactory property ratings had structural features that supported the separation between the 
olfactory diagnoses, ratings were averaged separately for each of the 7 properties and olfactory diagnoses. This 
resulted in an 80 × 7 matrix (Fig. 1), i.e., 40 odors, which were evaluated by either normosmic or hyposmic sub-
jects with respect to the seven perceptual properties. These perceptual data were projected onto a two-dimen-
sional space using PCA on non-scaled data and the default settings of the R-base method "prcomp". The results 
were analyzed for the significance of olfactory properties for group separation between normosmic and hypos-
mic subjects, based on the loadings of the evaluated properties on the relevant principal components (PCs). As 
PCA identified two principal components which explained 85.5% of the total variance, projection was done on 
a two-dimensional space defined by the two most relevant PCs. A measure for group separation was obtained 
by the odor-specific Euclidean distances between paired normosmic and hyposmic cases. Finally, to select the 
relevant odors, an item categorization technique was implemented as computed ABC  analysis41, which parti-
tions a set of positive values into three disjointed subsets called “A”, “B” and “C”42. The subset “A” contains the few 
most relevant  items43. These calculations were done using our R package “ABCanalysis” (https:// cran.r- proje ct. 
org/ packa ge= ABCan alysis) 41.

Supervised analysis of odor property ratings for information allowing to separate olfactory diagnostic 
groups. Four different sets of 10 odors each, which were evaluated with respect to seven characteristics by four 
different sets of participants, provided a 146 × 280 sparse block diagonal matrix (odor properties) with ratings 
for olfactory characteristics, specifically 4 sets of 10 odors each and 7 queries per odor = 280 columns, one for 
each odor and property (Supplementary Fig. S1). To this added the class information regarding the two olfactory 
diagnoses. To assess whether the property ratings of odors provided information relevant for the separation of 
normosmic and hyposmic subjects, a supervised machine-learning algorithm in form of random  forests44,45 was 
trained to map the odor properties for the 146 subjects) onto the two olfactory diagnoses. Random forests were 
built using the R library “randomForest” (https:// cran.r- proje ct. org/ packa ge= rando mFore st)46, with hyperpa-
rameters set at 1,000 trees with 0.5 · √nfeatures  and a maximum of seven nodes per tree, which was established 
in a grid search. As it is known that more trees do not confer a risk of increasing  errors47, a larger number was 
considered safe and merely consumed available computation time. Classifier training was performed using 1,000 
runs on 2/3 of the data (training subset) obtained by Monte-Carlo48 resampling from the original data, using the 
R-library "sampling" (https:// cran.r- proje ct. org/ packa ge= sampl ing)49. The resampling was adjusted such that the 
diagnoses of normosmia and hyposmia and the subjects tested with each of the four odor sets were represented 
at equal proportions.

During each run, the importance of each odor rating was measured as the mean decrease in the Gini impu-
rity if the respective feature was excluded from random forest learning. To assess whether the random forests 
were able to detect differences between normosmic and hyposmic subjects, as a prerequisite for using feature 
importance as a quantitative measure of the significance of each rating, the trained classifiers were applied to 
the one third of the data not used for training during each run. The classification performance was evaluated by 
calculating the area under the ROC curve (AUC-ROC) using the R-library “pROC” (https:// cran.r- proje ct. org/ 

Figure 1.  Heat plot of the means of the ratings of odors (rows) for seven different properties (columns). The 
40 odors used in the study were split into four sets of 10 odors each (indicated at the left). The matrix is sorted 
column wise, per odor set, to locate the lowest ratings at the bottom left corner and the highest ratings at the 
upper right corner. Marginal statistics are shown as boxplots, displaying the minimum, quartiles, median 
(solid line within the box) and maximum. The whiskers add 1.5 times the inter-quartile range (IQR) to the 
75th percentile or subtract 1.5 times the IQR from the 25th percentile. Outliers and extreme values are omitted 
from the boxplots; therefore, please note that the scale of the axis includes scores [0,…,4], while the data range 
is [0,…,5] as indicated in the methods description section. The figure has been created using the R software 
package (version 4.0.3 for Linux; https:// CRAN.R- proje ct. org/40), and the R library “ComplexHeatmap” (https:// 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Compl exHea tmap. html68).

▸
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packa ge= pROC)50. The classification performance was again assessed using permuted data for training with the 
expectation that then the classification will be not better than guessing, else overfitting was likely. In addition, 
during each run the values of –log(p) resulting from Wilcoxon-Mann–Whitney-U  tests51,52 for group differences 
between the olfactory diagnoses were kept, for which the actual training data subsets were used. Both measures 
were averaged for the 1,000 runs and provided finally two 40 × 7 sized matrices (40 odors, seven rated percep-
tions). These performance measures were rank transformed. A combination under independence assumption is 
calculated by a multiplication of the two measures. That is, we merged the importance in random forests, meas-
ured as the decrease in Gini impurity when the particular feature was omitted when training the forest, with the 
degree of statistical difference, measured as Wilcoxon W. The direct way to merge such differently scaled measures 
was to rank-transform them and combine the ranks. Here, multiplication implies a logical "AND", i.e., a feature 
is considered important if it is important to the performance of the random forest algorithm AND produces a 
comparatively larger statistical effect size. Finally, the relevant odors were selected using computed ABC  analysis41 
as described above. By applying the rank transformation of above-mentioned matrices the opposite direction, 
a similar ABC analysis provided the least important odors and properties for the separation of odor diagnoses.

Combination of the unsupervised and supervised results. For the calculation of the combined sets of odor and 
perceptual characteristics which can either distinguish or not between the two olfactory diagnoses the results 
from the unsupervised and supervised analyses were intersected.

Assessment of specific chemical properties of odors relevant for the olfactory diagnosis. The two lists of odors, 
which either distinguish between the two olfactory diagnoses or have no property relevant for this distinction, 
were analyzed for chemical differences. The underlying hypothesis was that a common receptor family could 
be responsible (e.g., a G-protein coupled receptor (GPCR) subfamily). The focus was narrowed down to one of 
the simplest groups of pharmacophore-based descriptors called Chemically Advanced Template Search (CATS) 
 2D53, considering the possibility to retain structural information when coding a molecular graph according to 
the reciprocal bond distances of atom pairs. The atom pairs under consideration were all possible combinations 
(10) of five different atom types (L = lipophilic, A = acceptor, D = donor, N = negatively charged, P = positively 
charged). These pharmacophoric atom types reflect the interaction types that are possible for a ligand with a pro-
tein counterpart. The necessary molecular descriptors of chemical  properties54 were obtained using the Dragon 
software (version 6, Talete s.r.l., Milan, Italy; http:// www. talete. mi. it, accessed on May 22, 2020). This provided 
n = 90 features of the CATS class. The maximum distance considered for counting the internal binding distance 
was eight, due to the size of the molecules of current interest. The total number of possible symmetrical combi-
nations is (n*(n − 1)/2) i.e., 5*4/2 = 10 and the distance = 8 (9 distances), summed up to 10 × 9 columns, which 
formed the chemical feature matrix used. A statistical model was derived that could help to classify the two odor-
ant quantities and predict future ones. Nevertheless, the number of independent variables was extended to other 
known pharmacophore-based descriptors such as  MOE2D55 or  RDKit56 (see also https:// www. rdkit. org/ UGM/ 
2012/ Landr um_ RDKit_ UGM. Finge rprin ts. Final. pptx. pdf, accessed on June 8, 2020); however, without finding 
any real benefit in this extension, which were therefore not included in the final analyses. Tree-based classifica-
tion models were trained, including random forests and hierarchical classification and regression trees imple-
mented as bagged CART 57. All models were established by leave-one-out cross-validation due to the small size of 
the odor sets, with positive control scheme and challenged with random permutation of the dependent variables 
as negative control. The classification performance was assessed as described above using the AUC-ROC.

Results
Participants and descriptive data. At least two-thirds of the odor property assessments were available 
from n = 146 subjects (median: 93.75% of the complete data per subject) who provided the analyzed cohort. An 
overview of the mean scores per odor and perceptual property is shown in Fig. 1. The examined persons were 
between 18 and 82 years old (mean value ± standard deviation: 41.1 ± 18.6 years). For 38, 33, 42 and 33 subjects, 
odor sets 1–4 were used, each comprising 8, 9, 17 and 8 hyposmic patients.

The age of the subjects was similar for the odor sets (Kruskal–Wallis χ2 = 4.065, df = 3, p = 0.2545). The dis-
tribution of normosmic and hyposmic subjects (χ2 = 4.2794, df = 3, p = 0.2328) and of both sexes (χ2 = 32.9841, 
df = 3, p = 0.3941) was also similar for the odor sets.

Main results. Significance of perceptual odor ratings for the olfactory diagnosis. Unsupervised analysis of 
odor property ratings for structures reflection olfactory diagnostic groups. The first two principal components 
(PC) obtained in the PCA (Fig. 2) of the differences between hyposmic and normosmic subjects in the ratings of 
40 different odors with respect to seven different perceptual characteristics (Fig. 1) explain more than 85 percent 
of the total variances (Fig. 2E). The main differences between olfactory diagnoses were observed in the direction 
of PC1 (Dim1 in Fig. 2), with familiarity, intensity and edibility contributing most to PC1 (Fig. 2F). The ratings 
of pain sensation, temperature and irritation perceived in the presentation of odors were the most important 
along PC2 (Dim2 in Fig. 2). ABC analysis of the Euclidean distances between the projections of the mean rat-
ings of each odor by normosmic or hyposmic subjects on the PC1 x PC2 plane (Fig. 2A–C) the three sets of 12, 
13 and 15 odors with small, medium and large distances between odor diagnoses (Fig. 2F). These borders were 
consistent with large gaps in the sorted distances (Fig. 2F). The extreme groups were interpreted as odors that 
were non-distinctive (n = 12, marked green in Fig. 2H) or distinctive (n = 15 marked red in Fig. 2H) between the 
two odor diagnoses.

https://cran.r-project.org/package=pROC
http://www.talete.mi.it
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
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Figure 2.  Results of a principal component analysis (PCA). Projection of the 80 × 7 data matrix obtained by 
averaging the ratings of perceptual odor properties, separately for each of the seven properties, the 40 odors and 
the 2 olfactory diagnoses. (A) Plot of the data projected on the space given by the first two principal components 
(Dim.1 versus Dim.2). The PCA plot shows the separation of olfactory diagnoses mainly to the right in Dim.1 
and to the top in Dim2, see the thick arrow indicating the averages of the PCA coordinates between olfactory 
diagnoses. The same odors rated by either normosmic or hyposmic subjects are connected with arrows (paired 
data). (B,C) The marginal distribution plots show the segregation of the pain phenotype groups along the 
principal components. (D) Plots the Eigenvectors of a variable in PCA Dim1 versus Dim2. (C) Scree-plot of the 
amount of variance of the data captured by each principal component. (E) Bar graph of the explained variance 
by each principal component. (F) Bar graph of the contribution of each perceptual property to Dim.1. The 
dashed horizontal reference dashed corresponds to the expected value if the contribution where uniform. (G) 
Bar graph of the contribution of each perceptual property to Dim.2. (H) Sorted Euclidean distances between 
the same odors evaluated by either normosmic or hyposmic subjects, i.e., the lengths of the arrows in panel 
A. The vertical dotted lines show the decision boundaries obtained by ABC analysis of the distances. The 
figure has been created using the R software package (version 4.0.3 for Linux; https:// CRAN.R- proje ct. org/ 
(R Development Core Team, 2008)) and the libraries “ggplot2” (https:// cran.r- proje ct. org/ packa ge= ggplo t2 
(Wickham, 2009)) and “FactoMineR" (https:// cran.r- proje ct. org/ packa ge= Facto MineR69).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
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Supervised analysis of odor property ratings for information allowing to separate olfactory diagnostic 
groups. The trained random forest classifier used on the individual ratings of 40 odors with respect to seven 
different properties (Supplementary Fig. S1) was able to correctly assign subjects to the olfactory diagnosis of 
either normosmia or hyposmia with a median AUC-ROC of 73.6% (95% confidence interval 52.8–90.3%), 
observed during 1000 cross-validation runs. When trained with randomly permuted data, the median AUC-
ROC was 54.2%, which can be considered as close to pure guessing. Subsequently, the feature importance in the 
random forest classifier was rank-transformed and multiplied with the rank transformed statistical group differ-
ences (normosmic versus hyposmic subjects). An ABC analysis of these ranks provided in subset “A” n = 42 odor 
property ratings (Supplementary Fig. S2) containing n = 27 different odors and all seven perceptual properties 
(Table 2). However, by far most often the ratings of the odor’s familiarity and perceived intensity were distinc-
tive between the olfactory diagnoses (Fig. 3A). This also captured the properties that across all odors were rated 
most differently by normosmic or hyposmic subjects (Fig. 3B). For the inverted ranks, the respective results 
were n = 44 odor property ratings containing 29 odors and seven properties. There, painfulness and intensity 
were the most frequently occurring properties, followed by edibility (Table 2, right part). Due to the inverse 
ranking, this denoted the least distinctive properties between the odor diagnoses. The two sets of odors partly 
overlapped, which led to two disjoint sets of d = 6 odors that had only property ratings exclusively discriminating 
and d = 8 that had only property ratings exclusively non-distinguishing between the olfactory diagnoses could 
be separated (Fig. 3C).

Combination of the unsupervised and supervised analyses results. Finally, both lines of data analysis were used 
to derive odors that have perceptual properties that are most or least differently assessed by hyposmic subjects 

Table 2.  Odors identified to represent characteristics that best distinguish between olfactory diagnoses or, on 
the other hand, are least distinctive between olfactory diagnoses. The table shows the items assigned to ABC set 
“A” by computed ABC analyses of the rank products of odor property importance for the olfactory diagnosis. 
The left part of the table shows the most relevant odors and properties in descending order of occurrence in 
ABC set “A”. The right part of the table shows the opposite analysis, i.e., aiming at the odors and properties 
that were least distinctive between the olfactory diagnoses of normosmia versus hyposmia. The original data 
consisted of an odor and a rated perceptive property. The numbers in the table show how many times an odor 
or a perceptive property was assigned to ABC set “A”, i.e., to the set of most relevant items.

Most relevant for the olfactory diagnosis Least relevant for the olfactory diagnosis

1-Butanol 3 Intensity 15 Guajacole 3 Temperature 12

Isoamylacetat 2 Familiarity 15 Heptanal 3 Painfulness 12

Cineol 2 Irritation 5 Isoamylacetat 2 Edibility 10

Geraniol 2 Edibility 4 Geraniol 2 Irritation 5

Methylsalicylat 2 Painfulness 2 Trans-anethol 2 Hedonics 3

Trans-anethol 2 Hedonics 1 Ethylacetat 2 Intensity 2

Ethylacetat 2 Eugenol 2

Propionic acid 2 p-Cresole 2

Eugenol 2 Amyl caproate 2

Amyl caproate 2 Citronellal 2

Citronellal 2 D-(+)-limonene 2

Cis-3-hexenol 2 Trans-2-hexenyl acetate 2

D-(+)-limonene 2 L-carvone (-) 2

Alpha-pinene 2 Propionic acid 1

Benzaldehyde 1 Benzaldehyde 1

Butyric acid 1 Butyric acid 1

Guajacole 1 (+)-Linalool 1

(+)-Linalool 1 (+)-Fenchone 1

(+)-Fenchone 1 HMHA 1

HMHA 1 4-ethyl octanoic acid 1

2-Methyl propanal 1 2-methyl propanal 1

Terpinene-4-ol 1 Terpinene-4-ol 1

Citronellol 1 Isobutyric acid 1

3-Methyl-3-sulfanylhexan-1-ol 1 4-Decanolid 1

1-Octen-3-ol 1 3-Methyl-3-sulfanylhexan-1-ol 1

Trans-2-hexenyl acetate 1 Alpha-pinene 1

2-Butanone 1 Methional 1

Benzyl acetate 1

1-Octen-3-ol 1
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compared to subjects with normal olfactory function. PCA and machine learning based analysis consistently 
identified the perceived intensity and familiarity with the odor as the distinguishing characteristics between 
olfactory diagnoses. Evoked pain sensation and perceived temperature were identified as non-distinguishing 
characteristics, i.e., similarly evaluated independently of their olfactory functional performance, followed by the 
assessment of edibility. These results are also supported by the median ratings of the perceived olfactory proper-
ties given by hyposmic subjects compared to subjects with normal olfactory function (Fig. 3B).

The odors that were identified in the supervised analysis as being perceived by hyposmic subjects either 
differently or similarly to normosmic subjects were also identified in the unsupervised analysis at 66.7% and 
77.7% respectively. The intersection of the results of the two approaches resulted in the final set of n = 4 "dis-
tinctive odors" consisting of cis-3-hexenol, methyl salicylate, 1-butanol and cineol, while the final set of n = 7 
"non-distinctive odors" included benzyl acetate, heptanal, 4-ethyl-octanoic acid, methional, isobutyric acid, 
4-decanolide and p-cresol (Supplementary Fig. 3).

Other results: chemoinformatics explorations. Specific chemical properties of odors relevant for the 
olfactory diagnosis. For the disjoint sets of d = 4 exclusively discriminating and d = 7 exclusively non-discrim-
inating odors, 90 molecular CATS2D descriptors were initially used (such ligand-based chemical similarity 
approaches have been effectively applied, for example to predict the activity of  drugs58). Those with a vari-
ance < 0.2 or internal correlations > 0.75 were removed. The names of the CATS2D descriptors are coded as fol-

A B

C

p−Cresole
4−Ethyl octanoic a

Isobutyric acid
4−Decanolid

Methional
Benzyl acetate
L−Carvone (−)

Heptanal

Non-distinctive Distinctive

Rating [1,...,5]

Figure 3.  Perceptual ratings of odors that possess properties that are informative for the distinction between 
normosmic and hyposmic subjects, or that lack such properties. (A) Tree map of odor property assessments. 
The figure is a structured representation of the results of the item categorization analysis in a hierarchical order. 
The first level represents the grouping of the odor property ratings in terms of the information they provide 
for distinguishing normosmic from hyposmic subjects. The subsequent levels show perceptual properties 
and odors separated from each other. The second level represents the perceptual properties. The size of the 
rectangles corresponds to the number of odors that possess the respective property in connection with the 
separation of normosmic and hyposmic test persons. The third level represents the individual odors that 
possess the respective property that has been found to be informative or non-informative for the separation 
of olfactory diagnoses. (B) Histograms of the pooled ratings of seven properties for all odors. The dotted and 
dashed perpendicular lines mark the medians of the respective ratings, separately for normosmic (dashed) 
and hyposmic (dotted) subjects. (C) Venn diagram showing the sets observed between two groups of odors 
identified to represent characteristics that best distinguish between olfactory diagnoses or, on the other hand, 
are least distinctive between olfactory diagnoses (Table 2). The figure has been created using the R software 
package (version 4.0.3 for Linux; https:// CRAN.R- proje ct. org/40) and the R libraries RAM” (https:// cran.r- proje 
ct. org/ packa ge= RAM70), “ggplot2” (https:// cran.r- proje ct. org/ packa ge= ggplo t271) and “treemapify” (https:// 
cran.r- proje ct. org/ packa ge= treem apify72).

https://CRAN.R-project.org/
https://cran.r-project.org/package=RAM
https://cran.r-project.org/package=RAM
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=treemapify
https://cran.r-project.org/package=treemapify
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lows: “CATS2D_”, “distance2D_”, “type atom pair”. Thus, “CATS2D_06_AL” means: the count of all molecular 
graph distances = 6 between atom pairs acceptor-lipophilic (AL) (Fig. 4).

The machine-learning algorithms trained with the remaining 20 descriptors, i.e., random forests (RF) and 
bagged CART achieved high performances with leave-one-out cross-validation of median AUC-ROC = 100%, 
which substantially exceeded the values obtained when the training data were permuted (61 and 48% respec-
tively). The tree-based models were further analyzed to extract the most contributing descriptors, i.e., the most 
important variables used by the trained algorithm to perform the classification. This resulted in the identifica-
tion of CATS2D_04_DL, CATS2D_03_DL and their similar CATS2D_XX_LL descriptors for distance = 2–3.

Discussion
The preserved or reduced olfactory function is reflected differently in the perception of different odorous sub-
stances. Based on the demonstration of the suitability of olfactory property assessments that allow a trained 
machine-learning algorithm to distinguish between normosmic and hyposmic subjects, this study identified 
particularly relevant odors and related subjective characteristics. A key finding of the analysis was, that odor 
properties reflecting trigeminal sensations, such as painfulness and temperature, play the least important role 
in distinguishing normosmic from hyposmic subjects. On the other hand, familiarity and perceived intensity 
of odorants seem more to reflect olfactory sensations and are therefore rated higher by persons with normal 
olfactory function than by persons with a reduced sense of smell.

Discussion of main results. In fact, the perceptual characteristics that differ between normosmic and 
hyposmic individuals provide information on how odors are perceived by both groups. When distinguishing 
between normosmic and hyposmic individuals, the perceptual characteristics provide relevant information in 
the order of familiarity, odor intensity, irritation, edibility, hedonics and painfulness. In contrast, of the two 
olfactory diagnosis groups of subjects, the most similar ones were evaluated in the order lack of distinct infor-
mation, painfulness, temperature, edibility, irritation, hedonics and odor intensity. From this it can be deduced 
that in normosmic subjects, familiarity with odors plays an important role in perception. This perception disap-
pears with a decreasing sense of smell, leaving the prevailing trigeminal sensations that are predominant in the 
perception of odors. The present results thus indicate a shift up to a partial reversal of olfactory perception when 
the olfactory function deteriorates. This finding could be used in the creation of food or fragrances. While such 
efforts are common in many clinical pictures that attempt to alleviate disease-related restrictions in the daily lives 
of patients, similar efforts for the benefit of hyposmic individuals are still rare. A deeper insight into the shifts 
in the perceptual characteristics of odors is the rational basis of such efforts. In particular, the present results 
highlight the significance of the "trigeminality" of odors, which could be more fully exploited in the develop-
ment of foods or fragrances for people with impaired sense of smell (which includes the large group of elderly 
people who typically exhibit subtle loss of olfactory  function59). Furthermore, it appears that certain odors are 
less affected by the loss of olfaction than others.

Figure 4.  Results of the exploration of differences between distinctive and non-distinctive odors with respect to 
chemically Advanced Template Search (CATS) 2D molecular descriptors. The boxplots of the top ten CATS2D 
variables used in random forests and bagged classification and regression tree models. The boxes have been 
constructed using the minimum, quartiles, median (solid line within the box), and maximum. The whiskers 
add 1.5 times the inter-quartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 
25th percentile. The figure has been created using the R software package (version 3.6.1 for Windows; https:// 
CRAN.R- proje ct. org/40) and the R library “ggplot2” (https:// cran.r- proje ct. org/ packa ge= ggplo t271). (L lipophilic, 
A acceptor, D donor, N negatively charged, P positively charged).

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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Seven of originally 40 odorous substances were identified by two independent approaches as the best differen-
tiation between normosmic and hyposmic subjects. These substances did not have any perceptual properties and 
did not differ between the two diagnostic groups of subjects. This set of apparently predominantly olfactory stim-
ulations included cineol, 2,3-butanedione, cis-3-hexenol, 1-butanol, terpinene-4-ol, citronellol and 2-butanone. 
They smell of eucalyptus, butter, cut grass, sweat/cheese, resin, lemon, and butterscotch. Because the distinction 
between olfactory diagnoses seemed to become more difficult when trigeminal properties were involved, these 
odorants qualify for inclusion in olfactory tests. So far, current tests only partially cover this set. For example, 
butanol is used in the original set of the test battery of Sniffin’ Sticks to determine the odor  threshold27,28 or the 
Connecticut Chemosensory Clinical Research Center Test for olfactory evaluation (CCCRC 60).

The grouping of odors into "trigeminal" and "olfactory" stimuli is somewhat problematic. This is mainly 
because almost all smells produce trigeminal sensations, albeit to varying  degrees61,62. Furthermore, trigeminal 
activation increases with odor concentration and stimulus  duration63,64. A further dimension of the complexity 
of trigeminal activation arises from the interactions between the trigeminal and olfactory  systems20 that are 
modified by olfactory  loss65. These interactions may help to explain why some of the characteristic odors are 
often mentioned in connection with trigeminal activation, e.g.,  cineol61—while some of the non-characteristic 
odors are more on the olfactory side, e.g., methional, a "potato like" odor. However, it has to be kept in mind 
that most of the previous studies on interactions between the trigeminal and the olfactory systems were based 
on relatively selective trigeminal stimulus  CO2. This was different in the present study where odors were used 
which are typically met in foods, fragrances etc., adding everyday-life aspects to the interaction between the two 
intranasal systems which the mentioned paper did not provide.

Discussion of additional chemoinformatics explorations. Boosted classification and regression 
trees consistently showed as the top three descriptors of the Chemically Advanced Template Search (CATS) 2D 
type, i.e., "CATS2D_04_DL", "CATS2D_02_LL", "CATS2D_03_DL". These molecular descriptors had higher 
values for the distinctive odors regarding relevant perceptual characteristics for the assignment of a subject to 
the olfactory diagnosis of normosmia or hyposmia. Since the chosen internal bond distance counts were 2 to 
4, the structural information refers to the spatial position of these atomic pairs (DL and LL with L = lipophilic, 
D = donor) at the given distances. Usually, local branching or bifurcations within the molecular graphs with 
small moieties like methyl or ethyl have a profound effect on CATS2D, as they increase all the counts for smaller 
distances, as here for distances 2 to 4. In addition, this has profound effects on the three-dimensional conforma-
tions available to the molecules, since branching always reduces the flexibility of the  molecules66, which must be 
accommodated within the cavity of the seven transmembrane helices of the olfactory G protein-coupled recep-
tors (GPCR), which are responsible for the recognition of the odorant and for its signal to the brain. In this case 
the major effects on model performances have been the counts of lipophilic atoms to hydrogen-donor atoms 
(OH in our cases). This might suggest for instance that compounds containing secondary or tertiary hydroxyls 
can be more distinctive than those containing primary alcohols or acid. Even if we cannot exclude the effect of 
the odorant on other receptor families which might be relevant for olfactory perception (e.g., ion channels), the 
validity of the description of the ligand pharmacophore remains unchallenged.

Strengths and limitations. A strength of the analysis is that results were obtained using two different 
and independent analysis approaches that yielded largely consistent results. The PCA-based analysis examined 
structures in the data that supported separation of odor diagnoses. In contrast to that, the machine learning 
approach aimed to use the information in the odor ratings as if the diagnosis were to be made from these assess-
ments. Thus, machine-learning was used without trying to develop a diagnostic tool with maximum classifica-
tion performance but rather for identifying the most relevant features. A weak point of this approach was the 
small sample size. In other words, although an apparently quite large cohort with n = 146 subjects was analyzed, 
the division of the study design into 4 sets and two olfactory diagnoses resulted in a group size of 8 subjects 
per set and diagnosis. This was the minimum size across the four olfactory sets and determined the sizes of the 
training data sets, which were chosen so that each olfactory set was represented by the same size. This prevented 
validation of the machine learning results in a hold-out data set that should have been separated from the data 
before analysis. An independent validation data set in which the results were reproduced was not part of the 
present project. To have balanced group sizes for all subsequent analyses, all sets were adjusted to the smallest 
set or group sizes. This ensured that the results were not dominated by an accidentally larger set, nor was such 
error hidden in the results. Other approaches would be to use bootstrapping with increase in set sizes or to create 
further “cases” bay adding white noise to the data, i.e., jittering. However, we did not expect any improvement by 
these methods on the results obtained. The exploratory design of the present study must be taken into account 
when interpreting the results. Because the design is novel, a clear sample size calculation could not be made in 
advance; therefore, a sufficiently powered study will only be possible based on the present results and remains a 
future task in assessing the role of different olfactory spaces in the context of impaired olfaction.

The resulting sets of distinctive and non-distinctive odors nevertheless represent a converging point from 
independent lines of data analysis. However, the subsequent investigation of the systematic chemical differences 
between the two groups of odor molecules was based on very small groups of odor molecules. It is therefore 
recommended to substantiate chemical differences in odors that are perceived differently or similarly by hypos-
mic persons compared to persons with normal olfactory function in independent experiments. Finally, a finer 
stratification of the subjects according to the TDI score of the sensory olfactory performance was not performed 
due to this limitation of the sample size.
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Conclusions
In this study, the perceptual properties of odorous substances showed structural differences in PCA projection 
methods and could be used to train a machine-learning algorithm to separate individuals with normal olfactory 
function from individuals with reduced olfactory function far better than by random association. This provided 
a basis for assessing which perceptual characteristics of which odors played a role in the successful performance 
of the machine learned classifier. The main result of this analysis was that as the olfactory function deteriorated, 
the familiarity of the odors was lost and replaced by the predominant perception of trigeminal sensations such 
as the sensation of heat or coolness of the odor. This could be associated with two unrelated sets of seven odors 
each, including an apparently predominantly olfactorily mediated set of odorants which possess properties 
that are perceived relevantly differently by normosmic persons compared to hyposmic persons, and another 
set which apparently lacked such properties. Further investigations provided hints that this grouping of odor-
ants has a chemical basis, probably in the number of binding distances of different atomic types in lipophilic 
pharmacophores or those defined as hydrogen-bonding acceptors or hydrogen-bonding  donors67. The observed 
shift in the pattern of olfactory perception from familiarity to trigeminal perception, together with evidence 
of a chemical basis, can be used in efforts to create fragrances or foods suitable as disability inclusion aimed at 
people with impaired olfactory function.
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Data available on request from the senior author.
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