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Sparse Random Models in Combinatorics

by Joon LEE

In this thesis, we cover two intimately related objects in combinatorics, namely random constraint

satisfaction problems and random matrices. First we solve a classic constraint satisfaction problem,

2-SAT using the graph structure and a message passing algorithm called Belief Propagation. We also

explore another message passing algorithm called Warning Propagation and prove a useful result

that can be employed to analyze various type of random graphs. In particular, we use this Warning

Propagation to study a Bernoulli sparse parity matrix and reveal a unique phase transition regarding

replica symmetry. Lastly, we use variational methods and a version of local limit theorem to prove a

sufficient condition for a general random matrix to be of full rank.
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1 Preliminary

The so-called Big Data Analytics is pushing the boundary of human knowledge. It makes new discov-

eries that seemed unreachable just a few years ago while revealing its limitation still. Nevertheless,

it will continue to impact many aspects of humanity as it already has [52]. Thus understanding the

implication of given information and knowing how to use it would be crucial. How does one process

such complex networks of data and find something useful? This quest has been a driving force of the

modern world [17].

It seems daunting to analyze such networks where the data points are astronomical and demonstrate

varying characteristics. The theory of random graphs offers accessible models that emulate the real

world networks. The term random graphs came to the scene when Erdös and Rényi produced seminal

papers on evolution of random graphs [40, 42]. In the Erdös - Rényi (ER) graph, V denotes the set

of vertices or nodes and E denotes the set of edges between two nodes. The edges are randomly

present according to a certain probability distribution. Their works are significant in many ways but

especially so in promoting probabilistic methods and signifying the idea of phase transitions [9]. Alon

and Spencer describe probabilistic methods in general as follows. In order to prove the existence

of a structure with certain desired properties, one can define a probability space of structures and

then show that such properties show up in this structure with positive probability. Furthermore, ER

found phase transitions of such properties in terms of related parameters such that as the parameter

passes through a critical value, the existence of the property shifts from surety to naught or vice versa

[40, 41, 42]. Since they broke the ground of random graphs, countless others followed from many

disciplines such as computer science, statistical physics, and biology, just to name a few.

Random graphical models are the favored representations of well-known models in statistical physics

such as Ising model and spin glass model. Furthermore, various random constraint satisfaction mod-

els in computer science can easily be represented as random factor graphs to be discussed in Sec-

tion 1.1.2. A popular way to analyze such models is by way of approximate message passing algo-

rithms to be introduced in Section 2.1. Random graphs also have relevance in inference problems

where one attempts to recover the underlying truth from noisy observations [90].

Another way to study random graphs is by their matrix representations. There are a number of helpful

representations. The most natural representation is the adjacency matrix, a symmetric matrix whose

i j -th entry is 1 if there exists an edge between the nodes i and j and 0 otherwise. Another related

and more useful model for this work is the biadjacency matrix where the nodes are divided in two

categories, one representing the rows and the other the columns. Edges are present only between two

nodes from different categories. The benefit of using the biadjacency matrix to represent a bipartite



2

graph will be further explored in 1.1.2 when we define the factor graph. We also consider an even

more general version in Section 3.2.

Random matrix in its own right is also a rich field to study (See [57]). Among many paths one can take

in the random matrix theory, a combinatorial slice of it would be most closely related to the heart of

this thesis. By that, we mean that the entries of the matrix are drawn from a discrete probability dis-

tribution. Among many interesting questions that can be raised about them, we consider the nullity

and rank, especially the condition of being full rank (See [83, 84] for recent development).

The thesis is organized as follows. The papers in this thesis can largely be divided in two topics,

namely random constraint satisfiability problems (rCSP) and combinatorial random matrices (CRM).

In some aspects, they are the same objects represented distinctly. Before we introduce them, first we

discuss some relevant ideas from statistical physics in Section 1.1. In Section 1.2, we introduce the

particular rCSP problems we probed in this thesis . In Section 1.3, we discuss the particular models

of CRM explored in this thesis. In Chapter 2, we present the methods used in the papers. In particu-

lar, a statistical physics inspired idea called message passing algorithm is presented and two specific

models are highlighted in Section 2.1. We further explore ideas from statistical physics in Section 2.2

and detail variational methods such as Aizenman-Sims-Starr, cavity ansatz, and replica symmetry.

In Chapter 3, we present the results of the four papers and succinctly lay out the proof strategies.

In Chapter 4, the author’s contribution for each paper is summarized. In Chapter 5, the summary is

given in German. The papers are attached in the Appendix.

1.1 Angle from Statistical Physics

1.1.1 Mathematical Models for Disordered System

This section follows the exposition in [60] closely. Let Ω be a finite set of spins and let n denote the

number of particles in a physical system. We call Ωn the configuration space. For a configuration

σ ∈Ωn , letσi ∈Ω denote the state of the i -th particle. In addition, letΛ denote a d dimensional lattice

and let Λad j be the set of pairs of adjacent particles on Λ. The number of particles on the lattice Λ is

n. When the system is made up of interactions among k particles, we define the Hamiltonian of the

system as

H(σ) =−
∑

i1,...,ik

Ji1,...,ik (σi1 , . . . ,σik )−
n∑

i=1
Ji (σi ), (1.1.1)

where Ji1,...,ik (σi1 , . . . ,σik ) means the interaction energy among k particles and Ji (σi ) comes from the

external energy which affects each particle and is usually expressed as hσi . We can think of H(σ) as

the discomfort function that measures the level of frustration when the configuration σ ∈ΩV assigns

values to the variables.

In case k = 2 if the choice of pairs are restricted to Λad j and Ω = {±1}, the system is called the

Edwards-Anderson model [39]. If the interaction energy term Ji1,i2 > 0 for all adjacent pairs i1, i2, the

system would prefer equal spins among the interacting particles and if Ji1,i2 < 0, the system would

prefer opposing spins since the lower the energy is, the more stable the system would be. In the first
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case we call the system the ferromagnetic Ising model and for the latter, the antiferromagnetic Ising.

If Ji1,i2 is a mixed bag, then the system is called the spin glass model (See [69] for a brief introduction).

The probability that the system is at the configuration σ then is expressed in terms of the Boltzmann

distribution,

µβ(σ) = 1

Z (β)
exp

[−βH(σ)
]

, Z (β) =
∑
τ∈Ωv

exp
[−βH(τ)

]
, (1.1.2)

where β= 1/T denotes the inverse temperature. Z (β) is called the partition function which contains

crucial information about the system (See [14] for an exposition of partition function). The minus

sign here makes sense because the system prefers lower energy. It gives more weight to the lower

energy. It resembles the earlier notion of searching for a configuration to get the lowest discomfort.

We will denote the expectation of a random variable x drawn from a probability distribution ν as

Eν [x]. When the distribution is clear from context, then we write E [x].

It is possible to use the Boltzmann distribution in any system with n particles but it can be cum-

bersome to compute the partition function (1.1.2) by summing over Ωn terms. One way to approx-

imate the quantity is to use mean-field approximation where we consider all particles to interact

with one another (see [39, 69, 79] for an exposition for mean-field models). A mean-field version

of the Ising model is called the Curie-Weiss model where Ω= {±1} as in the Ising model but any pair

i , j ,1 ≤ i < j ≤ n of particles interact with each other. One step further in generalization, the spin glass

model of the Curie-Weiss model is called the Sherrington-Kirkpatrick (SK) model where we consider

Ji1,i2 to be drawn from the standard Gaussian distribution. Both models will be discussed further in

Section 1.1.2.

1.1.2 Factor Graphs

Mean-field approximation provides a good initial step in studying disordered system because it ig-

nores the geometrical structure of the lattice. However since these models came about to reflect phys-

ical systems where such geometrical restrictions must be accounted for, a mean-field model is not

so realistic in a way. A remedy for such conundrum is the diluted mean field approach [82]. In SK

model, all pairs are connected as in a complete graph but the interaction is of order n−1/2. In a dilute

SK model, the interaction is strong, of order O(1) but only p/n fraction of nodes are connected. As

p →∞, this dilute model behaves like SK. Thus, the dilute model offers a model that reflects the fi-

nite connection of the physical systems and yet is solvable as in SK. One convenient way to express

the diluted interactions is to use a factor graph, expressing the interactions (mutual dependencies)

of particles in a configuration by factors of adjacent particles [54]. The following portion defines and

describes few more terms related to factor graphs, mirroring the exposition in [60].

Let Ω be a finite set as before. Enter the bipartite graph G = (V ,F ) where V represents the set of n

variables (particles) of the system and F denotes the set of factors. Edges are present with a random

chance between a variable and a factor. If there exists an edge between v ∈V and a ∈ F , we call them

neighbors. For x ∈ V ∪ F , let ∂x denote the vertices in the neighborhood of x. The factor graph G

has one more component, a weight function ψa : Ω∂a → (0,∞). Given a configuration σ ∈ Ωn , let

σ∂a denote the spins of the variables in ∂a. Then G has a Boltzmann probability distribution on the
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configuration spaceΩn similarly as in (1.1.2),

µG (σ) = ψG (σ)

ZG
, σ ∈Ωn ,

ψG (σ) =
∏
a∈F

ψa(σ∂a), ZG =
∑
σ∈Ωn

ψG (σ),
(1.1.3)

where ZG is the partition function as before. In physics problems, ψa(σ∂a) takes the form of

exp
[−βEa(σ∂a)

]
so we can see this form is analogous to the interacting energy term in (1.1.1) and

Boltzmann distribution (1.1.2). We defined the sum of interacting energy in (1.1.1) as the total energy

which in turn can be expressed with factor graph terms, namely EG =− logψG (σ). Furthermore, the

internal energy of G is defined as the expectation of the total energy,

UG =−EµG

[
logψG (σ)

]=−
∑
σ∈Ωn

µG (σ)
∑
a∈F

ψa(σ∂a). (1.1.4)

The entropy according to a probability distribution ν onΩn takes the usual form

H(ν) =−
∑
σ∈Ωn

νG (σ) logνG (σ) (1.1.5)

which gauges the level of uncertainty of the random variableσ such that the lower the entropy is, the

more information is known. We also define the free energy of G as

ΦG = log ZG . (1.1.6)

We have defined the terms so far to make a point about the Boltzmann distribution. It turns out

that the Boltzmann distribution µG can be viewed as the maximizer of a certain functional called the

Gibbs free energy of a probability distribution ν onΩn [60],

G [ν] = H(ν)−Eν [EG ] . (1.1.7)

A few lines of calculation shows that (1.1.7) can be expressed in terms of the free energy, G [ν] =
ΦG −DKL

(
ν∥µG

)
where DKL

(
ν∥µG

)
stands for Kullback-Leibler divergence of the two probability dis-

tributions ν,µG . Because DKL (a∥b) ≥ 0 for any distributions a,b, G [ν] yields a lower bound on ΦG

for any ν. Moreover, because DKL (a∥b) = 0 iff a ≡ b, the Boltzmann distribution µG is the unique

maximizer of G [ν] which equals the free energy,ΦG .

We are mostly concerned with the state of matter in the limit of n. Thus the free energy density is

defined as

φ(β) = lim
n→∞

1

n
ΦGn . (1.1.8)

As we will see in Section 2.1, under certain conditions on the system, the free energy density can

be calculated by a message passing algorithm called the Belief Propagation. That is, the free energy

density is effectively given by a functional called the Bethe free energy, B, to be shown in (2.1.5) in

Section 2.1.1. That is one side of the equation. The other side of the equation is to express the free

energy density by perturbing the system. This perturbation is done by what physicists call the cavity



5

method [61]. It involves removing either a variable or a constraint node from the system thereby

creating a cavity. We will come to the details of this idea in Sections 2.3.2.

1.2 Random Constraint Satisfiability Problems

A constraint satisfiability problem (CSP) consists of n variables, x1, x2, . . . , xn and m constraints

a1, a2, . . . am . The aim is to see if there is a configuration that satisfies all the constraints, and if so, to

come up with such a configuration and to see collectively what the solution set looks like. The idea

of a random CSP was introduced in 1980s in order to come up with an efficient algorithm to solve

CSPs [43]. Based on the cavity method, first the survey propagation [62] was invented, followed by

the belief propagation’s success in solving CSPs [15, 12, 68]. We will now use the factor graph model

to define the k-SAT, in particular 2-SAT and the k-XORSAT. We will also discuss the solution space of

k-SAT to illustrate the idea of phase transition.

1.2.1 k-SAT

Let k ≥ 2 be an integer and hereΩ= {0,1}. For n,m > 0, we define an instanceΦk (n,m) = a1∧·· ·∧am

a k-SAT formula when each of m clauses chooses k Boolean variables among {x1,¬x1, . . . , xn ,¬xn}

uniformly at random out of all (2n)km possible such formulas. The solution space then is a subset of

the latticeΩn , i.e. the set of configurations that satisfy all m constraints. Given a value for the inverse

temperature β> 0, we define the weight function for the factor graph model as

ψβ,i (σ) = exp
[−β1 [ai is violated under σ]

]
. (1.2.1)

The Boltzmann distribution and the partition function are similarly defined as in (1.1.3). Then it is

easy to see that

µΦ,β(σ) = exp
[−β · |{ai , such that ai = false}|]

ZΦ,β
.

Therefore, if we consider β → 0 thus T → ∞, then µΦ,β becomes the uniform distribution among

Ωn . On the other hand, when β→∞, therefore T → 0, µ puts more weight on satisfying assignments

thereby facing hard constraints. We call α = m/n the constraint density. Experimental work had al-

ready confirmed the conjecture that there exists a sharp satisfiability threshold for k ≥ 3 [23, 63]. In

other words, there exists αsat > 0 (sat for satisfiability) such that as α passes over αsat , the proba-

bility of that the random formula Φ has a solution goes from 1 w.h.p.to 0 w.h.p. Much work has been

done in the last few decades to identify αsat in various settings (See [29, 30, 37, 68]).

Statistical physicists used a non-rigorous yet effective scheme called the cavity method to study the

random k-SAT [30]. In particular, they made a conjecture [58, 62] that the satisfiability threshold is

αs = 2k ln2− 1+ ln2

2
+ok (1). (1.2.2)
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FIGURE 1.1: Figure adapted and modified from [53]. Leftmost: S is one cluster w.h.p.;
Second: As α passes through αclus , S the solutions are split among a large of number
of disconnected clusters until αcond ; Third: a few clusters dominate S ; Rightmost:

beyond αsat S is empty. w.h.p..

Coja-Oghlan and Panagiotou proved this result [30]. The gap between the upper bound and the lower

bound was closed by Ding, Sun, and Sly [37] for large k ≥ k0, where k0 is some unspecified constant,

αs = 2k ln2− 1+ ln2

2
+O(2−k ). (1.2.3)

For small k, the threshold is still an open question.

1.2.2 Phase Transition and Replica Symmetry

Let S denote the solution space of a random constraint satisfaction problem, i.e. the set of all con-

figurations satisfying a random k-SAT formula. Beyond the satisfiability threshold, there are several

other thresholds that shed light on the behavior of S [53]. One crucial threshold relevent to this the-

sis is αcond called the condensation threshold where a new phase called 1RSB (1-Replica Symmetry

Breaking) is realized (See [67] for 1RSB phase in k-SAT and k-XORSAT).

We say that a pair of solutions is connected if its Hamming distance equals 1 and call the set of con-

nected solutions a cluster. On 0 < α < αclus where αclus stands for clustering threshold, most of the

solutions are in one cluster. Some smaller clusters appear but they comprise only an exponentially

small fraction of solutions while most solutions belong to one giant cluster. This phase is called the

replica symmetric (RS) phase. On αcl us <α<αcond , the solutions are disconnected among exponen-

tially many exponentially small clusters. Within this phase, the size of clusters continues to decrease

as the solution space continues to shatter. However, since each cluster weighs a negligible mass com-

pared to the total, as n →∞ it is as if there are no clusters [53]. That is why this phase is sometimes

called the dynamic replica symmetric breaking phase or included in the replica symmetric phase. For

αcond < α < αsat , S is dominated by a few clusters. This is where the 1RSB occurs. This phase is

called the static replica symmetric breaking phase. Finally, αsat <α≤ 1, S is empty (see Figure 1.1).

What do these physics terms mean? Replica symmetry means that in RS phase (α < αcond ) factor

graphs can basically be treated as though they were acyclic [60, Chapter 14]. This implies that BP

produces a fixed point that results in the correct value for the free energy. Physicists conjectured that
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RS ansatz applies if the random factor graph model enjoys a certain pairwise decorrelation property

[53]. This conjecture was proven; that the asymptotic independence is enough to make RS ansatz

work [31].

1.2.3 2-SAT

Now we focus on the 2-SAT problem. There are n variable nodes and m = Po(dn/2) many check

nodes. As before, let V ,F denote the sets of variables and checks respectively. For each a ∈ F , it has

two distinct neighbors x1, x2 ∈V so it has n(n−1) many options of pairs to choose from. Furthermore,

it can choose a relation among the four following disjunctions

x1 ∨x2, x1 ∨¬x2, ¬x1 ∨x2, ¬x1 ∨¬x2,

so each check is one disjunction among 4n(n−1). Then an instance of 2-SAT would be a conjunction

of disjunctions

Φ= a1 ∧·· ·∧am .

The random 2-SAT problem was the first rCSP whereαsat was pinned down, independently by Chvá-

tal and Reed [75] and Goerdt [46] in 1992. Other works on 2-SAT followed since. Bollobás, Borgs,

Chayes, Kim and Wilson [20] succeeded in finding the scaling window of the satisfiability threshold

which also matched the scaling window of the giant component phase transition of the ER random

graph [19, 56]. These previous results paved the way for more discoveries regarding variations of the

2-SAT model such as the random 2-SAT formulas with given literal degrees [33], the random MAX

2-SAT problem where the target is to maximize the number of satisfied constraints above αsat [34].

Despite many milestones regarding 2-SAT variants, finding the number of solutions of a random

2-SAT had remained open. Just as in the k-SAT problem, physicists’ input was crucial in making dis-

coveries about the 2-SAT problem. Their modus operandi derived from the aforementioned cavity

method is a message passing algorithm called Belief Propagation (BP). As we shall see in 2.1.1, BP cal-

culates the marginal probability that a random variable takes a Boolean value. By way of BP, we show

that the Bethe free entropy, φ(β) gives the number of satisfying assignment of 2-SAT. The fact that

φ(β) is the tight upper bound on 1
n log Z (Φ) had been known via the so-called interpolation method

[44, 71, 47]. Thus, we find a lower bound of the number of solution which is also tight, thereby prov-

ing the conjecture made by Monasson and Zecchina [66]. The proof relies on finding a solution to

a stochastic fixed point equation and applying it to the Bethe free density. It also relies on the fast

convergence of the fixed point equation. Similar to (1.2.1), we can express the 2-SAT formula using

the idea of factor graph as follows. With the inverse temperature β> 0,

Zβ(Φ) =
∑

σ∈{±1}n

m∏
i=1

exp
(−β1 {σ violates clause ai }

)
. (1.2.4)

The challenge is in driving the limit β → ∞ to satisfy the ’hard’ constraints condition. Montanari
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and Shah [68], Panchenko [70] and Talagrand [78] investigated ‘soft’ versions of the partition func-

tion. For instance, Montanari and Shah [68] obtained limn→∞ 1
nE[log Zβ(Φ)] for all finite β under the

assumption d < 1.16. . . thus not all the way to the threshold d = 2.

In order to prove the conjecture albeit with some conditions on d , all three works [68, 70, 78] use the

Gibbs uniqueness property, that is, the Boltzmann distribution is the unique fixed point of BP. While

the Gibbs uniqueness is also our main driver, we develop a more accurate method for verifying the

Gibbs uniqueness property based on the explicit construction of an extremal boundary condition

that is unique to the case of 2-SAT. In terms of a local structure of a Galton Watson branching pro-

cess, one can come up with extremal boundary conditions on the leaves to conjure up the maximum

bias for the marginal distribution for a root because there are only two variables connected to one

constraint.

For d < 1 the random digraph of the 2-SAT formula is sub-critical and the free energy density can be

calculated by counting arguments. On 1 < d < 2, a weak giant component will appear so it is not triv-

ial to compute the partition function. Finally, as mentioned above, d = 2 is the satisfiability threshold.

Thus from now on, we assume 0 < d < 2. We will further discuss how these ideas fit together to com-

pute the number of solutions of a random 2-SAT in 3.1.

1.2.4 k-XORSAT

A k-XORSAT instance is composed of m linear equations in F2 over n variables. Each equation gets

k variables and is equal to either 0 or 1. Equivalently, it is a linear system Ax = b mod 2 in which

A ∈Mm×n(F2) is a matrix, each row in which gets k non-zero entries and b ∈ Fn
2 . A random k-XORSAT

instance then would be made of a random matrix A and a random vector b.

Just as in the case of k-SAT Section 1.2.1, the solution space S of a k-XORSAT goes through a phase

transition as the constraint density c = m/n passes through a certain critical ratio c∗. Namely, as

m,n →∞, if limc < c∗, the probability that a random instance Fn,m is satisfiable is 1 w.h.p.while if

limc > c∗ the probability approaches 0 [53].

Dubois and Mandler considered a constrained random k-XORSAT model, where b is uniformly ran-

dom, but A is uniformly random over the subset of matrices in which each column sum has at least

two non-zero entries so that each variable shows up at least twice in the system. They showed that

its threshold for m/n in the constrained 3-XORSAT is 1 [38]. They used this result to derive the re-

sult for an unconstrained 3-XORSAT. They did it through a process called Unit Clause Propagation

(UCP) which reduces the unconstrained model to the constrained model and by showing that UCP

does not alter the threshold. Pittel and Sorkin identified the satisfiability threshold for k-XORSAT

over F2 for all k, followed by results on F3,F4 [72]. However, their methods do not cover other fields

[5, 36, 38, 49, 72]. This question is directly linked to finding the rank of the matrix. We shall continue

on this topic in the next Section 1.3 and say few more words about UCP in Section 2.1.2.
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1.3 Combinatorial Random Matrices

1.3.1 Studying rCSP via CRM

rCSP and CRM are intertwined in various implications. Thus understandably combinatorial matrices

have made impact in many applications including powerful error correcting codes called low-density

parity check codes [76], data compression [4, 85] and hashing [36].

CRM can be large divided into dense and sparse kinds. By sparse, we mean that it has a bounded aver-

age number of non-zero entries per row or column. We know more about the dense kinds than we do

about the sparse ones because concentration techniques apply more easily in the dense case [83, 84].

Another clue about the difficulty in analyzing the sparse matrices is highlighted in the close connec-

tion between the sparse random matrices and random satisfaction problems which are known to be

notoriously difficult [7].

Especially relevant for the thesis is the k-XORSAT model as discussed the previous Section 1.2.4. The

constraints will take the role of rows and the variables will occupy the columns. For each constraint,

the connected variables will take 1 and others 0. Solving the rCSP would then be equal as solving the

system of linear equations. From the matrix point of view, solvability would also imply whether the

matrix is full rank or not. Thus we are dealing with the rank of random matrices as well the satisfia-

bility threshold.

Here we introduce the notion of the fraction of frozen variables [26]. In an instance of Ax = y , con-

sider the solution set. Equivalently, we can consider the kernel of A since the solution set would be a

translation of the kernel. Let [t ] denote {1,2, . . . , t } for a positive integer t . We denote the kernel of a

matrix T as kerT . Then we call the variable i ∈ [n] frozen if all the vectors in the kernel set take 0 in

the i th entry. In addition, we denote the fraction of frozen variables by

f (A) = |{i ∈ [n] : ∀x ∈ ker A : xi = 0}|/n. (1.3.1)

As discussed in Section 1.2.4, a random k-XORSAT has a sharp satisfiability threshold [36, 38, 72].

What is peculiar about its satisfiability threshold is that it is strictly smaller than the obvious point

m/n = 1 beyond which the corresponding F2-matrix has more rows than columns and is no longer

full row rank. Indeed, the satisfiability threshold occurs when a linear number of variables freeze

which is strictly less than 1 [38]. Thus, the notion of f (A) plays a major role in studying the rank of A.

1.3.2 Nullity and Rank

Here we introduce an important theorem regarding the rank and nullity in terms of f (A). Theo-

rem 1.1 in [26] yields an asymptotic formula for the normalized nullity of a sparse random linear

system in terms of a parameter α that heuristically equals f (A). This theorem will be used in both

papers regarding CRM [24, 27] thus we write down the general form here. The following setup largely

follows the one from [27].
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Let d ≥ 0, k ≥ 3 be independent integer-valued random variables such that E[d 2+η]+E[
k2+η] < ∞

for an arbitrarily small η > 0. Let (d i ,k i )i≥1 be independent copies of (d ,k) and set d = E[d ],k =
E[k]. Moreover, let d = gcd{supp(d )} and k = gcd{supp(k)}. Let n be integer divisible by k and m =
Po(dn/k), independent of (d i ,k i )i . It can be shown

n∑
i=1

d i =
m∑

j=1
k j , (1.3.2)

that is, the sums of degrees match with probability at leastΩ(n−1/2) [26, Proposition 1.7]. Given (1.3.2)

let G = Gn(d ,k) denote a simple random bipartite graph on a set of checks {a1 . . . , am} and a set of

variables {x1, . . . , xn} such that |∂ai | = k i and the degree of
∣∣∂x j

∣∣= d j for all i , j . The edges ofG denote

the positions of the non-zero entries of the associated matrix A, which can be from a finite field or

{0,1} regarded as rational numbers. Let us focus on a matrix over a finite field Fq where q = pℓ for p

prime. Let χ be a random variable in F∗q = Fq \{0}. Let rk(A) and nul(A) denote the rank and nullity of

A respectively. We tacitly mention that rk(A)+nul(A) = n. Then A =An(d ,k ,χ) is the m ×n-matrix

with entries

Ai , j = 1
{

ai x j ∈ E(G)
} ·χi , j

whereχi , j are copies ofχ. We remark that the i -th row ofA contains k i non-zero entries and the j -th

column contains d j non-zero entries.

We denote the probability generating functions of d and k as D(x) and K (x), respectively.

Define

Φ : [0,1] →R, α 7→ D
(
1−K ′(α)/k

)− d

k

(
1−K (α)− (1−α)K ′(α)

)
. (1.3.3)

The following theorem determines the normalised rank ofA:

Theorem 1.3.1 ([26, Theorem 1.1]).

rk(A)

n
P−→ 1− max

α∈[0,1]
Φ(α) as n →∞. (1.3.4)

Full Rank

We already mentioned that a satisfiability threshold in a k-XORSAT corresponds to the analogous

random matrix being full rank. Indeed, the question of whether the random matrix matrix model at

hand is likely full rank or not is of a fundamental importance. In the second paper on the rank [27],

we consider this question for a broader class of sparse combinatorial random matrices of dimension

m ×n. Note that Theorem 1.3.1 concerns the normalized rank of A. This implies that we still get

an error of o(n) for rk(A). Thus, in [27] we study the rank directly and draw a conclusion about a

sufficient condition for the matrix to be full rank which is described in terms of (1.3.4). The condition

turns out to be essentially necessary too.
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We proceed to set the basic premises for the main results in our second paper on rank [27] in the

current section. Proving them requires ascertaining two other relations; once we prove them, the

main results can be readily proven. Thus, this section works to convince the reader why we take the

detour to the other lemmas. In Section 3.4, we will mainly focus on the proof strategy of the lemmas.

Annealed vs Quenched

This section follows [27, Section 2.1] closely. We first describe an annealed computation and show

that it overshoots the actual value we are seeking. In order to reduce fluctuations we condition on

theσ-algebra A generated by m, (k i )i≥1, (d i )i≥1 and by the numbers m(χ1, . . . ,χℓ) of checks of degree

ℓ≥ 3 with coefficients χ1, . . . ,χℓ ∈ F∗q . We use PA =P [ · |A] and EA = E [ · |A] for brevity.

The second moment method has been a staple tool to find the satisfiability thresholds for rCSP [6, 7].

Indeed, it was one of the key ideas used to solve the random 3-XORSAT problem [38]. It boils down to

finding the full rank threshold over F2. Let us discuss the random 3-XORSAT for a moment. We apply

the second moment method to the number of solutions, Z = Z (A, y) to Ax = y , where the field is

F2,d = Po(d),d > 0,k = 3. Note that y is random and independent of A. Thus, the probability of any

fixed vector x ∈ Fn
2 being a solution to Ax = y is 2−m . There are 2n possible vectors so we have [27,

Eq. 2.1]

EA [Z ] = 2n−m .

It is apparent from this relation that the satisfiability threshold is at when n = m, which implies d < 3.

The second moment method works when EA
[

Z 2
] ∼ EA [Z ]2 in which case Chebyshev’s inequality

comes to rescue to pin down Z in the vicinity of the expected value. Since Z is either empty or a

translation of the kernel, we obtain [[27, Eq. 2.2]]

EA[Z 2] =
∑

σ,τ∈Fn
q

PA
[
Aσ=Aτ= y

]=
∑

σ,τ∈Fn
q

PA
[
Aσ= y

]
PA [σ−τ ∈ kerA] = EA [Z ]E|kerA|. (1.3.5)

We calculate the expected kernel size, observing that the probability that a vector x is in the kernel

depends on its Hamming weight, w . Indeed, for a vector x with w we get

PA [x ∈ kerA] ∼
(

1+ (
1− 2w

n

)3

2

)m

.

Furthermore, since there are
(n

w

)
many vectors with Hamming weight w , we have [27, Eq. 2.3]

EA|kerA| =
n∑

w=0

(
n

w

)(
1+ (

1− 2w
n

)3

2

)m

. (1.3.6)

Stirling’s formula and parametrizing w = zn simplify (1.3.6) to [27, Eq. 2.4]

log EA|kerA| ∼ n · max
z∈[0,1]

−z log z − (1− z) log(1− z)+ m

n
log

1+ (1−2z)3

2
(1.3.7)
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FIGURE 1.2: [27, Figure 3]. The r.h.s. of (1.3.7) for d = 2.5 (blue) and d = 2.7 (red).

Imagine x is a balanced vector such that its Hamming weight is about n/2. If z = 1/2 is applied to

(1.3.7), then the result simplifies to (n −m) log2 and the second moment method works well. How-

ever, if the maximum is attained at another value z ̸= 1/2, then (1.3.7) yields EA|kerA| ≫ 2n−m and

the second moment method fails. Figure 1.2 displays (1.3.7) for d = 2.5 and d = 2.7. For d = 2.5 the

function takes the maximum at z = 1/2. However, for d = 2.7 the maximum is at z ≈ 0.085 which

nullifies the second moment method’s analysis. However, the true random 3-XORSAT threshold is

d ≈ 2.75 [38]. Thus, applying the second moment calculation directly to Z fails.

This example highlights the distinction between annealed and quenched moment computations. It

boils down to which action is taken first, log or EA. Because Z is a potentially exponential value, it is

often possible that

logEA [Z ] ̸∼ EA
[
log Z

]
. (1.3.8)

The l.h.s. of (1.3.8) is called the annealed moment and the r.h.s. is called the quenched moment (See

[61] for a deeper look at these different moments). The bottom line is that the annealed moment is

too susceptible to large deviation effects where some pathological events bias the calculation. For the

random 3-XORSAT Dubois and Mandler were successful in identifying the precise large deviations ef-

fect by considering a minor obtained by UCP (See Section 2.1.2) and came up with a more intricate

optimization problem than (1.3.7) [38]. We consider a similar optimization problem but their meth-

ods of keeping track of the large deviation effects cannot work in our general setting of d ,k ≥ 3,Fq .

Therefore, we proceed with a quenched argument, i.e. we work out moment calculation in the be-

nign case of equitable or balanced solutions. This proof strategy generalizes the methods developed

in [11, 26].

Let us now set the premise. The optimization problem we consider comes in terms of variables

(zi )i∈suppd that range over the space P (Fq ) of probability distributions on Fq . We also consider a sec-

ond set of variables (ẑχ1,...,χℓ)ℓ∈suppk ,χ1,...,χℓ∈suppχ, those which range over probability distributions on

solutions to the linear equation χ1σ1 +·· ·+χℓσℓ = 0. Thus these variables are related to the rows of
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A. In terms of these variables we need to optimize the following [27, Eq. 2.5].

max
∑
σ∈Fq

E
[
(d −1)zd (σ) log zd (σ)

]

− d

k
E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

ẑχ1,1,...,χ1,k
(σ1, . . . ,σk ) log ẑχ1,1,...,χ1,k

(σ1, . . . ,σk )


 (1.3.9)

s.t. E[d zd (τ)] = E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

k1 {σ1 = τ} ẑχ1,1,...,χ1,k
(σ1, . . . ,σk )


 for all τ ∈ Fq .

Similar to the random 3-XORSAT, the balanced solution [27, Eq. 2.6]

zi (σ) = q−1 ẑχ1,...,χℓ(σ1, . . . ,σℓ) = q1−ℓ for all i ,χ1, . . . ,χℓ (1.3.10)

gets the value (1−d/k) log q when applied in (1.3.9). This value matches the normalized first moment
1
n logEA[Z ].

So how do we use the quenched calculation to prove the main result? Applying log to Z and then

calculating expectation amounts to finding the mean of dimkerA. This quenched average is of order

O(n) and it is not affected by large deviations effects. Yet computing the quenched average alone does

not solve away the sizeable error o(n). To that end, let us consider a suitable event and explain what

that entails. First let xA = (xA,i )i∈[n] ∈ Fn
q be a random vector in kerA. We define the event [27, Eq. 2.7]

O=
{ ∑
σ,τ∈Fq

n∑
i , j=1

∣∣P[
xA,i =σ, xA, j = τ |A

]−q−2
∣∣= o(n2)

}
, (1.3.11)

which implies asymptotic independence among entries in the kernel vectors. Then Chebyshev’s in-

equality on O w.h.p. shows [[27, Section 2.2]]

n∑
i=1

1
{

d i = ℓ, xA,i =σ
}=P [d = ℓ]n/q +o(n) for all σ ∈ Fq , ℓ ∈ suppd .

This implies for every ℓ the only meaningful values to consider for optimizing (1.3.9) is the almost

balanced vectors with the uniform distribution among F∗q elements. Thus the following relations

make sense, [27, Eq. 2.8], [27, Eq. 2.9],

EA [Z · 1 {A ∈O}] ∼ EA [Z ] ∼ qn−m (1.3.12)

EA
[

Z 2 · 1 {A ∈O}
]∼ EA [Z ]2 , (1.3.13)

Given that a key assumption for the main Theorem 3.4.1 is satisfied, we can show that (1.3.12), (1.3.13)

are true w.h.p. Theorem (3.4.1) will turn out to be an easy consequence of (1.3.12)–(1.3.13), and two

other theorems.
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The task now is to prove (1.3.12) and (1.3.13). Regarding (1.3.12), the first asymptotic equality is where

we use a quenched average and a matrix with few extra rows. The second asymptotic equality is as

easy as in the random 3-XORSAT. As for (1.3.13), this is where we expand the second moment around

the uniform solution. This expansion involves looking at the lattices generated by certain integer

vectors that encode nearly equitable solutions. This method generalizes Huang’s argument for the

adjacency matrices of random d-regular graphs [48] and uses a local limit theorem to be introduced

in Section 2.3.3. The basic strategy will be laid out in Section 3.4 and we refer the reader to [27] for

detail.
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2 Methods

2.1 Message Passing Algorithms - BP and WP

When faced with solving for a marginal distribution of a variable i among n particles which draw

values from a finite space Ω, one might consider summing over all possible configurations. That

would take |Ω|n units of time. A message passing algorithm can be an efficient tool to reduce the

time of computations when the graphical model fits certain nice features [60]. Imagine a factor graph

G . A message passing is applied to messages on the edges which contain certain directed messages,

from a variable to a factor and from a factor to a variable. Then a message passing algorithm updates

these messages according to the neighboring messages. The update rule depends on the types of

problems the algorithm works on and on the choice of algorithm. BP is the most well-known message

passing algorithm. It computes marginal distributions exactly on tree factor graphs. But even more

surprising, BP is successful in finding the right marginals on loopy graphs as well, as long as they have

the appearance of a tree when viewed locally [60]. After we discuss BP further in 2.1.1, we also delve

into discrete message passing algorithm such as UCP and Warning Propagation WP in 2.1.2.

2.1.1 BP

This section follows [60, Chapter 14] closely. As alluded in 1.1.2, we are after the free energy of a factor

graph. BP paves the way to make this computation possible.

Let G = (V ,F , (∂a)a∈F , (ψa)a∈F ) be a factor graph. For a configuration τ ∈Ω∂a , let τx , x ∈V denote the

value on x given by τ. Let the message space M (G) be defined as the set of all families

ν= (νx→a ,νa→x )x∈V ,a∈F ,x∈∂a with νx→a ,νa→x ∈P (Ω).

The Belief Propagation operator

BP : M (G) →M (G)

updates ν ∈M (G) with ν̂ ∈M (G) defined by

ν̂a→x (σ) =
∑
τ∈Ω∂a 111{{}τx =σ}ψa(τ)

∏
y∈∂a\x νy→a(τy )

∑
τ∈Ω∂a ψa(τ)

∏
y∈∂a\x νy→a(τy )

ν̂x→a(σ) =
∏

b∈∂x\a ν̂b→x (σ)∑
τ∈Ω

∏
b∈∂x\a ν̂b→x (τ)

, (2.1.1)

where σ ∈ Ω. The idea of cavity ansatz is embedded in BP. The interpretation of ν̂a→x (σ) is that it

is the marginal distribution of x receiving σ in a graphical model where all the factors in ∂x except
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a are deemed deleted. Analogously, ν̂x→a(σ) is the marginal distribution of x sending σ in a graph-

ical model where a is deemed deleted. BP recursively updates the messages so we can inductively

define the messages after ℓ iterations. Let ν̂(ℓ)
a→x , ν̂(ℓ)

x→a be the outputs of BP after ℓ iterations. Further-

more, for a point ν ∈M (G) and a variable node x and σ ∈Ω we define the BP marginal distribution

estimates after ℓ+1 iterations.

ν(ℓ+1)
x (σ) =

∏
b∈∂x ν̂

(ℓ)
b→x (σ)

∑
τ∈Ω

∏
b∈∂x ν̂

(ℓ)
b→x (τ)

, (2.1.2)

and similarly for a constraint node a,

ν(ℓ+1)
a (σ) =

ψa(σ)
∏

y∈∂a ν̂
(ℓ)
y→a(σy )

∑
τ∈Ω∂a ψa(τ)

∏
y∈∂a ν̂

(ℓ)
y→a(τy )

(σ ∈Ω∂a). (2.1.3)

Helpful expositions on BP can be found in [60, 88]. With these terms, we can write down the estimate

of the free energy in (1.1.6) which is the logarithm of the partition function, called the Bethe Free

Energy.

Bethe Free Energy

The estimate of free energy log Z (G) from (1.1.6) after ℓ−1 iterations is given by

Bℓ(ν) =
∑

x∈V
H(ν(ℓ)

x )−
∑
a∈F

[
DKL

(
ν(ℓ)

a ∥⊗x∈∂aν
(ℓ)
x

)
−〈lnψa ,ν(ℓ)

a 〉
]

(2.1.4)

We call this functional Bethe free energy [16]. In acyclic graphs or graphs with no long correlation,

BP gets unique fixed points, νx ,νa which match the correct marginal distributions of the system,(
µx

)
x∈V ,

(
µ∂a

)
a∈F respectively [60]. Then the Bethe free energy evaluated at the fixed points correctly

estimates the free energy

log Z (G) =B(ν) =
∑

x∈V
H(νx )−

∑
a∈F

[
DKL (νa∥⊗x∈∂aνx )−〈lnψa ,νa〉

]
(2.1.5)

This is one of the main ideas used in [3] to calculate the free energy of the random 2-SAT model. The

idea of a unique fixed point will be discussed in detail in Section 3.1. We can express the Bethe free

energy in an alternative way as well. We define

B(µ) =
∑
a∈F

Fa +
∑

x∈V
Fx −

∑
x∈V ,a∈∂x

Fa,x , where

Fa = log
∑

τ∈Ω∂a

ψa(τ)
∏

x∈∂a
µx→a(σx ), Fx = log

∑
σ∈Ω

∏
b∈∂x

µb→x (σ), Fa,x = log
∑
σ∈Ω

µx→a(σ)µa→x (σ)

(2.1.6)

where
∑

a∈F Fa stands for the entropy on the factors and
∑

x∈V Fx , the entropy on the variables and
∑

x∈V ,a∈∂x Fa,x for the interaction between the variables and the factors. A detailed derivation of Bethe

free energy equation can be found in [60, Chapter 14], [89].
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2.1.2 WP

Now we turn to a message passing algorithm of discrete nature. Whereas BP updates the probability

distributions on the directed messages, WP updates the messages themselves in reaction to their

neighbors’ messages. Suppose we have an instance of a rCSP,Φ and let GΦ denote its factor graph. On

each edge, there are directed messages, µx→a and µa→x . If we initialize each message to be Boolean

and run WP, then WP updates the messages to either 0 or 1 according to the following warnings [60,

Section 14.3.3]. Here σ is Boolean.

• µx→a(σ) = 1 means according to the demand of the constraints b ∈ ∂x\a, x should not take the

value σ.

• µx→a(σ) = 0 means according to the demand of the constraints b ∈ ∂x\a, x can take the value σ.

Therefore, WP makes direct implications for the messages. However, the messages are not required to

be Boolean nor the number of types of the vertices is limited to 2. Here we define WP in full generality.

This portion follows [[32, Section 1.3]] closely.

Given a graph G , let µv→w ,µw→v , v w ∈ E(G) be the messages drawn from a finite set Ω. We define

M (G) to be the set of all vectors
(
µv→w

)
(v ,w)∈V (G)2:v w∈E(G) ∈Ω2|E(G)| where V (G) is the set of all ver-

tices of all types involved. To define the update function for the messages, for d ∈ N let
((
Ω
d

))
be the

set of all d-ary multisets with elements fromΩ and let [[32, Eq. 1.1]]

ϕ :
⋃

d≥0

((
Ω

d

))
→Ω (2.1.7)

be an update rule that, given any multiset of input messages, determines an output message. In other

words, we define the WP operator on G by

WPG : M (G) →M (G) , µ= (
µv→w

)
v w 7→ (

ϕ
({{
µu→v : u ∈ ∂v\w

}}))
v w ,

where {{a1, . . . , ar }} denotes the multiset with a1, . . . , ar ∈ Ω. Thus to update a directed message, WP

ignores the target while reacting to all other neighbors in a similar way to BP in 2.1.1.

Let us discuss two examples of WP. Consider UCP on a rCSP. Any clause with one variable in its

neighbor is called a unit clause. Starting on any unit clause, one can set the value on the literal so that

it satisfies the unit clause. Those other clauses in which the variable appears with the same sign are

now also satisfied so the propagation effect stops but the clauses with the opposite sign will carry the

effect further. Eventually this process would stop, either with an empty set or with clauses that con-

tain at least two variables. Unit Propagation was successfully used to get results on k-SAT problems

[1, 45].

There is also the peeling process for the k-core. It starts on vertices of degree less than k and delete

them along with the connecting edges. One such round might expose more vertices with less than k.

The process continues until a subgraph with all vertices with k or more neighbors, the k-core which

might be empty (See e.g. [73, 64]).
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WP is a general model of such discrete message passing algorithms that recursively update the mes-

sages along the edges. As we have seen in the two examples, the update rule, the types of messages

and the types of vertices are determined according to the particular problems WP deals with.

There have been many different approaches to analyzing such recursive processes. One classical tool

is the differential equations method [86], where the asymptotic number of vertices of varying de-

grees is the main function of time. Pittel, Spencer and Wormald used this method to discover results

regarding k−core in [73]. More results on k-core followed using branching processes [77], enumera-

tive methods [25], or birth-death processes [50, 51].

Similarly as in BP, for WP to be useful, it would be helpful if the recursive process converges to a fixed

point quickly after a bounded number of recursions. Moreover, even after reaching the fixed point,

in case of any change in messages, there should not be global changes in response to that. The main

results of [32] exactly accomplish these goals in studying various models such as ER binomial ran-

dom graph model G(n, p), k−partite graphs, random regular graphs, random graphs with a particular

degree sequence, the stochastic block model, and factor graphs of random hypergraphs. Indeed, we

show that for any specific recursive processes which can be fitted in the forms of Theorem 3.2.9 we

only need to study the recursion on a multi-type Galton-Watson tree that resembles the local struc-

ture of the respective model. We mention that this work was inspired by our need to understand a

recursive process in the context of CRM to be discussed in Section 3.3.

Our goal is to study the fixed points of WP and in particular the rate of convergence on the random

graph G of various models with k types of vertices. A crucial premise on G is that locally it has the

structure of a multi-type Galton-Watson tree. Under mild assumptions on ϕ, we prove that this local

structure completely characterizes the WP fixed point. The recursive nature of the Galton-Watson

tree ascertains that our fixed point will just be a collection of probability distributions on Ω of each

type of directed edge so that if the children of a vertex v send messages to v independently according

to these distributions, then the message from v to its parent would also reflect the same distributions

of messages of each type. The distributions of messages between vertices of k types can be efficiently

expressed as a matrix. For a matrix M and i , j ∈ [k] types of vertices, we denote by M
[
i , j

]
the i j entry

in the matrix and by M [i ] the i -th row
(
M

[
i , j

])
j∈[k].

Given a finite set Ω, a probability distribution matrix on Ω is a k ×k matrix Q in which each entry

Q
[
i , j

]
of Q is a probability distribution on Ω. In other words, Q

[
i , j

]
denotes the probability distri-

bution on directed messages from a type i to a type j drawn from Ω such that
∑

j∈[k] Q
[
i , j

] = 1. We

initialize the messages independently.

Definition 2.1.1 ([32, Definition 1.2]). For a graph G and a probability distribution matrix Q onΩ, we

refer to initialising messages in G according to Q to mean that we initialise the message µu→v (0) for

each directed edge (u, v) independently at random according to Q
[
i , j

]
, where i and j are the types of

u and v respectively.

Upon initializing the messages independently, we update the distribution according to WP rule and
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the current distribution. More precisely, for a directed edge v w of type
(
i , j

)
, we consider the mes-

sages from the other neighbors of v according to the current probability distribution on each pair

of types. This process generates an updated probability distribution for messages between i and j

types. Repeating this for all i , j ∈ [k] gives the updated matrix. In addition, it now makes sense to

consider the limit of updating process. We need Q to converge to a matrix with respect to a metric of

our choice. This process is described more formally in [32, Section 2.1]. We shall pick up on this point

in Section 3.2 when we discuss the main result of [32].

2.2 Rank and Intuition from Physics

2.2.1 Overlap and Replica Symmetry

When a vector y is randomly drawn from the column space of A ∈ [0,1]m×n , solving the random lin-

ear system Ax = y is a rCSP. Recall that a random k-XORSAT is a random linear system over F2 where

every row contains k ones. We can also look at this problem from x ’s point of view. Let x̂ ∈ Fn
2 denote

a random vector (ground truth) and y be the noisy observation of x̂ via y = Ax̂ . An inference problem

asks how well one can recover x̂ given A and y . Here we see the connection between rCSP and infer-

ence problem since the posterior distribution of a random fixed vector x matching the ground truth

is the uniform distribution among the vectors x that solve the linear system [24, Eq. 1.3]

P
[

x̂ = x | A, y
]= 1{Ax = y}

|ker A| , (x ∈ Fn
2 ). (2.2.1)

We can also think about what fraction of variables in x̂ we can match with a random vector x. This is

the idea of the overlap.

Definition 2.2.1 ([24, Section 1.3]). [Overlap]

R(x , x̂) = 1

n

n∑
i=1

1{x i = x̂ i }.

We are also interested in the overlap given A, y . The average of R(x , x̂) given A, y is a value indepen-

dent of y given by

R̄(A) = E[
R(x , x̂) | A, y

]= 1

|ker A|2
∑

x,x ′∈ker A
R(x, x ′).

We discussed previously the idea of replica symmetry in terms of geometry of solution space where

two independently drawn solutions belong to one cluster. Another way to express the idea of replica

symmetry involves the overlap. We say the linear system is replica symmetric when the overlap con-

verges to a single value, given the disorder which in this case being A, y [90],

lim
n→∞E

[∣∣R(x , x̂)− R̄(A)
∣∣]→ 0.
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Surprisingly perhaps, most of studies in inference problems show that the overlap converges to a

deterministic value, independent of the given condition A, y [13]. We call this phenomenon Strong

Replica Symmetry and express it as

lim
n→∞E

[∣∣R(x , x̂)−E[
R̄(A)

]∣∣]→ 0.

The object of study in [24] is a square matrix with each entry having a Bernoulli distribution with

p = d/n,d > 0. This matrix A belongs to the rare case where the fraction of frozen variables f (A) and

the conditional overlap R̄(A) are both strongly replica symmetric when 0 < d < e but only replica

symmetric when d > e.

We will state these main results in the section 3.3 and lay out the proof strategy.

2.3 Algebraic Detour, Local Limit Theorem

2.3.1 Short linear relations

Let the support of a vector ξ ∈ FU be defined as supp(ξ) = {i ∈U : ξi ̸= 0}.

Definition 2.3.1 ([26, Definition 2.1]). Let A be an m ×n matrix over a field F.

• A set ; ̸= I ⊆ [n] is a relation of A if there exists a row vector y ∈ F1×m such that ; ̸= supp(y A) ⊆ I .

• If I = {i } is a relation of A, then we call i frozen in A. Let F(A) be the set of all frozen i ∈ [n].

• A set I ⊆ [n] is a proper relation of A if I \F(A) is a relation of A.

• For δ> 0,ℓ≥ 1 we say that A is (δ,ℓ)− free if there are no more than δnℓ proper relations I ⊆ [n]

of size |I | = ℓ.

In other words, a relation is a subset of column indices in which the support of non-zero linear com-

binations y A is contained for some row vector y of A. We note that every row of A induces a relation

on the column indices where it has non-zero values. We are particularly interested in the singleton

relation for we know if I = {i } is a relation, then xi = 0 for all x ∈ ker A. Note that this is the same defi-

nition as in (1.3.1). A proper relation is a relation composed of at least one non-frozen relation. Lastly,

we aim to use bounded ℓ and small δ> 0. We say A is (δ,ℓ)− free when A has relatively few relations.

The following observation will aid the Aizenman-Sims-Starr coupling argument, in which we study

the effect of adding a few extra rows and columns to a random matrix. The Aizenman-Sims-Starr

argument is discussed in Section 2.3.2.

The Pinning Operation

We use this notion of (δ,ℓ)−free to perform an operation called pinning with a view of having a good

control of the nullity of A as we attach one more variable along with bounded number of checks in

keeping with the original distribution of A. Probing the change of nullity as we introduce extra bits

to A entails the so-called Aizenman-Sims-Starr scheme which was inspired by the cavity method [8,
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61]. First we define the pinning operation. The point of pinning operation is that we can reduce the

number of short relations by freezing a few random variables [10, 28, 31, 74].

Let A be an m ×n matrix and let η ≥ 0 be an integer. Let i 1, i 2, . . . , iη ∈ [n] be uniformly random and

mutually independent column indices. Then we define A[η] as A with η new rows so that for each

j ∈ [η] the j -th new row has precisely one non-zero entry, namely 1 in the i j -th column, thereby

pinning variables at i 1, i 2, . . . , iη to the frozen state [26, Definition 2.3]. Pinning enables a (δ,ℓ)− free

event to be likely as the following proposition shows.

Proposition 2.3.2 ([26, Proposition 2.3]). For any δ > 0,ℓ > 0 there exists T = T (δ,ℓ) > 0 such that

that for any matrix A over any field F the following is true. With η ∈ [T ] chosen uniformly at random

we have

P
[

A[η] is (δ,ℓ)− free
]> 1−δ.

Proposition 2.3.2 produces a very useful application. Namely, if pinning operation to a random matrix

over a finite field leaves a few frozen variables, then a de-correlation condition similar to O from

(1.3.11) will be achieved, effectively making the system replica symmetric. Let x A denote a random

vector in ker A.

Corollary 2.3.3 ([26, Lemma 4.2]). For any ζ > 0 and any prime power q > 0 there exist ξ > 0 and

Θ0 > 0 such that for any Θ>Θ0 for large enough n the following is true. Let A be a m ×n-matrix over

Fq . Suppose that for a uniformly random θ ∈ [Θ] we have E|F(A[θ])| < ξn. Then

∑
σ,τ∈Fq

n∑
i , j=1

E
∣∣P[

x i =σ, x j = τ | A[θ]
]−q−2

∣∣< ζn2.

The pinning operation was used in three of our papers [3, 24, 27] and will be be discussed further in

Chapter 3.

2.3.2 Aizenman Sims Starr

The Aizenman-Sims-Starr scheme embodies the essence of the cavity method [8]. The cavity method

works like induction [78]. To measure the change of the system or a certain value of interest as n

increases, the cavity method considers the system with a cavity, one less variable to gauge the actions

of the rest, just as we have seen in BP and WP. We can think of the Aizenman-Sims-Starr scheme as

going one step further and accommodating the ensuing change in order to keep the distribution

of the system equivalent as before. We will present this scheme as it is applied to the nullity of the

matrix An from [26] due its simpler form than the one in [27]. The key difference between [26] and our

second paper on rank [27] is that for arbitrary ε,δ> 0 and for an integer Θ(ε), in addition to pinning

θ many variable as in [26], we also add Po(δn) ternary equations (rows), each of which involves three

variables chosen uniformly at random. We refer the reader to [27, Section 8] for a detailed proof on

the upper bound of the nullity.
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Recall the distributions of non-zero entries in rows and columns of the random matrix presented in

Section 1.3.2. In order to derive the desired upper bound on the nullity we write a telescoping sum

[26, Eqs. 2.5, 2.6],

limsup
n→∞

1

n
E [nul(An)] = limsup

N→∞

1

N

N−1∑
n=1

E [nul(An+1)]−E [nul(An)] ≤ limsup
n→∞

E [nul(An+1)]−E [nul(An)] .

Then we should attempt to couple An+1 and An such that we can write a single expectation [[26,

Eq. 2.7]]

E [nul(An+1)]−E [nul(An)] = E [nul(An+1)−nul(An)] (2.3.1)

Here we follow the argument in [26, Section 2]. We want to calculate E [Xn] as n →∞. Then we can

think about summing the differences as n increases. In other words, we calculate E [Xn+1]−E [Xn] and

make a telescoping sum up to n+1. In doing so, we would like to couple Xn and Xn+1 such that Xn+1

results from Xn by adding a bounded number of elements [26, Section 2]. Authors of [26] applied this

approach to Xn = nul An . We observe that Aizenman-Sims-Starr was also used in our 2-SAT paper

when it was applied to the free energy density 1
n log Zn [3].

The coupling will be such that Xn+1 is the nullity of a random matrix made from An by adding a

few rows and columns. We need to calculate the change in nullity upon the addition. The new rows

will take some non-zero elements. Depending on the locations of the non-zero elements, their linear

dependence and the fraction of frozen variables, we might face a big drop in nullity. However, the

random locations of the non-zero elements and the pinning operation save the day to show that

the linear dependencies among the non-zero entries of the new rows turn out to be negligible (See

Lemma 2.3.3).

In both [3] and [27], one side of the inequality is already given by previous works of others. Regarding

the result in [27] , the lower bound on nul A is already given in [21, 55, 26]. As for [3], the upper bound

on the free energy 1
n log ZG by interpolation method in [44, 71].

Half-edges and Configuration Model

This section follows the argument in [26, Section 2.2]. To couple nul(An+1)−nul(An) requires more

than adding one column and few rows according to the current distributions because that alone

cannot guarantee the same distributions. For one, the condition m = Po(dn/k) might mean that

An+1 cannot even exist with the current distributions. To overcome this issue, we come up with a

contiguous model that is more manageable to control. First let G = G(V ,F ) denote the graphical

model of An with V taking the role of the columns while F being the rows. Now we choose ε > 0

as small as we like and choose a large number T = T (ε). Then for any n ≥ T , we make Aε,n as fol-

lows. Let mε,n = Po((1−ε)dn/k) be the number of rows for Aε,n . Next we choose θ ∈ [T ] uniformly

at random. Recall the definitions of the random variables for the degrees of each row and column

(d i )i∈[n], (k j ) j∈[m], all copies of d ,k respectively. Instead of starting with a connected graph G , we

look at each vertex with its degree as one node with half-edges attached to it. For instance, let xi ∈V

and di = |∂xi |. Then we make di many clones of xi and we do that for every vertex. That gives us two
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vertex classes

∪mε,n

i=1 {ai }× [k i ] and ∪n
j=1 {x j }× [d j ].

Finally we let Γε,n denote an uniformly and randomly chosen maximal matching of the complete bi-

partite graph between two vertex classes of half-edges. This is a well-known model of random graphs

called the configuration model, first devised by Bollobás and effectively used by Molloy, Reed, and

Wormald [18, 65, 87]. On top of Γε,n we place additional checks pi , i ∈ [θ] connected with a randomly

chosen variable clone. However, because we are missing about εdn/k rows, we expect about εdn

variable clones not being matched. These are called cavities. it is this cavity that creates wiggle room

to make auxiliary models. In [27], we show that a similar matrix to Aε,n resembles An . Additionally,

pi , i ∈ [θ] freeze the connected variables in order to make Corollary 2.3.3 work. Finally, on the back of

the contiguity result, we carry out the expectation in (2.3.1) by using this auxiliary matrix along with

two other auxiliaries. We refer the reader to [27, Section 8] for detail.

2.3.3 Local Limit Theorem

Here we briefly discuss a variant of Central Limit Theorem called Local Limit Theorem (LLT). To keep

it light we will write down a version for sums of independent random variables mirroring the lecture

note [80].

Let X1, X2, ... be i.i.d. copies of an integer random variable X with mean µ and variance σ2. Let

Sn = X1 + X2 + ·· · + Xn . Suppose there is no arithmetic progression of the form a + qZ with q > 1

for which X ≡ a mod q almost surely. Then we have P [Sn = m] = 1p
2πnσ

e−(m−nµ)2/2nσ2 +o(1/n1/2) for

all n ≥ 1 and all integers m. Thus, whether X belongs to a sub-lattice or not is an important criteria in

using LLT. Later when we discuss LLT in Section 3.4, the main question boils down to whether a bal-

anced vector belongs to a sub-lattice or whether a uniform vector belongs to the full integer lattice,

as alluded in Section 1.3.2. A key Claim 3.4.13 is a case in point. A vector version of LLT is presented in

[35]. This version requires a special assumption about increments of vectors being realized in every

direction of the dimension. This assumption cannot be established in our key Claim 3.4.13. We will

pick up on this topic as we discuss the results of [27]. We refer the reader to [[27, Appendix]] for the

proof of Claim 3.4.13.
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3 Results

3.1 The Number of Satisfying Assignments of Random 2-SAT Formulas

In addition to the set up in Section1.2.3, few more premises are necessary in order to state the main

result. Let P (0,1) be the set of all Borel probability measures on (0,1), endowed with the weak topol-

ogy. We define an operator BPd : P (0,1) →P (0,1), π 7→ π̂ as follows.

Let d+,d− = Po(d/2) stand for the number of ’true’ and ’false’ messages respectively from the vari-

able’s neighbors. Furthermore, let µπ,1,µπ,2, . . . denote random variables with distribution π, all mu-

tually independent and let π̂ be the distribution of the random variable [3, Eq. 1.1]

∏d−
i=1µπ,i∏d−

i=1µπ,i +
∏d+

i=1µπ,i+d−
∈ (0,1). (3.1.1)

Notice that this equation takes a similar form as in (2.1.2) and (2.1.3). Let δ1/2 ∈ P (0,1) mean the

atom at 1/2 and write BPℓd ( · ) for the ℓ-fold recursion of the operator BPd .

Theorem 3.1.1 ([3, Theorem 1.1]). For any d < 2 the limit πd = limℓ→∞ BPℓd (δ1/2) exists and

lim
n→∞

1

n
log Z (Φ) = E

[
log

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)
]

in probability. (3.1.2)
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FIGURE 3.1: [3, Figure 1]. Left: the red line depicts a numerical approximation to the
r.h.s. of (3.1.2) after 24 iterations of BPd ( · ). The dotted blue line displays the first mo-
ment bound. Right: the cumulative density functions of numerical approximations to

BP24
d (δ1/2) for various d .
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By the definition of πd , it is a solution to the stochastic fixed point equation [3, Eq. 1.3]

πd = BPd (πd ). (3.1.3)

The equation (3.1.3) is known as the density evolution equation in physics, while the expression on

the r.h.s. of (3.1.2) is the Bethe free entropy introduced in (2.1.6) [60]. Theorem 3.1.1 confirms the

conjecture from [66] that the free energy density is equal to the Bethe free entropy evaluated at the

fixed point of (3.1.1). The proof shows that the fixed point iteration BPℓd (δ1/2) converges in some

metric as Figure 3.1 illustrates.

3.1.1 Applying BP on 2-SAT

As discussed in section 2.1.1, BP is a message passing algorithm with the goal of approximating the

marginal probability that in the setting of 2-SAT a specific variable takes the value ‘true’ under a ran-

dom satisfying assignment. Notice that in 2-SAT,Ω= {true, false} = {+1,−1}. Finding satisfying assign-

ments of a given 2-SAT formula can be done by a typical SAT solver algorithm but narrowing down

these marginals is not trivial. In fact, the problem is #P-hard [81]. In this paper we show that BP recov-

ers the marginals well on a random formula w.h.p. Recall the setup done in Section 2.1.1. Given a 2-

SAT formulaΦ=Φ(n,m), we associate a bipartite graph G(Φ). The variable set V =V (Φ) = {x1, . . . , xn}

and the clause set F = F (Φ) = {a1, . . . , am} are as before, with each clause node ai having two vari-

able nodes as its neighbors. Moreover, for a vertex v , let ∂ℓv for ℓ ≥ 1 denote the set of all vertices

at distance precisely ℓ from v . We also define ∇ℓ(Φ, v) to be the sub-formula from Φ by deleting all

the clauses and variables at distance greater than ℓ from v . This sub-formula may contain clauses of

length less than two depending on whether v ∈ V or v ∈ F and ℓ is even or odd. Furthermore, for a

clause a and a variable x of Φ we let sign(x, a) = signΦ(x, a) ∈ {±1} be the sign with which x appears

in a.

We initialize all messages by [3, Eq. 1.5]

ν(0)
Φ,a→x (±1) = ν(0)

Φ,x→a(±1) = 1/2 (3.1.4)

and for ℓ ≥ 1 the messages ν(ℓ)
Φ,a→x ,ν(ℓ)

Φ,x→a are defined inductively as ℓ-fold operations of (3.1.1).

Let us write down BP update functions (2.1.2), (2.1.3) in the case of 2-SAT in detail. Let a ∈ F and

∂a = {x, y} and let r , s ∈ {±1} indicate whether x, y appear as positive or negative literals in a. Then for

t =±1 (2.1.2), (2.1.3) take the following forms [3, Eq. 1.6]

ν(ℓ)
Φ,a→x (t ) =

1− 1 {r ̸= t }ν(ℓ−1)
Φ,y→a(−s)

1+ν(ℓ−1)
Φ,y→a(s)

, ν(ℓ)
Φ,x→a(t ) =

∏
b∈∂x\{a}ν

(ℓ)
Φ,b→x (t )

∏
b∈∂x\{a}ν

(ℓ)
Φ,b→x (1)+∏

b∈∂x\{a}ν
(ℓ)
Φ,b→x (−1)

.

(3.1.5)
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Furthermore, let the Belief Propagation estimate of the marginal of a variable x after ℓ iterations reads

[3, Eq. 1.7]

ν(ℓ)
Φ,x (t ) =

∏
a∈∂x ν

(ℓ)
Φ,a→x (t )

∏
a∈∂x ν

(ℓ)
Φ,a→x (1)+∏

a∈∂x ν
(ℓ)
Φ,a→x (−1)

. (3.1.6)

Let S(Φ) be the set of all satisfying assignments ofΦ and letµΦ(σ) denote the uniform distribution on

S(Φ). Additionally, let σΦ = (σΦ,x )x∈V (Φ) mean a uniformly random configuration from S(Φ). For τΦ

and ℓ ≥ 1 the conditional distribution µΦ( · | σ∂2ℓx1
= τ∂2ℓx1

) = µΦ( · | ∀y ∈ ∂2ℓx1 : σy = τy ) means all

configurations with the values of the leaves at 2ℓdistance from x being determined by τ. We can show

that BP withstands any boundary conditions such that it approximates the conditional marginals as

well as unconditional ones as the following theorem states.

Theorem 3.1.2 ([3, Theorem 1.2]). If d < 2, then

lim
ℓ→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣∣µΦ(σx1 = 1 |σ∂2ℓx1
= τ∂2ℓx1

)−ν(ℓ)
Φ,x1

(1)
∣∣∣ |Z (Φ) > 0

]
= 0. (3.1.7)

Since ν(ℓ)
Φ,x1

does not depend on τ, averaging (3.1.7) on the boundary condition τ ∈ S(Φ) yields [3,

Eq. 1.10]

lim
ℓ→∞

limsup
n→∞

E
[∣∣∣µΦ(σx1 =±1)−ν(ℓ)

Φ,x1
(±1)

∣∣∣ | Z (Φ) > 0
]
= 0. (3.1.8)

Since the distribution of Φ is invariant under permutations of the variables x1, . . . , xn , (3.1.8) it is

implied that the marginals of all but o(n) variables xi are within ±o(1) of BP approximation w.h.p. .

We apply the triangle inequality to (3.1.7) and (3.1.8) to see [3, Eq. 1.11]

lim
ℓ→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣µΦ(σx1 = 1 |σ∂2ℓx1
= τ∂2ℓx1

)−µΦ(σx1 = 1)
∣∣ |Z (Φ) > 0

]
= 0. (3.1.9)

This means that any boundary condition will be forgotten in the marginal of x1 as ℓ,n → ∞. This

spatial mixing property is known as Gibbs uniqueness [53].

Furthermore, (3.1.9) nullifies the issue of extensive long-range correlations; since for any fixed ℓ the

distance between the first two variables x1, x2 is greater than 4ℓ in G(Φ), (3.1.9) implies that for all

d < 2, [3, Eq. 1.12]

lim
n→∞

∑
s,t∈{±1}

E
[∣∣µΦ(σx1 = s,σx2 = t )−µΦ(σx1 = s) ·µΦ(σx2 = t )

∣∣ |Z (Φ) > 0
]= 0. (3.1.10)

Thus, without loss of generality, by permutation invariance, (3.1.10) implies that asymptotic inde-

pendence extends to all but o(n2) pairs of variables xi , x j w.h.p. Recall that the decorrelation property

(3.1.10) known as replica symmetry was discussed in Section 1.2.2.
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By the depth of x ∈V (Φ) we mean the maximum distance between x and a leaf of G(Φ). For anyΦwe

set up BP as in (3.1.4)–(3.1.6). It was already discussed in Section 2.1.1 that BP computes the correct

marginals if G(Φ) is acyclic. Then we have the following theorem that says for a tree, BP estimate of

the marginal of x after ℓ iterations correctly matches the marginal of x for ℓ which is greater than or

equal to the depth of x.

Proposition 3.1.3 ([60, Theorem 14.1]). If G(Φ) is a tree and x ∈ V (Φ), then for any ℓ greater than or

equal to the depth of x we have µΦ(σx =±1) = ν(ℓ)
Φ,x (±1).

The proof of Theorem 3.1.1 proceeds in four steps.

Third, building upon these preparations, we will prove that the truncated mean n−1E[log(Z (Φ) ∨
1)] converges to the r.h.s. of (3.1.2). The truncation is necessary to deal with the unlikely event that

Z (Φ) = 0. Finally, we will show that log(Z (Φ)∨1) concentrates about its mean to obtain convergence

in probability, thus completing the proof of Theorem 3.1.1.

3.1.2 Step 1: Density evolution

First we prove that the limitπd from Theorem 3.1.1 exists andπd satisfies a tail bound as the following

proposition describes.

Proposition 3.1.4 ([3, Proposition 2.1]). The weak limit πd = limℓ→∞ BPℓd (δ1/2) exists and

E

[
log2

µπd

1−µπd

]
<∞. (3.1.11)

Moreover, µπd
and 1−µπd

are identically distributed and

E

∣∣∣∣∣log

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπd ,i+d−

)∣∣∣∣∣<∞, E
∣∣log

(
1−µπd ,1µπd ,2

)∣∣<∞. (3.1.12)

The proof of Proposition 3.1.4 is based on showing that BP is a contraction and that the fixed point

iteration converges quickly to πd . The following corollary clarifies the combinatorial meaning of

the distribution πd from Theorem 3.1.1. Namely, πd is the limit of the empirical distribution of the

marginal probabilities µΦ(σxi = 1).

Corollary 3.1.5 ( [3, Corollary 1.3]). For any 0 < d < 2 the random probability measure

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1) (3.1.13)

converges to πd weakly in probability.

3.1.3 Step 2: Gibbs uniqueness

Next we prove (3.1.7) that BP approximates the conditional marginals well, which will verify the Gibbs

uniqueness (3.1.9) and the convergence of the empirical marginals (3.1.13) to πd .
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We recall that Φ locally looks like a tree so we analyze a bipartite Galton-Watson tree T that mimics

G(Φ). Let T (ℓ) be the finite tree obtained from T and ∂2ℓo = ∂2ℓ(T ,o) denote the set of all variables

within the distance of 2ℓ from the root variable o.

The following proposition is the heart of the proof which derives the Gibbs uniqueness for the tree

formula T (2ℓ), which in turn by the contiguity of the tree and the graph, proves the Gibbs uniqueness

for the graph as well.

Proposition 3.1.6 ([3, Proposition 2.2]). We have

lim
ℓ→∞

E

[
max

τ∈S(T (2ℓ))

∣∣µT (2ℓ) (σo = 1 |σ∂2ℓo = τ∂2ℓo)−µT (2ℓ) (σo = 1)
∣∣
]
= 0. (3.1.14)

We prove Proposition 3.1.6 by a subtle contraction argument in combination with construction of

extreme boundary conditions of the tree formula T (2ℓ). Specifically, we will construct boundary con-

ditions σ± that maximize or minimize the conditional probability that the root gets "truth" value [3,

Eq. 2.4]

µT (2ℓ) (σo = 1 |σ∂2ℓo =σ±
∂2ℓo

), (3.1.15)

respectively. This is a unique feature of 2-SAT. We illustrate the maximum boundary condition σ+
∂2ℓo

.

Let Cx (+) be the set of check nodes that are children of the variable node x that impose truth value

for x and Cx (−) the opposite. All the checks in Cx (+) are satisfied withσo = 1 and in order to push the

marginal toward 1, we set the values of the children variables of Cx (+) to opposite of what the check

nodes impose. Concerning Cx (−), we set their children variables to what the check nodes impose in

order to give a positive probability for x to receive 1 from those checks. Starting from the root variable

o, we repeat setting the children variables according to this scheme down to the leaves at ℓ distance

away.

Let σ+ denote the satisfying configuration on T (2ℓ) that maximizes the marginal on o being 1. Thus

σ+ depends on the tree T (2ℓ). It seems untenable to work down the tree to set the values on the

variables and go up on the now-fixed tree to calculate the marginal using the boundary conditions

fromσ+. In order to circumvent this issue, for each variable node x ∈ ∂2k o,k > 0, of T (2ℓ), we define a

quantityηx ∈R∪{±∞} that features the Markov property of the random tree. Specifically,ηx measures

how strongly x can nudge its grandparent variable y toward the truth value mandated by σ+
y and is

defined as the log-likelihood ratio [3, Eq. 5.1]

η(ℓ)
x = log

Z (T (2ℓ)
x ,σ+,σ+

x )

Z (T (2ℓ)
x ,σ+,−σ+

x )
∈R∪ {±∞} (x ∈V (T (2ℓ))), (3.1.16)

where Z (T (2ℓ)
x ,σ+,σ+

x ) denotes the number of satisfying assignments of T (2ℓ)
x that agree with σ+ on

the boundary and assign valueσ+
x to x. We find that η(ℓ)

o can be approximated by the k-fold recursion
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of a suitable operator that turns out to be a W1-contraction. Taking the limits as k,ℓ→∞ finishes the

proof.

3.1.4 Step 3: the Aizenman-Sims-Starr scheme

We briefly discussed how the Aizenman-Sims-Starr scheme in Section 2.3.2 can be applied to the free

energy 1
n log Zn in order to derive the tight lower bound. It involves coupling the random formula

Φn with n variables and Po(dn/2) clauses and the random formula Φn+1 with n + 1 variables and

Po(d(n+1)/2) clauses. This coupling involves delicate moves. Introducing a new variable xn+1 along

with a few random adjacent clauses that get attached to random variables already in Φn can cause

nullifying all the previously satisfying configurations by one new troublesome check node. To get

around this issue, we introduce a third object as a liaison. Namely, letΦ′ be a 2-SAT with n variables

and m = Po(dn/2−d/2) checks. Next, we getΦ′′ fromΦ′ by adding ∆′′ = Po(d/2) uniformly random

and independent checks. Furthermore, we get Φ′′′ from Φ′ by adding one variable xn+1 and ∆′′′ =
Po(d) checks.

The goal is to show

Corollary 3.1.7 ([3, Corollary 2.5]). For any d < 2 we have

lim
n→∞

1

n
E[log(Z (Φ)∨1)] = E

[
log

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)
]

.

Observing that Φ′′ and Φ′′′ have the same distributions as Φn and Φn+1 respectively, we see the fol-

lowing fact immediately, [3, Fact 6.1]

E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)] = E
[

log
Z (Φ′′′)∨1

Z (Φ′)∨1

]
−E

[
log

Z (Φ′′)∨1

Z (Φ′)∨1

]
. (3.1.17)

Also helpful is to notice [3, Corollary 2.5]

lim
n→∞

1

n
E[log(Z (Φ)∨1)] = lim

n→∞
1

n

n−1∑
N=2

E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)]. (3.1.18)

as the telescoping sum only retains the last summannd. Therefore the proof of Corollary 3.1.7 comes

down to showing [3, Propositions 6.2, 6.3]

E

[
log

Z (Φ′′′)∨1

Z (Φ′)∨1

]
= E

[
log

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπd ,i+d−

)]

E

[
log

Z (Φ′′)∨1

Z (Φ′)∨1

]
= E

[
−d

2
log

(
1−µπd ,1µπd ,2

)]

Careful argument is necessary to rule out rogue constraints ruining the already satisfying assign-

ments. Detail is given in [3, Section 6].
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3.1.5 Step 4: concentration

The final step to prove Theorem 3.1.1 is to show that log(Z (Φ) ∨ 1) concentrates about its mean.

In other words, the annealed computation equals the quenched one. However, because Zn is expo-

nential value, due to hard constraints, a small change in constraint can drive a large change in the

partition function. Thus, a routine tool like the Azuma-Hoeffding inequality would not be sufficient.

To get around this issue, we first consider the non-zero temperature case (1.2.4), as discussed in Sec-

tion 1.2.3. From [68, 70, 78], we know log Zβ(Φ) concentrates around its mean. By its loose restriction,

Zβ(Φ) ≥ Z (Φ). [78] also showed that limn→∞ 1
nE

[
log Zβ(Φ)

]≤Bβ(p) for any p ∈P (0,1) where Bβ(p)

stands for the corresponding Bethe functional. Combining these two facts we can show the following

Corollary,

Corollary 3.1.8 ([3, Corollary 7.3]). For any β> 0 we have limn→∞P
[
log Z (Φ) > nBβ(πd )+n2/3

]= 0.

Finally, we can show that limβ→∞Bβ(πd ) exists and is finite such that log Z (Φ) does not deviate more

than εn from the mean, thereby concluding the proof.

3.2 Warning Propagation: stability and subcriticality

3.2.1 Basic Notions and Assumptions

Before we state the main theorem, we set some parametrs and assumptions. We define G to be a

k-type graph (possibly a multigraph), i.e. V (G) = {Vi }k
i=1 where Vi the set of vertices of type i with

(deterministic or random) cardinality ni := |Vi |. For a vertex in Vi , let Zi ∈Nk
0 denote the asymptotic

distribution of the numbers of neighbors of each type j ∈ [k] such that the j -th entry, Zi j describes

the numbers of neighbors of type j connected to a vertex of type i . Furthermore, we denote a simple

k-type graph by G . We denote the largest degree of G as ∆(G).

Definition 3.2.1 ([32, Definition 2.2]). Let Z1, . . . ,Zk ∈ P
(
Nk

0

)
. For each

(
i , j

) ∈ K , define Y j ,i =
Y j ,i (Zi ) ∈P

(
Nk

0

)
to be the probability distribution such that for (a1, . . . , ak ) ∈Nk

0 we have

P
(
Y j ,i = (a1, . . . , ak )

)
:= P

(
Zi =

(
a1, . . . , a j−1, a j +1, a j+1, . . . , ak

))

P
(
Zi j ≥ 1

) .

The point of Y j ,i is to compute the marginal distribution of a message from type i to type j . For this

to happen, we need to have a positive probability of having such an edge.

Definition 3.2.2 ([32, Definition 2.3]). Given D ∈ P
(
Nk

0

)
and a vector q = (

q1, . . . , qk
) ∈ (P (Ω))k of

probability distributions onΩ, let us define a multiset M
(
D, q

)
of elements ofΩ as follows.

• Generate a vector (a1, . . . , ak ) according to D.

• For each j ∈ [k] independently, select a j elements of Ω independently according to q j . Call the

resulting multiset M j .

• Define M
(
D, q

)
:=⊎k

j=1 M j .
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This definition is to take care of multiple types, each type of connected edges with differing message

distributions. Thus we first determine the number of neighbors and draw message distributions for

each type of neighbors. Then we can define the update function on message as a probability distri-

bution matrix (PDM) R onΩwith

R
[
i , j

]
:=ϕ(

M
(
Y j ,i ,Q [i ]

))

where φϕ stands for the collective operator on Q, gathering each entry as a result of ϕ. Further, let

φt
ϕ (Q) =φϕ

(
φt−1
ϕ (Q)

)
denote the t th iterated function of φϕ evaluated at Q.

Definition 3.2.3 ([32, Definition 2.5]). The total variation distance of two k×k probability distribution

matrices Q and R on the same set S is defined as dTV (Q,R) :=∑
i , j∈[k] dTV

(
Q

[
i , j

]
,R

[
i , j

])
.

Definition 3.2.4 ([32, Definition 2.6]). Let P be a PDM on Ω and ϕ :
⋃

d≥0

((
Ω
d

))
→Ω be a WP update

rule.

1. We say that P is a fixed point if φϕ (P ) = P.

2. A fixed point P is stable if φϕ is a contraction on a neighbourhood of P with respect to the total

variation distance dTV as defined in Definition 3.2.3.

3. We say that P is the stable WP limit of a PDM Q0 onΩ if P is a stable fixed point, and furthermore

the limit φ∗
ϕ (Q0) := limt→∞φt

ϕ (Q0) exists and equals P.

Definition 3.2.5 ([32, Definition 2.7]). For a k-type graph G, the type-degree of a vertex v ∈ V (G),

which we denote by d (v), is the sequence (i ,d1, . . . ,dk ) ∈ [k]×Nk
0 where i is the type of v and where

d j is the number of neighbours of v of type j . Moreover, the type-degree sequence D (G) of G is the

sequence (d (v))v∈V (G) of the type-degrees of all the vertices of G.

Definition 3.2.6 ([32, Definition 2.8]). Let Z1, . . . ,Zk ∈ P
(
Nk

0

)
and for all

(
i , j

) ∈ K , let Y j ,i be as

in Definition 3.2.1. For each i ∈ [k], let Ti := Ti (Z1, . . . ,Zk ) denote a k-type Galton-Waltson process

defined as follows:

1. The process starts with a single vertex u of type i .

2. Generate children of u with types according to Zi .

3. Subsequently, starting from the children of u, further vertices are produced recursively according

to the following rule: for every vertex w of type h with a parent w ′ of type ℓ, generate children of

w with types according to Yℓ,h independently.

Moreover, for r ∈N0 we denote by T r
i the branching process Ti truncated at depth r .

Definition 3.2.7 ([32, Definition 2.9]). Let G be a k-type graph with parts V1 (G) , . . . ,Vk (G), let i ∈ [k]

and r ∈N0. Then for a graph H ∈G⋆, we define

UG
i ,r (H) := 1

|Vi (G)|
∑

u∈Vi (G)
1 {BG (u,r ) ∼= H } .
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In other words, UG
i ,r defines a probability distribution on the class of k-type graphs H rooted at type

i vertex of depth at most r , Thus, we can compare it with the truncated branching processes T r
i (see

A4). Now we state the assumptions for G.

Assumption 3.2.8 ([32, Assumption 2.10]). There exist functions

1 ≪∆0 =∆0 (n) ≪ n1/10 (3.2.1)

and ζ= ζ (x)
x→∞−−−−→∞ and a probability distribution vector Z := (Z1, . . . ,Zk ) ∈

(
P

(
Nk

0

))k
such that for

all i ∈ [k] and for all x ∈R, we have

P
(∥Zi∥1 > x

)≤ exp(−ζ (x) · x) , (3.2.2)

and such that the random graph G satisfies the following properties:

A1 For all i ∈ [k] we have E (ni ) =Θ (n) and Var(ni ) = o
(
n8/5

)
.

A2 For any two simple k-type graphs G and H satisfying D (G) = D (H),

we have P (G=G) = (1+o (1))P (G= H).

A3 W.h.p. ∆ (G) ≤∆0;

A4 For any i ∈ [k] and r ∈N0 we have

dTV
(
Ur

i (G) ,T r
i (Z )

)≪ 1

∆2
0

w.h.p.

The meaning of the assumptions 3.2.8 is as follows.

• A1 - All vertex classes have the same order of magnitude and not too large variance.

• A2 - The graph G is uniformly random given its type-degree sequence.

• A3 - There are few vertices of high degree.

• A4 - The local structure is described by the branching process Ti (Z1, . . . ,Zk ).

We observe that A4 states that the local structure of G is the branching processes (Ti )i∈[k] with fast

convergence. Usually, the main difficulty lies in bounding the speed of convergence of the local struc-

ture.

3.2.2 Main Result

Given a PDM Q0 on Ω, we want to pin down how quickly WP will converge on G from a random

initialization with Q0. We will useϕt
v→w

(
µ(0)

)
to denote the message from v to w inG after t iterations

of warning propagation ϕ with initialization µ(0).
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Theorem 3.2.9 ([32, Theorem 1.3]). Let G be a random graph model satisfying Assumption 3.2.8 and

let P ,Q0 be probability distributions on Ω such that P is the stable WP limit of Q0. Then for any δ> 0

there exists t0 = t0
(
δ,Z ,ϕ,Q0

)
such that the following is true.

Suppose that µ(0) ∈M (G) is an initialization according to Q0. Then w.h.p. for all t ≥ t0 we have

∑
v ,w :v w∈E(G)

1
{
ϕt

v→w

(
µ(0)) ̸=ϕt0

v→w
(
µ(0))}< δn.

The main theorem states that after a bounded number of rounds t0, the WP messages will stay un-

changed except for at most δn many directed edges. It is crucial to note that t0 does not depend on

n or G but only subject to change regarding the desired accuracy δ, Z , ϕ and Q0.

Rather than generating G and applying WP directly, we use another model Ĝ that resembles G yet

allows more freedom so we can wield it to prove the main result. Namely, Ĝ begins by having half-

edges with messages and matching is performed. This idea of using half-edges first and matching

next to draw a model that emulates the original model was briefly discussed in Section 2.3.2 and

used in all four papers in this thesis.

This approximation by Ĝ is what enables to show that very few changes occur between WPt0−1
G

(
µ(0)

)

and WPt0
G

(
µ(0)

)
. Even so, these few changes could cause cascade effects later on. At this point, we use

the local structure of a branching processT to estimate the possible cascade effect and show that this

branching process is subcritical.

The proof is done in two steps. First, we define the Ĝt0 model and introduce Lemma 3.2.10, which

states that this model is a good approximation for Warning Propagation on G. Second, we introduce

the branching process T and prove that it is subcritical in Proposition 3.2.11. We combines these

two steps to show after t0 iterations of WP, very few further changes will be made and prove Theo-

rem 3.2.9.

3.2.3 Message histories

We employed two distinct ways to keep up with the updates on directed messages. First a message

contains the information on which two types are connected. Second, rather than looking at the cur-

rent messages, we keep track of the entire history of directed messages. For two adjacent vertices u, v ,

we define the t-history from u to v to be the vector [[32, Section 3.1]]

µu→v (≤ t ) := (
µu→v (0) , . . . ,µu→v (t )

) ∈Ωt+1.

We denote by G (t )
n the set of Ωt+1-messaged graphs on vertex set [n] with each directed edge having

t-histories. Let Gt ∈ G (t )
n be the random Ωt+1-messaged graph germinated by iterations of ϕ on G

from the initial distribution Q0. We also define G∗ := limt→∞Gt , if this limit exists (see [[32, Defini-

tion 3.1]]).
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As discussed previously, we define Ĝt0 as a configuration model that resembles Gt0 (see [[32, Defini-

tion 3.4]]). We note that the matching of the half-edges are maximum subject to the two conditions.

One, the matching is consistent such that a half-edge with incoming a and outgoing b message his-

tories is connected with a half-edge with incoming b and outgoing a message histories. Two, the

resulting graph is simple with no multi-edges while we accept unmatched half-edges.

3.2.4 Step 1: Contiguity

Lemma 3.2.10 ([32, Lemma 3.7]). For any integer t0 ∈ N and real number δ > 0, the random Ωt0+1-

messaged graphs Ĝt0 ,Gt0 can be coupled in such a way that w.h.p. Ĝt0 ∼δ Gt0 .

Note that ∼δ means two compared objects are close to each other except for δn edges. Then Lemma

3.2.10 states that Ĝt0 and Gt0 have approximately the same distribution.

The proof of Lemma 3.2.10 is detailed in [32, Section 5].

3.2.5 Step 2: Subcriticality

Given a probability distribution matrix Q on Ω and a pair (σ0,τ0) ∈ P (Q), we define a branching

processT=T (σ0,τ0,Q) as follows. We generate an instance of Ti j , where
(
i , j

)= ḡ (σ0), in particular

including messages upwards to the directed root edge (v ,u), so u is the parent of v . We then also

initialize two messages downwards along this root edge, µ(1)
u→v = σ0 and µ(2)

u→v = τ0. We track further

messages down the tree based on the message that a vertex receives from its parent and its children

according to the WP update rule ϕ. Given a vertex y with parent x, let µ(1)
x→y be the resultant message

when the input at the root edge is µ(1)
u→v =σ0, and similarly µ(2)

x→y the resulting message when the in-

put isµ(2)
u→v = τ0. Finally, delete all edges

(
x, y

)
for whichµ(1)

x→y =µ(2)
x→y , so we keep only edges at which

messages change (along with any subsequently isolated vertices). It is an elementary consequence of

the construction that T is necessarily a tree.

Intuitively, T approximates the cascade effect that a single change in a message from time t0 −1 to

time t0 subsequently causes (this is proved more precisely in [[32, Section 7]]). Therefore while much

of this paper is devoted to showing that T is indeed a good approximation, the following result is the

essential heart of the proof of Theorem 3.2.9.

Proposition 3.2.11 ([32, Proposition 6.3]). If P is a stable fixed point, then for any (σ0,τ0) ∈P (P ), the

branching process T=T (σ0,τ0,P ) is subcritical.

In the proof of Proposition 3.2.11 we define the transition matrix T of the change processT, which is

a |Ω|2×|Ω|2 matrix where the entry T [σ1,σ2] is the expected number of changes of typeσ1 that come

from a change of typeσ2. We note that the subcriticality of the branching process can be interpreted

as T n n→∞−−−−→ 0. That happens if and only if all eigenvalues of T are strictly less than 1 (in absolute

value).

As a result, we obtain the following corollary.
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Corollary 3.2.12 ([32, Corollary 7.1]). There exist a constant γ> 0 and a positive real |Ω|2-dimensional

vector α (with no zero entries) such that

Tα≤ (
1−γ)

α

(where the inequality is understood pointwise). We may further assume that ∥α∥1 = 1.

Lastly, the next corollary shows that when Q is close enough to P , we enjoy the similar result as in the

previous corollary.

Corollary 3.2.13 ([32, Corollary 7.2]). There exists δ0 > 0 sufficiently small that for any probability

distribution Q onΩwhich satisfies dTV (P ,Q) ≤ δ0, the following holds. LetT1 =T (σ0,τ0,Q) and let T1

be the transition matrix of T1. Then there exist a constant γ> 0 and a positive real |Ω|2-dimensional

vector α (with no zero entries) such that

T1α≤ (
1−γ)

α

(where the inequality is understood pointwise).

That is, the same statement holds for T1, the transition matrix of this slightly perturbed process, as

for T . In particular, T1 is also a subcritical branching process.

Let δ be fixed as in Theorem 3.2.9 and a constant δ0 Î δ small enough that Corollary 3.2.13 holds. We

can now complete the proof of our main theorem.

Proof of Theorem 3.2.9. We find that edges on which messages change when moving from WPt0 (G0)

to WP∗ (G0) are numbered at most
√
δ0n. Furthermore, we can choose δ0 Î δ, the statement of The-

orem 3.2.9 is proven.

3.3 The Sparse Parity Matrix

Recall the definition of f (A), the fraction of frozen variables. Then a variable v chosen uniformly

at random would have about f (A) probability of being frozen. Furthermore, due to the local tree

structure of G , we observe that for the root v to be frozen, it would require that v has at least one

check whose children variables are frozen. Then the following equation contains this information

about f (A).

φd : [0,1] → [0,1], α 7→ 1−exp
(−d exp(−d(1−α))

)
; (3.3.1)

that is, the fixed points of 3.3.1 are the plausible fractions of frozen variables. It turns out that there

are possibly three fixed points in φ, two of which are stable fixed points denoted by α∗ ≤ α∗ and an

unstable fixed point α0 and they have the following hierarchy, 0 ≤α∗ ≤α0 ≤α∗ ≤ 1. Now we state the

first main result of the paper.
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FIGURE 3.2: [24, Figure 1]. Left: the two fixed points α∗ =α∗(d) and α∗ =α∗(d) of φd .
Right: the functionφd for d = 2.5 (blue) possesses a unique fixed point, while for d = 3

(red) there are two stable fixed points and an unstable one in between.

Theorem 3.3.1 ([24, Theorem 1.1]). 1. For d ≤ e the function φd has a unique fixed point and

lim
n→∞ f (A) =α∗ =α∗ in probability.

2. For d > e we have α∗ <α∗ and for all ε> 0,

lim
n→∞P

[| f (A)−α∗| < ε
]= lim

n→∞P
[| f (A)−α∗| < ε]= 1

2
.

Recall the definition of the overlap 2.2.1. Here we state the second main result of the paper.

Theorem 3.3.2 ([24, Theorem 1.2]). 1. If d < e then limn→∞ R(x , x̂) = (1+α∗)/2 in probability.

2. For all d > e we have limn→∞E
∣∣R(x , x̂)− R̄(A)

∣∣= 0 while

lim
n→∞P

[∣∣∣∣R̄(A)− 1+α∗
2

∣∣∣∣< ε
]
= lim

n→∞P
[∣∣∣∣R̄(A)− 1+α∗

2

∣∣∣∣< ε
]
= 1

2
for any ε> 0.

Observe that Theorem 3.3.2 is the expression of Theorem 3.3.1 in terms of the overlap. Theorem 3.3.1

implies that an optimal algorithm such as Gaussian elimination can pin down f (A) ∈ {α∗,α∗} fraction

among n variables. Regarding the complement 1− f (A), a random guess would have to do, offering
1− f (A)

2 chance to get the right values for the variables. Then the sum gives us the fraction of variables

we can expect to retrieve: 1+ f (A)
2 , which shows up in Theorem 3.3.2 with equal probability for each

α∗,α∗.

Proofs of the two main results come by three steps. First, we show that f (A) concentrates on the

fixed points of φd , either on α∗,α∗ or α0. Second, we ascertain that the unstable fixed point α0 is an

unlikely outcome. Lastly, we conclude that α∗ and α∗ are equally likely.

3.3.1 Step 1: Fixed points of (3.3.1) and f (A) match

Recall Theorem 1.3.1 from Section 1.3 regarding the nullity of A and the maximum of Φ(α) where α

can be interpreted as the fraction of frozen variables? It takes a bit of calculus to find that the stable

fixed points of φ(α) are the maximizers of Φ(α). The left figure in Figure 3.2 shows the relationship
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FIGURE 3.3: Unused Figure from [24]. Φd for various d values where the second from
the top isΦe.

between d and the stable fixed points of φ. If d ≤ e then φd has a unique fixed point, which is the

unique global maximizer ofΦd , as in the case of the top curve in Figure 3.3. If d > e then the function

φd has precisely two stable fixed points, namely 0 <α∗ <α∗ < 1, and

Φd (α∗) =Φd (α∗) >Φd (α) for all α ∈ [0,1] \ {α∗,α∗}

i.e. α∗,α∗ are the maximizers [[24, Proposition 2.3]].

Furthermore, for any d > 0 we have [[24, Lemma 2.2]]

lim
t→∞φ

◦t
d (x) =α∗ for any x < [0,α0), lim

t→∞φ
◦t
d (x) =α∗ for any x ∈ (α0,1].

Now that we know the fixed points of φ(α) and the maximizers of Φ(α) math, how do we prove that

the fixed points of φd are f (A)? WP helps to analyze the local structure of G(A).

Enhanced Warning Propagation

Recall from Section 2.1.2 that WP is a scheme to update directed messages of {true, false} on the edges

according to the neighbors’ information. In our setting, the messages would carry either unfrozen or

frozen. How do we initialize the messages? If initialized with the assumption of all being unfrozen,

then because of local branching process, WP reduces to iteration of φd . Since limt→∞φ◦t
d (0) = α∗,

WP predicts f (A) =α∗. If initialized with the assumption of all being unfrozen, then by the same rea-

soning, limt→∞φ◦t
d (1) =α∗ and WP predicts f (A) =α∗. Thus we run an enhanced version of Warning

Propagation with three values, f,u,s (standing for slush to mean the uncertain status on the verge of

freezing) as introduced in Section 3.2 for the paper [32]. We initialize all the messages as s.

Our enhanced WP algorithm associates a pair of {f,s,u}-valued messages with every edge of G(A).

Hence, let W (A) be the set of all vectors

w = (wv→a , wa→v )v∈V (A),a∈C (A):a∈∂v with entries wv→a , wa→v ∈ {f,s,u}.
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FIGURE 3.4: [24, Figure 2]. A local snapshot of the Warning Propagation rules. The
check and variable nodes are represented by squares and circles respectively.

We define the WP operator ϕ : W (A) → W (A), w 7→ ŵ , encoding one round of the message updates,

by letting [[24, Eq. 2.2]]

ŵa→v =





f if wy→a = f for all y ∈ ∂a \ {v},

u if wy→a = u for some y ∈ ∂a \ {v},

s otherwise,

(3.3.2)

ŵv→a =





u if ŵb→v = u for all b ∈ ∂v \ {a},

f if ŵb→v = f for some b ∈ ∂v \ {a},

s otherwise

(3.3.3)

Furthermore, we define a message distribution to be a vector [[24, Section 4.1]]

q = (
q (v), q (c)) with q (v) =

(
q (v)
f , q (v)

s , q (v)
u

)
,

q (c) =
(
q (c)
f , q (c)

s , q (c)
u

)
∈ [0,1]3

Intuitively, q (v), q (c) model the probability distribution of an incoming message at a check/variable

node, so for example q (v)
f is the probability that an incoming message at a variable node is f.

Note that given a message distribution q , the local tree structure tells us that at a u.a.r. vertex the dis-

tribution of half-edges with incoming messages is given by Po(d a). Specifically, at a variable node,

this generates Po
(
d q (v)

f

)
half-edges whose in-message is f and similarly (and independently) gen-

erates half-edges whose in-message is s or u. At a check node, the generation of half-edges with
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incoming messages is analogous. Define the conjectured limiting distribution [[24, Section 4.1]]

q∗ := (
q (v)
∗ , q (c)

∗
)

with q (v)
∗ =

(
q (v)
∗,f, q (v)

∗,s, q (v)
∗,u

)
:= (

1−α∗,α∗−α∗,α∗
)

, (3.3.4)

q (c)
∗ =

(
q (c)
∗,f, q (c)

∗,s, q (c)
∗,u

)
:= (

α∗,α∗−α∗,1−α∗)
. (3.3.5)

Let ϕ(q) be the message update function and let ϕ∗(q) := limt→∞ϕ◦t (q) if this limit exists. Note that

q 0 = ((0,1,0), (0,1,0)). The following two lemmas are verified by our paper on WP [32].

Lemma 3.3.3 ([24, Lemma 4.4]). We have ϕ∗ (
q 0

) = q∗. Furthermore, ∃ ε,δ > 0 s.t. for any message

distribution q which satisfies dTV
(
q , q∗

)≤ ε, we have dTV
(
ϕ

(
q

)
, q∗

)≤ (1−δ)dTV
(
q , q∗

)
.

That is, WP on the graph quickly converges nearly to the limit. In addition, we define w(A, t ) =
WPt

A(s, . . . ,s) to be the messages that result after t iterations of WPA launched from the all-s mes-

sage vector w(A,0). Furthermore, let w(A) = limt→∞ w(A, t ) be the fixed point to which WPA con-

verges. Observe that the (pointwise) limit always exists because WPA only updates an s-message to a

u-message or to an f-message, while u-messages and f-messages will never change again.

Lemma 3.3.4 ([24, Lemma 4.5]). For any d ,δ > 0 ∃ t0 ∈ N s.t. w.h.p. w(A) and w(A, t0) are identical

except on a set of at most δn edges.

This means after a bounded number of iterations, any further does not change much, i.e., it is sub-

critical. Finally, by the iterations of φd and WP, we can show the following:

Proposition 3.3.5 ([24, Proposition 2.7]). For all d ∈ (e,∞) we have

lim
n→∞E

[∣∣ f (A)−α∗
∣∣∧

∣∣ f (A)−α0
∣∣∧

∣∣ f (A)−α∗∣∣]= 0.

3.3.2 Step 2: Stable fixed points are the only tenable choices

Suppose f (A) =α0. We start with observing that a random x ∈ ker A sets about half the unfrozen vari-

ables to one. Even if we weigh the variable nodes proportionally by their degrees, the overall weight

of the one-entries comes to about half w.h.p. (1.3.4) implies that ker A contains 2Φd (α∗)n+o(n) such

balanced vectors w.h.p.

We prove this step by contradiction. We show that the existence of that many balanced solutions is

actually unlikely if f (A) ∼α0.

First, the expectation of the number of fixed points (covers) of a version of WP operator that marks

about α0n variables to frozen turns out to be of orderexp(o(n)) [24, Proposition 6.3]. Next, a general

version of the pinning operation discussed in Section 2.3.1 gives us the following lemma.

Lemma 3.3.6 ([24, Lemma 6.1]). W.h.p. the random matrix A has 2Φd (α∗)n+o(n) many o(1)-balanced

solutions.

For each cover, we compute the expected number of actual balanced solutions compatible with such

a WP fixed point, f (A) =α0. We expect the fractions of unfrozen variables and unfrozen checks to be
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[[24, Eqs. 6.19, 6.20]]

1

n

n∑
i=1

1 {m(vi ) = u} ∼ 1−α0,

1

n

n∑
i=1

1 {m(ai ) = u} ∼α0 −d(1−α0)2,

respectively. Each unfrozen check has about 1/2 probability to be satisfied and each unfrozen vari-

able has freedom to choose between 2 values.

Combining these items and multiplying the sum by the number of covers, we can expect the number

of actual balanced solutions to be [[24, Eq. 6.21]]

2|{i∈[n]:m(vi )=u}|−|{i∈[n]:m(ai )=u}|+o(n) ≤ 2n(1−2α0+d(1−α0)2+o(1)) = 2nΦd (α0)+o(n).

However, this value falls short of what (1.3.4) guarantees. In other words, becauseΦd (α0) <Φd (α∗) =
maxαΦd (α), we see that f (A) ∼ α0 creates far fewer balanced vectors in its kernel than (1.3.4) re-

quires. Thus, f (A) ∼α0 is unlikely.

3.3.3 Step 3: Both stable fixed points are equally likely

Recall that all messages are initialized as s. As the WP operator ϕ updates the messages, either s

resists any change or changes to f or u and stays that way. Define a minor matrix As of A to be

composed of variables and checks that belong to the slush. Specifically, for a given matrix A let [[24,

Section 7]]

Vs(A) = {v ∈V (A) : (∀a ∈ ∂v : wa→v (A) ̸= f) , |{a ∈ ∂v : wa→v (A) = s}| ≥ 2} , (3.3.6)

Cs(A) = {a ∈C (A) : (∀v ∈ ∂a : wv→a(A) ̸= u) , |{v ∈ ∂a : wv→a(A) = s}| ≥ 2} . (3.3.7)

We already saw in (3.3.4),(3.3.5) that WP shows asymptotically α∗−α∗ portion is either all frozen or

all unfrozen. Using the symmetry of the model and moment calculations, we have the following two

propositions that finalize the proof.

Proposition 3.3.7 ([24, Proposition 2.9]). For any d0 > e there exists a functionω=ω(n) ≫ 1 such that

for all d > d0 we have

lim
n→∞P [|Vs (A) |− |Cs (A) | ≥ω] = lim

n→∞P [|Cs (A) |− |Vs (A) | ≥ω] = 1

2
.

Proposition 3.3.8 ([24, Proposition 2.10]). For any d > e, ε> 0, ω=ω(n) ≫ 1 we have

limsup
n→∞

P
[| f (A)−α∗| < ε, |Vs(A)|− |Cs(A)| ≥ω]= 0

limsup
n→∞

P
[| f (A)−α∗| < ε, |Cs(A)|− |Vs(A)| ≥ω]= 0.
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Combining Propositions 3.3.7, 3.3.8, we prove that f (A) = α∗ or f (A) = α∗ with equal probability of

1/2.

3.4 The Full Rank Condition for Sparse Random Matrices

3.4.1 Main Results

Finite fields

Let A be defined as before in Section 1.3.2. The first result gives a sufficient condition for A to have

full rank. The second regards the rank of zero-one matrix over rationals, B. Recall the definition ofΦ

from (1.3.3) that provides the information on the asymptotic rank ofA.

Theorem 3.4.1 ([27, Theorem 1.1]). If q and d are coprime and

Φ(z) <Φ(0) for all 0 < z ≤ 1, (3.4.1)

thenA has full row rank over Fq w.h.p.

Since Φ does not depend on q , the condition (3.4.1) is not contingent on the choice q . We will show

that the sufficient condition (3.4.1) is generally necessary as well.

Since k ≥ 3, the definition (1.3.3) ensures thatΦ(0) = 1−d/k and thus nΦ(0) ∼ n−m w.h.p. Therefore

(1.3.4) implies that rk(A) ≤ m−Ω(n) w.h.p. unlessΦ(z) attains its maximum at z = 0. In other words,A

has full row rank only ifΦ(z) ≤Φ(0) for all 0 < z ≤ 1. Indeed, in [27, Section 1.3] we show examples that

requite a strict inequality as in (3.4.1). The condition that q and d be coprime is generally necessary

as well, as we show in [27, Example 1.7].

Let us emphasize that (1.3.4) does not guarantee that A has full row rank w.h.p. even if (3.4.1) is

satisfied. Due to normalization on the l.h.s. (1.3.4) only implies the much weaker statement rk(A) =
m−o(n) w.h.p. Hence, in the case that (3.4.1) is satisfied, Theorem 3.4.1 improves over the asymptotic

estimate (1.3.4) substantially. Such a stronger result also requires a more delicate proof strategy.

Zero-one matrices over the rationals

Apart from matrices over finite fields, the rational rank of sparse random {0,1}-matrices has received

a great deal of attention [83, 84]. The random graph G naturally induces a {0,1}-matrix, namely the

m×n-biadjacency matrixB=B(G). Explicitly,Bi j = 1{ai x j ∈ E(G)}. As an application of Theorem 3.4.1

we obtain the following result.

Corollary 3.4.2 ([27, Corollary. 1.2]). If (3.4.1) is satisfied then the random matrix B has full row rank

overQw.h.p.

Since (1.3.4) holds for random matrices over the rationals as well, Corollary 3.4.2 is optimal to the

extent that B fails to have full row rank w.h.p. if maxx∈[0,1]Φ(x) >Φ(0). Moreover, in [27, Example 1.4]

we show that B does not generally have full rank w.h.p. unless x = 0 is the unique maximizer ofΦ.
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The proof of these main results boil down to show the relations (1.3.12), (1.3.13) are true. Theo-

rem 3.4.2 is established once Theorem 3.4.1 is proven so we now focus on the case ofA.

3.4.2 Step 1: Proving the first moment relation (1.3.12)

Let us begin with (1.3.12). (1.3.4) alone cannot prove that O is a likely event. Thus we consider a per-

turbed matrix. Specifically, for an integer t ≥ 0 obtainA[t ] fromA by adding t more rows that contain

precisely three non-zero entries. The positions of these non-zero entries are chosen uniformly, mu-

tually independently and independently of everything else, and the non-zero entries themselves are

independent copies of χ. We require the following lower bound on the rank ofA[t ].

Proposition 3.4.3 ([27, Proposition 2.1]). If (3.4.1) is satisfied then there exists δ0 = δ0(d ,k) > 0 such

that for all 0 < δ< δ0 we have

liminf
n→∞

1

n
E[nulA[⌊δn⌋]] ≤ 1− d

k
−δ. (3.4.2)

Proposition 3.4.3 leads us to (1.3.12). We first show that Proposition 3.4.3 is only possible whenA ∈O
w.h.p. The implication of Proposition 3.4.3 is that almost every one of the ternary equation lowers

the nullity by one. If Proposition 3.4.3 is true on the assumption on (3.4.1) and if Proposition 3.4.3 is

only possible whenA ∈O, then (3.4.1) must meanA ∈O. The proof of Proposition 3.4.3 relies on the

Aizenman-Sims-Starr scheme that was discussed in Section 2.3.2. The proof of 3.4.3 is similar to the

proof of the rank formula Theorem 1.3.1 in [26] but we take a more delicate care to accommodate

the ternary equations. The way of the proof is basically by showing that there cannot be too many

frozen variables (1.3.1) and using the pinning operation discussed in Section 2.3.1. The detail is given

in [[27, Section 4]].

Finally, by combining the idea of Aizenman-Sim-Starr and sparsity of frozen variables in connection

with O, we have the following proposition; the detail of the proof is found in [[27, Section 5]].

Proposition 3.4.4 ([27, Proposition 2.2]). Assume that (3.4.1) is satisfied. Then (1.3.12) holds w.h.p.

3.4.3 Step 2: Proving the second moment relation (1.3.13)

Now that we know the assumption (3.4.1) proves (1.3.12), which in turn impliesA ∈O, we can estab-

lish (1.3.13) by expanding (1.3.9) around the uniform distribution (1.3.10).

To estimate kerA accurately while allowing general distributions for d ,k and χ ∈ Fq , we need to

investigate the conceivable frequencies of field elements that can lead to solutions. Specifically, for

an integer k0 ≥ 3 and χ1, . . . ,χk0 ∈ F∗q let

Sq (χ1, . . . ,χk0 ) =
{
σ ∈ Fk0

q :
k0∑

i=1
χiσi = 0

}
(3.4.3)
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comprise all solutions to a linear equation with coefficients χ1, . . . ,χk0 ∈ Fq . For each solution k0-ary

vector σ ∈Sq (χ1, . . . ,χk0 ) the vector [[27, Eq. 2.14]]

σ̂=
(

k0∑
i=1

1 {σi = s}

)

s∈F∗q
∈ZF∗q (3.4.4)

tracks the number of each field element as a q−1-ary vector. Depending on the coefficientsχ1, . . . ,χk0 ,

the frequency vectors σ̂ may live in a proper sub-grid of the integer lattice ZF
∗
q . For example, in the

case q = k0 = 3 and χ1 = χ2 = χ3 = 1 they span the sub-lattice spanned by
(1

1

)
and

(0
3

)
. The following

proposition characterizes the lattice spanned by the σ̂ for general k0 and χ1, . . . ,χk0 .

Proposition 3.4.5 ([27, Proposition 2.3]). Let k0 ≥ 3, let χ1, . . . ,χk0 ∈ F∗q and let Mq (χ1, . . . ,χk0 ) ⊆ ZF∗q
be the Z-module generated by the frequency vectors σ̂ for σ ∈ Sq (χ1, . . . ,χk0 ). Then Mq (χ1, . . . ,χk0 )

has a basis b1, . . . ,bq−1 of non-negative integer vectors with ∥bi∥1 ≤ 3 for all 1 ≤ i ≤ q − 1 such that

det
(
b1 · · · bq−1

)= q1{χ1=···=χk0 }.

Note that the basis vectors have small ℓ1-norm. We also show that these basis vectors are combi-

natorially meaningful in our purpose of counting solutions. The detail of the proof is found in [[27,

Section 6]].

In addition to the frequency grid, we also observe another constraint due to d . Namely, for any as-

signment σ ∈ Fn
q to variables the frequencies of the various field elements s ∈ Fq are divisible by the

g.c.d. d of supp(d ), i.e. [[27, Eq. 2.15]]

d |
n∑

i=1
d i 1 {σi = s} for all s ∈ Fq . (3.4.5)

Thus to compute the expected kernel size we look at the intersection of the sub-grid (3.4.5) with the

grid spanned by the frequency vectors σ̂ for σ ∈ Sq (χ1,1, . . . ,χ1,k ). Specifically, by way of estimating

the number of assignments represented by each grid point and calculating the ensuing satisfiability

probability, we obtain the following.

Proposition 3.4.6 ([27, Proposition 2.4]). Assume that q and d are coprime and that (3.4.1) is satisfied.

Then (1.3.13) holds w.h.p.

Combining Propositions 3.4.3–3.4.6, we now establish the main theorem and its corollary.

Proof of Theorem 3.4.1. The assumption (3.4.1) implies that 1−d/k = Φ(0) > Φ(1) = 0. Combining

Propositions 3.4.4 and 3.4.6, we obtain (1.3.12)–(1.3.13). Hence, Chebyshev’s inequality implies that

Z ≥ qn−m = qn(1−d/k+o(1)) > 0 w.h.p. Consequently, the random linear system Ax = y has a solution

w.h.p., and thus rkA= m w.h.p.

Proof of Corollary 3.4.2. Let q be a prime that does not divide d and letχ= 1 deterministically. Obtain

the matrix B̄ ∈ Fm×n
q by reading the {0,1}-entries of B as elements of Fq . Then the distribution of B̄

coincides with the distribution of the random Fq -matrix A. Hence, Theorem 3.4.1 implies that B̄ has

full row rank w.h.p.
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Suppose that indeed rk B̄ = m. We claim that then the rows of B are linearly independent. Indeed,

assume that z⊤B= 0 for some vector z = (z1, . . . , zm)⊤ ∈Zm . Factoring out gcd(z1, . . . , zm) if necessary,

we may assume that the vector z̄ ∈ Fm
q with entries z̄i = zi + qZ is non-zero. Since z⊤B = 0 implies

that z̄⊤B̄= 0, the rows of B̄ are linearly dependent, in contradiction to our assumption that B̄ has full

row rank.

The rest of this section we sketch the proofs of Proposition 3.4.5 and Proposition 3.4.6.

Proof of Proposition 3.4.5

We differentiate the cases where the coefficients χ1, . . . ,χk0 are identical or not. The following two

lemmas summarize the analyses of the two cases.

Lemma 3.4.7 ([27, Lemma 6.1]). For any prime power q and any χ ∈ F∗q the Z-module Mq (χ,χ,χ)

possesses a basis (b1, . . . ,bq−1) of non-negative integer vectors bi ∈ZF
∗
q for all i ∈ [q −1] such that

∥bi∥1 ≤ 3 and
∑

s∈F∗q
bi ,s s = 0 for all i ∈ [q −1], and det

(
b1 · · · bq−1

)= q .

Furthermore, for any k0 > 3 we have Mq
(
χ, . . . ,χ

)
︸ ︷︷ ︸
k0 times

=Mq (χ,χ,χ).

Lemma 3.4.8 ([27, Lemma 6.2]). Suppose that q is a prime power, that k0 ≥ 3 and that χ1, . . . ,χk0 ∈ F∗q
satisfy |{χ1, . . . ,χk0 }| ≥ 2. Then

Mq (χ1, . . . ,χk0 ) =ZF∗q .

Furthermore, Mq (χ1, . . . ,χk0 ) possesses a basis (b1, . . . ,bq−1) of non-negative integer vectors bi ∈ ZF∗q
such that

∥bi∥1 ≤ 3 and
∑

s∈F∗q
bi ,s s = 0 for all i ∈ [q −1].

In case of Lemma 3.4.7 we get a proper subgrid while in case of Lemma 3.4.8 we get the whole integer

module. Proposition 3.4.5 is an immediate consequence of Lemmas 3.4.7 and 3.4.8.

Remark 3.4.9 (Sketch of Proof of Lemma 3.4.7). It is easy to come up with q −1 linearly independent

vectors in M with ℓ1-norms bounded by 3 but not easy to see that they generate M. To that end, we

come up with two different bases for M, namely B1,B2. It would be easy to see B1 generates M while

B2 comprises of linearly independent vectors in M with ℓ1-norms bounded by 3. We use the following

elementary lemma to show that B1 and B2 generate the same module by showing the change of basis

matrix between B1 and B2 has the determinant of one.

Lemma 3.4.10 ([22, p. 135]). Let M⊆Rℓ be a Z-module with basis b1, . . . ,bℓ. Then

lim
r→∞

|{x ∈M : ∥x∥ ≤ r }|
vol

({
x ∈Rℓ : ∥x∥ ≤ r

}) = 1

|det(b1 · · ·bℓ)| .
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Mp =




1 2 . . . . p −1
1 1
2 1

1
. . .

...
. . .

1
p −1 1 2 3 · · · p −2 p




.

FIGURE 3.5: [27, Figure 4]. The matrix Mp .

Ap =




1 0 · · · · · · 0 0 · · · · · · · · · 0

0
. . .

. . .
...

...
... 1

...
. . .

. . .
. . .

...
...

...
... 0

...
. . .

. . . 0
...

...
...

...
...

0 · · · · · · 0 1 0 1 0 · · · 0
0 · · · · · · 0 1 2 0 · · · · · · 0
...

...
... 0 0 1

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

0
...

...
... 0 · · · 0 1 0

1 0 · · · · · · 0 1 · · · · · · 1 2




. (3.4.6)

FIGURE 3.6: [27, Figure 6]. The matrix Ap .

We remark that some meticulous ordering of elements of Fq = pℓ is necessary to make this calculation

easier, namely to make the matrices as "lower triangular" as possible. The final point here is the the

determinants of both modules are 1 thereby making the bases equivalent. See Figures 3.5 and 3.6 for an

illustration of the case Fp . In case of Fq = pℓ,ℓ≥ 2, Mp and Ap are used ℓ times as blocks. The detailed

set up of basis vectors for B1 and B2 are given in [[27, Section 6.1]].

Proof of Lemma 3.4.8 entails devising bases for various cases, namely regarding whether p is 2 or odd

and the value of the second coefficient χ2 while holding χ1 = 1. The end result for each case shows

that the bases generate the integer module. The detail is laid out in [[27, Section 6.2]].

Proof of Proposition 3.4.6

Our goal is to bound the expected size of the kernel of A on O, namely |kerA| · 1O. Let A be the σ-

algebra generated by m, (k i )i≥1, (d i )i≥1 and by the numbers m(χ1, . . . ,χℓ) of equations of degree ℓ≥ 3

with coefficients χ1, . . . ,χℓ ∈ F∗q . Thus, the total degree∆=∑n
i=1 d i is A-measurable.
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Let us define the empirical frequency for a vector σ ∈ Fn
q and s ∈ Fq [[27, Eq. 7.1]]

ρσ(s) =
n∑

i=1
d i 1 {σi = s} (3.4.7)

and let ρσ = (ρσ(s))s∈Fq . In the event of O, ρσ has nearly uniform entries for most σ ∈ kerA. Here is a

helpful statement that characterizes such uniformity.

Fact 3.4.11 ([27, Fact 7.1]). For any ε> 0 w.h.p. given A we have

1O · |ker A| ≤ (1+ε)
∣∣{σ ∈ ker A : ∥ρσ−q−1∆1∥1 < ε∆

}∣∣ .

In other words, it suffices to count nearly equitable kernel vectors only. We look into different regimes

of nearly equitable frequency vectors and bound their contributions. Let Pq be the set of all possible

frequency vectors, i.e., [[27, Section 7.1]]

Pq =
{
ρσ :σ ∈ Fn

q

}
.

For ε> 0 let

Pq (ε) = {
ρ ∈Pq : ∥ρ−q−1∆1∥ < ε∆}

.

In addition, we introduce

Zρ =
∣∣{σ ∈ ker A : ρσ = ρ}∣∣ (ρ ∈Pq ),

Zε =
∑

ρ∈Pq (ε)
Zρ (ε≥ 0),

Zε,ε′ =Zε′ −Zε (ε,ε′ ≥ 0).

Pq (ε) can be interpreted as nearly equitable frequency vectors; Zρ is the number of kernel vectors

whose frequency vectors match ρ ∈Pq ; Zε is the sum of the number of all the kernel vectors whose

frequency vectors are nearly equitable; Zε,ε′ denotes the gap in the numbers when the allowed error

changes.

Here is another helpful lemma.

Lemma 3.4.12 ([27, Lemma 7.2]). For any fixed ε > 0 for large enough ω = ω(ε) > 1 w.h.p. we have

E
[
Zωn−1/2,ε |A

]< εqn−m .

The proof of Lemma 3.4.12 involves an expansion to the second order of the optimisation problem

(1.3.9) around the equitable solution, similar to previous work on k-XORSAT (see [7, 11, 38]).

With the particular terms we have defined, it is easy to write the version of a local limit theorem we

use in [27], distinct from the version in [35]. We continue to denote by σ ∈ Fn
q a uniformly random

assignment and by I q−1 the (q −1)× (q −1)-identity matrix. Recall ρσ from (3.4.7) and also consider

ρ̂ = (ρ(s))s∈F∗q . The following claim determines the distribution of ρσ. Let ρ̄ = q−1∆1q−1.



47

Claim 3.4.13 ([27, Claim 7.16]). Let C be the (q −1)× (q −1)-matrix defined as

C = q−1I q−1 −q−21(q−1)×(q−1).

Then w.h.p. for all ρ ∈Pq we have

P
[
ρσ = ρ |A]= q q/2dq−1

(2E[d 2]πn)(q−1)/2
exp

(
− (ρ̂− ρ̄)⊤C −1(ρ̂− ρ̄)

2nE[d 2]

)
+o(n(1−q)/2).

For ρ that are within O(n−1/2∆) of the equitable solution, we need a more refined argument since the

conceivable empirical distributions ρσ given thatσ ∈ ker A are confined to a proper sub-lattice ofZq .

The same is true for Pq unless d= 1. Hence, we need to work out how these lattices intersect.

Moreover, for ρ ∈Pq we need to calculate the number of assignments σ such that ρσ = ρ as well as

the probability that such an assignment satisfies all m equations. By way of Proposition 3.4.5 and

meticulous steps that involve Bayes’ rule as well as Claim 3.4.13, we deal with this complication to

prove the following lemma.

Lemma 3.4.14 ([27, Lemma 7.2]). For any ε> 0 for large enoughω=ω(ε) > 1 we have E[Zωn−1/2 |A] ≤
(1+ε)qn−m w.h.p.

Finally, by way of Fact 3.4.11, Lemma 3.4.12 and Lemma 3.4.14, Proposition 3.4.6 follows. Proofs of

Lemma 3.4.12 and Lemma 3.4.14 are laid out in [[27, Section 7]] and proof of Claim 3.4.13 is given in

[[27, Appendix]].
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4 List of Publications and Author’s

Contribution

4.1 The Number of Satisfying Assignments of Random 2-SAT Formulas

A joint work with D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, N. Müller, M. Penschuck, and G.

Zhou. The title of the Arxiv version is The random 2-SAT partition function [2]. The journal version

[3] was renamed as above and includes a few minor changes.

We prove a long standing conjecture about a random constrains satisfiability problem called 2-SAT.

Specifically, the number of solutions for a random 2-SAT has been predicted to be related to a func-

tional evaluated at the marginal probability resulting from Belief Propagation (BP) recursion. This

paper is published in Random Structures and Algorithms on 17.01.2021 [3].

Author’s contribution: JHL worked on showing that the log-likelihood function which succinctly con-

tains the BP update function is a contraction; worked on coming up with the extremal conditions on

the leaves to bias the marginal distribution at the root to the extremes; worked on showing some

bounded probabilities and bounded conditions regarding the leaves at an arbitrary distance away.

4.2 Warning Propagation: Stability and Subcriticality

A joint work with O. Cooley, J.B. Ravelomanana.

We consider a discrete message passing algorithm called Warning Propagation (WP). In particular,

we analyze WP on random graphs in a general setting with diverse applications in mind. We show WP

converges rapidly on random graphs by reducing the analysis to WP on a multi-type Galton Watson

tree. This paper is submitted to a journal and is in the review process [32].

Author’s contribution: JHL worked on making reasonable assumptions for the general random graph

model to have in order for WP to be successful; worked on making contiguous graph models as well as

local tree structure to run WP on and showing the convergence is fast; worked on showing subcritical

changes after a bounded number of rounds.

4.3 The Sparse Parity Matrix

A joint work with A. Coja-Oghlan, O. Cooley, M. Kang, and J.B. Ravelomanana.
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We study a square matrix with each entry being a Bernoulli distribution with p = d/n,d > 0. We

prove a particular threshold d = e at which two behaviors of the matrix change in an unusual way.

One regards the fraction of frozen variables f (A) and the other regards replica symmetry. This paper

was accepted and presented at the Symposium of Discrete Algorithms (SODA) conference in January

2022. It is also submitted to a journal and in the review process [24].

Author’s contribution: JHL worked on showing that f (A) converges to the fixed points of a certain

function that comes from the local structure of the graph that represents A; worked on warning prop-

agation analysis on the bipartite graph to show WP correctly identifies the variable categories with

high probability; worked on showing the unstable fixed point is not a feasible value for f (A); worked

on showing the structure of the minor matrix.

4.4 The Full Rank Condition for Sparse Random Matrices

A joint work with A. Coja-Oghlan, P. Gao, M. Hahn-Klimroth, N. Müller, M. Rolvien.

We provide a sufficient condition for a sparse random matrix to be of full row rank. This condition is

applied to matrices over finite fields as well as {0,1} matrix over rationals. This paper was submitted

to a journal and is in the review process [27].

Author’s contribution: JHL worked on examples to signify the main result; worked on the variational

formula that comes as an upper bound of the nullity of a perturbed matrix and showing the maxi-

mum still lies at 0; worked on the various bases of the module generated by the frequency vectors

related to the kernel of A and on the change of bases matrix.
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5 Zusammenfassung

Vor etwa 50 Jahren interessierten sich Physiker für ein Objekt, das sie Spinglas nannten. Im Gegen-

satz zum üblichen Verhalten von Partikeln, die sich in die gleiche Richtung ausrichten (Ferromag-

netismus) oder sich in unterschiedliche Richtungen ausrichten (Antiferromagnetismus), fanden Phy-

siker heraus, dass ein Spinglas beide Typen aufweist und somit nicht nur in eine der beiden Kate-

gorien fällt. Mit anderen Worten, wir stellen uns vor, dass jedes Teilchen eine Orientierung (Spins)

hat, sagen wir {±1}. Zwischen zwei Teilchen gibt es eine Wechselwirkungsenergie und ein Spinglas

weist sowohl positive als auch negative Wechselwirkungsenergien auf. Es ist schwierig, einen Beset-

zung von Spins zu finden, der die gesamte Wechselwirkungsenergie minimiert. Dies war der Beginn

der Theorie des Spinglases [59]. Obwohl ein Spin-Glas als physikalisches Objekt nutzlos ist, zeigten

frühe Studien, dass es ein hilfreiches Modell ist, um ein allgemeines ungeordnetes System [61] zu un-

tersuchen. Die von ihnen entwickelten Methoden namens Cavity Method und Replikasymmetrie be-

fassten sich mit dem ungeordneten System eines Spinglases und den Änderungen im makroskopis-

chen Verhalten des Objekts. Dies nennt man Phasenübergänge. Solche Methoden hatten große Aus-

wirkungen auf andere Wissenschaftsdisziplinen, insbesondere Informationstheorie, Informatik und

Mathematik.

Als mathematische Erfindung von Erdös und Rényiwurde die Theorie der Zufallsgraphen auch zu

einem integralen Spielplatz der Mathematik und Physik. Sei V die Menge der Knoten. Kanten sind

gemäß der Bernoulli-Verteilung zufällig zwischen Knoten vorhanden. Dies wird als ER-Graph beze-

ichnet. Die Zufälligkeit hat die Idee vorangetrieben, Eigenschaften zu beweisen, indem man einen

Wahrscheinlichkeitsraum schafft und beweist, dass solche Eigenschaften existieren. Sie bewiesen

auch das Vorhandensein von Phasenübergängen verschiedener Eigenschaften in diversen Graphen-

modellen. Mathematiker und Physiker gleichermaßen nutzten die vorhandenen Ideen des anderen,

um in den entsprechenden Disziplinen Fortschritte zu machen.

Eine besondere Art von Problemen, an denen beide Parteien interessiert sind, sind Probleme der Er-

füllbarkeit von Einschränkungen. Ein Constraint-Satisfaction-Problem (CSP) besteht aus n-Variablen,

x1−, · · ·−, xn- und m-Constraints a1, . . . , am . Jede Bedingung ist mit einer Menge von Variablen ver-

bunden und erlegt jeder verbundenen Variablen eine bestimmte Bedingung (z. B. einen Spin) auf.

Das Ziel ist es, eine Konfiguration von Spins für {x1}i∈[n] zu finden, die alle Bedingungen erfüllt.

Eine Möglichkeit, die Wechselwirkungen zwischen Variablen gemäß den Einschränkungen auszu-

drücken, ist das Faktorgraphmodell. Ein Faktorgraph drückt die Wechselwirkungen von Teilchen in

einer Konfiguration durch Faktoren benachbarter Teilchen aus [54]. Sei Ω eine endliche Menge von

Spins. Sei G = (V ,F ) der bipartite Graph indem V die Menge der n Variablen des Systems und F
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die Menge der Faktoren (Constraints) bezeichnet. Wie im ER-Graph sind zufällige Kanten zwischen

einer Variablen und einem Faktor vorhanden. Wenn zwischen v ∈ V und a ∈ F eine Kante existiert,

nennen wir sie Nachbarn. Für x ∈V ∪F , ∂x bezeichne die Knoten, die Nachbarn von x sind. Der Fak-

torgraph G benötigt eine weitere Komponente, eine Gewichtsfunktion ψa : Ω∂a → (0,∞). Bei einer

Konfiguration σ ∈ Ωv bezeichne σ∂a die Spins der Variablen in ∂a. Dann hat G eine Boltzmann-

Wahrscheinlichkeitsverteilung auf dem KonfigurationsraumΩV : ,

µG (σ) =ψG (σ)/ZG für σ ∈ΩV , wobei

ψG (σ) =
∏
a∈F

ψa(σ∂a), ZG =
∑

σ∈ΩV

ψG (σ),

Hier ist ZG die Partitionsfunktion des Systems. In der Physik hatψa(σ∂a) normalerweise die Form von

exp
[−βEa(σ∂a)

]
wobei β= 1/T ≥ 0 der Kehrwert der Temperatur ist und Ea(σ∂a). Der inverse Tem-

peraturterm β wirkt als Straf-Funktion. Anders ausgedrückt ergibt sich eine geringere Wahrschein-

lichkeit für eine höhere Energie Ea(σ∂a) ≥ 0.

Anstatt sich CSP direkt zu nähern, kamen Forscher in den 1980er Jahren auf die Idee zufällige CSP

(rCSP) zu betrachten, um einen effizienten Algorithmus zur Lösung von CSPs [43] zu entwickeln.

Unter zahlreichen Message-Passing-Algorithmen basierend auf der Cavity-Methode konzentrieren

wir uns hier auf zwei dieser Algorithmen, Belief Propagation (BP) und Warning Propagation (WP).

Wir werden nun das Faktorgraphmodell verwenden, um den zufälligen 2-SAT zu definieren, und BP

verwenden, um eins der Hauptresultate zu erhalten.

Jetzt konzentrieren wir uns auf das 2-SAT-Problem. Es gibt n Variablenknoten und m = Po(dn/2) viele

Prüfknoten, somit hat jede Variable die Gradverteilung von Po(d). Jede Variable bekommt einen Spin

in Ω = {±1}. Für jedes a ∈ F hat es zwei unterschiedliche Nachbarn x1, x2 ∈ V und es wählt unter 4

verschiedenen Beziehungen mit den Literalen aus, sodass es 4n(n−1) viele Optionen von Paaren zur

Auswahl hat . Dann ist eine Instanz von 2-SAT eine Konjunktion von Disjunktionen

Φ= a1 ∧·· ·∧am .

Wenn m zunimmt, ist natürlich die Wahrscheinlichkeit geringer, dass Φ erfüllt wird, daher war der

Begriff des Phasenübergangs bei steigendem m ein wichtiges Barometer bei der Untersuchung von

k-SAT und anderen rCSP . Das zufällige 2-SAT-Problem war das erste rCSP, dessen Erfüllbarkeitss-

chwelle 1992 aufgedeckt wurde [46, 75]. Zahlreiche Fragen zu 2-SAT wurden beantwortet [19, 20, 33,

34, 56] . Das Finde der Anzahl von Lösungen eines zufälligen 2-SAT war jedoch noch offen. Insbeson-

dere Monasson und Zecchina untersuchten dieses Problem. Anstatt die Zustandssumme Z (Φ) direkt

zu berechnen, stellten sie eine Vermutung über den normalisierten Logarithmus von Z (Φ), der als

freie Energiedichte bezeichnet wird, auf. In [3] haben wir diese Vermutung bewiesen, die wir nun als

Satz formulieren.

Seien d+,d− = Po(d/2) die Verteilungen der Anzahl von ’wahren’ bzw. ’falschen’ Nachrichten, die von
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den Nachbarn einer uniform zufällig gewählten Variablen kommen. Weiterhin seienµπ,1,µπ,2, . . . Zu-

fallsvariablen mit Verteilungπ, alle voneinander unabhängig, und π̂ sei die Verteilung der Zufallsvari-

able [3, Eq. 1.1]

∏d−
i=1µπ,i∏d−

i=1µπ,i +
∏d+

i=1µπ,i+d−
∈ (0,1).

Dies ist der BP-Operator, der π (die Verteilung von Nachrichten) aktualisiert, die eine Variable em-

pfängt. Sei δ1/2 ∈ P (0,1) das Atom bei 1/2 und wir schreiben BPℓd ( · ) für die ℓ-fache Rekursion des

Operators BPd .

Theorem 5.0.1 ([3, Theorem 1.1]). Für d < 2 existiert die Grenze πd = limℓ→∞ BPℓd (δ1/2) und

lim
n→∞

1

n
log Z (Φ) = E

[
log

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)
]

in Wahrscheinlichkeit.

(5.0.1)

Die rechte Seite von (5.0.1) heißt die Bethe Free Entropie. BP berechnet die marginale Wahrschein-

lichkeit, dass eine Zufallsvariable einen Spin annimmt. Somit zeigen wir durch die BP-Rekursion,

dass die Bethe-Free Entropie φ(β) die Anzahl der erfüllenden Lösungen für ein zufälliges 2-SAT-

Problen angibt. Dass φ(β) die obere Schranke von 1
n log Z (Φ) scharf ist, wurde durch das sogenan-

nte Interpolationsverfahren [44, 47, 71] bewiesen. Daher hebt unser Ergebnis die scharfe untere

Grenze der Zahl der Lösungen hervor und beweist damit die Vermutung von Monasson und Zecchina

[66]. Der Beweis beruht darauf, einen Fixpunkt einer stochastischen Gleichung zu finden und ihn

auf die Bethe-Free-Entropie anzuwenden. Insbesondere der Fixpunkt ist eindeutig und passt zur

Boltzmann-Verteilung. Diese Eigenschaft wird Gibbs Uniqueness genannt. Wir verwenden die Tat-

sache, dassΦ die lokale Struktur eines Galton-Watson-Verzweigungsprozesses hat, und beweisen die

Gibbs-Uniqueness, indem wir extreme Randbedingungen auf den Blättern konstruieren. Es beruht

auch auf der schnellen Konvergenz der Fixpunktgleichung. Wir stellen auch fest, dass der Faktor-

graph, damit BP erfolgreich ist, einem Galton-Watson-Verzweigungsprozess ähneln muss, sodass er

keine Zyklen oder langen Korrelationen [60] enthält. Diese Bedingung hängt auch mit dem Begriff

der Replikasymmetrie zusammen. Für Einzelheiten verweisen wir den Leser auf [3].

Nun wenden wir uns einem anderen Message-Passing-Algorithmus namens Warning Propagation

zu. Während BP die Wahrscheinlichkeitsverteilungen der gerichteten Nachrichten aktualisiert, ak-

tualisiert WP die Nachrichten (Spins) mit anderen Nachrichten als Reaktion auf die Nachrichten

ihrer Nachbarn. Angenommen, wir haben eine Instanz von rCSP,Φ und GΦ bezeichne seinen Faktor-

graphen. Jede Kante ist mit zwei Nachrichten versehen, µx→a und µa→x . Wenn wir jede Nachricht als

boolesch initialisieren und WP ausführen, dann aktualisiert WP die Nachrichten mit einem anderen

booleschen Wert gemäß den folgenden Warnungen [60, Section 14.3.3]. Für σ ein boolescher Wert,

• µx→a(σ) = 1 bedeutet nach der Forderung der Constraints b ∈ ∂x\a soll x nicht den Wert σ

annehmen.
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• µx→a(σ) = 0 bedeutet je nach Forderung der Constraints b ∈ ∂x\a kann x den Wert annehmen

σ.

Natürlich müssen die Nachrichten nicht boolesch sein. Wir könnten WP auch auf ein Modell mit

mehreren Knoten anwenden. Hier definieren wir WP in voller Allgemeinheit.

Gegeben sei ein Graph G , µv→w ,µw→v , v w ∈ E(G) seien die Nachrichten aus einer endlichen Menge

Ω. Wir definieren M (G) als die Menge aller Vektoren
(
µv→w

)
(v ,w)∈V (G)2:v w∈E(G) ∈Ω2|E(G)| wobei V (G)

die Menge aller Knoten der beteiligten Typen ist. Um die Aktualisierungsfunktion für die Nachrichten

zu definieren, sei für d ∈N
((
Ω
d

))
die Menge aller d-arischen Multimenge mit Elementen aus Ω. [[32,

Eq. 1.1]],

ϕ :
⋃

d≥0

((
Ω

d

))
→Ω

sei eine Aktualisierungsregel, die bei gegebener beliebiger Menge von Eingabenachrichten eine Aus-

gabenachricht bestimmt. Mit anderen Worten, wir definieren den WP-Operator auf G durch

WPG : M (G) →M (G) , µ= (
µv→w

)
v w 7→ (

ϕ
({{
µu→v : u ∈ ∂v\w

}}))
v w ,

wobei {{a1, . . . , ar }} die Multimenge mit a1, . . . , ar ∈Ω bezeichnet. Um also eine gerichtete Nachricht

zu aktualisieren, ignoriert WP das Ziel, während es auf alle anderen Nachbarn in einer ähnlichen

Weise wie BP reagiert.

Hier ist ein Beispiel für WP. Propagierung von Einheitsklauseln (UCP) beginnt bei jeder Klausel mit

einer Variablen in ihrem Nachbarn (Einheitsklausel). Wir können den Wert der Variablen entsprech-

end der Forderung der Klausel setzen, sodass die Klausel erfüllt ist. Durch das Anheften der Variablen

wären andere Klauseln betroffen, die mit dieser Variablen verbunden sind. Die Klauseln, die durch

den Wert der Variablen erfüllt werden, propagieren keinen Effekt, also werden sie gelöscht, aber jede

Klausel, die nicht erfüllt wird, propagiert den Effekt, dass sie durch andere verbundene Variablen er-

füllt werden müssen. UCP wird rekursiv angewendet. Irgendwann würde dieser Prozess aufhören,

entweder mit einer leeren Menge oder mit Klauseln, die mindestens zwei Variablen enthalten. UCP

wurde erfolgreich verwendet, um Ergebnisse zu k-SAT-Problemen zu erhalten [1, 45]. Andere be-

merkenswerte Arbeiten wurden mit WP durchgeführt, insbesondere der Peeling-Prozess für den k-

Kern [64, 73]).

Wie UCP zeigt, werden die Aktualisierungsregel, die Arten von Nachrichten und die Arten von Scheit-

elpunkten gemäß den speziellen Problemen bestimmt, mit denen sich WP beschäftigt. Andere be-

merkenswerte Ansätze zur Analyse rekursiver Prozesse sind die Methoden der Differentialgleichun-

gen [73, 86], Verzweigungsprozesse [77], Aufzählungsmethoden [25] und Geburts-Tod-Prozesse [50,

51].

Ähnlich wie in BP wäre es für WP hilfreich, wenn der rekursive Prozess nach einer begrenzten An-

zahl von Rekursionen schnell zu einem festen Punkt konvergiert, um nützlich zu sein. Außerdem
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sollten alle möglichen Änderungen, nachdem der Prozess den Fixpunkt erreicht hat, nicht zu einer

makroskopischen Verhaltensänderung führen.

Die Hauptergebnisse von [32] erreichen diese Ziele, sodass WP auf verschiedene Modelle oder Zu-

fallsgraphen angewendet werden kann(wie z.B. das ER binomiale Zufallsgraphenmodell G(n, p), k-

partite Graphen, zufällige reguläre Graphen, zufällige Graphen mit einer bestimmten Gradfolge, das

stochastische Blockmodell und Faktorgraphen zufälliger Hypergraphen). Tatsächlich haben wir einige

Kriterien für Annahmen für ein Zufallsgraphenmodell erarbeitet, sodass WP angewendet werden

kann, um die Nachrichten zu einer schnellen Konvergenz zu bringen, sobald das zugrunde liegende

Graph-Modell diese eigenschaften erfüllt. Einige der Hauptannahmen ähneln den Eigenschaften,

auf die sich BP stützte. Die lokale Struktur eines Modells muss einem Galton-Watson-Baum mit

mehreren Typen ähneln.

In gewisser Weise ist das Spiel von WP dasselbe wie in BP; wir wollen die Fixpunkte von WP finden

und die Konvergenzrate kontrollieren. In der Tat zeigen wir, dass unser Fixpunkt nur eine Sammlung

von Wahrscheinlichkeitsverteilungen auf Ω jeder Art von gerichteter Kante sein wird, so dass, wenn

die Kinder eines Knotens v unabhängig von diesen Verteilungen Nachrichten an v senden, dann

spiegelt die Nachricht von v an ihre Eltern auch die gleiche Verteilung von Nachrichten jedes Typs

wider.

Aufgrund der allgemeinen Formulierung von k-Typen können die Verteilungen von Nachrichten

zwischen Scheitelpunkten von k-Typen effizient als Matrix ausgedrückt werden. Ohne viele Details

legen wir hier den Hauptsatz nieder.

Theorem 5.0.2 ([32, Theorem 1.3]). Sei G ein zufälliges Graphenmodell, das [ [?, Annahmen 2.10]]]

und seien P ,Q0 Wahrscheinlichkeitsverteilungsmatrizen auf Ω, so dass P die stabile WP-Grenze von

Q0 ist. Dann existiert für jedes δ> 0 t0 = t0
(
δ,Z ,ϕ,Q0

)
, sodass Folgendes gilt.

Angenommen, µ(0) ∈M (G) ist eine Initialisierung gemäß Q0. Dann gilt für alle t ≥ t0,

∑
v ,w :v w∈E(G)

1
{
Gt

v→w

(
µ(0)) ̸= w p f t0

v→w
(
µ(0))}< δn

mit hoher Wahrscheinlichkeit.

Der Hauptsatz besagt, dass nach einer begrenzten Anzahl von Runden t0 des Ausführens von WP

von der anfänglichen Verteilung Q0 die WP-Nachrichten unverändert bleiben, mit Ausnahme von

höchstens δn vielen gerichteten Kanten .

Wir beweisen dieses Theorem, indem wir uns auf einige andere Graphmodelle stützen, die mit dem

vorliegenden Modell verwandt sind, und auf denen WP ausgeführt wird. Danach beenden wir den

Beweis, indem wir zeigen, dass die stabile Grenze existiert. Wir verweisen den Leser für Einzelheiten

auf [32].

In [24] wenden wir das Ergebnis auf WP an, um ein Ergebnis über eine kombinatorische Zufallsma-

trix zu beweisen. Mit kombinatorisch meinen wir, dass die Einträge der Matrix aus einer diskreten
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Wahrscheinlichkeitsverteilung gezogen werden. Sei A = A(n, p) eine quadratische Matrix, wobei jeder

Eintrag eine Bernoulli-Verteilung mit p = d/n,d > 0 hat. Hier ist d der Parameter.

Dieses Modell ist eng mit CSP und dem Inferenzproblem verbunden, da unsere Hauptergebnisse für

beide Fragen relevant sind. Sei y ein Zufallsvektor im Spaltenraum von A und sei Ax = y . Natürlich

wäre es das Ziel, die Lösungsmenge zu finden. Diese Frage ähnelt der eines rCSP namens k-XORSAT.

Eine zufällige k-XORSAT-Instanz besteht aus linearen m-Gleichungen in F2 über n-Variablen. Jede

Gleichung erhält k Variablen und ist entweder gleich 0 oder 1. Entsprechend ist es ein lineares Sys-

tem Ax = y mod 2 in dem A ∈Mm×n(F2) eine Matrix ist, in der jede Zeile k Nicht-Null-Einträge und

b ∈ Fn
2 enthält. Es ist bekannt, dass k-XORSAT eine scharfe Erfüllbarkeitsschwelle hat. Mit zunehmen-

dem Verhältnis m/n fanden Dubois und Mandler sowie Pittel und Sorkin die Schwellenwerte für ver-

schiedene Modelle von k-XORSAT [38, 72]. Überraschend ist, dass diese Schwelle eintritt, bevor m/n

eins erreicht, insbesondere dann, wenn eine lineare Anzahl von Variablen einfrieren, also in allen

Lösungen die gleichen Werte annehmen.

Lassen Sie uns zusätzlich zu den eingefrorenen Variablen den Anteil der eingefrorenen Variablen

definieren [[24, Section 1.2]]

f (A) = |{i ∈ [n] : ∀x ∈ ker A : xi = 0}|/n.

Wir können diese Frage auch als Inferenzproblem betrachten. Sei x̂ ∈ Fn
2 ein Zufallsvektor (Grund-

wahrheit) und y die verrauschte Beobachtung von x̂ über y = Ax̂ . Wir können fragen, wie gut wir x̂

wiederherstellen können, wenn A und y gegeben sind. Hier sehen wir den Zusammenhang zwischen

CSP und dem Inferenzproblem, da die A-posteriori-Verteilung eines zufälligen festen Vektors x, der

der Grundwahrheit entspricht, die gleichmäßige Verteilung zwischen den Lösungen ist [24, Eq. 1.3]

P
[

x̂ = x | A, y
]= 1{Ax = y}

|ker A| , (x ∈ Fn
2 ). (5.0.2)

Wir können auch darüber nachdenken, welchen Bruchteil der Variablen in x̂ wir mit einem zufälligen

Vektor x abgleichen können. Wir definieren diesen Bruchteil als overlap, [[24, Section 1.3]]

R(x , x̂) = 1

n

n∑
i=1

1{x i = x̂ i }.

Der erwartete Wert der bedingten Überlappung bei A, y ist das Ziel. Der Durchschnitt der bedingten

Überlappung ist ein von y unabhängiger Wert, gegeben durch [[24, Section 1.3]]

R̄(A) = E[
R(x , x̂) | A, y

]= 1

|ker A|2
∑

x,x ′∈ker A
R(x, x ′).

In diesem Zusammenhang können wir nur wenige Worte zur Replikatsymmetrie bezüglich der Über-

lappung verlieren. Wir sagen, dass das lineare System abbildsymmetrisch ist, wenn die Überlappung
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zu einem einzigen Wert konvergiert, angesichts der Unordnung, die in diesem Fall A, y [90] ist,

lim
n→∞E

[∣∣R(x , x̂)− R̄(A)
∣∣]→ 0.

Viele Inferenzprobleme zeigen, dass die Überlappung unabhängig von der gegebenen Bedingung

A, y [13] gegen einen deterministischen Wert konvergiert. Wir nennen dies Strong Replica Symmetry

und drücke es aus als

lim
n→∞E

[∣∣R(x , x̂)−E[
R̄(A)

]∣∣]→ 0.

Unser Problem mit A(n, p) gehört zu dem seltenen Fall, wo etwas stark replikationssymmetrisch ist,

wenn 0 < d < e, aber nur replikationssymmetrisch, wenn d > e.

Wir geben nun die wichtigsten Ergebnisse zu f (A) und R(x , x̂) an. Eine gleichmäßig zufällig gewählte

Variable v hat etwa eine Wahrscheinlichkeit von f (A), eingefroren zu werden. Die lokale Baum-

struktur von G , die A darstellt, würde das Einfrieren der Wurzel v erfordern, dass v mindestens eine

Klausel hat, deren untergeordnete Variablen eingefroren sind. Dann enthält die folgende Gleichung

diese Information [[24, Eq. 1.1]]

φd : [0,1][0,1], α 7→ 1−exp
(−d exp(−d(1−α))

)
; (5.0.3)

das heißt, die Fixpunkte von 5.0.3 sind die plausiblen Brüche eingefrorener Variablen. Es stellt sich

heraus, dass es möglicherweise drei Fixpunkte in φ gibt, von denen zwei stabile Fixpunkte sind, die

mit α∗ ≤α∗ bezeichnet sind, und ein instabiler Fixpunkt α0 und 0 ≤ al pha∗ ≤α0 ≤α∗ ≤ 1.

Hier ist das erste Hauptergebnis zu f (A).

Theorem 5.0.3 ([24, Theorem 1.1]). • Für d ≤ e hat die Funktion φd einen eindeutigen Fixpunkt

und

lim
n→∞ f (A) =α∗ =α∗ in Wahrscheinlichkeit.

• Für d > e haben wir α∗ <α∗ und für alle ε> 0,

lim
n→∞P

[| f (A)−α∗| < ε
]= lim

n→∞P
[| f (A)−α∗| < ε]= 1

2
.

Somit durchläuft f (A) den Phasenübergang bei d = e, aber sein Verhalten in d > e ist unentschieden

und nimmt mit gleicher Wahrscheinlichkeit 1/2 entwederα∗ oderα∗ an. Das nächste Hauptergebnis

zeigt ein ähnliches unentschlossenes Verhalten bezüglich der bedingten Überlappung.

Theorem 5.0.4 ([24, Theorem 1.2]). • Wenn d < e dann gilt limn→∞ R(x , x̂) = (1+α∗)/2 in Wahr-

scheinlichkeit.
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• Für alle d > e gilt limn→∞E
∣∣R(x , x̂)− R̄(A)

∣∣= 0 mit

lim
n→∞P

[∣∣∣∣R̄(A)− 1+α∗
2

∣∣∣∣< ε
]
= lim

n→∞P
[∣∣∣∣R̄(A)− 1+α∗

2

∣∣∣∣< ε
]
= 1

2
für alle ε> 0.

Auch hier erfährt der Erwartungswert der bedingten Überlappung einen Phasenübergang bei d = e

mit ähnlichem unentschlossenem Verhalten bei d > e.

Beweise für die beiden Hauptergebnisse kommen in drei Schritten. Zunächst zeigen wir, dass sich

f (A) auf die Fixpunkte von φd konzentriert, entweder auf α∗,α∗ oder α0. Zweitens stellen wir fest,

dass der instabile Fixpunktα0 ein unwahrscheinliches Ergebnis ist. Schließlich schließen wir, dassα∗
und α∗ gleich wahrscheinlich sind. Der erste und der zweite Schritt verwenden mehrfach das WP-

Theorem, das wir in [32] bewiesen haben. Besonders der Multityp WP ist hier nützlich, da wir zwei

Arten von Knoten haben, von denen einer Klauseln und der andere Variablen sind. Ebenfalls nützlich

ist die Tatsache, dass sich dieses Modell in einem konstanten Schwebezustand befindet, sodass wir

nicht alle Variablen als eingefroren oder nicht eingefroren initialisieren können. Daher erstellen wir

einen dritten Nachrichtentyp namens slush und initialisieren alle gerichteten Nachrichten als slush.

Indem wir verschiedene Versionen von WP auf der lokalen baumähnlichen Struktur ausführen, kön-

nen wir zeigen, dass f (A) zu α∗,α0,α∗ konvergiert und dass α0 ein unwahrscheinlicher Wert ist. Ein

weiteres wichtiges Element, um den zweiten Teil zu zeigen, ist ein Satz von [26], den wir hier angeben.

Dazu bedarf es einiger Einarbeitung, da dieser Satz auch in der letzten Arbeit [27] verwendet wird.

Das folgende Setup folgt genau [27]. Seien d ≥ 0, k ≥ 3 unabhängige ganzzahlige Zufallsvariablen,

sodass E[d 2+η]+ E[
k2+η] < ∞ für ein beliebig kleines η > 0. Seien (d i ,k i )i≥1 unabhängige Kopien

von (d ,k) und setze d = E[d ],k = E[k]. Außerdem sei d = gcd{supp(d )} und k = gcd{supp(k)}. Sei n

ganzzahlig teilbar durch k und m = Po(dn/k), unabhängig von (d i ,k i )i . Es kann gezeigt werden, dass

die Gradsummen übereinstimmen [[26, Eq. 1.1]],

n∑
i=1

d i =
m∑

j=1
k j ,

mit Wahrscheinlichkeit mindestens Ω(n−1/2) [26, Proposition 1.7]. Unter der Voraussetzung, dass

die Gradsummen übereinstimmen, bezeichne G = Gn(d ,k) einen einfachen zufälligen bipartiten

Graphen auf einer Menge von Klauseln {a1 . . . , am} und ein Satz von Variablen {x1, . . . , xn}, so dass k i

den Grad von ai und d j den Grad von x j bezeichnet, wobei k i und d j sind jeweils unabhängige

Kopien von k und d . Die Kanten von G bezeichnen die Positionen der Nicht-Null-Elemente von

A = A(G), die endliche Körperelemente oder rationale Zahlen sein können. Für diese Diskussion

sei das Feld Fq , wobei q = pℓ für p prim ist. Sei χ eine Zufallsvariable in F∗q = Fq \{0}. Lassen Sie rk(A)

und nul(A) den Rang bzw. die Dimension des Kerns vonA bezeichnen.

Wir bezeichnen die wahrscheinlichkeitserzeugenden Funktionen von d und k als D(x) bzw. K (x).

Definiere [[26, Eq. 1.2]]

Φ : [0,1] →R, α 7→ D
(
1−K ′(α)/k

)− d

k

(
1−K (α)− (1−α)K ′(α)

)
.
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Der folgende Satz bestimmt den normalisierten Rang vonA:

Theorem 5.0.5 ([26, Theorem 1.1]).

rk(A)

n
P−→ 1− max

α∈[0,1]
Φ(α) as n →∞. (5.0.4)

Basierend auf diesem Theorem können Rang und Kern-Dimemsion nur durch den Maximalwert von

Φ(α) erreicht werden. Wir zeigen, dass der instabile Fixpunkt f (A) eine viel geringere Lösung des

linearen Systems erzeugt, sodass der Satz nicht mehr gilt.

Der dritte Punkt beruht auf der Symmetrie des Modells und der Momentenberechnung. Die Slush-

Minor-Matrix, die WP erzeugt, trägt das Ergebnis etwa mit gleicher Wahrscheinlichkeit. Wir ver-

weisen den Leser auf [24].

Theorem 5.0.5 ist die Hauptbedingung für die vierte Arbeit der Dissertation [27]. Wir geben jetzt das

Hauptergebnis an.

Theorem 5.0.6 ([27, Theorem 1.1]). Wenn q und d Teilerfremde sind und

Φ(z) <Φ(0) für alle 0 < z ≤ 1, (5.0.5)

dann hatA vollen Zeilenrang über Fq w.h.p.

Das Theorem liefert eine bemerkenswert einfache Bedingung, um zu testen, ob ein Zufallsmatrix-

modell vollen Rang hat oder nicht. Lassen Sie uns betonen, dass (5.0.4) nicht garantiert, dass A den

vollen Zeilenrang mit hoher Wahrscheinlichkeit hat, selbst wenn (5.0.5) erfüllt ist. Aufgrund der Nor-

malisierung auf der linken Seite impliziert (5.0.4) nur, dass rk(A) = m −o(n) mit hoher Wahrschein-

lichkeit, während uns immer noch der Fehler o(n) bleibt. Für den Fall, dass (5.0.5) erfüllt ist, verbessert

sich Theorem 5.0.6 gegenüber der asymptotischen Schätzung (5.0.4) enorm.

Um sie zu beweisen, müssen zwei Relationen festgestellt werden, die wiederum das Hauptergebnis

beweisen.

Dieser Abschnitt folgt genau [27, Section 2.1]. In Bezug auf rCSP entspricht die Bedingung des vollen

Rangs einer Lösung, sodass dieses Problem mit dem Finden der Erfüllbarkeitsschwelle verknüpft ist.

Die Methode des zweiten Moments ist eine beliebte Wahl, um die Erfüllbarkeitsschwelle für rCSP

[6, 7] zu untersuchen. Es läuft darauf hinaus, den vollen Rangschwellenwert über F2 zu finden.

Allerdings stieß die Methode an ihre Grenzen, als kompliziertere Modelle getestet wurden [38]. Das

Problem tritt auf, wenn das zweite Moment nicht mit dem Quadrat des ersten Moments vergleichbar

ist, wodurch die Kraft der Chebyshev-Ungleichung aufgehoben wird.

Diese missliche Lage hebt den Unterschied zwischen annealed- und quenched-Momentberechnung-

en hervor. Bezüglich der Anzahl Z der Lösungen des linearen Gleichungssystems bedeuten annealed-

und quenched, welche Aktion zuerst ausgeführt wird, log oder E. Da Z ein potenziell exponentieller
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Wert ist, ist es oft möglich, dass

logE [Z ] ̸∼ E
[
log Z

]
, (5.0.6)

die wiederum die Methode des zweiten Moments in diesem aktuellen Zustand unbrauchbar machen.

Die linke Seite von (5.0.6) heißt annealed Moment und die r.h.s. wird als quenched Moment beze-

ichnet (siehe [61] für einen tieferen Einblick in diese verschiedenen Momente). Unter dem Strich

ist das annealed Moment zu anfällig für große Abweichungseffekte, wenn einige unwahrscheinliche

Ereignisse den Momentwert nach oben treiben. Daher wählen wir das quenched Moment mit equi-

table oder balanced Lösungen. Damit meinen wir einen Vektor, der ungefähr die gleiche Menge von

jedem der F∗q -Elemente unter den Einträgen aufnimmt. Diese Beweisstrategie verallgemeinert die in

[11, 26] entwickelten Methoden.

Lassen Sie uns nun eine Prämisse festlegen. Das von uns betrachtete Optimierungsproblem besteht

aus zwei Sätzen von Vektoren; erstens in Form von Variablen (zi )i∈suppd , die sich über den Raum

P (Fq ) von Wahrscheinlichkeitsverteilungen auf Fq erstrecken, und der andere Satz von Variablen

(ẑχ1,...,χℓ)ℓ∈suppk ,χ1,...,χℓ∈suppχ, solche, die über Wahrscheinlichkeitsverteilungen von Lösungen der lin-

earen Gleichung χ1σ1+·· ·+χℓσℓ = 0 reichen. Somit beziehen sich diese Variablen auf die Zeilen von

A. In Bezug auf diese Variablen müssen wir das folgende [27, Eq. 2.5] optimieren.

max
∑
σ∈Fq

E
[
(d −1)zd (σ) log zd (σ)

]

− d

k
E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

ẑχ1,1,...,χ1,k
(σ1, . . . ,σk ) log ẑχ1,1,...,χ1,k

(σ1, . . . ,σk )


 (5.0.7)

s.t. E[d zd (τ)] = E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

k1 {σ1 = τ} ẑχ1,1,...,χ1,k
(σ1, . . . ,σk )


 für alle τ ∈ Fq 0.

Die balancierte Lösung [27, Eq. 2.6]

zi (σ) = q−1 ẑχ1,...,χℓ(σ1, . . . ,σℓ) = q1−ℓ für alle i ,χ1, . . . ,χℓ

erhält bei Anwendung in (5.0.7) den Wert (1−d/k) log q . Dieser Wert entspricht dem normalisierten

ersten Moment 1
n logEA[Z ]. Dies impliziert, dass für jedes ℓ die einzigen sinnvollen Werte, die zur

Optimierung von (5.0.7) zu berücksichtigen sind, die fast ausgeglichenen Vektoren mit der gleich-

mäßigen Verteilung auf q sind. Somit bieten die folgenden zwei Beziehungen den Weg für den Be-

weis: [27, Eq. 2.8], [27, Eq. 2.9],

EA [Z · 1 {A ∈O}] ∼ EA [Z ] ∼ qn−m (5.0.8)

EA
[

Z 2 · 1 {A ∈O}
]∼ EA [Z ]2 . (5.0.9)

Wenn die Schlüsselbedingung in Theorem 5.0.6 erfüllt ist, können wir zeigen, dass (5.0.8), (5.0.9) mit
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hoher Wahrscheinlichkeit wahr sind. Theorem (5.0.6) wird sich als einfache Konsequenz aus (5.0.8)–

(5.0.9) und zwei anderen Sätzen herausstellen.

Die Hauptaufgabe besteht also darin, (5.0.8) und (5.0.9) zu beweisen. In Bezug auf (5.0.8) verwen-

den wir bei der ersten asymptotischen Gleichheit einen quenched Durchschnitt und eine Matrix mit

wenigen zusätzlichen Zeilen. Die zweite asymptotische Gleichheit ist so einfach wie bei zufälligem

3-XORSAT. Wie bei (5.0.9) erweitern wir hier das zweite Moment um die uniforme Lösung. Diese Er-

weiterung beinhaltet die Betrachtung der Gitter, die von bestimmten ganzzahligen Vektoren erzeugt

werden, die nahezu gleiche Lösungen codieren. Diese Methode verallgemeinert Huangs Argument

für die Adjazenzmatrizen zufälliger d-regulärer Graphen [48] und verwendet einen lokalen Grenzw-

ertsatz, um zu verifizieren, dass die balancierten Lösungen tatsächlich die meisten Lösungen ein-

nehmen, damit die Momente berechnet werden können. Wir verweisen den Leser für Einzelheiten

auf [27].
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6 Conclusion

In this thesis, we covered various sparse random objects in combinatorics. First by exploring a ran-

dom constraint satisfiability problem 2-SAT, we saw how the ideas inspired by statistical physics

catalyzed concrete results. In particular, Belief Propagation was successfully applied to simplify the

analysis of the marginal probabilities. Along with Belief Propagation, another method devised via

the cavity ansatz, the Aizenman-Sims-Starr scheme was applied to the free energy density to find

its tight lower bound. Furthermore, a discrete message passing algorithm called Warning Propaga-

tion was explored and was proven to be an effective tool to analyze various types of random graphs.

Next, we studied combinatorial random matrices. The message passing algorithms we previously ex-

plored aided our study of a Bernoulli square matrix. To our suprise, this particular model revealed a

unique phase transition that boasts replica symmetry but not strong replica symmetry. Furthermore,

we took on a general random matrix model and successfully pinned down a sufficient condition for it

to be full rank. The proof entailed the quenched computation, some algebraic ideas and a local limit

theorem. The aforementioned methods have vast potential to answer many unexplored questions in

constraint satisfiability problems and combinatorial random matrices.
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2-SAT formula converges in probability to an expression predicted by the cavity method from statistical physics. The
proof is based on showing that the Belief Propagation algorithm renders the correct marginal probability that a variable
is set to ‘true’ under a uniformly random satisfying assignment. MSC: 05C80, 60C05, 68Q87

1. INTRODUCTION

1.1. Background and motivation. The random 2-SAT problem was the first random constraint satisfaction prob-
lem whose satisfiability threshold could be pinpointed precisely, an accomplishment attained independently by
Chvátal and Reed [14] and Goerdt [30] in 1992. The proofs evince the link between the 2-SAT threshold and the
percolation phase transition of a random digraph. This connection subsequently enabled Bollobás, Borgs, Chayes,
Kim and Wilson [11] to identify the size of the scaling window, which matches that of the giant component phase
transition of the Erdős-Rényi random graph [10, 33]. Ramifications and extensions of these results pertain to ran-
dom 2-SAT formulas with given literal degrees [19], the random MAX 2-SAT problem [20] and the performance of
algorithms [45]. But despite the great attention devoted to random 2-SAT over the years, a fundamental question,
mentioned prominently in the survey [28], remained conspicuously open: how many satisfying assignments does a
random 2-SAT formula typically possess? While percolation-type arguments have been stretched to derive (rough)
bounds [12], the exact answer remained beyond the reach of elementary techniques.

In addition to the mathematical literature, the 2-SAT problem attracted the interest of statistical physicists,
who brought to bear a canny but non-rigorous approach called the cavity method [36, 37]. Instead of relying on
percolation ideas, the physics ansatz seizes upon a heuristic message passing scheme called Belief Propagation. Its
purpose is to calculate the marginal probabilities that a random satisfying assignment sets specific variables of the
2-SAT formula to ‘true’. According to physics intuition Belief Propagation reveals a far more fine-grained picture
than a mere percolation argument possibly could. Indeed, in combination with a functional called the Bethe free
entropy, Belief Propagation renders a precise conjecture as to the number of satisfying assignments.

We prove this conjecture. Specifically, we show that for all clause-to-variable densities below the 2-SAT thresh-
old the number of satisfying assignments is determined by the Bethe functional applied to a particular solution of
a stochastic fixed point equation that mimics Belief Propagation. The formula that we obtain does not boil down
to a simple algebraic expression, which may explain why the problem has confounded classical methods for nearly
three decades. Nonetheless, thanks to rapid convergence of the stochastic fixed point iteration, the formula can be
evaluated numerically within arbitrary precision. A crucial step towards the main theorem is to verify that Belief
Propagation does indeed yield the correct marginals, a fact that may be of independent interest.

By comparison to prior work on Belief Propagation in combinatorics (e.g., [16, 22, 21, 39]), we face the sub-
stantial technical challenge of dealing with the ‘hard’ constraints of the 2-SAT problems, which demands that all
clauses be satisfied. A second novelty is that in order to prove convergence of Belief Propagation to the correct
marginals we need to investigate delicately constructed extremal initial conditions for the message passing pro-
cess. Since these depend on the random 2-SAT formula itself, we need to develop means to confront the ensuing
stochastic dependencies between the construction of the initial condition and the subsequent message passing
iterations. We proceed to state the main results precisely. An outline of the proofs and a detailed discussion of
related work follow in Sections 2 and 3.

Amin Coja-Oghlan’s research received support under DFG CO 646/4. Max Hahn-Klimroth has been supported by Stiftung Polytechnische
Gesellschaft. Manuel Penschuck’s research received support under DFG ME 2088/3-2 and ME 2088/4-2. Guangyan Zhou is supported by
National Natural Science Foundation of China, No. 61702019.
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FIGURE 1. Left: the red line depicts a numerical approximation to the r.h.s. of (1.2) after 24 iter-
ations of BPd ( · ). The dotted blue line displays the first moment bound. Right: the cumulative
density functions of numerical approximations to BP24

d (δ1/2) for various d .

1.2. The main result. Let n > 1 be an integer, let d > 0 be a positive real and let m
d=Po(dn/2) be a Poisson random

variable. Further, let Φ =Φn be a random 2-SAT formula with Boolean variables x1, . . . , xn and m clauses, drawn
uniformly and independently from the set of all 4n(n −1) possible clauses with two distinct variables. Thus, each
variable appears in d clauses on the average and the satisfiability threshold occurs at d = 2. We aim to estimate
the number Z (Φ) of satisfying assignments, the partition function in physics jargon. More precisely, since Z (Φ)
remains exponentially large for all d < 2 w.h.p., in order to obtain a well-behaved limit we compute the normalised
logarithm n−1 log Z (Φ).

The result comes in terms of the solution to a stochastic fixed point equation on the unit interval. Hence, let
P (0,1) be the set of all Borel probability measures on (0,1), endowed with the weak topology. Further, define an
operator BPd : P (0,1) →P (0,1), π 7→ π̂ as follows. With d+,d− Poisson variables with mean d/2 and µπ,1,µπ,2, . . .
random variables with distribution π, all mutually independent, let π̂ be the distribution of the random variable

∏d−
i=1µπ,i

∏d−
i=1µπ,i +

∏d+
i=1µπ,i+d−

∈ (0,1). (1.1)

Let δ1/2 ∈P (0,1) signify the atom at 1/2 and write BP`d ( · ) for the `-fold application of the operator BPd .

Theorem 1.1. For any d < 2 the limit πd = lim`→∞ BP`d (δ1/2) exists and

lim
n→∞

1

n
log Z (Φ) = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
in probability. (1.2)

Of course, the fact that the r.h.s. of (1.2) is well-defined is part of the statement of Theorem 1.1.
By construction, the distribution πd is a solution to the stochastic fixed point equation

πd = BPd (πd ). (1.3)

The equation (1.3) is known as the density evolution equation in physics lore, while the expression on the r.h.s. of
(1.2) is called the Bethe free entropy [34]. Hence, Theorem 1.1 matches the conjecture from [36]. By comparison,
Markov’s inequality yields the elementary first moment bound

1

n
log Z (Φ) ≤ 1

n
logE[Z (Φ)]+o(1) = (1−d) log2+ d

2
log3+o(1) w.h.p., (1.4)

which, however, fails to be tight for any 0 < d < 2 [42]. Furthermore, while (1.2) may appear difficult to evaluate,
the proof reveals that the fixed point iteration BP`d (δ1/2) converges geometrically (in an appropriate metric). In
effect, decent numerical approximations can be obtained; see Figure 1.

For d < 1 the random digraph on {x1,¬x1, . . . , xn ,¬xn} obtained by inserting for each clause l1 ∨ l2 ofΦ the two
directed edges ¬l1 → l2, ¬l2 → l1 is sub-critical and the distribution πd is supported on a countable set. In effect,
for d < 1 the formula (1.2) can be obtained via elementary counting arguments. By contrast, the emergence of a
weak giant component for 1 < d < 2 turns the computation of Z (Φ) into a challenge. Finally, for d > 2 the digraph

2
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contains a strongly connected giant component w.h.p. Its long directed cycles likely cause contradictions, which
is why satisfying assignments cease to exist.

An asymptotically tight upper bound on n−1 log Z (Φ) could be obtained via the interpolation method from
mathematical physics [29, 42]. We will revisit this point in Section 3. Thus, the principal contribution of Theo-
rem 1.1 is the lower bound on log Z (Φ). The best prior lower bound was obtained by Boufkhad and Dubois [12] in
1999 via percolation arguments. However, this bound drastically undershoots the actual value from Theorem 1.1.
For instance, for d = 1.2, [12] gives n−1 log Z (Φ) ≥ 0.072. . . , while actually n−1 log Z (Φ) = 0.515. . . w.h.p.

1.3. Belief Propagation. To elaborate on the combinatorial meaning of the distribution πd , we need to look into
the Belief Propagation heuristic. Instantiated to 2-SAT, Belief Propagation is a message passing algorithm designed
to approximate the marginal probability that a specific variable takes the value ‘true’ under a random satisfying as-
signment. While finding satisfying assignments of a given 2-SAT formula is an easy computational task, calculating
these marginals is not. In fact, the problem is #P-hard [49]. Nonetheless, we are going to prove that Belief Propa-
gation approximates the marginals well on random formulas w.h.p.

To introduce Belief Propagation, we associate a bipartite graph G(Φ) with the formula Φ. One vertex class
Vn = {x1, . . . , xn} represents the propositional variables, the other class Fm = {a1, . . . , am } represents the clauses.
Each clause ai is adjacent to the two variables that it contains. We write ∂v = ∂(Φ, v) for the set of neighbours of a
vertex v of G(Φ). Moreover, for `≥ 1 let ∂`v signify the set of all vertices at distance precisely ` from v .

Associated with the edges of G(Φ), the Belief Propagation messages are probability distributions on the Boolean
values ‘true’ and ‘false’. To be precise, any adjacent clause/variable pair a, x comes with two messages, one directed
from a to x and a reverse one from x to a. Encoding ‘true’ and ‘false’ by ±1, we initialise all messages by

ν(0)
Φ,a→x (±1) = ν(0)

Φ,x→a(±1) = 1/2. (1.5)

For `≥ 1 the messages ν(`)
Φ,a→x ,ν(`)

Φ,x→a are defined inductively. Specifically, suppose that clause a contains the two
variables x, y . Let r, s ∈ {±1} indicate whether x, y appear as positive or negative literals in a. Then for t =±1 let

ν(`)
Φ,a→x (t ) =

1−1 {r 6= t }ν(`−1)
Φ,y→a(−s)

1+ν(`−1)
Φ,y→a(s)

, ν(`)
Φ,x→a(t ) =

∏
b∈∂x\{a}ν

(`)
Φ,b→x (t )

∏
b∈∂x\{a}ν

(`)
Φ,b→x (1)+∏

b∈∂x\{a}ν
(`)
Φ,b→x (−1)

. (1.6)

The last expression is deemed to equal 1/2 if the denominator vanishes (which does not happen ifΦ is satisfiable).
Finally, the Belief Propagation estimate of the marginal of a variable x after ` iterations reads

ν(`)
Φ,x (t ) =

∏
a∈∂x ν

(`)
Φ,a→x (t )

∏
a∈∂x ν

(`)
Φ,a→x (1)+∏

a∈∂x ν
(`)
Φ,a→x (−1)

, (1.7)

again interpreted to yield 1/2 if the denominator vanishes. For an excellent exposition of Belief Propagation, in-
cluding the derivation of (1.6)–(1.7), we point to [34, Chapter 14].

The next theorem establishes that (1.7) approximates the true marginals well for large `. In fact, we prove a
significantly stronger result. To set the stage, let S(Φ) be the set of all satisfying assignments of Φ. Assuming
S(Φ) 6= ;, let

µΦ(σ) = 1 {σ ∈ S(Φ)}/Z (Φ) (σ ∈ {±1}{x1,...,xn }) (1.8)

be the uniform distribution on S(Φ). Further, write σ for a sample from µΦ. Then for a satisfying assignment
τ ∈ S(Φ) and ` ≥ 1 the conditional distribution µΦ( · | σ∂2`x1

= τ∂2`x1
) = µΦ( · | ∀y ∈ ∂2`x1 : σy = τy ) imposes the

‘boundary condition’ τ on all variables y at distance 2` from x1. The following theorem shows that Belief Propaga-
tion does not just approximate the plain, unconditional marginals well w.h.p., but even the conditional marginals
given any conceivable boundary condition. Recall that P [Z (Φ) > 0] = 1−o(1) for d < 2.

Theorem 1.2. If d < 2, then

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−ν(`)
Φ,x1

(1)
∣∣∣
∣∣ Z (Φ) > 0

]
= 0. (1.9)

Since ν(`)
Φ,x1

does not depend on τ, averaging (1.9) on the boundary condition τ ∈ S(Φ) yields

lim
`→∞

limsup
n→∞

E
[∣∣∣µΦ(σx1 =±1)−ν(`)

Φ,x1
(±1)

∣∣∣ | Z (Φ) > 0
]
= 0. (1.10)
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Thus, Belief Propagation approximates the unconditional marginal of x1 well in the limit of large n and `. Indeed,
because the distribution of Φ is invariant under permutations of the variables x1, . . . , xn , (1.10) implies that the
marginals of all but o(n) variables xi are within ±o(1) of the Belief Propagation approximation w.h.p.

But thanks to the presence of the boundary condition τ, Theorem 1.2 leads to further discoveries. For a start,
applying the triangle inequality to (1.9) and (1.10), we obtain

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−µΦ(σx1 = 1)
∣∣∣
∣∣ Z (Φ) > 0

]
= 0. (1.11)

Thus, no discernible shift of the marginal of x1 is likely to ensue upon imposition of any possible boundary con-
dition τ. The spatial mixing property (1.11) is colloquially known as Gibbs uniqueness [32]. Further, (1.11) rules
out extensive long-range correlations. Specifically, for any fixed ` the first two variables x1, x2 likely have distance
greater than 4` in G(Φ). Therefore, (1.11) implies that for all d < 2,

lim
n→∞

∑
s,t∈{±1}

E
[∣∣µΦ(σx1 = s,σx2 = t )−µΦ(σx1 = s) ·µΦ(σx2 = t )

∣∣ ∣∣ Z (Φ) > 0
]= 0. (1.12)

Thus, the truth values σx1 ,σx2 are asymptotically independent. Of course, once again by permutation invariance,
(1.12) implies that asymptotic independence extends to all but o(n2) pairs of variables xi , x j w.h.p. The decorrela-
tion property (1.12) is called replica symmetry in the physics literature [32].

Finally, we can clarify the combinatorial meaning of the distribution πd from Theorem 1.1. Namely, πd is the
limit of the empirical distribution of the marginal probabilities µΦ(σxi = 1).

Corollary 1.3. For any 0 < d < 2 the random probability measure

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1) (1.13)

converges to πd weakly in probability.1

Thus, the stochastic fixed point equation (1.3) that characterises πd simply expresses that the marginal probabili-
ties µΦ(σxi = 1) result from the Belief Propagation recurrence (1.6).

1.4. Preliminaries and notation. Throughout we denote by Vn = {x1, . . . , xn} the variable set of Φn . Generally,
given a 2-SAT formula Φ we write V (Φ) for the set of variables and F (Φ) for the set of clauses. The bipartite
clause/variable-graph G(Φ) is defined as in Section 1.3. For a vertex v of G(Φ) we let ∂(Φ, v) be the set of neigh-
bours. Where Φ is apparent we just write ∂v . Moreover, ∂`(Φ, v) or briefly ∂`v stands for the set of vertices at
distance exactly ` from v . Additionally, ∇`(Φ, v) denotes the sub-formula obtained from Φ by deleting all clauses
and variables at distance greater than ` from v . This sub-formula may contain clauses of length less than two.
Further, for a clause a and a variable x ofΦwe let sign(x, a) = signΦ(x, a) ∈ {±1} be the sign with which x appears in
a. In addition, we let S(Φ) be the set of all satisfying assignments ofΦ, Z (Φ) = |S(Φ)| and, assuming Z (Φ) > 0, we let
µΦ be the probability distribution on {±1}V (Φ) that induces the uniform distribution on S(Φ) as in (1.8). Moreover,
σΦ = (σΦ,x )x∈V (Φ) signifies a uniformly random satisfying assignment; we dropΦwhere the reference is apparent.

For anyΦwe set up Belief Propagation as in (1.5)–(1.7). It is well known that Belief Propagation yields the correct
marginals if G(Φ) is a tree. To be precise, the depth of x ∈ V (Φ) is the maximum distance between x and a leaf of
G(Φ).

Proposition 1.4 ([34, Theorem 14.1]). If G(Φ) is a tree and x ∈V (Φ), then for any ` greater than or equal to the depth
of x we have µΦ(σx =±1) = ν(`)

Φ,x (±1).

We will encounter the following functions repeatedly. For ε> 0 letΛε(z) = log(z∨ε) be the log function truncated
at logε. Moreover, we need the continuous and mutually inverse functions

ψ :R→ (0,1), z 7→ (1+ tanh(z/2))/2, ϕ : (0,1) →R, p 7→ log(p/(1−p)). (1.14)

Let P (R) be the set of all Borel probability measures on R with the weak topology. Moreover, for a real q ≥ 1 let
Wq (R) be the set of all ρ ∈P (R) such that

∫
R |x|q dρ(x) <∞. We equip this space with the Wasserstein metric

Wq (ρ,ρ′) = inf

{(∫

R2
|x − y |q dγ(x, y)

)1/q

: γ is a coupling of ρ,ρ′
}

, (1.15)

1That is, for any continuous function f : [0,1] →R we have limn→∞ E
∣∣∣
∫ 1

0 f (z)dπd (z)−∫ 1
0 f (z)dπΦ(z)

∣∣∣= 0.
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thereby turning Wq (R) into a complete separable space [9].
For ρ ∈ P (R) we denote by ηρ ,ηρ,1,ηρ,2, . . . random variables with distribution ρ. Similarly, for π ∈ P (0,1) we

let µπ,µπ,1,µπ,2, . . . be a sequence of random variables with distribution π. We also continue to let d be a Poisson
variable with mean d and d+,d− Poisson variables with mean d/2. Moreover, s1, s ′1, s2, s ′2, . . . ∈ {±1} always de-
note uniformly distributed random variables. All of these random variables are mutually independent as well as
independent of any other sources of randomness.

Finally, from here on we tacitly assume that 0 < d < 2.

2. OVERVIEW

The proof of Theorem 1.1 proceeds in four steps. First we show that the limit πd from Theorem 1.1 exists. Subse-
quently we establish the fact (1.9) that Belief Propagation approximates the conditional marginals well. This will
easily imply the convergence of the empirical marginals (1.13) to πd . Third, building upon these preparations, we
will prove that the truncated mean n−1E[log(Z (Φ)∨1)] converges to the r.h.s. of (1.2). The truncation is necessary
to deal with the (unlikely) event that Z (Φ) = 0. Finally, we will show that log(Z (Φ)∨1) concentrates about its mean
to obtain convergence in probability, thus completing the proof of Theorem 1.1.

2.1. Step 1: density evolution. We begin by verifying that the distribution πd from Theorem 1.1 is well-defined
and that πd satisfies a tail bound.

Proposition 2.1. The weak limit πd = lim`→∞ BP`d (δ1/2) exists and

E

[
log2

µπd

1−µπd

]
<∞. (2.1)

Moreover, µπd
and 1−µπd

are identically distributed and

E

∣∣∣∣∣log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)∣∣∣∣∣<∞, E
∣∣∣log

(
1−µπd ,1µπd ,2

)∣∣∣<∞. (2.2)

The proof of Proposition 2.1, which we carry out in Section 4, is based on a contraction argument. This argu-
ment implies that the fixed point iteration converges rapidly to πd , a fact that can be exploited to obtain numerical
estimates. The bounds (2.2) ensure that the expectation on the r.h.s. of (1.2) is well-defined.

2.2. Step 2: Gibbs uniqueness. As a next step we verify the Gibbs uniqueness property (1.11). We proceed by way
of analysing a multi-type Galton-Watson tree T that mimics the local structure of the graph G(Φ) upon explo-
ration from variable x1. The Galton-Watson process has five types: variable nodes and four types of clause nodes
(+1,+1), (+1,−1), (−1,+1), (−1,−1). The root is a variable node o. Moreover, each variable node spawns indepen-
dent Po(d/4) numbers of clauses nodes of each of the four types. Additionally, each clause has a single offspring,
which is a variable. The semantics of the clause types is that the first component indicates whether the parent
variable appears in the clause positively or negatively. The second component indicates whether the child variable
appears as a positive or as a negative literal. Clearly, for d ≤ 1 the tree T is finite with probability one, while infinite
trees appear with positive probability for d > 1.

Let T (`) be the finite tree obtained from T by dropping all nodes at distance greater than ` from the root. For
even ` it will be convenient to view T (`) interchangeably as a tree or as a 2-SAT formula. In particular, we write
∂2`o = ∂2`(T ,o) for the set of all variables at distance exactly 2` from o. The following proposition, which is the
linchpin of the entire proof strategy, establishes the Gibbs uniqueness property for the tree formula T (2`).

Proposition 2.2. We have

lim
`→∞

E

[
max

τ∈S(T (2`))

∣∣µT (2`) (σo = 1 |σ∂2`o = τ∂2`o)−µT (2`) (σo = 1)
∣∣
]
= 0. (2.3)

Thus, w.h.p. no conceivable boundary condition is apt to significantly shift the marginal of the root.
We prove Proposition 2.2 by a subtle contraction argument in combination with a construction of extremal

boundary conditions of the tree formula T (2`). More specifically, we will construct boundary conditions σ± that
maximise or minimise the conditional probability

µT (2`) (σo = 1 |σ∂2`o =σ±
∂2`o

), (2.4)
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respectively. Then we will show that the difference of the conditional marginals induced by both these extremal
boundary conditions vanishes with probability tending to one as `→∞. The delicate point is that the extremal
boundary conditionsσ± depend on the tree T (2`). Thus, at first glance it seems that we need to pass the tree twice,
once top–down to construct σ± and then bottom–up to calculate the conditional marginals (2.4). But such an
analysis seems untenable because after the top–down pass the tree is exposed and ‘no randomness remains’ to
facilitate the bottom–up phase. Fortunately, we will see that a single stochastic fixed point equation captures both
the top–down and the bottom–up phase. This discovery reduces the proof of Proposition 2.2 to showing that the
fixed point iteration contracts. The details of this delicate argument can be found in Section 5.

Proposition 2.2 easily implies the Gibbs uniqueness condition (1.11) and thereby Theorem 1.2. A further conse-
quence is the asymptotic independence of the joint truth values of bounded numbers of variables.

Corollary 2.3. The statement (1.9) is true and for any integer k ≥ 2 we have

lim
n→∞

∑
σ∈{±1}k

E

[∣∣∣∣∣µΦ(σx1 =σ1, . . . ,σxk =σk )−
k∏

i=1
µΦ(σxi =σi )

∣∣∣∣∣ | Z (Φ) > 0

]
= 0.

2.3. Step 3: the Aizenman-Sims-Starr scheme. The aforementioned results pave the way for deriving an expres-
sion for the conditional expectation of log Z (Φ) given thatΦ is satisfiable. SinceΦ is satisfiable w.h.p. for all d < 2,
an equivalent task is to calculate E[log(Z (Φ)∨1)]. To this end we seize upon a simple but powerful strategy colloqui-
ally called the Aizenman-Sims-Starr scheme [5]. Originally proposed in the context of the Sherrington-Kirkpatrick
spin glass model, this proof strategy suggests to compute the asymptotic mean of a random variable on a ‘system’
of size n by carefully estimating the change of that mean upon going to a ‘system’ of size n +1. This difference is
calculated by coupling the systems of size n and n +1 such that the latter is obtained from the former by a small
expected number of local changes.

We apply this idea to the random 2-SAT problem by coupling the random formula Φn with n variables and
Po(dn/2) clauses and the random formulaΦn+1 with n+1 variables and Po(d(n+1)/2) clauses. Roughly speaking,
we obtain Φn+1 from Φn by adding a new variable xn+1 along with a few random adjacent clauses that connect
xn+1 with the variables x1, . . . , xn of Φn . Then the information about the joint distribution of the truth values
of bounded numbers of variables furnished by Corollaries 1.3 and 2.3 and the tail bound (2.1) will enable us to
accurately estimate E

[
log(Z (Φn+1)∨1)− log(Z (Φn)∨1)

]
.

Needless to say, upon closer inspection matters will emerge to be rather subtle. The main source of complica-
tions is that, in contrast to other models in mathematical physics such as the Sherrington-Kirkpatrick model or
the Ising model, the 2-SAT problem has hard constraints. Thus, the addition of a single clause could trigger a dra-
matic drop in the partition function. In fact, in the worst case a single awkward clause could wipe out all satisfying
assignments. In Section 6 we will iron out all these difficulties and prove the following.

Proposition 2.4. We have

lim
n→∞E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)] = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
. (2.5)

We notice that (2.2) guarantees that the r.h.s. of (2.5) is well-defined. As an immediate consequence of Proposi-
tion 2.4 we obtain a formula for E[log(Z (Φ)∨1)].

Corollary 2.5. For any d < 2 we have

lim
n→∞

1

n
E[log(Z (Φ)∨1)] = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
.

Proof. Writing E[log(Z (Φ)∨1)] as a telescoping sum and applying Proposition 2.4, we obtain

lim
n→∞

1

n
E[log(Z (Φn)∨1)] = lim

n→∞
1

n

n−1∑
N=2

E[log(Z (ΦN+1)∨1)]−E[log(Z (ΦN )∨1)]

= E
[

log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
,

as desired. �
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2.4. Step 4: concentration. The final step towards Theorem 1.1 is to show that log(Z (Φ)∨1) concentrates about
its mean.

Proposition 2.6. We have limn→∞ n−1E
∣∣log(Z (Φ)∨1)−E[log(Z (Φ)∨1)]

∣∣= 0.

Proposition 2.6 does not easily follow from routine arguments such as the Azuma-Hoeffding inequality. Once
more the issue is that changing a single clause could alter log(Z (Φ)∨1) by as much as Θ(n). Instead we will resort
to another technique from mathematical physics called the interpolation method. The details can be found in
Section 7.

Proof of Theorem 1.1. The theorem follows from Proposition 2.1, Corollary 2.5 and Proposition 2.6. �

3. DISCUSSION

The random 2-SAT satisfiability threshold was established mathematically shortly after the experimental work
of Cheeseman, Kanefsky and Taylor [13] that triggered the quest for satisfiability thresholds appeared. The sec-
ond successful example, nearly a decade later, was the random 1-in-k-SAT threshold (to satisfy exactly one literal
in each clause), which Achlioptas, Chtcherba, Istrate and Moore pinpointed by analysing the Unit Clause algo-
rithm [2]. In a subsequent landmark contribution Dubois and Mandler determined the 3-XORSAT threshold via
the second moment method [27]. Subsequent work extended this result to random k-XORSAT [23, 43]. Finally, the
most notable success thus far has been the verification of the ‘1RSB cavity method’ prediction [35] of the random
k-SAT threshold for large k due to Ding, Sly and Sun [25], the culmination of a line of work that refined the use of
the second moment method [3, 4, 17].

Over the past two decades the general theme of estimating the partition functions of discrete structures has
received a great deal of attention; e.g., [8]. With respect to random 2-SAT (and, more generally, k-SAT), Monta-
nari and Shah [39], Panchenko [41] and Talagrand [48] investigated ‘soft’ versions of the partition function. To be
precise, introducing a parameter β> 0 called the ‘inverse temperature’, these articles study the random variable

Zβ(Φ) =
∑

σ∈{±1}n

m∏
i=1

exp
(−β1 {σ violates clause ai }

)
. (3.1)

Thus, instead of dismissing assignments that fail to satisfy all clauses outright, there is an exp(−β) penalty factor for
each violated clause. Talagrand [48] computes limn→∞ n−1E[log Zβ(Φ)] forβ not exceeding a small but unspecified
β0 > 0. Panchenko [41] calculates this limit under the assumption (4β∧ 1)d < 1. Thus, for β > 1/4 the result is
confined to d < 1, in which case the random graph G(Φ) is sub-critical and both Zβ(Φ) and the actual number Z (Φ)
of satisfying assignments could be calculated via elementary methods. Furthermore, Montanari and Shah [39]
obtain limn→∞ n−1E[log Zβ(Φ)] for all finite β under the assumption d < 1.16. . . . Although for any fixed formula
Φ the limit limβ→∞ Zβ(Φ) is equal to the number of satisfying assignments, it is not possible to interchange the
limits β→ ∞ and n → ∞. Thus, [39, 41] do not yield the the number of actual satisfying assignments even for
d < 1.16. . . or d < 1, respectively. Apart from estimating E log Zβ(Φ), Montanari and Shah [39] also show that the
Belief Propagation message passing scheme approximates the marginals of the Boltzmann distribution that goes
with Zβ(Φ) well, i.e., they obtain a ‘soft’ version of Theorem 1.2 for d < 1.16. . . .

In terms of proof techniques, all three contributions [39, 41, 48] are based on establishing the Gibbs uniqueness
property. So is the present paper. But while [39, 41, 48] rely on relatively straightforward contraction arguments, a
key distinction is that here we develop a more accurate (and delicate) method for verifying the Gibbs uniqueness
property based on the explicit construction of an extremal boundary condition. This is the key to pushing the
range of d all the way up to the satisfiability threshold d = 2.

Specifically, in order to construct a boundary condition of the random tree T (2`) for large ` that maximises the
conditional probability of observing the truth value +1 at the root we will work our way top–down from the root to
level 2`. Exposing the degrees and the signs with which the variables appear, the construction assigns a ‘desired’
truth value to each variable of the tree so as to nudge the parent variable towards its desired value as much as
possible. Subsequently, once this process reaches the bottom level of the tree, we go into reverse gear and study
the Belief Propagation messages bottom–up to calculate the conditional marginal of the root. Clearly, analysing
this upwards process seems like a tall order because the tree was already exposed during the top-down phase, a
challenge that is exacerbated by the presence of hard constraints. Fortunately, in Section 5 we will see how this
problem can be transformed into the study of another stochastic fixed point equation that captures the effect of
the children’s ‘nudging’ their parents. This fixed point problem is amenable to the contraction method. A spatial
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mixing analysis from an extremal boundary condition was previously conducted in by Dembo and Montanari [21]
for the Ising model on random graphs. But of course a crucial difference is that in the Ising model the extremal
boundary conditions are constant (all-+1 and all-−1, respectively).

A second novelty of the present work is that we directly deal with the ‘hard’ 2-SAT problem. Montanari and
Shah [39] interpolate on the ‘inverse temperature’ parameter β > 0, effectively working their way from smaller to
larger β. Because the limits β→∞ and n →∞ do not commute, this approach does not seem applicable to prob-
lems with hard constraints. Furthermore, while Panchenko [40, 41] applies the Aizenman-Sims-Starr scheme to
the soft constraint version, the hard problem of counting actual satisfying assignments requires a far more careful
analysis. Indeed, adding one clause can shift log Zβ(Φ) merely by ±β. By contrast, a single additional clause could
very well reduce the logarithm log Z (Φ) of the number of satisfying assignments by as much asΩ(n), or even ren-
der the formula unsatisfiable. A few prior applications of the Aizenman-Sims-Starr scheme to problems with hard
constraints exist [7, 15, 16], but these hinge on peculiar symmetry properties that enable an indirect approach via
a ‘planted’ version of the problem in question. The required symmetries for this approach are absent in several
important problems, with random satisfiability the most prominent example. Thus, a significant technical con-
tribution of the present work is that we show how to apply the Aizenman-Sims-Starr scheme directly to problems
with hard constraints. Among other things, this requires a careful quantification of the probabilities of rare, poten-
tially cataclysmic events in comparison to their impact on log Z (Φ). That said, we should point out that [39, 41, 48]
actually also deal with the (soft) k-SAT partition function for k > 2 for certain regimes of clause/variable densities,
while the technique that we develop here does not seem to extend beyond binary problems.

A mathematical physics technique called the interpolation method, first proposed by Guerra for the study of the
Sherrington-Kirkpatrick model [31], can be applied to the random k-SAT problem [29, 42] to bound the number of
satisfying assignments from above. For k = 2 the interpolation method yields the upper bound

1

n
log Z (Φ) ≤ inf

π∈P (0,1)
E

[
log

(
d−∏
i=1
µπ,i +

d+∏
i=1
µπ,i+d−

)
− d

2
log

(
1−µπ,1µπ,2

)
]
+o(1) w.h.p., (3.2)

for all 0 < d < 2; we will revisit this bound in Section 7. Since the expression on the r.h.s. coincides with (1.2) for
π = πd , the main contribution of Theorem 1.1 is the matching lower bound on log Z (Φ). Furthermore, Abbe and
Montanari [1] used the interpolation method to establish the existence of a function φ such that

lim
n→∞n−1 log(Z (Φ)∨1) =φ(d) in probability (3.3)

for all but a countable number of d ∈ (0,2). Theorem 1.1 actually determines φ(d) and shows that convergence
holds for all d ∈ (0,2). Clearly, (3.3) implies the concentration bound from Proposition 2.6 for all d outside the
countable set. But of course we need concentration for all d , and in Section 7 we will use the upper bound (3.2)
to prove this concentration result. As an aside, a conditional concentration inequality for log Z (Φ), quoted in [28],
was obtained by Sharell [46] (unpublished). But the necessary conditions appear to be difficult to check.

In addition, several prior contributions deal with the combinatorial problem of counting solutions to random
CSPs. For problems such as k-NAESAT, k-XORSAT or graph colouring where the first moment provides the correct
answer due to inherent symmetry properties, the second moment method and small subgraph conditioning yield
very precise information as to the number of solutions [15, 18, 44]. Verifying that the number of solutions is de-
termined by the physicists’ 1RSB formula [34], the contribution of Sly, Sun and Zhang [47] on the random regular
k-NAESAT problem near its satisfiability threshold [24] deals with an even more intricate scenario.

Finally, returning to random 2-SAT, as an intriguing question for future work determining the precise limiting
distribution of log Z (Φ) stands out. This random variable has standard deviation Ω(

p
n) for all 0 < d < 2 even

once we condition on m, as is easily seen by re-randomising the signs of the literals in small components. In
effect, log Z (Φ) is far less concentrated than the partition functions of symmetric random constraint satisfaction
problems [15]. May n−1/2(log Z (Φ)−E[log Z (Φ)]) be asymptotically normal?

4. PROOF OF PROPOSITION 2.1

We prove Proposition 2.1 by means of a contraction argument. The starting point is the following observation. For
`≥ 0 let π(`)

d = BP`d (δ1/2) be the probability measure obtained after ` iterations of the operator BPd ( · ).

Fact 4.1. For all `≥ 0 the random variables µ
π(`)

d
and 1−µ

π(`)
d

are identically distributed.
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Proof. This is because d−,d+ and hence the random variables
(

d−∏
i=1
µ
π(`−1)

d ,i ,
d−∏
i=1
µ
π(`−1)

d ,i +
d+∏
i=1
µ
π(`−1)

d ,i+d−

)
and

(
d+∏
i=1
µ
π(`−1)

d ,i+d− ,
d−∏
i=1
µ
π(`−1)

d ,i +
d+∏
i=1
µ
π(`−1)

d ,i+d−

)

from (1.1) are identically distributed. �

Due to Fact 4.1 we can rewrite the construction of the sequence π(`)
d in terms of another operator that is easier

to analyse. This operator describes the expression (1.1) in terms of log-likelihood ratios, a simple reformulation
that proved useful in the context of Belief Propagation for random satisfiability before [38]. Thus, we define an
operator LLd : P (R) →P (R), ρ 7→ ρ̂ by letting ρ̂ be the distribution of the random variable

d∑
i=1

si log
1+ s ′i tanh(ηρ,i /2)

2
. (4.1)

Further, let ρ(`)
d = LL`d (δ0) ∈P (R) be the result of ` iterations of LLd launched from the atom at zero. We recall the

functions ψ,ϕ from (1.14). For a measure ρ ∈ P (R) and a measurable f : R→ R let f (ρ) denote the pushforward
measure of ρ that assigns mass ρ( f −1(A)) to Borel sets A ⊆R.

Lemma 4.2. For all `≥ 0 we have π(`)
d =ψ(ρ(`)

d ).

Proof. Since ψ(δ0) = δ1/2, the assertion is true for `= 0. Proceeding by induction, we obtain

µ
π(`+1)

d

d=
∏d+

i=1µπ(`)
d ,i

∏d−
i=1µπ(`)

d ,i +
∏d+

i=1µπ(`)
d ,i+d−

=ψ

log

∏d−
i=1µπ(`)

d ,i
∏d+

i=1µπ(`)
d ,i+d−




=ψ
(

d−∑
i=1

log
(
µ
π(`)

d ,i

)
−

d+∑
i=1

log
(
µ
π(`)

d ,i+d−
))

d=ψ
(

d∑
i=1

si logµ
π(`)

d ,i

)
d=ψ

(
d∑

i=1
si log

(
ψ(η

ρ(`)
d ,i )

))
. (4.2)

Moreover, since si ∈ {±1} is random, it is immediate from (4.1) that η
ρ(`)

d ,i
d= −η

ρ(`)
d ,i . Consequently, (4.2) yields

µ
π(`+1)

d

d=ψ
(

d∑
i=1

si log
(
ψ(s ′iηρ(`)

d ,i )
))

d=ψ(η
ρ(`+1)

d
),

which completes the induction. �

Due to the continuous mapping theorem, to establish convergence of (π(`)
d )`≥0 it suffices to show that (ρ(`)

d )`≥0

converges weakly. To this end, we will prove that the operator LLd ( · ) is a contraction.

Lemma 4.3. If d < 2, then LLd is a contraction on the space W2(R).

Proof. The operator LLd maps the space W2(R) into itself because the derivative of x 7→ log((1+ tanh(x/2))/2) is
bounded by one in absolute value for all x ∈ R. To show contraction let ρ,ρ′ ∈ W2(R) and consider a sequence of
independent random pairs (ηi ,η′i )i≥1 such that the ηi have distribution ρ and the η′i have distribution ρ′. Because
the signs si are uniform and independent, we obtain

W2(LL(ρ),LL(ρ′))2 ≤ E
[(

d∑
i=1

si log
1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

)2]
= E

[
d∑

h,i=1
sh si log

1+ s ′h tanh(ηh/2)

1+ s ′h tanh(η′h/2)
log

1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

]

= E
[

d∑
i=1

log2 1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

]
= dE

[
log2 1+ s1 tanh(η1/2)

1+ s1 tanh(η′1/2)

]
. (4.3)

Further,

log2 1+ tanh(η1/2)

1+ tanh(η′1/2)
=

[∫ η1

η′1

∂ log(1+ tanh(z/2))

∂z
dz

]2

=
[∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz

]2

, (4.4)

log2 1− tanh(η1/2)

1− tanh(η′1/2)
=

[∫ η1

η′1

∂ log(1− tanh(z/2))

∂z
dz

]2

=
[∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz

]2

. (4.5)

9

70 Appendix A.



+1+ −

+1 +1

− +
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FIGURE 2. The graph G(Φ) together with extremal boundary condition σ+. Variables are indi-
cated by circles and clauses by squares. The labels on the edges illustrate the sign with which
variables appears in the clauses. To obtain the extremal boundary conditionσ+ we proceed top-
down. The truth values of the children are chosen so as to nudge the parent variables in the
direction provided by σ+.

Combining (4.4)–(4.5) and applying the Cauchy-Schwarz inequality, we obtain

E

[
log2 1+ s1 tanh(η1/2)

1+ s1 tanh(η′1/2)

]
= 1

2
E

[[∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz

]2

+
[∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz

]2]

≤ 1

2
E

[
∣∣η1 −η′1

∣∣
∫ η1∨η′1

η1∧η′1

(
1− tanh(z/2)

2

)2

+
(

1+ tanh(z/2)

2

)2

dz

]
≤ 1

2
E
[(
η1 −η′1

)2
]

. (4.6)

Finally, (4.3) and (4.6) yield W2(LL(ρ),LL(ρ′))2 ≤ dE[(η1 −η′1)2]/2, which implies contraction because d < 2. �

Proof of Proposition 2.1. Together with the Banach fixed point theorem Lemma 4.3 ensures that the W2-limit ρd =
lim`→∞ LL`d (δ0) exists. Therefore, Lemma 4.2 implies that the sequence (π(`)

d )`≥0 converges weakly. In addition,
since ρd ∈W2(R), Lemma 4.2 also implies the bound (2.1). Finally, to prove (2.2) we apply (2.1) to obtain

E

∣∣∣∣∣log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)∣∣∣∣∣≤ log(2)−E log
d−∏
i=1
µπd ,i ≤ log(2)− d

2
E logµπd ,1 ≤ 2log(2)+dE

∣∣∣∣∣log
µπd

1−µπd

∣∣∣∣∣<∞,

E
∣∣∣log(1−µπd ,1µπd ,2)

∣∣∣≤ E
∣∣∣log(1−µπd

)
∣∣∣≤ E

∣∣∣∣∣log
µπd

1−µπd

∣∣∣∣∣+ log2 <∞,

thereby completing the proof. �

5. PROOF OF PROPOSITION 2.2

5.1. Outline. The goal is to prove that the marginal of the root variable o of T (2`) remains asymptotically invariant
even upon imposition of an arbitrary (feasible) boundary condition on the variables at distance 2` from the root o.
A priori, a proof of this statement seems challenging because of the very large number of possible boundary con-
ditions. Indeed, we expect about d` variables at distance 2`. But a crucial feature of the 2-SAT problem is that we
can construct a pair of extremal boundary conditions. One of these maximises the probability that the root is set
to one. The other one minimises that probability. As a consequence, instead of inspecting all possible boundary
conditions, it suffices to show that the marginals on the root o that these two extremal boundary induce asymp-
totically coincide with the unconditional marginals. Of course, due to symmetry it actually suffices to consider the
‘positive’ extremal boundary condition that maximally nudges the root towards +1.

To construct this extremal boundary condition we define a satisfying assignment σ+ by working our way down
the tree T (2`). We begin by definingσ+

o = 1. Further, suppose for `≥ 1 the values of the variables at distance 2(`−1)
from o have been defined already. Consider a variable v ∈ ∂2`o, its parent clause a and the parent variable u of a.
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Our aim is to chooseσ+
v so as to ‘nudge’ u towardsσ+

u as much as possible. To this end we setσ+
v so as to not satisfy

a if setting u to σ+
u satisfies a. Otherwise we pick the value that satisfies a; see Figure 2. In formulas,

σ+
v = sign(a, v)1{sign(a,u) 6=σ+

u }− sign(a, v)1{sign(a,u) =σ+
u }.

The following lemma verifies that σ+ is extremal, i.e., that imposing the values provided by σ+ on the boundary
variables ∂2`o maximises the probability of the truth value 1 at the root o. The proof can be found in Section 5.2.

Lemma 5.1. For any integer `≥ 0 we have maxτ∈S(T (2`))µT (2`) (σo = 1 |σ∂2`o = τ∂2`o) =µT (2`) (σo = 1 |σ∂2`o =σ+
∂2`o

).

Lemma 5.1 reduces the task of proving Proposition 2.2 to establishing the following statement.

Proposition 5.2. We have lim`→∞E
∣∣∣µT (2`) (σo = 1)−µT (2`) (σo = 1 |σ∂2`o =σ+

∂2`o
)
∣∣∣= 0.

In words, the root marginal given the extremal boundary condition σ+ asymptotically coincides with the uncon-
ditional marginal.

The proof of Proposition 5.2 is delicate because the boundary condition σ+ depends on the tree T (2`). Indeed,
it seems hopeless to confront these dependencies head on by first passing down the tree to construct σ+ and to
subsequently work up the tree to calculate marginals. To sidestep this problem we devise a quantity that recovers
the Markov property of the random tree. Specifically, with each variable node x ∈ ∂2k o, k > 0, of T (2`) we will asso-
ciate a carefully defined quantity η(`)

x ∈R∪ {±∞} that gauges how strongly x can nudge its (grand-)parent variable
y towards the truth value mandated by σ+

y . This random variable η(`)
x will turn out to be essentially independent

of the top 2k levels of the tree. In effect, we will discover that the distribution of η(`)
o can be approximated by the

k-fold application of a suitable operator that will turn out to be a W1-contraction. Taking limits k,`→∞ carefully
will then complete the proof.

To facilitate this construction we need to count satisfying assignments of sub-formulas of T (2`) subject to certain
boundary conditions. Specifically, for a variable x we let T (2`)

x be the sub-formula of T (2`) comprising x and its
progeny. Moreover, for a satisfying assignment τ ∈ S(T (2`)) we let

S(T (2`)
x ,τ) =

{
χ ∈ S(T (2`)

x ) : ∀y ∈V (T (2`)
x )∩∂2`(T ,o) :χy = τy

}
, Z (T (2`)

x ,τ) =
∣∣∣S(T (2`)

x ,τ)
∣∣∣ .

In words, S(T (2`)
x ,τ) contains all satisfying assignments of T (2`)

x that comply with the boundary condition induced
by τ. As a final twist, for t =±1 we also need the number

Z (T (2`)
x ,τ, t ) =

∣∣∣
{
χ ∈ S(T (2`)

x ,τ) :χx = t
}∣∣∣

of satisfying assignments of T (2`)
x that agree with τ on the boundary and assign value t to x.

The protagonist of the proof of Proposition 5.2 is the log-likelihood ratio

η(`)
x = log

Z (T (2`)
x ,σ+,σ+

x )

Z (T (2`)
x ,σ+,−σ+

x )
∈R∪ {±∞} (x ∈V (T (2`))), (5.1)

with the conventions log0 = −∞, log∞ = ∞. Thus, η(`)
x gauges how likely a random satisfying assignment σ of

T (2`)
x subject to the σ+-boundary condition is to set x to its designated value σ+

x .

To get a handle on the η(`)
x , we show that these quantities can be calculated by propagating the extremal bound-

ary condition σ+ bottom–up toward the root of the tree. Specifically, we consider the operator

LL+
T (2`) : (−∞,∞]V (T (2`)) → (−∞,∞]V (T (2`)), η 7→ η̂

defined as follows. For all x ∈ ∂2`o we set η̂x = ∞. Moreover, for a variable x ∈ ∂2k o with k < ` with children
a1, . . . , a j and grandchildren y1 ∈ ∂a1 \ {x}, . . . , y j ∈ ∂a j \ {x} we define

η̂x =−
j∑

i=1
σ+

x sign(x, ai ) log
1−σ+

x sign(x, ai ) tanh(ηyi /2)

2
. (5.2)

It may not be apparent that the above sum is well-defined as a −∞ summand might occur. However, the next
lemma rules this out and shows that `-fold iteration of LL+

T (2`) from all-+∞ yields η(`) = (η(`)
x )x∈V (T (2`)).

Lemma 5.3. The operator LL+
T (2`) is well-defined and LL+ (`)

T (2`) (∞, . . . ,∞) =η(`).
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We defer the proof of Lemma 5.3 to Section 5.3.
The next aim is to approximate the `-fold iteration of LL+

T (2`) , and specifically the distribution of the value η(`)
o

associated with the root, via a non-random operator P (R) → P (R). To this end we need to cope with the ±∞-
entries of the vector η(`), a task that we solve by bounding η(`)

x for variables x near the top of the tree.

Lemma 5.4. There exist c = c(d) > 0 and a sequence (εk )k≥1 with limk→∞ εk = 0 such that for any k > 0, `> ck we
have P[maxx∈∂2k o |η(`)

x | ≤ ck] > 1−εk .

The proof of Lemma 5.4, based on a percolation argument, can be found in Section 5.4. We continue to denote by
c and (εk )k the number and the sequence supplied by Lemma 5.4.

Guided by Lemma 5.4 we consider the vector η̄(`,k) of truncated log-likelihood ratios

η̄(`,k)
x =





−ck if x ∈ ∂2k o and η(`)
x <−ck,

ck if x ∈ ∂2k o and η(`)
x > ck,

η(`)
x otherwise.

Further, let
η(`,k) = LL+ (k)

T (2`) (η̄(`,k))

be the result of k iterations of LL+
T (2`) ( · ) starting from η̄(`,k).

Corollary 5.5. For any `> ck we have dTV(η(`,k)
o ,η(`)

o ) < εk .

Proof. This follows from Lemma 5.3 and Lemma 5.4, which shows that the truncation is inconsequential with
probability at least 1−εk . �

We are ready to introduce the operator P (R) →P (R) that mimics LL+
T (2`) . Specifically, LL+

d : P (R) →P (R) maps
ρ ∈P (R) to the distribution of

−
d∑

i=1
si log

1− si tanh(ηρ,i /2)

2
. (5.3)

We emphasise the subtle difference between (5.3) and (4.1), which involves two independent signs si , s ′i . The next

lemma establishes the connection between the random operator LL+
T (2`) and the operator LL+

d . Namely, let ρ(`,k)

be the distribution of η(`,k)
o . Moreover, let ρ̄(`−k) be the distribution of

η(`−k)
o 1{−ck <η(`−k)

o < ck}+ ck1{ck <η(`−k)
o }− ck1{η(`−k)

o <−ck},

i.e., the truncation of η(`−k)
o .

Lemma 5.6. For `> ck we have ρ(`,k) = LL+ (k)
d (ρ̄(`−k)).

We prove Lemma 5.6 in Section 5.5. Recalling ϕ from (1.14), as in the proof of Proposition 2.1 we let ρd =ϕ(πd )
be the distribution of the log-likelihood ratio log(µπd

/(1−µπd
)).

Lemma 5.7. The operator LL+
d is a W1-contraction with unique fixed point ρd .

The proof of Lemma 5.7 can be found in Section 5.6. Let (ρ(`))` be the sequence of distributions of (η(`)
o )`. As an

immediate consequence we obtain the limit of the sequence (ρ(`))`. We recall ψ from (1.14).

Corollary 5.8. The sequence (ψ(ρ(`)))`≥0 converges weakly to πd .

Proof. This follows from Corollary 5.5, Lemma 5.6, Lemma 5.7 and the continuous mapping theorem. �

Proof of Proposition 5.2. Set ϑ(`)
o = (LL+ (`)

T (2`) (0, . . . ,0))o = log(µT (2`) (σo = 1)/µT (2`) (σo =−1)). Then

µT (2`) (σo = 1) =ψ(ϑ(`)
o ) and µT (2`) (σo = 1 |σ∂2`o =σ+

∂2`o
) =ψ(η(`)

o ).

Moreover, Lemma 5.1 shows that 0 ≤ ψ(ϑ(`)
o ) ≤ ψ(η(`)

o ) ≤ 1. Further, Lemma 5.7 implies that ψ(ϑ(`)
o ) converges

weakly to πd . Finally, Corollary 5.8 implies that ψ(η(`)
o ) also converges weakly to πd , whence

lim
`→∞

E
∣∣∣ψ(η(`)

o )−ψ(ϑ(`)
o )

∣∣∣= lim
`→∞

∣∣∣E[ψ(ϑ(`)
o )]−E[ψ(η(`)

o )]
∣∣∣= 0,

which directly implies the assertion. �
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Proof of Proposition 2.2. The proposition follows immediately from Lemma 5.1 and Proposition 5.2. �
5.2. Proof of Lemma 5.1. The proof is by induction on the height of the tree. The following claim summarises the
main step of the induction.

Claim 5.9. For all `≥ 0, all variables x of T (2`) and all satisfying assignments τ ∈ S(T (2`)) we have

Z (T (2`)
x ,τ,σ+

x )

Z (T (2`)
x ,τ)

≤ Z (T (2`)
x ,σ+,σ+

x )

Z (T (2`)
x ,σ+)

. (5.4)

Proof. For boundary variables x ∈ ∂2`o there is nothing to show because the r.h.s. of (5.4) equals one. Hence,
consider a variable x ∈ ∂2k o for some k < `. If Z (T (2`)

x ,τ,σ+
x ) = 0, then (5.4) is trivially satisfied. Hence, assume

that Z (T (2`)
x ,τ,σ+

x ) > 0. Let a+
1 , . . . , a+

g be the children (clauses) of x with sign(x, a+
i ) = σ+

x . Also let y1, . . . , yg be
the children (variables) of a+

1 , . . . , a+
g . Similarly, let a−

1 , . . . , a−
h be the children of x with sign(x, a−

i ) = −σ+
x and let

z1, . . . , zh be their children. We claim that for all τ ∈ S(T (2`)),

Z (T (2`)
x ,τ,σ+

x ) =
g∏

i=1
Z (T (2`)

yi
,τ)

h∏
i=1

Z (T (2`)
zi

,τ,σ+
zi

), Z (T (2`)
x ,τ,−σ+

x ) =
g∏

i=1
Z (T (2`)

yi
,τ,−σ+

yi
)

h∏
i=1

Z (T (2`)
zi

,τ). (5.5)

For setting x to σ+
x satisfies a+

1 , . . . , a+
g ; hence, arbitrary satisfying assignments of the sub-trees T (2`)

yi
can be com-

bined, which explains the first product. By contrast, upon assigning x the valueσ+
x we need to assign the variables

zi the values σ+
zi

so that they satisfy the clauses a−
i . This leaves us with Z (T (2`)

zi
,τ,σ+

zi
) possible satisfying assign-

ments of the sub-trees T (2`)
zi

; hence the second product, and we obtain the left equation. A similar argument yields
the right one. Dividing the two expressions from (5.5) and invoking the induction hypothesis (for k +1), we obtain

Z (T (2`)
x ,τ,−σ+

x )

Z (T (2`)
x ,τ,σ+

x )
=

g∏
i=1

Z (T (2`)
yi

,τ,−σ+
yi

)

Z (T (2`)
yi

,τ)
·

h∏
i=1

Z (T (2`)
zi

,τ)

Z (T (2`)
zi

,τ,σ+
zi

)

≥
g∏

i=1

Z (T (2`)
yi

,σ+,−σ+
yi

)

Z (T (2`)
yi

,σ+)
·

h∏
i=1

Z (T (2`)
zi

,σ+)

Z (T (2`)
zi

,σ+,σ+
zi

)
= Z (T (2`)

x ,σ+,−σ+
x )

Z (T (2`)
x ,σ+,σ+

x )
,

completing the induction. �
Proof of Lemma 5.1. The assertion follows by applying Claim 5.9 to x = o. �
5.3. Proof of Lemma 5.3. To show that LL+

T (2`) is well defined we verify that, in the notation of (5.2), η̂x ∈ (−∞,∞]

for all x. Indeed, in the expression on the r.h.s. of (5.2) a ±∞ summand can arise only from variables yi with
ηyi =∞. But the definition ofσ+ ensures that such yi either render a zero summand ifσ+

x sign(x, ai ) =−1, or a +∞
summand if σ+

x sign(x, ai ) = 1. Thus, the sum is well-defined and η̂x ∈ (−∞,∞].

Further, to verify the identity η(`) = LL+ (`)
T (2`) (∞, . . . ,∞), consider a variable x of T (2`). Let a+

1 , . . . , a+
g be its children

with sign(a+
i , x) =σ+

x , let y1, . . . , yg be their children, let a−
1 , . . . , a−

h be the children of x with sign(a−
i , x) =−σ+

x and
let z1, . . . , zh be their children. Then (1.14) and (5.5) yield

η(`)
x =−

g∑
i=1

log
Z (T (2`)

yi
,σ+,−σ+

yi
)

Z (T (2`)
yi

,σ+)
+

h∑
i=1

log
Z (T (2`)

zi
,σ+,σ+

zi
)

Z (T (2`)
zi

,σ+)
=−

g∑
i=1

log
1− tanh(η(`)

yi
/2)

2
+

h∑
i=1

log
1+ tanh(η(`)

zi
/2)

2
.

The assertion follows because sign(x, a+
i )σ+

x = 1 and sign(x, a−
i )σ+

x =−1.

5.4. Proof of Lemma 5.4. The goal is to prove that for variables some distance away from level 2` of T (2`) the
counts Z (T (2`)

x ,σ+,±1) are roughly of the same order of magnitude. Approaching this task somewhat indirectly,
we begin by tracing the logical implications of imposing a specific value s = ±1 on a variable x of the (possibly
infinite) tree T . Clearly, upon setting x to the value s a child (clause) a of x will be satisfied iff x appears in a with
sign s. In effect, all clauses a with sign(a, x) 6= s need to be satisfied by their second variable y , a grandchild of x.
Thus, we impose the value sign(a, y) on y and recurse down the tree. Let T x,s denote the sub-tree of T comprising
x and all other variables on which this process imposes specific values as well as all clauses that contain two such
variables. Clearly, for every leaf y of T x,s the values imposed on y happens to satisfy all child clauses of y in T . Let
N x,s ∈ [1,∞] be the number of variables in T x,s . The next lemma shows that the impact of a boundary condition
on the marginal of x can be bounded in terms of N x,s .
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Claim 5.10. Let s ∈ {±1}. If x ∈ ∂2k o satisfies N x,s < `−k then Z (T (2`)
x ,τ) ≤ 2N x,s Z (T (2`)

x ,τ, s).

Proof. The construction of the implication tree T x,s imposes a truth value σy on each variable y of the tree that
y must inevitably take if x gets assigned s. Thus, T x,s comes with a satisfying assignment σ ∈ S(T x,s ) with σx = s.
For any leaf y of T x,s every child clause a of y in the super-tree T will be automatically satisfied by setting y to σy

(because otherwise a would have been included in T x,s ). Hence, all the clauses of T that are children of the leaves
of T x,s are satisfied by σ. Moreover, because N x,s < `−k, any leaf y of T x,s has distance less than 2` from o. Thus,

the assignmentσ does not clash with the boundary condition τ. As a consequence, for any χ ∈ S(T (2`)
x ,τ) we obtain

another satisfying assignment χ′ ∈ S(T (2`)
x ,τ) by letting

χ′z =
{
σz if z ∈V (T x,s ),

χz otherwise.

Moreover, under the map χ 7→χ′ the number of inverse images of any assignment χ′ is bounded by the total num-
ber 2N x,s of different truth assignments of the variables V (T x,s ). Therefore, Z (T (2`)

x ,τ) ≤ 2N x,s Z (T (2`)
x ,τ, s). �

As a next step we bound the random variable N x,s .

Claim 5.11. There exists a number α=α(d) > 0 such that P
[

N o,s ≥ u
]≤ exp(−uα)/α for all u ≥ 0, s ∈ {±1}.

Proof. In the construction of T o,s we only propagate along clauses in which the parent variable is forced to take a
value that fails to satisfy the clause. Since the signs are uniformly random, the number of such child clauses has
distribution Po(d/2). Therefore, N o,s is bounded by the total progeny of a Galton-Watson process with Po(d/2)
offspring. The assertion therefore follows from the tail bound for such processes (e.g., [6, eq. (11.7)]). �

As a final preparation toward the proof of Lemma 5.4 we need a bound on the size of the 2k-th level of T .

Claim 5.12. We have limk→∞P
[|∂2k o| > 2d k +k

]= 0.

Proof. Since every clause of T has precisely one child, the size of level 2k of T coincides with the size of the k-th
level of a Po(d) Galton-Watson tree. Therefore, the assertion follows from standard tail bounds for Galton-Watson
processes (e.g., [6, eq. (11.7)]). �

Proof of Lemma 5.4. Claim 5.11 ensures that for a large enough constant c = c(d) > 0 and all large enough k,

P
(
N o,±1 ≥ ck

)≤ (2d)−k . (5.6)

Combining (5.6) with Claim 5.12 and using the union bound, we obtain a sequence εk → 0 such that

P
(
∀x ∈ ∂2k o : N x,±1 < ck

)
≥ 1−εk . (5.7)

Further, if x ∈ ∂2k o satisfies N x,±1 < ck and `> (1+ c)k, Claim 5.10 ensures that for all x ∈ ∂2k o,

∣∣∣η(`)
x

∣∣∣≤ log
Z (T (2`)

x ,σ+)

Z (T (2`)
x ,σ+,1)

+ log
Z (T (2`)

x ,σ+)

Z (T (2`)
x ,σ+,−1)

≤ N x,1 +N x,−1 < 2ck. (5.8)

Combining (5.7) and (5.8) completes the proof. �

5.5. Proof of Lemma 5.6. A straightforward induction shows that for any p ∈ P (R) the result p(k) = LL+ (k)
d (p)

of the k-fold application of LL+
d coincides with the distribution of the root value of the random operator LL+ (k)

T (2k)

applied to a vector (ηx )x∈V (T (2k)) of independent samples from p. Indeed, for k = 1 the claim is immediate from the
definitions. Moreover, for the inductive step we notice that the k-fold application of LL+

d comes down to applying
LL+

d once to the outcome of the (k −1)-fold application. By the induction hypothesis,

p(k−1) =
(
LL+ (k−1)

T (2(k−1)) (ηx )x

)
o

.

Finally, applying LL+
d to p(k−1) implies the assertion because the first layer of T (2k) is independent of the subtrees

rooted at the grandchildren ∂2o of the root, which are distributed as independent random trees T (2(k−1)). The
lemma follows from applying this identity to p = ρ̄(`−k).
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5.6. Proof of Lemma 5.7. The operator LL+
d maps the space W1(R) into itself because the derivative of x 7→ log((1−

tanh(x/2))/2) is bounded by one in absolute value for all x ∈ R. We proceed to show that LL+
d : W1(R) → W1(R) is a

contraction. Thus, consider a sequence of independent random pairs (ηi ,η′i )i≥1 with ηi
d=ρ, η′i

d=ρ′. Then

W1(LL+
d (ρ),LL+

d (ρ′)) ≤ E
∣∣∣∣∣

d∑
i=1

si log
1− si tanh(ηi /2)

1− si tanh(η′i /2)

∣∣∣∣∣≤ dE

∣∣∣∣log
1− s1 tanh(η1/2)

1− s1 tanh(η′1/2)

∣∣∣∣ .

Since the function z 7→ log(1+ tanh(z/2)) is monotonically increasing, we obtain

∣∣∣∣log
1+ tanh(η1/2)

1+ tanh(η′1/2)

∣∣∣∣=
∣∣∣∣∣
∫ η1

η′1

∂ log(1+ tanh(z/2))

∂z
dz

∣∣∣∣∣=
∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz,

∣∣∣∣log
1− tanh(η1/2)

1− tanh(η′1/2)

∣∣∣∣=
∣∣∣∣∣
∫ η1

η′1

∂ log(1− tanh(z/2))

∂z
dz

∣∣∣∣∣=
∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz.

Hence, W1(LL+
d (ρ),LL+

d (ρ′)) ≤ dE
∣∣η1 −η′1

∣∣/2 and therefore W1(LL+
d (ρ),LL+

d (ρ′)) ≤ dW1(ρ,ρ′)/2.
Finally, we observe that ρd is a fixed point of LL+

d . Indeed, Proposition 2.1 implies that ηρd and −ηρd are identi-
cally distributed. Therefore, if si , s ′i ∈ {±1} are uniform and independent, we obtain

si log
((

1− si tanh(ηρd ,i /2)
)

/2
)

d= si log
((

1+ s ′i tanh(ηρd ,i /2)
)

/2
)

.

Hence, recalling the definitions (4.1) and (5.3) of the operators, we see that LL+
d (ρd ) = LLd (ρd ) = ρd .

5.7. Proof of Theorem 1.2. Consider the sub-formula∇2`(Φ, x1) ofΦ obtained by deleting all clauses and variables
at distance greater than 2` from x1. By design, we can couple ∇2`(Φ, x1) and T (2`) such that both coincide w.h.p.
Therefore, since any satisfying assignment ofΦ induces a satisfying assignment of T (2`), Proposition 2.2 implies the
Gibbs uniqueness property (1.11). Furthermore, because Proposition 1.4 shows that Belief Propagation correctly
computes the root marginal µT (2`) (σo = 1), (1.9) follows from (1.11).

5.8. Proof of Corollary 1.3. Let π(`)
d = BP(`)(δ1/2). Thanks to Proposition 2.1 it suffices to prove that

lim
`→∞

limsup
n→∞

E[W1(πΦ,π(`)
d )] = 0. (5.9)

Hence, fix ε > 0, pick a large ` = `(ε) > 0 and a larger L = L(`) > 0. A routine second moment calculation shows
that for any possible outcome T of T (2`) the number XT of variables xi of Φ such that ∇2`(Φ, xi ) = T satisfies
XT = nP

[
T (2`) = T

]+o(n) w.h.p. Hence, w.h.p. Φ admits a coupling γΦ of T (2`) and a uniform variable i on [n]
such that γ({∇2`(Φ, xi ) = T (2`)}) = 1−o(1). Further, Theorem 1.2 implies that given ∇2`(Φ, xi ) = T (2`) we have

P
[∣∣µΦ(σxi = 1)−µT (2`) (τo = 1)

∣∣> ε]< ε, (5.10)

provided ` is large enough. Finally, Lemma 1.4 implies together with a straightforward induction on ` that π(`)
d is

the distribution of µT (2`) (τo = 1). Therefore, (5.9) follows from (5.10).

5.9. Proof of Corollary 2.3. Fix ε> 0 and pick a small ξ= ξ(ε) > 0 and large `= `(ξ) > 0. Since k is fixed indepen-
dently of n, Theorem 1.2 shows that w.h.p.

k∑
i=1

max
τ∈S(Φ)

∣∣∣µΦ(σxi = 1 |σ∂2`xi
= τ∂2`xi

)−µ(`)
Φ,xi

(1)
∣∣∣< ξ. (5.11)

Further, the smallest pairwise distance between x1, . . . , xn exceeds 4` w.h.p. Therefore, we can draw a sample σ
from µΦ in two steps. First, draw σ′ from µΦ. Then, independently re-sample assignments of all the variables
in ∇2`−2(Φ, xi ) from µΦ( · |σ′

∂2`xi
) for i = 1, . . . ,k. The resulting assignment σ′′ has distribution µΦ and the values

σ′′
xi

, i ∈ [k], are mutually independent given σ′. Finally, since (5.11) shows that conditioning on the boundary
conditions σ′

∂2`xi
is inconsequential w.h.p., we obtain the assertion by taking ε→ 0 sufficiently slowly.
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6. PROOF OF PROPOSITION 2.4

6.1. Outline. The proof is based on a natural coupling of the random formulas Φn and Φn+1 with n and n + 1
variables, respectively. Specifically, let

m′ d=Po(dn/2−d/2), ∆′′ d=Po(d/2), ∆′′′ d=Po(d) (6.1)

be independent random variables. Moreover, letΦ′ be a random formula with n variables and m′ clauses, chosen
independently and uniformly from the set of all 4n(n − 1) possible clauses. Then obtain Φ′′ from Φ′ by adding
another∆′′ uniformly random and independent clauses. Moreover, obtainΦ′′′ fromΦ′ by adding one variable xn+1

along with ∆′′′ clauses, chosen uniformly and independently from the set of all 8n possible clauses that contain
xn+1 and another variable from the set {x1, . . . , xn}.

Fact 6.1. We haveΦ′′ d=Φn andΦ′′′ d=Φn+1; therefore,

E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)] = E
[

log
Z (Φ′′′)∨1

Z (Φ′)∨1

]
−E

[
log

Z (Φ′′)∨1

Z (Φ′)∨1

]
. (6.2)

Hence, the proof of Proposition 2.4 boils down to establishing the following two statements.

Proposition 6.2. We have lim
n→∞E log

Z (Φ′′)∨1

Z (Φ′)∨1
= d

2
E
[

log
(
1−µπd ,1µπd ,2

)]
.

Proposition 6.3. We have lim
n→∞E log

Z (Φ′′′)∨1

Z (Φ′)∨1
= E

[
log

( ∑
σ∈{±1}

d∏
i=1

(
1−1 {σ 6= si }µπd ,i

))]
.

Further, to prove Propositions 6.2 and 6.3 we ‘just’ need to understand the impact of a bounded expected number
of ‘local’ changes (such as adding a random clause) on the partition function.

The proof strategy sketched in the previous paragraph is known as the Aizenman-Sims-Starr scheme. The tech-
nique was originally deployed to study the Sherrington-Kirkpatrick spin glass model [5], but has since found var-
ious applications to models on sparse random graphs (e.g., [16, 40]). By comparison to prior applications, the
difficulty here is that we apply this technique to a model with hard constraints. In effect, while typically the ad-
dition of a single clause will only reduce the number of satisfying assignments by a bounded factor, occasion-
ally a much larger change might ensue. For instance, for any 0 < d < 2 there is a small but non-zero probability
that a single additional clause might close a ‘bicycle’, i.e., a sequence of clauses that induce an implication chain
xi →···→¬xi →···→ xi . Thus, a single unlucky clause might wipe out all satisfying assignments.

Suppose we wish to roughly estimate the change in the number of satisfying assignments upon going from
Φ′ to Φ′′′. Clearly Z (Φ′′′) ≤ 2Z (Φ′) because we only add one new variable. But of course Z (Φ′′′) might be much
smaller than Z (Φ′). To obtain a bound, consider the new clauses b1, . . . ,b∆′′′ that were added along with xn+1 and
let y1, . . . , y∆′′′ be the variables ofΦ′ where the new clauses attach. Define an assignmentχ : Y = {y1, . . . , y∆′′′ } → {±1}
by letting χyi = sign(yi ,bi ); thus, χ satisfies the bi . Further, let

S(Φ′,χ) = {
σ ∈ S(Φ′) : ∀y ∈ Y :σy =χy

}
, Z (Φ′,χ) = |S(Φ′,χ)|

be the set and the number of satisfying assignments of Φ′ that coincide with χ on Y . Because each σ ∈ S(Φ′,χ)
already satisfies all the new clauses regardless of the value assigned to xn+1, we obtain Z (Φ′′′) ≥ 2Z (Φ′,χ). Hence,
it seems that we just need to lower bound Z (Φ′,χ).

To this end we could employ a process similar to the one that we applied in Section 5.4 to the tree T . Generally,
let Y ⊆ {x1, . . . , xn} be a set of variables and let χ ∈ {±1}Y be an assignment. The following process, known as the
Unit Clause Propagation algorithm [26], chases the implications of imposing the assignment χ on Y :

whileΦ′ possesses a clause a that has exactly one neighbouring variable z ∈ ∂a on which the value
−sign(z, a) has been imposed, impose the value sign(a, z ′) on the second variable z ′ ∈ ∂a \{z} of a.

Let Iχ be the set of variables on which the process has imposed a value upon termination (including the initial
set Y ). Unfortunately, it is possible that Φ′ contains a clause a on whose both variables z, z ′ the ‘wrong’ values
−sign(a, z),−sign(a, z ′) got imposed. In other words, Unit Clause might be left with contradictions. If such a
clause exists we let Iχ = n. Otherwise we set Iχ = |Iχ|. We obtain the following lower bound on Z (Φ′,χ).

Fact 6.4. We have Z (Φ′) ≤ 2Iχ (Z (Φ′,χ)∨1).
16
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Proof. The inequality is trivially satisfied if Z (Φ′) = 0 or Iχ = n. Hence, we may assume that Z (Φ′) > 0 and that Unit
Clause did not run into a contradiction. Consequently, Unit Clause produced an assignment χ∗ of the variables Iχ

that satisfies all clauses a ofΦ′ with ∂a∩Iχ 6= ;. Hence, for any satisfying assignment σ ∈ S(Φ′) we obtain another
satisfying assignment σ̂ ∈ S(Φ′,χ) by letting σ̂ = χ∗x 1{x ∈ Iχ}+σx 1{x 6∈ Iχ}, i.e., we overwrite the variables in Iχ

according to χ∗. Clearly, under the map σ 7→ σ̂ an assignment σ̂ ∈ S(Φ′,χ) has at most 2Iχ inverse images. �
Hence, we need an upper bound on Iχ, which will be proven at the end of Section 6.2.

Lemma 6.5. There exists C = C (d) > 0 such that for every set Y ⊆ {x1, . . . , xn} of size |Y | ≤ log2 n and any χ ∈ {±1}Y

we have E[Iχ] ≤C |Y |2.

Unfortunately, this first moment bound does not quite suffice for our purposes. Indeed, Lemma 6.5 allows for
the possibility that Iχ = n with probability Ω(1/n). In combination with Fact 6.4 this rough bound would lead to
error terms that eclipse the ‘main’ terms displayed in Propositions 6.2 and 6.3. But we cannot hope for a much
better bound on Iχ. Indeed, P

[
Iχ = n

] =Ω(1/n) because the graph G(Φ′) likely contains a few short cycles and if
Y contains a variable on a short cycle, then there is aΩ(1) probability that Unit Clause will cause a contradiction.

Hence, we need to be more circumspect. Previously we aimed for an assignment χ that satisfied all the new
clauses b1, . . . ,b∆′′′ added upon going to Φ′′′. But we still have the new variable xn+1 at our disposal to at least
satisfy a single clause bi . Hence, we can afford to start Unit Clause from an assignment χ′ that differs from χ on a
single variable. Thus, for a set Y of variables and χ ∈ {±1}Y we define

Aχ = min

{
Iχ′ :χ′ ∈ {±1}Y ,

∑
y∈Y

1{χy 6=χ′y } ≤ 1

}
. (6.3)

Lemma 6.6. There exists C ′ =C ′(d) > 0 such that for every set Y ⊆ {x1, . . . , xn} of size |Y | ≤ log2 n and any χ ∈ {±1}Y

we have E[A2
χ] ≤C ′|Y |4.

This second moment bound significantly improves over Lemma 6.5. For instance, Lemma 6.6 implies that the
probability of an enormous drop Z (Φ′′′) ≤ exp(−Ω(n))Z (Φ′) is bounded by O(n−2). Once more this estimate is
about tight because there is anΩ(n−2) probability that a single new clause closes a bicycle. As we shall see, with a
bit of care the bound from Lemma 6.6 suffices to prove Propositions 6.2 and 6.3. Yet Lemma 6.5 has its uses, too,
as it implies the following vital tail bound.

Corollary 6.7. We have limsupn→∞E

[
n ∧

∣∣∣∣log
µΦ′ (σx1 = 1)

µΦ′ (σx1 =−1)

∣∣∣∣ | Z (Φ′) > 0

]
<∞.

We proceed to study Unit Clause Propagation in order to prove Lemmas 6.5, 6.6 and Corollary 6.7. Then we will
prove Propositions 6.2 and 6.3, which imply Proposition 2.4.

6.2. Unit Clause Propagation. To avoid dependencies we consider a binomial model Φ† of a random 2-SAT for-
mula with variables x1, . . . , xn , where each of the 4

(n
2

)
possible (unordered) 2-clauses is present with probability

p = d/(4n)+n−4/3 (6.4)

independently. We define a random variable A†
χ onΦ† in perfect analogy to Aχ. Since the choice (6.4) of p ensures

that Φ† and Φ′ can be coupled so that the former has more clauses than the latter with probability 1−o(n−2), it
suffices to analyse A†

χ. Moreover, thanks to symmetry it suffices to prove Lemmas 6.5 and 6.6 under the assumption

that the initial set of variables is Y = {x1, . . . , x`}, `≤ log2 n.
At first glance investigating A†

χ appears to be complicated by the fact that (6.3) takes the minimum over all
possible χ′. To sidestep this issue we will investigate a ‘comprehensive’ propagation process whose progeny en-
compasses all the unit clauses that may result from any χ′. In its first round this process pursues for each variable
xi , i ≤ `, the Unit Clauses created by imposing either of the two possible truth values on xi . The effect will be the
imposition of truth values on all variables at distance two from Y . Subsequently we trace Unit Clause Propagation
from the values imposed on the variables in ∂2Y . Hence, the difficulty of considering all χ′ as in (6.3) disappears
because the first step disregards χ.

To deal with possible contradictions the process will actually operate on literals rather than variables. Through-
out each literal will belong to one of three possible categories: unexplored, explored, or finished. Initially the 2` lit-
erals x1,¬x1, . . . , x`,¬x` qualify as explored and all others as unexplored. Formally, we let E0 = {x1,¬x1, . . . , x`,¬x`},
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U0 = {x`+1,¬x`+1, . . . , xn ,¬xn} and F0 =;. Further, for t ≥ 0 we construct Et+1,Ut+1,Ft+1 as follows. If Et =;, the
process has terminated and we set Et+1 = Et ,Ut+1 =Ut ,Ft+1 =Ft . Otherwise, pick a literal lt+1 ∈ Et and let E ′

t+1
be the set of all literals l ′ ∈Ut such thatΦ† features the clause ¬lt+1 ∨ l ′. Further, let

Ut+1 =Ut \E ′
t+1, Et+1 = (Et ∪E ′

t+1) \ {lt+1}, Ft+1 =Ft ∪ {lt+1} .

Finally, the set F∞ = ⋃
t≥1 Ft contains all literals upon which Unit Clause could impose the value ‘true’ from any

initial assignment χ. A contradiction might result only if xi ,¬xi ∈F∞ for some i > `.

Claim 6.8. For all T > 8`/(2−d) we have P [|F∞| > T ] ≤ exp(−dT /36).

Proof. Let t ≥ 0. Given |Ut | and |Et | we have

X t+1 = |Et+1|− |Et |+1 {Et 6= ;}
d= Bin

(|Ut |1 {|Et | ≥ 0} , p
)

.

Moreover, given |Ut | and |Et | let Y t+1
d= Bin

(
2n −|Ut |1 {|Et | ≥ 0} , p

)
be independent of X t+1 and everything else,

and set X ≥
t+1 = X t+1 +Y t+1. Then (X ≥

t )t≥1 is an i.i.d. sequence of Bin(2n, p) random variables such that X ≥
t ≥ X t

for all t . Hence, for any T ≥ 1,

P [|F∞| > T ] =P [|ET | > 0] ≤P
[

T∑
t=1

X t > T −2`

]
≤P

[
T∑

t=1
X ≥

t > T −2`

]
=P[

Bin(2nT, p) > T −2`
]

. (6.5)

Further, the Chernoff bound shows that for T > 8`/(2−d) (and n large enough),

P
[
Bin(2T dn, p) > T −2`

]≤ exp

(
−min

{
(d −n−4/3), (d −n−4/3)2} 2nT p

3

)
≤ exp

(
−dT

36

)
, (6.6)

Combining (6.5) and (6.6) completes the proof. �

LetΦ∗ be the sub-formula ofΦ† comprising all variables x such that x ∈F∞ or ¬x ∈F∞ along with all clauses
a that contain two such variables. Let n∗ be the number of variables ofΦ∗ and let m∗ be the number of clauses.

Claim 6.9. We have P [m∗ ≥ n∗−`+1] ≤O(`2/n) and P [m∗ > n∗−`+1] ≤O(`4/n2).

Proof. We set up a graph representing the literals involved in the exploration process and the clauses that contain
such literals. Specifically, let ¬F∞ = {¬l : l ∈ F∞} contain all negations of literals in F∞. Moreover, let G be
the graph whose vertices are the literals F∞∪¬F∞ as well as all clauses a of Φ† that consist of two literals from
F∞∪¬F∞. Let C∞ be the set of such clauses a. For each clause a ∈C∞ the graph G contains two edges joining a
and its two constituent literals. The graph G(Φ∗) that we are ultimately interested in results from G by contracting
pairs of inverse literals l ,¬l ∈F∞∪¬F∞.

A large excess m∗−n∗ can either caused by the presence of atypically many clauses in G or by excess pairs of
inverse litetals that get contracted. We first address the gain in clauses due to inclusion of ¬F∞ and all induced
clauses. The exploration process discovers each literal λ ∈ F∞ \ {x1,¬x1, . . . , x`,¬x`} via a clause ¬lt ∨λ, where
¬lt ∈ Et−1. Thus, |C∞| ≥ |F∞|−2`. Hence, the random variable X = |C∞|− |F∞|+2` accounts for the number of
excess clauses that are present among the literals F∞∪¬F∞ but that were not probed by the process. We highlight
that X also counts clauses that contain two literals from the seed set {x1,¬x1, . . . , x`,¬x`}. Because clauses appear
inΦ† independently with probability p =O(d/n), we obtain the bounds

P[X ≥ 1 | |F∞|] ≤O(|F∞|2/n), P[X ≥ 2 | |F∞|] ≤O(|F∞|4/n2). (6.7)

Secondly, we investigate the loss in nodes due to contraction. Hence, n∗ = |F∞∪¬F∞|/2. By construction, the
seeds x1,¬x1, . . . , x`,¬x` come in pairs. Let X ′ = 1

2 |F∞∩¬F∞|−` count the number of excess inverse literal pairs
that we need to contract. Since the process is oblivious to the identities of the variables underlying the literals,
given its size the set F∞ \ {x1,¬x1, . . . , x`,¬x`} is a uniformly random subset of the set {xi ,¬xi : ` < i ≤ n} of non-
seed literals. Therefore, a routine balls-into-bins argument shows that

P[X ′ ≥ 1 | |F∞|] ≤O(|F∞|2/n), P[X ′ ≥ 2 | |F∞|] ≤O(|F∞|4/n2). (6.8)

Finally, in order to estimate m∗−n∗ we consider four separate cases.
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Case 1: X = X ′ = 0: Since X = 0 the graph G is a forest with 2` components rooted at x1,¬x1, . . . , x`,¬x`.
Moreover, since X ′ = 0 we have F∞ ∩¬F∞ = {x1,¬x1, . . . , x`,¬x`}. Therefore, G(Φ∗) is obtained from
G by identifying the pairs xi ,¬xi for i = 1, . . . ,`. Hence, G(Φ∗) is a forest with ` components, and thus

m∗ = n∗−`. (6.9)

Case 2: X = 1, X ′ = 0: Obtain Ĝ from G by adding one new vertex r whose neighbours are x1,¬x1, . . . , x`,¬x`.
Then Ĝ is unicyclic because X = 1. Let G̃ be the graph obtained from Ĝ by deleting the vertex r along with
one (arbitrary) clause a from the cycle of Ĝ . Then G̃ is a forest with 2` components. Therefore, by the same
token as in Case 1, G(Φ∗−a) is a forest with ` components. Hence, G(Φ∗), obtained by inserting clause a
into G(Φ∗−a), either contains a single cycle or consists of exactly `−1 components. Thus, by (6.7)

m∗ ≤ n∗−`+1, P
[

X = 1, X ′ = 0 | |F∞|]=O(|F∞|2/n). (6.10)

Case 3: X = 0, X ′ = 1: The graph Ĝ , defined as in Case 2, is a tree because X = 0. Suppose (F∞ ∩¬F∞) \
{x1,¬x1, . . . , x`,¬x`} = {y,¬y}. Let a be a clause on the unique path from y to ¬y in Ĝ . Then the same
argument as in Case 1 shows that G(Φ∗−a) is a forest with ` components. Therefore, G(Φ∗) either contains
a unique cycle or has precisely `−1 components. Consequently, (6.8) yields

m∗ ≤ n∗−`+1, P
[

X = 0, X ′ = 1 | |F∞|]=O(|F∞|2/n). (6.11)

Case 4: X +X ′ ≥ 2: In this case we do not have a bound on m∗−n∗, but we claim that

P
[

X +X ′ ≥ 2 | |F∞|]=O(|F∞|4/n2). (6.12)

Indeed, (6.7) and (6.8) readily imply that P
[

X ∨X ′ ≥ 2 | |F∞|]=O(|F∞|4/n2). Further, since X is indepen-
dent of X ′ given F∞, (6.7) and (6.8) also yield the bound P

[
X = X ′ = 1 | |F∞|]=O(|F∞|4/n2).

The assertion follows by combining (6.9)–(6.12) with Claim 6.8. �

Claim 6.10. For all χ ∈ {±1}{x1,...,x`} we have A†
χ ≤ |F∞|1{

m∗ ≤ n∗−`+1
}+n1

{
m∗ > n∗−`+1

}
.

Proof. The graph G(Φ∗) consists of at most ` components (one for each of the initial variables x1, . . . , x`). Hence,
m∗ ≥ n∗−` and G(Φ∗) is acyclic if m∗ = n∗−`. Moreover, if G(Φ∗) is acyclic then A†

χ ≤ |F∞| by construction.
Thus, we are left to consider the case m∗ = n∗−`+1. ThenΦ∗ contains a clause a such that G(Φ∗−a) is a forest

with ` components rooted at x1, . . . , x`. Assume without loss that a = xn−1 ∨ xn . Then by construction we have
{xn−1,¬xn−1}∩F∞ 6= ; and {xn ,¬xn}∩F∞ 6= ;. Further, unless ¬xn−1,¬xn ∈F∞ we have Aχ ≤ Iχ ≤ |F∞| as in the
first case. Hence, assume that ¬xn−1,¬xn ∈F∞. Let i ∈ [`] be such that xn belongs to the connected component of
xi in G(Φ∗−a) and obtain χ′ from χ by flipping the value assigned to xi . Because G(Φ∗−a) is a forest, we conclude
that A†

χ ≤ Iχ∧ Iχ′ ≤ |F∞|. �

Proof of Lemma 6.6. The choice of the clause probability p ensures that A†
χ stochastically dominates Aχ. There-

fore, the assertion follows from Claims 6.8–6.10. �

Proof of Lemma 6.5. The choice of the clause probability p and the construction of the set F∞ guarantee that Iχ is
stochastically dominated by the random variable |F∞|1{

m∗ ≤ n∗−`}+n1
{

m∗ > n∗−`}. Hence, Claims 6.8–6.10
imply the desired bound. �

Proof of Corollary 6.7. Let Y = {x1} and χ+x1
= 1, χ−x1

=−1. Assume thatΦ′ is satisfiable. Then Fact 6.4 implies that

n ∧
∣∣∣∣log

µΦ′ (σx1 = 1)

µΦ′ (σx1 =−1)

∣∣∣∣≤ Iχ− + Iχ+ .

Therefore, the assertion follows from Lemma 6.5. �

6.3. Proof of Proposition 6.2. Let c1, . . . ,c∆′′ be the new clauses added to Φ′′ and let Y = {y 1, z1, . . . , y∆′′ , z∆′′ } be
the set of variables that occur in these clauses. We begin by deriving the following rough bound.

Lemma 6.11. We have E

[
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
=O(1).
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Proof. IfΦ′ is unsatisfiable then so isΦ′′ and thus (Z (Φ′′)∨1)/(Z (Φ′)∨1) = 1. Hence, we may assume that Z (Φ′) ≥ 1.
If |Y | = 2∆′′, the new clauses attach to disjoint sets of variables. Consider the truth value assignmentχ ∈ {±1}Y that
satisfies both literals in each of the clauses c1, . . . ,c∆′′ . Fact 6.4 shows that

Z (Φ′′)∨1 ≥ Z (Φ′,χ)∨1 ≥ 2−AχZ (Φ′). (6.13)

Combining (6.13) with Lemma 6.6 and recalling that∆′′ d=Po(d/2), we obtain

E

[
1

{
Z (Φ′) ≥ 1, |Y | = 2∆′′} log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{
Z (Φ′) ≥ 1, |Y | = 2∆′′} A2

χ

]
=O(1). (6.14)

Next, consider the event |Y | = 2∆′′−1. Because c1, . . . ,c∆′′ are drawn independently, we have

P
[|Y | = 2∆′′−1 |∆′′]≤O((∆′′)2/n). (6.15)

Moreover, because the signs of the clauses c1, . . . ,c∆′′ are independent of Φ′, given |Y | = 2∆−1 there exists an as-
signmentχ ∈ {±1}Y , stochastically independent ofΦ′, that satisfies c1, . . . ,c∆′′ . Fact 6.4 yields Z (Φ′′)∨1 ≥ Z (Φ′,χ) ≥
2−IχZ (Φ′). Therefore, since log((Z (Φ′′)∨1)/(Z (Φ′)∨1)) ≤ n, Lemma 6.5 and (6.15) imply

E

[
1

{
Z (Φ′) ≥ 1, |Y | = 2∆′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ nE

[
1

{|Y | = 2∆′′−1
}

Iχ
]=O(1). (6.16)

Finally, consider the event |Y | < 2∆′′−1. Due to the independence of c1, . . . ,c∆′′ , this event occurs with proba-
bility O(n−2). Hence, the deterministic bound (Z (Φ′′)∨1)/(Z (Φ′)∨1) ≥ 2−n implies

E

[
1

{
Z (Φ′) ≥ 1, |Y | < 2∆′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
=O(1). (6.17)

The assertion follows from (6.14), (6.16) and (6.17). �
Lemma 6.12. There exists a number K > 0 such that for every ε> 0 we have

limsup
n→∞

E

[(
∆′′∑
i=1
Λε(1−µΦ′ (σy i

=−sign(ci , y i ))µΦ′ (σz i =−sign(ci , z i ))

)2

| Z (Φ′) > 0

]
≤ K .

Proof. Since ∆"
d=Po(d/2) and the pair (y 1, z1) is uniformly random, due to Cauchy-Schwarz it suffices to prove

limsupn→∞E
[
Λε(1−µΦ′ (σx1 = 1)µΦ′ (σx2 = 1))2 | Z (Φ′) > 0

]≤ K for every ε> 0. We observe that

limsup
n→∞

E
[
Λε(1−µΦ′ (σx1 = 1)µΦ′ (σx2 = 1))2 | Z (Φ′) > 0

]≤ limsup
n→∞

E
[
Λε(1−µΦ′ (σx1 = 1))2 | Z (Φ′) > 0

]

= limsup
n→∞

E

[
1

n

n∑
i=1
Λε(1−µΦ′ (σxi = 1))2 | Z (Φ′) > 0

]
. (6.18)

Moreover, Φ′ has m′ d=Po(dn/2−d/2) clauses, while Φ = Φn has m
d=Po(dn/2) clauses. Since dTV(m′,m) = o(1),

the formulasΦ′,Φ can be coupled such that both coincide w.h.p. Hence, for any fixed ε> 0 we have

E

[
1

n

n∑
i=1
Λε(1−µΦ′ (σxi = 1))2 | Z (Φ′)

]
= E

[
1

n

n∑
i=1
Λε(1−µΦ(σxi = 1))2 | Z (Φ′)

]
+o(1). (6.19)

Further, since for every ε> 0 the function u ∈ [0,1] 7→Λε(1−u)2 is continuous, Corollary 1.3 implies that

1

n

n∑
i=1
Λε(1−µΦ(σxi = 1))2 n →∞−→ E

[
Λε(1−µπd

)2
]

in probability. (6.20)

Since (2.1) shows that E
[
Λε(1−µπd

)2
]
≤ E

[
log2(1−µπd

)
]
<∞, the assertion follows from (6.18)–(6.20). �

Lemma 6.13. For any δ> 0 there exists ε> 0 such that

limsup
n→∞

∣∣∣∣E
[

log
Z (Φ′′)∨1

Z (Φ′)∨1

]
− d

2
E
[
Λε

(
1−µΦ′,x1

(s1)µΦ′,x2
(s2)

) | Z (Φ′)
]∣∣∣∣< δ.

Proof. Choose small enough ξ = ξ(δ) > η = η(ξ) > ε = ε(η) > 0, assume that n > n0(ε) is sufficiently large and let
(γn)n be a sequence of positive reals, depending on ξ and η, that tends to zero sufficiently slowly. Let E = En be the
event that the following five statements hold.

E1: Z (Φ′) > 0.
20
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E2: |Y | = 2∆′′.
E3: ∆′′ < ξ−1/4.
E4: for all y ∈ Y and all s ∈ {±1} we have µΦ′ (σy = s) < 1−2η.
E5:

∑
σ∈{±1}Y

∣∣µΦ(∀y ∈ Y :σy =σy )−∏
y∈Y µΦ(σy =σy )

∣∣< γn .

The first two events E1, E2 occur with probability 1−o(1) as n →∞. Moreover, P[E3] > 1−ξ if ξ is small enough.
Further, since Corollary 1.3 shows that πΦ converges to πd weakly in probability, the tail bound (2.1) implies that
P

[
E4 |∆′′ < ξ−1/4

] > 1 − ξ, provided that η is small enough. Additionally, Corollary 2.3 implies P [E5 | E1–E4] =
1−o(1) if γn → 0 slowly enough. Consequently,

P [E ] > 1−4ξ. (6.21)

Combining Lemma 6.11, (6.21) and the Cauchy-Schwarz inequality, we obtain
∣∣∣∣E

[
(1−1E ) log

Z (Φ′′)
Z (Φ′)

]∣∣∣∣≤ δ/3+o(1). (6.22)

Similarly, by Lemma 6.12, (6.21) and Cauchy-Schwarz,
∣∣∣∣∣E

[
(1−1E )

∆′′∑
i=1
Λε

(
1−µΦ′ (σy i

=−sign(y i ,ci ))µΦ′ (σz i =−sign(z i ,ci ))
)
]∣∣∣∣∣≤ δ/3+o(1). (6.23)

Further, because the distribution ofΦ′ is invariant under permutations of the variables x1, . . . , xn and E[∆′′] = d/2,

E

[
∆′′∑
i=1
Λε

(
1−µΦ′ (σy i

=−sign(y i ,ci ))µΦ′ (σz i =−sign(z i ,ci ))
) | Z (Φ′) > 0

]

= d

2
E
[
Λε

(
1−µΦ′ (σx1 = s1)µΦ′ (σx2 = s2)

) | Z (Φ′) > 0
]

. (6.24)

Moreover, on the event E we have

Z (Φ′′)
Z (Φ′)

=
∑

σ∈{±1}Y

1
{
σ satisfies c1, . . . ,c∆′′

}
µΦ′

(∀y ∈ Y :σy =σy
)

=
∑

σ∈{±1}Y

1
{
σ satisfies c1, . . . ,c∆′′

} ∏
y∈Y

µΦ′
(
σy =σy

)+o(1) [due to E3,E5]

=
∆′′∏
i=1

(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))+o(1).

Therefore, by E4

E

[
1E log

Z (Φ′′)
Z (Φ′)

]
= E

[
1E

∆′′∑
i=1

log
(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))
]
+o(1)

= E
[

1E
∆′′∑
i=1
Λε

(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))
]
+o(1). (6.25)

Finally, the assertion follows from (6.22)–(6.25). �

Proof of Proposition 6.2. Proposition 2.1 shows thatµπd ,1 and 1−µπd ,1 are identically distributed. SinceΛε is con-
tinuous and bounded, Corollary 1.3 therefore implies that

lim
n→∞E

[
Λε

(
1−µΦ′,x1

(s1)µΦ′,x2
(s2)

)]= E
[
Λε

(
1−

(
1− s1

2
+ s1µπd ,1

)(
1− s2

2
+ s2µπd ,2

))]

= E
[
Λε

(
1−µπd ,1µπd ,2

)]
. (6.26)

for every ε> 0. Further, sinceΛε(1−µπd ,1µπd ,2) decreases monotonically to log(1−µπd ,1µπd ,2) as ε→ 0, the mono-
tone convergence theorem and (2.2) yield

lim
ε→0

E
[
Λε

(
1−µπd ,1µπd ,2

)]
= E log

(
1−µπd ,1µπd ,2

)
. (6.27)

Combining (6.26) and (6.27) and Lemma 6.13 completes the proof. �
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6.4. Proof of Proposition 6.3. The steps that we follow are analogous to the ones from the proof of Proposition 6.2.
Recall that Φ′′′ is obtained from Φ′ by adding one variable xn+1 along with random adjacent clauses b1, . . . ,b∆′′′ ,
where ∆′′′ is a Poisson variable with mean d . Let y 1, . . . , y∆′′′ ∈ {x1, . . . , xn} be the variables of Φ′ where the new
clauses attach and let Y = {y 1, . . . , y∆′′′ }. We begin with the following L2-bound.

Lemma 6.14. We have limsup
n→∞

E

[
log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
<∞.

Proof. If Φ′ is unsatisfiable, then so is Φ′′′ and thus (Z (Φ′′′) ∨ 1)/(Z (Φ′) ∨ 1) = 1. Hence, we may assume that
Z (Φ′) ≥ 1. We now consider three scenarios. First, suppose that |Y | =∆′′′, i.e., the new clauses attach to distinct
variables of Φ′. Then define an assignment χ ∈ {±1}Y by setting each y ∈ Y to the value that satisfies the unique
clause among b1, . . . ,b∆′′′ in which y occurs. We claim that

Z (Φ′′′)∨1 ≥ 2−AχZ (Φ′). (6.28)

Indeed, ifχ′ ∈ {±1}Y differs fromχ on only one variable, then we can always satisfy all clauses b1, . . . ,b∆′′′ by setting
xn+1 appropriately. Therefore, (6.28) follows from Fact 6.4 and the definition (6.3) of Aχ. Combining (6.28) with
Lemma 6.6, we obtain

E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′} log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{|Y | =∆′′′} A2
χ

]
=O(1). (6.29)

Second, consider the case |Y | =∆′′′−1. Because b1, . . . ,b∆′′′ are drawn independently, we have

P
[|Y | =∆′′′−1 |∆′′′]=O((∆′′′)2/n). (6.30)

Further, there exists an assignment χ ∈ {±1}Y under which all but one of the clauses b1, . . . ,b∆′′′ are satisfied. This
assignment is independent of Φ′ because the signs of b1, . . . ,b∆′′′ are. Since we can use the new variable xn+1 to
satisfy the last clause as well, Fact 6.4 implies the bound (Z (Φ′′′)∨ 1)/Z (Φ′) ≥ 2−Iχ . Therefore, Lemma 6.5 and
(6.30) yield

E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′−1

}
I 2
χ

]

≤ nE
[
1

{|Y | =∆′′′−1
}

Iχ
]=O(1). (6.31)

Finally, because b1, . . . ,b∆′′′ are drawn independently, the event {|Y | <∆′′′−1} has probability O(n−2). Therefore,
the deterministic bound (Z (Φ′′′)∨1)/(Z (Φ′)∨1) ≥ 2−n ensures that

E

[
1
{

Z (Φ′) ≥ 1, |Y | <∆′′′−1
}

log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
=O(1). (6.32)

The assertion follows from (6.29), (6.31) and (6.32). �
Lemma 6.15. There exists K > 0 such that for every ε> 0 we have

limsup
n→∞

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)2

| Z (Φ′) > 0

]
≤ K .

Proof. Since∆′′′ d=Po(d/2), y 1, . . . , y∆′′′ and the signs sign(bi , y i ) are uniformly random, we obtain

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)2

| Z (Φ′) > 0

]

≤ 1+E
[
Λε

(
∆′′′∏
i=1

µΦ′ (σy i
= 1)

)2

| Z (Φ′) > 0

]
≤ 1+dE

[
Λε

(
µΦ′ (σy 1

= 1)
)2 | Z (Φ′) > 0

]
. (6.33)

Further, the formulasΦ′,Φ can be coupled such that both coincide w.h.p. (cf. the proof of Lemma 6.12). Therefore,
Corollary 1.3 implies that for every ε> 0,

E
[
Λε

(
µΦ′ (σy 1

= 1)
)2 | Z (Φ′) > 0

]
= E

[
Λε

(
µπΦ

)2 | Z (Φ) > 0
]
+o(1) = E

[
Λε

(
µ2
πd

)]
+o(1) ≤ E

[
log2µπd

]
+o(1).

(6.34)

Since (2.1) implies that E
[

log2µπd

]
<∞, the assertion follows from (6.33)–(6.34). �
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Lemma 6.16. For any δ> 0 there exists ε0 > 0 such that for every 0 < ε< ε0,∣∣∣∣∣E
[

log
Z (Φ′′′)∨1

Z (Φ′)∨1

]
−E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

)
)
| Z (Φ′) > 0

]∣∣∣∣∣< δ+o(1).

Proof. Choose small enough ξ = ξ(δ) > η = η(ξ) > ε = ε(η) > 0, assume that n > n0(ε) is sufficiently large and let
(γn)n be a sequence of numbers γn > 0 that tends to zero slowly. Let E = En be the event that the following five
statements are satisfied.

E1: Z (Φ′) > 0.
E2: |Y | =∆′′′.
E3: ∆′′′ < ξ−1/4.
E4: for all y ∈ Y we have µΦ′ (σy = 1)∨µΦ′ (σy =−1) < 1−2η.
E5:

∑
σ∈{±1}Y

∣∣µΦ(∀y ∈ Y :σy =σy )−∏
y∈Y µΦ(σy =σy )

∣∣< γn .

As in the proof of Lemma 6.13 we obtain P [E ] > 1− 4ξ. Hence, Lemmas 6.14 and 6.15 and the Cauchy-Schwarz
inequality yield

∣∣∣∣E
[

(1−1E ) log
Z (Φ′′′)
Z (Φ′)

]∣∣∣∣≤ δ/3+o(1), (6.35)
∣∣∣∣∣E

[
(1−1E )Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)
| Z (Φ′) > 0

]∣∣∣∣∣≤ δ/3+o(1). (6.36)

Moreover, because the distribution ofΦ′ is invariant under variable permutations,

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)
| Z (Φ′) > 0

]

= E
[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

)
)
| Z (Φ′) > 0

]
+o(1). (6.37)

Further, on E we obtain

Z (Φ′′′)
Z (Φ′)

=
∑

σ∈{±1}Y ∪{xn+1}

1
{
σ satisfies b1, . . . ,b∆′′′

}
µΦ′

(∀y ∈ Y :σy =σy
)

=
∑

σ∈{±1}Y ∪{xn+1}

1
{
σ satisfies b1, . . . ,b∆′′′

} ∏
y∈Y

µΦ′
(
σy =σy

)+o(1) [due to E3,E5]

=
∑

s∈{±1}

∏
i∈[∆′′′]

sign(xn+1,bi )=−s

µΦ′ (σy i
= sign(y i ,bi )) ; (6.38)

to elaborate, in the last step s represents the value assigned to xn+1 and the product ensures that the clauses bi in
which xn+1 occurs with sign −s are satisfied by assigning their second variable y i the value sign(y i ,bi ). Further,
(6.38), E3 and E4 yield

E

[
1E log

Z (Φ′′′)
Z (Φ′)

]
= E

[
1E log

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
sign(xn+1,bi ) =−s

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)]

+o(1)

= E
[

1EΛε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
sign(xn+1,bi ) =−s

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)]

+o(1) (6.39)

Finally, the assertion follows from (6.35), (6.36), (6.37) and (6.39). �

Proof of Proposition 6.2. Because µπd ,1
d=1−µπd ,1 by Proposition 2.1, Corollary 1.3 shows that for every ε> 0,

lim
n→∞E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

) | Z (Φ′) > 0

)]
= E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))]
. (6.40)

Further, the dominated convergence theorem and (2.2) yield

lim
ε→0

E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))]
= E log

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))
. (6.41)

23

84 Appendix A.



To complete the proof we combine (6.40), (6.41) and Lemma 6.13. �

7. PROOF OF PROPOSITION 2.6

Tools such as Azuma’s inequality do not apply to the number Z (Φ) of satisfying assignments because adding or
removing even a single clause could change Z (Φ) by an exponential factor. Therefore, we prove Proposition 2.6 by
way of a ‘soft’ version of the random 2-SAT problem. Specifically, for a real β > 0 we define Zβ(Φ) via (3.1). Thus,
instead of dismissing assignments σ 6∈ S(Φ) outright, we charge an exp(−β) penalty factor for each violated clause.
Because the constraints are soft, showing that log Zβ(Φ) concentrates is a cinch.

Lemma 7.1. For all t ,β> 0 we have P
[∣∣log Zβ(Φ)−E[log Zβ(Φ)]

∣∣> t | m
]≤ 2exp

(
− t 2

2mβ2

)
.

Proof. Since adding or removing a single clause can alter Zβ(Φ) by at most a factor exp(±β), the assertion follows
from Azuma’s inequality. �

The following statement, whose proof relies on the interpolation method from mathematical physics, will en-
able us to link the random variables log Zβ(Φ) and log Z (Φ). For a probability measure p ∈P (0,1) and β> 0 let

Bβ(p) = E
[

log
∑

s=±1

d∏
i=1

(
1−1{si 6= s}

1−exp(−β)

2

(
1− s ′i +2s ′iµp,i

))]

− d

2
E

[
log

(
1− 1−exp(−β)

4

(
1− s1 +2s1µp,1

)(
1− s2 +2s2µp,2

))]
. (7.1)

These two expectations exist and are finite because 0 ≤ β<∞. (More precisely, their absolute values are bounded
by log2+βd and β, respectively.)

Lemma 7.2 ([42, Theorem 1]). For any p ∈P (0,1) and any 0 ≤β<∞ we have limn→∞ 1
n E log Zβ(Φ) ≤Bβ(p).

Combining Lemmas 7.1 and 7.2, we obtain the following bound for ‘hard’ 2-SAT.

Corollary 7.3. For any β> 0 we have limn→∞P
[
log Z (Φ) > nBβ(πd )+n2/3

]= 0.

Proof. We have Zβ(Φ) ≥ Z (Φ) and Lemmas 7.1 and 7.2 imply limn→∞P
[
log Zβ(Φ) > nBβ(πd )+n2/3

]= 0. �

Proof of Proposition 2.6. We begin by observing that the limit limβ→∞Bβ(πd ) exists and is finite. First, there is the
pointwise and monotone convergence of the integrands:

log
∑

s=±1

d∏
i=1

(
1−1{si 6= s}

1−exp(−β)

2

(
1− s ′i +2s ′iµπd ,i

))
β→∞−→ log

∑
s=±1

d∏
i=1

(
1− 1{si 6= s}

2

(
1− s ′i +2s ′iµπd ,i

))
, (7.2)

log

(
1− 1−exp(−β)

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
β→∞−→ log

(
1− 1

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
.

(7.3)

Further, sinceµπd

d=1−µπd
by Proposition 2.1 and because 1−s+2sµπd

equals either 2µπd
or 2(1−µπd

), we obtain

log
∑

s=±1

d∏
i=1

(
1− 1{si 6= s}

2

(
1− s ′i +2s ′iµπd ,i

))
d= log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
, (7.4)

d

2
log

(
1− 1

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
d= d

2
log

(
1−µπd ,1µπd ,2

)
. (7.5)

Moreover, Proposition 2.1 shows that the monotone limits are integrable and therefore an application of the mono-
tone convergence theorem to (7.2) and (7.3), followed by the simplifications (7.4), (7.4), yields the identity

lim
β→∞

Bβ(πd ) = E
[

log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
=B∞(πd ) <∞.

Further, Corollary 2.5 shows that B∞(πd ) = limn→∞ n−1E[log(Z (Φ)∨1)]. Therefore, Corollary 7.3 implies that

P
[
n−1 log(Z (Φ)∨1) >B∞(πd )+ε]= o(1) for any ε> 0. (7.6)
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To complete the proof, we upper bound

n−1E
∣∣log(Z (Φ)∨1)−E[log(Z (Φ)∨1)]

∣∣≤ E
∣∣n−1 log(Z (Φ)∨1)−B∞(πd )

∣∣+
∣∣B∞(πd )−E[log(Z (Φ)∨1)]

∣∣ . (7.7)

Due to Corollary 2.5, the second term on the r.h.s. of (7.7) tends to zero. On the other hand, (7.6) and Corollary 2.5
yield that for any ε> 0,

E
∣∣n−1 log(Z (Φ)∨1)−B∞(πd )

∣∣≤ E[
B∞(πd )−n−1 log(Z (Φ)∨1)

]+2ε+o(1) = 2ε+o(1),

as desired. �
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WARNING PROPAGATION: STABILITY AND SUBCRITICALITY

OLIVER COOLEY, JOON LEE, JEAN B. RAVELOMANANA

ABSTRACT. Warning Propagation is a combinatorial message passing algorithm that unifies and generalises a wide vari-
ety of recursive combinatorial procedures. Special cases include the Unit Clause Propagation and Pure Literal algorithms
for satisfiability as well as the peeling process for identifying the k-core of a random graph. Here we analyse Warning
Propagation in full generality on a very general class of multi-type random graphs. We prove that under mild assump-
tions on the random graph model and the stability of the the message limit, Warning Propagation converges rapidly. In
effect, the analysis of the fixed point of the message passing process on a random graph reduces to analysing the pro-
cess on a multi-type Galton-Watson tree. This result corroborates and generalises a heuristic first put forward by Pittel,
Spencer and Wormald in their seminal k-core paper (JCTB 1996). [MSc: 05C80]

1. INTRODUCTION

1.1. Motivation and contributions. The study of combinatorial structures in random graphs is a huge field en-
compassing a wide variety of different topics, and the techniques used to study them are as plentiful and as varied
as the topics themselves, but there are common themes to be found in approaches in seemingly unrelated ar-
eas. One such theme is the implementation of a discrete-time algorithm to pinpoint the desired substructure.
A classic example is Unit Clause Propagation, an algorithm which traces implications in a Boolean satisfiability
problem [1, 13]. If the formula contains unit clauses, i.e. clauses containing only one literal, the algorithm sets the
corresponding variable to the appropriate truth value. This clearly has further knock-on effects: other clauses in
which the variable appears with the same sign are now automatically satisfied and can be deleted; but clauses in
which the variable appears with the opposite sign are effectively shortened, potentially giving rise to further unit
clauses, and the process continues. Ultimately, we may reach a contradiction or a satisfying assignment, or neither
if the process stops with all clauses containing at least two literals. In this case we can “have a guess”, assigning a
random truth value to a random variable and continue the process.

Another quintessential example is the peeling process for the k-core, in which recursively vertices of degree at
most k − 1 are deleted from the graph until what remains is the (possibly empty) k-core (see e.g. [24, 21]). Fur-
ther examples include the study of sparse random matrices, the freezing phase transition in random constraint
satisfaction problems, bootstrap percolation or decoding low-density parity check codes [2, 6, 10, 14, 22, 25].

Warning Propagation is a a message passing scheme that provides a unified framework for such recursive pro-
cesses [20]. Roughly speaking, the scheme sends messages along edges of a graph which are then recursively
updated: the messages that a vertex sends depends on the messages that it receives from its neighbours according
to some update rule. The semantics of the messages and the choice of update rule is fundamentally dependent
on the particular problem to which the scheme is applied: the messages may indicate truth values of variables
in a satisfiability formula, for example, or membership of the k-core. To understand the combinatorial substruc-
tures under consideration, we need to understand the fixed points of the corresponding recursive algorithms, or
equivalently the fixed points of the appropriate instances of Warning Propagation.

There have been many different approaches to analysing such recursive processes using a variety of different
techniques. One classical tool is the differential equations method [28], which was used in the seminal k-core pa-
per of Pittel, Spencer and Wormald [24] as well as in the analysis of Unit Clause Propagation [1]. Other approaches
include branching processes [26], enumerative methods [5], or birth-death processes [17, 18].

However, despite their very different appearances, these approaches all share a common feature: in one way or
another, they show that the recursive process converges quickly to its fixed point. In other words, the final outcome
of the process can be approximated arbitrarily well by running only a bounded number of rounds of the recursive
process. Equivalently, in each of these particular instances, the Warning Propagation scheme converges quickly.

Jean B. Ravelomanana is supported by DFG CO 646/4.
Oliver Cooley is supported by Austrian Science Fund (FWF): I3747.
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In this paper we analyse Warning Propagation in full generality on a very general multi-type model of random
graphs. Special cases of this model include not just the Erdős-Rényi binomial random graph model G

(
n, p

)
and its

k-partite analogues, but also the stochastic block model, random regular graphs or indeed random graphs with a
prescribed degree sequence, and factor graphs of random hypergraphs. We prove that under mild, easy-to-check
assumptions Warning Propagation converges rapidly. Not only does this result confirm the heuristic that running
Warning Propagation for a bounded number of rounds suffices to approximate its ultimate fixed point arbitrarily
well, our result also identifies the essential reason for this behaviour. More precisely, after a large but bounded
number of steps, the subsequent knock-on effect of a single change can be modelled by a branching process; we
demonstrate that a mild stability assumption guarantees that this branching process is subcritical. The upshot is
that late changes in the process will ultimately fizzle out rather than triggering a cascade of further effects.

Apart from re-proving known results in a new, unified way, the main results of this paper facilitate new appli-
cations of Warning Propagation. Indeed, to analyse any specific recursive process that can be translated into the
formalism of Theorem 1.3 below one just needs to investigate the recursion on a multi-type Galton-Watson tree
that mimics the local structure of the respective random graph model. Typically this task boils down to a mundane
fixed point problem in Euclidean space. Theorem 1.3 thus enables an easy and accurate analysis of generic recur-
sive processes on random structures. A concrete example that actually inspired this work was our need to study a
recursive process that arises in the context of random matrix theory [4].

1.2. Random graph model. Our goal is to study warning propagation on a random graphG, which may be chosen
from a wide variety of different models, and which we first describe briefly and informally—the formal require-
ments on G are introduced in Section 2.2, specifically in Assumption 2.10.

We will assume that the vertices of G are of types 1, . . . ,k for some fixed integer k; we denote by Vi the set of ver-
tices of type i for i ∈ [k] and set ni := |Vi |. The ni need not be deterministically fixed, but may themselves be ran-
dom variables depending on an implicit parameter n ∈N which tends to infinity, and in particular all asymptotics
are with respect to n unless otherwise specified. Vertices of different types may exhibit very different behaviour,
but vertices of the same type should behave according to the same random distribution. More specifically, for a
vertex v ∈ Vi the (asymptotic) distribution of the numbers of neighbours of each type j ∈ [k] will be described by
Zi , which is a probability distribution onNk

0 , the set of sequences of natural numbers of length k; the j -th entry of
Zi describes the numbers of neighbours of type j . This will be introduced more formally in Section 2.1

To give a concrete example, if we were to study simply G (n,d/n) for some fixed constant d , we would set k = 1
and n1 = n, and each vertex would have Po(d) neighbours of type 1. For random d-regular graphs, we would
also have k = 1 and n1 = n, but now the number of neighbours would be deterministically d (i.e. the random
distribution would be entirely concentrated on d).

A slightly more complex example is random d-SAT with n variables and m clauses of size d . The standard way of
representing an instance of the problem is to have vertex classes V1,V2 representing the variables and the clauses
respectively, with an edge between a variable v and a clause A if v appears in A. Furthermore, the edge is coloured
depending on whether v is negated in A or not. However, since we do not allow for edges of different types, we
must represent this differently. This can be done by adding two further classes V3,V4 and subdividing an edge v A
with a vertex of type 3 if v is unnegated in A and of type 4 otherwise. Then a vertex of V1, representing a variable,

would have Po
(

dm
2n

)
neighbours of type 3 and similarly and independently of type 4; a vertex of V2, representing

a clause, would have X ∼ Bin(d ,1/2) neighbours of type 3 and d − X neighbours of type 4; while vertices of V3,V4

would each have precisely one neighbour each of types 1 and 2.
We will have various relatively loose restrictions on the graph model G which are required during the proof, see

Section 2.2 for the full list. Informally, we require G to satisfy four conditions with high probability, namely:

• The vertex classes have the same order of magnitude and not too large variance.
• The graph G is uniformly random given its type-degree sequence.
• There are few vertices of high degree.
• The local structure is described by the Ti (Z1, . . . ,Zk ).

Here we note in particular that we require each Vi to have bounded average degree.

1.3. Warning propagation. In this section we formally introduce the Warning Propagation (WP) message passing
scheme and its application to random graphs. Applied to a graph G , Warning Propagation will associate two di-
rected messagesµv→w ,µw→v with each edge v w of G . These messages take values in a finite alphabetΣ. Hence, let
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M (G) be the set of all vectors
(
µv→w

)
(v,w)∈V (G)2:v w∈E(G) ∈Σ2|E(G)|. The messages get updated in parallel according

to some fixed rule. To formalise this, for d ∈N let
((
Σ
d

))
be the set of all d-ary multisets with elements from Σ and let

ϕ :
⋃

d≥0

((
Σ

d

))
→Σ (1.1)

be an update rule that, given any multiset of input messages, computes an output message. Then we define the
Warning Propagation operator on G by

WPG : M (G) →M (G) , µ= (
µv→w

)
v w 7→ (

ϕ
({{
µu→v : uv ∈ E (G) ,u 6= w

}}))
v w ,

where {{a1, . . . , ak }} denotes the multiset whose elements (with multiplicity) are a1, . . . , ak .
In words, to update the message from v to w we apply the update rule ϕ to the messages that v receives from

all its other neighbours u 6= w .
To give some examples of concrete instances, when studying the k-core the messages would typically be 0 or 1,

and the update rule would be defined byϕ (A) = 1
{∑

a∈A a ≥ k −1
}
, i.e. a vertex sends a message of 1 to a neighbour

iff it receives at least k −1 messages of 1 from its other neighbours. At the end of the process, the k-core consists of
precisely those vertices which receive at least k messages of 1 from their neighbours. Alternatively, in a constraint
satisfaction problem, the message from a variable to a constraint may indicate that the variable is frozen to a
specific value due to its other constraints, while the message from a constraint to a variable indicates whether that
constraint requires the variable to take a specific value.

Let us note that in many applications, the obvious approach would be to define the WP scheme with different
update rules ϕ1, . . . ,ϕk for each type of vertex, or indeed where the update rule takes account of which type of
vertex each message was received from. While this would be entirely natural, it would lead to some significant
notational complexities later on. We therefore adopt an alternative approach: the messages of the alphabet Σ
will, in particular, encode the types of the source and target vertices, and we can therefore make do with a single
update function which receives this information and takes account of it. Of course, this means that along a par-
ticular directed edge, many messages from Σ are automatically disqualified from appearing because they encode
the wrong source and target types. Indeed, at a particular vertex all incoming messages must encode the same ap-
propriate target type, and therefore many multisets of messages can never arise as inputs of the update function.
On the other hand, the major benefit of this approach is that much of the notational complexity of the problem
is subsumed into the alphabet Σ and the update function ϕ. This will be discussed more formally in Sections 2,
and 3.

In most applications of Warning Propagation the update rule (1.1) enjoys a monotonicity property which en-
sures that for any graph G and for any initialisationµ(0) ∈M (G) the pointwise limit WP∗

G

(
µ(0)

)
:= limt→∞ WPt

G

(
µ(0)

)

exists, although in general monotonicity is not a necessary prerequisite for such a limit to exist. If it does, then
clearly this limit is a fixed point of the Warning Propagation operator.

Our goal is to study the fixed points of WP and, particularly, the rate of convergence on the random graph G.
We will assume that locally G has the structure of a multi-type Galton-Watson tree. We will prove that under mild
assumptions on the update rule, the WP fixed point can be characterised in terms of this local structure only. To
this end we need to define a suitable notion of a WP fixed point on a random tree. At this point we could consider
the space of (possibly infinite) trees with WP messages, define a measure on this space and consider the action that
the WP operator induces. Fortunately, the recursive nature of the Galton-Watson tree allows us to bypass this com-
plexity. Specifically, our fixed point will just be a collection of probability distributions on Σ, one for each possible
type of directed edge, such that if the children of a vertex v in the tree send messages independently according
to these distributions, then the message from v to its own parent will also have the appropriate distribution from
the collection. The collection of distributions can be conveniently expressed in matrix form. For a matrix M , we
denote by M

[
i , j

]
the entry at position

(
i , j

)
in the matrix and by M [i ] the i -th row

(
M

[
i , j

])
j∈[k].

1

Definition 1.1. Given a set S, a probability distribution matrix on S is a k ×k matrix Q in which each entry Q
[
i , j

]

of Q is a probability distribution on S.

The intuition is that the entry Q
[
i , j

]
should model the probability distribution of the message along an edge

from a vertex of type i to a vertex of type j . Heuristically, the incoming messages at a vertex will be more or less

1We avoid the usual Mi j index notation since this will clash with other subscripts later on.
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independent of each other; short-range correlations can only arise because of short cycles, of which there are very
few in the sparse regime, while long-range correlations should be weak if they exist at all. We will certainly initialise
the messages independently.

Definition 1.2. For a graph G and a probability distribution matrix Q on Σ, we refer to initialising messages in G
according to Q to mean that we initialise the messageµu→v (0) for each directed edge (u, v) independently at random
according to Q

[
i , j

]
, where i and j are the types of u and v respectively.

In many applications, the initialisation of the messages is actually deterministic, i.e., each entry of Q is concen-
trated on a single element of Σ, but there are certainly situations in which it is important to initialise randomly.

Given the local structure of the random graph model G as described by a multi-type Galton-Watson tree, we
can compute the asymptotic effect of the warning propagation update rules on the probability distribution matrix:
for a directed edge v w of type

(
i , j

)
, we consider the other neighbours of v with their types according to the local

structure, generate messages independently according to the current probability distribution matrix and compute
the updated message along v w . Since the generation of neighbours and of messages was random, the updated v w
message is also random and its distribution gives the corresponding entry of the updated matrix. Repeating this
for all i , j ∈ [k] gives the updated matrix. This process is described more formally in Section 2.1.

With this notion of updating probability distribution matrices, we can consider the limit of an initially chosen
matrix Q0. More specifically, we will need the existence of a stable WP limit, meaning that the update function is
a contraction in the neighbourhood of the limit with respect to an appropriate metric. Again, formal details are
given in Section 2.1.

1.4. Main result. Given a probability distribution matrix Q0 on Σ, we ask how quickly Warning Propagation will
converge on G from a random initialisation according to Q0.

We will use WPt
v→w

(
µ(0)

)
to denote the message from v to w inG after t iterations of WPG with initialisationµ(0).

Note that the graph G is implicit in this notation.

Theorem 1.3. Let G be a random graph model satisfying Assumption 2.10 and let P,Q0 be probability distributions
onΣ such that P is the stable WP limit of Q0. Then for anyδ> 0 there exists t0 = t0

(
δ,Z ,ϕ,Q0

)
such that the following

is true.
Suppose that µ(0) ∈M (G) is an initialisation according to Q0. Then w.h.p. for all t ≥ t0 we have

∑
v,w :v w∈E(G)

1
{
WPt

v→w

(
µ(0)) 6= WPt0

v→w
(
µ(0))}< δn.

In other words, the WP messages at any time t ≥ t0 are identical to those at time t0 except on a set of at most
δn directed edges. Thus Theorem 1.3 shows that under a mild stability condition Warning Propagation converges
rapidly. Crucially, the number t0 of steps before Warning Propagation stabilises does not depend on the underlying
parameter n, or even on the exact nature of the graph model G, but only on the desired accuracy δ, the degree
distribution Z , the Warning Propagation update rule ϕ and the initial distribution Q0.

1.5. Discussion and related work. Theorem 1.3 implies a number of results that were previously derived by sep-
arate arguments. For instance, the theorem directly implies the main result from [24] on the k-core in random
graphs. Specifically, the theorem yields the threshold for the emergence of the k-core threshold as well as the typi-
cal number of vertices and edges in the core (in a law of large numbers sense). Of course, several alternative proofs
of (and extensions of) this result, some attributed as simple, exist [8, 9, 11, 12, 17, 19, 21, 26], but here we obtain
this result as an application of a more general theorem.

Since our model also covers multi-type graphs, it enables a systematic approach to the freezing phenomenon
in random constraint satisfaction problems [20, 22, 23], as well as to hypergraph analogues of the core problem [7,
17, 19, 21, 24, 26, 27] by considering the factor graph.

The specific application that led us to investigate Warning Propagation in general deals with random matrix
theory [4]. In that context Warning Propagation or equivalent constructions have been applied extensively [3, 10,
16, 20]. Technically the approach that is most similar to the present proof strategy is that of Ibrahimi, Kanoria,
Kraning and Montanari [16], who use an argument based on local weak convergence.
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1.6. Proof outline. A fundamental aspect of the proof is that we do not analyse WP directly on G and consider
its effect after t0 iterations, but instead define an alternative random model Ĝt0 (see Definition 3.4): Rather than
generating the edges of the graph and then computing messages, this random model first generates half-edges with
messages, and then matches up the half-edges in a consistent way. Thus in particular the messages are known a
priori. The key point is that the two models are very similar (Lemma 3.7).

Among other things, it follows from this approximation that very few changes will be made when moving from
WPt0−1

G

(
µ(0)

)
to WPt0

G

(
µ(0)

)
, but in principle these few changes could cause cascade effects later on. To rule this

out we define a branching processTwhich approximates the subsequent effects of a single change at time t0. The
crucial observation is that the stability of the distributional fixed point P implies that this branching process is
subcritical (Proposition 6.3), and is therefore likely to die out quickly. Together with the fact that very few changes
are made at step t0, this ultimately implies that there will be few subsequent changes.

1.7. Paper overview. The remainder of the paper is arranged as follows. In Section 2 we formally introduce the no-
tation, terminology and assumptions on the model G which appear in the statement of Theorem 1.3 and through-
out the paper. In Section 3 we define the Ĝt0 model and introduce Lemma 3.7, which states that this model is a
good approximation for Warning Propagation on G. In Section 4 we present various preliminary results that will
be used in later proofs. In Section 5 we go on to prove Lemma 3.7.

In Section 6 we introduce the branching process T and prove that it is subcritical. In Section 7 we then draw
together the results of previous sections to prove that after t0 iterations of WP, very few further changes will be
made, and thus prove Theorem 1.3.

2. PREREQUISITES

In this section we formally define some of the notions required for the statement of Theorem 1.3, as well as
introducing the assumptions that we require the model G to satisfy. For a set S, we will denote by P (S) the space
of probability distributions on S. We will occasionally abuse notation by conflating a random variable with its
probability distribution, and using the same notation to refer to both.

2.1. Distributional fixed points.

Definition 2.1. For each i ∈ [k], let Zi ∈ P
(
Nk

0

)
. For j ∈ [k], denote by Zi j the marginal distributions of Zi on the

j -th entry. We say that
(
i , j

) ∈ [k]2 is an admissible pair if P
(
Zi j ≥ 1

) 6= 0, and denote by K =K (Z1, . . . ,Zk ) the set
of admissible pairs.

Intuitively, the Zi will describe the local structure of the random input graphG, in the sense that the distribution
of the neighbours with types of a vertex v ∈ Vi will be approximately Zi (see Definition 2.8 later). Therefore the
admissible pairs describe precisely those pairs of classes Vi and V j between which we expect some edges to exist.
In particular, if the Zi accurately describe the local structure, then

(
i , j

)
is admissible if and only if

(
j , i

)
is also

admissible.
Note, however, that if we aim to analyse the message along a directed edge from v ∈ Vi to w ∈ V j , we need to

know about the distribution of the other neighbours of v , and cannot simply draw from Zi because we already have
one guaranteed neighbour of type j , which may affect the distribution. This motivates the following definition.

Definition 2.2. Let Z1, . . . ,Zk ∈ P
(
Nk

0

)
. For each

(
i , j

) ∈ K , define Y j ,i = Y j ,i (Zi ) ∈ P
(
Nk

0

)
to be the probability

distribution such that for (a1, . . . , ak ) ∈Nk
0 we have

P
(
Y j ,i = (a1, . . . , ak )

)
:= P

(
Zi =

(
a1, . . . , a j−1, a j +1, a j+1, . . . , ak

))

P
(
Zi j ≥ 1

) .

Equivalently, Y j ,i and Zi satisfy the following relation. Let Ei j be the event Zi j ≥ 1. Then for any (a1, . . . , ak ) ∈
Nk

0 such that a j ≥ 1 we have

P
(
Y j ,i =

(
a1, . . . , a j−1, a j −1, a j+1, . . . , ak

))=P(
Zi = (a1, . . . , ak )

∣∣Ei j
)

.

We will talk about generating vertices with types according to a distribution D onNk
0 , by which we mean that we

generate a vector (z1, . . . , zk ) according to D, and for each i ∈ [k] we generate zi vertices of type i . Usually, D will be
Zi or Y j ,i for some i , j ∈ [k]. Depending on the context, we may also talk about generating neighbours, children,
half-edges etc. with types, in which case the definition is analogous.
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Definition 2.3. Given D ∈ P
(
Nk

0

)
and a vector q = (

q1, . . . , qk
) ∈ (P (Σ))k of probability distributions on Σ, let us

define a multiset M
(
D, q

)
of elements of Σ as follows.

• Generate a vector (a1, . . . , ak ) according to D.
• For each j ∈ [k] independently, select a j elements of Σ independently according to q j . Call the resulting

multiset M j .
• Define M

(
D, q

)
:=⊎k

j=1 M j .2

The motivation behind this definition is that D will represent a distribution of neighbours with types, typically
Zi or Y j ,i for some i , j ∈ [k]. Meanwhile q will represent the distributions of messages from the vertices of various
types, typically chosen according to the appropriate entry of a probability distribution matrix, which are heuristi-
cally almost independent. Thus M

(
D, q

)
describes a random multiset of incoming messages at a vertex with the

appropriate distribution.
We can now formally describe how the WP update function affects the distribution of messages, as described

by a probability distribution matrix on Σ.

Definition 2.4. Given a probability distribution matrix Q on Σwith rows Q [1] , . . . ,Q [k], let φϕ (Q) denote the prob-
ability distribution matrix R on Σ where each entry R

[
i , j

]
is the probability distribution on Σ given by

R
[
i , j

]
:=ϕ(

M
(
Y j ,i ,Q [i ]

))
.

Further, let φt
ϕ (Q) = φϕ

(
φt−1
ϕ (Q)

)
denote the t th iterated function of φϕ evaluated at Q. In order to ease notation,

we sometimes denote φt
ϕ (Q) by Q(t ) when φϕ is clear from the context.

In an idealised scenario, this update function precisely describes how the probability distribution matrix should
change over time: along a directed edge of type

(
i , j

)
, the messages in the next step will be determined by other

incoming messages at the source vertex; the neighbours and their types may be generated according to Y j ,i ; the
corresponding messages are generated according to Q [i ].

We will ultimately show that this idealised scenario is indeed a reasonable approximation. But we are also
interested in what occurs when we iterate this process from an appropriate starting matrix. Does it converge to
some limit? In order to quantify this, we need the following metric on the space of probability distribution matrices,
which is a simple extension of the standard total variation distance for probability distributions, denoted dTV (·, ·).

Definition 2.5. The total variation distance of two k ×k probability distribution matrices Q and R on the same set
S is defined as dTV (Q,R) :=∑

i , j∈[k] dTV
(
Q

[
i , j

]
,R

[
i , j

])
.

It is elementary to check that dTV is indeed a metric on the space of k×k probability distribution matrices on Σ,
and whenever we talk of limits in this space, those limits are with respect to this metric. We can now define the key
notion of a stable WP limit, which is fundamental to Theorem 1.3.

Definition 2.6. Let P be a probability distribution matrix on Σ and ϕ :
⋃

d≥0

((
Σ
d

))
→Σ be a WP update rule.

(1) We say that P is a fixed point if φϕ (P ) = P.
(2) A fixed point P is stable if φϕ is a contraction on a neighbourhood of P with respect to the total variation

distance dTV as defined in Definition 2.5.
(3) We say that P is the stable WP limit of a probability distribution matrix Q0 on Σ if P is a stable fixed point,

and furthermore the limit φ∗
ϕ (Q0) := limt→∞φt

ϕ (Q0) exists and equals P.

2.2. Assumptions on the Gmodel. In order to apply the results of this paper, we will need the random graph G to
be reasonably well-behaved; formally, we require a number of relatively mild properties to be satisfied. In order to
introduce the assumptions, we need to introduce some terminology and notation.

Recall that depending on the application, the numbers of vertices n1, . . . ,nk in each of the k classes may be
random, or some may be random and others deterministic. For example, if we consider the standard bipartite
factor graph of a binomial random r -uniform hypergraph H r

(
n, p

)
, then one class representing the vertices of

H r
(
n, p

)
would have n1 = n vertices deterministically, while the other class representing the edges of H r

(
n, p

)

would have n2 ∼ Bin
((n

r

)
, p

)
vertices.

2The symbol
⊎

denotes the multiset union of two multisets A,B , e.g. if A = {{a, a,b}} and B = {{a,b,c,c}} then A
⊎

B = {{a, a, a,b,b,c,c}}.
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We seek to model this situation, which we do by introducing a probability distribution vector N = (N1, . . . ,Nk ) ∈
P

(
Nk

0

)
. Each Ni is a probability distribution on N0, although in general they may be dependent on each other. As

mentioned informally earlier, we will also have an implicit parameter n, so N = N (n), and we are interested in
asymptotics as n →∞. Note that as in the example of factor graphs of hypergraphs above, and in many other ex-
amples, we could certainly have N1 = n deterministically. As previously mentioned, we will often conflate random
variables and their associated probability distributions; in particular we will use ni instead of Ni .

Definition 2.7. For a k-type graph G, the type-degree of a vertex v ∈V (G), which we denote by d (v), is the sequence
(i ,d1, . . . ,dk ) ∈ [k]×Nk

0 where i is the type of v and where d j is the number of neighbours of v of type j . Moreover, the
type-degree sequence D (G) of G is the sequence (d (v))v∈V (G) of the type-degrees of all the vertices of G.

This is an obvious generalisation of the standard degree sequence in which we additionally keep track of the
types of the vertices and their neighbours. We note that for (d (v))v∈V (G) to be well defined, we need an order for
the set of vertices V (G). Since the order of the type-degree sequence will not play any role in future, we may choose
such an order arbitrarily.

We also need to describe the local structure of the graph in terms of a branching process which depends on the
degree distributions Z1, . . . ,Zk .

Definition 2.8. Let Z1, . . . ,Zk ∈ P
(
Nk

0

)
and for all

(
i , j

) ∈ K , let Y j ,i be as in Definition 2.2. For each i ∈ [k], let
Ti :=Ti (Z1, . . . ,Zk ) denote a k-type Galton-Waltson process defined as follows:

(1) The process starts with a single vertex u of type i .
(2) Generate children of u with types according to Zi .
(3) Subsequently, starting from the children of u, further vertices are produced recursively according to the fol-

lowing rule: for every vertex w of type h with a parent w ′ of type `, generate children of w with types accord-
ing to Y`,h independently.

Moreover, for r ∈N0 we denote by T r
i the branching process Ti truncated at depth r .

It will be part of our assumptions on G that the branching processes Ti do indeed describe the local structure
of Gw.h.p.. To quantify this statement, we will need to compare the distributions of the Ti with the empirical local
structure of G. Given a k-type graph G , a vertex u ∈ V (G) and r ∈ N0, let BG (u,r ) be the k-type subgraph of G
induced by the neighbourhood of u up to depth r (i.e. all vertices that can be reached by a path of length at most r
from u), rooted at the vertex u. We say that two (vertex-)rooted k-type graphs G and G ′ are isomorphic, which we
denote by G ∼= G ′, if there exists a graph isomorphism between G and G ′ which preserves the roots and the types
of the vertices. Let G? be the set of isomorphism classes of (vertex-)rooted k-type graphs (or more precisely, a set
consisting of one representative from each isomorphism class). We define the following empirical neighbourhood
distribution for a given k-type graph G .

Definition 2.9. Let G be a k-type graph with parts V1 (G) , . . . ,Vk (G), let i ∈ [k] and r ∈N0. Then for a graph H ∈G?,
we define

UG
i ,r (H) := 1

|Vi (G)|
∑

u∈Vi (G)
1 {BG (u,r ) ∼= H } .

In other words, UG
i ,r (H) is the proportion of vertices in the class Vi (G) whose r -depth neighbourhood in G is

isomorphic to H . When the graph G is clear from the context, we will drop the superscript G in UG
i ,r .

Note that UG
i ,r defines a probability distribution on the class of rooted k-type graphs H of depth at most r , and

therefore it can be compared with the truncated branching processes T r
i , which we will do in Assumption 2.10

(specifically A4). This assumption lays out the various properties that are required for our proofs. For parameters
a = a (n) and b = b (n), we sometimes use the notation a ¿ b as a shorthand for a = o (b), and similarly a À b for
b = o (a).

Assumption 2.10. There exist functions
1 ¿∆0 =∆0 (n) ¿ n1/10 (2.1)

and ζ= ζ (x)
x→∞−−−−→∞ and a probability distribution vector Z := (Z1, . . . ,Zk ) ∈

(
P

(
Nk

0

))k
such that for all i ∈ [k] and

for all x ∈R, we have
P

(‖Zi‖1 > x
)≤ exp(−ζ (x) · x) , (2.2)

and such that the random graph G satisfies the following properties:
7
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A1 For all i ∈ [k] we have E (ni ) =Θ (n) and Var(ni ) = o
(
n8/5

)
.

A2 For any two simple k-type graphs G and H satisfying D (G) = D (H), we have P (G=G) = (1+o (1))P (G= H).
A3 W.h.p. ∆ (G) ≤∆0;
A4 For any i ∈ [k] and r ∈N0 we have

dTV
(
Ur

i (G) ,T r
i (Z )

)¿ 1

∆2
0

w.h.p.

Note that informally, A4 states that the local structure of G is asymptotically described by the branching pro-
cesses (Ti )i∈[k] with speed of convergence faster than 1/∆2

0. For most random graph models, it is rather easy to
verify that (2.1), (2.2) and A1, A2, A3 hold with the appropriate choice of parameters, and the main difficulty is to
bound the speed of convergence of the local structure as required by A4.

2.3. Choosing the parameters. Given that the truth of the assumptions is fundamentally dependent on the choice
of the parameters ∆0,ζ,Z , for which there may be many possibilities, let us briefly discuss how best to choose
them.

The probability distribution vector Z . First observe that given the graph model G, due to A4 there is only one
sensible choice for the probability distribution vector Z , namely the one which describes the local structure of
G (in the sense of local weak convergence). For example, in the case of the Erdős-Rényi binomial random graph
G (n,d/n) for some constant d , we have k = 1 would choose Z = Z1 = Z11 to be the Po(d) distribution. On the
other hand, for the analogous balanced bipartite random graph G (n,n,d/n) we would set Z = (Z1,Z2), where
Z1 = (Z11,Z12) = (0,Po(d)) and similarly for Z2.

The function ζ. This function only appears in the restriction, given by (2.2), that the tail bounds of the Zi dis-

tributions decay super-exponentially fast. As such, we can simply set ζ (x) := mini∈[k]
− lnP(‖Zi ‖1>x)

x for all x. The
assumption demands that this expression tends to infinity.

The degree bound ∆0. The most critical property of ∆0 is A3, which states that w.h.p. it is an upper bound on
the maximum degree of G. To make the task of proving A4 easier, it is most convenient to choose ∆0 as small as
possible such that A3 is satisfied. However, if in fact a bounded∆0 would suffice for this purpose (for example when
considering random d-regular graphs), we would choose∆0 tending to infinity arbitrarily slowly in order to ensure
that the lower bound in (2.1) is satisfied. In fact, the condition ∆0 À 1 in (2.1) is imposed purely for technical
convenience later on, and (by choosing ∆0 to grow arbitrarily slowly if necessary) does not actually impose any
additional restrictions on the random model.

A typical non-regular scenario would be that we have Θ (n) vertices whose degrees are Poisson distributed with
bounded expectation, in which case we could choose ∆0 = lnn.

Assumption 2.10 actually contains a further hidden parameter which, for simplicity, we just chose to be 1/5.
More precisely, we have the following.

Remark 2.11. In Assumption 2.10, the conditions P1 and (2.1) can be replaced by the assumption that there exists
some constant 0 <β< 1/3 such that:

(2.1)’ 1 ¿∆0 ¿ nβ/2;

(A1)’ For all i ∈ [k], we have E (ni ) =Θ (n), and Var (ni ) = o
(
n2(1−β)

)
.

In Assumption 2.10 we arbitrarily choseβ= 1/5 since the only additional restrictions this places on the modelG,
once we account for being able to choose other parameters appropriately, are that w.h.p. ∆ (G) ¿ n1/10 and
Var(|Vi |) = o

(
n8/5

)
. It seems unlikely that there will be a natural model G for which this fails to hold, but for which

it would be true for some different choice of β. Nevertheless, the proof would still go through in the more general
case.

Let us make one further remark regarding A2, which states that any two graphs with the same type-degree
sequence are asymptotically equally likely underG. This condition is not satisfied for certain natural random graph
models, for example random triangle-free graphs. However, a standard trick allows us to weaken the conditions a
little such that this model would indeed be covered.

Remark 2.12. Assumption 2.10 can be replaced by the following:
There is a random graph model G∗ and an event E such that

8
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• PG∗ (E ) =Θ (1);
• G∼G∗|E , i.e. G∗ conditioned on E is precisely G;
• G∗ satisfies Assumption 2.10.

So for example whenG is the random triangle-free graph, we would chooseG∗ to be the unconditioned random
graph, and E to be the event that G∗ is triangle-free. The reason the proof still goes through is that our results can
be applied to G∗ and give a high probability statement, which then also holds w.h.p. in the space conditioned on
the Θ (1)-probability event E . We omit the details.

2.4. Some simple consequences. We next collect a few consequences of the assumptions that will be convenient
later. Assumption 2.10 guarantees the existence of some parameters, but we will need to fix more for the proof.
Specifically, we have the following.

Proposition 2.13. If Assumption 2.10 holds, then there exists a function F : [0,∞) → [1,∞) and functions ω0 =
ω0 (n) ,c0 = c0 (n) ,d0 = d0 (n) such that:

F1 F is monotonically increasing and invertible;
F2 For any sequences of real numbers a = a (n) and b = b (n), if 1 ≤ a ¿ b then F (a) ¿ F (b);
F3 For any sequence of real numbers a = a (n) À 1 and for any constant c > 0 we have F (a) À exp(ca);
F4 There exists a sufficiently large x0 ≥ 0 such that for all x > x0 and all i ∈ [k], we have

P
(‖Zi‖1 > x

)≤ 1

F (x)
.

Moreover,

P1 1 ¿∆2
0 ¿ω0 ¿ n1/5;

P2 F−1
(
∆2

0

)¿ d0 ¿ lnω0;
P3 ∆0 exp(C d0) ,∆2

0 ¿ c0 ¿ F (d0) ,ω0 for any constant C ,

and the random graph G satisfies the following.

B1 For any i ∈ [k] and r ∈N0 we have

dTV
(
Ur

i (G) ,T r
i (Z )

)≤ 1

ω0
w.h.p.

For the rest of the paper, we will fix parameters ∆0,ω0,c0,d0 and a function F as in Assumption 2.10 and Propo-
sition 2.13. An obvious consequence of (P3) is that for any constant t0,

max{d0,∆0} · |Σ|2(t0+2)d0 ≤∆0 · |Σ|2(t0+3)d0 = o (c0) , (2.3)

and this form will often be the most convenient in applications. Before proving Proposition 2.13, we prove an
auxiliary claim which will be helpful both for this proof and later in the paper.

Claim 2.14. If P1, F1 and F3 hold, then F−1
(
∆2

0

)¿ lnω0.

Proof. Suppose it is not true that F−1
(
∆2

0

)¿ lnω0. Then (passing to a subsequence of necessary) there exists some
constant c > 0 such that F−1

(
∆2

0

) ≥ c ln(ω0). Applying F to both sides, we deduce ∆2
0 ≥ F (c ln(ω0)), since F is

monotonically increasing by F1. Moreover, by F3 we have F (c ln(ω0)) Àω0, so we conclude that ∆2
0 Àω0, which

contradicts P1. �

In the proof of Proposition 2.13, for simplicity we will allow functions to take the values ±∞, and define ex-
pressions involving division by 0 or ∞ in the obvious way. This avoids annoying technical complications required
to deal with some special cases—turning this into a formally correct proof would be an elementary exercise in
analysis.

Proof of Proposition 2.13. First let us fix F1 (x) := mini∈[k]
1

P(‖Zi ‖1>x) and observe that F1 (x) = exp(ζ1 (x) · x) for

some non-negative function ζ1 (x)
x→∞−−−−→ ∞. This means that F1 satisfies conditions F3 and F4, but not neces-

sarily conditions F1 and F2. We therefore modify this function slightly. More precisely, we can modify the function
ζ1 to obtain ζ2 satisfying:

• ζ2 (0) = 0;
• ζ2 (x) is continuous and monotonically strictly increasing;

9
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• ζ2 (x) ≤ ζ1 (x) for all sufficiently large x ∈R;

• ζ2 (x)
x→∞−−−−→∞.

We now set F (x) := exp(ζ2 (x) · x) . It can be easily checked that F satisfies all the necessary conditions.
Now let us setω0 :=∆2

0·ω, whereω=ω (n) is a function tending to infinity arbitrarily slowly. Since 1 ¿∆2
0 ¿ n1/5,

if ω grows sufficiently slowly, P1 is also satisfied. Similarly, since A4 is satisfied, if ω grows sufficiently slowly, we
also have B1.

We also set d0 := F−1
(
∆2

0

) ·ω. Then the lower bound in P2 is clearly satisfied. Furthermore Claim 2.14 shows
that the upper bound also holds provided ω tends to infinity slowly enough.

Finally we will show that, provided ω grows slowly enough, ∆0 exp(C d0) ¿ ∆2
0 ¿ F (d0) ,ω0, and then picking

c0 :=∆2
0 ·ω, we have that P3 holds.

We first recall that F (x) = exp(ζ2 (x) · x), where ζ2 (x)
x→∞−−−−→∞. Thus F−1 (x) = ln x

ζ3(x) , where ζ3 (x) = ζ2
(
F−1 (x)

) x→∞−−−−→
∞. It follows that, for any constant C > 0, we have exp(C d0) = exp

(
C (ln∆0)ω
ζ3

(
∆2

0

)
)
≤ exp

(
(ln∆0)ω
ζ4(n)

)
for sufficiently large n

and for some appropriate function ζ4 (n)
n→∞−−−−→ ∞ (which is independent of C ). By choosing ω ¿ ζ4, we have

exp(C d0) ¿ ∆0 and therefore also ∆0 exp(C d0) ¿ ∆2
0. Now to complete the proof, observe that d0 À F−1

(
∆2

0

)
by

definition, and therefore F2 implies that ∆2
0 ¿ F (d0). On the other hand, ∆2

0 ¿ω0 by definition of ω0. �
A further consequence of the assumptions is that the degree distributions have bounded moments.

Remark 2.15. Claim 2.14 and F4 together imply that for all i ∈ [k], the distribution ‖Zi‖1 of the total degree of a
vertex of type i has finite moments, i.e. E

(‖Zi‖s
1

)
is finite for any s ∈N, and in particular for any i , j ∈ [k] and s ∈N

the moment E
(
Z s

i j

)
are finite. It also follows that for every admissible pair

(
i , j

) ∈ K , the moments E
(∥∥Y j ,i

∥∥s
1

)
are

finite (this can be verified with an elementary check). We will often use these facts during the proofs.

We will also need the simple observation that the class sizes are reasonably concentrated around their expecta-
tions.

Claim 2.16. W.h.p. for all i ∈ [k] we have ni =
(
1+o

(
1
ω0

))
E (ni ) .

Proof. By A1, for all i ∈ [k], we have E (ni ) = Θ (n) and Var(ni ) = o
(
n8/5

)
. Let ω = ω (n) := n8/5

maxi∈[k] Var(ni ) , so in

particular ω→ ∞. (Note that if Var(ni ) = 0 for all i , then the claim is trivial, so we may assume that ω is well-
defined.) Then Chebyshev’s inequality implies that

P
(∣∣ni −E (ni )

∣∣≥ n4/5)≤P
(∣∣ni −E (ni )

∣∣≥
√
ω ·Var(ni )

)
≤ 1

ω
= o (1) .

In other words, w.h.p. ni =
(
1+O

(
1

n1/5

))
E (ni ), and since ω0 ¿ n1/5 by P1, taking a union bound over all i ∈ [k]

gives the desired result. �

3. AN ALTERNATIVE MODEL

Although our main result is primarily a statement about G, a key method in this paper is to switch focus away
from this model to a second model, denoted Ĝ, which is easier to analyse. To introduce this second model, we
need some more definitions.

3.1. Message histories. Let Gn denote the set of Σ-messaged graphs on vertex set [n], i.e. graphs on [n] in which
each edge uv comes equipped with directed messages µu→v ,µv→u ∈Σ.

We will denote by µu→v (t ) the message from u to v after t iterations of WP, and refer to this as the t-message
from u to v . Alternatively, we refer to the t-in-message at v or the t-out-message at u (this terminology will be
especially helpful later when considering half-edges). In all cases, we may drop t from the notation if it is clear
from the context.

In fact, we will need to keep track not just of the current Warning Propagation messages along each edge, but of
the entire history of messages. For two adjacent vertices u, v , define the t-history from u to v to be the vector

µu→v (≤ t ) := (
µu→v (0) , . . . ,µu→v (t )

) ∈Σt+1.

We will also refer to µu→v (≤ t ) as the t-in-story at v , and as the t-out-story at u. The t-story at v consists of the
pair

(
µu→v (≤ t ),µv→u(≤ t )

)
, i.e. the t-in-story followed by the t-out-story. It will sometimes be more convenient to
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consider the sequence consisting of the t-in-story followed by just the 0-out-message, which we call the t-input.
In all cases, we may drop t from the notation if it is clear from the context.

We denote by G (t )
n the set ofΣt+1-messaged graphs on vertex set [n] – the labels along each directed edge, which

come from Σt+1, will be the t-histories. 3

With a slight abuse of notation, for t1 < t2 we will identify two graphs G ∈ G
(t1)
n and H ∈ G

(t2)
n , whose messages

are given by µ(G) and µ(H) respectively, if

• E (G) = E (H);
• µ(G)

u→v (t ) =µ(H)
u→v (t ) for all t ≤ t1;

• µ(H)
u→v (t ) =µ(H)

u→v (t1) for all t1 < t ≤ t2.

In other words, the underlying graphs are identical, the t1-histories are identical, and subsequently no messages
change in H . In particular, this allows us to talk of limits of messaged graphs Gt ∈G (t )

n as t →∞.

Definition 3.1. For any t ∈N and probability distribution matrix Q0 on Σ, let Gt = Gt (n,Q0) ∈ G (t )
n be the random

Σt+1-messaged graph produced as follows.

(1) Generate the random graph G.
(2) Initialise each message µu→v (0) for each directed edge (u, v) independently at random according to Q0[i , j ]

where i and j are the types of u and v respectively.
(3) Run Warning Propagation for t rounds according to update rule ϕ.
(4) Label each directed edge (u, v) with the story

(
µu→v (0) , . . . ,µu→v (t )

)
up to time t.

We also define G∗ := limt→∞Gt , if this limit exists.

We aim to move away from looking at Gt and instead to consider a random graph model Ĝt in which we first
generate half-edges at every vertex, complete with stories in both directions, and only subsequently reveal which
half-edges are joined to each other; thus we construct a graph in which the WP messages are known a priori. The
trick is to do this in such a way that the resulting random messaged graph looks similar to Gt .

In order to define this random model, we need a way of generating a history randomly, but accounting for the
fact that the entries of a history are, in general, heavily dependent on each other, which we do in Definition 3.3. We
first need to define a variant of the Ti branching trees.

An edge-rooted graph is a simple graph with a distinguished directed edge designated as root edge. When we
have an edge-rooted tree rooted at the directed edge (u, v), we will think of v as the parent of u, and in all such
situations v will have no other children. More generally, whenever we talk of messages along an edge of such a
tree, we mean along the directed edge from child to parent.

We will also need to describe the part of the local structure that influences a message along a directed edge
(u, v). This motivates the following definition.

Definition 3.2. Let Z1, . . . ,Zk be probability distributions on Nk
0 and for all i , j ∈ [k], let Y j ,i be as in Definition 2.2.

For each
(
i , j

) ∈K , let Ti j :=Ti j (Z1, . . . ,Zk ) denote a k-type Galton-Waltson process defined as follows:

(1) The process starts with a directed root edge (u, v) where u has type i and v has type j . We refer to v as the
parent of u, and v will have no further children.

(2) Subsequently, starting at u, vertices are produced recursively according to the following rule: for every vertex
w of type h with a parent w ′ of type `, generate children of w with types according to Y`,h independently.

Moreover, for r ∈N0 we denote by T r
i j the branching Ti j truncated at depth r .

Note that the process Ti j can equivalently be produced by taking the process Ti conditioned on the root u
having at least one child v of type j , deleting the entire subtree induced by the descendants of v and rooting the
resulting tree at the directed edge (u, v).

Definition 3.3. Given a probability distribution matrix Q on Σ, for each i , j ∈ [k] we define random variables
X (0)

i j , X (1)
i j , X (2)

i j , . . . as follows. Let Ti j be a randomly generated instance of the process Ti j defined in Definition 3.2.

(1) Initialise all messages in Ti j according to Q.

(2) For each t ∈ N0, let X (t )
i j := µu→v (t ) be the message from u to v after t iterations of Warning Propagation

according to the update rule ϕ where v is the root of Ti j and u its only child.

3Note that the definition of G (t )
n makes no assumption that the histories along directed edges arise from running Warning Propagation – in

principle, they could be entirely inconsistent – although of course in our applications, this will indeed be the case.
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Finally, for each t ∈N0, let φt
ϕ (Q) be the probability distribution matrix R on Σt+1 where each entry R

[
i , j

]
is the

distribution of
(

X (0)
i j , . . . , X (t )

i j

)
. As in Definition 2.4, in order to ease notation, we sometimes denote φt

ϕ (Q) by Q(≤t ).

Note that Q(≤t ) is not a vector
(
Q(0), . . . ,Q(t )

)
of probability distribution matrices, but is instead a matrix in which

every entry is a probability distribution on vectors of length t +1.
Note also that while it is intuitively natural to expect that the marginal distribution of Q(≤t )

[
i , j

]
on the `-th

entry has the distribution of Q(`)
[
i , j

]
, which motivates the similarity of the notation, this fact is not completely

trivial. We will therefore formally prove this in Claim 4.1.

3.2. The random construction. We define the t-in-compilation at a vertex v to be the multiset of t-inputs at v ,
and the t-in-compilation sequence is the sequence of t-in-compilations over all vertices of [n]. As before, we often
drop the parameter t from the terminology when it is clear from the context.

We can now define the alternative random graph model to which we will switch our focus.

Definition 3.4. Given a probability distribution matrix Q0 on Σ, a sequence Z = (Z1, . . . ,Zk ) of probability dis-
tributions on Nk

0 , a probability distribution vector N = N (n) ∈ P
(
Nk

0

)
and an integer t0, we construct a random

messaged graph Ĝt0 = Ĝt0 (n,N ,Z ,Q0) by applying the following steps.

(1) Generate n1, . . . ,nk according to the probability distribution vector N , and for each i ∈ [k] generate a vertex
set Vi with |Vi | = ni .

(2) For each i ∈ [k] and for each vertex v in Vi independently, generate an in-compilation by:
(a) Generating half edges with types

(
i , j

)
for each j ∈ [k] according to Zi ;

(b) Giving each half-edge of type
(
i , j

)
a t0-in-story according to Q(≤t0)

0

[
j , i

]
independently;

(c) Giving each half-edge of type
(
i , j

)
a 0-out-message according to Q0

[
i , j

]
independently of each other

and of the in-stories.
(3) Generate t-out-messages for each time 1 ≤ t ≤ t0 according to the rules of Warning Propagation based on the

(t −1)-in-messages, i.e. if the t0-in-stories at v, from dummy neighbours u1, . . . ,u j , are µui→v (≤ t0), we set

µv→ui (t ) =ϕ
({{

µu1→v (t −1) , . . . ,µui−1→v (t −1) ,µui+1→v (t −1) , . . . ,µu j →v (t −1)
}})

.

(4) Consider the set of matchings of the half-edges which are maximum subject to the following conditions:
• Consistency: a half-edge with in-story µ1 ∈ Σt0+1 and out-story µ2 ∈ Σt0+1 is matched to a half-edge

with in-story µ2 and out-story µ1;
• Simplicity: the resulting graph (ignoring unmatched half-edges) is simple.

Select a matching uniformly at random from this set and delete the remaining unmatched half-edges.

From now on we will always implicitly assume that the choice of various parameters is the natural one to com-
pare Ĝt0 withGt0 , i.e. that N is precisely the distribution of the class sizes ofG and Z is the probability distribution
vector which describes the local structure of G as required in Assumption 2.10, while Q0 will be the probability
distribution matrix according to which we initialise messages in G.

We will show later (Claim 4.2) that the distribution of an out-story is identical to the distribution of an in-story,
which means that the expected number of half-edges with story

(
µ1,µ2

)
is (almost) identical to the expected num-

ber of half-edges with the dual story
(
µ2,µ1

)
. Heuristically, this suggests that almost all half-edges can be matched

up and therefore few will be deleted in Step 4. This will be proved formally in Proposition 5.5.

Remark 3.5. Note that Step 3 of the construction is an entirely deterministic one – the t-out-messages at time t ≥ 1
are fixed by the incoming messages at earlier times. Therefore all in-stories and out-stories (before the deletion of
half-edges) are in fact determined by the outcome of the random construction in Steps 1 and 2.

3.3. Contiguity. Observe that Ĝt0 and Gt0 both define random variables in G
(t0)
n . With a slight abuse of notation,

we also use Ĝt0 andGt0 to denote the distribution of the respective random variables. Given aΣt+1-messaged graph
G ∈ G (t )

n , we will denote by G the Σ-messaged graph in Gn obtained by removing all messages from each history
except for the message at time t , i.e. the “current” message.

There are two main steps in the proof of Theorem 1.3:

(1) Show that Ĝt and Gt have similar distributions for any constant t ∈N (Lemma 3.7).
(2) Use this approximation to show that, for some large constant t0 ∈N, the messaged graphs Gt0 and G∗ are

also very similar, i.e. very few further changes are made after t0 steps of Warning Propagation.
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In particular, we must certainly choose t0 to be large enough that φt0
ϕ (Q0) is very close to the stable WP limit P

of Q0. It will follow that the distribution of a message along a randomly chosen directed edge in Ĝt0 (and therefore
also in Gt0 ) of type

(
i , j

)
is approximately P

[
i , j

]
(see Claim 4.1).

We need a way of quantifying how “close” two messaged graphs are to each other. Given sets A and B , we use
A∆B := (A \ B)∪ (B \ A) to denote the symmetric difference.

Definition 3.6. Given t ∈N0, two Σt+1-messaged graphs G1,G2 ∈G (t )
n and δ> 0, we say that G1 ∼δ G2 if:

(1) E (G1)∆E (G2) ≤ δn;
(2) The messages on E (G1)∩E (G2) in the two graphs agree except on a set of size at most δn.

We further say that G1 ≈δ G2 if in fact the underlying graphs are identical (i.e. E (G1)∆E (G2) =;).

The crucial lemma that justifies our definition of the Ĝ model is the following.

Lemma 3.7. For any integer t0 ∈N and real numberδ> 0, the randomΣt0+1-messaged graphs Ĝt0 ,Gt0 can be coupled
in such a way that w.h.p. Ĝt0 ∼δ Gt0 .

This lemma is proved in Section 5.

3.4. Message Terminology. We have introduced several pieces of terminology related to messages in the graph,
which we recall and collect here for easy reference. For a fixed time parameter t ∈ N and a directed edge, the t-
history is the sequence of messages at times 0,1, . . . , t along this directed edge. Further, for a (half-)edge or set of
(half-)edges incident to a specified vertex, we have the following terminology.

• The t-in-message is the incoming message at time t .
• The t-out-message is the outgoing message at time t .
• The t-in-story is the sequence of t ′-in-messages for t ′ = 0, . . . , t .
• The t-out-story is the sequence of t ′-out-messages at times t ′ = 0, . . . , t .
• The t-story is the ordered pair consisting of the t-in-story and t-out-story.
• The t-input is the ordered pair consisting of the t-in-story and 0-out-message.
• The t-in-compilation is the multiset of t-inputs over all half-edges at a vertex.
• The t-in-compilation sequence is the sequence of t-in-compilations over all vertices.

When the parameter t is clear from the context, we often drop it from the terminology.

4. PRELIMINARY RESULTS

We begin with some fairly simple observations which help to motivate some of the definitions made so far, or
to justify why they are reasonable. The first such observation provides a slightly simpler way of describing the
individual “entries”, i.e. the marginal distributions, of the probability distribution φt

ϕ (Q0) [i , j ] ∈P
(
Σt+1

)
.

Claim 4.1. For any t ′, t ∈N0 with t ′ ≤ t and for any i , j ∈ [k], the marginal distribution of φt
ϕ (Q0)

[
i , j

]
on the t ′-th

entry is precisely φt ′
ϕ (Q0)

[
i , j

]
, i.e. for any µ ∈Σ we have

P
((
φt
ϕ (Q0)

[
i , j

])[
t ′

]=µ
)
=




∑
µ=(µ0,...,µt )∈Σt+1

µt ′=µ

P
(
φt
ϕ (Q0)

[
i , j

]=µ
)

=P

(
φt ′
ϕ (Q0)

[
i , j

]=µ
)

.

Proof. Using the notation from Definition 3.3, we have
∑

µ=(µ0,...,µt )∈Σt+1

µt ′=µ

P
(
φt
ϕ (Q0)

[
i , j

]=µ
)
=

∑
µ=(µ0,...,µt )∈Σt+1

µt ′=µ

P
(

X (0)
i j =µ0, . . . , X (t )

i j =µt

)
=P

(
X (t ′)

i j =µ
)

.

We will prove by induction that P
(

X (t ′)
i j =µ

)
= P

(
φt ′
ϕ (Q0)

[
i , j

]=µ
)
. For t ′ = 0, again using Definition 3.3 the dis-

tribution of X (0)
i j is simply Q0

[
i , j

]
, so suppose that t ′ ≥ 1, that the result holds for 0, . . . , t ′ − 1 and for any pair

(h,`) ∈ [k]2. Let x1, . . . , xd be the children of the root node u in the Ti j branching tree defined in Definition 3.2
so the numbers and types of the children are given by the distribution Y j ,i . By the recursive nature of the Ti j
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branching tree and the induction hypothesis, the message from any xm of type h to u at time t ′−1 has distribution
φt ′−1
ϕ (Q0) [h, i ] and this is independent for all vertices. Thus, in order to get the message from u to v at time t ′, we

generate a multiset of messages M
(
Y j ,i ,φt ′−1

ϕ (Q0) [i ]
)

as in Definition 2.3 and apply the Warning Propagation rule

ϕ. By Definition 2.4, the distribution of ϕ
(
M

(
Y j ,i ,φt ′−1

ϕ (Q0) [i ]
))

is φϕ
(
φt ′−1
ϕ (Q0)

)[
i , j

]=φt ′
ϕ (Q0)

[
i , j

]
. �

Claim 4.2. Given a half-edge of type
(
i , j

)
at a vertex u of type i in the graph Ĝt0 before any half-edges are deleted,

the distribution of its out-story is given by φt0
ϕ (Q0)

[
i , j

]
.

We note also that after half-edges are deleted, this distribution will remain asymptotically the same, since w.h.p.
only o (n) half-edges will be deleted (see Proposition 5.5).

Proof. Given such a half-edge at u, let us add a dummy vertex v of type j to model the corresponding neighbour
of u. Apart from (u, v), the vertex u has some number d of half-edges with types connected to dummy vertices
c1, ...,cd generated according to Y j ,i . For each d ′ ∈ [d ], let rd ′ be the type of the vertex cd ′ . Each half-edge (cd ′ ,u)

receives t0-in-story according to φt0
ϕ (Q0)

[
r ′

d , i
]
. This is equivalent to endowing each cd ′ with a Trd ′ i tree indepen-

dently where the root edge is (cd ′ ,u), initialising the messages from children to parents in these trees according to
Q0 and running t0 rounds of Warning Propagation. Combining all these (now unrooted) trees with the additional
root edge (u, v), whose message is also initialised according to Q0 independently of all other messages, we have a
Ti j tree in which all messages are initialised independently according to Q0. Then by Definition 3.3, µu→v (≤ t0) is

distributed as φt0
ϕ (Q0)

[
i , j

]
. �

Recall that for each µ ∈ Σ, its source and target types are encoded in it. We define a function to denote these
types.

Definition 4.3. For a message µ ∈Σ with source type i and target type j , we define

g
(
µ
)= (

i , j
)

, g1
(
µ
)= i , g2

(
µ
)= j , ḡ

(
µ
)= (

j , i
)

. (4.1)

Recall that not all messages can appear along any edge, and for the same reason not all vectors of messages are
possible as message histories, which motivates the following definition.

Definition 4.4. We say that a vectorµ= (
µ0,µ1, . . . ,µt

) ∈Σt+1 is consistent if the g
(
µt ′

)
are all equal for all 0 ≤ t ′ ≤ t ,

in other words, the source types of the µt ′ are equal and the target types of the µt ′ are equal. Let Ct ⊆ Σt+1 be the set
of consistent vectors in Σt+1. For µ ∈Ct we slightly abuse the notation and define

g
(
µ

)= g
(
µ0

)
, g1

(
µ

)= g1
(
µ0

)
, g2

(
µ

)= g2
(
µ0

)
, ḡ

(
µ

)= ḡ
(
µ0

)
.

Furthermore, we say that µ1,µ2 ∈ Ct are compatible if g
(
µ1

) = ḡ
(
µ2

)
, i.e. the source type of µ1 is the target type

of µ2 and vice versa. Let Dt ⊆C 2
t be the set of directed pairs of compatible vectors.

Note that even with this definition, not all consistent vectors are necessarily possible as message histories, since
for example there may be some monotonicity conditions which the vector fails to satisfy.

Definition 4.5. Let Q be a probability distribution matrix on Σ, let σ ∈Σ and µ ∈Ct for some t ∈N. We define

PQ(t ) (σ) :=P(
Q(t ) [g (σ)

]=σ)
and PQ(≤t )

(
µ

)
:=P(

Q(≤t ) [g
(
µ

)]=µ)
.

In other words,PQ(t ) (σ) andPQ(≤t )

(
µ

)
are the probabilities of obtainingσ andµ if we sample from Q(t ) and Q(≤t )

in the appropriate entry g (σ) and g
(
µ

)
of those matrices respectively, the only entries which could conceivably

give a non-zero probability.
Given an integer t and µ1,µ2 ∈ Σt+1, let mµ1,µ2

denote the number of half-edges in Ĝt with story
(
µ1,µ2

)
, i.e.

with in-story µ1 and out-story µ2, after Step 3 of the random construction (in particular before unmatched half-
edges are deleted). Observe that at a single half-edge of type

(
i , j

)
:= (

g1
(
µ1

)
, g2

(
µ1

))
, the in-story is distributed

as Q(≤t )
0

[
j , i

]
and by Claim 4.2 the out-story is distributed as Q(≤t )

0

[
i , j

]
. Moreover, the in-story and out-story

are independent of each other. Therefore the probability that the half-edge has in-story µ1 and out-story µ2 is
precisely

qµ1,µ2
:=

{
PQ(≤t )

0

(
µ1

) ·PQ(≤t )
0

(
µ2

)
if

(
µ1,µ2

) ∈Dt ,

0 otherwise.

The following fact follows directly from the definition of qµ1,µ2
.
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Fact 4.6. For any
(
µ1,µ2

) ∈Σt+1 we have qµ1,µ2
= qµ2,µ1

.

We will also define

mµ1,µ2
:=

{
E
(
Zg(µ1)

)
E
(
ng1(µ1)

)
qµ1,µ2

if
(
µ1,µ2

) ∈Dt ,

0 otherwise.
(4.2)

Claim 4.7. For any i , j ∈ [k], we have E
(
Zi j

)
E (ni ) =

(
1+O

(
∆0
ω0

))
E
(
Z j i

)
E
(
n j

)
. In particular,

mµ1,µ2
=

(
1+O

(
∆0

ω0

))
mµ2,µ1

.

Proof. Let us fix i , j ∈ [k]. The statement is trivial if i = j , and therefore we may assume that this is not the case.
Let us consider the number of edges of ei , j ,e j ,i of types

(
i , j

)
and

(
j , i

)
respectively in G, which must of course

be identical. This can be expressed as
∑

v∈Vi
dG, j (v), where dG, j (v) denotes the number of neighbours of v which

have type j .
Now for each d ∈N, define Sd to be the family of (vertex-)rooted k-type graphs of depth 1 rooted at a vertex of

type i , and with exactly d vertices of type j . Then we have

ei , j =
∑

v∈Vi

dG, j (v) =
∑

v∈Vi

∑
d∈N

d ·1
{
dG, j (v) = d

}=
∑

v∈Vi

∑
d∈N

∑
H∈Sd

d ·1 {BG (v,1) ∼= H } .

Now conditioning on the high probability event that ni =
(
1+o

(
1
ω0

))
E (ni ) (see Claim 2.16) and that there are no

vertices of degree larger than ∆0 (see A3), we have w.h.p.

ei , j = ni ·
( ∑

d≤∆0

d
∑

H∈Sd

P (Ti
∼= H)±∆0 ·dTV

(
UGi ,1,Ti

))
= ni

( ∑
d≤∆0

dP
(
Zi j = d

)+O

(
∆0

ω0

))
= E (ni )

(
E
(
Zi j

)+O

(
∆0

ω0

))
.

By symmetry we also have ei , j = e j ,i = E
(
n j

)(
E
(
Z j i

)+O
(
∆0
ω0

))
. It easily follows that E

(
Zi j

) = 0 ⇔ E
(
Z j i

) = 0, in

which case the statement follows trivially. On the other hand, if these expectations are non-zero, then we have

E
(
Zi j

)+O
(
∆0
ω0

)
=

(
1+O

(
∆0
ω0

))
E
(
Zi j

)
, and similarly for E

(
Z j i

)
, so the result follows by rearranging. �

5. CONTIGUITY: PROOF OF LEMMA 3.7

The aim of this section is to prove Lemma 3.7, the first of our two main steps, which states that Ĝt0 and Gt0 have
approximately the same distribution. We begin with an overview.

5.1. Proof strategy. The overall strategy for the proof is to show that every step of the construction of Ĝt0 closely re-
flects the situation in Gt0 . More precisely, the following are the critical steps in the proof. Recall from Definition 3.1
thatG is the underlying unmessaged random graph corresponding toGt0 , and similarly let Ĝ denote the underlying
unmessaged random graph corresponding to Ĝt0 . The following either follow directly from our assumptions or will
be shown during the proof.

(1) The vectors representing the numbers of vertices of each type in Ĝt0 and Gt0 are identically distributed.
(2) The local structure of G is described by the Ti branching processes for i ∈ [k].
(3) After initialising Warning Propagation on G according to Q0 and proceeding for t0 rounds, the distribution

of the in-story along a random edge of type
(
i , j

)
is approximately φt0

ϕ (Q0)
[

j , i
]
.

(4) Given a particular compilation sequence, i.e. multiset of stories (which consist of in-stories and out-stories)
on half-edges at each vertex, each graph with this compilation sequence is almost equally likely to be cho-
sen as G.

(5) If we run Warning Propagation on Ĝ, with initialisation identical to the constructed 0-messages in Ĝt0 , for
t0 steps, w.h.p. the message histories are identical to those generated in the construction of Ĝt0 except on
a set of o (n) edges.

The first step is trivially true since we chose the vector N to be the distribution of the class sizes in G. The
second step is simply B1, and the third step is a direct consequence of the second (see Proposition 5.6). One minor
difficulty to overcome in this step is how to handle the presence of short cycles, which are the main reason the
approximations are not exact. However, since the local structure is a tree by B1, w.h.p. there are few vertices which
lie close to a short cycle (see Claim 5.3).
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We will need to show that, while the presence of such a cycle close to a vertex may alter the distribution of
incoming message histories at this vertex (in particular they may no longer be independent), it does not funda-
mentally alter which message histories are possible (Proposition 5.1). Therefore while the presence of a short cycle
will change some distributions in its close vicinity, the fact that there are very few short cycles means that this
perturbation will be masked by the overall random “noise”.

The fourth step is precisely A2, while the fifth step is almost an elementary consequence of the fact that we
constructed the message histories in Ĝt0 to be consistent with Warning Propagation (Proposition 5.10). In fact, it
would be obviously true that all message histories are identical were it not for the fact that some half-edges may
be left unmatched in the construction of Ĝ and therefore deleted, which can cause the out-messages along other
half-edges at this vertex to be incorrect. This can then have a knock-on effect, but it turns out (see Proposition 5.5)
that w.h.p. not too many edges are affected.

5.2. Plausibility of inputs. We begin by showing that, if we initialise messages in a (deterministic) graph in a way
which is admissible according to Q0, any t0-input at a half-edge of type

(
i , j

)
produced by Warning Propagation

has a non-zero probability of appearing under the probability distribution φt0
ϕ (Q0)

[
j , i

]
.

Proposition 5.1. Let G be any k-type graph in which the type-degree of each vertex of type i has positive probability
under Zi and let (u, v) be a directed edge of G of type

(
i , j

)
. Suppose that messages are initialised in G arbitrarily

subject to the condition that each initial message is consistent with the vertex types and has non-zero probability
under Q0, i.e. for every directed edge

(
u′, v ′) of type

(
i ′, j ′

)
, the initial message σ ∈ Σ from u′ to v ′ satisfies g (σ) =(

i ′, j ′
)

and furthermore PQ0 (σ) 6= 0. Run Warning Propagation with update rule ϕ for t0 steps and let µin :=µu→v (≤
t0) and µout :=µv→u (0) be the resulting t0-in-story and 0-out-story at v along (u, v) respectively.

Then

P
((
φ

t0
ϕ (Q0)

[
i , j

]
,Q0

[
j , i

])
= (
µin,µout

)) 6= 0.

Proof. We construct an auxiliary tree G ′, in which each vertex has a corresponding vertex in G . For a vertex w ′ in
G ′, the corresponding vertex in G will be denoted by w . We construct G ′ as follows. First generate u′ as the root of
the tree, along with its parent v ′. Subsequently, recursively for each t ∈ {0}∪ [t0 −1], for each vertex x ′ at distance t
below u′ with parent y ′, we generate children for all neighbours of the vertex x in G except for y .

Note that another way of viewing G ′ is that we replace walks beginning at u in G (and whose second vertex is not
v) by paths, where two paths coincide for as long as the corresponding walks are identical, and are subsequently
disjoint. A third point of view is to see G ′ as a forgetful search tree of G , where (apart from the parent) we don’t
remember having seen vertices before and therefore keep generating new children.

We will initialise messages in G ′ from each vertex to its parent (and also from v to u) according to the corre-
sponding initialisation in G , and run Warning Propagation with update rule ϕ for t0 rounds.

Let µ′
in = µ′

u′→v ′ (≤ t0) be the resulting t0-in-story and µ′
out = µ′

v ′→u′ (0) be the 0-out-story at v ′ along
(
u′, v ′) in

G ′. Recall that µin and µout are the corresponding t0-in-story and 0-out-story at v in G . The crucial observation is
the following.

Claim 5.2. µ′
in =µin and µ′

out =µout.

We delay the proof of this claim until after the proof of Proposition 5.1, which we now complete. Since each
initial message has non-zero probability under Q0, we have PQ0

(
µout

) 6= 0. Recall that φt0
ϕ (Q0)

[
i , j

]
was defined as

the probability distribution of
(

X (0)
i j , . . . , X (t0)

i j

)
, the message history in a Ti j tree in which messages are initialised

according to Q0. Therefore the probability that φt0
ϕ (Q0)

[
i , j

] = µin = µ′
in is certainly at least the probability that a

T
t0

i j tree has exactly the structure of G ′ (up to depth t0) and that the initialisation chosen at random according to

Q0 is precisely the same as the initialisation in G ′. Since G ′ is a finite graph whose type-degrees for all vertices not
at distance t0 from u has positive probability under Z , there is a positive probability that a random instance of T

t0
i j

is isomorphic to G ′. Furthermore, since each initial message has a positive probability under Q0, the probability of
choosing the same initialisation as in G ′ is also nonzero, as required. �

We now go on to prove the auxiliary claim.
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Proof of Claim 5.2. By construction the 0-out-message at v ′ along
(
v ′,u′) is identical to the corresponding 0-out-

message in G so µ′
out =µout. It remains to prove that the t0-in-stories are identical.

For any vertex x ′ ∈ G ′ \ {v ′}, let x ′
+ denote the parent of x ′. In order to prove Claim 5.2, we will prove a much

stronger statement from which the initial claim will follow easily. More precisely, we will prove by induction on
t that for all x ′ ∈ G ′ \ {v ′}, µ′

x ′→x′
+

(≤ t ) = µx→x+ (≤ t ). For t = 0, by construction µ′
x′→x′

+
(0) = µx→x+ (0) for any

x ′ ∈G ′ \{v ′} because messages in G ′ are initialised according to the corresponding initialisation in G . Suppose that
the statement is true for some t ≤ t0 −1. It remains to prove that µ′

x′→x′
+

(t +1) = µx→x+ (t +1). By the induction

hypothesis, µ′
y ′→x′ (t ) =µy→x (t ) for all y ′ ∈ ∂G ′x ′ \ {x ′

+}. Hence,

{{
µ′

y ′→x′ (t ) : y ′ ∈ ∂G ′x ′ \ {x ′
+}

}}
= {{

µy→x (t ) : y ′ ∈ ∂G ′x ′ \ {x ′
+}

}}= {{
µz→x (t ) : z ∈ ∂G x \ {x+}

}}
,

i.e. the multisets of incoming messages to the directed edge
(
x ′, x ′

+
)

in G ′ and to the directed edge (x, x+) in G at
time t are identical. Therefore also

µ′
x′→x′

+
(t +1) =ϕ

({{
µy ′→x′ (t ) : y ′ ∈ ∂G x ′ \ {x ′

+}
}})=ϕ({{

µz→x (t ) : z ∈ ∂G x \ {x+}
}})=µx→x+ (t +1) ,

as required. �

Proposition 5.1 tells us that no matter how strange or pathological a messaged graph looks locally, there is still
a positive probability that we will capture the resulting input (and therefore w.h.p. such an input will be generated
a linear number of times in Ĝt0 ). In particular, within distance t0 of a short cycle the distribution of an input may
be significantly different from

(
φ

t0
ϕ (Q0)

[
i , j

]
,Q0

[
j , i

])
. However, we next show that there are unlikely to be many

edges this close to a short cycle.

Claim 5.3. Let W0 be the set of vertices which lie on some cycle of length at most t0 in G, and recursively define
Wt :=Wt−1 ∪∂Wt−1 for t ∈N.

Then w.h.p.
∣∣Wt0

∣∣=O
(

n
ω0

)
.

Proof. Any vertex which lies in Wt0 certainly has the property that its neighbourhood to depth 2t0 contains a cycle.
However, since for any i ∈ [k], the branching process T

2t0
i certainly does not contain a cycle, Assumption B1

(together with the fact that w.h.p. there are O (n) vertices in total due to A1) shows that w.h.p. at most O (n/ω0)
vertices have such a cycle in their depth 2t0 neighbourhoods. �

5.3. The deleted half-edges. In the construction of Ĝ we deleted some half-edges which remained unmatched in
Step 4, and it is vital to know that there are not very many such half-edges. We therefore define E0 to be the set of
half-edges which are deleted in Step 4 of the random construction of Ĝ.

Definition 5.4. Given integers d , t ∈N0, a messaged graph G ∈ G
(t0)
n and a multiset A ∈

((
Σt+2

d

))
, define nA = nA (G)

to be the number of vertices of G which receive in-compilation A.
Further, let γi

A = γi
A (t ) denote the probability that the t-in-compilation at a vertex of type i when generating Ĝt

is A.

Observe that for any d , t ∈N0, the expression
∑

A∈
((
Σt+2

d

)) nA (G) is simply the number of vertices of degree d , and

therefore for any t ∈N0 we have
∑

d∈N0

∑
A∈

((
Σt+2

d

)) nA (G) = |V (G)|.
Recall that in Proposition 2.13, apart from the function F and the parameterω0, we also fixed parameters c0,d0,

which we will now make use of.

Proposition 5.5. W.h.p. |E0| = o
(

np
c0

)
.

Proof. Let us fix two t0-in-stories µ1,µ2 ∈ Σt0+1 and consider the number of half-edges mµ1,µ2
with t0-in-story µ1

and t0-out-story µ2. We aim to show that mµ1,µ2
is concentrated around its expectation mµ1,µ2

as defined in (4.2).
Recall that the multiset of t0-stories at a vertex is determined by the t0-in-compilation, i.e. the multiset of t0-inputs.

For each d1,d2 ∈ N, let Bd1,d2 = Bd1,d2

(
µ1,µ2

)
denote the set of t0-in-compilations A ∈

((
Σt0+2

d2

))
consisting of d2

many t0-inputs which lead to d1 half-edges with t0-story
(
µ1,µ2

)
, and let xA denote the number of vertices which

17

104 Appendix B.



receive t0-in-compilation A in Step 3 of the construction of Ĝt0 (in particular before the deletion of half-edges).
Then we have

mµ1,µ2
=

∑
d1,d2∈N

∑
A∈Bd1,d2

d1xA

We split the sum into two cases, depending on d2. Consider first the case when d2 > d0. By A1 w.h.p. the total
number of vertices is Θ (n), and by F4 the probability that any vertex has degree larger than d0 is at most 1/F (d0),
and it follows that w.h.p. the number of half-edges attached to vertices of degree larger than d2 is dominated by

d2 ·Bin
(
Θ (n) , 1

F (d2)

)
. Thus the expected number of half-edges attached to such high degree vertices is at most

Θ (1)
∑

d2≥d0

d2n

F (d2)
=Θ (1)

d0n

F (d0)
,

Now by (P3) we have F (d0) À c0 and also d0 ≤
√

exp(d0) ¿p
c0, and therefore d0n

F (d0) = o
(

np
c0

)
. An application of

Markov’s inequality shows that w.h.p. the number of half-edges attached to vertices of degree at least d0 is o
(

np
c0

)
.

We now turn our attention to the case d2 ≤ d0. Here we observe that for any A each vertex of Vi is given t0-
in-compilation A with probability γi

A independently, and so the number of vertices which receive A is distributed
as

X :=
k∑

i=1
Xi =

k∑
i=1

Bin
(
ni ,γi

A

)
.

Conditioning on the high probability event that ni =
(
1+o

(
1
ω0

))
E (ni ) (see Claim 2.16), and in particular is

Θ (n), a standard Chernoff bound shows that with probability at least 1−exp
(−Θ(

(lnn)2)) the random variable X

is within an additive factor
p

n lnn of its expectation, and a union bound over all at most |Σ|(t0+1)d0
(2.3)= o (c0) ¿ n1/5

choices for A of size at most d0 shows that w.h.p. this holds for all such A simultaneously.
It follows that w.h.p.

∣∣mµ1,µ2
−mµ1,µ2

∣∣≤
∣∣∣mµ1,µ2

−E
(
Zg(µ1)

)
qµ1,µ2

ng1(µ1)

∣∣∣+
∣∣∣E

(
Zg(µ1)

)
qµ1,µ2

ng1(µ1) −mµ1,µ2

∣∣∣

≤ |Σ|(t0+1)d0
p

n lnn +o

(
np
c0

)
+o

(
n

ω0

)
= o

(
np
c0

)
, (5.1)

To see the last estimate, note that by (2.3) we have |Σ|(t0+1)d0
p

n lnn ¿ c0
p

n lnn = o
(
n/

p
c0

)
, where second esti-

mate follows since c0 ¿ω0 ¿ n1/5 by P1 and P3. This last fact also implies that
p

c0 ¿ c0 ¿ω0.
Since this is true for any arbitrary t0-stories µ1,µ2, we can deduce that w.h.p.

∣∣mµ1,µ2
−mµ2,µ1

∣∣=
∣∣mµ1,µ2

−mµ2,µ1

∣∣+o

(
np
c0

)
.

Moreover, by Claim 4.7 we have
∣∣mµ1,µ2

−mµ2,µ1

∣∣ = O
(

n∆0
ω0

)
P3= o

(
np
c0

)
. Hence

∣∣mµ1,µ2
−mµ2,µ1

∣∣ = o
(

np
c0

)
, and a

union bound over all of the at most |Σ|2(t0+1) = O (1) choices for µ1,µ2 implies that w.h.p. the same is true for all
choices of µ1,µ2 simultaneously.

Finally, we observe that (deterministically) the number |E0| of half-edges left unmatched is

|E0| =
∑

µ1 6=µ2

1

2

∣∣mµ1,µ2
−mµ2,µ1

∣∣+
∑
µ1

1
{
mµ1,µ1

∉ 2N
}

.

The first term is o
(

np
c0

)
w.h.p. by the arguments above, while the second term is deterministically at most the

number of µ1 over which the sum ranges, which is at most |Σ|t0+1 = O (1). Therefore w.h.p. |E0| = o
(

np
c0

)
, as re-

quired. �

5.4. Similar in-compilations. Our next goal is to show that the in-compilation sequence distribution in Gt0 is
essentially the same as that in Ĝt0 .

Proposition 5.6. Let t0 be some (bounded) integer. Then w.h.p. the following holds.

(1) For every integer d ≤ d0 and for every A ∈
((
Σt0+2

d

))
we have nA

(
Gt0

)
,nA

(
Ĝt0

)= (∑
i∈[k]γ

i
Ani

)+o
(

np
c0

)
.
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(2) Ĝt0 ,Gt0 each contains at most n
c0

vertices of degree at least d0.

Proof. The proof is technical, but ultimately standard and we give only a short overview. The proofs of the two
statements for Ĝt0 essentially already appear in the proof of Proposition 5.5, which estimated the same parameters
in the random model before half-edges were deleted. We therefore only need to additionally take account of the
fact that some half-edges were deleted, but Proposition 5.5 itself implies that this will not affect things too much.

To prove the first statement for Gt0 we apply B1. More precisely, the sets of local neighbourhoods up to depth t0

in G of all vertices of Vi look similar to ni independent copies of T
t0

i (Z ). Furthermore, since the message initial-
isation in G is according to Q0, and since there are very few dependencies between the local neighbourhoods, the
same is true if we consider the messaged local neighbourhoods at time 0. Since these messaged neighbourhoods
determine the corresponding t0-input at the root, a Chernoff bound shows that w.h.p. we have concentration of
nA

(
Gt0

)
around its expectation. Importantly the 1/ω0 term that describes the speed of convergence of the local

structure to T
t0

i is smaller than 1/
p

c0, the (normalised) error term in the statement.
For the second statement, we also apply B1, although here we only need to go to depth 1 and need not consider

any messages. We also use A3 to bound the number of half-edges attached to vertices at which G and the copies of
T 1

i disagree. Otherwise the proof is similar. �

Let a0 :=
p

c0

4d0|Σ|(t0+2)d0
. As a corollary of Proposition 5.6, we obtain the following result.

Corollary 5.7. After re-ordering vertices if necessary, w.h.p. the number of vertices whose in-compilations are differ-
ent in Ĝt0 and Gt0 is at most n

a0
.

Proof. Assuming the high probability event of Proposition 5.6 holds, the number of vertices with differing in-
compilations is at most




d0∑
d=0

∑

A∈
((
Σt0+2

d

))
2np

c0


+ 2n

c0
≤ 2np

c0

(
d0∑

d=0

|Σ|(t0+2)d

)
+ 2n

c0

≤ 2np
c0

d0 |Σ|(t0+2)d0 + 2n

c0
= 2n

4a0
+ 2n

c0
≤ n

a0
,

where the last approximation follows by definition of a0. �

5.5. Matching up. Next, we show that choosing the random matching as we did in Step 4 of the construction of Ĝt0

is an appropriate choice. We already defined the type-degree sequence of a graph, which generalises the degree
sequence, but we need to generalise this notion still further to also track the in-coming stories at a vertex.

Definition 5.8. For any Σt0+1-messaged graph G ∈ G
(t0)
n , let Hi = Hi (G) denote the in-compilation at vertex i , for

i ∈ [n] and let H (G) := (H1, . . . , Hn) be the in-compilation sequence.

Claim 5.9. Suppose that G1,G2 are two graphs on [n] with H (G1) = H (G2). Then P (G=G1) = (1+o (1))P (G=G2) .

Proof. If H (G1) = H (G2), then in particular D (G1) = D (G2). Then by Assumption A2, we have that P (G=G1) =
(1+o (1))P (G=G2). �

5.6. Message consistency. We also need to know that the message histories generated in the construction of Ĝt0

match those that would be produced by Warning Propagation. Let ĜWP denote the graph with message histories
generated by constructing Ĝt0 , stripping all the message histories except for the messages at time 0 and running
Warning Propagation for t0 steps with this initialisation. Furthermore, let X0 be the set of vertices at which some
half-edges were deleted in Step 4 of the construction of Ĝt0 , and for t ∈N let X t be the set of vertices at distance at
most t from X0 in Ĝt0 .

Proposition 5.10. Deterministically we have ĜWP = Ĝt0 except on those edges incident to X t0 . Furthermore, on those
edges incident to X t0 but not X t0−1, the message histories in ĜWP and Ĝt0 are identical up to time t0 −1.

Proof. Since the two underlying unmessaged graphs are the same, we just need to prove that at any time 0 ≤ t ≤
t0, the incoming and outgoing messages at a given vertex v ∉ X t−1 are the same for Ĝt0 and ĜWP (where we set
X−1 :=;). We will prove the first statement by induction on t . At time t = 0, the statement is true by construction
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of ĜWP. Now suppose it is true up to time t for some 0 ≤ t ≤ t0 −1 and consider an arbitrary directed edge (u, v)
between vertices u, v ∉ X t . By Definition 3.4 (2), the (t +1)-out-message from u in Ĝt0 is produced according to the
rules of Warning Propagation based on the t-in-messages to u at time t . Since u ∉ X t , none of its neighbours lie
in X t−1 and therefore by the induction hypothesis, these t-in-messages are the same for Ĝt0 and ĜWP. Hence, the
(t +1)-out-message along (u, v) is also the same in Ĝt0 and ĜWP. This proves the first statement of the proposition,
while the second follows from the inductive statement for t = t0 −1. �

In view of Proposition 5.10, we need to know that not too many edges are incident to X t0 .

Proposition 5.11. Let t ∈N be any constant. W.h.p. the number of edges of Ĝ incident to X t is o (n).

Proof. The statement for t = 0 is implied by the (slightly stronger) statement of Proposition 5.5. For general t , the
statement follows since the average degree in Ĝ is bounded. More precisely, the expected number of edges of Ĝ
incident to X t is (O (1))t |X0| =O (1) |X0| = o (n), and an application of Markov’s inequality completes the proof. �

5.7. Final steps. We can now complete the proof of Lemma 3.7.

Proof of Lemma 3.7. We use the preceding auxiliary results to show that every step in the construction of Ĝt0 closely
mirrors a corresponding step in which we reveal partial information about Gt0 . Let us first explicitly define these
steps within Gt0 by revealing information one step at a time as follows.

(1) First reveal the in-compilation at each vertex, modelled along half-edges.
(2) Next reveal all out-stories along each half-edge.
(3) Finally, reveal which half-edges together form an edge.

Corollary 5.7 shows that Step 2 in the construction of Ĝt0 can be coupled with Step 2 in revealing Gt0 above
in such a way that w.h.p. the number of vertices on which they produce different results is at most n

a0
= o (n).

Furthermore, Proposition 5.10 shows that, for those vertices for which the in-compilations are identical in Step 2,
the out-stories generated in Step 3 of the construction of both Ĝt0 andGt0 must also be identical (deterministically).
Therefore before the deletion of unmatched half-edges in Step 4 of the definition of Ĝt0 , w.h.p. Condition (2) of
Definition 3.6 is satisfied. On the other hand, Proposition 5.5 states that w.h.p. o

(
n/

p
c0

) = o (n) half-edges are
deleted, and therefore the condition remains true even after this deletion.

Now in order to prove that we can couple the two models in such a way that the two edge sets are almost the
same (and therefore Condition (1) of Definition 3.6 is satisfied), we consider each potential story µ ∈ Σ2(t0+1) in
turn, and construct coupled random matchings of the corresponding half-edges. More precisely, let us fix µ and
let m̂ be the number of half-edges with this story in Ĝt0 . Similarly, define m to be the corresponding number of
half-edges in Gt0 . Furthermore, let r̂1 be the number of half-edges with story µ in Ĝt0 \Gt0 , let r̂2 be the number of
half-edges with the “dual story” µ∗, i.e. the story with in-story and out-story switched, and correspondingly r1,r2

in Gt0 \ Ĝt0 .
For convenience, we will assume that µ∗ 6=µ; the case when they are equal is very similar.
Let us call an edge of a matching good if it runs between two half-edges which are common to both models. Note

that this does not necessarily mean it is common to both matchings, although we aim to show that we can couple
in such a way that this is (mostly) the case. Observe that, conditioned on the number of good edges in a matching,
we may first choose a matching of this size uniformly at random on the common half-edges, and then complete
the matching uniformly at random (subject to the condition that we never match two common half-edges).

Observe further that the matching in Ĝt0 must involve at least m̂− r̂1− r̂2 good edges, and similarly the matching
in Gt0 must involve at least m−r1 −r2, and therefore we can couple in such a way that at least min{m̂− r̂1 − r̂2,m−
r1 − r2} edges are identical, or in other words, the symmetric difference of the matchings has size at most max{r̂1 +
r̂2,r1 + r2}.

Repeating this for each possible µ, the total number of edges in the symmetric difference is at most twice the

number of half-edges which are not common to both models. We have already shown that there are at most o
(

n
a0

)
+

o
(

np
c0

)
= o

(
n
a0

)
vertices at which the in-compilations differ, and applying the second statement of Proposition 5.6,

we deduce that w.h.p.the number of half-edges which are not common to both models is at most d0 ·o
(

n
a0

)
+2· n

c0
=

o (n) as required. �
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6. SUBCRITICALITY: THE IDEALISED CHANGE PROCESS

With Lemma 3.7 to hand, which tells us that Gt0 and Ĝt0 look very similar, we break the rest of the proof of
Theorem 1.3 down into two further steps.

First, in this section, we describe an idealised approximation of how a change propagates when applying WP
repeatedly to Gt0 , and show that this approximation is a subcritical process, and therefore quickly dies out. The
definition of this idealised change process is motivated by the similarity to Ĝt0 .

In the second step, in Section 7 we will use Lemma 3.7 to prove formally that the idealised change process closely
approximates the actual change process, which therefore also quickly terminates.

Definition 6.1. Given a probability distribution matrix Q on Σ, we say that a pair of messages (σ0,τ0) is a potential
change with respect to Q if there exist some t ∈N and some µ= (

µ0,µ1, . . . ,µt
) ∈Ct+1 such that

• µt−1 =σ0;
• µt = τ0;

• P
(
φt
ϕ (Q)

[
ḡ

(
µ
)]=µ

)
> 0.

We denote the set of potential changes by P (Q).

In other words, (σ0,τ0) is a potential change if there is a positive probability of making a change fromσ0 to τ0 in
the message at the root edge at some point in the Warning Propagation algorithm on a Tg (σ0) branching tree when
initialising according to Q. The following simple claim will be important later.

Claim 6.2. If P is a fixed point and (σ0,τ0) ∈P (P ) with g (σ0) =
(
i , j

)
, then P

[
i , j

]
(σ0) > 0 and P

[
i , j

]
(τ0) < 1.

Proof. The definition of P (P ) implies in particular that there exist a t ∈N and a µ ∈Ct+1 such that µt−1 =σ0 and

P
(
φt
ϕ (P )

[
i , j

]=µ
)
> 0. Furthermore, by Claim 4.1, the marginal distribution of the t-th entry of φt

ϕ (P )
[
i , j

]
is

φt
ϕ (P )

[
i , j

]= P
[
i , j

]
(since P is a fixed point), and therefore we have P

[
i , j

]
(σ0) ≥P

(
φt
ϕ (P )

[
i , j

]=µ
)
> 0.

On the other hand, since P
[
i , j

]
is a probability distribution on Σ, clearly P

[
i , j

]
(τ0) ≤ 1−P

[
i , j

]
(σ0) < 1. �

6.1. The idealised change branching process. Given a probability distribution matrix Q on Σ and a pair (σ0,τ0) ∈
P (Q), we define a branching process T = T (σ0,τ0,Q) as follows. We generate an instance of Ti j , where

(
i , j

) =
ḡ (σ0), in particular including messages upwards to the directed root edge (v,u), so u is the parent of v . We then
also initialise two messages downwards along this root edge, µ(1)

u→v =σ0 and µ(2)
u→v = τ0. We track further messages

down the tree based on the message that a vertex receives from its parent and its children according to the WP
update rule ϕ. Given a vertex y with parent x, let µ(1)

x→y be the resultant message when the input at the root edge

is µ(1)
u→v =σ0, and similarly µ(2)

x→y the resultant message when the input is µ(2)
u→v = τ0. Finally, delete all edges

(
x, y

)

for which µ(1)
x→y = µ(2)

x→y , so we keep only edges at which messages change (along with any subsequently isolated
vertices). It is an elementary consequence of the construction that T is necessarily a tree.

6.2. Subcriticality. Intuitively, T approximates the cascade effect that a single change in a message from time
t0 − 1 to time t0 subsequently causes (this is proved more precisely in Section 7). Therefore while much of this
paper is devoted to showing that T is indeed a good approximation, a very necessary task albeit an intuitively
natural outcome, the following result is the essential heart of the proof of Theorem 1.3.

Proposition 6.3. If P is a stable fixed point, then for any (σ0,τ0) ∈ P (P ), the branching process T =T (σ0,τ0,P ) is
subcritical.

Proof. Let us suppose for a contradiction that for some (σ0,τ0) ∈P (P ), the branching process has survival proba-
bility ρ > 0. We will use the notation a Î b to indicate that given b, we choose a sufficiently small as a function of
b.4

Given ρ and also Σ,ϕ,P , let us fix further parameters ε,δ ∈R and t1 ∈N according to the following hierarchy:

0 < εÎ
1

t1
Î δÎ ρ,

1

|Σ| ≤ 1.

4In the literature this is often denoted by a ¿ b, but we avoid this notation since it has a very different meaning elsewhere in the paper. In
particular, here we aim to fix several parameters which are all constants rather than functions in n.
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In the following, given an integer t and messages σt ,τt ∈ Σ, we will use the notation σt := (σt ,τt ). Let us define a
new probability distribution matrix Q on Σ as follows. For each

(
i , j

) ∈ [k]2 and for all µ ∈Σ

Q
[
i , j

](
µ
)

:=





P
[
i , j

](
µ
)−ε if

(
i , j

)= g (σ0) and µ=σ0;

P
[
i , j

](
µ
)+ε if

(
i , j

)= g (σ0) and µ= τ0;

P
[
i , j

](
µ
)

otherwise.

In other words, we edit the probability distribution in the g (σ0) entry of the matrix P to shift some weight from
σ0 to τ0, but otherwise leave everything unchanged. Note that since (σ0,τ0) ∈ P (P ) is a potential change, for
sufficiently small ε, each entry Q

[
i , j

]
of Q is indeed a probability distribution (by Claim 6.2 for

(
i , j

) = g (σ0) or
trivially otherwise).

Let us generate the t1-neighbourhood of a root vertex u of type i in a Ti branching process and initialise mes-
sages from the leaves at depth t1 according to both Q and P , where we couple in the obvious way so that all
messages are identical except for some which are σ0 under P and τ0 under Q. We call such messages changed
messages.

We first track the messages where we initialise with P through the tree (both up and down) according to the
Warning Propagation rules, but without ever updating a message once it has been generated. Since P is a fixed
point of ϕ, each message µ either up or down in the tree has the distribution P

[
g

(
µ
)]

(though clearly far from
independently).

We then track the messages with initialisation according to Q through the tree, and in particular track where
differences from the first set of messages occur. Let xs (σ1) denote the probability that a message from a vertex at
level t1 − s to its parent changes from σ1 to τ1. Thus in particular we have

x0 (σ1) =
{
ε if σ1 =σ0,

0 otherwise.

Observe also that messages coming down from parent to child “don’t have time” to change before we consider
the message up (the changes from below arrive before the changes from above). Since we are most interested
in changes which are passed up the tree, we may therefore always consider a message coming down as being
distributed according to P (more precisely, according to P

[
i , j

]
, where i , j are the types of the parent and child

respectively).
We aim to approximate xs+1 (σ1) based on xs , so let us consider a vertex u at level t1 − (s +1) and its parent v .

Let us define Cd = Cd (u) to be the event that u has precisely d children. Furthermore, let us define Du (σ2) to be
the event that exactly one change is passed up to u from its children, and that this change is of type σ2. Finally,
let bu (σ1) be the number of messages from u (either up or down) which change from σ1 to τ1 (there may be more
changes of other types).

The crucial observation is that given the neighbours of u and their types, each is equally likely to be the parent
– this is because the tree Ti is constructed in such a way that, conditioned on the presence and type of the parent,
the type-degree distribution of a vertex of type j is Z j , regardless of what the type of the parent was. Therefore
conditioned on the event Du (σ2) and the values of d and bu (σ1), apart from the one child from which a change of
typeσ2 arrives at u, there are d other neighbours which could be the parent, of which bu (σ1) will receive a change
of type σ1. Thus the probability that a change of type σ1 is passed up to the parent is precisely bu (σ1)

d .
Therefore in total, conditioned on Cd and Du (σ2), the probability ad ;σ1,σ2 that a change of typeσ1 is passed on

from u to v is

ad ;σ1,σ2 =
d∑
`=1

(
P (bu (σ1) = ` |Cd ∧Du (σ2)) · `

d

)
= 1

d
·E (bu (σ1) |Cd ∧Du (σ2)) .

Now observe that this conditional expectation term is exactly as in the change process. More precisely, in the T
process we know automatically that only one change arrives at a vertex, and therefore if we have a change of type
σ2, the event Du (σ2) certainly holds. Therefore, letting h = g1 (σ2) and `= g2 (σ2),

∑
d≥1

∑
d∈Se(d)

P
(
Y`,h = d

)
d ad ;σ1,σ2 = T [σ1,σ2] , (6.1)
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where Se(d) is the set of sequences d := (d1, . . . ,dk ) ∈Nk
0 such that

∑k
`′=1 d`′ = d and T is the |Σ|2 ×|Σ|2 transition

matrix associated with the T change process, i.e. the entry T [σ1,σ2] is equal to the expected number of changes
of type σ1 produced in the next generation by a change of type σ2.

On the other hand, defining Eu to be the event that at least two children of u send changed messages (of any
type) to u, we also have

xs+1 (σ1) ≥
∑

d≥1

∑
d∈Se(d)

P
(
Y`,h = d

) ∑
σ2∈Σ2

ad ;σ1,σ2P (Du (σ2) |Cd )

≥
∑

d≥1

∑
d∈Se(d)

P
(
Y`,h = d

) ∑
σ2∈Σ2

ad ;σ1,σ2

(
d xs (σ2)−P (Eu |Cd )

)
. (6.2)

For each s ∈N, let x s be the |Σ|2-dimensional vector whose entries are xs (σ) for σ ∈ Σ2 (in some arbitrary order).
We now observe that, since P is a stable fixed point, i.e. φϕ is a contraction on a neighbourhood of P , and since
dTV (P,Q) = ε, for small enough ε we have

∑
σ∈Σ2

xs (σ) = ‖x s‖1 = dTV

(
P,φs

ϕ (Q)
)
≤ dTV (P,Q) = ‖x0‖1 = ε,

and so we further have

P (Eu |Cd ) ≤
(

d

2

)
ε2 ≤ d 2ε2. (6.3)

Furthermore, we observe that since ad ;σ1,σ2 is a probability term by definition, we have
∑

σ2∈Σ2

ad ;σ1,σ2 ≤
∑

σ2∈Σ2

1 = |Σ|2 . (6.4)

Substituting (6.1), (6.3) and (6.4) into (6.2), we obtain

xs+1 (σ1) ≥
∑

σ2∈Σ2

T [σ1,σ2] xs (σ2)−|Σ|2 ε2
∑

d≥1
d 2

∑
d∈Se(d)

P
(
Y`,h = d

)
.

Moreover, we have
∑

d≥1
d 2

∑
d∈Se(d)

P
(
Y`,h = d

)=
∑

d≥1
d 2P

(∥∥Y`,h
∥∥

1 = d
)= E

(∥∥Y`,h
∥∥2

1

)
.

Now for any h,` ∈ [k] we have that E
(∥∥Y`,h

∥∥2
1

)
is finite by Remark 2.15, so defining c := maxh,`∈[k]E

(∥∥Y`,h
∥∥2

1

)
,

we have
|Σ|x s+1 ≥ T x s − c |Σ|2 ε2

(where the inequality is pointwise). As a direct consequence we also have x s ≥ T s x0 − sc |Σ|2 ε2 (pointwise), and
therefore

‖x s‖1 ≥ ‖T s x0‖1 − sc |Σ|4 ε2.

Now since the change process has survival probability ρ > 0 for the appropriate choice of σ0 = (σ0,τ0), choosing
x0 = εeσ0 (where eσ0 is the corresponding standard basis vector) we have

‖x s‖1 ≥ ‖T s x0‖1 − sc |Σ|4 ε2 ≥ ρ‖x0‖1 − sc |Σ|4 ε2 = ε(
ρ− sc |Σ|4 ε) .

On the other hand, since P is a stable fixed point, there exists some δ > 0 such that for small enough ε we have
‖x s‖1 ≤ (1−δ)s ε for all s. In particular choosing s = t1, we conclude that

ε
(
ρ− t1c |Σ|4 ε)≤ ‖x t1‖1 ≤ (1−δ)t1 ε.

However, since we have εÎ 1/t1 Î δÎ ρ,1/ |Σ|, we observe that

(1−δ)t1 ≤ ρ/2 < ρ− t1c |Σ|4 ε,

which is clearly a contradiction. �

7. APPLYING SUBCRITICALITY: PROOF OF THEOREM 1.3

Our goal in this section is to use Proposition 6.3 to complete the proof of Theorem 1.3.
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7.1. A consequence of subcriticality. Recall that during the proof of Proposition 6.3 we defined the transition
matrix T of the change process T, which is a |Σ|2 ×|Σ|2 matrix where the entry T [σ1,σ2] is equal to the expected
number of changes of type σ1 that arise from a change of type σ2. The subcriticality of the branching process is

equivalent to T n n→∞−−−−→ 0 (meaning the zero matrix), which is also equivalent to all eigenvalues of T being strictly
less than 1 (in absolute value). We therefore obtain the following corollary of Proposition 6.3.

Corollary 7.1. There exist a constant γ> 0 and a positive real |Σ|2-dimensional vector α (with no zero entries) such
that

Tα≤ (
1−γ)

α

(where the inequality is understood pointwise). We may further assume that ‖α‖1 = 1.

Proof. Given some ε > 0, let T ′ = T ′ (ε) be the matrix obtained from T by adding ε to each entry. Thus T ′ is a
strictly positive real matrix and we may choose ε to be small enough such that all the eigenvalues of T ′ are still less
than 1 in absolute value. By the Perron-Frobenius theorem, there exists a positive real eigenvalue that matches the
spectral radius ρ

(
T ′) < 1 of T ′. In addition, there exists a corresponding eigenvector to ρ

(
T ′), say α, all of whose

entries are non-negative; since every entry of T ′ is strictly positive, it follows that in fact every entry of α is also
strictly positive. We have T ′α= ρ

(
T ′)α, and we also note that Tα< T ′α since every entry of T ′ is strictly greater

than the corresponding entry of T . Thus we deduce that Tα< ρ (
T ′)α, and setting γ := 1−ρ (

T ′)> 0, we have the
desired statement.

The final property that ‖α‖1 = 1 can be achieved simply through scaling by an appropriate (positive) normalis-
ing constant, which does not affect any of the other properties of α. �

However, let us observe that in fact the change process that we want to consider is slightly different – rather than
having in-messages distributed according to P , they should be distributed according to φt0−1

ϕ (Q0). Since P is the
stable limit of Q0, this is arbitrarily close, but not exactly equal, to P . We therefore need the following.

Corollary 7.2. There exists δ0 > 0 sufficiently small that for any probability distribution Q on Σ which satisfies
dTV (P,Q) ≤ δ0, the following holds. LetT1 =T (σ0,τ0,Q) and let T1 be the transition matrix ofT1. Then there exist a
constant γ> 0 and a positive real |Σ|2-dimensional vector α (with no zero entries) such that

T1α≤ (
1−γ)

α

(where the inequality is understood pointwise).

In other words, the same statement holds for T1, the transition matrix of this slightly perturbed process, as for T .
In particular, T1 is also a subcritical branching process.

Proof. Observe that since dTV (P,Q) ≤ δ0, for any εwe may pick δ0 = δ (ε) sufficiently small such that T1 and T differ
by at most ε in each entry. In other words, we have T1 ≤ T ′ pointwise, where T ′ = T ′ (ε) is as defined in the proof of
Corollary 7.1. Thus we also have T1α≤ T ′α= ρ (

T ′)α= (
1−γ)

α as in the previous proof. �
For the rest of the proof, let us fix δ as in Theorem 1.3 and a constant δ0 Î δ small enough that the conclusion

of Corollary 7.2 holds, and also such that w.h.p.
∑k

i=1 ni ≤ δ−1/100
0 n, which is possible because by Claim 2.16 we

have ni = (1+o (1))E (ni ) = Θ (n) w.h.p.. Moreover, suppose that t0 is large enough that P ′ := φ
t0−1
ϕ (Q0) satisfies

dTV
(
P,P ′)≤ δ0 (this is possible since φ∗

ϕ (Q0) = P ).

7.2. The marking process. We now use the idealised formT1 of the change process to give an upper bound on the
(slightly messier) actual process. For an upper bound, we will slightly simplify the process of changes made by WP

to obtain WP∗
(
Gt0

)
= WP∗

(
G0

)
from Gt0 . 5

We will reveal the information in Gt0 a little at a time as needed.

• Initialisation
– We first reveal the t0-inputs at each vertex, and the corresponding out-stories according to the update

ruleϕ. We also generate the outgoing messages at time t0+1. Any half-edge whose t0-out-message is
σ0 and whose (t0 +1)-out-message is τ0 6=σ0 is called a change of type σ0.

– For each out-story which includes a change, this half-edge is marked.

5Note here that with a slight abuse of notation, we use WP to denote the obvious function on Gn which, given a graph G with messages
µ ∈M (G), maps

(
G ,µ

)
to WP

(
G ,µ

)
:= (

G ,WPG
(
µ

))
.

24

Appendix B. 111



• We continue with a marking process:
– Whenever a half-edge at u is marked, we reveal its partner v . The edge uv is marked.
– If v is a new vertex (at which nothing was previously marked), if the degree of v is at most k0 and if

the inputs are identical in Gt0 and Ĝt0 , we consider the remaining half-edges at v and apply the rules
of Warning Propagation to determine whether any out-messages will change. Any that do become
marked. We call such a vertex a standard vertex.

– If v does not satisfy all three of these conditions, we say that we have hit a snag. In particular:
∗ If v is a vertex that we have seen before, it is called a duplicate vertex;
∗ If v is a vertex of degree at most d0 whose inputs are different according to Gt0 and Ĝt0 , it is

called an error vertex; 6

∗ If v is a vertex of degree larger than d0, it is called a freak vertex.
In each case, all of the half-edges at v become marked. Such half-edges are called spurious edges, and
are further classified as defective, erroneous and faulty respectively, according to the type of snag we
hit. The corresponding messages can change arbitrarily (provided each individual change is in P (P )).

Note that a duplicate vertex may also be either an error or a freak vertex. However, by definition, no snag is both
an error and a freak vertex.

We first justify that this gives an upper bound on the number of changes made by Warning Propagation. Let EWP

be the set of edges on which the messages are different in Gt0 and in WP∗
(
Gt0

)
, and let Emark be the set of edges

which are marked at the end of the marking process. Note that the set Emark is not uniquely defined, but depends
on the arbitrary choices for the changes which are made at snags.

Proposition 7.3. There exists some choice of the changes to be made at snags such that EWP ⊆ Emark.

Proof. We proceed in rounds indexed by t ∈ N0. We define EWP (t ) to be the set of edges on which the messages

are different in WPt
(
Gt0

)
compared to Gt0 , while Emark (t ) is the set of edges which are marked after t steps of

the marking process. Since EWP = limt→∞EWP (t ) and Emark = limt→∞Emark (t ), it is enough to prove that for each
t ∈N0 we have EWP (t ) ⊆ Emark (t ), which we do by induction on t .

The base case t = 0 is simply the statement that the set of initial marks contains the changes from Gt0 to Gt0+1,
which is clearly true by construction.

For the inductive step, each time we reveal the incoming partner of a marked outgoing half-edge, if this is a
vertex at which nothing was previously marked, i.e. a standard vertex, then we proceed with marking exactly ac-
cording to Warning Propagation.

On the other hand, if at least one edge was already marked at this vertex we simply mark all the outgoing half-
edges, and if we choose the corresponding changes according to the changes that will be made by Warning Propa-
gation, the induction continues. �

In view of Proposition 7.3, our main goal is now the following.

Lemma 7.4. At the end of the marking process, w.h.p. at most
√
δ0n edges are marked.

During the proof of Lemma 7.4, we will make extensive use of the following fact.

Claim 7.5. W.h.p., for every µ ∈ Σt0+1 such that PQ(≤t )

(
µ

) 6= 0, the total number of inputs of µ over all vertices is at

least δ1/100
0 n.

Proof. SincePQ(≤t )

(
µ

) 6= 0, there certainly exists some d ∈N and some A ∈
((
Σt0+1

d

))
such thatµ ∈ A andγA > 0. Since

we chose δ0 sufficiently small, so in particular δ1/100
0 < γA , Proposition 5.6 implies that w.h.p. there are certainly at

least γAn −o (n) ≥ δ1/100
0 n vertices which receive input A, which is clearly sufficient. �

Given a positive real number d and a probability distribution D on Nk
0 , we denote by D|≤d the probability dis-

tribution D conditioned on the event ‖D‖1 ≤ d . Recall that P ′ :=φt0−1
ϕ (Q0), and recall also from Definition 2.3 that

M
(
D, q

)
is a random multiset of messages. With a slight abuse of notation, we will also use M

(
D, q

)
to refer to

the distribution of this random multiset.

6Note that error vertices include in particular those at which we deleted unmatched half-edges in Step 4 of the construction of Ĝt0 .
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Proposition 7.6. Whenever a standard vertex v is revealed in the marking process from a change of type σ1, the
further changes made at outgoing half-edges at v have asymptotically the same distribution as in the branching
process T

(
σ1,τ1,P ′) below a change of type σ1.

Proof. First, we note that v is revealed in the marking process from a change of typeσ1 so the vertex v has type i :=
g1 (σ1) and its parent (i.e its immediate predecessor in the branching process T

(
σ1,τ1,P ′)) has type j := g2 (σ1).

Now, given that v is a standard vertex , we may use Ĝt0 instead ofGt0 to model it. Moreover, there are Y j ,i |≤d0 further
half-edges at v . By Remark 2.15 and Markov’s inequality, the event

∥∥Y j ,i
∥∥

1 ≤ d0 is a high probability event. Thus,
the distribution Y j ,i |≤d0 tends asymptotically to the distribution Y j ,i . Furthermore, by Claim 4.1, each of these
further half-edges has a t0-in-message distributed according to P ′ independently. Since v was a new vertex, these
in-messages have not changed, and therefore are simply distributed according to M

(
Y j ,i ,P ′[i ]

)
, as inT

(
σ0,τ0,P ′).

Note that in the idealised process T
(
σ0,τ0,P ′) we additionally condition on these incoming messages produc-

ing ξ0, the appropriate message to the parent. In this case we do not know the message that v sent to its “parent”,
in the marking process. However, this message is distributed as P ′[i , j ], and letting X denote a random variable
distributed as M

(
Y j ,i , q i

)
, the probability that the multiset of incoming messages at v is A is simply

P
(
P ′[i , j ] =ϕ (A)

)
P

(
X = A |ϕ (X ) =ϕ (A)

)
.

Since P ′ is asymptotically close to the stable fixed point P , we have thatP
(
P ′[i , j ] =ϕ (A)

)
is asymptotically close to

P
(
ϕ (X ) =ϕ (A)

)
for each A, and so the expression above can be approximated simply byP

(
{X = A}∩

{
ϕ (X ) =ϕ (A)

})

=P (X = A), as required. �

7.3. Three stopping conditions. In order to prove Lemma 7.4, we introduce some stopping conditions on the
marking process. More precisely, we will run the marking process until one of the following three conditions is
satisfied.

(1) Exhaustion - the process has finished.
(2) Expansion - there exists some σ1 = (σ1,τ1) ∈ Σ2 such that at least δ3/5

0 ασ1 n messages have changed from
σ1 to τ1 (where α is the vector from Corollary 7.2).

(3) Explosion - the number of spurious edges is at least δ2/3
0 n.

Lemma 7.4 will follow if we can show that w.h.p. neither expansion nor explosion occurs.

7.3.1. Explosion.

Proposition 7.7. W.h.p. explosion does not occur.

We will split the proof up into three claims, dealing with the three different types of spurious edges.

Claim 7.8. W.h.p., the number of defective edges is at most δ2/3
0 n/2.

Proof. A type-i vertex v of degree d will contribute d defective edges if it is chosen at least twice as the partner of
a marked half-edge. Using Claim 7.5, at each step there are at least δ1/100

0 n possible half-edges to choose from, of

which certainly at most d are incident to v , and thus the probability that v is chosen twice in the at most
√
δ0n

steps is at most (
d

δ1/100
0 n

)2 (√
δ0n

)2
= δ49/50

0 d 2.

Thus setting S to be the number of defective edges and c := maxi∈[k]E
(‖Zi‖3

1

)
, we have

E (S) ≤
k∑

i=1

∞∑
d=0

d
(
P

(‖Zi‖1 = d
)

ni
)
δ49/50

0 d 2 = δ49/50
0

k∑
i=1

ni

∞∑
d=0

d 3P
(‖Zi‖1 = d

)

≤ δ49/50
0 ·δ−1/100

0 n · c ≤ δ4/5
0 n.

On the other hand, if two distinct vertices have degrees d1 and d2, then the probability that both become snags
may be estimated according to whether or not they are adjacent to each other, and is at most

d1d2

δ1/100
0 n

· d1d2(
δ1/100

0 n
)3

(√
δ0n

)3
+ d 2

1 d 2
2(

δ1/100
0 n

)4

(√
δ0n

)4
≤ 2d 2

1 d 2
2δ

24/25
0 .
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Therefore we have

E
(
S2)≤ E (S)+

∑
i , j ,`,m∈[k]

∞∑
d1,d2=0

d1d2P
(∥∥Y j ,i

∥∥
1 = d1

)
ni ·P

(∥∥Y`,m
∥∥

1 = d2
)

nm ·2d 2
1 d 2

2δ
49/25
0

≤ δ4/5
0 n +2δ49/25

0 max
i , j∈[k]

(
E
(∥∥Y j ,i

∥∥3
1

))2 (
δ−1/100

0 n
)2

≤ δ4/5
0 n +δ48/25

0 n2 max
i , j∈[k]

(
E
(∥∥Y j ,i

∥∥3
1

))2
≤ δ9/5

0 n2,

where the last line follows due to Remark 2.15 for sufficiently small δ0. Finally, Chebyshev’s inequality shows that
w.h.p. the number of spurious is at most δ2/3

0 n/2, as claimed. �

Recall that a0 :=
p

c0

4d0|Σ|(t0+2)d0
.

Claim 7.9. W.h.p. the number of erroneous edges is at most d0np
a0

.

Proof. Observe that Corollary 5.7 implies in particular that the number of edges of Gt0 which are attached to ver-
tices of degree at most d0 where the incoming message histories differ from those in Ĝt0 (i.e. which would lead us
to an error vertex if chosen) is at most d0

n
a0

, and therefore the probability that we hit an error in any one step is

at most d0n/a0

δ1/100
0 n

= 1
δ1/100

0 (a0/d0)
. Furthermore, any time we meet an error we obtain at most d0 erroneous edges, and

since the marking process proceeds for at most δ3/5
0 n steps, therefore the expected number of erroneous edges in

total is at most

δ3/5
0 n · d0

δ1/100
0 (a0/d0)

= δ59/100
0 n · d 2

0

a0
.

Now, by (P3), we have c0 À exp(C d0) À d 6
0 |Σ|2(t0+2)d0 so

p
c0 À d 3

0 |Σ|(t0+2)d0 which implies that a0 À d 2
0 . Thus,

application of Markov’s inequality completes the proof. �

Claim 7.10. W.h.p.the number of faulty edges is at most ∆0
np
c0

.

Proof. This is similar to the proof of Claim 7.9. By assumption A3, w.h.p. there are no vertices of degree larger
than ∆0. Moreover, by Proposition 5.6, w.h.p. the number of edges adjacent to vertices of degree at least d0 is
at most n/c0, so the probability of hitting a freak is at most ∆0

c0
. If we hit a freak, at most ∆0 half-edges become

faulty, therefore the expected number of faulty edges is δ3/5
0 n ·O

(
∆0 · ∆0

c0

)
= O

(
∆2

0n
c0

)
. By P3 we have c0 À ∆2 so an

application of Markov’s inequality completes the proof. �

Combining all three cases we can prove Proposition 7.7.

Proof of Proposition 7.7. By Claims 7.8, 7.9 and 7.10, w.h.p. the total number of spurious edges is at most

δ2/3
0 n

2
+ d0np

a0
+ ∆0np

c0

Again, by (P3), we have c0 À exp(C d0) À d 6
0 |Σ|2(t0+2)d0 and c0 À ∆2

0. Thus, we have
p

a0 À d0 and
p

c0 À ∆0.
Hence,

δ2/3
0 n

2
+ d0np

a0
+ ∆0np

c0
≤ δ2/3

0 n

as required. �

7.3.2. Expansion.

Proposition 7.11. W.h.p. expansion does not occur.

Proof. By Proposition 7.7, we may assume that explosion does not occur, so we have few spurious edges. Therefore
in order to achieve expansion, at least 2

3

√
δ0n edges would have to be marked in the normal way, i.e. by being

generated as part of aT branching process rather than as one of the δ0n initial half-edges or as a result of hitting a
snag.
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However, we certainly reveal children in T of at most δ3/5
0 ασ2 n changes from σ2 to τ2, for each choice of σ2 =

(σ2,τ2) ∈Σ2, since at this point the expansion stopping condition would be applied. Thus the expected number of
changes from σ1 to τ1 is at most

∑
σ2∈Σ

δ3/5
0 ασ2 nTσ1,σ2 = (Tα)σ1 δ

3/5
0 n ≤ (

1−γ)
ασ1δ

3/5
0 n.

We now aim to show that w.h.p. the actual number of changes is not much larger than this (upper bound on the)
expectation, for which we use a second moment argument. Let us fix some σ2 ∈Σ2. For simplicity, we will assume
for an upper bound that we reveal precisely s := δ3/5

0 ασ2 n changes of type σ2 in T. Then the number of changes
of type σ1 that arise from these is the sum of s independent and identically distributed integer-valued random

variables X1, . . . , Xs , where for each r ∈ [s] we have E (Xr ) = Tσ1,σ2 and E
(
X 2

r

)≤ c := maxi , j∈[k]E
(∥∥Y j ,i

∥∥2
1

)
. Therefore

we have Var(Xr ) ≤ c2 =O (1), and the central limit theorem tells us that Var
(∑s

r=1 Xr
)=O

(p
s
)
. Then the Chernoff

bound implies that w.h.p.
∣∣∣∣

s∑
r=1

Xr −E
( s∑

r=1
Xr

)∣∣∣∣≤ n1/4O
(p

s
)=O

(
n3/4)≤ γ

2
δ3/5

0 Tσ1,σ2ασ2 n.

Taking a union bound over all |Σ|4 choices of σ1,σ2, we deduce that w.h.p. the total number of changes of type σ1

is at most (
1−γ)

ασ1δ
3/5
0 n +

∑
σ2

γ

2
δ3/5

0 Tσ1,σ2ασ2 n = (
1−γ/2

)
ασ1δ

3/5
0 n

for any choice of σ1, as required. �
7.3.3. Exhaustion.

Proof of Lemma 7.4. By Propositions 7.7 and 7.11, neither explosion nor expansion occurs. Thus the process fin-
ishes with exhaustion, and (using the fact that ‖α‖1 = 1) the total number of edges marked is at most

∑
σ1∈Σ2

δ3/5
0 ασ1 n +δ2/3

0 n = (
δ3/5

0 +δ2/3
0

)
n ≤

√
δ0n

as required. �
7.4. Proof of Theorem 1.3. We can now complete the proof of our main theorem.

Proof of Theorem 1.3. Recall from Proposition 7.3 that edges on which messages change when moving from WPt0 (G0)
to WP∗ (G0), which are simply those in the set EWP, are contained in Emark.

Furthermore, Lemma 7.4 states that |Emark| ≤
√
δ0n. Since we chose δ0 Î δ, the statement of Theorem 1.3

follows. �

8. CONCLUDING REMARKS

We remark that in the definition of the Ĝt0 model, rather than deleting unmatched half-edges, an alternative
approach would be to condition on the event that the statistics match up in such a way that no half-edges need be
deleted, i.e. such that the number of half-edges with t0-in-story µ1 and t0-out-story µ2 is identical to the number
of half-edges with t0-in-story µ2 and t0-out-story µ1, while the number of half-edges with both t0-in-story and
t0-out-storyµ is even. Subsequently one would need to show that this conditioning does not skew the distribution
too much, for which it ultimately suffices to show that the event has a probability of at least n−Θ(1).

In some ways this might even be considered the more natural approach, and indeed it was the approach we
initially adopted in early versions of this paper. However, while the statement that the conditioning event is at
least polynomially likely is an intuitively natural one when one considers that, heuristically, the number of half-
edges with each story should be approximately normally distributed with standard deviation O

(p
n

)
, proving this

formally is surprisingly delicate and involves some significant technical difficulties.
Since at other points in the proof we already need to deal with “errors”, and unmatched half-edges can be han-

dled as a subset of these, this approach turns out to be far simpler and more convenient.

9. ACKNOWLEDGEMENT

We are very grateful to Amin Coja-Oghlan and Mihyun Kang for their helpful contributions to an earlier version
of this project.

28

Appendix B. 115



REFERENCES

[1] D. Achlioptas: Lower Bounds for Random 3-SAT via Differential Equations. Theoretical Computer Science 265 (2001) 159–185.
[2] D. Achlioptas, A. Coja-Oghlan: Algorithmic barriers from phase transitions. Proc. 49th FOCS (2008) 793–802.
[3] D. Achlioptas, M. Molloy: The solution space geometry of random linear equations. Random Structures and Algorithms 46 (2015) 197–231.
[4] A. Coja-Oghlan, O. Cooley, M. Kang, J. Lee, J. Ravelomanana: The sparse parity matrix. ArXiv 2107.06123
[5] A. Coja-Oghlan, O. Cooley, M. Kang, K. Skubch: Core forging and local limit theorems for the k-core of random graphs. J. Comb. Theory,

Ser. B 137 (2019) 178–231.
[6] A. Coja-Oghlan, U. Feige, M. Krivelevich, D. Reichman: Contagious Sets in Expanders. Proc. 26th SODA (2015) 1953–1987.
[7] O. Cooley, M. Kang, J. Zalla: Loose cores and cycles in random hypergraphs. ArXiv 2101.05008.
[8] C. Cooper: The cores of random hypergraphs with a given degree sequence. Random Structures and Algorithms 25 (2004) 353–375.
[9] R. Darling, J. Norris: Differential equation approximations for Markov chains. Probability Surveys 5 (2008) 37–79.

[10] O. Dubois, J. Mandler: The 3-XORSAT threshold. Proc. 43rd FOCS (2002) 769–778.
[11] D. Fernholz, V. Ramachandran: The giant k-core of a random graph with a specified degree sequence. Manuscript (2003).
[12] D. Fernholz, V. Ramachandran: Cores and connectivity in sparse random graphs. UTCS Technical Report TR04-13 (2004).
[13] A. Frieze, S. Suen: Analysis of Two Simple Heuristics on a Random Instance of k-SAT. J. Algorithms 20 (1996) 312–355.
[14] R. Gallager: Low-density parity check codes. IRE Trans. Inform. Theory 8 (1962) 21–28.
[15] R. van der Hofstad: Random Graphs and Complex Networks. Volume 2. Manuscript, https://www.win.tue.nl/∼rhofstad/NotesRGCNII.pdf
[16] M. Ibrahimi, Y. Kanoria, M. Kraning, A. Montanari: The set of solutions of random XORSAT formulae. Ann. Appl. Probab. 25 (2015) 2743–

2808.
[17] S. Janson, M. Luczak: A simple solution to the k-core problem. Random Structures and Algorithms 30 (2007) 50–62.
[18] S. Janson, M. Luczak: Asymptotic normality of the k-core in random graphs. Ann. Appl. Probab. 18 (2008) 1085–1137.
[19] J.H. Kim: Poisson cloning model for random graphs. Proceedings of the International Congress of Mathematicians (2006) 873–897.
[20] M. Mézard, A. Montanari: Information, physics and computation. Oxford University Press 2009.
[21] M. Molloy: Cores in random hypergraphs and Boolean formulas. Random Structures and Algorithms 27 (2005) 124–135.
[22] M. Molloy: The freezing threshold for k-colourings of a random graph. J. ACM 65 (2018) #7.
[23] M. Molloy, R. Restrepo: Frozen variables in random boolean constraint satisfaction problems. Proc. 24th SODA (2013) 1306–1318.
[24] B. Pittel, J. Spencer, N. Wormald: Sudden emergence of a giant k-core in a random graph. Journal of Combinatorial Theory, Series B 67

(1996) 111–151
[25] T. Richardson, R. Urbanke: Modern coding theory. Cambridge University Press (2008).
[26] O. Riordan: The k-core and branching processes. Combinatorics, Probability and Computing 17 (2008) 111–136.
[27] K. Skubch: The core in random hypergraphs and local weak convergence. ArXiv 1511.02048.
[28] N. Wormald: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5 (1995) 1217–1235.

OLIVER COOLEY, cooley@math.tugraz.at, GRAZ UNIVERSITY OF TECHNOLOGY, INSTITUTE OF DISCRETE MATHEMATICS, STEYRERGASSE

30, 8010 GRAZ, AUSTRIA

JOON LEE, joon.lee@tu-dortmund.de, TU DORTMUND, FAKULTÄT FÜR INFORMATIK, 12 OTTO-HAHN-STRASSE, DORTMUND, 44227,
GERMANY.

JEAN RAVELOMANANA, jean.ravelomanana@tu-dortmund.de, TU DORTMUND, FAKULTÄT FÜR INFORMATIK, 12 OTTO-HAHN-STRASSE,
DORTMUND, 44227, GERMANY.

29

116 Appendix B.



THE SPARSE PARITY MATRIX

AMIN COJA-OGHLAN, OLIVER COOLEY, MIHYUN KANG, JOON LEE, JEAN BERNOULLI RAVELOMANANA

ABSTRACT. Let A be an n×n-matrix over F2 whose every entry equals 1 with probability d/n independently for a fixed d >
0. Draw a vector y randomly from the column space of A. It is a simple observation that the entries of a random solution
x to Ax = y are asymptotically pairwise independent, i.e.,

∑
i< j E|P[x i = s, x j = t | A]−P[x i = s | A]P[x j = t | A]| = o(n2)

for s, t ∈ F2. But what can we say about the overlap of two random solutions x , x ′, defined as n−1 ∑n
i=1 1{x i = x ′

i }? We
prove that for d < e the overlap concentrates on a single deterministic value α∗(d). By contrast, for d > e the overlap
concentrates on a single value once we condition on the matrix A, while over the probability space of A its conditional
expectation vacillates between two different values α∗(d) < α∗(d), either of which occurs with probability 1/2+ o(1).
This anti-concentration result provides an instructive contribution to both the theory of random constraint satisfaction
problems and of inference problems on random structures. MSC: 05C80, 60B20, 94B05

1. INTRODUCTION

1.1. Motivation and background. Sharp thresholds are the hallmark of probabilistic combinatorics. The classic,
of course, is the giant component threshold, below which the random graph decomposes into many tiny compo-
nents but above which a unique giant emerges [26]. Its (normalised) size concentrates on a deterministic value.
Similarly, once the edge probability crosses a certain threshold the random graph contains a Hamilton cycle w.h.p.,
which fails to be present below that threshold [32]. Monotone properties quite generally exhibit sharp thresh-
olds [27]. Only inside the critical windows of phase transitions are we accustomed to deviations from this zero/one
behaviour [7].

In this paper we investigate the simplest conceivable model of a sparse random matrix. There is one single
parameter, the density d > 0 of non-zero entries. Specifically, we obtain the n ×n-matrix A = A(n, p) over F2 by
setting every entry to one with probability p = (d/n)∧1 independently. Remarkably, this innocuous random matrix
exhibits a critical behaviour, deviant from the usual zero–one law, for all d outside a small interval. The result has
ramifications for random constraint satisfaction and statistical inference.

To begin with constraint satisfaction (we will turn to inference in Section 1.3), consider a random vector y from
the column space of A. The random linear system Ax = y constitutes a random constraint satisfaction problem
par excellence. Its space of solutions is a natural object of study. In fact, the problem is reminiscent of the intensely
studied random k-XORSAT problem, where we ask for solutions to a Boolean formula whose clauses are XORs of k
random literals [2, 10, 25, 23, 29, 35, 42]. Random k-XORSAT is equivalent to a random linear system over F2 whose
every row contains precisely k ones.

The most prominent feature of random k-XORSAT is its sharp satisfiability threshold. Specifically, for any k ≥
3 there exists a critical value of the number of clauses up to which the random k-XORSAT formula possesses a
solution, while for higher number of clauses no solution exists w.h.p. [23, 25, 42]. The satisfiability threshold is
strictly smaller than the obvious point where the corresponding F2-matrix cannot have full row rank anymore
because there are more rows than columns. Instead, the satisfiability threshold coincides with the threshold where
due to long-range effects a linear number of variables freeze, i.e., are forced to take the same value in all solutions.
Clearly, once an extensive number variables freeze, additional random constraints are apt to cause conflicts.

The precise freezing threshold can be characterised in terms of the 2-core of the random hypergraph underlying
the k-XORSAT formula. We recall that the 2-core is what remains after recursively deleting variables of degree at
most one along with the constraint that binds them (if any). If the 2-core is non-empty, then its constraints are
more tightly interlocked than those of the original problem, which, depending on the precise numbers, may cause
freezing. Indeed, the precise number of frozen variables can be calculated by way of a message passing process
called Warning Propagation [29, 34]. The number of frozen variables concentrates on a deterministic value that
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FIGURE 1. Left: the two fixed points α∗ = α∗(d) and α∗ = α∗(d) of φd . Right: the function φd

for d = 2.5 (blue) possesses a unique fixed point, while for d = 3 (red) there are two stable fixed
points and an unstable one in between.

comes out in terms of a fixed point problem. Although the k-XORSAT problem is conceptually far simpler than,
say, the k-SAT problem, freezing plays a pivotal role in basically all other random constraint satisfaction problems
as well [1, 24, 33, 34, 37, 39].

Surprisingly, our linear system Ax = y behaves totally differently as two competing combinatorial forces of
exactly equal strength engage in a tug of war. As a result, for densities d > e the fraction of frozen variables fails
to concentrate on a single value. Instead, that number and, in effect, the geometry of the solution space vacillate
between two very different scenarios that both materialise with asymptotically equal probability. In other words,
the model perennially remains in a critical state for all d > e. Let us proceed to formulate the result precisely, and
to understand how it comes about.

1.2. Frozen variables. One of the two forces resembles the emergence of the 2-core in random k-XORSAT. Indeed,
we could run the process of peeling variables appearing in at most one equation of the linear system Ax = y as
well. The size of the 2-core and the total number of coordinates that would freeze if the entire 2-core were to freeze
can be calculated. Specifically, let

φd : [0,1] → [0,1], α 7→ 1−exp
(−d exp(−d(1−α))

)
(1.1)

and let α∗ = α∗(d) be its largest fixed point. According to the “2-core heuristic”, the number of frozen coordi-
nates xi comes to about α∗n. A proof that w.h.p. precisely this many variables freeze (or actually a more general
statement) has been posed as an exercise [34]. But as we shall see momentarily, this conclusion is erroneous.

For on the other hand we could trace the number of variables that freeze because of unary equations. Indeed,
because the number of ones in a row of A has distribution Po(d), about de−d n equations contain just one variable.
Naturally, each such variable freezes. Substituting these frozen values into the other equations likely produces
more equations of degree one, etc. Interestingly enough, the number of frozen variables that this “unary equations
heuristic” predicts equals α∗n, with α∗ the least fixed point of φd . While for d < e there is a unique fixed point and
thus α∗ = α∗, for d > e the two fixed points α∗,α∗ are distinct. Indeed, apart from α∗,α∗, which are stable fixed
points, there occurs a third unstable fixed point α∗ <α0 <α∗; see Figure 1.

Which one of these heuristics provides the right answer? To find out we could try to assess the total number of
solutions that the linear system Ax = y should possess according to either prediction. Indeed, [15, Theorem 1.1]
yields an asymptotic formula for the number of solutions to a sparse random linear system in terms of a parameter
α that, at least heuristically, should equal the fraction of frozen variables. For the random matrix A the formula
shows that, in probability,

lim
n→∞

nul A

n
= max
α∈[0,1]

Φd (α), where Φd (α) = exp
(−d exp(−d(1−α))

)+ (1+d(1−α))exp(−d(1−α))−1 (1.2)

and where nul A denotes the nullity, i.e. the dimension of the kernel, of A. Hence, the correct answer should be
the value α ∈ {α∗,α∗} that maximisesΦd . But it turns out thatΦd (α∗) =Φd (α∗) for all d > 0. Accordingly, the main
theorem shows that both predictions α∗ and α∗ are correct, or more precisely each of them is correct about half of
the time. Formally, let

f (A) = |{i ∈ [n] : ∀x ∈ ker A : xi = 0}|/n
2
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be the fraction of frozen variables.

Theorem 1.1. (i) For d ≤ e the function φd has a unique fixed point and

lim
n→∞ f (A) =α∗ =α∗ in probability.

(ii) For d > e we have α∗ <α∗ and for all ε> 0,

lim
n→∞P

[| f (A)−α∗| < ε
]= lim

n→∞P
[| f (A)−α∗| < ε]= 1

2
.

Hence, the fraction of frozen variables fails to exhibit a zero–one behaviour for d > e. Instead, it shows a critical
behaviour as one would normally associate only with the critical window of a phase transition.

1.3. The overlap. Apart from considering the linear system Ax = y as a random constraint satisfaction problem,
the random linear system can also be viewed as an inference problem. Indeed, we can think of the vector y , which
is chosen randomly from the column space of A, as actually resulting from multiplying A with a uniformly random
vector x̂ ∈ Fn

2 . Then y = Ax̂ turns into a noisy observation of the ‘ground truth’ x̂ . Thus, it is natural to ask how well
we can learn x̂ given A and y .

These two viewpoints are actually equivalent because the posterior of x̂ given (A, y) is nothing but the uniform
distribution on the set of solutions to the linear system Ax = y . Hence,

P
[

x̂ = x | A, y
]= 1

{
Ax = y

}

|ker A| (x ∈ Fn
2 ). (1.3)

Therefore, the optimal inference algorithm just draws a random solution x from among all solutions to the linear
system. The number of bits that this algorithm recovers correctly reads

R(x , x̂) = 1

n

n∑
i=1

1 {x i = x̂ i } .

Adopting mathematical physics jargon, we call R(x , x̂) the overlap of x , x̂ . Its average given A, y boils down to

R̄(A) = E[R(x , x̂) | A, y] = 1

|ker A|2
∑

x,x′∈ker A
R(x, x ′),

which is independent of y .
Conceived wisdom in the statistical physics-inspired study of inference problems holds that the overlap con-

centrates on a single value given the ‘disorder’, in our case (A, y) (see [44]). This property is called replica symmetry.
We will verify that replica symmetry holds for the random linear system w.h.p. Additionally, in all the random infer-
ence problems that have been studied over the past 20 years the overlap concentrates on a single value that does
not depend on the disorder, except perhaps at a few critical values of the model parameters where phase transi-
tions occur [6]. This enhanced property is called strong replica symmetry. A natural question is whether strong
replica symmetry holds universally. It does not. As the next theorem shows, the random linear system with d > e
provides a counterexample: it is replica symmetric, but not strongly so.

Theorem 1.2. (i) If d < e then limn→∞ R(x , x̂) = (1+α∗)/2 in probability.
(ii) For all d > e we have limn→∞E

∣∣R(x , x̂)− R̄(A)
∣∣= 0 while

lim
n→∞P

[∣∣∣∣R̄(A)− 1+α∗
2

∣∣∣∣< ε
]
= lim

n→∞P
[∣∣∣∣R̄(A)− 1+α∗

2

∣∣∣∣< ε
]
= 1

2
for any ε> 0.

The first part of the theorem posits that for d < e the overlap concentrates on the single value(1+α∗)/2. In
light of Theorem 1.1 this means that the optimal inference algorithm, while, unsurprisingly, capable of correctly
recovering the frozen coordinates, is at a loss when it comes to the unfrozen ones. Indeed, we can get only about
half the unfrozen coordinates right, no better than a random guess.

The second part of the theorem is more interesting. While the random variable R(x , x̂) concentrates on the
conditional expectation R̄(A) given A, y , the conditional expectation R̄(A) itself fails to concentrate on its mean
E[R̄(A)]. Instead it vacillates between two different values (1+α∗)/2 and (1+α∗)/2, each of which occurs with
asymptotically equal probability. In fact, this failure to concentrate does not just occur at a few isolated points, but
throughout the entire regime d > e. This behaviour mirrors the anti-concentration of the number of frozen vari-
ables from Theorem 1.1. Moreover, as in the case d < e the optimal inference algorithm does, of course, correctly
recover the frozen variables, but cannot outperform a random guess on the unfrozen ones.
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We proceed to outline the key ideas behind the proofs of Theorems 1.1 and 1.2. Unsurprisingly, to prove the
critical behaviour that these theorems assert we will need to conduct a rather subtle, accurate analysis of the ran-
dom linear system and its space of solutions, far more so than one would normally have to undertake when aiming
at a zero-one result. On the positive side the proofs reveal novel combinatorial insights that may have an impact
on other random constraint satisfaction or inference problems as well. Let us thus survey the proof strategy.

1.4. Techniques. The main result of the paper is that for d > e the proportion f (A) of frozen variables is asymp-
totically equal to either of the two stable fixed points α∗,α∗ of the function φd with probability 1/2+ o(1) (see
Figure 1). Proving this statement takes three strikes.

FIX: f (A) concentrates on the fixed points ofφd , either one of the two stable onesα∗,α∗ or the third unstable
fixed point α0.

STAB: The unstable fixed point is an unlikely outcome.
EQ: The two stable fixed points are equally likely.

1.4.1. Heuristics. Why are these three statements plausibly true? Let us begin with FIX. The random matrix A
naturally induces a bipartite graph called the Tanner graph G(A). Its vertex classes are variable nodes v1, . . . , vn

representing the columns of A and check nodes a1, . . . , an representing the rows. There is an edge between ai

and v j iff Ai j = 1. The Tanner graph is distributed as a random bipartite graph with edge probability d/n. As a
consequence, its local structure is roughly that of a Po(d) Galton-Watson tree.

Exploring the Tanner graph from a given variable node vi , we may view vi as the root of such a tree. The grand-
children of vi , i.e. the variable nodes at distance two, are essentially uniformly random. Therefore, the grandchil-
dren should each be frozen with probability f (A)+ o(1) and behave very nearly independently. Further, for the
obvious algebraic reason the root vi itself is frozen iff it is parent to some check all of whose children are frozen. A
few lines of calculations based on the Poisson tree structure then show that vi ought to be frozen with probability
φd ( f (A)). But at the same time, since vi was itself chosen randomly, it is frozen with probability f (A). Hence, we
are led to expect that f (A) = φd ( f (A)). In other words, FIX expresses that the local structure of G(A) is given by a
Poisson tree, and that freezing manifests itself locally.

Apart from the two stable fixed points α∗,α∗, Figure 1 indicates that φd possesses an unstable fixed point α0

somewhere in between. How can we rule out that f (A) will take this value? The nullity formula (1.2) suggests that
f (A) should be a maximiser of the function Φd (α). But its maximisers are precisely the stable fixed points α∗,α∗,
while the unstable fixed point is where the function takes its local minimum. That is why STAB appears plausible.
However, we will see that this simplistic line of reasoning cannot be turned into a proof easily.

Finally, coming to EQ, we need to argue that for d > e both stable fixed points are equally likely. To this end we
employ the Warning Propagation (WP) message passing scheme, where messages are sent along the edges of the
Tanner graph in either direction. The message from v j to ai is updated at each time step according to the messages
that v j receives from its other neighbours, and similarly for the reverse message. WP does faithfully describe the
local dynamics that cause freezing, but there remains a loose end: we must initialise messages somehow.

Two obvious initialisations suggest themselves. First, if we initialise assuming everything to be unfrozen, then
because of FIX and the local geometry approximating a Galton-Watson branching tree, WP reduces to repeated
application of the φd function starting from 0. Since limt→∞φ◦t

d (0) = α∗, WP then predicts f (A) = α∗. Sec-
ond, if we initialise assuming everything to be frozen, WP mimics iterating φd from 1 and thus predicts f (A) =
limt→∞φ◦t

d (1) =α∗.
So which initialisation is correct? Neither, unfortunately. We thus need a more nuanced version of WP, in which

we describe messages and ultimately variables as “frozen”, “unfrozen” and “slush”, the last meaning uncertain.
Initialising WP with either all messages frozen or all messages unfrozen still leads to the same results as before.
But initialising with all messages being “slush”, WP predicts that approximately α∗n variables are frozen, (1−α∗)n
variables are unfrozen, and (α∗−α∗)n variables remain slush. Thus, there are actually three distinct categories.

How does this help? Since f (A) is concentrated around the stable fixed points α∗,α∗, we know that actually
the slush portion must be either (almost) entirely frozen or unfrozen; it is impossible that, say, half the slush vari-
ables freeze. To figure out whether the slush freezes, consider the minor As of A induced on the corresponding
variables and constraints. If this minor has fewer rows than columns, then the corresponding linear system is
under-constrained. In effect, it is inconceivable that the slush freezes completely. On the other hand, if As has
more rows than columns, then by analogy to the random k-XORSAT problem we expect that the slush freezes.
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Now, crucially, both the random matrix model A and the WP message passing process are invariant under trans-
position of the matrix. Hence, As should be over-constrained just as often as it is under-constrained. We are thus
led to believe that the slush freezes with probability about half, which explains the peculiar behaviour stated in the
theorems. Once again, this simple reasoning, while plausible, cannot easily be converted into an actual proof.

1.4.2. Formalising the heuristics. Hence, how can we corroborate these heuristics rigorously? Concerning FIX,
consider the following game of “thimblerig”. The opponent generates two random graphs independently: one is
simply the Tanner graph G1 ∼ G(A) of A, the other is an independent copy G2 ∼ G(A) of the Tanner graph, but
with some random alterations. Specifically, the trickster generates a Po(d) branching tree of height two, embeds
the root and its children onto isolated variable and check nodes respectively, and embeds the remaining leaves
onto variables chosen uniformly at random. The opponent then presents you with the two graphs and asks you
to determine which is which. It turns out that the changes are so well-disguised that you can do no better than
a random guess. To compound your misery, having told you which is the perturbed graph, your opponent asks
you to guess which variable is the root of the added tree. Again, the changes are so well-disguised that you can do
no better than a random guess. Not content with winning twice, your opponent wishes to assert their complete
dominance and performs the same trick again, this time adding not just one tree but a slowly growing number (of
order o(

p
n)). For the third time, you can only resort to a random guess.

The point of this game is to demonstrate that the root variables of the trees added behave identically to ran-
domly chosen variables of the original graph. In particular, the proportion of variables which are frozen is dis-
tributed as f (A). But we can also calculate this proportion in a different way: by considering whether the attach-
ment variables are frozen and tracking the effects down to the roots. This tells us that the proportion of frozen
roots is φd ( f (A)+o(1)), provided that the newly added constraints do not dramatically shift the overall number of
frozen variables due to long-range effects. To rule this out we use a delicate argument drawing on ideas from the
study of random factor graph models and involving replica symmetry and the cut metric for discrete probability
distributions from [5, 14, 17, 18, 19].

Perhaps surprisingly, it takes quite an effort to verify the claim STAB that f (A) is not likely to be near the unsta-
ble fixed point. The proof employs a combinatorial construction that we call covers. A cover is basically a desig-
nation of the variable nodes, checks and edges of the Tanner graph that encodes which variables are frozen, and
because of which constraints they freeze. We will then pursue a novel “hammer and anvil” strategy to rule out
the unstable fixed point. On the one hand, we will show that if f (A) is near α0, then the Tanner graph G(A) must
contain covers that each induce a cluster of solutions with about α0 frozen variables. On the other hand, we will
use a moment computation to show that w.h.p. the Tanner graph G(A) only contains a sub-exponential number
exp(o(n)) of covers. Furthermore, another moment computation shows that w.h.p. each of them only extends to
about 2Φd (α0)n solutions to the linear system Ax = y . As a consequence, if f (A) is near α0, then the random lin-
ear system Ax = y would have far fewer solutions than provided by (1.2). Since the nullity of the random matrix is
tightly concentrated, we conclude that the event f (A) ∼α0 is unlikely. The novelty of this argument, and the source
of its technical intricacy, is the two-step cover–solution consideration: first we verify that the set of solutions ac-
tually decomposes into clusters encoded by “covers”. Then we calculate the number of covers (corresponding to
solution clusters), and finally we estimate the number of solutions inside each cluster. This two-level approach is
necessary as a direct first moment calculation of the expected number of solutions with a given Hamming weight
seems doomed to fail, at least for d near the critical value e.

Coming to EQ, as indicated in the previous subsection, the “slush” portion of the matrix enjoys a symmetry
property, in that it is also the slush portion of the transposed matrix. We will prove that, depending on the precise
aspect ratio of the slush minor, the slush variables either do or do not freeze. But there is one subtlety: we need to
to show that the number of rows and the number of columns are not exactly equal w.h.p. Indeed it is not hard to
show that the both numbers have standard deviationΘ(

p
n). Hence, if they were independent they would differ by

Θ(
p

n) w.h.p.. But this independence is quite clearly not satisfied. Thus, we need to argue that at least they have
non-trivial covariance.

To show this, we perform a similar trick to the game of thimblerig: we show that the matrix can be randomly
perturbed to decrease the number of slush columns, while preserving the number of slush rows. Furthermore, this
can be achieved without an opponent being able to identify that a change has been made. Performing this trick
carefully shows that it is unlikely that the slush portion of the matrix is approximately square. Symmetry then tells
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us that with probability asymptotically 1/2 it has significantly more rows than columns, and also with probability
asymptotically 1/2 it has significantly more columns than rows.

It remains to prove that these two cases are likely to lead to all slush variables being frozen, or all being unfrozen
respectively. Unfortunately, a simple symmetry argument does not quite suffice. Instead we first prove that it is
unlikely that there are significantly, say ωÀ 1, more slush variables than slush checks, but that almost all slush
variables are frozen. The number of slush variables that remain unfrozen must certainly be at least ω due to ele-
mentary consideration of the nullity. We are thus left to exclude that the number is between ω and εn, which we
establish by way of an expansion argument.

We finally need to show that it is unlikely that there are significantly more slush checks (say ms) than slush
variables (ns), but that these slush variables remain mostly unfrozen. Crucially, thanks to replica symmetry and
the cut metric we can indeed show that a “typical” kernel vector will set approximately half of the slush variables to
1 and half to 0. Of course there are approximately 2ns such vectors. On the other hand, imagine that a check with
k slush variable neighbours chooses these neighbours uniformly at random (this can be made formally correct by
conditioning on the degree distribution and using the configuration model). Then the probability that this check
is satisfied by a vector of Hamming weight approximately ns/2 is approximately 1/2 (since e.g. based on the values
of the first k − 1 neighbours, the last must be chosen from the correct class). Therefore the expected number of
kernel vectors should be approximately 2ns−ms = o(1).

The problem with this basic calculation is that error terms occur which turn out to be too significant to ignore.
These error terms ultimately come from check nodes of degree two in the slush minor. To deal with them, we
employ a delicate percolation argument in which we contract check nodes of degree exactly two, since they just
equalise their two adjacent variable nodes. Importantly, we can show that this process neither affects the number
of kernel vectors nor the balance ms−ns. We can thus complete the moment calculation and show that the slush
cannot have an excess of rows and still be entirely unfrozen.

1.5. Discussion. How do the techniques that we develop in this paper compare to previously known ones, and
how can our techniques be extended to other problems?

The general Warning Propagation message passing scheme captures the local effects of constraint satisfaction
problems; for example, in the context of satisfiability WP boils down to Unit Clause Propagation [34]. WP also yields
the k-XORSAT threshold [29] as well as the freezing threshold in random graph colouring [37]. In addition, WP can
also be used to study structural graph properties such as the k-core [12, 41]. In all these examples, the “correct”
initialisation from which to launch WP is obvious, and the proof that random variable of interest converges to the
fixed point is based on a direct and straightforward combinatorial analysis. Indeed, the standard strategy is then
a two-stage one: first, show that WP quickly converges to something close to the conjectured limit; and second,
show that after this initial convergence, not much else will change [11, 21].

However, this usual technique is not enough for our purposes, essentially because of the 2-point rather than
1-point concentration of f (A). Naively one might imagine that WP will converge to one of the two fixed points,
each with probability 1/2. But intriguingly, the dichotomy of the random variable f (A) induces a dichotomy for
WP in each instance of A – WP hedges its bets, identifying the two possible answers, but is unable to tell which is
actually correct. As such, we are left with the “uncertain” portion of the matrix (or its Tanner graph).

To deal with this complication we enhance the WP message passing scheme to expressly identify the portion
of the Tanner graph that may go either way. Along the way, we develop a versatile indirect method for proving
convergence to some fixed point to replace the usual direct combinatorial argument. This technique is based
on the thimblerig game that more or less justifies the WP heuristic in general. While the argument appears to
be reasonably universal, it fails to identify precisely which fixed point is the correct one. As mentioned above,
we follow WP up with a novel type of moment calculation based on covers to rule out the unstable fixed point.
One could envisage a generalisation of this technique to other planted constraint satisfaction problems or, more
generally, spin glass models. The place of the nullity formula (1.2) would then have to be filled by a formula for the
leading exponential order of the partition function.

The thimblerig argument is enabled by the important observation that unfrozen variables, for the most part,
behave more or less independently of each other and that the random variable f (A) is fairly “robust” with respect
to small numbers of local changes (see Proposition 2.9). We establish this robustness by way of a pinning argument,
in which unary checks are added that freeze certain previously unfrozen variables, and we analyse the effect that
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this has on the kernel. The thimblerig argument is an extension of arguments used in the study of random factor
graph models [18, 19, 40], where the pinning operation also plays a crucial role [16, 17].

Because the slush minor of the matrix displays a peculiar critical phenomenon, such as one would normally
associate only with critical regimes around a phase transition, new techniques are required to study it. In particu-
lar, while it seems intuitively natural that the uncertain proportion is unfrozen if ns−ms ≥ω is large and positive,
but frozen if it is large and negative, proving this formally requires some significant new ideas. In particular, to
prove the first statement we introduce flippers, induced subgraphs of the uncertain portion which could confound
expectations by being frozen. These flippers must satisfy various properties, and the proof consists of showing
that large flippers (or more precisely, large unions of flippers) are unlikely due to expansion properties. This sort
of expansion argument appears by no means restricted to the present problem. A related combinatorial structure
appeared in the proof of limit theorems for cores of random graphs [13].

Proving the second statement involves a delicate moment calculation. The modification involved in contracting
the checks of degree 2, which are the reason that the naive version of the argument fails, is similar to the operation
to construct the kernel of a graph from its 2-core. This moment calculation is the single place where we make
critical use of the fact that we are studying a problem whose variables range over a finite domain, viz. the field F2.

What are potential generalisations? The random linear system Ax = y is one case of a class of constraint satis-
faction problems known as uniquely extendable problems [20]. Such problems are characterised by the property
that if all but one of the variables appearing in a constraint are fixed, there is precisely one choice for the value
of the remaining variable such that the constraint is satisfied. Some of these problems are intractable, such as,
for example, algebraic constraints with variables ranging over finite groups. It would be most interesting to see if
and how the methods developed in this paper could be extended to uniquely extendable problems. Furthermore,
since we study a critical phenomenon, namely the two-point concentration of the proportion of frozen variables,
our ideas may help to understand the behaviour at the critical point of phase transitions of random constraint
satisfaction problems. This type of question remains an essentially blank spot on the map.

1.6. Further related work. Perhaps surprisingly, apart from the article [15] that establishes a nullity formula for
general sparse random matrices and in particular (1.2), there have been no prior studies of the random matrix
A(n, p). However, random m ×n-matrix over finite fields Fq where every row contains an equal number k ≥ 2 of
non-zero entries have been studied extensively. In the case k = q = 2 this model is directly related to the giant
component phase transition [30, 31], because each row constrains two random entries to be equal. Moreover,
we already saw that for k ≥ 3 and q = 2 the model is equivalent to random k-XORSAT. Dubois and Mandler [25]
computed the critical aspect ratio m/n up to which such a matrix has full row rank for k = 3. The result was
subsequently extended to k > 3 [23, 42]. Indeed, the threshold value of m up to which the random matrix has full
rank can be interpreted in terms of the Warning Propagation message passing scheme [10]. Beyond its intrinsic
interest as a basic model of a random constraint satisfaction problem [34], the random k-XORSAT model has found
applications in hashing and data compression [23, 43].

The asymptotic rank of random matrices with a fixed number k of non-zero entries per row over finite fields has
been computed independently via two different arguments by Ayre, Coja-Oghlan, Gao and Müller [3] and Cooper,
Frieze and Pegden [22]. Additionally, Miller and Cohen [36] studied the rank of random matrices in which both the
number of non-zero entries in each row and the number of non-zero entries in each column are fixed. However,
they left out the critical case in which these two numbers are identical, which was solved recently by Huang [28].
Additionally, Bordenave, Lelarge and Salez [8] studied the rank over R of the adjacency matrix of sparse random
graphs. Of course, a crucial difference between the random matrix model that we study here and the adjacency
matrix of a random graph is that the latter is symmetric.

A problem that appears to be inherently related to the binomial random matrix problem studied here is the
matching problem on random bipartite graphs [9]. It would be interesting to see if in some form the criticality
observed in Theorems 1.1 and 1.2 extends to the matching problem or, equivalently, the independent set problem
on random bipartite graphs. The critical value d = e appears to be related to the uniqueness of the Gibbs measure
of the latter problem [4]. In the context of the matching problem, our function Φd (α) appears (as F (1−α)) in [9],
in particular in the appendix where a figure shows the emergence of the two global maxima above the threshold
d = e. (In fact the discussion there is about the one-type graph G(n,d/n) rather than the bipartite G(n,n,d/n),
which is the distribution of G(A), but since the two graphs have the same local weak limit the more general results
of [9] show that the matching problem displays similar behaviour.) In some sense it is not surprising that the same
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function should arise in these two problems: the Warning propagation process to determine which variables are
certainly frozen in essence mimics a one-sided version of the first stage of the Karp-Sipser algorithm in which
leaves and their neighbours are removed. This removal results in a remaining “core”, similar to our “slush”, of
minimum degree at least 2. This is where we encounter our first fixed point of φd (or maximum of Φd ). For the
matching problem, this first roadblock is easy to overcome: the core turns out to have an almost perfect matching
w.h.p., which implies that it is always the same fixed point which gives the correct answer. By contrast, our situation
is more delicate because the slush need not freeze.

2. ORGANISATION

In this section, we state the intermediate results that lead up to the main theorems. We also detail where in the
following sections the proofs of these intermediate results can be found.

2.1. The functionsφd andΦd . The formula (1.2) yields the approximate number of solutions to the linear system
Ax = y . We already discussed the combinatorial intuition behind the maximiser α in (1.2): we will prove that the
function Φd attains its global maxima at the conceivable values of f (A). However, the proof of (1.2) in [15] falls
short of already implying this fact as that proof strategy relies on a purely variational argument. For a start, we
verify that the function φd actually has a unique fixed point for d ≤ e and two distinct stable fixed points for d > e,
and that these fixed points coincide with the local maxima ofΦd .

Lemma 2.1. For all d > 0,d 6= e the local maxima ofΦd and the stable fixed points ofφd coincide. For d = e the local
maximum ofΦe coincides with the lone fixed point, simultaneously the inflection point of φe.

The proof of Lemma 2.1, based on a bit of calculus, can be found in Section 3.2. Additionally, for d ≤ e we define
α0 =α∗, while for d > e we let α0 be the minimiser of Φd on the interval [α∗,α∗]. The following lemma, which we
prove in Section 3.4, shows that the t-fold iteration φ◦t

d (x) converges to one of the stable fixed points, except if we
start right at x =α0.

Lemma 2.2. For any d > 0 we have

lim
t→∞φ

◦t
d (x) =α∗ for any x < [0,α0), lim

t→∞φ
◦t
d (x) =α∗ for any x ∈ (α0,1].

The fixed point characterisation of the maximisers ofΦd enables us to show that the global maxima ofΦd occur
precisely at α∗ =α∗(d),α∗ =α∗(d), the smallest and the largest fixed points of φd .

Proposition 2.3. (i) If d ≤ e then φd has a unique fixed point, which is the unique global maximiser ofΦd .
(ii) If d > e then the function φd has precisely two stable fixed points, namely 0 <α∗ <α∗ < 1, and

Φd (α∗) =Φd (α∗) >Φd (α) for all α ∈ [0,1] \ {α∗,α∗}.

In addition, φd has its unique unstable fixed point at α0, which satisfies the equation

1−α0 = exp(−d(1−α0)). (2.1)

Although both the functions φd ,Φd are explicit, the proof of Proposition 2.3, which can be found in Section 3.3,
turns out to be mildly involved.

2.2. Warning Propagation. One of our principal tools is an enhanced version of the Warning Propagation message
passing algorithm that identifies variables as frozen, unfrozen or slush. Specifically, we will see that WP identifies
about α∗n coordinates as positively frozen and another (1−α∗)n as likely unfrozen w.h.p. Because Proposition 2.3
shows that α∗ = α∗ for d < e, this already nearly suffices to establish the first part of Theorem 1.1. By contrast, in
the case d > e, whereα∗ <α∗, we need to conduct a more detailed investigation of the (α∗−α∗+o(1))n coordinates
that WP declares as slush.

To introduce WP, for a given m ×n matrix A over F2 we represent the matrix by its bipartite Tanner graph G(A).
One of its vertex classes V (A) =V (G(A)) = {v1, . . . , vn} represents the columns of A; we refer to the vi as the variable
nodes. The second vertex class C (A) = C (G(A)) = {a1, . . . , am} represents the rows of A; we refer to them as check
nodes. There is an edge present between ai and v j iff Ai j = 1. Let E(A) denote the edge set of G(A). Moreover, let
∂u signify the set of neighbours of vertex u ∈V (A)∪C (A). Further, let F (A) be the set of frozen coordinates i ∈ [n],
i.e., coordinates such that xi = 0 for all x ∈ ker A. By abuse of notation we identify F (A) with the corresponding set
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FIGURE 2. A local snapshot of the Warning Propagation rules. The check and variable nodes are
represented by squares and circles respectively.

{vi : i ∈ F (A)} of variable nodes. Also let f (A) = |F (A)|/n be the fraction of frozen coordinates. Conversely, for a
given Tanner graph G we denote by A(G) the adjacency matrix induced by G .

Our enhanced WP algorithm associates a pair of {f,s,u}-valued messages with every edge of G(A). Hence, let
W (A) be the set of all vectors

w = (wv→a , wa→v )v∈V (A),a∈C (A):a∈∂v with entries wv→a , wa→v ∈ {f,s,u}.

We define the operator WPA : W (A) →W (A), w 7→ ŵ , encoding one round of the message updates, by letting

ŵa→v =





f if wy→a = f for all y ∈ ∂a \ {v},

u if wy→a = u for some y ∈ ∂a \ {v},

s otherwise,

ŵv→a =





u if ŵb→v = u for all b ∈ ∂v \ {a},

f if ŵb→v = f for some b ∈ ∂v \ {a},

s otherwise

(2.2)

as illustrated in Figure 2. Further, let w(A, t ) = WPt
A(s, . . . ,s) comprise the messages that result after t iterations of

WPA launched from the all-s message vector w(A,0). Additionally, let w(A) = limt→∞ w(A, t ) be the fixed point to
which WPA converges; the (pointwise) limit always exists because WPA only updates an s-message to a u-message
or to an f-message, while u-messages and f-messages will never change again.

What is the combinatorial idea behind WP? The intended semantics of the messages is that f stands for ‘frozen’,
u for ‘unfrozen’ and s for ‘slush’. Since we launch from all-smessages, (2.2) shows that in the first round f-messages
only emanate from check nodes of degree one, where the ‘for all’-condition on the left of (2.2) is empty and there-
fore trivially satisfied. Hence, if a check node ai is adjacent to v j ∈V (A) only, then wai→v j (A,1) = f. This message
reflects that the i -th row of A, having only one single non-zero entry, fixes the j -th entry of every vector of ker A
to zero. Further, turning to the updates of the variable-to-check messages, if wai→v j (A,1) = f, then v j signals its
being forced to zero by passing to all its other neighbours ah 6= ai the message wv j →ah (A,1) = f. Now suppose that
check ai is adjacent to vh and wvk→ai (A,1) = f for all vk ∈ ∂ai \ {vh}. Thus, the k-th coordinate of every vector in
ker A equals zero for all neighbours vk 6= vh of ai . Then the only way to satisfy the i -th row of A is by setting the
h-th coordinate to zero as well. Accordingly, (2.2) provides that wai→vh (A,2) = f, and so on. Hence, defining

Vf(A) = {v ∈V (A) : ∃a ∈ ∂v : wa→v (A) = f} , we see that Vf(A) ⊆F (A). (2.3)

The mechanics of the u-messages is similar. In the first round any variable node v j of degree one, for which the
‘for all’ condition on the right of (2.2) is trivially satisfied, starts to send out u-messages. Subsequently, any check
node ai with an adjacent variable v j of degree one will send a message wai→vk (A,2) = u to all its other neighbours

9
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vk 6= v j . Further, if a variable node v j adjacent to a check ai receives u-messages from all its other neighbours
ah 6= ai , then v j sends a u-message to ai . Consequently, WP deems the variables

Vu(A) = {v ∈V (A) : ∀a ∈ ∂v : wa→v (A) = u} (2.4)

unfrozen. But while (2.3) shows that WP’s designation of the variables in the set Vf(A) as frozen is deterministically
correct, matters are more subtle when it comes to the set Vu(A). For example, short cycles might lead WP to include
a variable in the set Vu(A) that is actually frozen. Yet the following lemma shows that on the random matrix A such
misclassifications are rare.

Proposition 2.4. For any d > 0 we have |F (A)∩Vu(A)| = o(n) w.h.p.

Further, tracing WP on the random graph G(A), we will establish the following bounds.

Proposition 2.5. For any d > 0 we have |Vf(A)|/n ≥α∗+o(1) and |Vu(A)|/n ≥ 1−α∗+o(1)w.h.p.

The proofs of Proposition 2.4 and Proposition 2.5 can be found in Section 4.
Propositions 2.4 and 2.5 confine the number of frozen coordinates to the interval [α∗n+o(n),α∗n+o(n)]. In par-

ticular, the first part of Theorem 1.1, covering the regime d < e, is an immediate consequence of Propositions 2.3,
2.4 and 2.5.

The case d > e is not quite so simple since α∗ <α∗ for d > e by Proposition 2.3. Hence, Proposition 2.5 merely
confines f (A) to the interval [α∗ + o(1),α∗ + o(1)]. As we saw in Section 1.4, a vital step is to prove that f (A) is
actually close to one of the boundary points α∗,α∗ w.h.p. To prove this statement we need to take a closer look at
the minor induced by the variables that are neither identified as frozen nor unfrozen, i.e., the variables in the slush.

2.3. The slush. To this end we need to take a closer look at the inconclusive s-messages. Indeed, the s-messages
naturally induce a minor As of A. Generally, for a given matrix A let

Vs(A) = {v ∈V (A) : (∀a ∈ ∂v : wa→v (A) 6= f) , |{a ∈ ∂v : wa→v (A) = s}| ≥ 2} , (2.5)

Cs(A) = {a ∈C (A) : (∀v ∈ ∂a : wv→a(A) 6= u) , |{v ∈ ∂a : wv→a(A) = s}| ≥ 2} . (2.6)

Hence, none of the variable nodes in Vs(A) receive any f-messages, but each receives at least two s-messages.
Analogously, the check nodes in Cs(A) do not receive u-messages but get at least two s-messages. Let Gs(A) be
the subgraph of G(A) induced on Vs(A)∪Cs(A). Moreover, let As be the minor of A comprising the rows and
columns whose corresponding variable or check nodes belong to Vs(A) and Cs(A), respectively. We observe that
Gs(A) admits an alternative construction that resembles the construction of the 2-core of a random hypergraph.
Indeed, Gs(A) results from G(A) by repeating the following peeling operation:

while there is a variable or check node of degree at most one, remove that node along with its
neighbour (if any).

(2.7)

To determine the size and the degree distribution of Gs(A) we employ a general result about WP-like message
passing algorithms from [11, 21], which we will use in Section 4.2 to prove the following result.

Proposition 2.6. Define

λ=λ(d) = d(α∗−α∗), ν= ν(d) = exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)). (2.8)

For any d > e we have ν> 0 and

lim
n→∞ |Vs (A) |/n = lim

n→∞ |Cs (A) |/n = ν in probability. (2.9)

Moreover, for any integer `≥ 2 we have, in probability,

lim
n→∞

1

n

∑
x∈Vs(A)

1 {|∂x ∩Cs(A)| = `} = lim
n→∞

1

n

∑
a∈Cs(A)

1 {|∂a ∩Vs(A)| = `} =P [Po≥2(λ) = `] . (2.10)

Based on what we have learned about Warning Propagation, we are now in a position to establish items FIX and
STAB from the outline from Section 1.4.

Proposition 2.7. For all d ∈ (e,∞) we have lim
n→∞E

[∣∣ f (A)−α∗
∣∣∧

∣∣ f (A)−α0
∣∣∧

∣∣ f (A)−α∗∣∣]= 0.

Proposition 2.8. For any d ∈ (e,∞) there exists ε> 0 such that lim
n→∞P

[∣∣ f (A)−α0
∣∣< ε]= 0.

The proofs of Propositions 2.7–2.8 can be found in Sections 5 and 6.
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2.4. The aspect ratio. We are left to deliver on item EQ from the proof outline. Thus, we need to show that f (A)
takes either valueα∗,α∗ with about equal probability if d > e. The description (2.7) of Gs(A) in terms of the peeling
process underscores that |Vs(A)| and |Cs(A)| are identically distributed. Yet in order to prove the second part of
Theorem 1.1 we need to know that w.h.p. the slush matrix is not close to square. In Section 7 we prove the following.

Proposition 2.9. For any d0 > e there exists a function ω=ω(n) À 1 such that for all d > d0 we have

lim
n→∞P [|Vs (A) |− |Cs (A) | ≥ω] = lim

n→∞P [|Cs (A) |− |Vs (A) | ≥ω] = 1

2
.

2.5. Moments and expansion. Finally, to complete step EQ in Section 8 we prove that f (A) is about equal to the
higher possible value α∗ if As has more rows than columns, and equal to the lower value α∗ otherwise.

Proposition 2.10. For any d > e, ε> 0, ω=ω(n) À 1 we have

limsup
n→∞

P
[| f (A)−α∗| < ε, |Vs(A)|− |Cs(A)| ≥ω]= 0, limsup

n→∞
P

[| f (A)−α∗| < ε, |Cs(A)|− |Vs(A)| ≥ω]= 0.

We now have all the ingredients in place to complete the proof of the main theorem.

Proof of Theorem 1.1. (i) Suppose d < e. Combining Propositions 2.4 and 2.5 with (2.3) and (2.4), we conclude that
α∗−o(1) ≤ f (A) ≤α∗+o(1) w.h.p. Since Proposition 2.3 yields α∗ =α∗, the assertion follows.

(ii) Fix d > e and ε> 0 and let E∗ = {| f (A)−α∗| < ε
}
, E ∗ = {| f (A)−α∗| < ε}. Then Propositions 2.7 and 2.8 imply

that P [E∗∪E ∗] = 1−o(1). Moreover, Propositions 2.9 and 2.10 show that P [E∗] ≤ 1/2+o(1) and P [E ∗] ≤ 1/2+o(1).
Hence, we conclude that P [E∗] ,P [E ∗] = 1/2+o(1), as claimed. �

2.6. The overlap. Theorem 1.2 concerning the overlap follows relatively easily from Theorem 1.1. The single ad-
ditional ingredient that we need is the following statement that provides asymptotic independence of the first few
coordinates x1, . . . , x` of a vector x drawn from the posterior distribution (1.3).

Proposition 2.11. For every `≥ 1 there exists γ> 0 such that for all d > 0 and all σ ∈ F`2 we have

lim
n→∞E

[
nγ

∣∣∣∣∣P [x1 =σ1, . . . , x` =σ` | A]−
∏̀
i=1
P [x i =σi | A]

∣∣∣∣∣

]
= 0.

Proposition 2.11, whose proof we defer to Appendix A, is a corollary to a random perturbation of the matrix A
developed in [3]. As an easy consequence of Proposition 2.11 we obtain the following expression for the overlap.
The proof can also be found in Appendix A.

Corollary 2.12. For all d > 0 we have limn→∞E
∣∣R(x , x ′)− (1+ f (A))/2

∣∣= 0.

Proof of Theorem 1.2. The assertion is an immediate consequence of Theorem 1.1 and Corollary 2.12. �

2.7. Preliminaries and notation. Throughout the paper, we use the standard Landau notations for asymptotic
orders and all asymptotics are taken as n →∞. Where asymptotics with respect to another additional parameter
are needed, we indicate this fact by using an index. For example, g (ε,n) = oε(1) means that

limsup
ε→0

limsup
n→∞

|g (ε,n)| = 0.

We ignore floors and ceilings whenever they do not significantly affect the argument.
Any m ×n F2-matrix A is perfectly represented by its Tanner graph G(A), as defined in Section 2.2. We sim-

ply identify A with its Tanner graph G(A). For instance, we take the liberty of writing f (G(A)) instead of f (A).
Conversely, a bipartite graph G with designated sets of check nodes C (G) and variable nodes V (G) induces a
|C (G)| × |V (G)| matrix A(G). Once again we tacitly identify G with this matrix. Recall that for a Tanner graph G
and a node z ∈C (G)∪V (G) we let ∂z = ∂G z signify the set of neighbours. We further define ∂t z = ∂t

G z to be the set
of nodes at distance exactly t from z.

For a matrix A we generally denote by F (A) = F (G(A)) the set of frozen variables. In addition, we let F̂ (A) be
the set of frozen checks, where a check node a ∈C (A) is called frozen if ∂a ⊆F (A). Let f̂ (A) = |F̂ (A)|/|C (A)| be the
fraction of frozen checks.

For a matrix A with Tanner graph G and a node z of G let dA(z) = dG (z) denote the degree of z. Furthermore, let
dA = (dA(z))z∈C (A)∪V (A) signify the degree sequence of G(A). In addition, let dA,s = (dA,s(z))z∈C (A)∪V (A) encompass
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the degrees of the subgraph Gs(A). Note that this sequence includes degrees of vertices which are not actually in
Gs(A), whose degree in Gs(A) we define to be 0.

Returning to the random matrix A, let Gs be a random multigraph drawn from the pairing model with degree
distribution dA,s.

Lemma 2.13. The probability that Gs is a simple graph is bounded away from 0. Furthermore, conditioned on being
simple the graph Gs has exactly the same distribution as Gs(A).

The proof of this lemma is a standard exercise, which we include in Appendix B for completeness. We further
need a routine estimate of the degree distribution of the random bipartite graph G(A), whose proof can be found
in Appendix C.

Lemma 2.14. Let d > 0. W.h.p. the random graph G(A) satisfies

max
v∈V (A)∪C (A)

|∂v | ≤ logn,
1

n

∑
x∈V (A)

(
|∂x|
`

)
≤ (2d)` for any integer `≥ 1. (2.11)

Throughout the paper all logarithms are to the base e.
The entropy of a probability distribution µ on a finite setΩ 6= ; is denoted by

H(µ) =−
∑
ω∈Ω

µ(ω) logµ(ω).

As a further important tool we need the cut metric for probability measures on Fn
2 . Following [14], we define the

cut distance of two probability measures µ,ν on Fn
2 as

∆2(µ,ν) = 1

n
min
σ∼µ
τ∼ν

max
U⊆Fn

2 ×Fn
2

I⊆[n]

∣∣∣∣∣
∑
i∈I
P [(σ,τ) ∈U ,σi = 1]−P [(σ,τ) ∈U ,τi = 1]

∣∣∣∣∣ . (2.12)

In words, we first minimise over couplings (σ,τ) of the probability measures µ,ν. Then, given such a coupling an
adversary points out the largest remaining discrepancy. Specifically, the adversary puts their finger on the event U
and the set of coordinates I where the frequency of 1-entries in σ,τ differ as much as possible.

The cut metric is indeed a (very weak) metric. We need to point out a few of its basic properties. For a probability
measure µ on Fn

2 letσ(µ) denote a sample from µ. Moreover, let µ̄ be the product measure with the same marginals,
i.e.,

µ̄(σ) =
n∏

i=1
µ

({
σ

(µ)
i =σi

})
(σ ∈ Fn

2 ).

It is easy to see that upper bounds on the cut distance of µ,ν carry over to µ̄, ν̄, i.e.,

∆2(µ̄, ν̄) ≤∆2(µ,ν). (2.13)

Moreover, upper bounds on the cut distance carry over to upper bounds on the marginal distributions, i.e.,

1

n

n∑
i=1

∣∣∣µ
({
σ

(µ)
i = 1

})
−ν

({
σ(ν)

i = 1
})∣∣∣≤∆2(µ,ν). (2.14)

The distribution µ is ε-extremal if ∆2(µ, µ̄) < ε. Furthermore, µ is ε-symmetric if
∑

1≤i< j≤n

∣∣∣µ
({
σ

(µ)
i =σ(µ)

j = 1
})

−µ
({
σ

(µ)
i = 1

})
µ

({
σ

(µ)
j = 1

})∣∣∣< εn2.

Hence, for most pairs i , j the entries σi ,σ j are about independent. More generally, µ is (ε,`)-symmetric if

∑

τ∈F`2

∑
1≤i1<···<i`≤n

∣∣∣∣∣µ
({
∀ j ≤ ` :σ(µ)

i j
= τ j

})
−

∏̀
j=1

µ
({
σ

(µ)
i j

= τ j

})∣∣∣∣∣< εn`.

The following statement summarises a few results about the cut metric from [5, 14].

Proposition 2.15. For any `,ε> 0 there exist δ> 0 and n0 > 0 such that for all n > n0 and all probability measures
µ on Fn

2 the following statements hold.

(i) If µ is δ-extremal, then µ is (ε,`)-symmetric.
(ii) If µ is δ-symmetric, then µ is ε-extremal.
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Furthermore, extremality of measures carries over to conditional measures so long as we do not condition on
events that are too unlikely. More generally, we call two probability measures µ,ν on Fn

2 mutually c-contiguous if
c−1µ(σ) ≤ ν(σ) ≤ cµ(σ) for all σ ∈ Fn

2 .

Proposition 2.16 ([19]). For any ε > 0 there exist δ > 0 and n0 > 0 such that for all n > n0, any δ-extremal proba-
bility measure µ on Fn

2 and any probability measure ν on Fn
2 such that µ,ν are mutually (1/ε)-contiguous, we have

∆2(µ,ν) < ε.

Moreover, we need an elementary observation about the kernel of F2-matrices.

Fact 2.17 ([3, Lemma 2.3]). Let A be an m×n-matrix over F2 and choose ξ= (ξ1, . . . ,ξn) ∈ ker A uniformly at random.
Then for any i , j ∈ [n] we have P[ξi = 0] ∈ {1/2,1} and P[ξi = ξ j ] ∈ {1/2,1}.

Finally, in Appendix D we will prove the following auxiliary statement about weighted sums.

Lemma 2.18. For any c0,c1 > 0 there exists c2 > 0 such that for all n > 0 the following is true. Suppose that w : [n] →
(0,∞) is any function such that

1

n

n∑
i=1

wi 1 {wi > t } ≤ c0 exp(−c1t ) for any t ≥ 1.

Moreover, assume that P = (P1, . . . ,P`) is any partition of [n] into pairwise disjoint sets such that

1

n

∑̀
j=1

|P j | 1
{|P j | > t

}≤ c0 exp(−c1t ) for any t ≥ 1.

Then 1
n

∑`
j=1

(∑
i∈P j

wi

)2
≤ c2.

3. FIXED POINTS AND LOCAL MAXIMA

In this section we prove Lemma 2.1 and Proposition 2.3. We begin with a bit of trite calculus.

3.1. Getting started. We introduce Dd (α) = exp(−d(1−α)) so that

φd (α) = 1−exp(−d exp(−d(1−α))) = 1−Dd (1−Dd (α)), Φd (α) = Dd (1−Dd (α))+ (1+d(1−α))Dd (α)−1. (3.1)

We need two derivatives ofΦd (α) and φd (α):

Φ′
d (α) = d 2Dd (α)

(
φd (α)−α)

, φ′
d (α) = d 2Dd (1−Dd (α))Dd (α), (3.2)

Φ′′
d (α) = d 3Dd (α)

(
φd (α)−α)+d 2Dd (α)

(
φ′

d (α)−1
)

, φ′′
d (α) = d 3Dd (1−Dd (α))Dd (α) (1−dDd (α)) . (3.3)

Since Dd (α) is strictly increasing for all d > 0, so is φd (α) due to (3.1). Thus,

φ′
d (α) > 0 for all α ∈ [0,1]. (3.4)

Moreover, (3.3) shows that the sign of φ′′
d only depends on the last term, denoted by

ψd ,sign(α) = 1−dDd (α). (3.5)

We denote the unique zero ofψd ,sign(α) by ᾱ= 1− logd
d . The following claim comes down to an exercise in calculus.

Claim 3.1. (i) ᾱ is a fixed point of φd iff d = e.
(ii) φ′′

d (0) > 0.
(iii) φ′′

d (α) has one zero at ᾱ in the interval [0,1] if d ≥ 1, none otherwise.
(iv) φ′

e(ᾱ) = 1 andΦ′′
e (ᾱ) = 0.

(v) ᾱ is the only fixed point of φe(α).
(vi) The fixed points of φd coincide with the stationary points ofΦd .

(vii) Φ′
d (0) > 0 >Φ′

d (1).
(viii) For any d > 0 the function φd has at least one stable fixed point.

(ix) For any d > 0 the function φd has at most three fixed points, no more than two of which are stable.
(x) For d < e, we have φ′

d (α) < 1 for all α ∈ [0,1].
(xi) For d < e, the function Φd attains a unique local maximiser αd ∈ (0,1).

(xii) For d > e, if α ∈ (0,1) is a fixed point of φd then so is α̂= 1−exp(−d(1−α)) ∈ (0,1).
13
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Proof. (i) Observe that φd (ᾱ) = 1−1/e, which is a fixed point iff ᾱ= 1− logd
d = 1− 1

e , i.e. iff d = e.
(ii) Recall that the sign ofφ′′

d (α) is determined by the sign ofψd ,sign(α), and we haveψd ,sign(0) = 1−d exp(−d) > 0
for all d > 0.

(iii) Since ψ′
d ,sign(α) =−d 2 exp(−d(1−α)) < 0, we see that ψd ,sign is a decreasing function that has its unique zero

at ᾱ. Furthermore, ᾱ≤ 1 iff d ≥ 1.
(iv) By (i), when d = e and α = ᾱ, Equation (3.3) reduces to Φ′′

e (ᾱ) = e2De(ᾱ)
(
φ′

e(ᾱ)−1
)
. Since also De (ᾱ) = 1/e,

by (3.2) we have φ′
e(ᾱ) = 1, and therefore alsoΦ′′

e (ᾱ) = 0.
(v) Due to (i) ᾱ is a fixed point, and φ′

e(ᾱ) = 1 by (iv). Since φe(α) is convex for α < ᾱ and concave for α > ᾱ by
(3.3), we deduce that φe(α) >α for α< ᾱ and φe(α) <α for α> ᾱ, so ᾱ is the unique fixed point of φe(α).

(vi) Since d 2Dd (α) > 0, (3.2) implies thatΦ′
d (α) = 0 iff φd (α) =α.

(vii) This follows from (3.2) since φd (0) > 0 and φd (1) < 1.
(viii) Since φd (0) > 0 and φd (1) < 1, and since φd is a continuous function, there must be at least one fixed point

in (0,1). Setting α1 := sup{α : φd (α) > α}, we have that α1 is a fixed point by continuity. Furthermore, α1 is
stable since there are pointsα<α1 arbitrarily close toα1 for whichφd (α) >α, but also for anyα>α1 we have
φd (α) ≤α, and therefore φ′

d (α1) ≤ 1. 1

(ix) This is a consequence of (iii): between any two fixed points there must be a point withφ′(α) = 1, and between
any two such points there must be a point with φ′′(α) = 0; furthermore, between any two stable fixed points,
there must be an unstable fixed point.

(x) If d < 1, (ii) and (iii) imply that φ′′(α) > 0 on [0,1]. Therefore φ′
d (α) ≤ φ′

d (1) = d 2e−d < 1. For 1 ≤ d < e,
Property (iii) proves that for all α ∈ [0,1] we have φ′

d (α) <φ′
d (ᾱ) = d/e < 1.

(xi) By (vi), we may consider stable fixed points ofφd rather than maximisers ofΦd . The difference h(α) :=φd (α)−
α is a decreasing function since h′(α) = φ′

d (α)−1 < 0 by (x). Since h(0) > 0 and h(1) < 0, h(α) has only one
zero for d < e. This shows that the stable fixed point from (viii) is the unique fixed point.

(xii) Using α=φd (α) = 1−exp(−d exp(−d(1−α))), we obtain

exp(−d(1− α̂)) = exp(−d exp(−d(1−α))) = 1−α=− log(1− α̂)/d .

Rearranging this inequality shows that α̂=φd (α̂). �
3.2. Proof of Lemma 2.1. At a fixed point α of φd , (3.3) simplifies to

Φ′′
d (α) = d 2Dd (α)

(
φ′

d (α)−1
)

. (3.6)

This showsΦ′′
d (α) < 0 iffφ′

d (α) < 1. Hence, for d > 0,d 6= e, (3.4) and Claim 3.1 (vi) imply that the stable fixed points
of φd are precisely the local maximisers ofΦd . Claim 3.1 (v) proves the second assertion in the case d = e.

3.3. Proof of Proposition 2.3. We make further observations on the existence and stability of fixed points of φd .

Lemma 3.2. If d > e thenΦd attains its unique local minimum α0 ∈ [α∗,α∗] at the root of 1−α−exp(−d(1−α)).

Proof. The concave functionα ∈ [0,1] 7→ 1−exp(−d(1−α)) has a unique fixed pointβ=β(d) ∈ (0,1), which satisfies

φd (β) = 1−exp(−d exp(−d(1−β)) =β, φ′
d (β) = d 2 exp(−d(1−β))exp(−d exp(−d(1−β))) = d 2(1−β)2.

Hence, Claim 3.1 (vi) and (3.6) yield

Φ′
d (β) = 0, Φ′′

d (β) = d 2 exp(−d(1−β))
(
d 2(1−β)2 −1

)
. (3.7)

In order to determine the sign of the last expression we differentiate with respect to d , keeping in mind that β =
β(d) is a function of d . Rearranging the fixed point equation β= 1−exp(−d(1−β)), we obtain d =−(1−β)−1 log(1−
β). The inverse function theorem therefore yields

∂β

∂d
= (1−β)2

1− log(1−β)
.

Combining the chain rule with the fixed point equation β= 1−exp(−d(1−β)), we thus obtain

∂

∂d
d 2(1−β)2 = 2d(1−β)2 −2d 2(1−β)

∂β

∂d
= 2d(1−β)2

(
1− d(1−β)

1− log(1−β)

)
= 2d(1−β)2

1+d(1−β)
> 0. (3.8)

1Note that at this point we could also have observed that Φd attains its maximum in the interior of (0,1) and then applied Lemma 2.1 to
prove the existence of a stable fixed point. This would be permissible since the proof of Lemma 2.1 only uses earlier points from this Claim and
not (viii) or any later points, therefore the argument is not a circular one.
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As in Claim 3.1, at d = e we obtainβ= ᾱ= 1−1/e and thus d 2(1−β)2 = 1. Therefore, (3.8) implies that d 2(1−β)2 > 1
for all d > e, and thus (3.7) shows thatΦd attains its local minimumα0 precisely at the pointβ. Finally, by Claim 3.1
(vi) and (ix) there is precisely one local minimum in the interval [α∗,α∗]. �

Corollary 3.3. For d > e the functionΦd attains its local maxima at the fixed points 0 <α∗ <α∗ < 1 ofφd . Moreover,
Φd (α∗) =Φd (α∗).

Proof. Since by Claim 3.1 (vii) we have Φ′
d (0) > 0 >Φ′

d (1), the existence of the local minimiser α0 ∈ (0,1) provided
by Lemma 3.2 implies thatΦd has at least two local maximisers 0 <α1 <α0 <α2 < 1. Lemma 2.1 and Claim 3.1 (vi)
show that α0,α1,α2 are fixed points of φd . Hence, Claim 3.1 (ix) implies that α1 =α∗ is the smallest fixed point of
φd and that α2 = α∗ > α∗ is the largest fixed point. Additionally, Lemma 2.1 and Claim 3.1 (ix) imply that α∗,α∗

are the only local maximisers ofΦd .
It remains to prove thatΦd (α∗) =Φd (α∗). Claim 3.1 (xii) implies that

α̂∗ = 1−exp(−d(1−α∗)) and α̂∗ = 1−exp(−d(1−α∗))

are fixed points of φd . Because α0 6=α∗,α∗ is the unique root of 1−α−exp(−d(1−α)), we conclude that α̂∗ =α∗

and α̂∗ =α∗. Hence,
1−α∗ = exp(−d(1−α∗)), 1−α∗ = exp(−d(1−α∗)). (3.9)

Consequently,

(1−α∗)exp(−d(1−α∗)) = (1−α∗)exp(−d(1−α∗)) and (3.10)

1−α∗+exp(−d(1−α∗)) = 1−α∗+exp(−d(1−α∗)) (3.11)

Finally, combining (3.10)–(3.11) with the fixed point equations φd (α∗) =α∗, φd (α∗) =α∗, we obtain

Φd (α∗)−Φd (α∗) = exp(−d exp(−d(1−α∗)))+exp(−d(1−α∗))− [
exp(−d exp(−d(1−α∗)))+exp(−d(1−α∗))

]

+d
[
(1−α∗)exp(−d(1−α∗))− (1−α∗)exp(−d(1−α∗))

]

= 1−α∗+exp(−d(1−α∗))− (
1−α∗+exp(−d(1−α∗))

)= 0,

thereby completing the proof. �

Proof of Proposition 2.3. The first part follows immediately from Lemma 2.1 and Claim 3.1 (xi). The second asser-
tion follows from Lemma 2.1, Lemma 3.2 and Corollary 3.3. �

3.4. Proof of Lemma 2.2. By a straightforward computation, we get that φd (0) > 0 and φd (1) < 1 for all d > 0.
Moreover,φd (α) is a continuously differentiable function. For d < e, by Claim 3.1 (vi) and (xi) (or Proposition 2.3 (i))
there is one fixed point α∗ = α0 = α∗. This implies φd (α) > α for α ∈ [0,α∗) and φd (α) < α for α ∈ (α∗,1] . By
Equation (3.4), φd (α) is strictly increasing so φd (φd (α)) > φd (α) for α ∈ [0,α∗) and φd (φd (α)) < φd (α) for α ∈
(α∗,1]. By induction, for all t > 0, φ◦t

d (α) >φ◦t−1
d (α) for α ∈ [0,α∗) and φ◦t

d (α) <φ◦t−1
d (α) for α ∈ (α∗,1]. In addition,

the fact that α∗ is a fixed point of φ implies that α∗ = φd (α∗) > φ◦t
d (α) for α ∈ [0,α∗) and α∗ = φd (α∗) < φ◦t

d (α)
for α ∈ (α∗,1]. Hence, for α ∈ [0,α∗), the sequence

(
φt

d (α)
)

t≥0
is monotonically increasing and bounded above by

φd (α∗) = α∗, and therefore limt→∞φ◦t
d (α) exists. Furthermore, since φd is continuous, this limit must be a fixed

point of φd . Since α∗ is the smallest fixed point, we must have limt→∞φ◦t
d (α) = α∗, as required. Similarly, for

α ∈ (α∗,1], the sequence
(
φt

d (α)
)

t≥0
is monotonically decreasing and bounded below thus limt→∞φ◦t

d (α) =α∗.
For d > e, by Proposition 2.3 (ii), there are three fixed points, α∗ <α0 <α∗ where α∗,α∗ are stable fixed points

and α0 is unstable. For the intervals [0,α∗), (α∗,1], the proof is exactly the same as in the case d < e. Similarly,
(α∗,α0) comes down to the case of a monotonically decreasing sequence converging to α∗ while (α0,α∗) comes
down to the case of a monotonically increasing sequence converging to α∗.

4. TRACING WARNING PROPAGATION

In this section we will analyse the local structure of G(A) together with WP messages, and show that locally the
graph has a rather simple structure. For this argument we will make use of the results of [11, 21].2 The study of WP
messages will enable us to prove Propositions 2.4, 2.5 and 2.6.

2The article [11] deals with the standard binomial random graph G(n,d/n), whereas in our situation we have the bipartite graph G(n,n,d/n)
– however, the proofs in that paper generalise in an obvious way to this setting. The generalised version of the proof is in the article [21]
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4.1. Message distributions and the local structure. To investigate the link between the local graph structure and
the WP messages we need a few definitions. Let us first define a message distribution to be a vector

q = (
q (v), q (c)) with q (v) =

(
q (v)
f , q (v)

s , q (v)
u

)
, q (c) =

(
q (c)
f , q (c)

s , q (c)
u

)
∈ [0,1]3 s.t.

∑
s∈{f,s,u}

q (v)
s =

∑
s∈{f,s,u}

q (c)
s = 1.

Intuitively, q (v), q (c) model the probability distribution of an incoming message at a check/variable node, so for
example q (v)

f is the probability that an incoming message at a variable node is f.
Given a message distribution q , we define Po(d q) to be a distribution of half-edges with incoming messages.

Specifically, at a variable node, this generates Po
(
d q (v)

f

)
half-edges whose in-message is f and similarly (and in-

dependently) generates half-edges whose in-message is s or u. At a check node, the generation of half-edges with
incoming messages is analogous. Let us define the message distribution

q∗ := (
q (v)
∗ , q (c)

∗
)

with q (v)
∗ =

(
q (v)
∗,f, q (v)

∗,s, q (v)
∗,u

)
:= (

1−α∗,α∗−α∗,α∗
)

,

q (c)
∗ =

(
q (c)
∗,f, q (c)

∗,s, q (c)
∗,u

)
:= (

α∗,α∗−α∗,1−α∗)
.

which is our conjectured limiting distribution of a randomly chosen message after the completion of WP, which
motivates the following definitions.

Definition 4.1. We define branching processes T ,T̂ which will generate rooted trees decorated with messages along
edges towards the root.

(i) The root of the first process T is a variable node v0. The root spawns Po(d) children, which are check nodes.
The edges from the children to the root independently carry an f-message with probability 1−α∗, an s-message
with probabilityα∗−α∗, and a u-message with probabilityα∗. The process then proceeds such that each check
node spawns variable nodes and each variable node spawns check nodes as its offspring such that the messages
sent from the children to their parents abide by the rules from Figure 2. To be precise, a check node a that sends
its parent message z ∈ {f,s,u} has offspring

z = f: Po(α∗d) children that send an f-message.
z = s: Po(α∗d) children that send an f-message and Po≥1(d(α∗−α∗)) children that each send an s-message.
z = u: Po(α∗d) children that send an f-message, Po(d(α∗−α∗)) children that send an s-message and Po≥1(d(α∗−
α∗)) children that send a u-message.

Analogously, a variable node v that sends its parent message z ∈ {f,s,u} has offspring
z = f: Po≥1((1−α∗)d) children that send an f-message, Po(d(α∗−α∗)) children that send an s-message, and

Po(dα∗) children that send a u-message.
z = s: Po(α∗d) children that each send a u-message and Po≥1(d(α∗−α∗)) children that send an s-message.
z = u: Po(α∗d) children that send a u-message.

(ii) The root of the second process T̂ is a check node a0. The root spawns Po(d) children, which are variable nodes.
They independently send messages f,s,u with probabilities α∗,α∗−α∗,1−α∗. Apart from the root, the nodes
have offspring as under (i).

Let us note that the processes T ,T̂ , when truncated at depth t ∈ N, are equivalent to the following: generate
a 2-type branching tree up to depth t from the appropriate type of root in which each variable node has Po(d)
children which are check nodes and vice versa, generate messages from the leaves at depth t at random according
to q∗ and generate all other messages up the tree from these according to the WP update rule.

The following is the critical lemma describing the local structure. Given an integer t , let us define St to be the
set of messaged trees rooted at a variable node and with depth at most t , and similarly Ŝt for trees rooted at a
check node. For any T ∈St and matrix A, let us define

ξT (A) := 1

n

∑
v∈V (A)

1
{
δt

G(A)v ∼= T
}

to be the empirical fraction of variable nodes whose rooted depth t neighbourhood G(A) with edges towards the
root annotated by the WP messages (wa→y (A), wy→a(A))a,y is isomorphic to T . For T̂ ∈ ŜT , the parameter ξT̂ (A) is
defined similarly. We also define ζT := P [Tt

∼= T ] and ζT̂ := P[
T̂t

∼= T̂
]

to be the probabilities that the appropriate
branching process is isomorphic to T or T̂ respectively.
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Lemma 4.2. For any constant t and any trees T ∈St and T̂ ∈ Ŝt we have

lim
n→∞ |ξT (A)−ζT | = 0 and lim

n→∞ |ξT̂ (A)−ζT̂ | = 0 in probability.

In other words, picking a random vertex and looking at its local neighbourhood gives asymptotically the same
result as generating a Po(d) branching tree to the appropriate depth and initialising messages at the leaves accord-
ing to q∗.

Lemma 4.2 states that messages at the end of WP are roughly distributed according to q∗, but of course, q∗
does not reflect the messages at the start of the WP algorithm; our initialisation, in which all messages are s, is
represented by the message distribution q 0 = (q (v)

0 , q (c)
0 ) := ((0,1,0), (0,1,0)), but as the WP algorithm proceeds, the

distribution will change, which motivates the following definition of an update function on message distributions.

Definition 4.3. Given a message distribution q =
((

q (v)
f , q (v)

s , q (v)
u

)
,
(
q (c)
f , q (c)

s , q (c)
u

))
, let us define the message distri-

bution ϕ(q) by setting

ϕ(q)(v)
f :=P[

Po
(
d

(
q (c)
u +q (c)

s

))= 0
]

, ϕ(q)(c)
f :=P

[
Po

(
d q (v)

f

)
≥ 1

]
,

ϕ(q)(v)
s :=P[

Po
(
d q (c)

u

)= 0
] ·P[

Po
(
d q (c)

s

)≥ 1
]

, ϕ(q)(c)
s :=P

[
Po

(
d q (v)

f

)
= 0

]
·P[

Po
(
d q (v)

s

)≥ 1
]

,

ϕ(q)(v)
u :=P[

Po
(
d q (c)

u

)≥ 1
]

, ϕ(q)(c)
u :=P

[
Po

(
d

(
q (v)
f +q (v)

s

))
= 0

]
.

We further recursively define ϕ◦t (q) :=ϕ(
ϕ◦(t−1)(q)

)
for t ≥ 2, and define ϕ∗(q) := limt→∞ϕ◦t (q) if this limit exists.

The function ϕ represents an update function of the WP message distributions in an idealised scenario, but it
turns out that this idealised scenario is close to the truth. The following lemma is critical in order to be able to
apply the results of [11, 21]. Let us define the total variation distance between message distributions q 1, q 2 by

dT V
(
q 1, q 2

)
:= dT V

(
q (v)

1 , q (v)
2

)
+dT V

(
q (c)

1 , q (c)
2

)
.

Lemma 4.4. We have ϕ∗ (
q 0

)= q∗. Furthermore, there exist ε,δ> 0 such that for any message distribution q which
satisfies dT V

(
q , q∗

)≤ ε, we have dT V
(
ϕ

(
q

)
, q∗

)≤ (1−δ)dT V
(
q , q∗

)
.

In the language of [11, 21], this lemma states that q∗ is the stable limit of q 0. Before proving this lemma, we first
show how to use it to prove Lemma 4.2. We begin with the critical application of the main result of [11, 21]. Recall
that w(A, t ) denote the messages after t iterations of WP on the Tanner graph G(A) with all initial messages set as
s, and w(A) = limt→∞ w(A, t ).

Lemma 4.5. For any d ,δ> 0 there exists t0 ∈N such that w.h.p. w(A) and w(A, t0) are identical except on a set of at
most δn edges.

Proof. Since q∗ is the stable limit of q 0, this follows directly from [11, Theorem 1.5], [21, Theorem 1.3]. �

Using Lemma 4.5, we can determine the local limit of the graph with final WP messages.

Proof of Lemma 4.2. Fix t0 sufficiently large, and in particular large enough that Lemma 4.5 can be applied. Since
the local structure of the graph G(A) is that of a Po(d) branching tree, after t0 iterations of WP for some sufficiently
large t0, the local structure with incoming messages is approximately as Tt0 and T̂t0 . Subsequently, Lemma 4.5
implies that almost all messages at time t0 are the final ones, and in particular there are very few vertices whose
depth t0 neighbourhood will change. �

Proof of Lemma 4.4. For convenience, we will actually prove that q∗ is the stable limit of q 0 under the operator
ϕ◦2 rather than ϕ – the advantage is that this 2-step operator acts on the coordinates (corresponding to variable
and check nodes) independently of each other. The analogous statement for ϕ follows from that for ϕ◦2 due to
continuity.

Furthermore, by symmetry we may prove the appropriate statements just for the first coordinate, i.e. for q (v)
∗ –

the corresponding proof for q (c)
∗ is essentially identical.

As a final reduction, let us observe that since for any message distribution we have q (v)
f + q (v)

s + q (v)
u = 1, it is

sufficient to consider just two of the three coordinates. In this case it will be most convenient to consider q (v)
f and

q (v)
u , so let us restate what we are aiming to prove.
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Consider the operator ϕ̃ : [0,1]2 → [0,1]2 defined by ϕ̃(x1, x2) := (
ϕ̃1(x1),ϕ̃2(x2)

)
, where

ϕ̃1(x1) := exp
(−d exp(−d x1)

)
, ϕ̃2(x2) := 1−exp

(−d exp(−d (1−x2))
)

.

This corresponds precisely to the action ofϕ◦2 on
(
q (v)
f , q (v)

u

)
. Thus our goal is to prove that (1−α∗,α∗) is the stable

limit of (0,0) under ϕ̃.
Now observe that ϕ̃1(x1) = 1−φd (1− x1) and recall that φd was defined in (1.1). By Lemma 2.2 and Proposi-

tion 2.3, φd is a contraction on [α∗,1] with unique fixed point α∗, and so correspondingly ϕ̃1 is a contraction on
[0,1−α∗] with unique fixed point 1−α∗.

On the other hand, ϕ̃2 is exactly the function φd . Therefore, similarly, by Lemma 2.2 and Proposition 2.3, ϕ̃2 is
a contraction on [0,α∗] with unique fixed point α∗. It follows that (1−α∗,α∗) is the limit ϕ̃∗(0,0).

To show that it is the stable limit, we simply observe that ϕ̃′
1(1−α∗) =φ′

d (α∗) < 1 by Proposition 2.3, and similarly
ϕ̃′

2(α∗) = φ′
d (α∗) < 1. This implies that each coordinate function is a contraction in the neighbourhood of the

corresponding limit point, and therefore so is ϕ̃. �

4.2. Proof of Proposition 2.5. To determine the asymptotic proportion of vertices in Vf(A), by Lemma 4.2 it suf-
fices to determine the probability that in T the root receives at least one f-message. This event has probability

P
[

Po(d(q (v)
∗,f)) ≥ 1

]
= 1−exp(−d(1−α∗)) =α∗

since q (v)
∗,f = 1−α∗ and by (3.9).

An analogous argument yields the statement for Vu(A). �

4.3. Proof of Proposition 2.6. To determine the asymptotic proportion of vertices in Vs(A), by Lemma 4.2 it suf-
fices to determine the probability that in T the root receives at least two s-messages and no f-messages. This
occurs with probability

P
[
Po(d(α∗−α∗)) ≥ 2

] ·P [Po(dα∗) = 0] =
(
1−exp(−d(α∗−α∗))−d(α∗−α∗)exp(−d(α∗−α∗))

) ·exp(−dα∗)

= exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)),

as claimed. The analogous statement for Cs(A) can be proved similarly, or follows from the statement for Vs(A) by
symmetry.

The statement on degree distributions follows directly from the approximation using T or T̂ : conditioned on a
node lying in Vs or Cs, it must certainly receive at least two s-messages from its neighbours. Furthermore, a neigh-
bour is in Cs or Vs respectively if and only if it sends an s-message to this vertex. The distribution of neighbours
sending s is Po(λ) without the conditioning (where recall that λ= d(α∗−α∗)), therefore with the conditioning it is
Po≥2(λ), as required. �

4.4. Proof of Proposition 2.4. For a matrix A we let

Vf(A, t ) = {v ∈V (A) : ∃a ∈ ∂v : wa→v (A, t ) = f} , Vu(A, t ) = {v ∈V (A) : ∀a ∈ ∂v : wa→v (A, t ) = u} , (4.1)

Cf(A, t ) = {a ∈C (A) : ∀v ∈ ∂a : wv→a(A, t ) = f} , Cu(A, t ) = {a ∈C (A) : ∃v ∈ ∂a : wv→a(A, t ) = u} (4.2)

be the sets of nodes of G(A) classified as frozen or unfrozen after t iterations of WP. Furthermore, let B(v, t ) denote
the nodes that are within distance t of v . Let Bt be the set of variable nodes v such that B(v, t ) contains at least
one cycle.

Claim 4.6. Let t0 ≥ 1. If v0 ∈Vu(A, t0) and v0 ∉Bt0 , then v0 ∉F (A).

Proof. Let v0 ∈Vu(A, t0). We will consider a subtree T of G(A) rooted at v0 which we produce in the following way.
All of the neighbours of v0 are added to T as children of v0. Furthermore, since each such neighbour a is a check
node which sends v0 a u-message at time t0, the check node a has at least one further neighbour (apart from v0)
from which it receives a u-message at time t0 −1 – we choose one such neighbour arbitrarily and add it to T as a
child of a. We continue recursively, for each variable node adding all neighbours (apart from the parent) if there
are any, and for each check node at depth i adding one neighbour (distinct from the parent) from which it receives
message u at time t0 − i .

Since the leaves at depth t0 send out u-messages at time 1, they must be unary variables (if they exist at all
which is not the case if, for example, t0 is odd). Therefore T has the property that for any of its variable nodes, all
its neighbours are also in T , while all checks have precisely two neighbours in T .
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Ṽ

C̃

Ũ

FIGURE 3. An instance of the randomly generated trees added to G(A) to produce G ′(A) in Def-
inition 5.1: the variable and check root sets Ṽ ,C̃ are shown in blue; the attachment nodes Ũ in
green; the thick red edges are those in the trees, which are added to G(A); the thin black edges
were already present in G(A); all explicitly drawn nodes were already present but, apart from pos-
sibly the attachment nodes (i.e. those in Ũ ), were previously isolated in G(A).

Therefore we can obtain a vector in the kernel of A that sets xv0 to 1 by simply setting all the variable nodes in
T to 1 and all other variables to zero. This shows that v0 6∈F (A).

�

Proof of Proposition 2.4. First observe that Claim 4.6 implies Vu(A, t0)
⋂

F (A) ⊆ Bt0 . Calculating the expectation
of the number of vertices lying on cycles of length up to 2t0 and applying Markov inequality gives us that indeed∣∣Bt0

∣∣ = o(n). By choosing t0 sufficiently large according to Lemma 4.5 we have |Vu(A, t0)| = |Vu(A)| +o(n) w.h.p.
which concludes the proof. �

5. THE STANDARD MESSAGES

In this section we prove Proposition 2.7, which states that the proportion of frozen variables is likely close to one
of the fixed points of φd . Along the way we will establish auxiliary statements that will pave the way for the proof
of Proposition 2.8 (which rules out the unstable fixed point) in Section 6 as well.

5.1. Perturbing the Tanner graph. A key observation toward Proposition 2.7 is that if we make some minor al-
terations to G(A), the resulting graph G ′(A) is essentially indistinguishable from G(A). Let T = T(d) be the tree
generated by a Galton-Watson process with the two types ‘variable node’ and ‘check node’. The root is a variable
node v0. Each variable node spawns Po(d) check nodes as offspring. Similarly, the offspring of a check node con-
sists of Po(d) variable nodes. In addition, let T̂= T̂(d) be the tree generated by a Galton-Watson process with the
same offspring distribution whose root is a check node a0. Given an integer t , we obtain Tt and T̂t from T and T̂,
respectively, by deleting all nodes whose distance from the root exceeds t , so these are trees of depth (at most) t .
(Unlike the branching processes from Definition 4.1, the trees T,T̂ do not incorporate messages.)

Definition 5.1. Let 0 ≤ω1 =ω1(n) = o(
p

n), 0 ≤ω2 =ω2(n) = n1/2−Ω(1) and obtain G ′(A) from G(A) as follows.

(i) Generate ω1 many T2 trees and ω2 many T̂1 trees independently.
(ii) For each node v in the final layer of these trees (which is a variable node), embed v onto a variable node of G(A)

chosen uniformly at random and independently.
(iii) Embed the remaining nodes of the trees randomly onto nodes which were previously isolated such that variable

nodes are embedded onto variable nodes and checks onto checks.

Let G ′(A) denote the resulting graph and let A′ be its adjacency matrix. (Thus G ′(A) = G(A′) is the Tanner graph of
A′.)

19

Appendix C. 135



Let Ṽ ,C̃ denote the set of variable and check nodes of G ′(A) respectively onto which the roots of the T2 and T̂1

branching trees from Definition 5.1 (i) are embedded. Similarly, let Ũ = (∂C̃ ∪∂2Ṽ ) \ Ṽ be the set of variable nodes
of G(A) where the checks from Definition 5.1 attach to the bulk of the Tanner graph in Step (ii). An example is
shown in Figure 3.

Note that it is possible that this process fails, for example if there are not enough isolated nodes available, in
which case we simply set G ′(A) := G(A). However, since w.h.p. the total size of all trees is O(ω1 +ω2), and w.h.p.
there areΩ(n) isolated variable and check nodes available, the failure probability is exp(−Ω(n)) and thus negligible
for our purposes. For the same reason w.h.p. no two nodes from the trees are embedded onto the same node of
G(A).

Fact 5.2. If ω1 +ω2 = n1/2−Ω(1), then dTV(G(A),G ′(A)) = n−Ω(1).

This routine observation simply follows from the fact that w.h.p. we only added n1/2−Ω(1) edges attached to
isolated nodes in such a way that the expected degrees are bounded, and the attachment variables were chosen
uniformly at random. In particular the number of changes is of lower order than the standard deviation in the
number of nodes of each type which has changed.

We point out that Ṽ ,C̃ are representative of G ′(A) as a whole.

Fact 5.3. Let Λ : (G ,u) 7→ Λ(G ,u) ∈ [0,1] be any function that maps a pair consisting of a graph and a node to a
number. If 1 ¿ω1,ω2 = n1/2−Ω(1), then

E

∣∣∣∣∣
1

n

∑
v∈V (G ′(A))

Λ(G ′(A), v)− 1

|Ṽ |
∑

v∈Ṽ

Λ(G ′(A), v)

∣∣∣∣∣= o(1), E

∣∣∣∣∣
1

n

∑
a∈C (G ′(A))

Λ(G ′(A), a)− 1

|C̃ |
∑

a∈C̃

Λ(G ′(A), a)

∣∣∣∣∣= o(1).

Proof. The statement for Ṽ follows since the local structure of G(A), and therefore also of G ′(A) by Fact 5.2, is that
of a Po(d) branching tree, and this is clearly also the case at the variables of Ṽ . Formally, if v is a variable node
chosen uniformly at random from V (G ′(A)) and ṽ is a random element of Ṽ , then Fact 5.2 implies that (G ′(A), v )
and (G ′(A), ṽ ) have total variation distance o(1) given G ′(A) w.h.p. Therefore, the empirical average of Λ on the
entire set V (G ′(A)) is well approximated by the average on Ṽ w.h.p. The second statement concerning C̃ follows
similarly. �
5.2. Construction of the standard messages. In Section 2.2 we defined Warning Propagation messages via an
explicit combinatorial construction that captured our intuition as to the causes of freezing. In the following we
pursue a converse path. We define a set of messages implicitly, purely in terms of algebraic reality. We call these
{f,u}-valued messages the standard messages. The battle plan is to ultimately match this implicit definition with
the explicit construction from Section 2.2.

The standard messages can be defined for any m ×n-matrix A. Given a subset U of nodes of a graph G , we
denote by G −U the graph obtained from G by deleting U and all incident edges. For a node x, we write G − x
instead of G − {x}. For each adjacent variable/check pair (v, a) of G(A) we define

mv→a(A) =
{
f if v is frozen in G(A)−a,

u otherwise,
ma→v (A) =

{
f if v is frozen in G(A)− (∂v \ {a}),

u otherwise.
(5.1)

Hence, mv→a(A) = f iff v is frozen in the matrix obtained from A by deleting the a-row. Moreover, ma→v (A) = f iff
v is frozen in the matrix obtained by removing the rows of all b ∈ ∂v except a. Let m(A) = (mv→a(A),ma→v (A))v∈∂a .

Further, we define {f,?,u}-valued marks for the variables and checks by letting

mv (A) =





f if ma→v (A) = f for at least two a ∈ ∂v ,

? if ma→v (A) = f for precisely one a ∈ ∂v ,

u otherwise,

(5.2)

ma(A) =





f if mv→a(A) = f for all v ∈ ∂a,

? if mv→a(A) = f for all but precisely one v ∈ ∂a,

u otherwise.

(5.3)

The intended semantics is that f and? both represent frozen variables/checks, meaning that a variable v is frozen
if mv (A) 6= u while for any check a we have ma(A) 6= u if all variables v ∈ ∂a are frozen. But for checks or variables
with mark?, freezing hangs by a thread since, for instance, a variable v withmv (A) =? receives just a single ‘freeze’
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message. We will see in Corollary 5.6 below how this manifests itself in the messages sent out by ?-variables or
checks.

We consider a dumbed-down version of the Warning Propagation operator WPA from Section 2.2 that “updates”
the messages from (5.1) to messages m̂v→a(A) as follows:

m̂v→a(A) =
{
f if mb→v (A) = f for some b ∈ ∂v \ {a},

u otherwise,
(5.4)

m̂a→v (A) =
{
f if my→a(A) = f for all y ∈ ∂a \ {v},

u otherwise.
(5.5)

We next show that the standard messages constitute an approximate fixed point of the WPA operator and that the
marks mostly match their intended semantics w.h.p.

Lemma 5.4. For all d > 0 we have

E
∑

v∈V (A)
a∈∂v

1 {mv→a(A) 6= m̂v→a(A)}+1 {ma→v (A) 6= m̂a→v (A)} = o(n), (5.6)

E |{v ∈V (A) :mv (A) 6= u}4F (A)| = o(n), E
∣∣{a ∈C (A) :ma(A) 6= u}4F̂ (A)

∣∣= o(n). (5.7)

We prove Lemma 5.4 by way of the perturbation from Section 5.1. Specifically, in light of Fact 5.3 it suffices to
consider G ′(A) and the sets of variables/checks Ṽ ,C̃ onto which the roots of the T2 and T̂1 branching trees from
Definition 5.1 are embedded. The following lemma summarises the main step of the argument. Recall that Ũ is
the set of variable nodes where the trees from Definition 5.1 attach to the bulk of the Tanner graph in Step (ii) (see
Figure 3).

Claim 5.5. There exists 1 ¿ω∗ =ω∗(n) ≤ n1/2−Ω(1) such that for all ω1,ω2 ≤ω∗ and every d > 0 w.h.p. we have

my→a(A′) = f ⇔ y ∈F (A) for all a ∈ C̃ ∪∂Ṽ , y ∈ Ũ ∩∂a. (5.8)

Furthermore, w.h.p. a random vector x ∈ ker A satisfies

P
[∀y ∈ Ũ \F (A) : x y =σy |G(A),G ′(A)

]= 2−|Ũ \F (A)| for all σ ∈ FŨ \F (A)
2 . (5.9)

Finally, F (A) ⊆F (A′) and w.h.p. we have f (A′) = f (A)+o(1).

Proof. Let us begin with the last statement. The inclusion F (A) ⊆F (A′) is deterministically true because A′ is ob-
tained from A by effectively adding checks (viz. “activating” formerly dormant isolated checks). Moreover, Propo-
sition 2.11 shows that the distribution of a random x ∈ ker A is n−Ω(1)-symmetric w.h.p. Since A′ is obtained from A
by adding no more than O(ω∗) checks w.h.p. and since any additional check reduces the nullity by at most one, the
distributions of a uniformly random x ′ ∈ ker A′ and of x are mutually 2O(ω∗)-contiguous w.h.p. Therefore, Proposi-
tion 2.16 implies that w.h.p.

∆2(x , x ′) = o(1), (5.10)

provided that ω∗(n) grows sufficiently slowly. Finally, since the marginals of the individual entries x i , x ′
i are either

uniform or place all mass on zero by Fact 2.17, (2.14) and (5.10) yield

f (A′)− f (A) = 1

n

n∑
i=1

1{vi ∈F (A′)}−1{vi ∈F (A)} ≤ 2

n

n∑
i=1

dTV(x i , x ′
i ) ≤ 4∆2(x , x ′) = o(1). (5.11)

The other two assertions (5.8) and (5.9) follow from similar deliberations. Indeed, to prove (5.9) we observe that
given G(A) the set Ũ of variable nodes where the bottom layers of the trees from Definition 5.1 attach in Step (ii)
is just a uniformly random set of O(ω∗) variable nodes of G(A). Therefore, providing ω∗ →∞ sufficiently slowly,
Proposition 2.11 shows that w.h.p.

P
[∀y ∈ Ũ \F (A) : x y =σy |G(A),G ′(A)

]−2−|Ũ \F (A)| =O(n−Ω(1)) for any σ ∈ FŨ \F (A)
2 . (5.12)

Now, the projections of the vectors x ∈ ker A onto the coordinates in Ũ \F (A) form a subspace of FŨ \F (A)
2 . Assuming

that |Ũ | = O(ω∗) and that ω∗ → ∞ sufficiently slowly, (5.12) implies that the dimension of this subspace equals
|Ũ \F (A)|. Hence we obtain (5.9).
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Regarding (5.8), fix some check a ∈ C̃ ∪ ∂Ṽ and think of G ′(A), and therefore also its adjacency matrix A′, as
being constructed in two steps. In the first step we embed all the other new checks b ∈ (C̃ ∪∂Ṽ ) \ {a} and insert
the edges that join them to the variable nodes of G(A). Let G ′′(A) be the outcome of this first step and let A′′ be its
adjacency matrix. Subsequently we independently choose the set of neighbours ∂a \ Ṽ among the variable nodes
of G(A) to obtain G ′(A). Let x ′′ be a random element of ker A′′. Repeating the argument towards (5.10) we see that
∆2(x , x ′′) = o(1) w.h.p. Hence, repeating the steps of (5.11) we conclude that |F (A)4F (A′′)| = o(n) w.h.p. Since in
our two-round exposure ∂a \ Ṽ is independent of A′′, we thus conclude that ∂a ∩F (A′′) \ Ṽ = ∂a ∩F (A) \ Ṽ w.h.p.
Hence, the definition (5.1) of the standard messages implies (5.8). �

Proof of Lemma 5.4. By Fact 5.3 it suffices to prove the fixed point conditions for the variables and checks Ṽ ,C̃ of
G ′(A) which are the roots of the T2 and T̂1 branching processes added in Definition 5.1. Hence, with ω∗ from in
Claim 5.5 let ω1 =ω∗ and ω2 = 0 and assume that (5.8)–(5.9) are satisfied. We may also assume that the subgraph
of G ′(A) induced on X = Ṽ ∪Ũ ∪∂Ṽ is acyclic. Pick a variable v ∈ Ṽ and an adjacent check a ∈ ∂v . We will show
that under the assumptions the fixed point property is satisfied deterministically.

The definition (5.1) of the standard messages provides that ma→v (A′) = f iff v is frozen in G ′ − (∂v \ {a}). A
sufficient condition is that ∂a \ {v} ⊆F (A). Conversely, if ∂a \ ({v}∪F (A)) 6= ;, then (5.9) shows that v is unfrozen
in G ′(A)− (∂v \ {a}). For there exists σ ∈ ker A such that

∑
y∈∂a\{v}σy = 1, and because the subgraph induced on X

is acyclic this vector σ extends to a vector σ′ ∈ ker A′ with σ′
v = 1. Hence, v 6∈ F (A′). Furthermore, (5.8) ensures

that ∂a \ {v} ⊆F (A) iff my→a(A′) = f for all y ∈ ∂a \ {v}. Hence, ma→v (A′) = f iff my→a(A′) = f for all y ∈ ∂a \ {v}. In
other words, we obtain

ma→v (A′) = m̂a→v (A′) for all v ∈ Ṽ , a ∈ ∂v. (5.13)

A similar argument shows that

mv→a(A′) = m̂v→a(A′) for all v ∈ Ṽ , a ∈ ∂v. (5.14)

Indeed, (5.1) guarantees that mv→a(A′) = f if there is a check b ∈ ∂v \ {a} such that ∂b \ {v} ⊆ F (A). Such a check
satisfies mb→v (A′) = f, and thus (5.4) shows that m̂v→a(A′) = f. Conversely, suppose that mv→a(A′) = u. Then
(5.1) shows that v is unfrozen in G ′(A)− a. Hence, the kernel of the matrix obtained from A′ by deleting the a-
row contains a vector σ′′ with σ′′

v = 1. Therefore, any check b ∈ ∂v \ a features a variable y ∈ ∂b \ ({v}∪F (A)).
Consequently, because the subgraph induced on X is acyclic, (5.9) implies that v is unfrozen in the subraph G ′(A)−
(∂v \ {b}) where the only check adjacent to v is b. Thus, mb→v (A′) = u. Finally, (5.4) shows that m̂v→a(A′) = u.

The proof of (5.7) proceeds along similar lines. Indeed, v ∈ Ṽ is frozen in A′ if there exists a check a ∈ ∂v such
that ∂a \ {v} ⊆ F (A). Hence, (5.8) shows that the existence of a check a ∈ ∂v with ma→v (A′) = f is a sufficient
condition for v ∈ F (A′). Conversely, (5.9) shows that the absence of such a check is a sufficient condition for
v 6∈F (A′). Thus, recalling the definition (5.2), we obtain the first part of (5.7).

To prove the second part we combine (5.6)–(5.7) with (5.14) to see that a ∈ F̂ (A′) iff there is at most one y ∈ ∂a
with my→a(A′) = u. For clearly a ∈ F̂ (A′) if no such y exists, while if there is precisely one such y the presence
of the check a will freeze this variable. Conversely, if at least two y, y ′ ∈ ∂a satisfy my→a(A′),my ′→a(A′) 6= f, then
a 6∈F (A′) due to (5.9). Thus, a glance at the definition (5.3) of ma(A′) completes the proof of (5.7). �

Proposition 2.7 is a statement about the proportion of variables identified as frozen by WP; in order to prove this
result, we will need to analyse the distribution of the numbers of incoming and outgoing messages of each type at
a node. This motivates the following definitions.

Given a vector L = (`uu,`uf,`fu,`ff) ∈N4
0 and z ∈ {f,?,u}, let

∆A(z,L) =
∑

v∈V (A)
1 {mv (A) = z}

∏
x,y∈{u,f}

1
{∣∣{a ∈ ∂v :ma→v (A) = x and mv→a(A) = y

}∣∣= `x y
}

,

ΓA(z,L) =
∑

a∈C (A)
1 {ma(A) = z}

∏
x,y∈{u,f}

1
{∣∣{v ∈ ∂a :mv→a(A) = x and ma→v (A) = y

}∣∣= `x y
}

.

These random variables count variables/checks with certain marks and given numbers of edges with specific in-
coming/outgoing messages. For instance, `uf provides the number of edges with an incoming u-message and an
outgoing f-message. Of course, for some choices of z and L the variables ∆A(z,L) and ΓA(z,L) may equal zero
deterministically. We can think of ∆ and Γ as generalised degrees, giving information not just about the number
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of edges, but the number of edges with each type of message. The following corollary pinpoints the generalised
degree distribution. For α, α̂ ∈ [0,1] and L = (`uu,`uf,`fu,`ff) ∈N4

0, we define

d(α̂,u,L) = 1 {`fu = `uf = `ff = 0} ·P [Po(dα̂) = 0] ·P [Po(d(1− α̂)) = `uu] , (5.15)

d(α̂,?,L) = 1 {`fu = 1, `uu = `ff = 0} ·P [Po(dα̂) = 1] ·P [Po(d(1− α̂)) = `uf] , (5.16)

d(α̂,f,L) = 1 {`fu = `uu = 0,`ff ≥ 2} ·P [Po(dα̂) = `ff] ·P [Po(d(1− α̂)) = `uf] , (5.17)

g(α,u,L) = 1 {`uf = `ff = 0,`uu ≥ 2} ·P [Po(d(1−α)) = `uu] ·P [Po(dα) = `fu] , (5.18)

g(α,?,L) = 1 {`uf = 1, `uu = `ff = 0} ·P [Po(d(1−α) = 1] ·P [Po(dα) = `fu] , (5.19)

g(α,f,L) = 1 {`fu = `uf = `uu = 0} ·P [Po(d(1−α)) = 0] ·P [Po(dα) = `ff] . (5.20)

Corollary 5.6. Let d > 0. For any z ∈ {f,?,u} and L = (`uu,`uf,`fu,`ff) ∈N4
0 we have

lim
n→∞

1

n
E
[∣∣∆A(z,L)−d( f̂ (A), z,L)

∣∣+
∣∣ΓA(z,L)−g( f (A), z,L)

∣∣]= 0, (5.21)

lim
n→∞E

[∣∣ f (A)−φd ( f (A))
∣∣+

∣∣ f̂ (A)− (1+d(1− f (A)))exp
(−d(1− f (A))

)∣∣]= 0.

Proof. In light of Fact 5.3 it once again suffices to prove the various estimates for the variables/checks from Ṽ ,C̃ .
Hence, with ω∗ from Claim 5.5 let 1 ¿ω1,ω2 ¿ω∗.

To prove the second part of (5.21) we consider a check a ∈ C̃ . The construction in Definition 5.1 ensures that
a randomly selected k(a) ∼ Po(d) random variable nodes of G as neighbours. Each of them belongs to F (A) with
probability f (A). Thus, k(a) decomposes into two independent Poisson variables kf(a) and ku(a) with means
f (A)d and (1− f (A))d . Furthermore, the definition (5.3) of the marks ensures that the mark of a depends only on
the incoming messages. Moreover, (5.3) implies together with (5.8) that w.h.p. over the choice of A for any fixed
integers `u,`f ≥ 0 we have

P
[
ma(A′) = u, kf(a) = `f, ku(a) = `u | A

]= 1 {`u ≥ 2}P
[
Po(d(1− f (A))) = `u

]
P

[
Po(d f (A)) = `f

]+o(1). (5.22)

Indeed, (5.3) ensures that ma(A′) = u only if a receives at least two u-messages. Furthermore, as Fact 5.5 shows that
f (A′) = f (A)+o(1) w.h.p., we can rewrite (5.22) as

P
[
ma(A′) = u, kf(a) = `f, ku(a) = `u | A

]= 1 {`u ≥ 2}P
[
Po(d(1− f (A))) = `u

]
P

[
Po(d f (A)) = `f

]+o(1). (5.23)

Since by the fixed point property from Lemma 5.4 the reverse messages sent out by a are determined by the incom-
ing ones via (5.5) w.h.p., all messages returned by a check with mark u are u w.h.p. Therefore, (5.23) implies the sec-
ond part of (5.21). Finally, we observe that the identity limn→∞E

∣∣ f̂ (A)− (1+d(1− f (A)))exp
(−d(1− f (A))

)∣∣= 0 is
equivalent to the statement that w.h.p. f̂ (A) = (1+d(1− f (A)))exp

(−d(1− f (A))
)+o(1), which actually follows from

(5.7), (5.18) and (5.21) by summing over L ∈N4
0. More precisely, (5.7) implies that w.h.p. f̂ (A) = n−1 |{a :ma(A) 6= u}|+

o(1). Furthermore, by (5.21), w.h.p. for all but o(n) check nodes a we have ma(A) 6= u if and only if a is adjacent to
no edge along which both messages are u. A glance at (5.18) shows that the sum over all L ∈N4

0 of g(α,u,L) is simply
P [Po(d(1−α)) ≥ 2] = 1− (1+d(1−α))exp(−d(1−α)). Considering the complement and substituting α= f (A), the
result follows.

The first part of (5.21) also follows from similar deliberations. For example, for x ∈ Ṽ we have mx (A′) = u iff
ma→x (A′) = u for all a ∈ ∂x. Furthermore, the fixed point property from Lemma 5.6 shows that w.h.p. ma→x (A′) =
f iff y ∈ F (A) for all y ∈ ∂a \ Ṽ . Since the variables y are chosen randomly and independently, we see that
P[ma→x (A′) = f | A] = P[

Po(d(1− f (A))) = 0
]+o(1) = exp(−d(1− f (A)))+o(1) = f̂ (A)+o(1) w.h.p. Because x has

a total of Po(d) independent adjacent checks, we obtain (5.21) for z = u; the cases z = f and z = ? are analogous.
Finally, the identity f (A) =φd ( f (A))+o(1) w.h.p. follows from Fact 5.3, (5.7) and (5.21) by summing on `uu. �

Proof of Proposition 2.7. Fix a small ε> 0 and let U (ε) = {α ∈ [0,1] : |α−α∗|∧|α−α0|∧|α−α∗| > ε}. Then Lemma 2.2
shows that there exists an integer t > 0 such that

∣∣φ◦t
d (α)−α∗

∣∣∧
∣∣φ◦t

d (α)−α∗∣∣< ε/2 for all α ∈U (ε). Hence,
∣∣α−φ◦t

d (α)
∣∣> ε/2 for all α ∈U (ε). (5.24)

By contrast, Corollary 5.6 shows that
∣∣ f (A)−φd ( f (A))

∣∣= o(1) w.h.p. Since φd ( · ) is uniformly continuous on [0,1],
this implies that

∣∣ f (A)−φ◦t
d ( f (A))

∣∣= o(1) w.h.p. Hence, (5.24) shows thatP
[

f (A) ∈U (ε)
]= o(1). Because this holds

for arbitrarily small ε> 0, the assertion follows. �
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6. THE UNSTABLE FIXED POINT

Proposition 2.7 shows that f (A) is close to one of the fixed points of the function φd w.h.p. The aim in this section
is to prove Proposition 2.8 by using the “hammer and anvil” strategy described in Section 1.4.2 to rule out the
unstable fixed point α0. The proof is subtle and requires three steps. First we show that a random x ∈ ker A sets
about half the unfrozen variables to one. Indeed, even if we weight the variable nodes by their degrees the overall
weight of the one-entries comes to about half w.h.p. Therefore, (1.2) implies that ker A contains 2Φd (α∗)n+o(n) such
balanced vectors w.h.p. This is the “anvil” part of the argument.

The “hammer” part consists of the next two steps showing that the existence of that many balanced solutions
is actually unlikely if f (A) ∼ α0. We proceed by way of a sophisticated moment computation. Specifically, we
estimate the number of fixed points of the operator from (5.4)–(5.5) that mark about α0n variable nodes unfrozen
as per (5.2). This expectation turns out to be of order exp(o(n)). Subsequently we compute the expected number
of actual balanced solutions compatible with such a WP fixed point. The answer turns out to be 2Φd (α0)n+o(n).
Since Φd (α0) < Φd (α∗) = maxαΦd (α), we conclude that a random matrix with f (A) ∼ α0 would have far fewer
“balanced” vectors in its kernel than the anvil part of the argument demands. Consequently, the event f (A) ∼ α0

is unlikely.

6.1. Degree-weighted solutions. Let us now carry this strategy out in detail. A vector x ∈ ker A is called δ-balanced
if ∣∣∣∣∣

∑
v∉F (A)

dA(v) (1 {xv = 1}−1/2)

∣∣∣∣∣< δn.

The following observation is a simple consequence of Proposition 2.11.

Lemma 6.1. W.h.p. the random matrix A has 2Φd (α∗)n+o(n) many o(1)-balanced solutions.

Proof. Since (1.2) and Proposition 2.3 show that nul A ∼Φd (α∗)n w.h.p., it suffices to prove that a random x ∈ ker A
is o(1)-balanced w.h.p. To see this, fix any integer ` > 0. Proposition 2.11 implies together with Proposition 2.15
that the distribution of a random x ∈ ker A is o(1)-extremal w.h.p. Moreover, Fact 2.17 shows that the event {x v = 1}
has probability 1/2 for all v 6∈ F (A). Therefore, the definition (2.12) of the cut metric implies that for any ` ∈ N,
w.h.p. over the choice of A we have

E

[∣∣∣∣∣
∑

v 6∈F (A)
1{dA(v) = `}

(
1 {x v = 1}− 1

2

)∣∣∣∣∣ | A

]
= o(n). (6.1)

As this is true for every fixed ` and the Poisson degree distribution of G(A) has sub-exponential tails, the assertion
follows from (6.1) by summing on `. �

6.2. Counting WP fixed points. Proceeding to the next step of our strategy, we now estimate the expected number
of approximate WP fixed points that leave about α0n variables unfrozen. We call such fixed points α0-covers. The
precise definition, in which we condition on the degree sequence dA of G(A), reads as follows.

Definition 6.2. Given dA let

V=
n⋃

i=1
{vi }× [dA(vi )] and C=

n⋃
i=1

{ai }× [dA(ai )]

be sets of variable/check clones. Anα-cover is a pair (m,π) consisting of a mapm :V∪C→ {f,u}2, (u, j ) 7→ (m1(u, j ),m2(u, j ))
and a bijection π :V→C such that the following conditions are satisfied.

COV1: For all i ∈ [n] and j ∈ [dA(vi )] we have
(
m1(π(vi , j )),m2(π(vi , j ))

)
=

(
m2(vi , j ),m1(vi , j )

)
.

COV2: For all but o(n) pairs (i , j ) with i ∈ [n] and j ∈ [dA(vi )] we have

m2
(
vi , j

)=
{
f if m1 (vi ,h) = f for some h ∈ [dA(vi )] \

{
j
}
,

u otherwise.

COV3: For all but o(n) pairs (vi , j ) with i ∈ [n] and j ∈ [dA(ai )] we have

m2
(
ai , j

)=
{
f if m1 (ai ,h) = f for all h ∈ [dA(ai )] \

{
j
}
,

u otherwise.
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COV4: For any z ∈ {f,?,u} and L = (`uu,`uf,`fu,`ff) ∈N4
0 let

m(vi ) =





f if m1(vi , j ) = f for at least two j ∈ [dA(vi )],

? if m1(vi , j ) = f for precisely one j ∈ [dA(vi )],

u otherwise,

(6.2)

m(ai ) =





f if m1(ai , j ) = f for all j ∈ [dA(ai )],

? if m1(ai , j ) = f for all but precisely one j ∈ [dA(ai )],

u otherwise,

(6.3)

∆(z,L) =
n∑

i=1
1 {m (vi ) = z}

∏
x,y∈{u,f}

1
{∣∣{ j ∈ [dA(vi )] :m1(vi , j ) = x, m2(vi , j ) = y

}∣∣= `x y
}

, (6.4)

Γ(z,L) =
n∑

i=1
1 {m(ai ) = z}

∏
x,y∈{u,f}

1
{∣∣{ j ∈ [dA(ai )] :m1(ai , j ) = x, m2(ai , j ) = y

}∣∣= `x y
}

. (6.5)

Then with d( · ),g( · ) from (5.15)–(5.20) we have

∆(z,L) = nd(1−α0, z,L)+o(n), Γ(z,L) = ng(α0, z,L)+o(n). (6.6)

Let Z(α) be the number of α-covers. The main result in this section is the proof of the following bound.

Proposition 6.3. For any d > e w.h.p. over the choice of the degree sequence dA we have

Z(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(o(n)) .

The rest of this section is devoted to the proof of Proposition 6.3. The following lemma decomposes Z(α0) into
a few factors that we will subsequently calculate separately.

Lemma 6.4. W.h.p. over the choice of dA we have Z(α0) = exp(o(n))H2L2E where

H=
(

n

n((d(1−α0, z,L))z∈{f,?,u},L∈N4
0
)

)
, L=

∏
z∈{f,?,u}

L=(`uu,`uf,`fu,`ff)∈N4
0

(
`uu+·· ·+`ff
`uu, . . . ,`ff

)nd(1−α0,z,L)

E= (
dnα2

0

)
! ((dnα0(1−α0))!)2 (

dn(1−α0)2)!.

Proof. The first factor H simply accounts for the number of ways of partitioning the n variable nodes and the n
check nodes into the various types as designated by (6.4)–(6.5). Since we need to select a type for each variable and
check node, the number of possible designations actually reads

(
n

n((d(1−α0, z,L))z∈{f,?,u},L∈N4
0

)(
n

n((g(α0, z,L))z∈{f,?,u},L∈N4
0

)
exp(o(n)); (6.7)

the exp(o(n)) error term accounts for the o(n) error terms in (6.6). But a glimpse at (5.15)–(5.20) reveals that these
two multinomial coefficients coincide. Hence, (6.7) is equal to H2 exp(o(n)). Furthermore, the factor L accounts
for the number of ways of selecting, for each variable/check node, the clones along which messages of the four
types {f,u}2 travel. Finally, E counts the number of ways of matching up these clones so that COV2–COV3 are
satisfied. To be precise, since COV2–COV3 only provide asymptotic estimates rather than precise equalities, we
incur an exp(o(n)) error term; hence Z(α0) = exp(o(n))H2L2E. �

Lemma 6.5. We have 1
n logL= l′+ l′′+o(1), where

l′ = exp(−d)
∞∑
`=0

d`

`!
log(`!), l′′ =−

∑
z∈{f,?,u}

L=(`uu,`uf,`fu,`ff)∈N4
0

d(1−α0, z,L) log(`uu!`uf!`fu!`ff!).

Proof. Choose z ∈ {f,?,u} along with non-negative vector L ∈N4
0 from the distribution

P [z = z,L = L] = d(1−α0, z,L) (z ∈ {f,?,u}, L ∈N4
0).
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Then due to COV4 we have
1

n
logL= E[

log(`uu+·· ·+`ff)!
]−E[

log(`uu! · · ·`ff!)
]+o(1) = E[

log(`uu+·· ·+`ff)!
]− l′′+o(1). (6.8)

Moreover, (5.15)–(5.17) show that `uu + ·· · + `ff has distribution Po(d). Therefore, E
[
log(`uu+·· ·+`ff)!

] = l′.
Hence, the assertion follows from (6.8). �

Lemma 6.6. We have 1
n logH= d

(
1− log(d)−α0 logα0 − (1−α0) log(1−α0)

)
− l′′.

Proof. This is a straightforward computation. For the sake of brevity we introduce q(λ, i ) = P [Po(λ) = i ]. Using
Stirling’s formula, we approximate H in terms of entropy as

1

n
logH= H((d(1−α0, z,L))z∈{f,?,u},L∈N4

0
)+o(1). (6.9)

Depending on the choice of z ∈ {f,?,u}, the definitions (5.15)–(5.17) of the d(1−α0, z,L) constrain some of the
values `uu, . . . ,`ff to be zero. Hence, using the identity (2.1), we can spell the right hand side of (6.9) out as

H((d(1−α0, z,L))z∈{f,?,u},L∈N4
0
) =−

∑
z,L

d(1−α0, z,L) logd(1−α0, z,L)

=−
∑

`uu≥0
q(d(1−α0),0)q(dα0,`uu) log(q(d(1−α0),0)q(dα0,`uu))

−
∑

`uf≥0
q(d(1−α0),1)q(dα0,`uf) log(q(d(1−α0),1)q(dα0,`uf))

−
∑

`uf≥0,`ff≥2
q(d(1−α0),`ff)q(dα0,`uf) log(q(d(1−α0),`ff)q(dα0,`uf))

= d(1−α0)2 − (1−α0)
∑

`uu≥0
q(dα0,`uu)

[
`uu log(dα0)−dα0

]

−d(1−α0)2 log(d(1−α0)2)−d(1−α0)2
∑

`uf≥0
q(dα0,`uf)

[
`uf log(dα0)−dα0

]

− (
α0 −d(1−α0)2) ∑

`uf≥0
q(dα0,`uf)

[
`uf log(dα0)−dα0

]

−
∑

`ff≥2
q(d(1−α0),`ff)

[
`ff log(d(1−α0))−d(1−α0)

]− l′′

=−l′′+d(1−α0)2 +dα0(1−α0)−dα0(1−α0) log(dα0)

−d(1−α0)2 log(d(1−α0)2)+d 2α0(1−α0)2 −d 2α0(1−α0)2 log(dα0)

+d(1−α0)−d(1−α0) log(d(1−α0))+ (1−α0) log(1−α0)+d(1−α0)2 log(d(1−α0)2)

+dα0(α0 −d(1−α0)2)−dα0(α0 −d(1−α0)2) log(dα0)

=−l′′−d logd −dα0 logα0 −d(1−α0) log(1−α0)+d + (1−α0) log(1−α0)+d(1−α0)2. (6.10)

Since 1−α0 = exp(−d(1−α0)), the assertion is immediate from (6.10). �

Lemma 6.7. W.h.p. over the choice of dA we have 1
n log E

(dn)! = 2dα0 logα0 +2d(1−α0) log(1−α0).

Proof. This follows immediately from Stirling’s formula. �
Proof of Proposition 6.3. The proposition is an immediate consequence of Lemmas 6.4–6.7. �
6.3. Extending covers. While in the previous section we just estimated the number of covers, here we also count
actual solutions to the random linear system encoded by a cover. The following definition captures assignments σ
that, up to o(n) errors, comply with the frozen/unfrozen designations of a cover (m,π) and also satisfy the checks,
again up to o(n) errors. We extend σ : {v1, . . . , vn} → F2 to the set of V of clones by letting σ(vi , j ) =σ(vi ).

Definition 6.8. An α-extension consists of an α-cover (m,π) together with an assignment σ : {v1, . . . , vn} → F2 such
that the following conditions are satisfied.

EXT1: We have
∑n

i=1(1+dA(vi ))1 {σ(vi ) = 1, m(vi ) 6= u} = o(n).

EXT2: We have
∑n

i=1 dA(vi )1 {σ(vi ) = 1, m(vi ) = u} = o(n)+ 1
2

∑n
i=1 dA(vi )1 {m(vi ) = u} .

EXT3: We have
∑n

i=1 1
{∑

j∈[dA (ai )]σ(π(ai , j )) 6= 0
}= o(n).
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The first condition EXT1 posits that, when weighted according to their degrees, all but o(n) variables that are
deemed frozen under m are set to zero under σ. EXT2 provides that about half the variables that ought to be
unfrozen according to m are set to one, if we weight variables by their degrees. Finally, EXT3 ensures that all but
o(n) checks are satisfied.

Let X(α) be the total number of α-extensions. The main result of this section reads as follows.

Proposition 6.9. Let d > e. W.h.p. over the choice of the degree sequence dA we have

X(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(nΦd (α0)+o(n)).

The following lemma summarises the key step toward the proof of Proposition 6.9. For a fixed m let π be a
random matching of the clones V,C such that (m,π) is an α0-cover.

Lemma 6.10. For a o(1)-balanced σ let p(m,σ) be the probability that σ satisfies all but o(n) checks. Then w.h.p.
over the choice of dA we have

p(m,σ) ≤ 2−|{i∈[n]:m(ai )=u}|+o(n).

Proof. Givenm the precise matchingπof the frozen/unfrozen clones remains random subject to conditions COV1–
COV3. We will expose this matching in two steps. First we expose the degree-weighted fraction of occurrences of
frozen/unfrozen variables set to one. Specifically, let r u ∼ 1/2 be the precise degree-weighted fraction of occur-
rences of unfrozen variables that are set to zero under σ; in formulae,

r u =
∑n

i=1

∣∣{ j ∈ [dA(ai )] :m1(ai , j ) = u, σ(π(ai , j )) = 0
}∣∣

∑n
i=1

∣∣{ j ∈ [dA(ai )] :m1(ai , j ) = u
}∣∣ . (6.11)

Similarly, let r f ∼ 1 be the degree-weighted fraction of frozen clones set to zero:

r f =
∑n

i=1

∣∣{ j ∈ [dA(ai )] :m1(ai , j ) = f, σ(π(ai , j )) = 0
}∣∣

∑n
i=1

∣∣{ j ∈ [dA(ai )] :m1(ai , j ) = f
}∣∣ . (6.12)

Once we condition on r u,r f, the precise matching of the various clones remains random. To study the con-
ditional probability that σ satisfies all but o(n) checks, we set up an auxiliary probability space. To be precise, let

χ=
(
χi j

)
i∈[n], j∈[dA (ai )]

be a random sequence of mutually independent field elements χi j ∈ F2 such that

P
[
χi j = 0

]
=

{
r u if m1(ai , j ) = u,

r f if m1(ai , j ) = f.
(6.13)

Further, consider the events

R =
{

n∑
i=1

dA (ai )∑
j=1

1
{
χi j = 0, m1(ai , j ) = z

}
= r z

n∑
i=1

dA (ai )∑
j=1

1
{
m1(ai , j ) = z

}
for z ∈ {f,u}

}
,

S =
{

n∑
i=1

1

{
dA (ai )∑

j=1
χi j 6= 0

}
= o(n)

}
.

Then because the matchingπ of the clones is random subject to COV1–COV3 we obtain

p(m,σ) = E[P [S |R,r f,r u]]. (6.14)

Hence, we are left to calculate P [S |R,r f,r u]. Calculating the unconditional probabilities is easy. Indeed, the
choice (6.11)–(6.12) of r u,r f and the definition (6.13) ofχ and the local limit theorem for the binomial distribution
ensure that

P [R] =Ω(1/n). (6.15)

Furthermore, we claim that

P [S ] = 2−|{i∈[n]:m(ai )=u}|+o(n). (6.16)

Indeed, consider a check ai such that m(ai ) = u. Then there exists j ∈ [dA(ai )] such that m1(ai , j ) = u. Therefore,
the choice (6.11) of r u ensures that the event χi j 6= 0 occurs with probability 1/2+ o(1). Similarly, if m(ai ) 6= u,
then by the choice of r f the event χi j 6= 0 has probability at most o(dA(ai )). Since the definition (6.13) of the

27

Appendix C. 143



χi j ensures that these events are independent for the different checks ai , we obtain (6.16). Finally, combining
(6.14)–(6.16) with Bayes’ rule, we obtain

p(m,σ) = E
[
P [S |R,r f,r u]

]
= E

[
P [S | r f,r u] ·P [R |S ,r f,r u]/P [R | r f,r u]

]
≤ 2−|{i∈[n]:m(ai )=u}|+o(n),

as desired. �

To complete the proof of Proposition 6.9 we combine Lemma 6.10 with the following statement about the num-
bers of variables/checks of the various types. Given z ∈ {f,u}, let us define εz := 1 {z = u}.

Lemma 6.11. Let (m,π) be an α0-cover. Then w.h.p. over the choice of dA ,

1

dn

n∑
i=1

dA (vi )∑
j=1

1
{
m(vi , j ) = (x, y)

}∼α1+εx−εy

0 (1−α0)1−εx+εy (x, y ∈ {f,u}), (6.17)

1

dn

n∑
i=1

dA (ai )∑
j=1

1
{
m(ai , j ) = (x, y)

}∼α1−εx+εy

0 (1−α0)1+εx−εy (x, y ∈ {f,u}), (6.18)

1

n

n∑
i=1

1 {m(vi ) = f} ∼α0 −d(1−α0)2,
1

n

n∑
i=1

1 {m(vi ) = u} ∼ 1−α0,
1

n

n∑
i=1

1 {m(vi ) =?} ∼ d(1−α0)2, (6.19)

1

n

n∑
i=1

1 {m(ai ) = u} ∼α0 −d(1−α0)2,
1

n

n∑
i=1

1 {m(ai ) = f} ∼ 1−α0,
1

n

n∑
i=1

1 {m(ai ) =?} ∼ d(1−α0)2. (6.20)

Proof. We observe that COV4 implies the estimate

1

n

n∑
i=1

dA (vi )∑
j=1

1
{
m(vi , j ) = (x, y)

}∼ dαεx
0 (1−α0)1−εx exp(−dεy (1−α0))(1−exp(−d(1−α0)))1−εy .

Using the identity (2.1), we obtain (6.17). The second identity (6.18) follows from (6.17) and COV1. Equations
(6.19)–(6.20) follow from the identity α0 = 1−exp(−d(1−α0)) and COV2 by summing on L. �

Proof of Proposition 6.9. Lemmas 6.10 and 6.11 imply that w.h.p. over the choice of dA ,

p(m,σ) ≤ 2|{i∈[n]:m(vi )=u}|−|{i∈[n]:m(ai )=u}|+o(n) ≤ 2n(1−2α0+d(1−α0)2+o(1)). (6.21)

Further, using the identity (2.1), we verify that 1−2α0+d(1−α0)2 =Φd (α0). Thus, the assertion follows from (6.21)
and Proposition 6.3. �

Proof of Proposition 2.8. We can generate a random Tanner graph G(A) with a given degree sequence dA by way
of the pairing model. Specifically, we generate a random pairing π of the sets V,C of clones and condition on
the event S that the resulting graph G(π) is simple. W.h.p. over the choice of the degree sequence dA we have
P [S | dA] =Ω(1); but in fact, for the purposes of the present proof the trivial estimate

P [S | dA] = exp(o(n)) w.h.p. (6.22)

suffices. Now, let E be the event that G(π) has at least 2Φd (α∗)n+o(n) many α0-extensions. Recall that w.h.p. over
the choice of dA there are

(∑n
i=1 dA(vi )

)
! = (dn)!exp(o(n)) possible matchings of the 2

(∑n
i=1 dA(vi )

)
clones in total,

and that each Tanner graph extends to
∏n

i=1 dA(vi )!dA(ai )! pairings. Therefore, Propositions 2.3 and 6.9, (6.22) and
Markov’s inequality show that w.h.p. over the choice of dA ,

P
[
E |S,dA

]
≤ 2−Φd (α∗)n+o(n) X(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
≤ 2n(Φd (α0)−Φd (α∗))+o(n) = exp(−Ω(n)) w.h.p. (6.23)

To complete the proof, assume that P
[

f (A) =α0 +o(1)
]> ε for some ε> 0. Then (1.2), Lemma 5.4, Corollary 5.6

and Lemma 6.1 show that P
[

A ∈ E | f (A) =α0 +o(1)
]= 1−o(1). Hence, P

[
A ∈ E | dA

]> ε/2 with probability at least
ε/2, in contradiction to (6.23). �
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7. SYMMETRY AND CORRELATION

The aim in this section is to prove Proposition 2.9, which states that w.h.p. the numbers of variables and checks in
the slush are not almost equal. Thus, we study the subgraph Gs(A) induced on Vs(A)∪Cs(A). We use the notation
ns := |Vs(A)| and ms := |Cs(A)|. We exploit the symmetry of the distribution of A by considering the transpose
of the matrix. While symmetry automatically implies that events are equally likely for A and A>, we would like
to be able to deduce that the event |Vs (A) | − |Cs (A) | ≥ ω occurs with probability asymptotically 1/2 for some
ω=ω(n) À 1. The main step is to prove the following.

Lemma 7.1. There exists some ω0
n→∞−−−−→∞ such that w.h.p. |ns−ms| ≥ω0.

As indicated above, Proposition 2.9 follows from this Lemma and symmetry considerations. We first describe
the symmetry property more explicitly.

Lemma 7.2. For any matrix A we have Vs
(

A>)=Cs (A) and Cs
(

A>)=Vs (A).

Proof. We can show by induction on t ∈N that the messages at time t in the Tanner graphs of A, A> are symmetric.
More precisely, the Tanner graphs are identical except that variable nodes become check nodes and vice versa. At
time 0 all messages are s in both graphs, while it can be easily checked that the update rules remain identical if we
switch checks and variables and also switch the symbols f and u. Therefore, introducing

Vs(A, t ) =
{

v ∈V (A) :
(∀a ∈ ∂v : wa→v (A, t ) 6= f

)
and |{a ∈ ∂v : wa→v (A, t ) = s}| ≥ 2

}
,

Cs(A, t ) =
{

a ∈C (A) :
(∀v ∈ ∂a : wv→a(A, t ) 6= u

)
and |{v ∈ ∂a : wv→a(A, t ) = s}| ≥ 2

}
.

we conclude that Vs(A, t ) = Cs(A>, t ) and Cs(A, t ) = Vs(A>, t ) for all t . Recalling (2.5)–(2.6), we see that Vs(A) =⋂
t≥0 Vs(A, t ) and Cs(A) =⋂

t≥0 Cs(A, t ), whence the assertion follows. �
Proof of Proposition 2.9. We apply Lemma 7.2 to deduce that

P
[
|Vs(A)|− |Cs(A)| ≥ω0

]
=P

[∣∣Cs
(

A>)∣∣−
∣∣Vs

(
A>)∣∣≥ω0

]
=P[|Cs(A)|− |Vs(A)| ≥ω0

]
,

where for the second equality we used the fact that A, A> have identical distributions. Furthermore Lemma 7.1
implies that P

[|Vs(A)|− |Cs(A)| ≥ω0
]+P[|Cs(A)|− |Vs(A)| ≥ω0

]= 1−o(1), and the desired statement follows. �
The proof strategy for Lemma 7.1 is similar to (but rather simpler than) the standard approach to proving a local

limit theorem: we will show that ns−ms is almost equally likely to hit any value in a range much larger than ω0,
and therefore the probability of hitting the much smaller interval [−ω0,ω0] is negligible. We begin by estimating
the sizes of some special sets of vertices. Recall λ from (2.8).

Definition 7.3. (i) Let R = R(A) be the set of check nodes a of degree two such that wv→a(A) = s for all v ∈ ∂a.
(ii) Let S = S(A) be the set of isolated variable nodes.

(iii) Let T = T (A) be the set of check nodes a of degree three such that wv→a(A) = s for all v ∈ ∂a.
(iv) Let U =U (A) be the set of variable nodes which have precisely two neighbours, both in T .
(v) Let

r = r (A) := |R|/n, s = s(A) := |S|/n, u = u(A) := |U |/n,

r̄ := exp(−d)λ2

2
, s̄ := exp(−d) , ū :=

(
exp(−d)λ2

2

)
·
(

exp(−dα∗)λ2/2

1−exp(−λ)

)2

.

Lemma 7.4. W.h.p.

r = (1+o(1))r̄ , s = (1+o(1))s̄, u = (1+o(1))ū.

In particular, there exists some ω1 →∞ such that

r =
(
1+o

(
1

ω1

))
r̄ , s =

(
1+o

(
1

ω1

))
s̄, u =

(
1+o

(
1

ω1

))
ū.

Proof. Since whether a node lies in each of these sets is a fact about its depth (at most) 2 neighbourhood (with
messages), by Lemma 4.2, it is enough to look at the probabilities that T2 (for S,U ) and T̂2 (for R) have the ap-
propriate structure. (Indeed, the statement for S could be proved directly using a Chernoff bound and without
appealing to Lemma 4.2.) An elementary check verifies that these probabilities are r̄ , s̄, ū, as appropriate. �

29

Appendix C. 145



Let 1 ¿ω1 ¿ n1/2 be a function such that Lemma 7.4 holds. For the remainder of this section, we will fix further
functions ω0,ω2 such that

1 ¿ω0 ¿ω1 ¿ n1/2 (7.1)

and such that ω2 is chosen uniformly at random from the interval [ω1/2,ω1] independently of A. In particular, we
will prove Lemma 7.1 with this ω0.

Claim 7.5. If |U | =Θ(n), then for all but o
((|U |
ω1

))
subsets U ′ ⊆U of size ω1, no node has more than one neighbour in

U ′.

Proof. It is a simple exercise to check that if a subset U ′ ⊆ U of size ω1 is chosen uniformly at random, then the
expected number of nodes of T for which two of their three neighbours are chosen to be in U ′ is O

(|T |ω2
1/n2

) =
o(1). Therefore by Markov’s inequality, w.h.p. this does not occur for any check node. �

We will use the following notation for the remainder of the section. Given a Tanner graph G and a set of variable
nodes W , let G 〈W 〉 denote the graph obtained from G by deleting the set of edges incident to W . Note that this
amounts to replacing the columns of the matrix corresponding to nodes of W with 0 columns.

Claim 7.6. Let G be any Tanner graph and U ′ ⊆U (G) be any subset whose nodes lie at distance greater than 2. Let
U ′′ ⊆U ′ be any subset of U ′. Then Vs

(
G

〈
U ′′〉)=Vs(G) \U ′′.

In other words, removing U ′′ from G does not have any knock-on effects on the slush.

Proof. Let G ′ :=G
〈
U ′′〉, and let us run WP on both G ′ and G simultaneously, initialising with all messages being s.

We verify by induction on t that the messages on the common edge set (those in G ′) are identical in both processes,
since a discrepancy can only enter at edges incident to a deleted edge (i.e. in G \ G ′), but our choice of U ′′ ⊆U is
such that the messages emanating from the vertices of T incident to U ′′ remain s. �

For any r, s,u, let Gr,s,u denote the class of graphs with the appropriate parameters, i.e. with r (G) = r , with
s(G) = s and with u(G) = u, and let

G ′
r,s,u =G ′

r,s,u;ω2
:=Gr ′,s′,u′ , where r ′ := r + 2ω2

n
, s′ := s + ω2

n
, u′ := u − ω2

n
.

The intuition behind this definition is that if we delete a set U ′′ ⊆U ′ of size ω2 to obtain G ′, then by Claim 7.5 no
remaining messages are changed, and therefore

• |R(G ′)| = |R(G)|+2ω2 (for each vertex of U ′′, its two neighbours are moved into R);
• |S(G ′)| = |S(G)|+ω2 (the vertices of U ′′ are moved into S);
• |U (G ′)| = |U (G)|−ω2.

Furthermore, for any integer ` ∈ Z, let Gr,s,u(`) ⊆ Gr,s,u be the subset consisting of graphs such that ns−ms = `,
and similarly define G ′

r,s,u(`) ⊆G ′
r,s,u to be the subset consisting of graphs such that ns−ms = `′ := `−ω2.

Proposition 7.7. Suppose that we have parameters r, s,u satisfying

r =
(
1+o

(
1

ω1

))
r̄ , s =

(
1+o

(
1

ω1

))
s̄, u =

(
1+o

(
1

ω1

))
ū.

Then for any integer ` ∈Zwe have P
[
G(A) ∈Gr,s,u(`)

]= (1+o(1))P
[
G(A) ∈G ′

r,s,u(`)
]
.

Proof. We construct an auxiliary bipartite graph H with classes Gr,s,u(`),G ′
r,s,u(`), and with an edge between G ∈

Gr,s,u(`) and G ′ ∈G ′
r,s,u(`) if G ′ can be obtained from G by deleting the edges incident to a set U ′′ ⊆U (G) of sizeω2.

(Note that by Claim 7.6, G ′ satisfies n′
s = ns−ω2 and m′

s = ms, so n′
s−m′

s = (ns−ms)−ω2 = `−ω2 = `′, so such
an edge is plausible.)

By Claim 7.5 (and the fact that ω2 ≤ω1), every graph G ∈ Gr,s,u(`) is incident to (1+o(1))
(un
ω2

)
edges of H , since

almost every choice of ω2 nodes from U will result in a graph from G ′
r,s,u(`).

On the other hand, given a graph G ′ ∈ G ′
r,s,u(`), we may construct a graph G ∈ Gr,s,u(`) by picking any set of ω2

nodes within S(G ′), any set of 2ω2 nodes within R(G ′) and adding 2ω2 edges between them in the appropriate way.
Thus we may double-count the edges of H and obtain

∣∣Gr,s,u(`)
∣∣
(

un

ω2

)
= (1+o(1))

∣∣G ′
r,s,u(`)

∣∣
(

sn

ω2

)(
r n

2ω2

)
(2ω2)!

2ω2
.
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Since r, s,u are very close to their idealised values r̄ , s̄, ū, some standard approximations lead to
∣∣Gr,s,u(`)

∣∣
∣∣G ′

r,s,u(`)
∣∣ = (1+o(1))

(
s̄ r̄ 2n2

2ū

)ω2

. (7.2)

Substituting in the definitions of r̄ , s̄, ū, some elementary calculations and (3.9) show that s̄ r̄ 2

2ū = 1
d 2 = 1

p2n2 . Substi-

tuting this into (7.2), we obtain ∣∣Gr,s,u(`)
∣∣= (1+o(1))

∣∣G ′
r,s,u(`)

∣∣p−2ω2 . (7.3)

On the other hand, let us observe that for any graph G ∈Gr,s,u(`) and any graph G ′ constructed from G as above,
G ′ has precisely 2ω2 edges fewer than G , and therefore

P
[
G(A) =G ′]=P [G(A) =G] p−2ω2 (1−p)2ω2 = (1+o(1))P [G(A) =G] p−2ω2 . (7.4)

Combining (7.3) and (7.4), we deduce the statement of the proposition. �

Proof of Lemma 7.1. For any (r, s,u) = (1+o(ω−1
1 ))(r̄ , s̄, ū) and for any G ∈Gr,s,u , pick an arbitrary subset U ′′ ⊆U ′ of

size ω2, where U ′ is as in Claim 7.5 and let G ′ :=G
〈
U ′′〉.

Let us define the set S = {
(r, s,u) : r

r̄ = s
s̄ = u

ū = 1+o(1)
}
. Observe that since ω2 ≤ω1 = o(n) we have

(r, s,u) ∈S ⇔
(
r + 2ω2

n
, s + ω2

n
,u − ω2

n

)
∈S .

Using this fact, we obtain

P [|ns−ms| ≤ω0] =
( ∑

(r,s,u)∈S

∑
|`|≤ω0

P
[
G(A) ∈Gr,s,u(`)

]
)
+o(1)

P.7.7=
( ∑

(r,s,u)∈S

∑
|`|≤ω0

P
[
G(A) ∈G ′

r,s,u(`)
]
)
+o(1) =P [|ns−ms+ω2| ≤ω0]+o(1).

However, since ω2 is chosen uniformly at random from the interval [ω1/2,ω1], and in particular independently of
A, we may change our point of view and say that

P [|ns−ms+ω2| ≤ω0] =P [ω2 = |ms−ns|±ω0] ≤ 2ω0 +1

ω1/2
= o(1),

as required. �

8. MOMENTS AND EXPANSION

8.1. Overview. In this section we prove Proposition 2.10. The proofs of the two statements of the proposition
proceed via two rather different arguments. First we show that it is unlikely that |Vs(A)| − |Cs(A)| is large and at
the same time f (A) ∼ α∗, which would imply that the slush is almost entirely frozen. The proof relies on the fact
that G(A) is unlikely to contain a moderately large, relatively densely connected subgraph. Specifically, let A be a
matrix. A flipper of A is a set of variable nodes U ⊆V (A) such that for all a ∈ ∂U we have |∂a ∩U | ≥ 2. Let Fε(A) be
the set of all flippers U of A of size |U | ≤ εn. Moreover, let Fε(A) =∑

U∈Fε(A) |U | be the total size of all flippers of A
which individually each have size at most εn.

Lemma 8.1. For any d > 0 there exists ε> 0 such that for any function ω=ω(n) À 1 we have Fε(As) ≤ω w.h.p.

The proof of Lemma 8.1 can be found in Section 8.2. We will combine Lemma 8.1 with the following statement to
bound the size of Vs(A) \F (As).

Lemma 8.2. The set U =Vs(A) \F (As) is a flipper of As of size |U | ≥ |Vs(A)|− |Cs(A)| and U ∩F (A) =;.

Proof. Clearly, nul As ≥ |Vs(A)|− |Cs(A)| and thus

2|Vs(A)|−|Cs(A)| ≤ 2nul As = |ker As| ≤
∣∣∣
{
ξ ∈ F|Vs(A)|

2 : ∀v ∈F (As) : ξv = 0
}∣∣∣= 2|U |.

Hence, |U | ≥ |Vs(A)|− |Cs(A)|.
To show that U is a flipper of A we consider a variable node v ∈U and an adjacent check node a ∈Cs(A). Assume

for a contradiction that ∂a ∩U = {v}. Then for all other variable nodes u ∈ ∂a ∩Vs(A) we have u ∈ F (As). Hence,
the only way to satisfy check a is by setting v to zero, too. Thus, v ∈F (As), which contradicts v ∈U .
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Finally, to show that U ∩F (A) =; it suffices to prove that any vector ξs ∈ ker As extends to a vector ξ ∈ ker A. To
see this we recall the peeling process (2.7) that yields Vs(A). Let us actually run this peeling process in two stages.
In the first stage we repeatedly remove check nodes of degree one or less from G(A):

while there is a check node of degree one or less, remove it along with its adjacent variable (if any).

The set of variable nodes that this process removes is precisely Vf(A) and we extend ξs by setting ξv = 0 for all
v ∈Vf(A). Next we repeatedly delete variable nodes of degree one or less:

while there is a variable node of degree one or less, remove it along with its adjacent check (if any).

Let y1, . . . , y` be the variable nodes that this process deletes, and suppose that they were deleted in this order. Then
we inductively extend ξs by assigning the variables in the reverse order y`, . . . , y1 as follows. At the time yk was
deleted, where 1 ≤ k ≤ `, this variable node either had no adjacent check node at all, in which case we define
ξyk = 0, or there was precisely one adjacent check node bk . In the latter case we set ξyk to the (unique) value that
satisfies bk given the previously defined entries of ξ. The construction ensures that ξ ∈ ker A. �

Second, we bound the probability that |Cs(A)|− |Vs(A)| is large and at the same time f (A) ∼ α∗. The proof of the
following lemma, which we postpone to Section 8.3, is based on a delicate moment calculation.

Lemma 8.3. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P [|Cs(A)|− |Vs(A)| ≥ω and |Vs(A)∩F (A)| < εn] = o(1).

Proof of Proposition 2.10. Fix a small enough ε > 0 and suppose that ω→∞. To prove the first statement let E =
{|Vs(A)| − |Cs(A)| ≥ ω} and E ′ = {Fε(A) <ω}. Lemma 8.2 shows that if the event E ∩E ′ occurs, then the set U =
Vs(A) \ F (As), being a flipper of size at least ω (by E ), cannot be included in Fε(A) (because of E ′) and therefore
has size at least εn. Additionally, we have U ∩F (A) = ; while U ⊆ Vs(A) ⊆ V (A) \ Vu(A). Hence, Proposition 2.4
implies f (A) ≤ |V (A) \Vu(A)|/n +o(1)−ε. Consequently, Proposition 2.5 and Lemma 8.1 yield

P
[
E ∩{

f (A) >α∗−ε/2
}]≤P[

{Fε(A) >ω}∪{|V (A) \Vu(A)|/n >α∗+ε/3
}]= o(1).

Thus, Propositions 2.7 and 2.8 show that P
[
E ∩{∣∣ f (A)−α∗

∣∣> ε}]= o(1).
With respect to the second statement, let A = {|Cs(A)| − |Vs(A)| ≥ ω} and A ′ = {|Vs(A)∩F (A)| < εn}. Then

Lemma 8.3 shows that

P
[
A ∩A ′]= o(1). (8.1)

Moreover, Proposition 2.5 and (2.3) show that

P
[{

f (A) ≤α∗+ε/2
}

\A ′]= o(1), (8.2)

and the assertion is immediate from (8.1), (8.2) and Propositions 2.7 and 2.8. �

8.2. Proof of Lemma 8.1. A (u,c,m)-flipper of As consists of a set U ⊆Vs(A) of size |U | = u whose neighbourhood
C = ∂U∩Cs(A) has size |C | = c such that the number the number of U -C -edges in Gs(A) is equal to m. Let Z (u,c,m)
be the number of (u,c,m)-flippers. As a first step we deal with flippers whose average variable degree exceeds two.

Claim 8.4. For any d > 0,δ> 0 there exists ε> 0 such that

E

[ ∑
U∈Fε(A)

|U |1
{ ∑

x∈U
|∂x ∩Cs(A)| ≥ (2+δ)|U |

}]
= o(1).

Proof. Recalling p = d/n ∧1, we write the simple-minded bound

E [uZ (u,c,m)] ≤ u

(
n

u

)(
n

c

)(
uc

m

)
pm ; (8.3)

here
(n

u

)
counts the number of choices for U ,

(n
c

)
accounts for the number of possible sets of c check nodes,

(uc
m

)

bounds the number of bipartite graphs on the chosen variable and check sets, and pm bounds the probability that
the chosen subgraph is actually contained in G(A). We aim to bound the r.h.s. of (8.3) subject to the constraints

m ≥ max{2c, (2+δ)u} , 1 ≤ u ≤ εn for a small enough ε> 0. (8.4)

We consider three separate cases.
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Case 1: c ≤ u: we estimate(
n

u

)(
n

c

)(
uc

m

)
pm ≤

(en

u

)2u
(

eucd

mn

)m

≤
(en

u

)2u
(

ecd

2n

)(2+δ)u

≤
(
e4+δd 2+δ

)u (u

n

)δu
. (8.5)

Combining (8.3)–(8.5), we obtain

∑
1≤c≤u≤εn

E [uZ (u,c,m)] ≤
∑

1≤u≤εn
u2

(
e4+δd 2+δ

)u (u

n

)δu
= o(1). (8.6)

Case 2: u ≤ c ≤ 100u: due to (8.4) we obtain
(

n

u

)(
n

c

)(
uc

m

)
pm ≤

(en

u

)u (en

c

)c
(

eud

2n

)c (
eud

2n

)m/2

≤
(en

u

)u
(

e2d

2

)c (
eud

2n

)u(1+δ/2)

≤
(

e2d

2

)400u (u

n

)δu/2
. (8.7)

Combining (8.3) and (8.8), we get

∑
1≤u≤εn

u≤c≤100u

E [uZ (u,c,m)] ≤
∑

1≤u≤εn
100u2

(
e2d

2

)400u (u

n

)δ/2
= o(1). (8.8)

Case 3: 100u ≤ c ≤ n: the condition (8.4) yields
(

n

u

)(
n

c

)(
uc

m

)
pm ≤

(
100en

c

)1.1c (
edu

n

)2c

≤
(

edu

n

)c/2

.

Hence,

∑
1≤u≤εn

100u≤c≤n

E [uZ (u,c,m)] ≤
∑

1≤u≤εn
u

∑
100u≤c≤n

(
edu

n

)c/2

≤
∑

1≤u≤εn
u

(
edu

n

)u

= o(1). (8.9)

Finally, the assertion follows from (8.6), (8.8) and (8.9). �

Complementing Claim 8.4, we now estimate the sizes of flippers of average check degree greater than two.

Claim 8.5. For any d > 0,δ> 0 there exists ε> 0 such that

E

[ ∑
U∈Fε(A)

|U |1
{ ∑

a∈∂U∩Cs(A)
|∂a ∩U | ≥ (2+δ)|C |

}]
= o(1).

Proof. The proof is rather similar to the proof of the previous claim, except that we swap the roles of u and c. Once
more we start from the naive bound (8.3), but this time m satisfies m ≥ max{2u, (2+δ)c} and 1 ≤ u ≤ εn.

Case 1: u ≤ c: we have (
n

u

)(
n

c

)(
uc

m

)
pm ≤

(en

c

)2c
(

eud

2n

)(2+δ)c

≤ (ed)5c
(u

n

)δc
. (8.10)

Case 2: c ≤ u ≤ 100c: we estimate(
n

u

)(
n

c

)(
uc

m

)
pm ≤

(en

u

)u (en

c

)c
(

ecd

2n

)u (
ecd

2n

)m/2

≤
(en

c

)c
(

e2d

2

)u (
ecd

2n

)c(1+δ/2)

≤
(

100e2d

2

)u (u

n

)δu/200
. (8.11)

Case 3: 100c ≤ u: we have (
n

u

)(
n

c

)(
uc

m

)
pm ≤

(en

u

)1.1u
(

edc

n

)2u

≤
(

edu

n

)c/2

. (8.12)

Summing (8.10), (8.11) and (8.12) on u,c,m such that m ≥ (2+δ)c, we obtain
∑

u,c,m E [uZ (u,c,m)] = o(1). �

Finally, we need to deal with flippers of average variable and constraint degree about two.

Claim 8.6. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P

[ ∑
U∈Fε(A)

|U |1
{ ∑

x∈U
|∂x ∩Cs(A)| ≤ (2+ε)|U |,

∑
a∈∂U∩Cs(A)

|∂a ∩U | ≤ (2+ε)|C |
}
>ω

]
= o(1).
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Proof. Choose L = L(d) > 0 sufficiently large and subsequently ε> 0 sufficiently small. Moreover, for a vertex u of
Gs(A) let ds(u) signify the degree of u in Gs(A). Further, with ν,λ from (2.8) let D be the event that the graph Gs(A)
enjoys the following four properties.

D1: |Vs(A)| = (ν+o(1))n and |Cs(A)| = (ν+o(1))n.
D2: For any 2 ≤ `≤ L we have

∑
x∈Vs(A) 1 {ds(x) = `} =P [Po≥2(λ) = `]νn +o(n).

D3: For any 2 ≤ `≤ L we have
∑

a∈Cs(A) 1 {ds(a) = `} =P [Po≥2(λ) = `]νn +o(n).
D4: The bounds from (2.11) hold for the degree sequence of G(A).

Then Proposition 2.6 and Lemma 2.14 imply that

P [D] = 1−o(1). (8.13)

We aim to count (u,c,m)-flippers U ⊆Vs(A) with neighbourhoods C = ∂U ∩Cs(A) of size |C | = c such that

m =
∑

x∈U
|∂x ∩C | =

∑
a∈C

|∂a ∩U | ≤ (2+ε)(u ∧ c), and, of course, min
a∈C

|∂a ∩U | ≥ 2. (8.14)

To estimate the number Z (u,c,m) we recall from Proposition 2.6 that the graph Gs(A) is uniformly random given
the degrees. Therefore, according to Lemma 2.13 it suffices to bound the number of (u,c,m)-flippers of a random
graph chosen from the pairing model with the same degree sequence. Thus, let Γs be a random perfect matching
of the complete bipartite graph on the vertex sets

V =
⋃

v∈Vs(A)
{v}× [ds(v)], C =

⋃
a∈Cs(A)

{a}× [ds(a)].

Further, let Gs be the multigraph obtained from Γs by contracting the clones {v}× [ds(v)] and {a}× [ds(a)] of the
variable and constraint nodes into single vertices for all v ∈ Vs(A), a ∈ Cs(A). Due to (8.13) it suffices to establish
the bound

∑
u,c,m:1≤u≤εn

uE [Z (u,c,m) |D] =O(1). (8.15)

To prove (8.15) we first count viable choices of U . Since (8.14) implies that 2u ≤ m ≤ (2+ε)u, no more than δu
of the vertices in the set U have degree greater than two. Further, D1 and D2 show that there are no more than

(
(ν+o(1))n

u

)(
u

εu

)(
λ2 +o(1)

2(exp(λ)−λ−1)

)(1−ε)u

≤
(

eL

ε

)εu (
e(ν+o(1))n

u

)u (
λ2 +o(1)

2(exp(λ)−λ−1)

)u

(8.16)

such sets U .
By a similar token, most check nodes in C have precisely two neighbours in U . Thus, we estimate the number

of choices of C ⊆Cs(A) of size c along with a set C of m clones of these checks as follows. Summing on all vectors
k = (k1, . . . ,kc ) of integers ki ≥ 2 with

∑
i ki = m and on all sequences (b1, . . . ,bc ) ∈Cs(A)c , we obtain the bound

1

c !

∑
b1,...,bc∈Cs(A)

∑
k

c∏
i=1

(
ds(bi )

ki

)
= 1

c !

∑
k

c∏
i=1

∑
b∈Cs(A)

(
ds(b)

ki

)
. (8.17)

Now, (8.14) implies that
∑

i≤c 1 {ki > 2}ki ≤ 3εc. Therefore, D3 and D4 ensure that for any k ,

c∏
i=1

∑
b∈Cs(A)

(
ds(b)

ki

)
≤ L3εc

c∏
i=1

∑
b∈Cs(A)

(
ds(b)

2

)
≤ L3εc ((ν+o(1))n)c

(
λ2 exp(λ)+o(1)

2(exp(λ)−λ−1)

)c

. (8.18)

Furthermore, there are no more than
(m−c−1

c−1

)= (m−c−1
m−2c

)
possible vectors k and thus (8.14) yields

(
m − c −1

m −2c

)
≤

(
2e

ε

)εc

. (8.19)

Combining (8.17)–(8.19) with D1, we see that the number of possible C ,C is bounded by
(

2eL3

ε

)εc (
e(ν+o(1))n

c

)c (
λ2 exp(λ)+o(1)

2(exp(λ)−λ−1)

)c

. (8.20)

Finally, since D2 and D4 imply that

∑
x∈Vs(A)

ds(x) = (1+oε(1))νnE[Po≥2(λ)] = (1+oε(1))
νnλ(exp(λ)−1)

exp(λ)−λ−1
,
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the probability that Γs matches the designated variable/check clones comes to

m!(
∑

x∈Vs(A) ds(x)−m)!

(
∑

x∈Vs(A) ds(x))!
=

(∑
x∈Vs(A) ds(x)

m

)−1

=
(

e(λ(exp(λ)−1)ν+oε(1))n

m(exp(λ)−λ−1)

)−m

. (8.21)

Combining (8.16), (8.20) and (8.21) (and dragging all o(1)-error terms into the oε(1)), we obtain

E [Z (u,c,m) |D] ≤
(eνn

u

)u (eνn

c

)c
(

e(λ(exp(λ)−1)ν+oε(1))n

m(exp(λ)−λ−1)

)−m (
λ2 exp(λ)

2(exp(λ)−λ−1)

)c (
λ2

2(exp(λ)−λ−1)

)u

.

Hence, (8.14) yields

E [Z (u,c,m) |D] ≤
(u

n

)m−u−c
(
λ2 exp(λ)+oε(1)

(exp(λ)−1)2

)u

. (8.22)

Since λ> 0 we have λ2 exp(λ)/((exp(λ)−1)2) < 1. Therefore, (8.22) implies (8.15) for small ε> 0. �

Proof of Lemma 8.1. The lemma follows from Claims 8.4, 8.5 and 8.6. More precisely, let given d > e, let ε1 be the
ε given by Claim 8.6, and subsequently set δ := ε1 and let ε2,ε3 be the ε given by Claims 8.4 and 8.5 respectively.
Then let us set ε0 := ε1 ∧ε2 ∧ε3.

Now Claims 8.4 and 8.5 imply that w.h.p. there is no U ∈ Fε0 (A) with
∑

x∈U |∂x ∩Cs(A)| ≥ (2+ δ)|U | or with∑
a∈∂U∩Cs(A) |∂a∩U | ≥ (2+δ)|C |. On the other hand, conditioning on this event, since ε0 ≤ ε1 = δwe have Fε0 (A) ⊆

Fδ(A), and therefore Claim 8.6 implies that w.h.p. Fε0 (A) ≤ω for any function ω=ω(n) À 1, as required. �

8.3. Proof of Lemma 8.3. The proof is based on a somewhat delicate moment calculation. Suppose that |Vs(A)∩
F (A)| < εn, i.e., very few coordinates in the slush are frozen. Then Fact 2.17 implies that for most v ∈ Vs(A) the
corresponding entry xs,v of a random vector xs ∈ ker As takes the value 0 with probability precisely 1/2. Further-
more, since |Vs(A)| = Ω(n) w.h.p., Proposition 2.11 implies that for most pairs u, v ∈ Vs(A) the entries xs,u , xs,v

are stochastically independent. Therefore, w.h.p. the random vector xs has Hamming weight (1/2+oε(1))|Vs(A)|.
Hence, a tempting first idea toward the proof of Lemma 8.3 might be to simply calculate the expected number of
vectors of Hamming weight (1/2+oε(1))|Vs(A)| in the kernel of As.

This strategy would work if we could replace the oε(1) error term above by O(n−1/2). Indeed, there are 2|Vs(A)|

candidate vectors of Hamming weight |Vs(A)|/2+O(
p

n). Moreover, it is not very hard to verify that a given such
vector satisfies all checks with probabilityΘ(2−|Cs(A)|). As a consequence, the expected number of vectors in ker As

of Hamming weight |Vs(A)|/2+O(
p

n) tends to zero if |Cs(A)|−|Vs(A)|À 1. But unfortunately this simple calcula-
tion does not extend to larger ε as required by Lemma 8.3. The reason is that for larger ε a second order term pop
up, i.e., the probability that all checks are satisfied reads

2−|Cs(A)|+Oε(ε2)|Cs(A)|.

This quadratic term is due to the presence of checks of degree two. We deal with this problem by observing that
a check node of degree two simply imposes an equality constraint on its two adjacent variables. Thus, any two
variable nodes that appear in a check node of degree two can be contracted into a single variable node and then
the check node can be eliminated. A variant of the moment calculation, without the quadratic error term, can then
be applied to the matrix that the multigraph resulting from the contraction procedure induces.

To carry out this programme we first investigate the subgraph G ′
s(A) obtained from Gs(A) by deleting all checks

of degree greater than two. More precisely, invoking Lemma 2.13, for the apparent technical reason we will instead
analyse the random multigraph G ′

s that results by applying the contraction procedure to the random multigraph
Gs chosen from the pairing model with the same degrees as Gs(A). The proof of the following lemma can be found
in Section 8.4.

Lemma 8.7. For any d > e there exists b > 0 such that for anyω=ω(n) À 1 the random graph G ′
s enjoys the following

properties w.h.p.

(i) The largest component of G ′
s has size at most ω logn.

(ii) G ′
s contains no more than ω cycles.

(iii) For any t > 0 no more than |Vs(A)|exp(−bt ) variable nodes belong to components of size at least t .
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Now obtain the multigraph G ′′
s from Gs by deleting all checks of degree two and contracting every connected

component of G ′
s into a single variable node. Let us write V ′′

s and C ′′
s for the set of variable and check nodes of G ′′

s

and let A ′′
s denote the matrix encoded by G ′′

s . Further, for v ∈ V ′′
s ∪C ′′

s let d ′′
s (v) be the degree of v in G ′′

s . Finally,
let K ′′

ε be the set of all vectors ξ ∈ kerA ′′
s such that

∣∣∣∣∣
1

2
−

∑
x∈V ′′

s
d ′′
s (x)1 {ξx = 0}

∑
x∈V ′′

s
d ′′
s (x)

∣∣∣∣∣< ε.

In Section 8.5 we will prove the following statement.

Lemma 8.8. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P
[|C ′′

s | ≥ |V ′′
s |+ω and K ′′

ε 6= ;]= o(1).

In addition, we observe the following.

Lemma 8.9. For any d > e, ε> 0 there exists δ> 0 such that

P
[|Vs(A) \F (A)| > (1−δ)|Vs(A)| and K ′′

ε =;]= o(1).

The proof of Lemma 8.9 can be found in Section 8.6.

Proof of Lemma 8.3. The assertion is an immediate consequence of Lemmas 8.7, 8.8 and 8.9. �
8.4. Proof of Lemma 8.7. We apply a branching process argument to a random graph chosen from the pairing
model, not unlikely the one from [38]. Specifically, let (ds(v))v∈Vs(A) be the degree sequence of the graph Gs(A)
and let m′

s be the number of check of degree two in Gs(A). Let us write b1, . . . ,bm′
s

for the check nodes of G ′
s.

Starting from an edge exiting b1, we will explore the set of all nodes of G ′
s that can be reached via that edge. We will

describe this exploration process as a branching process, which will turn out to be subcritical.
To be precise, let ∆ = ∑

v∈Vs(A) ds(v) and let Γ′s be a random perfect matching of the complete bipartite graph
with vertex sets

V =
⋃

v∈Vs(A)
{v}× [ds(v)] and C = ({

α1, . . . ,αm′
s

}× [2]
)∪{

β1, . . . ,β∆−2m′
s

}
.

As always, {v}× [ds(v)] and {αi }× [2] represent sets of clones of the variable node v and the check node αi , re-
spectively. The ‘ballast’ clones β1, . . . ,β∆−2m′

s
are included so that both sides of the bipartition have the same size.

Further, deleting β1, . . . ,β∆−2m′
s

and contracting the other clones into single vertices, we obtain a random multi-
graph G (Γ) from the matching Γ. This multigraph is identical in distribution to G ′

s.

Claim 8.10. W.h.p. all connected components of G (Γ) have size O(logn).

Proof. To trace the set of nodes reachable from (α1,1), we classify each clone as either unexplored, active or inac-
tive. At the start of the process only (α1,1) is active and all other clones are unexplored; thus,

A0 = {(α1,1)} , U0 =
{
(α1,2), (α2,1), (α2,2), . . . , (αm′

s
,1), (αm′

s
,2)

}
\A0, I0 =;.

The classification determines the order in which the edges of the matching Γ are exposed. Specifically, if at some
time t ≥ 1 no active check clone remains, the process stops and we let T0 = t −1. Otherwise, at time step t ≥ 1 an
active clone (αi t ,ht ) ∈ At−1 is chosen uniformly at random and we let It = It−1 ∪ {(αi t ,ht )}. If the second clone
(αi t ,3−ht ) of the same check is either active or inactive, we let Ut = Ut−1, At = At−1 \

{
(αi t ,ht )

}
. Otherwise we

expose the edge of Γ incident with the other clone (αi t ,3−ht ) of check αi t . Let y t be the variable node on the
other end of this edge. We then declare all as yet inactive clones of checks αi , i ∈ [m′

s], that are adjacent to clones
of y t active. Formally, we let

It =It−1 ∪ {(αi t ,1), (αi t ,2)}, At =
(
At−1 ∪

(
∂Γ(y t × [ds(y t )])∩{

(αi ,1), (αi ,2) : i ∈ [m′
s]

}))
\It

and Ut =Ut−1 \ (At ∪It ). Let At be the σ-algebra generated by the first t step of the process.
The aim is to investigate the stopping time T0. We may condition on the event ds(v) ≤ log2 n for all v . Moreover,

we claim that for 1 ≤ t ≤ T0 ∧ log3 n,

E [|At |− |At−1| |At−1] < 0. (8.23)

Indeed, |At | − |At−1| is trivially negative if (bi t ,3 − ht ) 6∈ Ut−1. Further, if (αi t ,3 − ht ) ∈ Ut−1, then Γ matches
this clone to a random vacant variable clone. Because t ≤ log3 n and maxv ds(v) ≤ log2 n while the slush has size
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|Vs(A)| =Ω(n), the distribution of ds(y t ) is within O(n−0.99) in total variation of the distribution (ds(v)/∆)v∈Vs(A) of
the degree of the variable node of a random variable clone. We subsequently expose all edges of Γ incident with a
clone of y t that was unexplored at time t−1. Once more because t ≤ log3 n and maxv ds(v) ≤ log2 n, the conditional
probability that a specific unexplored clone of y t links to an unexplored clone from the set

{
(αi ,1), (αi ,2) : i ∈ [m′

s]
}

is bounded by 2m′
s/∆+O(n−0.99). Therefore, we obtain the bound

E [|At |− |At−1| |At−1] ≤ o(1)−1+E
[

2m′
s

∆2

∑
v∈Vs(A)

ds(v)(ds(v)−1)

]
≤ λ2 exp(λ)

(exp(λ)−1)2 −1+o(1). (8.24)

Moreover, it is easy to check that λ> 0 for all d > e and that

z2 exp(z)

(exp(z)−1)2 < 1 for any z > 0. (8.25)

Thus, (8.23) follows from (8.24) and (8.25). Finally, (8.23) implies that (|At |)t is dominated by a random walk with
a negative drift. Consequently, P

[
T0 ≥ c logn

] = o(n−1) for a suitable c > 0. The assertion follows from the union
bound. �

Claim 8.11. There exists b = b(d) > 0 such that w.h.p. for all t > 0 the number of variable nodes of G ′
s that belong to

components of size at least t is bounded by |Vs(A)|exp(−bt ).

Proof. Let Z t be the number of variable nodes of G ′
s that belong to components of size at least t . Tracing the same

exploration process as in the previous proof and using (8.24), we find ζ= ζ(d) > 0 such that

E[Z t ] ≤ |Vs(A)|exp(−2ζt ). (8.26)

If t > loglogn, say, then the assertion simply follows from (8.26) and Markov’s inequality. Thus, suppose that
t ≤ loglogn and |Vs(A)| =Ω(n) and that the largest component of G ′

s contains no more than logn loglogn variable
nodes. Then adding to or removing from G ′

s a single edge can alter Z t by at most 2t . Therefore, the assertion
follows from (8.26) and Azuma’s inequality. �

As a next step we need to estimate the number of short cycles.

Claim 8.12. The expected number of nodes on cycles of G ′
s of size at most log2 n is bounded.

Proof. Let ` ≤ log2 n, let y = (y1, . . . , y`) ∈ Vs(A)` be a sequence of variables, let i = (i1, i ′1, . . . , i`, i ′
`

) be a sequence
that contains two clones of each variable y1, . . . , y` and let α = (α1, . . . ,α`) be a sequence of ` distinct checks of
degree two. Let E (y , i ,α) be the event that Γ connects the two clones of αh with (yh , i ′h) and (yh+1, ih+1). Since

Proposition 2.6 shows that∆=Ω(n) and `≤ log2 n, we obtain

P
[
E (y , i ,α) | (dx )x ,m′

s

]∼ (
2/∆2)` .

Furthermore, we have

E

[ ∑
x∈Vs(A)

dyi (dyi −1)

|Vs(A)|

]
∼ λ2 exp(λ)

exp(λ)−λ−1
, E

[
∆

|Vs(A)|

]
∼ λ(exp(λ)−1)

exp(λ)−λ−1
, E

[
m′

s

|Vs(A)|

]
∼ λ2

2(exp(λ)−λ−1)
.

Consequently, the expected number of nodes on cycles of length ` works out to be

1

2`

∑
y ,i ,α

2`P
[
E (y , i ,α) | (dx )x ,m′

s

]∼
(

λ2 exp(λ)

(exp(λ)−1)2

)`
= exp(−Ω(`)).

Summing on ` completes the proof. �

Proof of Lemma 8.7. The statement follows from Claims 8.10–8.12. �
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8.5. Proof of Lemma 8.8. To simplify the notation we introduce N = |V ′′
s |, M = |C ′′

s |. Moreover, we write d1, . . . ,dN

for the degrees of the variable nodes of G ′′
s and k1, . . . ,kM ≥ 3 for the degrees of the constraints. We need the

following facts about M , N and the degrees.

Claim 8.13. W.h.p. we have

M , N =Ω(n), max
1≤i≤N

di ≤ log3 N , max
1≤i≤M

ki ≤ log2 N ,
M∑

i=1
k2

i =O(M),
N∑

i=1
d 2

i =O(N ). (8.27)

Proof. The first estimate follows immediately from Proposition 2.6 and Lemma 8.7. The second statement follows
from Lemma 8.7 (i) and the fact that the maximum degree of G(A) is of order logn w.h.p., which also implies the
third bound. Similarly, the sum of the squares of the check degrees of G(A) is bounded w.h.p. due to routine
bounds on the tails of the binomial distribution. This implies that

∑M
i=1 k2

i = O(M) because M = Ω(n) w.h.p. by
Proposition 2.6. To obtain the final bound we apply the Chernoff bound to conclude that for any d > 0 there exists
b > 0 such that w.h.p.

1

n

n∑
i=1

1
{|∂G(A)vi | ≥ t

}≤ exp(−bt )/b. (8.28)

In other words, the degree sequence of G(A) has an exponentially decaying tail w.h.p. Assuming N =Ω(n), we see
that (8.28) implies the bound

1

N

N∑
i=1

1 {di ≥ t } ≤ exp(−b′t )/b′ (8.29)

for some b′ > 0. Furthermore, Lemma 8.7 (iii) implies an exponentially decaying tail for the component sizes
of G ′

s. Since G ′′
s is obtained by contracting the components of G ′

s, the desired bounds follow from (8.29) and
Lemma 2.18. �

In the following we will condition on the event D that the conditions (8.27) are satisfied. Let σ ∈ FN
2 be a uni-

formly random vector. We will prove Lemma 8.8 by estimating the probability that σ ∈K ′′
ε . To this end, let

W =
∑N

i=1 di 1 {σi = 1}
∑N

i=1 di

count the degree-weighted one-entries of σ. The following claim bounds the probability that W deviates signifi-
cantly from 1/2.

Claim 8.14. For any d > e there is s = s(d) > 0 such that P [|W −1/2| ≥ t |D] ≤ 2exp(−st 2N ).

Proof. This is an immediate consequence of (8.27) and Azuma’s inequality. �

As a next step we calculate the probability that σ ∈ kerA ′′
s given W .

Claim 8.15. For any d > e there exist ε > 0,γ > 0 such that uniformly for every w ∈ (1/2 − ε,1/2 + ε) for which
w

∑M
i=1 ki is an even integer we have

logP
[
A ′′
sσ= 0 |W = w,D

]≤−M log2−γM(w −1/2)3 +O(1).

Proof. Consider a random vector ξ= (ξi j )i∈[M ], j∈[ki ] where we choose every entry ξi j ∈ F2 to be a one with proba-
bility w independently. Let S be the event that

∑
j∈[ki ]ξi j = 0 for all i ∈ [M ]. Moreover, let

R =
{

M∑
i=1

ki∑
j=1

(
1{ξi , j = 1}−w

)= 0

}
.

Because G ′′
s is drawn from the pairing model, we have

P
[
A ′′
sσ= 0 |W = w,D

]=P [S |R] . (8.30)
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We will calculate the probability on the r.h.s. of (8.30) via Bayes’ rule. The unconditional probabilities are com-
puted easily. Indeed, for every i ∈ [M ] we have

P

[ ∑
j∈[ki ]

ξi j = 0

]
=

k∑
j=0

1
{

j even
}
(

k

j

)
w j (1−w)k− j

= 1

2

[
k∑

j=0

(
k

j

)
w j (1−w)k− j +

k∑
j=0

(
k

j

)
(−w) j (1−w)k− j

]
= 1+ (1−2w)k

2
.

Hence,

P [S ] =
M∏

i=1

1+ (1−2w)ki

2
. (8.31)

Furthermore, the local limit theorem for the binomial distribution shows that

P [R] =Θ(M−1/2). (8.32)

In addition, (8.27) and the local limit theorem for sums of independent random variables yield

P [R |S ] =Θ(M−1/2). (8.33)

Combining (8.31)–(8.33) and recalling that the ξi j are independent, we obtain

logP [S |R] =
M∑

i=1
log

1+ (1−2w)ki

2
+O(1) =−M log2+

M∑
i=1

log(1+ (1−2w)ki )+O(1). (8.34)

To complete the proof we compute the derivatives of the last expression, keeping in mind that ki ≥ 3 for all i :

∂ logP [S |R]

∂w
=

M∑
i=1

−2ki (1−2w)ki−1

1+ (1−2w)ki
,

∂2 logP [S |R]

∂w2 =
M∑

i=1

4ki (ki −1)(1−2w)ki−2

1+ (1−2w)ki
−

4k2
i (1−2w)2ki−2

(
1+ (1−2w)ki

)2 ,

∂3 logP [S |R]

∂w3 =
M∑

i=1

−8ki (ki −1)(ki −2)(1−2w)ki−3

1+ (1−2w)ki
+

8k2
i (ki −1)(1−2w)ki−2(1−2w)ki−1

(
1+ (1−2w)ki

)2

+
16k2

i (ki −1)(1−2w)2ki−3

(
1+ (1−2w)ki

)2 −
16k3

i (1−2w)3ki−2

(
1+ (1−2w)ki

)3 .

Evaluating these derivatives at w = 1/2, we obtain

∂ logP [S |R]

∂w

∣∣∣
w=1/2

= ∂2 logP [S |R]

∂w2

∣∣∣
w=1/2

= 0,
∂3 logP [S |R]

∂w3 =−48
M∑

i=1
1 {ki = 3} . (8.35)

Finally, combining (8.30), (8.34) and (8.35) with Taylor’s formula completes the proof. �

Proof of Lemma 8.8. Choose ε= ε(d) > 0 small enough. Summing over w ∈ (1/2−ε,1/2+ε) such that w
∑N

i=1 di is
an even integer, we obtain

P
[
Kε 6= ; |D, M ≥ N +ω]≤ 2NP

[
A ′′
sσ= 0, |W −1/2| < ε |D, M ≥ N +ω]

≤ 2N
∑
w
P
[
W = w |D, M ≥ N +ω]

P
[
A ′′
sσ= 0 |W = w,D, M ≥ N +ω]

.

Combining this bound with Claims 8.14 and 8.15, we obtain

P
[
Kε 6= ; |D, M ≥ N +ω]≤ 2N

dε
p

Ne∑
h=1

∑

w :h−1≤w
p

N≤h

P
[
W = w |D, M ≥ N +ω]

P
[
A ′′
sσ= 0 |W = w,D, M ≥ N +ω]

≤ 2N−M
∑

1≤h≤εpn

exp
(
−Ω(

h2)+O
(
h3M N−3/2))=O

(
2N−M )= o(1),

provided that M ≥ N +ω and ε> 0 is small enough. �
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8.6. Proof of Lemma 8.9. The following observation is an easy consequence of the construction of As.

Claim 8.16. If v, y ∈V (As) are variables such that ξv = ξy for all ξ ∈ ker As, then ξv = ξy for all ξ ∈ ker A.

Proof. By construction the matrix As is the minor of A induced on Vs(A)×Cs(A). Although some of the checks
a ∈ Cs(A) may contain variables v 6∈ Vs(A), all such v are frozen in A. Therefore, any ξ ∈ ker A induces a vector
ξs ∈ ker As. �

We now combine Claim 8.16 with Proposition 2.11 to prove the lemma. Hence, let U be the event that |Vs(A) \
F (A)| > (1−δ)|Vs(A)|. Provided that δ = δ(d ,ε) > 0 is chosen small enough, routine tail bounds for the binomial
distribution imply that the event

E =
{ ∑

v∈Vs(A)∩F (A)
ds(v) < ε

4

∑
v∈Vs(A)

ds(v)

}
satisfies P [U \E ] = o(1). (8.36)

Further, with xs = (xs,y )y∈Vs(A) ∈ ker As chosen randomly, Proposition 2.11 and Claim 8.16 ensure that the event
{ ∑

y,y ′∈Vs(A)\F (A)

∣∣∣∣P
[

xs,y = xs,y ′ = 0 | A
]− 1

4

∣∣∣∣< |Vs(A)| log−9 n

}

has probability 1−o(1). As a consequence, since all degrees of Gs(A) are bounded by logn w.h.p., the event

R =
{ ∑

y,y ′∈Vs(A)\F (A)

ds(y)ds(y ′)
∣∣∣∣P

[
xs,y = xs,y ′ = 0 | A

]− 1

4

∣∣∣∣<
( ∑

y∈Vs(A)
ds(y)

)2

log−4 n

}

satisfies P [R] = 1−o(1). Hence, (8.36) yields P [U \ (E ∩R)] = o(1). In effect, it suffices to prove that on the event
U ∩E ∩R we have Kε 6= ;.

To verify this we recall that any variables y, y ′ that get contracted in the course of the construction of G ′′
s(A)

deterministically satisfy xs,y = xs,y ′ . As a consequence, for a random x ′′
s ∈ ker A′′

s we have

∑
y,y ′∈V ′′

s (A)\F (A′′
s)

d ′′
s (y)d ′′

s (y ′)
∣∣∣∣P

[
x ′′
s,y = x ′′

s,y ′ = 0 | A
]
− 1

4

∣∣∣∣=
∑

y,y ′∈Vs(A)\F (A)

ds(y)ds(y ′)
∣∣∣∣P

[
xs,y = xs,y ′ = 0 | A

]− 1

4

∣∣∣∣ .

Therefore, if U ∩E ∩R occurs, then so does the event

S =
{ ∑

y,y ′∈V ′′
s (A)\F (A′′

s)

d ′′
s (y)d ′′

s (y ′)
∣∣∣∣P

[
x ′′
s,y = x ′′

s,y ′ = 0 | A
]
− 1

4

∣∣∣∣<
( ∑

y∈V ′′
s (A)\F (A′′

s)

d ′′
s (y)

)2

log−3 n

}
.

To complete the proof, consider the random variable

X =
∑

y∈V ′′
s (A)\F (A′′

s) d ′′
s (y)1

{
x ′′
s,y = 0

}

∑
y∈V ′′

s (A)\F (A′′
s) d ′′

s (y)
.

Then on U ∩E ∩R we have E[X | A] ∼ 1/2 because x ′′
s,y = 0 with probability 1/2 for every y ∈V ′′

s (A)\F (A′′
s). More-

over, because U ∩E ∩R ⊆S the conditional second moment works out to be E[X 2 | A] ∼ 1/4. Hence, Chebyshev’s
inequality shows that P [|X −1/2| < ε/4 | A] = 1−o(1). In particular, on U ∩E ∩R there exists a vector ξ ∈ ker A′′

s

such that
∣∣∣∣∣∣

∑
y∈V ′′

s (A)\F (A′′
s) d ′′

s (y)1
{
ξ′′y = 0

}

∑
y∈V ′′

s (A)\F (A′′
s) d ′′

s (y)
− 1

2

∣∣∣∣∣∣
< ε

4
.

Recalling the definition of the event (8.36), we conclude that ξ ∈Kε and thus Kε 6= ;.

Acknowledgment. We are grateful to Jane Gao for a helpful conversation at the beginning of this project that
brought the two-peaked nature of the functionΦd to our attention.
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[26] P. Erdős, A. Rényi: On the evolution of random graphs. Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960) 17–61.
[27] E. Friedgut: Sharp thresholds of graph properties, and the k-SAT problem. J. AMS 12 (1999) 1017–1054.
[28] J. Huang: Invertibility of adjacency matrices for random d-regular graphs. arXiv:1807.06465.
[29] M. Ibrahimi, Y. Kanoria, M. Kraning, A. Montanari: The set of solutions of random XORSAT formulae. Annals of Applied Probability 25

(2015) 2743–2808.
[30] V. Kolchin: Consistency of a system of random congruences. Discrete Math. Appl. 3 (1993) 103–113.
[31] V. Kolchin: Random graphs and systems of linear equations in finite fields. Random Structures and Algorithms 5 (1995) 425–436.
[32] J. Komlós and E. Szemerédi: Limit distributions for the existence of Hamilton circuits in a random graph. Discrete Mathematics 43 (1983)

55–63.
[33] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborová: Gibbs states and the set of solutions of random constraint

satisfaction problems. Proc. National Academy of Sciences 104 (2007) 10318–10323.
[34] M. Mézard, A. Montanari: Information, physics and computation. Oxford University Press 2009.
[35] M. Mézard, F. Ricci-Tersenghi, R. Zecchina: Two solutions to diluted p-spin models and XORSAT problems. Journal of Statistical Physics

111 (2003) 505–533.
[36] G. Miller, G. Cohen: The rate of regular LDPC codes. IEEE Transactions on Information Theory 49 (2003) 2989–2992.
[37] M. Molloy: The freezing threshold for k-colourings of a random graph. J. ACM 65 (2018) #7
[38] M. Molloy, B. Reed: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6 (1995) 161–179.
[39] M. Molloy, R. Restrepo: Frozen variables in random boolean constraint satisfaction problems. Proc. 24th SODA (2013) 1306–1318.
[40] A. Montanari: Estimating random variables from random sparse observations. European Transactions on Telecommunications 19(4)

(2008) 385–403.
[41] B. Pittel, J. Spencer, N. Wormald: Sudden emergence of a giant k-core in a random graph. J. Combin. Theory Ser. B, 67 (1996) 111–151.
[42] B. Pittel, G. Sorkin: The satisfiability threshold for k-XORSAT. Combinatorics, Probability and Computing 25 (2016) 236–268.
[43] M. Wainwright, E. Maneva, E. Martinian: Lossy source compression using low-density generator matrix codes: analysis and algorithms.

IEEE Transactions on Information theory 56 (2010) 1351–1368.
[44] L. Zdeborová, F. Krzakala: Statistical physics of inference: thresholds and algorithms. Advances in Physics 65 (2016) 453–552.

41

Appendix C. 157



APPENDIX A. THE PINNING OPERATION AND THE OVERLAP

A.1. Proof of Proposition 2.11. Let A be an m×n-matrix over F2 and let s1, s2, . . . ∈ [n] be a sequence of uniformly
distributed random variables, mutually independent and independent of all other sources of randomness. Further,
for an integer t ≥ 0 let A[t ] be the matrix obtained by adding t more rows to A such that the j -th new row contains
precisely one non-zero entry in position s j . The proof of Proposition 2.11 is based on the following fact.

Lemma A.1 ([15, Lemma 3.1]). For ε > 0,` > 0 let T = T (ε,`) = d4`3/ε4e+1. Then for all m,n > 0 and all m ×n-
matrices A over F2 the following is true. Draw t ∈ [T ] uniformly and choose x ∈ ker A[t ] randomly. Then

∑
i1,...,i`∈[n]

σ∈F`2

E

∣∣∣∣∣P
[

x i1 =σ1, . . . , x i` =σ` | A[t ]
]−

∏̀
h=1

P
[

x ih =σh | A[t ]
]
∣∣∣∣∣< εn`.

To prove Proposition 2.11 we will combine Lemma A.1 with the observation that the random matrix A is essentially
invariant under the random perturbation required by Lemma A.1. To be precise, let Z be the set of all indices i ∈ [n]
such that Ai j = 0 for all j ∈ [n]. Further, for an integer t ≥ 0 let A 〈t〉 be the matrix obtained from A as follows. If
|Z | ≤ t , then A 〈t〉 = A. Otherwise draw a family z1, . . . , z t ∈ Z of t distinct row indices uniformly at random and
obtain A 〈t〉 from A by replacing the i h-th entry in row zh by one for h = 1, . . . , t , where i h is chosen uniformly at
random from [n] independently for each h ∈ [t ]. Thus, instead of attaching t new rows as in Lemma A.1 we simply
insert a single non-zero entry into t random all-zero rows of A.

Lemma A.2. Let d > 0, let T = o(
p

n) be an integer and choose t ∈ [T ] uniformly. Then dTV(A, A 〈t〉) = o(1).

Proof. Because each entry of A is non-zero with probability d/n independently, the number X of rows of A with
at most one non-zero entry has distribution Bin(n, (1−d/n)n +d(1−d/n)n−1). Further, given X the number X 0 of
all-zero rows has a binomial distribution

X 0 ∼ Bin

(
X ,

(1−d/n)n

(1−d/n)n +d(1−d/n)n−1

)
.

Let A | (X , X 0) denote the distribution of A given X , X 0. We have X ≥ exp(−d)n w.h.p. Given X ≥ exp(−d)n the
conditional variance satisfies Var[X 0 | X ] =Ω(n). Therefore, the local limit theorem for the binomial distribution
implies that A | (X , X 0) and A | (X , X 0 − t ) have total variation distance o(1). Furthermore, A | (X , X 0 − t ) is dis-
tributed precisely as A 〈t〉. �

Proof of Proposition 2.11. The proposition is an immediate consequence of Lemmas A.1 and A.2. �

A.2. Proof of Corollary 2.12. Due to Proposition 2.11 we may assume that A satisfies

1

n2

n∑
h,i=1

|P [xh =σ1, x i =σ2 | A]−P [xh =σ1 | A]P [x i =σ2 | A]| = o(1) for all σ1,σ2 ∈ F2. (A.1)

Hence, fix x ∈ ker A. For σ ∈ F2 let I (x,σ) = {i ∈ [n] \F (A) : xi =σ}. Further, define

Rσ(x, x ′) = 1

n

∑
i∈I (x,σ)

1
{

x ′
i =σ

}
.

Then Fact 2.17 implies that

E
[
Rσ(x, x ′) | A

]= |I (x,σ)|
2n

. (A.2)

Moreover, (A.1) implies that Var
[
Rσ(x, x ′) | A

] = o(1). Combining this bound with (A.2) and applying Chebyshev’s
inequality, we conclude that

E

[∣∣∣∣Rσ(x, x ′)− |I (x,σ)|
2n

∣∣∣∣ | A
]
= o(1). (A.3)

Further, since R(x, x ′) = f (A)+∑
σ∈F2 Rσ(x, x ′), (A.3) shows that

E
[∣∣R(x, x ′)− (

f (A)+ (1− f (A))/2
)∣∣ | A

]= o(1) for every x ∈ ker A. (A.4)

Averaging (A.4) on x ∈ ker A completes the proof.
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APPENDIX B. PROOF OF LEMMA 2.13

We first note that since in the pairing model we must connect variable nodes with check nodes, certainly Gs cannot
contain any loops. We therefore need to show that there is at least a constant probability of creating no double-
edges.

Suppose that d1, . . . ,dn are the degrees of variable nodes in Gs(A) (where we set di = 0 if the corresponding
node is not in Gs(A)), and similarly let d̂1, . . . , d̂n be the degrees of check nodes. Let m := ∑n

i=1 di = ∑n
i=1 d̂i . It

follows from Proposition 2.6 that w.h.p. m =Θ(n). It also follows from the fact that the degree of a node in Gs(A)
are necessarily at most its degree in G(A) that w.h.p.

∑n
i=1 d 2

i ,
∑n

i=1 d̂ 2
i = O(n). In what follows, we will implicitly

condition on these high probability events.
Let X = X (d1, . . . ,dn , d̂1, . . . , d̂n) be the random variable counting the number of double-edges in Gs. Then we

have

E[X ] =
n∑

i=1

n∑
j=1

2

(
di

2

)(
d̂ j

2

)
1

m(m −1)
=O(1).

Similarly, it is an easy exercise to show that for any integer ` ∈ N the `-th moment of X satisfies E[(X )`] = (1+
o(1))E[X ]`. Therefore X is asymptotically distributed as a Po(E[X ]) random variable, and we have P[X = 0] →
exp(−E[X ]) > 0, as required.

To show that Gs conditioned on being simple has the same distribution as Gs(A), we simply need to observe that
every simple bipartite graph with the appropriate distribution is equally likely to be Gs(A). To see this, consider
two Tanner graphs S,S′ with the same degree distribution, and a Tanner graph H such that Hs = S. Let H ′ be the
Tanner graph obtained from H by replacing S with S′, but otherwise leaving edges unchanged. Then the peeling
process used to obtain the slush is completely identical on H \ S and H ′ \ S′, and therefore H ′

s = S′. Since H , H ′

have the same number of edges, both are equally likely to be G(A). Summing over all possibilities for H such that
Hs = S, we deduce that S,S′ are equally likely to be Gs(A).

APPENDIX C. PROOF OF LEMMA 2.14

For the first part of the lemma, notice that |∂v | is distributed as a binomial random variable with parameter n and
p for any v ∈V (A)∪C (A). Suppose v ∈V (A) and let c = ⌈

log(n)/2
⌉

. Then we have

P [∃v : |∂v | ≥ c] ≤ n

(
n

c

)
pc ≤ n

(
n

c

)(
d

n

)c

≤ n

(
ed

c

)c

= exp

[(
1− log2

2

)
logn − log(n)

2
· (loglog(n)

)+O(loglogn)

]
= o(1). (C.1)

Similarly, for a constraint a ∈C (A) we have

P [∃a : |∂a| ≥ c] = o(1). (C.2)

Combining (C.1) and (C.2) completes the proof of the first part. For the second part, let x0 be an arbitrary variable
node. Then,

E

[ ∑
x∈V (A)

1

`!

∏̀
j=1

(|∂x|− j +1)

]
= n

`!
E

[∏̀
j=1

(|∂x0|− j +1)

]
= n

`!

n!

(n −`)!
p` ≤ d`n

`!
.

Hence, the assertion follows from Markov’s inequality.

APPENDIX D. PROOF OF LEMMA 2.18

Assume, without loss of generality, that 0 < c1 < 10−5. Moreover, let c0 > 0 , define a = exp(c1) > 1 and log(m)
a n :=

loga . . . loga n, where the logarithm with basis a is taken m times. For any m ∈N (or more precisely for any m such
that we have sm > 0), define

sm := 6log(m)
a n.

Let us set q j := max
{

wi : i ∈ P j
}
, and define the event

E j ,m := {
sm+1 < max

{
q j , |P j |

}≤ sm
}

and the set
Em := {

j : E j ,m holds
}

.
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Note in particular that
⋃

m′≥m E j ,m′ is the event that |P j | ≤ sm and wi ≤ sm for all i ∈ P j , i.e. both the partition class
and all associated weights are at most sm . We also observe that

⋃∞
m=1 Em = [`]. We further define

xm := 1

n

∑
j∈Em

( ∑
i∈P j

wi

)2

,

so in particular we have

x =
∞∑

m=1
xm . (D.1)

We therefore aim to bound each xm . Let m0 = m0(n) be the largest integer such that sm0 ≥ 100log(1/c1)
c1

.
We first consider the case when m ≤ m0. Observe that if j ∈ Em , then we have |P j | ≤ sm and for all i ∈ P j we have

wi ≤ sm , and therefore ( ∑
i∈P j

wi

)2

≤ s4
m . (D.2)

On the other hand, we can bound |Em | from above by making a case distinction. Let us define

E (1)
m := {

j : E j ,m holds and q j ≥ |P j |
}

,

E (2)
m := {

j : E j ,m holds and q j ≤ |P j |
}

.

Case 1: q j ≥ |P j |.
Then we have wi ≥ sm+1 for some i ∈ P j , but since this can hold for at most c0a−sm+1 n ≤ c0s−5

m n values of i , we
have

|E (1)
m | ≤ c0s−5

m n.

Case 2: q j ≤ |P j |.
Then we have |P j | ≥ sm+1, which can also only hold for at most c0a−sm+1 n ≤ c0s−5

m n values of j , so

|E (2)
m | ≤ c0s−5

m n.

Thus we have |Em | ≤ 2c0s−5
m n and together with (D.2) we deduce that xm ≤ 2c0s−1

m . Thus (D.1) gives

x ≤ 2c0

m0∑
m=1

1

sm
+

∞∑
m=m0+1

xm . (D.3)

We further observe that for any m ≤ m0 we have

sm

sm−1
=

6loga

( sm−1
6

)

sm−1
≤ 6loga sm−1

sm−1
≤ 6loga sm0

sm0

.

We have
6loga sm0

sm0

= 6

100log(1/c1)

(
log100+ log(1/c1)+ loglog(1/c1)

)
.

In order to bound the ratio
6loga sm0

sm0
, we define the function

g (c1) = 6

10

(
log(100)+ log

(
1

c1

)
+ loglog

(
1

c1

))
− log

(
1

c1

)
.

We have limc1→0 g (c1) =−∞ and g (10−5) <−0.375985860. Also,

g ′(c1) = 2

5c1
− 3

5c1 log(1/c1)
> 0,

so g is increasing in that interval and g (c1) < 0. Thus, we have
6loga sm0

sm0
< 1/10 because

6loga sm0
sm0

< 1/10 is equivalent

to g (c1) < 0. Therefore,
m0∑

m=1

1

sm
≤ 1

sm0

(
1+ 1

10
+ 1

100
+ . . .

)
≤ 10−9. (D.4)
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It remains to estimate
∑∞

m=m0+1 xm , for which we now restrict attention to i and j such that wi , |P j | ≤ sm0+1 ≤
100 log(1/c1)

c1
. Then we have

(∑
i∈P j

wi

)2
≤ 108

(
log(1/c1)

c1

)4
, and we trivially have |⋃m≥m0+1 Em | ≤ `≤ n, therefore

∞∑
m=m0+1

xm ≤ 108
(

log(1/c1)

c1

)4

(D.5)

and substituting (D.4) and (D.5) into (D.3) gives

x ≤ 2 · c0 ·10−9 +108
(

log(1/c1)

c1

)4

.

For the case c1 ≥ 10−5, choose c ′1 such that c ′1 ≤ 10−5, then c0 exp(−c1t ) ≤ c0 exp(−c ′1t ). Thus, by considering the
pair (c0,c ′1) and the above reasoning we get

c2 = 2 · c0 ·10−9 +108
(

log(1/c ′1)

c ′1

)4

.
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THE FULL RANK CONDITION FOR SPARSE RANDOM MATRICES

AMIN COJA-OGHLAN, PU GAO, MAX HAHN-KLIMROTH, JOON LEE, NOELA MÜLLER, MAURICE ROLVIEN

ABSTRACT. We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the
rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero
entries and {0,1}-matrices over the rationals. The sufficient condition is generally necessary as well. MSc: 60B20, 15B52

1. INTRODUCTION

1.1. Background and motivation. Few subjects in combinatorics have had as profound an impact on other dis-
ciplines as combinatorial random matrix theory. Prominent applications include powerful error correcting codes
called low-density parity check codes [43], data compression [1, 48] and hashing [19]. Needless to mention, ran-
dom combinatorial matrices are of keen interest to statistical physicists, too [36]. It therefore comes as no surprise
that the subject has played a central role in probabilistic combinatorics since the early days [27, 28, 29, 30]. The
current state of affairs is that the theory of dense random matrices is significantly more advanced than that of
sparse ones with a bounded average number of non-zero entries per row or column [46, 47]. This is in part be-
cause concentration techniques apply more easily in the dense case. Another reason is that the study of sparse
random matrices is closely tied to the investigation of satisfiability thresholds of random constraint satisfaction
problems, an area where many fundamental questions still await a satisfactory solution [4].

Perhaps the most basic question to be asked about any random matrix model is whether the resulting matrix
will likely have full rank. This paper contributes a succinct sufficient condition that covers a broad range of sparse
random matrix models. As we will see, the condition is essentially necessary as well. The main result can be seen
as a satisfiability threshold theorem as the full rank property is equivalent to a random linear system of equations
possessing a solution w.h.p. This formulation generalises a number of prior results such as the satisfiability thresh-
old theorem for the random k-XORSAT problem, one of the most intensely studied random constraint satisfaction
problems (e.g., [2, 19, 21, 25, 40]). In addition, the main theorem covers other important random matrix models,
including those that low-density parity check codes rely on [43].

The classical approach to tackling the full rank problem is the second moment method [3, 4]. This technique
was pioneered in the seminal work on the k-XORSAT threshold of Dubois and Mandler [21]. Characteristic of
this approach is the emergence of complicated analytic optimisation problems that encode entropy-probability
trade-offs resulting from large deviations problems. Tackling these optimisation problems turns out to be rather
challenging even in relatively simple special cases such as random k-XORSAT, as witnessed by the intricate cal-
culations that Pittel and Sorkin [40] and Goerdt and Falke [23] had to go through. For the general model that we
investigate here this proof technique thus appears futile.

We therefore pursue a totally different proof strategy, largely inspired by ideas from spin glass theory [36, 37].
In statistical physics jargon, the second moment method constitutes an “annealed” computation. This means
that we effectively average over all random matrices, including atypical specimens apt to boost the average. By
contrast, the present work relies on a “quenched” strategy based on a coupling argument that implicitly discards
such pathological events. In effect, we will show that a truncated moment calculation confined to certain benign
“equitable” solutions suffices to determine the satisfiability threshold. This part of the proof is an extension of prior
work of (some of) the authors on the normalised rank and variations on the random k-XORSAT problem [6, 10]. In
addition, to actually compute the truncated second moment we need to determine the precise expected number
of equitable solutions. To this end, we devise a new proof ingredient that combines local limit theorem techniques
with algebraic ideas, particularly the combinatorial analysis of certain integer lattices. This technique can be seen
as a generalisation of an argument of Huang [24] for the study of adjacency matrices of d-regular random graphs.

Amin Coja-Oghlan is supported by DFG CO 646/3 and DFG CO 646/5. Max Hahn-Klimroth is supported by DFG CO 646/5. Noela Müller is
supported by NWO Gravitation grant NETWORKS-024.002.003.
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Let us proceed to present the main results of the paper. The first theorem deals with random matrices over finite
fields. As an application we obtain a result on sparse {0,1}-matrices over the rationals.

1.2. Results. We work with the comprehensive random matrix model from [10]. Hence, let d ≥ 0, k ≥ 3 be in-
dependent integer-valued random variables such that E[d 2+η]+ E[

k2+η] < ∞ for an arbitrarily small η > 0. Let
(d i ,k i )i≥1 be independent copies of (d ,k) and set d = E[d ],k = E[k]. Moreover, let d and k be the greatest common
divisors of the support of d and k , respectively. Further, let n > 0 be an integer divisible by k and let m be a Poisson
variable with mean dn/k, independent of (d i ,k i )i . Routine arguments reveal that the event

n∑
i=1

d i =
m∑

j=1
k j (1.1)

occurs with probability at least Ω(n−1/2) [10, Proposition 1.7]. Given (1.1) let G = Gn(d ,k) be a simple random
bipartite graph on a set {a1 . . . , am } of check nodes and a set {x1, . . . , xn} of variable nodes such that the degree of ai

equals k i and the degree of x j equals d j for all i , j . Following coding theory jargon, we refer to G as the Tanner
graph. The edges of G are going to mark the positions of the non-zero entries of the random matrix. The entries
themselves will depend on whether we deal with a finite field or the rationals.

1.2.1. Finite fields. Suppose that q ≥ 2 is a prime power, let Fq signify the field with q elements and let χ be a
random variable that takes values in the set F∗q = Fq \ {0} of units of Fq . Moreover, let (χi , j )i , j≥1 be copies of χ,
mutually independent and independent of the d i ,k i , m and G. Finally, let A = An(d ,k ,χ) be the m ×n-matrix
with entries

Ai , j = 1
{

ai x j ∈ E(G)
} ·χi , j .

Hence, the i -th row ofA contains k i non-zero entries and the j -th column contains d j non-zero entries.
The following theorem provides a sufficient condition forA having full row rank. The condition comes in terms

of the probability generating functions D(x) and K (x) of d and k . Since E[d 2]+E[k2] <∞, we may define

Φ : [0,1] →R, z 7→ D
(
1−K ′(z)/k

)− d

k

(
1−K (z)− (1− z)K ′(z)

)
. (1.2)

Theorem 1.1. If q and d are coprime and

Φ(z) <Φ(0) for all 0 < z ≤ 1, (1.3)

thenA has full row rank over Fq w.h.p.

Observe that the functionΦ does not depend on q . Hence, neither does (1.3).
The sufficient condition (1.3) is generally necessary, too. Indeed, [10, Theorem 1.1] determines the likely value

of the normalised rank ofA:

rk(A)

n
P−→ 1− max

z∈[0,1]
Φ(z) as n →∞. (1.4)

Since k ≥ 3, the definition (1.2) ensures that Φ(0) = 1−d/k and thus nΦ(0) ∼ n −m w.h.p. Hence, (1.4) implies
that rk(A) ≤ m −Ω(n) w.h.p. unless Φ(z) attains its maximum at z = 0. In other words, A has full row rank only if
Φ(z) ≤Φ(0) for all 0 < z ≤ 1. Indeed, in Section 1.3 we will discover examples that requite a strict inequality as in
(1.3). The condition that q and d be coprime is generally necessary as well, as we will see in Example 1.7 below.

Let us emphasise that (1.4) does not guarantee that A has full row rank w.h.p. even if (1.3) is satisfied. Rather
due to the normalisation on the l.h.s. (1.4) only implies the much weaker statement rk(A) = m−o(n) w.h.p. Hence,
in the case that (1.3) is satisfied, Theorem 1.1 improves over the asymptotic estimate (1.4) rather substantially.
Unsurprisingly, this stronger result also requires a more delicate proof strategy.

1.2.2. Zero-one matrices over the rationals. Apart from matrices over finite fields, the rational rank of sparse ran-
dom {0,1}-matrices has received a great deal of attention [46, 47]. The random graph G naturally induces a {0,1}-
matrix, namely the m ×n-biadjacency matrix B= B(G). Explicitly, Bi j = 1{ai x j ∈ E(G)}. As an application of Theo-
rem 1.1 we obtain the following result.

Corollary 1.2. If (1.3) is satisfied then the random matrix B has full row rank overQw.h.p.
2
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FIGURE 1. Left: Example 1.3 with D(z) = exp(6.5(z −1)) and K (z) = z7. Middle: Example 1.4 with
D(z) = K (z) = (z3 + z4)/2.
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FIGURE 2. Left: Example 1.5 with D(z) = z3,K (z) = z8. Right: Example 1.6 with D(z) =∑∞
`=1 ζ(3.5)−1z``−3.5 and K (x) = x3.

Since (1.4) holds for random matrices over the rationals as well, Corollary 1.2 is optimal to the extent that B fails
to have full row rank w.h.p. if maxx∈[0,1]Φ(x) >Φ(0). Moreover, in Example 1.4 we will see that B does not generally
have full rank w.h.p. unless x = 0 is the unique maximiser ofΦ.

1.3. Examples. To illustrate the power of Theorem 1.1 and Corollary 1.2 we consider a few instructive special cases
of distributions d ,k ,χ.

Example 1.3 (random k-XORSAT). In random k-XORSAT we are handed a number of independent random con-
straints ci of the type

ci = yi 1 XOR · · · XOR yi k , (1.5)

where each yi j is either one of n available Boolean variables x1, . . . , xn or a negation ¬x1, . . . ,¬xn . The obvious
question is to determine the satisfiability threshold, i.e., the maximum number of random constraints can be sat-
isfied simultaneously w.h.p.

Because Boolean XOR boils down to addition over F2, this problem can be rephrased as the full rank problem
for the random matrix A with q = 2, k = k fixed to a deterministic value and d ∼ Po(d) for a parameter d > 0. To
elaborate, because the constraints ci are drawn uniformly and independently, we can think of each as tossing k
balls randomly into n bins that represent x1, . . . , xn . If there are m ∼ Po(dn/k) constraints ci , the joint distribution
of the variable degrees coincides with the distribution of (d 1, . . . ,d n) subject to the condition (1.1). Furthermore,
the random negation patterns of the constraints (1.5) amount to choosing a random right-hand side vector y for
which we are to solveAx = y .

Since the generating functions of d ,k work out to be D(z) = exp(d(z −1)) and K (z) = zk , we obtain

Φd ,k (z) = exp(−d zk−1)− d

k

(
1−kzk−1 + (k −1)zk

)
.

Thus, Theorem 1.1 implies that for a given k ≥ 3 the threshold of d up to which random k-XORSAT is satisfiable
w.h.p. equals the largest d such that

Φd ,k (z) <Φd ,k (0) = 1−d/k for all 0 < z ≤ 1. (1.6)

3
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A few lines of calculus verify that (1.6) matches the formulas for the k-XORSAT threshold derived by combinatorial
methods tailored to this specific case [19, 21, 40, 37]. Theorem 1.1 also encompasses the generalisations to other
finite fields Fq from [6, 23].

Example 1.4 (identical distributions). An interesting scenario arises when d ,k are identically distributed. For
example, suppose that P[d = 3] =P[d = 4] =P[k = 3] =P[k = 4] = 1/2. Thus, D(z) = K (z) = (z3 + z4)/2 and

Φ(z) = 256z12 +768z11 +864z10 −1808z9 −4959z8 −3780z7 +6111z6 +10584z5 −3234z4 −4802z3

4802
.

This function attains two identical maxima, namely Φ(0) = Φ(1) = 0. Since the degrees k i ,d i are chosen inde-
pendently subject only to (1.1), the probability that A has more rows than columns works out to be 1/2+o(1). As
a consequence, A cannot have full row rank w.h.p. This example shows that the condition that 0 be the unique
maximiser ofΦ(x) is generally necessaryA to ensure full row rank. The same applies to the rational rank of B.

Example 1.5 (fixed d ,k). Suppose that both d = d ,k = k ≥ 3 are constants rather than genuinely random. Then

Φ(z) =
(
1− zk−1

)d
− d

k

(
1−kzk−1 + (k −1)zk

)
.

Clearly, A cannot have full row rank unless d ≤ k, while Theorem 1.1 implies that A has full row rank w.h.p. if
d < k. This result was previously established via the second moment method [38]. But in the critical case d = k the
function Φ(z) attains its identical maxima at z = 0 and z = 1. Specifically, 0 = Φ(0) = Φ(1) > Φ(z) for all 0 < z < 1.
Hence, Theorem 1.1 does not cover this special case. Nonetheless, Huang [24] proved that the random {0,1}-matrix
B has full rational rank w.h.p. The proof is based on a delicate moment computation in combination with a precise
local expansion around the equitable solutions.

Example 1.6 (power laws). Let P(d = `) ∝ `−α for some α> 3 and k = k ≥ 3. Thus,

D(z) = 1

ζ(α)

∞∑
`=1

z`

`α
, K (z) = zk , Φ(z) = D

(
1− zk−1

)
− ζ−1(α)ζ(α−1)

k

(
1−kzk−1 + (k −1)zk

)
.

Since

Φ′(z) =−(k −1)zk−2D ′
(
1− zk−1

)
+ ζ−1(α)ζ(α−1)

k

(
k(k −1)(zk−1 − zk−2)

)
< 0,

the functionΦ(z) is strictly decreasing on (0,1). Therefore, (1.3) is satisfied.

Example 1.7 (zero row sums). Theorem 1.1 requires the assumption that q and the g.c.d. d of the support of d be
coprime. This assumption is indeed necessary. To see this, consider the case that q = 2, χ = 1, d = 4 and k = 8
deterministically. Then the rows ofA always sum to zero. Hence,A cannot have full row rank.

2. OVERVIEW

In contrast to much of the prior work on the rank problem, random k-XORSAT and random constraint satisfaction
problems generally, the proofs of the main results do not rely on an “annealed” second moment computation.
Such arguments appear to be far too susceptible to large deviations effects to extend to as general a random matrix
model as we deal with here. Instead, we proceed by way of a “quenched” argument that enables us to discard
pathological events. As a result, it suffices to carry out the moment calculation in the particularly benign case of
“equitable” solutions.

This proof strategy draws on but substantially generalises tools that were developed towards the approximate
rank formula (1.4) and variations on random k-XORSAT [6, 10]. In addition, to actually prove that A has full rank
with high probability we will need to carry out a meticulous, asymptotically exact calculation of the expected num-
ber of equitable solutions. A key element of this analysis will be a delicate analysis of the lattices generated by cer-
tain integer vectors that encode conceivable equitable solutions. This part of the proof, which generalises a part
of Huang’s argument for the adjacency matrices of random d-regular graphs [24], combines local limit techniques
with a whiff of linear algebra.

To describe the proof strategy in detail let us first explore the “annealed” path, discover its pitfalls and then
apply the lessons learned to develop a workable “quenched” strategy. The bulk of the proof deals with the random
matrix model from Section 1.2.1 over the finite field Fq ; the rational case from Corollary 1.2 comes out as an easy
consequence.

4
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FIGURE 3. The r.h.s. of (2.4) for d = 2.5 (blue) and d = 2.7 (red) in the interval [0, 1
2 ].

In order to reduce fluctuations we are going to condition on the σ-algebra A generated by m, (k i )i≥1, (d i )i≥1

and by the numbers m(χ1, . . . ,χ`) of checks of degree `≥ 3 with coefficients χ1, . . . ,χ` ∈ F∗q . We write PA =P [ · |A]
and EA = E [ · |A] for brevity.

2.1. Moments and deviations. We already alluded to how the full rank problem for the random matrix A over Fq

can be viewed as a random constraint satisfaction problem. Indeed, suppose we draw a right-hand side vector
y ∈ Fm

q independently of A. Then A has full row rank w.h.p. iff the random linear system Ax = y admits a solution
w.h.p. For if rkA< m, then the imageAFn

q is a proper subspace of Fm
q and thus the random linear systemAx = y has

a solution with probability at most 1−1/q . Naturally, the random linear system is nothing but a random constraint
satisfaction problem with m constraints and n variables.

Over the past two decades the second moment method has emerged as the default approach to pinpointing
satisfiability thresholds of random constraint satisfaction problems [3, 4]. Indeed, one of the first success stories
was the random 3-XORSAT problem, which boils down directly to a full rank problem over F2 [21]. In fact, as we
saw in Example 1.3, to mimic 3-XORSAT we just set q = 2, d = Po(d) for some d > 0 and k = 3 deterministically. In
addition, draw y ∈ Fm

2 uniformly and independently of everything else.
We try the second moment method on the number Z = Z (A, y) of solutions to Ax = y given A. Since y is

independent ofA, for any fixed vector x ∈ Fn
2 the eventAx = y has probability 2−m . Consequently,

EA[Z ] = 2n−m . (2.1)

Hence, (2.1) recovers the obvious condition that we cannot have more rows than columns. Since m ∼ Po(dn/3),
(2.1) boils down to d < 3.

The second moment method now rests on the hope that we may be able to show that EA[Z 2] ∼ EA[Z ]2. Then
Chebyshev’s inequality would imply Z ∼ EA[Z ] w.h.p., and thus, in light of (2.1), thatAx = y has a solution w.h.p.

Concerning the computation of EA[Z 2], because the set of solutions is either empty or a translation of the
kernel, we obtain

EA[Z 2] =
∑

σ,τ∈Fn
q

PA
[
Aσ=Aτ= y

]=
∑

σ,τ∈Fn
q

PA
[
Aσ= y

]
PA [σ−τ ∈ kerA] = EA [Z ]EA|kerA|. (2.2)

To calculate the expected kernel size we notice that the probability that a vector x is in the kernel depends on its
Hamming weight. For instance, the zero vector always belongs to the kernel, while the all-ones vector 1 does not
w.h.p. More systematically, invoking inclusion/exclusion, we find that for a vector x of Hamming weight w we have
PA [x ∈ kerA] ∼

[
(1+ (1−2w/n)3)/2

]m
. Since the total number of such vectors comes to

(n
w

)
, we obtain

EA|kerA| =
n∑

w=0

(
n

w

)(
1+ (1−2w/n)3

2

)m

. (2.3)

Taking logarithms, invoking Stirling’s formula and parametrising w = zn, we simplify (2.3) to

log EA|kerA| ∼ n · max
z∈[0,1]

−z log z − (1− z) log(1− z)+ m

n
log

1+ (1−2z)3

2
(cf. [21]). (2.4)

If we substitute z = 1/2 into (2.4), the expression further simplifies to (n − m) log2. Hence, if the maximum is
attained at another value z 6= 1/2, then (2.4) yields EA|kerA|À 2n−m and the second moment method fails.
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Figure 3 displays (2.4) for d = 2.5 and d = 2.7. While for d = 2.5 the function takes its maximum at z = 1/2, for
d = 2.7 the maximum is attained at z ≈ 0.085. However, the true random 3-XORSAT threshold is d ≈ 2.75 [21]. Thus,
the naive second moment calculation falls short of the real threshold.

How so? The expression (2.4) does not determine the “likely” but the expected size of the kernel, a value prone
to large deviations effects. Indeed, because the number of vectors in the kernel scales exponentially with n, an
exponentially unlikely event that causes an exceptionally large kernel may end up dominating EA|kerA|. Precisely
such an event manifests itself in the left local maxima in Figure 3. Moreover, as we approach the satisfiability
threshold such large deviations issues are compounded by a diminishing error tolerance. Indeed, while for d = 2.5
the value at z = 1/2 just swallows the spurious maximum, this is no longer the case for d = 2.7.

For random k-XORSAT Dubois and Mandler managed to identify the precise large deviations effect at work. It
stems from fluctuations of a densely connected sub-graph of G called the 2-core, obtained by iteratively pruning
nodes of degree less than two along with their neighbours (if any). Dubois and Mandler pinpointed the 3-XORSAT
threshold by applying the second moment method to the minor A(2) induced by G(2) while conditioning on the
2-core having its typical dimensions.

The technical difficulty is that the rows ofA(2) are no longer independent. Indeed,A(2) is distributed as a random
matrix with a truncated Poisson d (2) ∼ Po≥2(d ′) with d ′ = d ′(d ,k) > 0 as the distribution of the variable degrees.
Unfortunately, the given-degrees model leads to a fairly complicated moment computation. Instead of the humble
one-dimensional problem from (2.4) we now face parameters (zi )i≥2 that gauge the fraction of variables of each
possible degree i set to one. Additionally, on the constraint side we need to keep track of the number of equations
with zero and with two variables set to one. Of course, these variables are tied together through the constraint that
the total Hamming weight on the variable side match that on the constraint side.

With a deal of diligence Dubois and Mandler managed to solve this optimisation problem. However, even just
the step on to check degrees k > 3 turns out to be tricky because now we need to keep track of all the possible ways
in which a k-ary parity constraint can be satisfied [19, 40]. Yet even these difficulties are eclipsed by those that
result from merely advancing to fields of size q = 3 [23].

Not to mention entirely general degree distributions d ,k and general fields Fq as in Theorem 1.1. The ensuing
optimisation problem comes in terms of variables (zi )i∈suppd that range over the space P (Fq ) of probability distri-
butions on Fq . Additionally, there is a second set of variables (ẑχ1,...,χ` )`∈suppk ,χ1,...,χ`∈suppχ to go with the rows ofA
whose non-zero entries are precisely χ1, . . . ,χ`. These variables range over probability distributions on solutions
σ ∈ F`q to χ1σ1 +·· ·+χ`σ` = 0. In terms of these variables we would need to solve

max
∑
σ∈Fq

E
[
(d −1)zd (σ) log zd (σ)

]− d

k
E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

ẑχ1,1,...,χ1,k
(σ1, . . . ,σk ) log ẑχ1,1,...,χ1,k

(σ1, . . . ,σk )


 (2.5)

s.t. E[d zd (τ)] = E




∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

k1 {σ1 = τ} ẑχ1,1,...,χ1,k
(σ1, . . . ,σk )


 for all τ ∈ Fq .

As in random 3-XORSAT, a simple calculation shows that the value of (2.5) evaluated at the “equitable” solution

zi (σ) = q−1 ẑχ1,...,χ` (σ1, . . . ,σ`) = q1−` for all i ,χ1, . . . ,χ` (2.6)

hits the value (1−d/k) log q , which matches the normalised first moment n−1 logEA[Z ].
In summary, the second moment method hardly seems like a promising path towards Theorem 1.1. Not only

does (2.5) seem unwieldy as even for very special cases of d ,k an analytic solution remains elusive [23]. Even
worse, just in the case of “unabridged” random k-XORSAT large deviations effects may cause spurious maxima.
In effect, even if we could miraculously figure out the precise conditions for (2.5) being attained at the uniform
solution, this would hardly determine for what d ,k the random matrixA actually has full row rank w.h.p.

2.2. Quenching and truncating. The large deviations issues ultimately result from our attempt at computing the
mean of |kerA|, a (potentially) exponential quantity. The mathematical physics prescription is to compute the
expectation of its logarithm instead [36]. In the present algebraic setting this comes down to computing the mean
of the nullity nulA = dimkerA, or equivalently of the rank rkA = n −nulA. This “quenched average” is always
of order O(n) and therefore immune to large deviations effects. In fact, even if on some unfortunate event of
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exponentially small probability exp(−Ω(n)) the kernel ofAwere quite large, the ensuing boost to EA[nulA] remains
negligible.

Yet computing the quenched average EA[nulA] does not suffice to prove Theorem 1.1. Indeed, (1.4) already
provides an asymptotic formula for EA[nulA]. But as we saw due to the normalisation on the l.h.s. (1.4) merely im-
plies that rkA= m −o(n) w.h.p. To actually prove that rkA= m w.h.p. we will combine the quenched computation
with a truncated moment argument calculation. Specifically, we will harness an enhanced version of (1.4) to prove
that under the assumptions of Theorem 1.1 the only combinatorially meaningful solutions to (2.5) asymptotically
coincide with the equitable solution (2.6), around which we will subsequently expand (2.5) carefully.

To carry this programme out, let xA = (xA,i )i∈[n] ∈ Fn
q be a random vector from the kernel of A. Consider the

event

O=
{ ∑
σ,τ∈Fq

n∑
i , j=1

∣∣P[
xA,i =σ, xA, j = τ |A

]−q−2∣∣= o(n2)

}
. (2.7)

Then by Chebyshev’s inequality on O w.h.p. we have

n∑
i=1

1
{

d i = `, xA,i =σ
}=P [d = `]n/q +o(n) for all σ ∈ Fq , ` ∈ suppd .

Hence, on O the only combinatorially relevant value of z`(σ) from (2.5) is the uniform 1/q for every `,σ, because
for every ` asymptotically almost all kernel vectors set about an equal number of variables of degree ` to each of
the q possible values. Thanks to this observation will prove that w.h.p.

EA [Z · 1 {A ∈O}] ∼ EA [Z ] ∼ qn−m and (2.8)

EA
[

Z 2 · 1 {A ∈O}
]∼ EA [Z ]2 , (2.9)

provided that (1.3) is satisfied. Theorem (1.1) will turn out to be an easy consequence of (2.8)–(2.9), and Corol-
lary 1.2 of Theorem 1.1.

Thus, the challenge is to prove (2.8)–(2.9). Specifically, while the second asymptotic equality in (2.8) is easy, the
proof of the first is where we require knowledge of the “quenched average” (1.4). In fact, instead of just applying
(1.4) as is we will need to perform a “quenched” computation for a slightly enhanced random matrix from scratch.
Second, the key challenge towards the proof of (2.9) is to obtain an exact asymptotic equality here, rather than the
weaker estimate EA

[
Z 2 · 1 {A ∈O}

] = O(EA [Z ]2). This will require a meticulous expansion of the second moment
around the uniform solution, which will involve the detailed analysis of the lattices generated by integer vectors
that encode conceivable values of zi , ẑχ1,...,χ` from (2.5).

2.3. The truncated first moment. Let us begin with (2.8). Although we know the approximate nullity (1.4) of A
already, this does not suffice to actually prove that O is a “likely” event. To this end we need to study a slightly
modified matrix instead. Specifically, for an integer t ≥ 0 obtain A[t ] from A by adding t more rows that contain
precisely three non-zero entries. The positions of these non-zero entries are chosen uniformly, mutually indepen-
dently and independently of everything else, and the non-zero entries themselves are independent copies ofχ. We
require the following lower bound on the rank ofA[t ].

Proposition 2.1. If (1.3) is satisfied then there exists δ0 = δ0(d ,k) > 0 such that for all 0 < δ< δ0 we have

liminf
n→∞

1

n
E[nulA[bδnc]] ≤ 1− d

k
−δ. (2.10)

The proof of Proposition 2.1 relies on the Aizenman-Sims-Starr scheme, a coupling argument inspired by spin
glass theory [5]. The technique was also used in [10] to prove the rank formula (1.4). While we mostly follow that
proof strategy and can even reuse some of the intermediate deliberations, a subtle modification is required to
accommodate the additional ternary equations. The details can be found in Section 4.

How does Proposition 2.1 facilitate the proof of (2.8)? Assuming (1.3), we obtain from (1.4) that nulA/n ∼ 1−d/k
w.h.p. Hence, (2.10) shows that nearly each one of the of the additional ternary rows added to A[bδnc] reduces the
nullity. We are going to argue that this is possible only ifA ∈O w.h.p.

To see this, let us think about the kernel of a general M ×N matrix A over Fq for a short moment. Draw x A =
(x A,i )i∈[N ] ∈ ker A uniformly at random. For any given coordinate x A,i , i ∈ [N ] there are two possible scenarios:
either x A,i = 0 deterministically, or x A,i is uniformly distributed over Fq . (This is because if we multiply x A by a
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scalar t ∈ Fq we obtain t x A ∈ ker A.) We therefore call coordinate i frozen if xi = 0 for all x ∈ ker A and unfrozen
otherwise. Let F(A) be the set of frozen coordinates.

If A had many frozen coordinates then adding an extra random row with three non-zero entries could hardly
decrease the nullity w.h.p. For if all three non-zero coordinates fall into the frozen set, then we get the new equation
“for free”, i.e., nulA[1] = nulA. Thus, Proposition 2.1 implies that |F(A)| = o(n) w.h.p. We conclude that xA,i is
uniformly distributed over Fq for all but o(n) coordinates i ∈ [n]. However, this does not yet imply that xA,i , xA, j are
independent for most i , j , as required by O. Yet a more careful argument based on the “pinning lemma” from [10]
does. The proof of the following statement can be found in Section 5.

Proposition 2.2. Assume that (1.3) is satisfied. Then (2.8) holds w.h.p.

2.4. Expansion around the equitable solution. As outlined earlier, now that we know (2.8) we can establish (2.9)
by expanding (2.5) around the uniform distribution (2.6). At first glance, this may not seem entirely immediate
because (2.8) only appears to fix the variables (zi (σ))i ,σ of (2.5) that correspond to the variable nodes. But thanks to
a certain inherent symmetry property the optimal ẑχ1,...,χ` to go with the check nodes end up being nearly equitable
as well. This observation by itself now suffices to show without further ado that

EA[Z 2 · 1{A ∈O}] =O
(
EA[Z · 1{A ∈O}]2) . (2.11)

Yet the estimate (2.11) is not quite precise enough to complete the proof of Theorem 1.1. Indeed, to apply
Chebyshev’s inequality we would need asymptotic equality as in (2.9) rather than just an O( · )-bound; Huang [24]
faced the same issue in the case d = k constant and q prime. The proof of this seemingly innocuous improvement
actually constitutes one of the main technical obstacles that we need to surmount.

As a first step, using a careful local expansion we will show that the dominant contribution to the second mo-
ment actually comes from (z`)` such that

∑
`∈suppd

P [d = `]
∑
σ∈Fq

|z`(σ)−q−1| =O(n−1/2). (2.12)

But even once we know (2.12) a critical issue remains because we allow general distributions of degrees d ,k and
matrix entriesχ. In effect, to estimate the kernel size accurately we need to investigate the conceivable frequencies
of field values that can lead to solutions. Specifically, for an integer k0 ≥ 3 and χ1, . . . ,χk0 ∈ F∗q let

Sq (χ1, . . . ,χk0 ) =
{
σ ∈ Fk0

q :
k0∑

i=1
χiσi = 0

}
(2.13)

comprise all solutions to a linear equation with coefficients χ1, . . . ,χk0 ∈ Fq . For each σ ∈Sq (χ1, . . . ,χk0 ) the vector

σ̂=
(

k0∑
i=1

1 {σi = s}

)

s∈F∗q
∈ZF∗q (2.14)

tracks the frequencies with which the various non-zero field elements appear. Depending on the coefficients
χ1, . . . ,χk0 , the frequency vectors σ̂ may be confined to a proper sub-grid of the integer lattice. For example, in
the case q = k0 = 3 and χ1 =χ2 =χ3 = 1 they span the sub-lattice spanned by

(1
1

)
and

(0
3

)
. The following proposition

characterises the lattice spanned by the frequency vectors for general k0 and χ1, . . . ,χk0 .

Proposition 2.3. Let k0 ≥ 3, let χ1, . . . ,χk0 ∈ F∗q and let Mq (χ1, . . . ,χk0 ) ⊆ ZF
∗
q be the Z-module generated by the

frequency vectors σ̂ for σ ∈ Sq (χ1, . . . ,χk0 ). Then Mq (χ1, . . . ,χk0 ) has a basis b1, . . . ,bq−1 of non-negative integer

vectors with ‖bi‖1 ≤ 3 for all 1 ≤ i ≤ q −1 such that det
(
b1 · · · bq−1

)= q1{χ1=···=χk0 }.

A vital feature of Proposition 2.3 is that the module basis consists of non-negative integer vectors with small `1-
norm. In effect, the basis vectors are “combinatorially meaningful” towards our purpose of counting solutions.
Perhaps surprisingly, the proof of Proposition 2.3 turns out to be rather delicate, with details depending on whether
q is a prime or a prime power, among other things. The details can be found in Section 6.

In addition to the subgrid constraints imposed by the linear equations themselves, we need to take a divisibility
condition into account. Indeed, for any assignmentσ ∈ Fn

q of values to variables the frequencies of the various field
elements s ∈ Fq are divisible by the g.c.d. d of supp(d ), i.e.

d |
n∑

i=1
d i 1 {σi = s} for all s ∈ Fq . (2.15)
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Thus, to compute the expected kernel size we need to study the intersection of the sub-grid (2.15) with the grid
spanned by the frequency vectors σ̂ for σ ∈ Sq (χ1,1, . . . ,χ1,k ). Specifically, by way of estimating the number of
assignments represented by each grid point and calculating the ensuing satisfiability probability, we obtain the
following.

Proposition 2.4. Assume that q and d are coprime and that (1.3) is satisfied. Then (2.9) holds w.h.p.

We prove Proposition 2.4 in Section 7. Combining Propositions 2.1–2.4, we now establish the main theorem.

Proof of Theorem 1.1. The assumption (1.3) implies that 1−d/k = Φ(0) > Φ(1) = 0. Combining Propositions 2.2
and 2.4, we obtain (2.8)–(2.9). Hence, Chebyshev’s inequality implies that Z ≥ qn−m = qn(1−d/k+o(1)) > 0 w.h.p.
Consequently, the random linear systemAx = y has a solution w.h.p., and thus rkA= m w.h.p. �

Proof of Corollary 1.2. Let q be a prime that does not divide d and letχ= 1 deterministically. Obtain the matrix B̄ ∈
Fm×n

q by reading the {0,1}-entries of B as elements of Fq . Then the distribution of B̄ coincides with the distribution

of the random Fq -matrixA. Hence, Theorem 1.1 implies that B̄ has full row rank w.h.p.
Suppose that indeed rk B̄= m. We claim that then the rows of B are linearly independent. Indeed, assume that

z>B= 0 for some vector z = (z1, . . . , zm )> ∈Zm . Factoring out gcd(z1, . . . , zm ) if necessary, we may assume that the
vector z̄ ∈ Fm

q with entries z̄i = zi + qZ is non-zero. Since z>B = 0 implies that z̄>B̄ = 0, the rows of B̄ are linearly

dependent, in contradiction to our assumption that B̄ has full row rank. �

2.5. Discussion and related work. The present proof strategy draws on the prior work [6, 10] on the rank of ran-
dom matrices. Specifically, toward the proof of Proposition 2.1 we extend the Aizenman-Sims-Starr technique
from [10] and to prove Proposition 2.2 we generalise an argument from [6]. Additionally, the expansion around the
centre carried out in the proof of Proposition 2.4 employs some of the techniques developed in the study of satis-
fiability thresholds, particularly the extensive use of local limit theorems and auxiliary probability spaces [12, 13].

The principal new proof ingredient is the asymptotically precise analysis of the second moment by means of the
study of the sub-grids of the integer lattice induced by the constraints as sketched in Section 2.4. This issue that
was absent in the prior literature on variations on random k-XORSAT [6, 10, 15] and on other random constraint
satisfaction problems [12, 13]. However, in the study of the random regular matrix from Example 1.5 Huang [24]
faced a similar issue in the special case d = k constant and χ= 1 deterministically. Proposition 2.3, whose proof is
based on a combinatorial investigation of lattices in the general case, constitutes a generalisation of the case Huang
studied. A further feature of Proposition 2.3 absent in [24] is the explicit `1-bound on the basis vectors. This bound
facilitates the proof of Proposition 2.4, which ultimately carries out the expansion around the equitable solution.

Satisfiability thresholds of random constraint satisfaction problems have been studied extensively in the sta-
tistical physics literature via a non-rigorous technique called the “cavity method”. The cavity method comes in
two installments: the simpler “replica symmetric ansatz” associated with the Belief Propagation message passing
scheme, and the more intricate “replica symmetry breaking ansatz”. The proof of Theorem 1.1 demonstrates that
the former renders the correct prediction as to the satisfiability threshold of random linear equations. By contrast,
in quite a few problems, notoriously random k-SAT, replica symmetry breaking occurs [14, 20].

An intriguing question for future work might be to understand the “critical” case ofΦ that attain their global max
at 0 and another point left open by Theorem 1.1. While Example 1.4 shows that it cannot generally be true that A
has full row rank w.h.p., the regular case where d = k = d are fixed to the same constant provides an intriguing
example. For this scenario Huang proved that the random {0,1}-matrix B has full rank w.h.p. [24]. The proof, based
effectively on a moment computation over finite fields and local limit techniques, also applies to the adjacency
matrices of random d-regular graphs.

While the present paper deals with sparse random matrices with a bounded average number of non-zero entries
in each row and column, the case of dense random matrices has received a great deal of attention, too. Komlós [30]
first shows that dense square random {0,1}-matrices are regular over the rationals w.h.p.; Vu [46] suggested an
alternative proof. The computation of the exponential order of the singularity probability subsequently led to a
series of intriguing articles [26, 44, 45]. By contrast, the singularity probability of a dense square matrix over a
finite field converges to a value strictly between zero and one [31, 32, 34, 35].

Apart from the sparse and dense case, the regime of intermediate densities has been studied as well. Balakin [7]
and Blömer, Karp and Welzl [8] dealt with the rank of such random matrices of intermediate densities over finite
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fields. In addition, Costello and Vu [16, 17] studied the rational rank of random symmetric matrices of an interme-
diate density.

Indeed, an interesting open problem appears to be the extension of the present methods to the symmetric case.
In particular, it would be interesting to see if the present techniques can be used to add to the line of works on the
adjacency matrices of random graphs, which have been approached by means of techniques based on local weak
convergence or Littlewood-Offord techniques [9, 22].

2.6. Organisation. After some preliminaries in Section 3 we begin with the proof of Proposition 2.1 in Section 4.
The proof relies on an Aizenman-Sims-Starr coupling argument, some details of which are deferred to Section 8.
Section 5 deals with the proof of Proposition 2.2. Subsequently we prove Proposition 2.3 in Section 6, thereby
laying the ground for the proof of Proposition 2.4 in Section 7.

3. PRELIMINARIES

Unsurprisingly, the proofs of the main results involve a few concepts and ideas from linear algebra. We mostly
follow the terminology from [10], summarised in the following definition.

Definition 3.1 ([10, Definition 2.1]). Let A be an m ×n-matrix over a field F.

• A set ; 6= I ⊆ [n] is a relation of A if there exists a row vector y ∈ F1×m such that ; 6= supp(y A) ⊆ I .
• If I = {i } is a relation of A, then we call i frozen in A. Let F(A) be the set of all frozen i ∈ [n] and let

f(A) = |F(A)|/n.

• A set I ⊆ [n] is a proper relation of A if I \F(A) is a relation of A.
• For δ> 0, `≥ 1 we say that A is (δ,`)-free if there are no more than δn` proper relations I ⊆ [n] of size |I | = `.

Thus, a relation is set of column indices such that the support of a non-zero linear combination y A of rows of
A is contained in that set of indices. Of course, every single row induces a relation on the column indices where it
has non-zero entries. An important special case is a relation consisting of one coordinate i only. If such a relation
exists, then xi = 0 for all vectors x ∈ ker A, which is why we call such a coordinate i frozen. Furthermore, a proper
relation is a relation that is not just built up of frozen variables. Finally, we introduce the term (δ,`)-free to express
that A has “relatively few” relations of size ` as we will generally employ this term for bounded ` and small δ> 0.

The following observation will aid the Aizenman-Sims-Starr coupling argument, where we will need to study
the effect of adding a few extra rows and columns to a random matrix.

Lemma 3.2 ([10, Lemma 2.4]). Let A,B ,C be matrices of size m ×n, m′×n and m′×n′, respectively, and let I ⊆ [n]
be the set of all indices of non-zero columns of B. Moreover, obtain B∗ from B by replacing for each i ∈ I ∩F(A) the
i -th column of B by zero. Unless I is a proper relation of A we have

nul

(
A 0
B C

)
−nul A = n′− rk(B∗ C ). (3.1)

Apart from Lemma 3.2 we will harness an important trick called the “pinning operation”. The key insight is
that for any given matrix we can diminish the number of short proper relations by simply expressly freezing a few
random coordinates. The basic idea behind the pinning operation goes back to the work of Montanari [39] and
has been used in other contexts [11, 42]. The version of the construction that we use here goes as follows.

Definition 3.3 ([10, Definition 2.2]). Let A be an m ×n matrix and let θ ≥ 0 be an integer. Let i 1, i 2, . . . , i θ ∈ [n] be
uniformly random and mutually independent column indices. Then the matrix A[θ] is obtained by adding θ new
rows to A such that for each j ∈ [θ] the j -th new row has precisely one non-zero entry, namely a one in the i j -th
column.

Proposition 3.4 ([10, Proposition 2.3]). For any δ > 0, ` > 0 there exists Θ0 = Θ0(δ,`) > 0 such that for all Θ > Θ0

and for any matrix A over any field F the following is true. With θ ∈ [Θ] chosen uniformly at random we have
P

[
A[θ] is (δ,`)-free

]> 1−δ.

As a fairly immediate application of Proposition 3.4 we conclude that if the pinning operation applied to a
random matrix over a finite field leaves us with few frozen variables, a decorrelation condition akin to the event O
from (2.7) will be satisfied. For a matrix A we continue to denote by x A a random vector from ker A.
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Corollary 3.5 ([10, Lemma 4.2]). For any ζ> 0 and any prime power q > 0 there exist ξ> 0 and Θ0 > 0 such that for
any Θ>Θ0 for large enough n the following is true. Let A be a m ×n-matrix over Fq . Suppose that for a uniformly
random θ ∈ [Θ] we have E|F(A[θ])| < ξn. Then

∑
σ,τ∈Fq

n∑
i , j=1

E
∣∣P[

x i =σ, x j = τ | A[θ]
]−q−2∣∣< ζn2.

As mentioned earlier, at a key junction of the moment computation we will need to estimate the number of
integer lattice points that satisfy certain linear relations. The following elementary estimate will prove useful.

Lemma 3.6. [33, p. 135] Let M⊆R` be a Z-module with basis b1, . . . ,b`. Then

lim
r→∞

|{x ∈M : ‖x‖ ≤ r }|
vol

({
x ∈R` : ‖x‖ ≤ r

}) = 1

|det(b1 · · ·b`)| .

The definition of the random Tanner graph in Section 1.2.1 provides that G is simple. Commonly it is easier
to conduct proofs for an auxiliary random multigraph drawn from a pairing model and then lift the results to the
simple random graph. This is how we proceed as well. Thus, given (1.1) we let G be the random bipartite graph on
the set {x1, . . . , xn} of variable nodes and {a1, . . . , am } of check nodes generated by drawing a perfect matching Γ of
the complete bipartite graph on

n⋃
i=1

{xi }× [d i ] and
m⋃

i=1
{ai }× [k i ]

and contracting the sets xi × [d i ] and ai × [k i ] of variable/check clones. We also let A be the random matrix to go
with this random multi-graph. Hence,

Ai j =χi , j

k i∑
u=1

d j∑
v=1

1{{(ai ,u), (x j , v)} ∈Γ} .

Routine arguments show that G is simple with a non-vanishing probability.

Proposition 3.7 ([10, Lemma 4.3]). We have P
[
G is simple |∑n

i=1 d i =
∑m

i=1 k i
]=Ω(1).

When working with the random graphs G or G we occasionally encounter the size-biased versions d̂ , k̂ of the
degree distributions defined by

P
[
d̂ = `]= `P [d = `]/d , P

[
k̂ = `]= `P [k = `]/k (`≥ 0). (3.2)

In particular, these distributions occur in the Aizenman-Sims-Starr coupling argument. In that context we will also
need the following crude but simple tail bound.

Lemma 3.8 ([10, Lemma 1.8]). Let (λi )i≥1 be a sequence of independent copies of an integer–valued random variable
λ≥ 0 with E

[
λr ]<∞ for some r > 2. Further, let s be a sequence such that s =Θ(n). Then for all δ> 0,

P

[∣∣∣∣∣
s∑

i=1
(λi −E [λ])

∣∣∣∣∣> δn

]
= o(1/n).

Finally, throughout the article we use the common O( · )-notation to refer to the limit n →∞. In addition, we
will sometimes need to deal with another parameter ε> 0. In such cases we use Oε( · ) and similar symbols to refer
to the double limit ε→ 0 after n →∞.

4. PROOF OF PROPOSITION 2.1

4.1. Overview. The first ingredient of the proof of Proposition 2.1 is a coupling argument inspired by the Aizenman-
Sims-Starr scheme from mathematical physics [5], which also constituted the main ingredient of the proof of the
approximate rank formula (1.4) from [10]. Indeed, the coupling argument here is quite similar to that from [10],
with some extra bells and whistles to accommodate the additional ternary equations. We therefore defer that part
of the proof to Section 8. The Aizenman-Sims-Starr argument leaves us with a variational formula for the rank of
A[bδnc]. The second proof ingredient is to solve this variational problem. Harnessing the assumption (1.3), we will
obtain the explicit expression for the rank provided by Proposition 2.1.

Let us come to the details. As explained in Section 3, we will have an easier time working with the pairing model
versions G , A of the Tanner graph and the random matrix. Moreover, to facilitate the coupling argument we will
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need to poke a few holes, known as “cavities” in physics jargon, into the random matrix. More precisely, we will
slightly reduce the number of check nodes and tolerate a small number of variable nodes xi of degree less than d i .
The cavities will provide the flexibility needed to set up the coupling argument.

Formally, let ε,δ ∈ (0,1) and let Θ ≥ 0 be an integer. Ultimately Θ will depend on ε but not on n or δ. We then
construct the random matrix A [n,ε,δ,Θ] as follows. Let

mε ∼ Po((1−ε)dn/k), mδ ∼ Po(δn), θ ∼ unif([Θ]). (4.1)

The Tanner multigraph G [n,ε,δ,Θ] has variable nodes x1, . . . , xn and check nodes a1, . . . , amε , t1, . . . , tmδ
, p1, . . . , pθ.

To connect them draw a random maximum matching Γ [n,ε] of the complete bipartite graph with vertex classes

V1 =
mε⋃
i=1

{ai }× [k i ] and V2 =
n⋃

j=1

{
x j

}× [d j ].

For every matching edge {(ai ,h), (x j ,`)} ∈Γ[n,ε], h ∈ [k i ],` ∈ [d j ], between a clone of xh and a clone of ai we insert
an ai -x j -edge into G [n,ε,δ,Θ]. Moreover, the check nodes t1, . . . , tmδ

each independently choose three neighbor-
ing variables uniformly with replacement random among {x1, . . . , xn}. Further, check node p` for ` ∈ [θ] is adjacent
to x` only. Finally, to obtain the random (θ+mε+mδ)×n-matrix A [n,ε,δ,Θ] from G [n,ε,δ,Θ] we let

A [n,ε,δ,Θ]pi ,xh = 1 {i = h} (i ∈ [θ],h ∈ [n]), (4.2)

A [n,ε,δ,Θ]ai ,xh =χi ,h

k i∑
`=1

d h∑
s=1

1{(xh , s), (ai ,`)} ∈Γ [n,ε]} (i ∈ [mε],h ∈ [n]), (4.3)

A [n,ε,δ,Θ]ti ,xh =χmε+i ,h

3∑
`=1

1{i i ,` = h} (i ∈ [mδ],h ∈ [n]). (4.4)

Applying the Aizenman-Sims-Starr scheme to the matrix A[n,ε,δ,Θ], we obtain the following variational bound.

Proposition 4.1. There exist δ0 > 0,Θ0(ε) > 0 such that for all 0 < δ< δ0 and anyΘ=Θ(ε) ≥Θ0(ε) we have

limsup
ε→0

limsup
n→∞

1

n
E [nul(A [n,ε,δ,Θ])] ≤ max

α,β∈[0,1]
Φ(α)+ (

exp
(−3δβ2)−1

)
D(1−K ′(α)/k)−δ+3δβ2 −2δβ3. (4.5)

The proof of Proposition 4.1, carried out in Section 8 in detail, resembles that of the rank formula (1.4), except
that we have to accommodate the additional ternary checks ti . Their presence is the reason why the optimisation
problem on the r.h.s. comes in terms of two variables α,β rather than a single variable as (1.4).

To complete the proof of Proposition 2.1 we need to solve the optimisation problem (4.5). This is the single
place where we require thatΦ(z) take its unique global max at z = 0, which ultimately implies that the optimiser of
(4.5) is α=β= 0. This fact in turn implies the following.

Proposition 4.2. For any d ,k that satisfy (1.3) there exists δ0 > 0 such that for all 0 < δ< δ0 we have

max
α,β∈[0,1]

Φ(α)+ (
exp

(−3δβ2)−1
)

D(1−K ′(α)/k)−δ+3δβ2 −2δβ3 = 1− d

k
−δ.

The proof of Proposition 4.2 can be found in Section 4.2. Finally, in Section 4.3 we will see that Proposition 2.1 is
an easy consequence of Propositions 4.1 and 4.2.

4.2. Proof of Proposition 4.2. Let

Φ̃δ(α,β) =Φ(α)+ (
exp

(−3δβ2)−1
)

D(1−K ′(α)/k)−δ+3δβ2 −2δβ3 (α,β ∈ [0,1]).

Assuming (1.3), we are going to prove that for small enough δ,

max
α,β∈[0,1]

Φ̃δ(α,β) = Φ̃δ(0,0) = 1− d

k
−δ, (4.6)

whence the assertion is immediate.
The C 1-function Φ̃δ attains its maximum either at a boundary point of the compact domain [0,1]2 or at a point

where the partial derivatives vanish. Beginning with the former, we consider four cases.
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Case 1: α= 0: we have

Φ̃δ(0,β) = Φ̃δ(0,0)+3δβ2 −2δβ3 − (1−exp
(−3δβ2)). (4.7)

Expanding the exponential function, we see that 3δβ2−2δβ3−(1−exp
(−3δβ2

)
) =−2δβ3+Oδ(δ2β4). Since

−2δβ3 +Oδ(δ2β4) is non-positive for all β ∈ [0,1], (4.7) yields maxβ Φ̃δ(0,β) = Φ̃δ(0,0) for small enough
δ> 0.

Case 2: β= 0: the assumption (1.3) ensures that Φ is maximised in 0. Therefore, as Φ̃δ(α,0) = Φ(α)−δ, the
maximum on {(α,0) :α ∈ [0,1]} is attained in α= 0.

Case 3: α= 1: we obtain

Φ̃δ(1,β) =Φ(1)−δ+3δβ2 −2δβ3 = δ(3β2 −2β3 −1).

Since −2β3 +3β2 ≤ 1 for all β ∈ [0,1] and d/k < 1, for small enough δ we obtain Φ̃δ(1,β) ≤ 1−d/k −δ =
Φ̃δ(0,0).

Case 4: β= 1: we have

Φ̃δ(α,1) =Φ(α)− (1−exp(−3δ))D

(
1− K ′(α)

k

)
. (4.8)

Because D and K ′ are continuous on [0,1] due to the assumption E[d 2]+E[k2] <∞, for any ζ> 0 there exists
α̂> 0 such that D(1−K ′(α)/k) > 1−ζ for all 0 <α< α̂. Therefore, (4.8) shows that for small enoughδ> 0 and
0 <α< α̂we have Φ̃δ(α,1) < Φ̃δ(α,0) ≤ Φ̃δ(0,0). On the other hand, for α̂≤α≤ 1 the differenceΦ(α)−Φ(0)
is uniformly negative because of our assumption (1.3) that Φ attains its unique global maximum at α= 0.
Hence, for δ small enough and α̂≤α≤ 1 we obtain Φ̃δ(α,1) < Φ̃δ(0,0).

Combining Cases 1–4, we obtain

max
(α,β)∈∂[0,1]2

Φ̃δ(α,β) = Φ̃δ(0,0). (4.9)

Moving on to the interior of [0,1]2, we calculate the derivatives

∂Φ̃δ

∂α
=Φ′(α)+ (

1−exp
(−3δβ2)) K ′′(α)

k
D ′(1−K ′(α)/k) = K ′′(α)

k

(
d(1−α)−exp

(−3δβ2)D ′(1−K ′(α)/k)
)

,

∂Φ̃δ

∂β
= 6δβ

(
1−β−exp

(−3δβ2)D(1−K ′(α)/k)
)

.

Hence, potential maximisers (α,β) in the interior of [0,1]2 satisfy

d(1−α) = D ′(1−K ′(α)/k)exp
(−3δβ2) and 1−β= exp

(−3δβ2)D(1−K ′(α)/k). (4.10)

Substituting (4.10) into Φ̃δ, we obtain

Φ̃δ(α,β) =Φ(α)−δ+ (
exp

(−3δβ2)−1
)

D(1−K ′(α)/k)+3δβ2 −2δβ3

=Φ(α)−δ+ (1−β)(1−exp
(
3δβ2))+3δβ2 −2δβ3

≤Φ(α)−δ−3δβ2(1−β)+3δβ2 −2δβ3 =Φ(α)−δ+δβ3. (4.11)

To estimate the r.h.s. we consider the cases of small and large α separately. Specifically, by continuity for any
ζ> 0 there is 0 < α̂< δ such that D(1−K ′(α)/k) > 1−ζ for all 0 <α< α̂.

Case 1: 0 <α< α̂: Since D(1−K ′(α)/k) > 1−ζ, (4.10) implies that for β> 0

1−β> (1−3δβ2)(1−ζ) = 1−ζ−3δβ2(1−ζ).

In particular, small α̂ implies that also β is small. More precisely, after choosing δ,ζ small enough, we
may assume that β < β̂ for any fixed β̂ > 0. In this case, we may thus restrict to solutions (α,β) ∈ (0,1)2 to
(4.10) where both coordinates are sufficiently small. Also here, we distinguish three cases that all lead to
contradictions.
(A) If the solution satisfies α=β, consider the function

x 7→ 1−x −exp
(−3δx2)D(1−K ′(x)/k)

13

174 Appendix D.



whose zeros determine the solutions to the right equation in (4.10) under the assumption α = β. Its
value is zero at x = 0 and it has derivative

−1+6δx exp
(−3δx2)D(1−K ′(x)/k)+exp

(−3δx2)D ′(1−K ′(x)/k)
K ′′(x)

k
,

which is negative in a neighbourhood of x = 0. Thus (α,α) cannot be a solution to (4.10) for α ∈ (0, α̂).
(B) Assume now that α<β. Then the right equation of (4.10) yields

1−β> exp
(−3δβ2)D

(
1−K ′(β)/k

)> (
1−3δβ2)

(
1− d

k
K ′(β)

)
.

Now since k ≥ 3, K ′(β) = Oβ(β2). But then the above equation yields a contradiction for β small

enough and thus (α,β) ∈ (0, α̂)× (0, β̂) with α<β is no possible solution.
(C) Finally, if α>β, the left equation of (4.10) yields

d (1−α) > exp
(−3δα2)D ′ (1−K ′(α)/k

)> d
(
1−3δα2)

(
1− E

[
d 2]

dk
K ′(α)

)
.

Now since k ≥ 3, K ′(β) = Oβ(β2). But then the above equation yields a contradiction for β small

enough and thus (α,β) ∈ (0, α̂)× (0, β̂) with α>β is no possible solution.
Hence, (4.10) has no solution with 0 <α< α̂.

Case 2: α̂≤α< 1: because Φ(α) <Φ(0) for all 0 < α ≤ 1, (4.11) shows that we can choose δ small enough so
that Φ̃δ(α,β) < Φ̃δ(0,0) for all α≥ α̂ and all β ∈ [0,1].

Combining both cases and recalling (4.9), we obtain (4.6).

4.3. Proof of Proposition 2.1. Combining Propositions 4.1 and 4.2, we see that

1

n
E [nul(A [n,ε,δ,Θ])] ≤ 1− d

k
−δ+oε(1). (4.12)

The only (small) missing piece is that we still need to extend this result to the original random matrixA[bδnc] based
on the simple random factor graph G. To this end we apply the following lemma.

Lemma 4.3 ([10, Lemma 4.8]). For any fixedΘ> 0 there exists a coupling of A and A [n,ε,0,Θ] such that

E|nul A −nul A [n,ε,0,Θ] | =Oε(εn).

Let A[bδnc] be the matrix obtained from A by adding bδnc random ternary equations. Combining (4.12) with
Lemma 4.3 and observing that each of the unary checks pi can alter the nullity by at most one, we obtain

1

n
E
[
nul(A[bδnc])

]≤ 1− d

k
−δ+o(1). (4.13)

Furthermore, since changing a single edge of the Tanner graph G or a single entry of A can change the rank by at
most one, the Azuma–Hoeffding inequality shows that nul(A[bδnc]) is tightly concentrated. Thus, (4.13) implies

P

[
1

n
nul(A[bδnc]) ≤ 1− d

k
−δ+o(1)

]
= 1−o(1/n). (4.14)

Finally, combining (4.14) with Lemma 3.7, we conclude that

P

[
1

n
nul(A[bδnc]) ≤ 1− d

k
−δ+o(1)

]
= 1−o(1/n),

which implies the assertion because nul(A[bδnc]) ≤ n deterministically.

5. PROOF OF PROPOSITION 2.2

We recall that A is the random m ×n-matrix generated by way of the pairing model. Moreover, we continue to let
A[n,ε,δ,Θ] be the matrix from Section 4 with mε ∼ Po((1−ε)dn/k) checks with independent degrees k i , another
mδ ∼ Po(δn) ternary checks and further θ ∼ unif([Θ]) unary checks (cf. (4.1)). Lemma 4.3 shows that the nullity of
the second model approaches that of the first as ε→ 0.

We now go on to prove that if the matrix A[θ0] obtained from A by adding a few random unary checks has
many frozen coordinates, then the nullity of A[n,ε,δ,Θ] would be greater than permitted by Proposition 2.1; we
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use an argument similar to [6, proof of Proposition 2.7]. Invoking Corollary 3.5 will then complete the proof of
Proposition 2.2.

Lemma 5.1. Assume that for someΘ0 > 0 and θ0 ∼ unif([Θ0]) we have

limsup
n→∞

1

n
E |F(A[θ0])| > 0.

Then for any δ0 > 0 there exists 0 < δ< δ0 andΘ1 =Θ1(ε) such that for anyΘ=Θ(ε) >Θ1(ε) we have

limsup
ε→0

limsup
n→∞

1

n
E [nul(A [n,ε,δ,Θ])] > 1− d

k
−δ.

Proof. For an integer ` ≥ 0 obtain A[`][θ0] from A[θ0] by adding ` random ternary equations. Moreover, let λ =
Po(δn). Since nul A[λ][θ0] ≥ nul A −λ−θ0, Lemma 4.3 implies that for anyΘ=Θ(ε),

E
∣∣nul A[λ][θ0]−nul A [n,ε,δ,Θ]

∣∣= E
∣∣nul A[λ][θ0]−nul A [n,ε,0,Θ]

∣∣+Oε(δn) =Oε((ε+δ)n +Θ) =Oε(εn). (5.1)

We now estimate the nullity of A[λ][θ0] under the assumption that for a large n,

P [|F(A[θ0])| > ζn] > ζ for some ζ> 0. (5.2)

Because adding equations can only increase the set of frozen variables, we have F(A[`][θ0]) ⊆ F(A[`+1][θ0]) for all
`≥ 0. Therefore, (5.2) implies that

P
[∣∣F(A[`][θ0])

∣∣> ζn
]> ζ for all `≥ 0. (5.3)

We now claim that
1

n
E
[
nul A[λ][θ0]

]≥ 1−d/k −δ+δζ4 +o(1). (5.4)

To prove (5.4) it suffices to show that for any `≥ 0,

E
[
nul A[`+1][θ0]−nul A[`][θ0]

]≥ ζ4 −1+o(1). (5.5)

Indeed, we obtain (5.4) from (5.5) and the nullity formula n−1E[nul A[0][θ0]] = n−1E[nul A]+o(1) = 1−d/k +o(1)
from (1.4) by writing a telescoping sum.

To establish (5.5) we observe that nul A[`+1][θ0]−nul A[`][θ0] ≥ −1 because we obtain A[`+1][θ0] from A[`][θ0]
by adding a single ternary equation. Furthermore, if |F(A[`][θ0])| ≥ ζn, then with probability ζ3 + o(1) all three
variables of the new ternary equation are frozen in A[`][θ0], in which case nul A[`+1][θ0] = nul A[`][θ0]. Hence,
(5.4) follows from (5.5), which follows from (5.3). Finally, combining (5.1) and (5.4) completes the proof. �

Proof of Proposition 2.2. The proposition follows from Corollary 3.5 and Lemma 5.1. �

6. PROOF OF PROPOSITION 2.3

The proof proceeds very differently depending on whether the coefficients χ1, . . . ,χk0 are identical or not. The
following two lemmas summarise the analyses of the two cases.

Lemma 6.1. For any prime power q and any χ ∈ F∗q the Z-module Mq (χ,χ,χ) possesses a basis (b1, . . . ,bq−1) of

non-negative integer vectors bi ∈ZF
∗
q for all i ∈ [q −1] such that

‖bi‖1 ≤ 3 and
∑

s∈F∗q
bi ,s s = 0 for all i ∈ [q −1], and det

(
b1 · · · bq−1

)= q.

Furthermore, for any k0 > 3 we have Mq
(
χ, . . . ,χ

)
︸ ︷︷ ︸
k0 times

=Mq (χ,χ,χ).

Lemma 6.2. Suppose that q is a prime power, that k0 ≥ 3 and that χ1, . . . ,χk0 ∈ F∗q satisfy |{χ1, . . . ,χk0 }| ≥ 2. Then

Mq (χ1, . . . ,χk0 ) =ZF∗q .

Furthermore, Mq (χ1, . . . ,χk0 ) possesses a basis (b1, . . . ,bq−1) of non-negative integer vectors bi ∈ZF
∗
q such that

‖bi‖1 ≤ 3 and
∑

s∈F∗q
bi ,s s = 0 for all i ∈ [q −1].
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Clearly, Proposition 2.3 is an immediate consequence of Lemmas 6.1 and 6.2. We proceed to prove the former
in Section 6.1 and the latter in Section 6.2.

6.1. Proof of Lemma 6.1. Because we can just factor out any scalar, it suffices to consider the module

M=Mq (1, . . . ,1)︸ ︷︷ ︸
k0 times

.

Being a Z-module, M is free, but it is not entirely self-evident that a basis with the additional properties stated
in Lemma 6.1 exists. Indeed, while it is easy enough to come up with q − 1 linearly independent vectors in M
that all have an `1-norm bounded by 3, it is more difficult to show that these vectors generate M. In the proof of
Lemma 6.1, we sidestep this difficulty by working with two sets of vectors B1 and B2. The first set B1 is easily seen
to generate M, while B2 is a set of linearly independent vectors in M with `1-norms bounded by 3. To argue that
B2 generates M, too, it then suffices to show that the determinant of the change of basis matrix equals one.

To interpret the bases as subsets of Zq−1 rather than ZF
∗
q in the following, we fix some notation for the elements

of Fq . Throughout this section, we let q = p` for a prime p and ` ∈N. If `= 1, we regard Fq as the set {0, . . . , p −1}
with mod p arithmetic. If `≥ 2, the field elements can be written as

{a0 +a1X+ . . .+a`−1X
`−1 : a j ∈ Fp for j = 0, . . . ,`−1},

with mod g (X) arithmetic for a prime polynomial g (X) ∈ Fp [X] of degree `. Exploiting this representation of the
field elements as polynomials, we define the length len(a0 + a1X+ . . .+ a`−1X

`−1) of an element of Fq to be the
number of its non-zero coefficients. Finally, let

F
(≥2)
q = {

h ∈ Fq : len(h) ≥ 2
}

(6.1)

be the set of all elements of Fq with length at least two. Of course, if `= 1, F(≥2)
q is empty.

Recall that we view M as a subset of ZF
∗
q that is generated by the vectors

(
k0∑

i=1
1 {σi = s}

)

s∈F∗q
, σ ∈S0(1, . . . ,1).

In the above representation, the generators are indexed by F∗q rather than by the set [q −1]. But to carry out the
determinant calculation, it is immensely useful to represent both B1 and B2 as matrices with a convenient struc-
ture. Hence, there is ambiguity in the choice of a bijection f : F∗q → {1, . . . , q −1} that maps the non-zero elements

of Fq to coordinates in ZF
∗
q . To put a clear structure to the matrices in this subsection, we will soon choose f in

a particular way. With the above notation, we will from now on fix a bijection f that is monotonically decreasing
with respect to the length function on F∗q : If len(h1) <len(h2) for h1,h2 ∈ F∗q , then f (h1) > f (h2). More precisely, f

maps the (p −1)` elements in F∗q of maximal length ` to the interval [(p −1)`], the `(p −1)`−1 elements of length

`−1 to the interval {(p−1)`+1, . . . , (p−1)`+`(p−1)`−1}, and so on. For elements of length one, we further specify
that

f (aXi ) = q −1− (`− i )(p −1)+a for i ∈ {0, . . .`−1} and a ∈ [p −1].

For our purposes, there is no need to fully specify the values of f within sets of constant length greater than one,
but one could follow the lexicographic order, for example. The benefit of such an ordering will become apparent
in the next two subsections.

6.1.1. First basis B1. The idea behind the first set B1 is that it consists of vectors whose coordinates can be eas-
ily seen to correspond to element statistics of a valid solution while ignoring the `1-restriction formulated in
Lemma 6.1. We build B1 from frequency vectors of solutions of the form

(
a0 +a1X+ . . .+a`−1X

`−1
)
+
`−1∑
i=0

ai · ((p −1)Xi ) = 0.

That is, we take any element a0 + a1X+ . . .+ a`−1X
`−1 from F∗q and cancel it by a linear combination of elements

from {p −1,(p −1)X, . . . , (p −1)X`−1} ⊆ F∗q . Formally, let e1, . . . ,eq−1 denote the canonical basis of Zq−1. The set of
16

Appendix D. 177



Mp =




1 2 . . . . p −1
1 1
2 1

1
. . .

...
. . .

1
p −1 1 2 3 · · · p −2 p




.

FIGURE 4. The matrix Mp .

statistics of all frequency vectors of the form described above then reads

B1 =
{

e f (
∑`−1

i=0 aiX
i ) +

`−1∑
i=0

ai e f (−Xi ) :
`−1∑
i=0

aiX
i ∈ F∗q

}
.

A moment of thought shows that |B1| = q −1. Indeed, it is helpful to notice that for any h ∈ F∗q \ {−1, . . . ,−X`−1},
there is exactly one element with a non-zero position in coordinate f (h), and this coordinate is 1. That is, there
is basically exactly one element in B1 associated with each element of F∗q . Generally, the elements of B1 can be
ordered to yield a lower triangular matrix Mq . To sketch this matrix, we first consider the case ` = 1. In this case,
with our choice of indexing function f , the elements of B1 can be ordered to give the matrix displayed in Figure 4.
For the case of fields of prime order, this basis is already implicitly mentioned in [24].

Note that this reduces to M2 = (2) in the case p = 2. In this representation, rows are indexed by the field elements
they represent, while columns are indexed by the field elements they are associated with. For `≥ 2, we can use the
matrix Mp for the compact representation of Mq displayed in Figure 5.

In the matrix Mq , the upper left block is an identity matrix of the appropriate dimension, the upper right is a
zero matrix, the lower left is a matrix that only has non-zero entries in rows that correspond to −1, . . . ,−X`−1 while
the lower right is a block diagonal matrix whose blocks are given by Mp . In particular, Mp is a lower triangular
matrix. Because Mp has determinant p the following is immediate.

Claim 6.3. We have det(Mq ) = p` = q.

Let B1 denote the Z-module generated by the elements of B1. Then the lower triangular structure of Mq also
implies the following.

Claim 6.4. The rank of B1 is q −1.

The following lemma shows that the module M is contained in B1.

Lemma 6.5. The Z-module M is contained in the Z-module B1.

Proof. We show that each element of M can be written as a linear combination of elements of B1. To this end
it is sufficient to show that every frequency vector of a solution to an equation with exactly k0 non-zero entries
and all-one coefficients can be written as a linear combination of the elements of B1. Let thus x ∈Nq−1 be such a
frequency vector, that is ‖x‖1 ≤ k0 and

∑q−1
i=1 xi f −1(i ) = 0 in Fq . Before we state a linear combination of x in terms

of B1, observe that for each j ∈ [q−1]\{q−1−(`−1)(p−1), q−1−(`−2)(p−1), . . . , q−1}, there is exactly one basis
vector with a non-zero entry in position j . Moreover, the entry of this basis vector in position j is 1. On the other
hand, the basis vectors corresponding to the remaining ` columns q−1−(`−1)(p−1), q−1−(`−2)(p−1), . . . , q−1
of Mq are actually integer multiples of the standard unit vectors, as

e f ((p−1)Xi ) + (p −1)e f (−Xi ) = pe f ((p−1)Xi )
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Mq =




F
(≥

2)
q 1 . . . p
−

1

X . . . (p
−

1)
X

. . . X
`
−1

. . . (p
−

1)
X
`
−1

1
1

. . .
1

F
(≥2)
q 1

1

1
1 0 0
... 0 0

p −1 ∗ ∗
X 0 0

... 0 0
(p −1)X ∗ ∗

... ∗ ∗ . . .

X`−1 0 0
... 0 0

(p −1)X`−1 ∗ ∗

0

Mp 0

Mp

0
Mp




. (6.2)

FIGURE 5. The matrix Mq for `≥ 2.

for i = 0, . . . ,`−1. With these observations, the only valid candidate for a linear combination of x in terms of the
elements of B1 is given by

x =
∑

∑`−1
i=0 aiX

i∈F∗q \{−1,...,−X`−1}

x f (
∑`−1

i=0 aiX
i )

(
e f (

∑`−1
i=0 aiX

i ) +
`−1∑
j=0

a j e f (−X j )

)

+
`−1∑
j=0

x f (−X j ) −
∑∑`−1

i=0 aiX
i∈F∗q \{−1,...,−X`−1} a j x f (

∑`−1
i=0 aiX

i )

p
·pe f (−X j ).

It remains to argue why the coefficients of the basis vectors pe f (−1), . . . , pe f (−X`−1) in the second sum are integers.
At this point, we will use that x is a solution statistic: Because

∑
∑`−1

i=0 aiX
i∈F∗q

x f (
∑`−1

i=0 aiX
i )

`−1∑
j=0

a jX
j = 0 in Fq

and the additive group (Fq ,+) is isomorphic to ((Fp )`,+), all “components” in the above sum must be zero and thus
∑

∑`−1
i=0 aiX

i∈F∗q
x f (

∑`−1
i=0 aiX

i )a j = 0 in Fp

for all j = 0, . . . ,`−1. However, isolating the contribution from {−1, . . . ,−X`−1} yields

0 =
∑

∑`−1
i=0 aiX

i∈F∗q
x f (

∑`−1
i=0 aiX

i )a j =−x f (−X j ) +
∑

∑`−1
i=0 aiX

i∈F∗q \{−1,...,−X`−1}

a j x f (
∑`−1

i=0 aiX
i ) in Fp , (6.3)

as the coefficient a j ofX j in −Xi is zero unless i = j . Therefore, the right hand side in (6.3) is divisible by p and the
claim follows. �
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6.1.2. Second basis B2. In this subsection, we define a candidate set for the vectors (b1, . . . ,bq−1) in the statement
of Lemma 6.1. That is, we define a set B2 all whose elements have non-negative components and `1-norm at most
three. In other words, we are looking for solutions to

x1 + . . .+xk0 = 0 (6.4)

with at most three different non-zero components.
Here again, our construction basically associates one basis vector to each element of F∗q . However, due to the

`1-restriction, there is less freedom in choosing the remaining non zero-coordinates. Our approach to design
a set that satisfies this restriction while retaining a representation in a convenient block lower triangular matrix
structure is to distinguish between elements of length one and of length at least two. We will therefore construct
B2 via two sets B(1) and B(≥2) such that B2 is given as

B2 =B(1) ∪B(≥2). (6.5)

Let us start with an element h =∑`−1
i=0 aiX

i of length at least two in Fq . Assume that its leading coefficient is ar for
r ∈ [`−1]. If a variable in (6.4) takes value h, we may cancel its contribution to an equation by subtracting the two
elements arX

r and h −arX
r , both of which are shorter than h:

`−1∑
i=0

aiX
i −arX

r −
(
`−1∑
i=0

aiX
i −arX

r

)
= 0.

This solution corresponds to the vector

e f (h) +e f (−arX
r ) +e f (−h+arX

r ).

This idea for field elements h ∈ F(≥2)
q of length at least two then yields the q −1−`(p −1) integer vectors

B(≥2) =
{

e f (h) +e f (−arX
r ) +e f (−h+arX

r ) : r ∈ [`−1] and h =
r∑

i=0
aiX

i ∈ F(≥2)
q with ar 6= 0

}
.

For a field element h of length one, an analogous shortening operation would correspond to the vector

e f (h) +e f (−h).

If p = 2, this procedure applied to all field elements of length one yields ` distinct vectors and we are done. How-
ever, if p > 2, employing this idea for all elements of length one would only lead to `(p −1)/2 rather than `(p −1)
additional vectors, as h and −h are distinct and obviously give rise to the same statistic. As a consequence, for
p > 2, we need to deviate from the above construction and come up with a modified “short-solution” scheme. Let
h = arX

r be an element of length one. If ar ∈ {1, . . . (p −1)/2}, we simply associate the vector e f (h) + e f (−h) to it, as
indicated. If on the other hand ar ∈ {(p +1)/2, . . . , p −1}, we let h correspond to the vector

e f (h) +e f (−Xr ) +e f (−h+Xr ).

With this, for p > 2, the part of B2 that corresponds to field elements of length one is given by the set

B(1) =
`−1⋃
r=0

({
e f (arX

r ) +e f (−arX
r ) : ar ∈ [(p −1)/2]

}∪{
e f (−arX

r ) +e f (−Xr ) +e f (arX
r +Xr ) : ar ∈ [(p −1)/2]

})
. (6.6)

If p = 2, in line with the above discussion, we simply let

B(1) =
`−1⋃
r=0

{
2e f (Xr )

}
. (6.7)

Again, a moment of thought shows that in any case, |B2| = |B1| = q −1. Let B2 denote the Z-module generated
by the elements of B2. Our choice of B2 has the advantage that again, its elements may be represented in a block
lower triangular matrix. For this representation, it is instructive to consider the case ` = 1 first. In this case and
with our choice of f , the elements of B2 can be arranged as the columns of a matrix Ap as in Figure 6.

Here, as in the construction of Mp , column i corresponds to the unique vector associated to i ∈ Fq . In the special
case p = 2, this matrix reduces to

A2 = (2).

For `≥ 2, the elements of B2 may then be visualised in the matrix from Figure 7.
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Ap =




1 0 · · · · · · 0 0 · · · · · · · · · 0

0
. . .

. . .
...

...
... 1

...
. . .

. . .
. . .

...
...

...
... 0

...
. . .

. . . 0
...

...
...

...
...

0 · · · · · · 0 1 0 1 0 · · · 0
0 · · · · · · 0 1 2 0 · · · · · · 0
...

...
... 0 0 1

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

0
...

...
... 0 · · · 0 1 0

1 0 · · · · · · 0 1 · · · · · · 1 2




. (6.8)

FIGURE 6. The matrix Ap .

Aq =




F
(≥

2)
q 1 · · · p
−

1

X · · · (p
−

1)
X

· · · X
`
−1

· · · (p
−

1)
X
`
−1

1
∗ 1

∗ ∗ . . .
∗ ·· · ∗ 1

F
(≥2)
q ∗ ∗ 1

∗ ∗ 1

∗ ∗ . . .
∗ ∗ 1

1 ∗ ∗
... ∗ ∗

p −1 ∗ ∗
X ∗ ∗

... ∗ ∗
(p −1)X ∗ ∗

... ∗ ∗ . . .

X`−1 ∗
... ∗ ∗

(p −1)X`−1 ∗ ∗

0

Ap 0

Ap

0
Ap




. (6.9)

FIGURE 7. The matrix Aq for `≥ 2.

In Aq , column i ∈ [q − 1] corresponds to the unique vector that is associated with the field element f −1(i ).
Moreover, at this point, a moment of appreciation of our indexing choice f is in place: Because f is monotonically
decreasing with respect to length, there are no entries above the diagonal in the first |F(≥2)

q | columns, as we only
cancel field elements by strictly shorter ones. Moreover, the remaining `(p −1) columns are governed by a simple
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block structure. As a concrete example, (6.8) with p = 7 reads

A7 =




1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 1 2 0 0
0 1 0 0 1 0
1 0 0 1 1 2




and A7 would be used as a block matrix in any field of order 7` as shown in (6.9).
As each element of B2 corresponds to a solution with at most 3 ≤ k0 non-zero components, we obtain the

following.

Claim 6.6. The Z-module B2 is contained in the Z-module M.

Thus far we know B2 ⊆M⊆B1. Moreover, B2 has the desired `1-property. On the other hand, in comparison
to B1, it is less clear that B2 generates M. It thus remains to show that in fact B2 =B1. We will do so by using the
following fact, which is an immediate consequence of the adjugate matrix representation of the inverse matrix.

Fact 6.7. If M is a freeZ-module with basis x1, . . . , xn , a set of elements y1, . . . , yn ∈ M is a basis of M if and only if the
change of basis matrix (ci j ) has determinant ±1.

We will apply Fact 6.7 to M =B1 with {x1, . . . , xn} =B1 and {y1, . . . , yn} =B2. Let Cq ∈Z(q−1)×(q−1) be the matrix
whose entries comprise the coefficients when we express the elements of B2 by B1 (recall that B2 ⊆B1) when we
order the elements of B1,B2 as done in the construction of Mq and Aq . Thus Aq = MqCq . As

det(Aq ) = det(MqCq ) = det(Mq ) ·det(Cq ),

we do not need to compute Cq explicitly to apply Fact 6.7, but instead it suffices to compute det(Mq ) and det(Aq ).
From Claim 6.3, det(Mq ) is already known. Moreover, for Aq , the computation will not be too hard, as Aq is a block
lower triangular matrix. Therefore, we are just left to calculate the determinant of the non-trivial diagonal blocks.

Lemma 6.8. For any prime p we have det(Ap ) = p.

Proof. The case p = 2 is immediate. We thus assume that p > 2 in the following. We transform Ap into a lower
triangular matrix by elementary column operations. To this end, let a1, . . . , aq−1 be the columns of Ap . The first
(p+1)/2 columns already have the right form, so we do not alter this part of the matrix. For any j = (p+3)/2, . . . , p−
1, subtract column ap+1− j from column a j . This yields the matrix




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 2 −1 0 0

0 0
... 0 0 1 −1 0

0 1 0 0 0 0
. . . −1

1 0 0 0 1 1 1 2




.

Next, we swap column (p +1)/2 successively with columns (p +3)/2, . . . up to p −1, yielding



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 −1 0 0 2

0 0
... 0 1 −1 0 0

0 1 0 0 0 0
. . . 0

1 0 0 0 1 1 2 1




.
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This changes the determinant by a factor of (−1)(p−3)/2. Finally, in order to erase the entry 2 in row (p +1)/2 and
column p −1, we add twice the sum of columns (p +1)/2, . . . , p −2 to column p −1. We thus obtain the matrix




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 −1 0 0 0

0 0
... 0 1 −1 0 0

0 1 0 0 0 0
. . . 0

1 0 0 0 1 1 2 p




.

with determinant (−1)(p−3)/2p. Multiplying with (−1)(p−3)/2 from the column swaps yields the claim. �

Corollary 6.9. For any prime p and `≥ 1, we have det(Aq ) = q.

Finally, Claim 6.3 and Corollary 6.9 imply that det(Cq ) = 1. Thus, by Fact 6.7, B2 is a basis of B1, which implies
that B1 =B2 =M. The column vectors b1, . . . ,bq−1 of Aq therefore enjoy the properties stated in Lemma 6.1.

6.2. Proof of Lemma 6.2. Assume w.l.o.g. that χ1 = 1. Moreover, by assumption, the set {χ1, . . . ,χk0 } contains at
least two different elements, and so we may also assume that χ3 6= 1 (recall that k0 ≥ 3).

We define (b1, . . . ,bq−1) by distinguishing between three cases:
Case 1: p = 2 and χ2 = 1.

Denote the order of χ−1
3 in (F∗q , ·) by o, so that the elements 1,χ−1

3 , . . . ,χ−(o−1)
3 are pairwise distinct. Since p = 2

and o | q −1, o is an odd number. Moreover, because χ−1
3 6= 1, o≥ 3. We now partition F∗q into orbits of the action of

({1,χ−1
3 , . . . ,χ−(o−1)

3 }, ·) on F∗q such that

F∗q =
⋃̇(q−1)/o

j=1 O j ,

where each orbitO j contains exactly o elements. Suppose thatO j = {g ( j )
1 , . . . , g ( j )

o }, where the elements are indexed

such that g ( j )
i+1 =χ−1

3 g ( j )
i .

To each O j , we associate a set of potential basis vectors whose union over different j then yields the full set
(b1, . . . ,bq−1). More precisely, the set corresponding to O j is defined as

B j =
o−1⋃
i=1

{
e

g
( j )
i

+e
g

( j )
i+1

}
∪

{
e

g
( j )
1

+e
g

( j )
2

+e
g

( j )
2 +g

( j )
3

}
.

In this definition, we have used that for χ1 =−χ2 = 1 and any h ∈ Fq ,

χ1 ·h +χ2 ·0+χ3 ·χ−1
3 h = 0 as well as χ1 ·h +χ2 ·χ−1

3 h +χ3 · (χ−1
3 h +χ−2

3 h) = 0.

Note that the element

g ( j )
2 + g ( j )

3 = (1+χ−1
3 )g ( j )

2

is nonzero and distinct from both g ( j )
2 and g ( j )

3 . It might be one of g ( j )
1 , g ( j )

4 , . . . , g ( j )
o .

We next argue that the union of the different B j generatesZF
∗
q . By linear transformation and using that o is odd,

B j has the same span as
{

e
g

( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

−e
g

( j )
o

}
∪

{
e

g
( j )
1 +g

( j )
2

}
.

Now, there are two cases.

(1) For all j ∈ [(q −1)/o], g ( j )
2 + g ( j )

3 ∈ {g ( j )
1 , g ( j )

4 , . . . , g ( j )
o }. In this case, either e

g
( j )
2 +g

( j )
3

= e
g

( j )
1

, or we can subtract

e
g

( j )
2 +g

( j )
3

from or add it to the element e
g

( j )
1

± e
g

( j )
2 +g

( j )
3

to obtain e
g

( j )
1

. After isolating e
g

( j )
1

, a straightforward

linear transformation yields a set of o distinct unit vectors whose non-zero components are given by O j .

Thus, the union over all B j constitutes a set of linearly independent elements that generates ZF
∗
q .
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(2) For all j ∈ [(q−1)/o], g ( j )
2 +g ( j )

3 ∉ {g ( j )
1 , g ( j )

4 , . . . , g ( j )
o }. In this case, consider the union

⋃(q−1)/o
j=1 B j , which has

the same span as

(q−1)/o⋃
j=1

{
e

g
( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

−e
g

( j )
o

}
∪

{
e

g
( j )
1 +g

( j )
2

}
.

Since for each j , the element g ( j )
1 + g ( j )

2 must be contained in some O j ′ for j 6= j ′, as in case (1), e
g

( j )
1 +g

( j )
2

can be used to isolate e
g

( j ′)
1

. After isolating e
g

( j ′)
1

for all j ′, these elements can be straightforwardly used to

linearly transform the union over all B j into the standard basis (eh)h∈F∗q of ZF
∗
q .

Finally, set
⋃(q−1)/o

j=1 B j = {b1, . . . ,bq−1}.

Case 2: p 6= 2 and χ2 =−1.
We proceed almost exactly as before, only the choice of the “acyclic” basis vectors is different:
Denote the order of χ−1

3 in (F∗q , ·) by o, so that the elements 1,χ−1
3 , . . . ,χ−(o−1)

3 are pairwise distinct. Then o | q −1,

and since χ−1
3 6= 1, o≥ 2. We now partition F∗q into orbits of the action of ({1,χ−1

3 , . . . ,χ−(o−1)
3 }, ·) on F∗q such that

F∗q =
⋃̇(q−1)/o

j=1 O j ,

where each orbitO j contains exactly o elements. Suppose thatO j = {g ( j )
1 , . . . , g ( j )

o }, where the elements are indexed

such that g ( j )
i+1 =χ−1

3 g ( j )
i .

To each O j , we associate a set of potential basis vectors whose union over different j then yields the full set
(b1, . . . ,bq−1). More precisely, the set corresponding to O j is defined as

B j =
o−1⋃
i=1

{
e

g
( j )
i

+e
g

( j )
i+1

}
∪

{
e

g
( j )
1

+e
g

( j )
2

+e
2g

( j )
1

}
.

Here, we have used that for χ1 =−χ2 = 1 and p 6= 2,

χ1 ·0+χ2 ·h +χ3 ·χ−1
3 h = 0 and χ1 ·h +χ2 ·2h +χ3 ·χ−1

3 h = 0.

Note that the element 2g ( j )
1 is distinct from g ( j )

1 . It might be one of g ( j )
2 , . . . , g ( j )

o .

We next argue that the union of the different B j generatesZF
∗
q . By linear transformation, B j has the same span

as {
e

g
( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

±e
g

( j )
o

}
∪

{
e

2g
( j )
1

}
.

Now, there are two cases.

(1) For all j ∈ [(q − 1)/o], 2g ( j )
1 ∈ {g ( j )

2 , . . . , g ( j )
o }. As in case 1, we can then subtract e

2g
( j )
2

from or add it to

e
g

( j )
1

± e
2g

( j )
2

to isolate e
g

( j )
1

. After isolating e
g

( j )
1

, a straightforward linear transformation yields a set of o

distinct unit vectors whose non-zero components are given by O j . Thus, the union over all B j constitutes

a set of linearly independent elements that generates ZF
∗
q .

(2) For all j ∈ [(q−1)/o], 2g ( j )
1 ∉ {g ( j )

2 , . . . , g ( j )
o }. In this case, consider the union

⋃(q−1)/o
j=1 B j , which has the same

span as

(q−1)/o⋃
j=1

{
e

g
( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

±e
g

( j )
o

}
∪

{
e

2g
( j )
1

}
.

Since for each j , the element 2g ( j )
1 must be contained in some O j ′ for j 6= j ′, as in case (1), e

2g
( j )
1

can be

used to isolate e
g

( j ′)
1

. After isolating e
g

( j ′)
1

for all j ′, these elements can be straightforwardly used to linearly

transform the union over all B j into the standard basis (eh)h∈F∗q of ZF
∗
q .

In any case, set
⋃(q−1)/o

j=1 B j = {b1, . . . ,bq−1}.
Case 3: χ2 6= −1.

23

184 Appendix D.



Denote the order of −χ−1
2 in (F∗q , ·) by o, so that the elements 1,−χ−1

2 , . . . , (−χ−1
2 )o−1 are pairwise distinct. Then

o | q −1, and since −χ−1
2 6= 1, o≥ 2. We now partition F∗q into orbits of the action of ({1,−χ−1

2 , . . . , (−χ−1
2 )o−1}, ·) on F∗q

such that

F∗q =
⋃̇(q−1)/o

j=1 O j ,

where each orbitO j contains exactly o elements. Suppose thatO j = {g ( j )
1 , . . . , g ( j )

o }, where the elements are indexed

such that g ( j )
i+1 =−χ−1

2 g ( j )
i .

To each O j , we associate a set of potential basis vectors whose union over different j then yields the full set
(b1, . . . ,bq−1). More precisely, the set corresponding to O j is defined as

B j =
o−1⋃
i=1

{
e

g
( j )
i

+e
g

( j )
i+1

}
∪

{
e

g
( j )
1

+e
g

( j )
2

+e
(1−χ3)g

( j )
1

}
.

In the above, we have used that for χ1 = 1,

χ1 ·h +χ2 · (−χ−1
2 )h +χ3 ·0 = 0 and χ1 · (1−χ3)h +χ2 · (−χ−1

2 )h +χ3 ·h = 0.

Note that the element (1−χ3)g ( j )
1 is distinct from g ( j )

1 . It might be one of g ( j )
2 , . . . , g ( j )

o .

We next argue that the union of the different B j generatesZF
∗
q . By linear transformation, B j has the same span

as {
e

g
( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

±e
g

( j )
o

}
∪

{
e

(1−χ3)g
( j )
1

}
.

Now, there are two cases.

(1) For all j ∈ [(q−1)/o], (1−χ3)g ( j )
1 is one of the elements g ( j )

2 , . . . , g ( j )
o . As in case 1, we can then subtract e

2g
( j )
2

from or add it to e
g

( j )
1
±e

(1−χ3)g
( j )
1

to isolate e
g

( j )
1

. After isolating e
g

( j )
1

, a straightforward linear transformation

yields a set of o distinct unit vectors whose non-zero components are given by O j . Thus, the union over all

B j constitutes a set of linearly independent elements that generates ZF
∗
q .

(2) For all j ∈ [(q − 1)/o], (1−χ3)g ( j )
1 is none of the elements g ( j )

2 , . . . , g ( j )
o . In this case, consider the union

⋃(q−1)/o
j=1 B j , which has the same span as

(q−1)/o⋃
j=1

{
e

g
( j )
1

+e
g

( j )
2

,e
g

( j )
1

−e
g

( j )
3

,e
g

( j )
1

+e
g

( j )
4

, . . . ,e
g

( j )
1

±e
g

( j )
o

}
∪

{
e

(1−χ3)g
( j )
1

}
.

Since for each j , the element (1−χ3)g ( j )
1 must be contained in some O j ′ for j 6= j ′, as in case (1), e

(1−χ3)g
( j )
1

can be used to isolate e
g

( j ′)
1

. After isolating e
g

( j ′)
1

for all j ′, these elements can be straightforwardly used to

linearly transform the union over all B j into the standard basis (eh)h∈F∗q of ZF
∗
q .

In any case, set
⋃(q−1)/o

j=1 B j = {b1, . . . ,bq−1}.

7. PROOF OF PROPOSITION 2.4

7.1. Overview. The aim in this section is to bound the expected size of the kernel of A on O from (2.7), i.e., |ker A|·
1O. As in Section 2.1 we let A be the σ-algebra generated by m, (k i )i≥1, (d i )i≥1 and by the numbers m(χ1, . . . ,χ`) of
equations of degree `≥ 3 with coefficients χ1, . . . ,χ` ∈ F∗q . Thus, the total degree∆=∑n

i=1 d i is A-measurable.
Let us first observe that it suffices to count “nearly equitable” kernel vectors, in the following sense. For a vector

σ ∈ Fn
q and s ∈ Fq define the empirical frequency

ρσ(s) =
n∑

i=1
d i 1 {σi = s} (7.1)

and let ρσ = (ρσ(s))s∈Fq . If O occurs, then ρσ is nearly uniform for most kernel vectors. Formally, we have the
following statement.

Fact 7.1. For any ε> 0 w.h.p. given A we have 1O · |ker A| ≤ (1+ε)
∣∣{σ ∈ ker A : ‖ρσ−q−1∆1‖1 < ε∆

}∣∣ .
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Proof. Choose δ= δ(ε, q) > 0 small enough. Since 0 < E[d 2] <∞ we find a constant d∗ > 0 such that

∆>
p
δn and

n∑
i=1

1{d i > d∗}d i < δ∆ w.h.p. (7.2)

Now, the definition (2.7) of O implies that for any degree `≤ d∗ a random vector x A ∈ ker A satisfies

∑
s,t∈Fq

n∑
i , j=1

1{d i = d j = `}
∣∣P[

x A,i = s, x A, j = t | A
]−q−2∣∣= o(n2) on O. (7.3)

By Chebyshev’s inequality w.h.p.
∑n

j=1 1{d j = `} = Ω(n) and consequently (7.3) shows that w.h.p. for a random
vector x A we have∣∣∣∣∣

n∑
i=1

1 {d i = `}
(
1
{

x A,i = s
}−1/q

)
∣∣∣∣∣= o(n) for all s ∈ Fq , `≤ d∗ on the event O. (7.4)

Combining (7.2) and (7.4) with the definition (7.1) of ρσ completes the proof. �
We proceed to contemplate different regimes of “nearly equitable” frequency vectors and employ increasingly

subtle estimates to bound their contributions. To this end let Pq be the set of all possible frequency vectors, i.e.,

Pq =
{
ρσ :σ ∈ Fn

q

}
.

Moreover, for ε> 0 let

Pq (ε) = {
ρ ∈Pq : ‖ρ−q−1∆1‖ < ε∆}

.

In addition, we introduce

Zρ =
∣∣{σ ∈ ker A : ρσ = ρ}∣∣ (ρ ∈Pq ),

Zε =
∑

ρ∈Pq (ε)
Zρ (ε≥ 0),

Zε,ε′ =Zε′ −Zε (ε,ε′ ≥ 0).

The following lemma sharpens the ε∆ error bound from Fact 7.1 to ωn−1/2∆.

Lemma 7.2. For any fixed ε> 0 for large enough ω=ω(ε) > 1 w.h.p. we have E
[
Zωn−1/2,ε |A

]< εqn−m .

The proof of Lemma 7.2, which can be found in Section 7.2, is based on an expansion to the second order of the
optimisation problem (2.5) around the equitable solution. Similar arguments have previously been applied in the
theory of random constraint satisfaction problems, particularly random k-XORSAT (e.g. [4, 6, 21]).

For ρ that are within O(n−1/2∆) of the equitable solution such relatively routine arguments do not suffice any-
more. Indeed, by comparison to examples of random CSPs that have been studied previously, sometimes by way
of the small subgraph conditioning technique, a new challenge arises. Namely, due to the algebraic nature of our
problem the conceivable empirical distributions ρx given that x ∈ ker A are confined to a proper sub-lattice of Zq .
The same is true of Pq unless d= 1. Hence, we need to work out how these lattices intersect. Moreover, for ρ ∈Pq

we need to calculate the number of assignments σ such that ρσ = ρ as well as the probability that such an assign-
ment satisfies all equations. Seizing upon Proposition 2.3 and local limit theorem-type techniques, we will deal
with these challenges in Section 7.3, where we prove the following.

Lemma 7.3. For any ε> 0 for large enough ω=ω(ε) > 1 we have E[Zωn−1/2 |A] ≤ (1+ε)qn−m w.h.p.

Proof of Proposition 2.4. This is an immediate consequence of Fact 7.1, Lemma 7.2 and Lemma 7.3. �
7.2. Proof of Lemma 7.2. As we just saw, on the one hand we need to count σ ∈ Fn

q such that ρσ hits a particular
attainable ρ ∈ Pq (ε). On the other hand, we need to estimate the probability that such a given σ satisfies all
equations. The first of these, the entropy term, increases as ρ becomes more equitable. The second, probability
term takes greater values for non-uniform ρ. Roughly, the more zero entries ρ contains, the better. The thrust of
the proofs of Lemmas 7.2 and 7.3 is to show that the drop in entropy is an order of magnitude stronger than the
boost to the success probability.

Toward the proof of Lemma 7.2 we can get away with relatively rough bounds, mostly disregarding constant
factors. The first claim bounds the entropy term. Instead of counting assignments we will take a probabilistic
viewpoint. Hence, let σ ∈ Fn

q be a uniformly random assignment.
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Claim 7.4. There exists C > 0 such that w.h.p. P
[‖ρσ−q−1∆1‖1 > t

p
∆ |A]≤C exp(−nt 2/C ) for all t > 0.

Proof. Since E[d 2] <∞, this is an immediate consequence of Azuma–Hoeffding. �

Let us move on to the probability term. We proceed indirectly by way of Bayes’ rule. Hence, fix ρ ∈Pq (ε) and
let ξ= (ξi j )i , j≥1 be an infinite array of Fq -valued random variables with distribution ∆−1ρ, mutually independent
and independent of all other randomness. Moreover, let

R(ρ) =
⋂

s∈Fq

{
m∑

i=1

k i∑
j=1

1
{
ξi j = s

}= ρ(s)

}
, S=

{
∀i ∈ [m] :

k i∑
j=1

χi jξi j = 0

}
. (7.5)

In words, R(ρ) is the event that the empirical distribution induced by the random vector ξi j , truncated at i = m
and j = k i for every i , works out to be ρ ∈Pq . Furthermore, S is the event that all m checks are satisfied if we
substitute the independent values ξi j for the variables.

Crucially, S ignores that the various equations share variables, or conversely that variables may appear in sev-
eral distinct checks. Hence, the unconditional event S effectively just deals with a linear system whose Tanner
graph consists of m checks with degrees k1, . . . ,km and

∑m
i=1 k i variable nodes of degree one each. However, the

conditional probability PA
[
S |R(ρ)

]
equals the probability that a random assignment σ lies in the kernel of A

given that ρσ = ρ; in symbols,

PA
[
S |R(ρ)

]=PA
[
σ ∈ ker A | ρσ = ρ]

. (7.6)

Indeed, given A and given ρσ = ρ the randomness that remains amounts to just how the variable clones are
matched to the check clones to form the random Tanner graph G . We can think of this matching as randomly
distributing

∑n
i=1 d iρ(s) “pebbles” with value s onto the m equations. The probability that the pebbles happen to

satisfy all the equations is precisely equal to PA
[
S |R(ρ)

]
.

We are going to see momentarily that the unconditional probabilities of R(ρ) and S are easy to calculate. In
addition, we will be able to calculate the conditional probability PA

[
S |R(ρ)

]
by way of the local limit theorem

for sums of independent random variables. Finally, Lemma 7.2 will follow from these estimates via Bayes’ rule.

Claim 7.5. We have PA [S] = qm(O(
∑

s∈Fq |∆−1ρ(s)−1/q |3)−1).

Proof. For any h ≥ 3 and any χ1, . . . ,χh ∈ suppχ we aim to calculate

Ph = log
∑

σ∈Fh
q

1

{
h∑

i=1
χiσi = 0

}
h∏

i=1

ρ(σi )

∆
.

The derivatives of this expression work out to be

∂Ph

∂ρs
=

∑h
j=1

∑
σ∈Fh

q
1
{∑h

i=1χiσi = 0, σ j = s
}∏

i 6= j
ρ(σi )
∆

∆ePh
(s ∈ Fq ),

∂2Ph

∂ρs∂ρs′
=

∑h
j , j ′=1

∑
σ∈Fh

q
1
{∑h

i=1χiσi = 0, σ j = s,σ j ′ = s′
}∏

i 6= j , j ′
ρ(σi )
∆

∆2ePh
− ∂Ph

∂ρs

∂Ph

∂ρ′
s

(s, s′ ∈ Fq , s 6= s′),

∂2Ph

∂ρ2
s

=
∑

j 6= j ′
∑
σ∈Fh

q
1
{∑h

i=1χiσi = 0, σ j =σ j ′ = s
}∏

i 6= j , j ′
ρ(σi )
∆

∆2ePh
−

(
∂Ph

∂ρs

)2

.

Evaluating the derivatives at the equitable ρ̄ = q−1∆1we obtain for any i ≥ 3,

∂Ph

∂ρs

∣∣∣
ρ̄
= hq−1

∆q−1 = h

∆
,

∂2Ph

∂ρs∂ρs′

∣∣∣
ρ̄
= h(h −1)q−1

∆2q−1
− h2

∆2 =− h

∆2 , (s 6= s′)

∂2Ph

∂ρ2
s

∣∣∣
ρ̄
= h(h −1)q−1

∆2q−1
− h2

∆2 =− h

∆2 .
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Hence, the Jacobi matrix and the Hessian work out to be

DPh
(
ρ̄
)= h

∆
1q , D2Ph

(
ρ̄
)=− h

∆2 1q×q . (7.7)

Furthermore, the third partial derivatives are clearly bounded, i.e.,

∂3Ph

∂ρs∂ρs′∂ρs′′
=Oε(1). (7.8)

Since ρ− ρ̄⊥ 1, (7.7), (7.8) and Taylor’s theorem imply the assertion. �

Claim 7.6. W.h.p. we have PA
[
R(ρ)

]=Ωε(n(1−q)/2).

Proof. Since the ξi j are mutually independent, the probability of R(ρ) given A is nothing but

PA
[
R(ρ)

]=
(

∆

(ρ(s))s∈Fq

) ∏
s∈Fq

(
ρ(s)

∆

)ρ(s)

.

The claim therefore follows from Stirling’s formula. �

Claim 7.7. W.h.p. we have PA
[
R(ρ) |S]=Oε(n(1−q)/2).

Proof. The claim follows from the local limit theorem for the sums of independent random variables (e.g. [18]). To
elaborate, even once we condition on the eventS the random vectors (ξi j ) j∈[k i ], 1 ≤ i ≤ m, remain independent for
different i ∈ [m] due to the independence of the (ξi j )i , j . Indeed,S only asks that each check be satisfied separately,
without inducing dependencies among different checks. Thus, the vector

(
m∑

i=1

k i∑
j=1

1
{
ξi j = s

}
)

s∈Fq

given S

is a sum of m independent random vectors. The local limit theorem therefore implies that the probability of the
most likely outcome of this random vector is of order n(1−q)/2; in symbols,

max
r∈Pq (ε)

PA [R(r ) |S] =O(n(1−q)/2). (7.9)

The assertion is an immediate consequence of (7.9). �

Proof of Lemma 7.2. Fix ρ ∈Pq (ε) such thatω
p
∆≤∑

s∈Fq |ρ(s)−∆/q | ≤ ε∆. Combining Claims 7.5–7.7 with Bayes’
rule, we conclude that w.h.p.

PA
[
S |R(ρ)

]= PA [S]PA
[
R(ρ) |S]

PA
[
R(ρ)

] =O(PA [S]) = qm(O(
∑

s∈Fq |ρ(s)/∆−1/q |3)−1)+O(1). (7.10)

Consequently, (7.6) and (7.10) imply that

PA
[
σ ∈ ker A | ρσ = ρ]=PA

[
S |R(ρ)

]= qm(O(
∑

s∈Fq |ρ(s)/∆−1/q |3)−1)+O(1). (7.11)

Hence, combining Claim 7.4 with (7.11) and using the bound
∑

s∈Fq |ρ(s)−∆/q | ≤ ε∆, we obtain

PA
[
σ ∈ ker A, ρσ = ρ]= qm(O(

∑
s∈Fq |ρ(s)/∆−1/q |3)−(Ω(

∑
s∈Fq |ρ(s)/∆−1/q |2)−1)+O(1) = qm(−1−Ω(

∑
s∈Fq |ρ(s)/∆−1/q |2)+O(1).

(7.12)

Multiplying (7.12) with qn and summing on ρ ∈Pq (ε) such that ωn−1/2∆≤∑
s∈Fq |ρ(s)−∆/q|, we finally obtain

EA
[
Zωn−1/2,ε

]= qn−m+O(1)
∑
ρ∈P

ωn−1/2∆≤∑
s∈Fq |ρ(s)−∆/q |<ε∆

exp

(
−Ω

(
n

∑
s∈Fq

|ρ(s)/∆−1/q |2
))

< εqn−m ,

provided ω=ω(ε) > 0 is chosen large enough. �
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7.3. Proof of Lemma 7.3. By comparison to the proof of Lemma 7.2, the main difference here is that we need to
be more precise. Specifically, while in Claims 7.6 and 7.7 we got away with disregarding constant factors, here we
need to be accurate up to a multiplicative 1+o(1). Working out the probability term turns out to be delicate. As in
Section 7.2 we introduce auxiliary Fq -valued random variables ξ= (ξi j )i , j≥1. These random variables are mutually
independent as well as independent of all other randomness. But this time all ξi j are uniform on Fq . Let R(ρ) and
S be the events from (7.5).

Similarly as in Section 7.2 we will ultimately apply Bayes’ rule to compute the probability of S given R(ρ) and
hence the conditional mean of Zρ . The individual probability R(ρ) is easy to compute.

Claim 7.8. For any ρ ∈Pq we have PA
[
R(ρ)

]= (∆
ρ

)
q−∆.

Proof. This is similar to the proof of Claim 7.6. As the ξi j are uniformly distributed and independent, we obtain

PA
[
R(ρ)

]=
(

∆

(ρ(s))s∈Fq

) ∏
s∈Fq

q−∑
s∈Fq ρ(s) =

(
∆

ρ

)
q−∆,

as claimed. �

As a next step we calculate the conditional probability of S given R(ρ). Similar to (7.1), for s ∈ Fq define the
empirical frequency

ρ(s) =
m∑

i=1

k i∑
j=1

1
{
ξi j = s

}
(7.13)

and let ρ = (ρ(s))s∈Fq as well as ρ̂ = (ρ(s))s∈F∗q . Of course, Proposition 2.3 implies that for some ρ ∈Pq the event S
may be impossible given R(ρ). Hence, to characterise the distributions ρ for which S can occur at all, we let

L=
{

r ∈ZF∗q :PA
[
ρ̂ = r

]> 0 and
∥∥r −q−1∆1

∥∥
1 ≤ωn−1/2∆

}
, (7.14)

L0 =
{
r ∈L :PA

[
ρ̂ = r |S]> 0

}
, (7.15)

L∗ = {
r ∈L :PA

[
ρ̂σ = r

]> 0
}

. (7.16)

Thus, L contains all conceivable outcomes of truncated frequency vectors. Moreover, L0 comprises those fre-
quency vectors that can occur given S, and L∗ those that can result from random assignments σ to the variables.
Hence, L0 is a finite subset of the Z-module generated by those sets Sq (χ1, . . . ,χ`) from (2.13) with m(χ1, . . . ,χ`) >
0. The following lemma shows that actually the conditional probability S given R(ρ) is asymptotically the same
for all ρ ∈L0, i.e., for all conceivably satisfying ρ that are nearly equitable.

Lemma 7.9. W.h.p. uniformly for all r ∈L0 we have PA
[
S | ρ̂ = r

]∼ q1{|suppχ|=1}−m .

We complement Lemma 7.9 by the following estimate of the probability that a uniformly random assignment
σ ∈ Fn

q hits the set L0 in the first place.

Lemma 7.10. W.h.p. we have PA
[
ρ̂σ ∈L0

]≤ (1+o(1))q−1{|suppχ|=1}.

We prove Lemmas 7.9 and 7.10 in Sections 7.4 and 7.5, respectively.

Proof of Lemma 7.3. The formula (7.6) extends to the present auxiliary probability space with uniformly distributed
and independent ξi j (for precisely the same reasons given in Section 7.2). Hence, (7.6), (7.14) and (7.15) show that

E[Zωn−1/2 |A] ≤
∑
σ∈Fn

q

1
{
ρ̂σ ∈L}

PA
[
S | ρ̂ = ρ̂σ

]=
∑
σ∈Fn

q

1
{
ρ̂σ ∈L0

}
PA

[
S | ρ̂ = ρ̂σ

]
. (7.17)

Finally, combining (7.17) with Lemma 7.9 and Lemma 7.10, we obtain

E[Zωn−1/2 |A] ≤ (1+o(1))q1{|suppχ|=1}−m
∑
σ∈Fn

q

1
{
ρ̂σ ∈L0

}

= (1+o(1))qn−m+1{|suppχ|=1}PA
[
ρ̂σ ∈L0

]≤ (1+o(1))qn−m ,

as desired. �
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7.4. Proof of Lemma 7.9. Given ω > 0 (from (7.14)) we choose ε0 = ε0(ω, q) sufficiently small and let 0 < ε < ε0.
Moreover, recall that we assume the existence of a constant η > 0 such that E[d 2+η]+ E[k2+η] < ∞. The proof
hinges on a careful analysis of the conditional distribution of ρ̂ given S. We begin by observing that the vector ρ̂
is asymptotically normal given S. Let I q−1 the (q −1)×(q −1)-identity matrix and let N ∈RF∗q be a Gaussian vector
with zero mean and covariance matrix

C = q−1I q−1 −q−21(q−1)×(q−1). (7.18)

Claim 7.11. There exists a function α=α(n, q,η) = o(1) such that for all axis-aligned cubes U ⊆RF∗q we have

E
∣∣PA

[
∆−1/2(ρ̂−q−1∆1) ∈U |S]−P [N ∈U ]

∣∣≤α.

Proof. The conditional mean of ρ̂ given S is uniform. To see this, consider any i ∈ [m] and h ∈ [k i ]. We claim that
for any vector (τ j ) j∈[k i ]\{h},

PA
[∀ j ∈ [k i ] \ {h} : ξi j = τ j |S

]∼ q1−k i . (7.19)

Indeed, for any such vector (τ j ) j∈[k i ]\{h} there is exactly one value ξi h that will satisfy the constraint, namely

ξi h =−χ−1
i h

∑
j∈[k i ]\{h}

χi jτ j .

Hence, given S the events {∀ j ∈ [k i ] \ {h} : ξi j = τ j } are equally likely for all τ, which implies (7.19). Furthermore,
together with the definition (7.13) of ρ, (7.19) readily implies that EA

[
ρ̂

]= q−1∆1. Similarly, (7.19) also shows that
∆−1/2ρ̂ has covariance matrix C .

Finally, we are left to prove the desired uniform convergence to the normal distribution. To this end we employ
the multivariate Berry-Esseen theorem (e.g., [41]). Specifically, given a small α > 0 choose K = K (q,η,α) > 0 and
m0 = m0(K ), n0 = n0(K ,m0) sufficiently large. Assuming n > n0, we can ensure that w.h.p. m > m0. Also let

k ′
i = 1{k i ≤ K }k i , k ′′

i = k i −k ′
i ,

ρ̂′(s) =
∑

1≤i≤m:k i≤K

k i∑
j=1

1{ξi j = s}, ρ̂′′(s) =
∑

1≤i≤m:k i>K

k i∑
j=1

1{ξi j = s},

∆′ =
n∑

i=1
k ′

i , ∆′′ =
n∑

i=1
k ′′

i .

Then the assumtion E[k2+η] <∞ and Markov’s inequality ensure that w.h.p.

∆′′ <α8∆. (7.20)

Moreover, by the same reasoning as in the previous paragraph the random vectors ρ̂′ and ρ̂′′ have means q−1∆′

and q−1∆′′ and covariances∆′C and∆′′C , respectively. Thus, (7.20) and Chebyshev’s inequality show that w.h.p.

PA

[∥∥∥∥
ρ̂′′−q−1∆′′1

∆1/2

∥∥∥∥>α2
]
<α2. (7.21)

Further, the Berry–Esseen theorem shows that w.h.p.

PA

[
ρ̂′−q−1∆′1p

∆′ ∈U

]
−P [N ∈U ] =O(n−1/2) for all cubes U . (7.22)

Combining (7.22) and (7.21), we see that w.h.p.
∣∣∣∣PA

[
ρ̂−q−1∆1p

∆
∈U

]
−P [N ∈U ]

∣∣∣∣≤α. (7.23)

The assertion follows from (7.23) by taking α→ 0 slowly as n →∞. �
The following claim states that the normal approximation from Claim 7.11 also holds for the unconditional

random vector ρ̂.

Claim 7.12. There exists a function α=α(n, q,η) = o(1) such that w.h.p. for all convex sets U ⊆RF∗q we have
∣∣PA

[
∆−1/2(ρ̂−q−1∆1) ∈U

]−P [N ∈U ]
∣∣≤α.

Proof. This is an immediate consequence of Claim 7.8 and Stirling’s formula. �
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Let k0 = minsuppk . In the case that |suppχ| = 1 we set χ1 = ·· · = χk0 to the single element of suppχ. Moreover,
in the case that |suppχ| > 1 we pick and fix any χ1, . . . ,χk0 ∈ suppχ such that |{χ1, . . . ,χk0 }| > 1. Let I0 be the set of
all i ∈ [m] such that k i = k0 and χi j = χ j for j = 1, . . . ,k0 and let I1 = [m] \I0. Then |I0|, |I1| =Θ(n) w.h.p. Further,
set

r 0(s) =
∑

i∈I0

∑
j∈[k i ]

1
{
ξi j = s

}
, r 1(s) =

∑
i∈I1

∑
j∈[k i ]

1
{
ξi j = s

}
(s ∈ F∗q ).

Then ρ̂ = r 0 + r 1.
Because the vectors ξi = (ξi ,1, . . . ,ξi ,k i

) are mutually independent, so are r 0 = (r 0(s))s∈F∗q and r 1 = (r 1(s))s∈F∗q . To
analyse r 0 precisely, let

S0 =
{
σ ∈ Fk0

q :
k0∑

i=1
χiσi = 0

}
.

Moreover, for σ ∈S0 let Rσ be the number of indices i ∈ I0 such that ξi =σ. Then conditionally on S, we have

r 0(s) =
∑

i∈I0

∑
j∈[k i ]

1
{
ξi j = s

}=
∑
σ∈S0

k0∑
j=1

1
{
σ j = s

}
Rσ given S,

which reduces our task to the investigation of R = (Rσ)σ∈S0 .
This is not too difficult because given S the random vector R has a multinomial distribution with parameter

|I0| and uniform probabilities |S0|−1. In effect, the individual entries R(σ), σ ∈S0, will typically differ by only a
few standard deviations, i.e., their typically difference will be of order O(

p
∆). We require a precise quantitative

version of this statement.
Recalling the sets from (7.14)–(7.16), for r∗ ∈L0 and 0 < ε< ε0 we let

L0(r∗,ε) =
{

r ∈L0 : ‖r − r∗‖∞ < ε
p
∆

}
.

Furthermore, we say that R is t-tame if |Rσ−|S0|−1|I0|| ≤ t
p
∆ for allσ ∈S0. Let T(t ) be the event that R is t-tame.

Lemma 7.13. W.h.p. for every r∗ ∈L0 there exists r∗ ∈L0(r∗,ε) such that

PA
[
ρ̂ = r∗ |S]≥ 1

2|L0(r∗,ε)| and PA
[
T(− logε) |S, ρ̂ = r∗]≥ 1−ε4. (7.24)

Proof. Recall that the event {ρ̂ = r } is the same as R(r ′) with r ′(s) = r (s) for s ∈ F∗q and r ′(0) = ∆−‖r‖1. As a first
step we observe that R given S is reasonably tame with a reasonably high probability. More precisely, since R has
a multinomial distribution given A and S, the Chernoff bound shows that w.h.p.

PA
[
T(− logε) |S]≥ 1−exp(−Ωε(log2(ε))). (7.25)

Further, Claim 7.11 implies that PA
[
ρ̂ ∈L0(r∗,ε) |S] ≥ Ωε(εq−1) ≥ εq w.h.p., provided ε < ε0 = ε0(ω) is small

enough. Combining this estimate with (7.25) and Bayes’ formula, we conclude that w.h.p. for every r∗ ∈L0,

PA
[
T(− logε) |S, ρ̂ ∈L0(r∗,ε)

]≥ 1−ε5. (7.26)

To complete the proof, assume that there does not exist r∗ ∈ L0(r∗,ε) that satisfies (7.24). Then for every r ∈
L0(r∗,ε) we either have

PA
[
ρ̂ = r |S]< 1

2|L0(r∗,ε)| or (7.27)

PA
[
T(− logε) |S, ρ̂ = r

]< 1−ε4. (7.28)

Let X0 be the set of all r ∈L0(r∗,ε) for which (7.27) holds, and let X1 =L0(r∗,ε) \X0. Then (7.27)–(7.28) yield

PA
[
T(− logε) |S, ρ̂ ∈L0(r∗,ε)

]≤ PA
[
ρ̂ ∈X0 |S

]+∑
r∈X1 PA

[
T(− logε) |S, ρ̂ = r

]
PA

[
ρ̂ = r |S]

PA [L0(r∗,ε) |S]

≤ PA
[
ρ̂ ∈X0 |S

]+ (1−ε4)PA
[
ρ̂ ∈X1 |S

]

|L0(r∗,ε)| < 1−ε4,

provided that 1−ε4 > 1
2 , in contradiction to (7.26). �
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Let M = Mq (χ1, . . . ,χk0 ) and let b1, . . . ,bq−1 be the basis of M supplied by Proposition 2.3. Let us fix vectors
τ(1), . . . ,τ(q−1) ∈S0 whose frequency vectors as defined in (2.14) coincide with b, . . . ,bq−1, i.e.,

τ̂(i ) = bi for i = 1, . . . , q −1.

Also let T(r, t ) be the event that ρ̂ = r and that R is t-tame. The following lemma summarises the key step of the
proof of Lemma 7.9.

Lemma 7.14. W.h.p. for any r∗ ∈ L0, any 1 ≤ t ≤ logn and any r,r ′ ∈ L0(r∗,ε) there exists a one-to-one map ψ :
T(r, t ) →T(r ′, t +Oε(ε)) such that for all (R,r1) ∈T(r, t ) we have

log
PA [(R ,r 1) = (R,r1) |S]

PA
[
(R ,r 1) =ψ(R,r1) |S] =Oε(ε(ω+ t )). (7.29)

Proof. Since r,r ′ ∈M, we have r − r ′ ∈M w.h.p. Indeed, if suppχ > 1, then Proposition 2.3 shows that M = ZF∗q
w.h.p. Moreover, if suppχ = 1, then M is a proper subset of the integer lattice ZF

∗
q . Nonetheless, Proposition 2.3

shows that the modules
Mq ( 1, . . . ,1︸ ︷︷ ︸

` times

)

coincide for all `≥ 3, and therefore M coincides with the Z-module generated by L0. Hence, in either case there is
a unique representation

r − r ′ =
q−1∑
i=1

λibi (λi ∈Z) (7.30)

in terms of the basis vectors. Because r,r ′ ∈L0(r∗,ε) and


λ1
...

λq−1


= (

b1 · · · bq−1
)−1 (r − r ′),

the coefficients satisfy

|λi | =Oε(ε
p
∆) for all i = 1, . . . , q −1. (7.31)

Now let λ0 = −∑q−1
i=1 λi , obtain the vector R ′ from R by amending the entry R ′

0 corrsponding to the zero solution
0 ∈S0 to

R ′
0 = R0 +λ0, and setting R ′

τ(i ) = Rτ(i ) +λi for all σ 6∈ {0,τ(1), . . . ,τ(q−1)}.

Further, defineψ(R,r ) = (R ′,r ′). Thenψ(R,r ) ∈T(r ′, t +Oε(ε)) due to (7.30) and (7.31). Moreover, Stirling’s formula
and the mean value theorem show that

PA [(R ,r 1) = (R,r1) |S]

PA
[
(R ,r 1) =ψ(R,r1) |S] =

(
|I0|

R|I0|

)(
|I0|

R ′|I0|

)−1

= exp

[ ∑
σ∈S0

Oε

(
Rσ logRσ−R ′

σ logR ′
σ

)
]

= exp

[
Oε(|I0|)

∑
σ∈S0

∣∣∣∣
∫ Rσ/|I0|

R ′
σ/|I0|

log zdz

∣∣∣∣
]

= exp

[
Oε(|I0|)

∑
σ∈S0

(
Rσ

|I0|
− R ′

σ

|I0|

)
log

(
1

q
+Oε

(
(ω+ t )

p
∆

|I0|

))]

= exp

[
Oε(|I0|)

∑
σ∈S0

Oε

(
(ω+ t )

p
∆

|I0|

(
Rσ

|I0|
− R ′

σ

|I0|

))]
. (7.32)

Since |I0| =Θε(∆) =Θε(n) w.h.p., (9.17) implies (9.13). Finally, ψ is one-to-one because each vector has a unique
representation with respect to the basis (b1, . . . ,bq−1). �

Roughly speaking, Lemma 7.14 shows that any two tame r,r ′ ∈L0(r∗,ε) close to a conceivable r∗ ∈L0 are about
equally likely. However, the map ψ produces solutions that are a little less tame than the ones we start from. The
following corollary, which combines Lemmas 7.13 and 7.14, remedies this issue.
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Corollary 7.15. W.h.p. for all r∗ ∈L0 and all r,r ′ ∈L0(r∗,ε) we have

PA
[
T(r,−3logε) |S]= (1+oε(1))PA

[
T(r ′,−3logε) |S]

.

Proof. Let r∗ be the vector supplied by Lemma 7.13. Applying Lemma 7.14 to r∗ and r ∈ L0(r∗,ε), we see that
w.h.p.

PA
[
T(r,−2logε) |S]≥ (1+Oε(ε logε))PA

[
T(r∗,− logε) |S]≥ 1

3|L0(r∗,ε)| for all r ∈L0(r∗,ε). (7.33)

In addition, we claim that w.h.p.

PA
[
T(r,−4logε) \T(r,−3logε) |S]≤ εPA

[
T(r∗,− logε) |S]

for all r ∈L0(r∗,ε). (7.34)

Indeed, applying Lemma 7.14 twice to r and r∗ and invoking (7.24), we see that w.h.p.

PA
[
T(r,−2logε) |S]≥ exp(Oε(ε logε))PA

[
T(r∗,−3logε) |S]

≥ (
1−Oε(ε logε)

)
PA

[
ρ̂ = r∗ |S]

, (7.35)

PA
[
T(r,−4logε) \T(r,−3logε) |S]≤ exp(Oε(ε logε))PA

[
T(r∗,−3logε) \T(r∗,−2logε) |S]

≤Oε(ε4)PA
[
ρ̂ = r∗ |S]

. (7.36)

Combining (7.35) and (7.36) yields (7.34).
Finally, (7.24), (7.33) and (7.34) show that w.h.p.

PA
[
T(−3logε) | ρ̂ = r, S

]≥ 1−p
ε, PA

[
T(−3logε) | ρ̂ = r ′, S

]≥ 1−p
ε for all r,r ′ ∈L0(r∗,ε), (7.37)

and combining (7.37) with Lemma 7.14 completes the proof. �

Proof of Lemma 7.9. We are going to show that the conditional probabilityPA
[
ρ̂ = r |S]

of hitting some particular
r ∈L0 coincides with the unconditional probabilityPA

[
ρ̂ = r

]
up to a factor of 1+oε(1). Then the assertion follows

from Bayes’ formula.
The unconditional probability PA

[
ρ̂ = r

]
is given precisely by Claim 7.8. Hence, recalling the (q −1)× (q −1)-

matrix Σ= qid−1 −q−21 and applying Stirling’s formula, we obtain

PA
[
ρ̂ = r

]∼ 1

(2π∆q−1(1−q−1))(q−1)/2
exp

[
− (r −q−1∆1)>(q−11−q−21)−1(r −q−1∆1)

2∆

]
(7.38)

w.h.p.
Next we will show that the conditional probability PA

[
ρ̂ = r |S]

works out to be asymptotically the same. In-
deed, Claim 7.11 shows that for any r ∈ L0 the proability that ρ̂ hits the set L0(r,ε) is asymptotically equal to the
probability of the event {‖N −∆−1/2(r −q−1∆1)‖∞ < ε} w.h.p. Moreover, Corollary 9.4 implies that given ρ̂ ∈L0(r,ε),
ρ̂ is within oε(1) of the uniform distribution on L0(r,ε). Furthermore, Lemma 3.6 and Proposition 2.3 show that
the number of points in L0(r,ε) satisfies

|L0(r,ε)|∣∣{z ∈Zq−1 : ‖z − r‖∞ ≤ ε
p
∆

}∣∣ ∼ q−1{|suppχ|=1}.

Therefore, w.h.p. for all r ∈L0 we have

PA
[
ρ̂ = r |S]= (1+oε(1))

q1{|suppχ|=1}

(2π∆q−1(1−q−1))(q−1)/2
exp

[
− (r −q−1∆1)>(q−11−q−21)−1(r −q−1∆1)

2∆

]
. (7.39)

Finally, we observe that

PA [S] ∼ q−m . (7.40)

Indeed, since the ξi j are uniform and independent, for each i ∈ [m] we have
∑k i

j=1χi , jξi j = 0 with probability 1/q

indepdenently. Combining (7.38)–(7.40) completes the proof. �
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7.5. Proof of Lemma 7.10. We continue to denote by σ ∈ Fn
q a uniformly random assignment and by I q−1 the

(q −1)× (q −1)-identity matrix. Also recall ρσ from (7.1) and for ρ = (ρ(s))s∈Fq obtain ρ̂ = (ρ(s))s∈F∗q by dropping
the 0-entry. The following claim, which we prove via the local limit theorem for sums of independent random
variables, determines the distribution of ρσ. Let ρ̄ = q−1∆1q−1.

Claim 7.16. Let C be the (q −1)× (q −1)-matrix from (9.2). Then w.h.p. for all ρ ∈Pq we have

P
[
ρσ = ρ |A]= q q/2dq−1

(2E[d 2]πn)(q−1)/2
exp

(
− (ρ̂− ρ̄)>C −1(ρ̂− ρ̄)

2nE[d 2]

)
+o(n(1−q)/2).

The proof of Claim 7.16 is based on local limit theorem techniques similar to but simpler than the ones from
Section 7.4. In fact, the proof strategty is somewhat reministcent of that of the well-known local limit theorem
for sums of independent random vectors from [18]. However, the local theorem from that paper does not imply
Claim 7.16 directly because a key assumption (that increments of vectors in each direction can be realised) is not
satisfied here. We therefore carry the details out in the appendix.

Claim 7.16 demonstrates that ρσ satisfies a local limit theorem. Hence, let N ′ ∈ Rq−1 be a mean-zero Gaussian
vector with covariance matrix q−1id− q−21. Moreover, fix ε > 0 and let U ⊆ Rq−1 = v + [−ε,ε]q−1 be a box of side
length 2ε. Then w.h.p. we have

PA

[(
nE[d 2]

)−1/2
(ρ̂σ−q−1∆1) ∈U

]
=PA

[
N ′ ∈U

]+o(1). (7.41)

Indeed, Claim 7.16 implies that ρ̂σ is asymptotically uniformly distributed on the lattice points of the box U whose
coordinates are divisible by d w.h.p. Thus, w.h.p. for any z, z ′ ∈∆U ∩dZF

∗
q we have

PA
[
ρ̂σ = z

]= (1+oε(1))PA
[
ρ̂σ = z ′] . (7.42)

Moreover, we claim that

PA
[
ρ̂σ ∈L0 | ρ̂σ ∈U

]∼

∣∣∣U ∩L0 ∩dZF
∗
q

∣∣∣
∣∣∣U ∩dZF

∗
q

∣∣∣
≤

∣∣∣U ∩M∩dZF
∗
q

∣∣∣
∣∣∣U ∩dZF

∗
q

∣∣∣
≤ (1+o(1))q−1{|suppχ|=1}. (7.43)

Indeed, if |suppχ| > 1, then (7.43) is satisfied w.h.p. for the trivial reason that the r.h.s. equals 1+ o(1). Hence,
suppose that |suppχ| = 1, let M⊃L0 be the module from Proposition 2.3 and let b1, . . . ,bq−1 be its assorted basis.

Clearly, M∩dZF
∗
q ⊇ dM. Conversely, Cramer’s rule shows that any y ∈M∩dZF

∗
q can be expressed as

(b1 · · · bq−1)z, with zi =
det(b1 · · ·bi−1 y bi+1 · · ·bq−1)

q
.

In particular, all coordinates zi are divisible by d because y ∈ dZF
∗
q . Hence, y ∈ dM because d and q are coprime.

Lemma 3.6 therefore implies (7.43). Finally, the assertion follows from (7.41)–(7.43).

8. PROOF OF PROPOSITION 4.1

We prove Proposition 4.1 by way of a coupling argument inspired by the Aizenman-Sims-Starr scheme from spin
glass theory [5]. The proof is a close adaptation of the coupling argument used in [10] to prove the approximate
rank formula (1.4). We will therefore be able to reuse some of the technical steps from that paper. The main
difference is that we need to accommodate the extra ternary equations ti . Their presence gives rise to the second
parameter β in (4.5).

8.1. Overview. The basic idea behind the Aizenman-Sims-Starr scheme is to compute the expected difference
E[nul A[n +1,ε,δ,Θ]]−E[nul A[n +1,ε,δ,Θ]] of the nullity upon increasing the size of the matrix. We then obtain
(4.5) by writing a telescoping sum. In order to estimate the expected change of the nullity, we set up a coupling of
A[n,ε,δ,Θ] and A[n +1,ε,δ,Θ].

To this end it is helpful to work with a different description of the random matrix model. Specifically, let M =
(M j ) j≥1,∆= (∆ j ) j≥1, λ and η be Poisson variables with means

E[M j ] = (1−ε)P
[
k = j

]
dn/k, E[∆ j ] = (1−ε)P

[
k = j

]
d/k, E [λ] = δn, E

[
η
]= δ. (8.1)
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All these random variables are mutually independent and independent of θ and the (d i )i≥1. Further, let

M+
j = M j +∆ j , mε,n =

∑
j≥1

M j , m+
ε,n =

∑
j≥1

M+
j , λ+ =λ+η. (8.2)

Since
∑

j≥1 M j ∼ Po((1−ε)dn/k), (8.2) is consistent with (4.1).
We define a random Tanner (multi-)graph G [n, M ,λ] with variable nodes x1, . . . , xn and check nodes ai , j , i ≥ 1,

j ∈ [M i ], t1, . . . , tλ and p1, . . . , pθ. The edges between variables and the check nodes ai , j are induced by a random
maximal matching Γ [n, M] of the complete bipartite graph with vertex classes

n⋃
h=1

{xh}× [d h] and
⋃
i≥1

M i⋃
j=1

{ai , j }× [i ].

Moreover, for each j ∈ [λ] we choose i j ,1, i j ,2, i j ,3 uniformly and independently from [n] and add edges between
xi j ,1 , xi j ,2 , xi j ,3 and t j . In addition, we insert an edge between pi and xi for every i ∈ [θ].

To define the random matrix A [n, M ,λ] to go with G [n, M ,λ], let

A [n, M ,λ]pi ,xh = 1 {i = h} (i ∈ [θ],h ∈ [n]), (8.3)

A [n, M ,λ]ai , j ,xh =χi ,h

i∑
`=1

d h∑
s=1

1{(xh , s), (ai , j ,`)} ∈Γn,M } (i ≥ 1, j ∈ [M i ],h ∈ [n]), (8.4)

A [n, M ,λ]ti ,xh =χmε,n+i ,h

3∑
`=1

1{i i ,` = h} (i ∈ [λ],h ∈ [n]). (8.5)

The Tanner graph G
[
n +1, M+,λ+]

and its associated random matrix A
[
n +1, M+,λ+]

are defined analogously
using n +1 variable nodes instead of n, M+ instead of M and λ+ instead of λ.

Fact 8.1. For any ε,δ> 0 we have

E[nul A [n,ε,δ]] = E[nul A [n, M ,λ]], E[nul A [n +1,ε,δ]] = E
[
nul A

[
n +1, M+,λ+]]

.

Proof. Because the check degrees k i of the random factor graph G [n,ε,δ] are drawn independently, the only dif-
ference between G [n,ε,δ] and G [n, M ,λ] is the bookkeeping of the number of checks of each degree. The same is
true of G [n +1,ε,δ] and G [n +1, M ,λ]. �

To construct a coupling of A [n, M ,λ]] and A
[
n +1, M+,λ+]

we introduce a third, intermediate random matrix.
Hence, letγi ≥ 0 be the number of checks ai , j , j ∈ [M+

i ], adjacent to the last variable node xn+1 in G
[
n +1, M+,λ+]

.
Set γ= (γi )i≥3. Also let

λ− = δ(n +1)−3δ · n2 +n +1/3

n2 +2n +1
(8.6)

be the expected number of extra ternary checks of G
[
n +1, M+,λ+]

in which xn+1 does not appear. Let

M−
i = (M i −γi )∨0, as well as λ− ∼ Po(λ−). (8.7)

Consider the random Tanner graph G ′ = G [n, M−,λ−] induced by a random maximal matching Γ′ = Γ [n, M−] of
the complete bipartite graph with vertex classes

n⋃
h=1

{xh}× [d h] and
⋃
i≥1

M−
i⋃

j=1
{ai , j }× [i ]. (8.8)

Each matching edge {(xh , s), (ai , j ,`)} ∈ Γ [n, M−] induces an edge between xh and ai , j in the Tanner graph. For
each j ∈ [λ−] and i−j ,1, i−j ,2, i−j ,3 uniform and independent in [n], we add the edges between xi−j ,1

, xi−j ,2
, xi−j ,3

and t j .

In addition, there is an edge between pi and xi for every i ∈ [θ]. Let A′ denote the corresponding random matrix.
For each variable xi , i = 1, . . . ,n, let C be the set of clones from

⋃
i∈[n]{xi }×[d i ] that Γ [n, M−] leaves unmatched.

We call the elements of C cavities.
From G ′, we finally construct two further Tanner graphs. Obtain the Tanner graph G ′′ from G ′ by adding new

check nodes a′′
i , j for each i ≥ 3, j ∈ [M i −M−

i ] and ternary check nodes t ′′i for i ∈ [λ′′], where

λ′′ ∼ Po(δn −λ−) = Po

(
2δ · n2 +n/2

n2 +2n +1

)
(8.9)
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The new checks a′′
i , j are joined by a random maximal matching Γ′′ of the complete bipartite graph on

C and
⋃
i≥1

⋃
j∈[M i−M−

i ]
{a′′

i , j }× [i ].

Moreover, for each j ∈ [λ′′] we choose i ′′j ,1, i ′′j ,2, i ′′j ,3 ∈ [n] uniformly and independently of everything else and add

the edges between xi ′′j ,1
, xi ′′j ,2

, xi ′′j ,3
and t ′′j . Let A′′ denote the corresponding random matrix, where as before, each

new edge is represented by an independent copy of χ.
Finally, let

λ′′′ ∼ Po(δ(n +1)−λ−) = Po

(
3δ · n2 +n +1/3

n2 +2n +1

)
. (8.10)

We analogously obtain G ′′′ by adding one variable node xn+1 as well as check nodes a′′′
i , j , i ≥ 1, j ∈ [γi ], b′′′

i , j , i ≥ 1,

j ∈ [M+
i −M−

i −γi ], t ′′′i , i ∈ [λ′′′]. The new checks a′′′
i , j and b′′′

i , j are connected to G ′ via a random maximal matching

Γ′′′ of the complete bipartite graph on

C and
⋃
i≥1


 ⋃

j∈[γi ]
{a′′′

i , j }× [i −1]∪
⋃

j∈[M+
i −M−

i −γi ]

{b′′′
i , j }× [i ]


 .

For each matching edge we insert the corresponding variable-check edge and in addition each of the check nodes
a′′′

i , j gets connected to xn+1 by exactly one edge. Then we connect each t ′′′i to xi ′′′i ,1
, xi ′′′i ,2

and xn+1, with i ′′′i ,1, i ′′′i ,2 ∈
[n +1] chosen uniformly and independently. Once again each edge is represented by an independent copy of χ.
Let A′′′ denote the resulting random matrix.

The following lemma connects A′′, A′′′ with the random matrices A [n, M ,λ], A
[
n +1, M+,λ+]

and thus, in light
of Fact 8.1, with A [n,ε,δ] and A [n +1,ε,δ].

Lemma 8.2. We have E[nul(A′′)] = E[nul(An,M ,λ)]+o(1) and E[nul(A′′′)] = E[nul(An+1,M+,λ+ )]+o(1).

We defer the simple proof of Lemma 8.2 to Section 8.5.
The core of the proof of Proposition 4.1 is to estimate the difference of the nullities of A′′′ and A′ and of A′′ and

A′. The following two lemmas express these differences in terms of two random variables α,β. Specifically, let α
be the fraction of frozen cavities of A′ and let β be the fraction of frozen variables of A′.

Lemma 8.3. For large enoughΘ(ε) > 0 and small enough 0 < δ< δ0 we have

E[nul(A′′′)−nul(A′)] = E[
exp

(−3δβ2)D(1−K ′(α)/k)
]+ d

k
E
[
K ′(α)+K (α)

]− d(k +1)

k
−3δE

[
1−β2]+oε(1).

Lemma 8.4. For large enoughΘ(ε) > 0 and small enough 0 < δ< δ0 we have

E[nul(A′′)−nul(A′)] =−d + d

k
E
[
αK ′(α)

]−2δE
[
1−β3]+oε(1).

After some preparations in Section 8.2 we will prove Lemmas 8.3 and 8.4 in Sections 8.3 and 8.4.

Proof of Proposition 4.1. The proposition is an immediate consequence of Fact 8.1, Lemma 8.2, Lemma 8.3 and
Lemma 8.4. �

8.2. Preparations. To facilitate the proofs of Lemmas 8.3 and 8.4 we establish a few basic statements about the
coupling. Some of these are immediate consequence of statements from [10], where a similar coupling was used.
Let us begin with the following lower bound on the likely number of cavities.

Lemma 8.5. W.h.p. we have |C | ≥ εdn/2.

Proof. Apart from the extra ternary check nodes t1, . . . tλ′ , the construction of G ′ coincides with that of the Tanner
graph from [10]. Because the presence of t1, . . . tλ′ does not affect the number of cavities, the assertion therefore
follows from [10, Lemma 5.5]. �

As a next step we show that w.h.p. the random matrix A′ does not have very many short linear relations. Specif-
ically, if we choose a bounded number of variables and a bounded number of cavities randomly, then it is quite
unlikely that the chosen coordinates form a proper relation. Formally, let R(`1,`2) be the set of all sequences
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(i1, . . . , i`1 ) ∈ [n]`1 , (u1, j1), . . . , (u`2 , j`2 ) ∈C such that (i1, . . . , i`1 ,u1, . . . ,u`2 ) is a proper relation of A′. Furthermore,
let R(ζ,`) be the event that |R(`1,`2)| ≤ ζn`1 |C |`2 for all 0 ≤ `1,`2 ≤ `.

Lemma 8.6. For any ζ > 0, ` > 0 exist Θ0 = Θ0(ε,ζ,`) > 0 and n0 > 0 such that for all n ≥ n0, Θ ≥ Θ0 we have
P [R(ζ,`)] > 1−ζ.

Proof. Fix any `1,`2 ≤ ` such that `1 +`2 > 0 and let R(ζ,`1,`2) be the event that |R(`1,`2)| < ζn`1 |C |`2 . Then it
suffices to show that P [R(ζ,`1,`2)] > 1−ζ as we can just replace ζ by ζ/(`+1)2 and apply the union bound. To this
end we may assume that ζ< ζ0(ε,`) for a small enough ζ0(ε,`) > 0.

We will actually estimate |R(`1,`2)| on a certain likely event. Specifically, due to Lemma 8.5 we have |C | ≥ εn/2
w.h.p. In addition, let A be the event that A′ is (ζ4/L`,`)-free. Then Lemma 3.4 shows thatP [A ] > 1−ζ/3, provided
that n ≥ n0 for a large enough n0 = n0(ζ,`). To see this, consider the matrix B obtained from A′ by deleting the
rows representing the unary checks pi . Then Lemma 3.4 shows that the matrix B [θ] obtained from B via the
pinning operation is (ζ4,L`)-free with probability 1− ζ/3, provided that Θ is chosen sufficiently large. The only
difference between B [θ] and A′ is that in the former random matrix we apply the pinning operation to θ random
coordinates, while in A′ the unary checks pi pin the first θ coordinates. However, the distribution of A′ is actually
invariant under permutations of the columns. Therefore, the matrices A′ and B [θ] are (ζ4,L`)-free with precisely
the same probability. Hence, Lemma 3.4 implies that P [A ] > 1−ζ/3.

Further, Markov’s inequality shows that for any L > 0,

P

[
n∑

i=1
d i 1{d i > L} ≥ εζ2n

16`

]
≤ 16`E [d1{d > L}]

εζ2 .

Therefore, since E [d ] =Oε(1) we can choose L = L(ε,ζ,`) > 0 big enough such that the event

L =
{

n∑
i=1

d i 1{d i > L} < εζ2n

16`

}

has probability at least 1−ζ/3. Thus, the event E = A ∩L ∩ {|C | ≥ εn/2} satisfies P [E ] > 1−ζ. Hence, suffices to
show that

|R(`1,`2)| < ζn`1 |C |`2 if the event E occurs. (8.11)

To bound R(`1,`2) on E we need to take into consideration that the cavities are degree-weighted. Hence, let
R′(`1,`2) be the set of all sequences (i1, . . . , i`1 , (u1, j1), . . . , (u`2 , j`2 )) ∈R(`1,`2) such that the degree of some vari-
able node ui exceeds L. Assuming `2 > 0, on E we have

|R′(`1,`2)| ≤ n`1+1|C |`2−1 · 2

ε

n∑
i=1

d i 1{d i > L} ≤ n`1 |C |`2 · 2

ε
· ζ

2n

16`2
< ζ

2
, (8.12)

provided that ζ> 0 is small enough.
Finally, we bound the size of R′′(`1,`2) = R(`1,`2) \ R′(`1,`2). Since for any (i1, . . . , i`1 , (u1, j1), . . . , (u`2 , j`2 )) ∈

R′′(`1,`2) the sequence (i1, . . . , i`1 ,u1, . . . ,u`2 ) is a proper relation and since there are no more than L`2 ways of
choosing the indices j1, . . . , j`2 , on the event E we have

|R′′(`1,`2)| ≤ ζ4

L`
·L`2 n` [because A′ is ζ4/L`,`)-free]

≤ ζ4
(

2

ε

)`2

·n`1 |C |`2 [because |C | > εn/2]

< ζ

2
n`1 |C |`2 , (8.13)

provided that ζ< ζ0(ε,`) is sufficiently small. Thus, (8.11) follows from (8.12) and (8.13). �

Let (k̂ i )i≥1 be a sequence of copies of k̂ , mutually independent and independent of everything else. Also let

γ̂ j =
d n+2∑
i=1

1
{

k̂ i = j
}

, γ̂= (γ̂ j ) j≥1.
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Additionally, let (∆̂ j ) j≥3 be a family of independent random variables with distribution

∆̂ j = Po
(
(1−ε)P

[
k = j

]
d/k

)
. (8.14)

Further, let Σ′ be the σ-algebra generated by G ′, A′,θ,λ−, M−,Γn,M− , (χ′
i , j ,h)i , j ,h≥1 and (d i )i∈[n]. In particular, α

and β are Σ′-measurable.

Lemma 8.7. With probability 1−exp(−Ωε(1/ε)), we have

dTV
(
P

[{
γ ∈ · } |Σ′] , γ̂

)+dTV
(
P

[
{∆ ∈ · } |Σ′] ,∆̂

)=Oε(
p
ε).

Proof. Because G ′ is distributed the same as the Tanner graph from [10], apart from the extra ternary checks ti ,
which do not affect the random vector γ, the assertion follows from [10, Lemma 5.8]. �

Let `∗ = dexp(1/ε4)e and δ∗ = exp(−1/ε4) and consider the event

E =R(δ∗,`∗). (8.15)

Further, consider the event

E ′ =
{
|C | ≥ εdn/2∧max

i≤n
d i ≤ n1/2

}
. (8.16)

Corollary 8.8. For sufficiently largeΘ=Θ(ε) > 0 we have P
[

A′ ∈ E
]> exp(−1/ε4). Moreover, P

[
E ′]= 1−o(1).

Proof. The first statement follows from Lemma 8.6. The second statement follows from the choice of the parame-
ters in (8.1), Lemma 3.8 and Lemma 8.5. �

With these preparations in place we are ready to proceed to the proofs of Lemmas 8.3 and 8.4.

8.3. Proof of Lemma 8.3. Let

X =
∑
i≥1
∆i , Y =

∑
i≥1

i∆i , Y ′ =
∑
i≥1

iγi .

Then the total number of new non-zero entries upon going from A′ to A′′′ is bounded by Y +Y ′+3λ′′′. Let

E ′′ = {
X ∨Y ∨Y ′∨λ′′′ ≤ 1/ε

}
.

Claim 8.9. We have P
[
E ′′]= 1−Oε(ε).

Proof. Apart from the additional ternary checks the argument is similar to [10, Proof of Claim 5.9]. The construc-
tion (8.1) ensures that E[X ],E[Y ] =Oε(1). Therefore, P [X > 1/ε] =Oε(ε), P [Y > 1/ε] =Oε(ε) by Markov’s inequality.
Further, a given check node of degree i is adjacent to xn+1 with probability at most i d n+1/

∑n
i=1 d i ≥ n ≤ i d n+1/n.

Consequently,

E
[
Y ′]= E

∑
i≥1

iγi ≤ E
∑

i∈[m+
ε,n ]

k2
i d n+1/n =Oε(1).

Moreover, (8.10) shows that E[λ′′′] =Oε(1). Thus, the assertion follows from Markov’s inequality. �

We obtain G ′′′ from G ′ by adding checks a′′′
i , j , i ≥ 1, j ∈ [γi ], b′′′

i , j , i ≥ 1, j ∈ [M+
i −M−

i −γi ] and t ′′′i , i ∈ [λ′′′]. Let

X ′′′ =
(
⋃
i≥1

γi⋃
j=1

∂a′′′
i , j \ {xn+1}

)
∪


⋃

i≥1

⋃
j∈[M+

i −M−
i −γi ]

∂b′′′
i , j


∪

λ′′′⋃
i=1

∂t ′′′i \ {xn+1}

be the set of variable neighbours of these new checks among x1, . . . , xn . Further, let

E ′′′ =
{
|X | = Y +

∑
i≥1

(i −1)γi +λ′′′
}

be the event that the variables of G ′ where the new checks connect are pairwise distinct.

Claim 8.10. We have P
[
E ′′′ | E ′∩E ′′]= 1−o(1).
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Proof. By the same token as in [10, proof of Claim 5.10], given that E ′ occurs the total number of cavities comes
to Ω(n). At the same time, the maximum variable node degree is of order O(

p
n). Moreover, given the event E ′′

no more than Y +Y ′ = Oε(1/ε) random cavities are chosen as neighbours of the new checks a′′′
i , j ,b′′′

i , j . Thus, by

the birthday paradox the probability that the checks a′′′
i , j ,b′′′

i , j occupy more than one cavity of any variable node is

o(1). Furthermore, the additional ternary nodes t ′′′i choose their two neighbours among x1, . . . , xn mutually inde-
pendently and independently of the a′′′

i , j ,b′′′
i , j . Since λ′′′ is bounded given 1/ε, the overall probability of choosing

the same variable twice is o(1). �

The following claim shows that the unlikely event that E ∩E ′∩E ′′∩E ′′′ does not occur does not contributed
significantly to the expected change in nullity.

Claim 8.11. We have E
[∣∣nul(A′′′)−nul(A′)

∣∣ (1− 1E ∩E ′∩E ′′∩E ′′′)
]= oε(1).

Proof. We modify the proof of [10, Claim 5.11] to accommodate the extra ternary nodes. Since A′′′ results from A′

by adding one column and no more than X +d n+1 +λ′′′ rows, we have
∣∣nul(A′′′)−nul(A′)

∣∣ ≤ X +d n+1 +λ′′′+1.
Because X ,d 2

n+1,λ′′′ have bounded second moments, the Cauchy-Schwarz inequality therefore yields the estimate

E
[∣∣nul(A′′′)−nul(A′)

∣∣ (1− 1E ′′)
]≤ E[

(X +d n+1 +λ′′′+1)2]1/2 (
1−P[

E ′′])1/2 = oε(1). (8.17)

Moreover, combining Corollary 8.8 and Claims 8.9–8.10, we obtain

E
[∣∣nul(A′′′)−nul(A′)

∣∣1E ′′ \E
]≤Oε(ε−1)exp(−1/ε4) = oε(1), (8.18)

E
[∣∣nul(A′′′)−nul(A′)

∣∣1E ′′ \E ′] ,E
[∣∣nul(A′′′)−nul(A′)

∣∣1E ′′∩E ′ \E ′′′]= o(1). (8.19)

The assertion follows from (8.17)–(8.19). �

Recall that α denotes the fraction of frozen cavities and β the fraction of frozen variables of A′. Further, let
Σ′′ ⊃Σ′ be the σ-algebra generated by θ, G ′, A′, M−, (d i )i∈[n+1], γ, M , ∆, λ−,λ′′′. Then α,β as well as E ,E ′,E ′′ are
Σ′′-measurable but E ′′′ is not.

Claim 8.12. On the event E ∩E ′∩E ′′ we have

E
[(

nul(A′′′)−nul(A′)
)
1E ′′′ |Σ′′]= oε(1)+ (1−β2)λ

′′′ ∏
i≥1

(1−αi−1)γi −
∑
i≥1

(1−αi−1)γi −λ′′′(1−β2)

−
∑
i≥1

(1−αi )(M+
i −M−

i −γi ).

Proof. We modify the proof of [10, Claim 5.12] by taking the additional ternary checks into consideration. Let

A =
{

a′′′
i , j : i ≥ 1, j ∈ [γi ]

}
, B =

{
b′′′

i , j : i ≥ 1, j ∈ [M+
i −M−

i −γi ]
}

, T = {
ti : i ∈ [λ′′′]

}
.

We set up a random matrix B with rows indexed by A ∪B ∪T and columns indexed by Vn = {x1, . . . , xn}. For a
check a ∈A ∪B∪T and a variable x ∈Vn the (a, x)-entry of B equals zero unless x ∈ ∂G ′′′a. Further, the non-zero
entries of B are independent copies of χ. Additionally, obtain B∗ from B by zeroing out the x-column for every
variable x ∈ F(A′). Finally, let C ∈ FA∪B∪T be a random vector whose entries C a , a ∈ A ∪T , are independent
copies of χ, while C b = 0 for all b ∈B.

If E ′′′ occurs, B has row full rank because there is at most one non-zero entry in every column and at least one
non-zero entry in every row. Hence,

rk(B ) = |A ∪B∪T | =
∑
i≥1

M+
i −M−

i +λ′′′.

Furthermore, since the rank is invariant under row and column permutations, given E ∩E ′∩E ′′∩E ′′′ we have

nul A′′′ = nul

(
A′ 0
B C

)
.

Moreover, given E ′ the set X ′′′ of all non-zero columns of B satisfies |X ′′′| ≤ Y +Y ′+λ′′′ ≤ 3/ε while |C | ≥ εdn/2.
Therefore, the set of cavities that Γ′′′ occupies is within total variation distance o(1) of a commensurate number of
cavities drawn independently, i.e., with replacement. Furthermore, the variables where the checks from T attach
are chosen uniformly at random from x1, . . . , xn . Therefore, on E ∩E ′∩E ′′ the conditional probability given E ′′′ that
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X ′′′ forms a proper relation is bounded by Oε(exp(−1/ε4)). Consequently, Lemma 3.2 implies that on the event
E ∩E ′∩E ′′,

E
[(

nul(A′′′)−nul(A′)
)
1E ′′′ |Σ′′]= 1−E[

rk(B∗ C ) |Σ′′]+oε(1). (8.20)

We are thus left to calculate the rank of Q = (B∗ C ). Given E ′′′ this block matrix decomposes into the A∪T -rows
QA∪T and the B-rows QB such that rk(Q) = rk(QA∪T )+ rk(QB). Therefore, it suffices to prove that

E
[
rk

(
QB

) |Σ′′]=
∑
i≥1

(
1−αi

)
(M+

i −M−
i −γi )+o(1), (8.21)

E
[
rk(QA∪T ) |Σ′′]=λ′′′(1−β2)+

∑
i≥1

(
1−αi−1

)
γi +1− (1−β2)λ

′′′ ∏
i≥1

(
1−αi−1

)γi +o(1). (8.22)

Towards (8.21) consider a check b ∈ B whose corresponding row sports i non-zero entries. Since we may pre-
tend (up to o(1) in total variation) that these entries are drawn uniformly and independently from the set of cavi-
ties, the probability that they are all frozen comes toαi +o(1). Since there are M+

i −M−
i −γi such checks b ∈B, we

obtain (8.21).
Moving on to (8.22), consider a ∈ A whose corresponding row has i −1 non-zero entries. By the same token

as in the previous paragraph, the probability that all entries in the a-row correspond to frozen cavities comes to
αi−1 +o(1). Hence, the expected rank of the A ×Vn-minor works out to be

∑
i≥1

(
1−αi−1

)
γi +o(1), which is the

second summand in (8.22). Similarly, a t ∈T -row adds to the rank unless both the variables in the corresponding
check are frozen. The latter event occurs with probabilityβ2. Hence the first summand. Finally, the C -column adds
to the rank if none of the A ∪T -rows become all-zero, which occurs with probability (1−β2)λ

′′′ ∏
i≥1

(
1−αi−1

)γi +
o(1). �

Proof of Lemma 8.3. Letting E= E ∩E ′∩E ′′∩E ′′′ and combining Claims 8.9–8.12, we obtain

E
∣∣∣E

[
nul(A′′′)−nul(A′) |Σ′′]−

(
(1−β2)λ

′′′ ∏
i≥1

(1−αi−1)γi −
∑
i≥1

(1−αi−1)γi

−
∑
i≥1

(1−αi )(M+
i −M−

i −γi )−λ′′′(1−β2)
)
1E

∣∣∣= oε(1). (8.23)

On E all i with M+
i −M−

i −γi > 0 are bounded. Moreover, w.h.p. we have M i ∼ E[M i ] =Ω(n) for all bounded i by
Chebyshev’s inequality. Hence, (8.7) implies that M−

i = M i −γi w.h.p. Consequently, (8.23) becomes

E
∣∣∣E

[
nul(A′′′)−nul(A′) |Σ′′]−

(
(1−β2)λ

′′′ ∏
i≥1

(1−αi−1)γi −
∑
i≥1

(1−αi−1)γi

−
∑
i≥1

(1−αi )∆i −λ′′′(1−β2)
)
1E

∣∣∣= oε(1). (8.24)

We proceed to estimate the various terms on the r.h.s. of (8.24) separately. Since P [E] = 1−oε(1) by Corollary 8.8
and Claims 8.9 and 8.10, Lemma 8.7 yield

E

[
1E · (1−β2)λ

′′′ ∏
i≥1

(1−αi−1)γi |Σ′′
]
= E

[
(1−β2)λ

′′′ ∏
i≥1

(1−αi−1)γ̂i |Σ′′
]
+oε(1)

= exp(−3δβ2)D(1−K ′(α)/k) [by (3.2) and (8.10)]. (8.25)

Moreover, since
∑

i≥1γi ≤ d n+1 and d n+1 has a bounded second moment, Lemma 8.7 implies that

E

[
1E ·

∑
i≥1

(1−αi−1)γi |Σ′′
]
= E

[∑
i≥1

(1−αi−1)γ̂i |Σ′′
]
+oε(1) = d − d

k
K ′(α)+oε(1). (8.26)

Further, by Claim 8.9, Lemma 8.7 and (8.14),

E

[
1E ·

∑
i≥1

(1−αi )∆i |Σ′′
]
= E

[∑
i≥1

(1−αi )∆i |Σ′′
]
+oε(1) = oε(1)+ d

k
− d

k
E[K (α)]. (8.27)

Finally, (8.10) yields

E
[
1E ·λ′′′(1−β2) |Σ′′]= 3δ(1−β2)+oε(1). (8.28)

Thus, the assertion follows from (8.24)–(8.28). �
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8.4. Proof of Lemma 8.4. We proceed similarly as in the proof of Lemma 8.3; actually matters are a bit simpler
because we only add checks, while in the proof of Lemma 8.3 we also had to deal with the extra variable node
xn+1. Let E ,E ′ be the events from (8.15) and (8.16) and let E ′′ = {

d n+1 +λ′′ ≤ 1/ε
}
. As a direct consequence of the

assumption E[d 2
n+1] =Oε,n(1) and of (8.9), we obtain the following.

Fact 8.13. We have P
[
E ′′]= 1−Oε(ε2).

Let

X ′′ =
⋃
i≥1

⋃
j∈[M i−M−

i ]
∂G ′′a′′

i , j ∪
λ′′⋃
i=1

∂t ′′i

be the set of variable nodes where the new checks that we add upon going from A′ to A′′ attach. Let E ′′′ be the
event that in G ′′ no variable from X ′′ is connected with the checks {a′′

i , j : i ≥ 1, j ∈ [M i −M−
i ]}∪ {t ′′i : i ∈ [λ′′]} by

more than one edge.

Claim 8.14. We have P
[
E ′′′ | E ′∩E ′′]= 1−o(1).

Proof. This follows from the “birthday paradox” (see the proof of Claim 8.10). �
Claim 8.15. We have E

[∣∣nul(A′′)−nul(A′)
∣∣ (1− 1E ∩E ′∩E ′′∩E ′′′)

]= oε(1).

Proof. We have
∣∣nul(A′′)−nul(A′)

∣∣≤ d n+1 +λ′′ as we add at most d n+1 +λ′′ rows. Because E[(d n+1 +λ′′)2] =Oε(1)
by (8.9), Claim 8.13 and the Cauchy-Schwarz inequality yield

E
[∣∣nul(A′′)−nul(A′)

∣∣ (1− 1E ′′)
]≤ E[

(d n+1 +λ′′)2]1/2
(1−P [E ])1/2 = oε(1). (8.29)

Moreover, Corollary 8.8 and Claim 8.14 show that

E
[∣∣nul(A′′)−nul(A′)

∣∣1E ′′ \E
]

,E
[∣∣nul(A′′)−nul(A′)

∣∣1E ′′ \E ′] ,E
[∣∣nul(A′′)−nul(A′)

∣∣1E ′′ \E ′′′]= oε(1). (8.30)

The assertion follows from (8.29) and(8.30). �
The matrix A′′ results from A′ by adding checks a′′

i , j , i ≥ 1, j ∈ [M i −M−
i ] that are connected to random cavities

of A′.
Moreover, as before let Σ′′ ⊃ Σ′ be the σ-algebra generated by θ, G ′, A′, M−, (d i )i∈[n+1], γ, M , ∆, λ−,λ′′′. Then

E ,E ′,E ′′ are Σ′′-measurable, but E ′′′ is not.

Claim 8.16. On E ∩E ′∩E ′′ we have

E
[
(nul(A′′)−nul(A′))1E ′′′ |Σ′′]= oε(1)−

∑
i≥1

(1−αi )(M i −M−
i )−λ′′(1−β3).

Proof. Let A = {a′′
i , j : i ≥ 1, j ∈ [M i − M−

i ]}. Moreover, let T be the set of new ternary checks t ′′i , i ∈ [λ′′]. Let

B be the Fq -matrix whose rows are indexed by A ∪T and whose columns are indexed by Vn = {x1, . . . , xn}. The
(a, x)-entry of B is zero unless a, x are adjacent in G ′′, in which case the entry is an independent copy of χ. Given
E ′′′ the matrix B has full row rank rk(B ) = |A | = λ′′+∑

i≥1 M+
i − M i , because no column contains two non-zero

entries and each row has at least one non-zero entry. Further, obtain B∗ from B by zeroing out the x-column of
every x ∈F(A′).

On E ∩E ′∩E ′′∩E ′′′ we see that

nul A′′ = nul

(
A′

B

)
. (8.31)

Moreover, let I be the set of non-zero columns of B . Then on E ′∩E ′′ we have |I | ≤ d n+1 +λ′′ ≤ 1/ε. Hence, on
E ∩E ′∩E ′′∩E ′′′ the probability that I forms a proper relation is bounded by exp(−1/ε4). Hence, Lemma 3.2 shows

E
[(

nul(A′′)−nul(A′)
)
1E ′′′ |Σ′′]= oε(1)−E[

rk(B∗) |Σ′′] . (8.32)

We are thus left to calculate the rank of B∗. Recalling thatα stands for the fraction of frozen cavities, we see that
for a ∈A of degree i the a-row is all-zero in B∗ with probability αi +o(1). Similarly, for a ∈T the a-row of B gets
zeroed out with probability β3. Hence, we conclude that

E
[
rk(B∗) |Σ′′]= oε(1)+λ′′(1−β3)+

∑
i≥1

(
1−αi

)
(M i −M−

i ). (8.33)

Combining (8.32) and (8.33) completes the proof. �
40

Appendix D. 201



Proof of Lemma 8.4. Let E= E ∩E ′∩E ′′∩E ′′′. Combining Claims 8.15–8.16, we see that

E

∣∣∣∣∣E[nul(A′′)−nul(A′) |Σ′′]+
(
λ′′(1−β3)+

∑
i≥1

(1−αi )(M i −M−
i )

)
1E

∣∣∣∣∣= oε(1). (8.34)

On E all degrees i with M+
i −M−

i > 0 are bounded. Moreover, M−
i =Ω(n) w.h.p. for every bounded i by Chebyshev’s

inequality. Therefore, (8.7) shows that M i −M−
i =γi for all i with M+

i −M−
i > 0 w.h.p. Hence, (8.34) turns into

E

∣∣∣∣∣E[nul(A′′)−nul(A′) |Σ′′]+
(
λ′′(1−β3)+

∑
i≥1

(1−αi )γi

)
1E

∣∣∣∣∣= oε(1). (8.35)

We now estimate the two parts of the last expression separately. Since P [E] = 1−oε(1) by Corollary 8.8, Fact 8.13
and Claim 8.14, the definition (8.9) of λ′′ yields

E
∣∣λ′′(1−β3)1E

∣∣= 2δ(1−E[β3])+oε(1). (8.36)

Moreover, because
∑

i≥1γi ≤ d n+1, E[d n+1] =Oε(1),

E

[∑
i≥1

(1−αi )γi 1E

]
= E

[∑
i≥1

(1−αi )γ̂i 1

{
λ′′+

∑
i≥1

γ̂i ≤ ε−1/4

}]
+oε(1) [by Lemma 8.7 and Claim 8.13]

= dE[1−αk̂ ]+oε(1) = d −dE[αK ′(α)]/k +oε(1) [by (3.2)]. (8.37)

Combining (8.36) and (8.37) completes the proof. �

8.5. Proof of Lemma 8.2. The proof is relatively straightforward, not least because once again we can reuse some
technical statements from [10]. Let us deal with A′′ and A′′′ separately.

Claim 8.17. We have E[nul(A′′)] = E[nul(An,M ,λ)]+o(1).

Proof. The matrix models An,M ,λ and A′′ coincide with the corresponding models from [10, Claim 5.17], except
that here we add extra ternary checks. Because these extra checks are added independently, the coupling from
[10, Claim 5.17] directly induces a coupling of the enhanced models by attaching the same number λ′′ of ternary
equations to the same neighbors. �

Claim 8.18. We have E[nul(A′′′)] = E[nul(An+1,M+,λ+ )]+o(1).

Proof. The matrix models An+1,M+,λ+ and A′′′′ coincide with the corresponding models from [10, Section 5.5] plus
the extra independent ternary equations. Hence, the coupling from [10, Claim 5.17] yields a coupling of the en-
hanced models just as in Claim 8.17. �

Proof of Lemma 8.2. The lemma is an immediate consequence of Claims 8.17 and 8.18. �
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9. APPENDIX

In this appendix we give a self-contained proof of Lemma 7.16, the local limit theorem for sums of independent
vectors. We employ a simplified version of the strategy of the proof of Lemma 7.9. Recall that we assume the
existence of a constant η> 0 such that E[d 2+η]+E[k2+η] <∞.

Given ω> 0, we choose ε0 = ε0(ω, q) sufficiently small and let 0 < ε< ε0. With these parameters, we set

sn :=
√

n∑
i=1

d 2
i . (9.1)

As in the proof of Lemma 7.16, given ω> 0, we choose ε0 = ε0(ω, q) sufficiently small and let 0 < ε< ε0. With these
parameters, we set

L0 =
{

r ∈ZF∗q :PA
(
ρ̂σ = r

)> 0 and

∥∥∥∥r − ∆
q
1

∥∥∥∥
1
<ωn−1/2∆

}
and

L0(r∗,ε) = {r ∈L0 : ‖r − r∗‖∞ < εsn} .

Then

L0 ⊆ dZF
∗
q .
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We begin by observing that the vector ρ̂σ is asymptotically normal given A. As before we let I q−1 the (q −1)×
(q −1)-identity matrix and let N ∈RF∗q be a Gaussian vector with zero mean and covariance matrix

C = q−1I q−1 −q−21(q−1)×(q−1). (9.2)

Claim 9.1. There exists a function ι= ιη,q (n) = o(1) such that for all axis-aligned cubes U ⊆RF∗q we have

E

∣∣∣∣PA
[
ρ̂σ−q−1∆1

sn
∈U

]
−P [N ∈U ]

∣∣∣∣≤ ι.

Proof. The mean of each entry ρ̂σ(τ) clearly equals ∆/q for every τ ∈ F∗q . Concerning the covariance matrix, for
distinct s 6= t we obtain

EA[ρ̂2
σ(s)] =

∑
i , j∈[n]:i 6= j

d i d j

q2 +
n∑

i=1

d 2
i

q
=

n∑
i , j=1

d i d j

q2 +
n∑

i=1

d 2
i

q

(
1− 1

q

)
,

EA[ρ̂σ(s)ρ̂σ(t )] =
∑

i , j∈[n]:i 6= j

d i d j

q2 =
n∑

i , j=1

d i d j

q2 −
n∑

i=1

d 2
i

q2 .

Hence, the means and covariances of (ρ̂σ−q−1∆1)/sn and N match.
We are thus left to prove that (ρ̂σ − q−1∆1)/sn is asymptotically normal, with the required uniformity. Thus,

given a small ξ> 0 we pick D=D(q,η,ξ) > 0 and n0 = n0(D) sufficiently large. Suppose n > n0 and let

d ′
i = 1{d i ≤D}d i , d ′′

i = d i −d ′
i ,

ρ̂′
σ(s) =

n∑
i=1

1{σi = s}d ′
i , ρ̂′′

σ(s) =
n∑

i=1
1{σi = s}d ′′

i ,

s′n
2 =

n∑
i=1

d ′
i

2, s′′n
2 =

n∑
i=1

d ′′
i

2,

∆′ =
n∑

i=1
d ′

i , ∆′′ =
n∑

i=1
d ′′

i .

Since E[d 2+η] <∞, by Markov’s inequality and by construction we have w.h.p.

∆′′ < ξ8n, ∆=∆′+∆′′, s′′n
2 < ξ8n, s′n

2 <D2n, s2
n = s′n

2 + s′′n
2, (9.3)

providing D is large enough. Hence, the multivariate Berry–Esseen theorem (e.g., [41]) shows that w.h.p. for all U ,

PA

[
ρ̂′
σ−q−1∆′1

s′n
∈U

]
−P [N ∈U ] =O(n−1/2). (9.4)

Furthermore, combining (9.3) with Chebyshev’s inequality, we see that w.h.p.

PA

[∣∣∣∣
ρ̂′′
σ−q−1∆′′1

sn

∣∣∣∣> ξ2
]
< ξ2. (9.5)

Thus, combining (9.4) and (9.5), we conclude that w.h.p.
∣∣∣∣PA

[
ρ̂σ−q−1∆1

sn
∈U

]
−P [N ∈U ]

∣∣∣∣≤ ξ. (9.6)

Finally, the assertion follows from (9.6) by taking the limit ξ→ 0 slowly enough as n →∞. �

There exist g ∈N, a1, . . . , ag ∈ Z and δ1, . . . ,δg in the support of d such that the greatest common divisor of the
support can be linearly combined as

d=
g∑

i=1
aiδi . (9.7)

We next count how many variables there are with degree δi . For i ∈ [g ], let Ii denote the set of all j ∈ [n] with
d j = δi (the set of all variables that appear in δi equations). Set I0 = [n] \

(
I1 ∪ . . .∪Ig

)
. Then

I0 ∪ . . .∪Ig = [n]
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and |I0|, |I1|, . . . , |Ig | = Θ(n) w.h.p. (if I0 is non-empty). We further count how many entries of value s ∈ F∗q all
variables of degree δi generate under the assignment σ, and the contribution from the rest, yielding

r 0(s) =
∑

j∈I0

d j 1
{
σ j = s

}
, r i (s) =

∑
j∈Ii

1
{
σ j = s

}
. (i ∈ [g ], s ∈ F∗q )

Then summing the contributions, we get back ρ̂σ = r 0 +
∑g

i=1δi r i , where r i = (r i (s))s∈F∗q .
Becauseσ1, . . . ,σn are mutually independent givenA, so are r 0,r 1, . . . ,r g . Moreover, givenA, for i ∈ [g ], r i has a

multinomial distribution with parameter |Ii | and uniform probabilities q−1. In effect, the individual entries r i (s),
s ∈ F∗q , will typically differ by only a few standard deviations, i.e., their typical difference will be of order O(

√
|Ii |).

We require a precise quantitative version of this statement.
Furthermore, we say that r i is t-tame if |r i (s)−q−1|Ii || ≤ t

√
|Ii | for all s ∈ F∗q . LetT(t ) be the event that r 1, . . . ,r g

are t-tame.

Lemma 9.2. W.h.p. for every r∗ ∈L0 there exists r∗ ∈L0(r∗,ε) such that

PA
[
ρ̂σ = r∗]≥ 1

2|L0(r∗,ε)| and PA
[
T(− logε) | ρ̂σ = r∗]≥ 1−ε4. (9.8)

Proof. Since r i has a multinomial distribution given A the Chernoff bound shows that for a large enough c = c(q)
w.h.p.

PA
[
T(− logε)

]≥ 1−exp(−Ωε(log2(ε))). (9.9)

Further, Claim 9.1 implies that w.h.p. PA
[
ρ̂σ ∈L0(r∗,ε)

]≥Ωε(εq−1) ≥ εq , provided ε< ε0 = ε0(ω) is small enough.
Combining this estimate with (9.9) and Bayes’ formula, we conclude that w.h.p. for every r∗ ∈L0,

PA
[
T(− logε), ρ̂σ ∈L0(r∗,ε)

]≥ 1−ε5. (9.10)

To complete the proof, assume that there does not exist r∗ ∈ L0(r∗,ε) that satisfies (9.8). Then for every r ∈
L0(r∗,ε) we either have

PA
[
ρ̂σ = r

]< 1

2|L0(r∗,ε)| or (9.11)

PA
[
T(− logε)|ρ̂σ = r

]< 1−ε4. (9.12)

Let X0 be the set of all r ∈L0(r∗,ε) for which (9.11) holds, and let X1 =L0(r∗,ε) \X0. Then (9.11)–(9.12) yield

PA
[
T(− logε) | ρ̂σ ∈L0(r∗,ε)

]≤ PA
[
ρ̂σ ∈X0

]+∑
r∈X1 PA

[
T(− logε)|ρ̂σ = r

]
PA

[
ρ̂σ = r

]

PA [L0(r∗,ε)]

≤ PA
[
ρ̂σ ∈X0

]+ (1−ε4)PA
[
ρ̂σ ∈X1

]

|L0(r∗,ε)| < 1−ε4,

provided that 1−ε4 > 1
2 , in contradiction to (9.10). �

Also let T(r, t ) be the event that ρ̂σ = r and that r 1, . . . ,r g are t-tame. We write (r0, . . . ,rg ) ∈ T(r, t ) if r0 +∑g
i=1δi ri = r and |ri (s)− q−1|Ii || ≤ t

√
|Ii | for all s ∈ F∗q . The following lemma summarises the key step of the

proof of Lemma 7.9.

Lemma 9.3. W.h.p. for any r∗ ∈ L0, any 1 ≤ t ≤ logn and any r,r ′ ∈ L0(r∗,ε) there exists a one-to-one map ψ :
T(r, t ) →T(r ′, t +Oε(ε)) such that for all (r0, . . . ,rg ) ∈T(r, t ) we have

log
PA

[
(r 0, . . . ,r g ) = (r0, . . . ,rg )

]

PA
[
(r 0, , . . . ,r r ) =ψ(r0, . . . ,rg )

] =Oε(ε(ω+ t )). (9.13)

Proof. Since r,r ′ ∈L0(r∗,ε), we have r −r ′ ∈ dZF∗q . Hence, with e1, . . . ,eq−1 denoting the standard basis ofRF
∗
q , there

is a unique representation

r ′− r =
q−1∑
i=1

λidei (9.14)

44

Appendix D. 205



with λ1, . . . ,λq−1 ∈Z. Because r,r ′ ∈L0(r∗,ε) and

λ :=



λ1
...

λq−1


= d−1(r ′− r ),

the coefficients satisfy

|λi | =Oε (εsn) for all i = 1, . . . , q −1. (9.15)

Now recall g ∈N, a1, . . . , ag ∈Z and δ1, . . . ,δg in the support of d with

d=
g∑

i=1
aiδi .

Fir i ∈ [g ], we set

r ′
i = ri +

ai

d
λ

as well as r ′
0 = r0. Further, define ψ(r0, . . . ,rg ) = (r ′

0, . . . ,r ′
g ). Then clearly

r0 +
g∑

i=1
δi r ′

i = r +
g∑

i=1

aiδi

d
λ= r + r ′− r = r ′. (9.16)

and due to (9.15), we have ψ(r0, . . . ,rg ) ∈T(r ′, t +Oε(ε)). Finally, for i ∈ [g ] set

ri (0) = |Ii |−
∑

s∈F∗q
ri (s), r ′

i (0) = |Ii |−
∑

s∈F∗q
r ′

i (s).

Moreover, Stirling’s formula and the mean value theorem show that

PA
[
(r 0, . . . ,r g ) = (r0, . . . ,rg )

]

PA
[
(r 0, . . . ,r g ) =ψ(r0, . . . ,rg )

] =
( |I1|

(r1(0),r1)

) · . . . · ( |Ig |
(rg (0),rg )

)

( |I1|
(r ′1(0),r ′1)

) · . . . · ( |Ig |
(r ′g (0),r ′g )

) = exp

[
g∑

i=1

∑
s∈Fq

Oε

(
r ′

i (s) logr ′
i (s)− ri (s) logri (s)

)
]

= exp

[
g∑

i=1
Oε(|Ii |)

∑
s∈Fq

∣∣∣∣∣
∫ r ′i (s)/|Ii |

ri (s)/|Ii |
log zdz

∣∣∣∣∣

]

= exp

[
g∑

i=1
Oε(|Ii |)

∑
s∈Fq

(
r ′

i (s)

|Ii |
− ri (s)

|Ii |

)
log

(
1

q
+Oε

(
(ω+ t )sn

|Ii |

))]

= exp

[
g∑

i=1
Oε(|Ii |)

∑
s∈Fq

Oε

(
(ω+ t )sn

|Ii |

(
r ′

i (s)

|Ii |
− ri (s)

|Ii |

))]
. (9.17)

Since |I1|, . . . , |Ig | = Θε(n) w.h.p., (9.17) implies (9.13). Finally, ψ is one-to-one because each vector has a unique
representation with respect to the basis (e1, . . . ,eq−1). �

Roughly speaking, Lemma7.14 shows that any two tame r,r ′ ∈L0(r∗,ε) close to a conceivable r∗ ∈L0 are about
equally likely. However, the map ψ produces solutions that are a little less tame than the ones we start from. The
following corollary, which combines Lemmas 7.13 and 7.14, remedies this issue.

Corollary 9.4. W.h.p. for all r∗ ∈L0 and all r,r ′ ∈L0(r∗,ε) we have

PA
[
T(r,−3logε)

]= (1+oε(1))PA
[
T(r ′,−3logε)

]
.

Proof. Let r∗ be the vector supplied by Lemma 9.2. Applying Lemma 9.3 to r∗ and r ∈L0(r∗,ε), we see that w.h.p.

PA
[
T(r,−2logε)

]≥ (1+Oε(ε logε))PA
[
T(r∗,− logε)

]≥ 1

3|L0(r∗,ε)| for all r ∈L0(r∗,ε). (9.18)

In addition, we claim that w.h.p.

PA
[
T(r,−4logε) \T(r,−3logε)

]≤ εPA
[
T(r∗,− logε)

]
for all r ∈L0(r∗,ε). (9.19)
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Indeed, applying Lemma 7.14 twice to r and r∗ and invoking (7.24), we see that w.h.p.

PA
[
T(r,−2logε)

]≥ exp(Oε(ε logε))PA
[
T(r∗,−3logε)

]

≥ (
1−Oε(ε logε)

)
PA

[
ρ̂σ = r∗]

, (9.20)

PA
[
T(r,−4logε) \T(r,−3logε)

]≤ exp(Oε(ε logε))PA
[
T(r∗,−3logε) \T(r∗,−2logε)

]

≤Oε(ε4)PA
[
ρ̂σ = r∗]

. (9.21)

Combining (9.20) and (9.21) yields (9.19).
Finally, (7.24), (9.18) and (9.19) show that w.h.p.

PA
[
T(−3logε) | ρ̂σ = r

]≥ 1−p
ε, PA

[
T(−3logε) | ρ̂σ = r ′]≥ 1−p

ε for all r,r ′ ∈L0(r∗,ε), (9.22)

and combining (9.22) with Lemma 9.3 completes the proof. �
Proof of Lemma 7.16. Claim 9.1 shows that for any r ∈L0 and N ∼N (0,C )

PA
(
ρ̂σ ∈L0(r,ε)

)=PA
(∥∥∥∥N − r −∆1/q

sn

∥∥∥∥∞
< ε

)
+o(1).

Moreover, Corollary 9.4 implies that given ρ̂σ ∈ L0(r,ε), ρ̂σ is within oε(1) of the uniform distribution on L0(r,ε).
Furthermore, Lemma 3.6 shows that the number of points in L0(r,ε) satisfies

|L0(r,ε)|∣∣{z ∈Zq−1 : ‖z − r‖∞ ≤ εsn
}∣∣ ∼ d1−q .

Finally, the eigenvalues of the matrix C are q−2 (once) and q−1 ((q − 2) times). Hence, detC = q−q . Therefore,
w.h.p. for all r ∈L0 we have

PA
[
ρ̂σ = r

]= (1+oε(1))
q q/2dq−1

(2π
∑n

i=1 d 2
i )(q−1)/2

exp

[
− (r −q−1∆1)T C −1(r −q−1∆1)

2
∑n

i=1 d 2
i

]
. (9.23)

Finally, since E
[
d 2]<∞,

∑
i=1 d 2

i ∼ nE
[
d 2] and the claim follows. �
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