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Abstract
The S-cone provides a common framework for cones of polynomials or exponen-
tial sums which establish non-negativity upon the arithmetic-geometric inequality, in
particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic-
geometric exponentials (SAGE). In this paper, we study the S-cone and its dual from
the viewpoint of second-order representability. Extending results of Averkov and of
Wang andMagron on the primal SONC cone, we provide explicit generalized second-
order descriptions for rational S-cones and their duals.

Keywords Positive polynomials · Sums of non-negative circuit polynomials ·
Arithmetic-geometric exponentials · Dual cone · S-cone · Second-order cone

Mathematics Subject Classification 14P10 · 52A20 · 90C23

1 Introduction

The question to characterize and to decide whether a polynomial or an exponential
sum is non-negative occurs in many branches of mathematics and application areas.
In the development of real algebraic geometry, the connection between the cone of
non-negative polynomials and the cone of sums of squares of polynomials plays a
prominent role (see, for example, Bochnak et al. 1998; Marshall 2008; Prestel and
Delzell 2001). If a polynomial can be written as a sum of squares of polynomials, this
provides a certificate for the non-negativity of the polynomial. Since the beginning
of the current millennium, non-negativity certificates of polynomials have also seen
much interest from the computational point of view and have strongly advanced the
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rich connections between real and convex algebraic geometry as well as polynomial
optimization (see, for example, Lasserre 2010; Laurent 2009).

Within the research activities on non-negativity certificates in the last years, the
cones of sums of arithmetic-geometric exponentials (SAGE, introduced by Chan-
drasekaran and Shah 2016) and sums of non-negative circuit polynomials (SONC,
introduced by Iliman and de Wolff 2016) have received a lot of attention (see, e.g.,
Averkov 2019; Dressler et al. 2018a; Forsgård and de Wolff 2019; Murray et al. 2018,
2019; Wang 2018). These cones build upon earlier work of Reznick (1989). They
provide non-negativity certificates based on the arithmetic-geometric inequality and
are particularly useful in the context of sparse polynomials.

InKatthän et al. (2019), the authors of the current paper andKatthän have introduced
a common generalization, called the S-cone, which facilitates to study the SAGE
cone and the SONC cone within a uniform generalized setting. Formally, for two
finite disjoint sets ∅ �= A ⊆ R

n,B ⊆ N
n\(2N)n , let R[A,B] denote the space of all

functions f : R
n → R ∪ {∞} of the form

f (x) =
∑

α∈A
cα|x|α +

∑

β∈B
cβxβ ∈ R[A,B] (1.1)

with real coefficients cα , α ∈ A∪B. Our preconditionA∩B = ∅ is a slight restriction
to the setup inKatthän et al. (2019), in order to enable a littlemore convenient notation.

One motivation for the class of functions (1.1) is that it allows to capture non-
negativity of polynomials onR

n andnon-negativity of polynomials on thenon-negative
orthantRn+ within a uniform setting. Moreover, global non-negativity of the summand∑

α∈A cα|x|α is equivalent to global non-negativity of the exponential sum y 
→∑
α∈A cα exp(αT y).

Definition 1.1 A function f of the form (1.1) is called an even AG function if for at
most one α ∈ A, cα is negative and for all β ∈ B, cβ is zero; and it is called an odd AG
function if for all α ∈ A, cα is non-negative and for at most one β ∈ B, cβ is nonzero.

f is called an AG function (arithmetic-geometric mean function), if f is an even
AG function or an odd AG function.

Definition 1.2 Let ∅ �= A ⊆ R
n,B ⊆ N

n\(2N)n be finite disjoint sets. The S-cone
CS(A,B) is defined as

CS(A,B) := cone { f ∈ R[A,B] : f is a non-negative AG function} ,

where cone denotes the conic (or positive) hull.CS (A,B) is called rational ifA ⊆ Q
n .

The SAGE and SONC cones arise as special cases of this cone, see Sect. 2.
Both from the geometric and from the optimization point of view, it is of prominent

interest to understandhow thedifferent classes of cones relate to eachother andwhether
techniques for different cones can be fruitfully combined. Karaca et al. (2017) have
studied non-negativity certificates based on a combination of the SAGE cone with the
cone of sums of squares. Concerning relations between the various cones, Averkov
has shown that the SONC cone can be represented as a projection of a spectrahedron
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(Averkov 2019). In fact, his proof applies the techniques fromBen-Tal andNemirovski
(2001), which reveals that the SONC cone is even second-order representable. Wang
and Magron gave an alternative proof based on binomial squares andA-mediated sets
(Wang and Magron 2019).

Here, we take the general view of the S-cone as well as a primal-dual viewpoint.
Generalizing the results of Averkov and of Wang and Magron, we show that rational
S-cones and their duals are second-order representable and provide explicit and direct
descriptions.Our proof combines the techniques for the second-order cones techniques
fromBen-Tal andNemirovski (2001)with the concepts and the duality theory of theS-
cone fromKatthän et al. (2019). Our derivation is different from the approach ofWang
andMagron, and it does not need binomial squares orA-mediated sets. Moreover, our
second-order representation prevents the consideration of redundant circuits by using
a characterization of the extreme rays of the S-cone from Katthän et al. (2019).

Beyond the specific representability result, the goal of the paper is to offer further
insights into the use of the framework of the S-cone as a generalization of SONC and
SAGE.

2 Preliminaries

Throughout the text, we use the notations N = {0, 1, 2, 3, . . .} and R+ = {x ∈ R :
x ≥ 0}. For a finite subset A ⊆ R

n , denote by R
A the set of |A|-dimensional vectors

whose components are indexed by the set A. Moreover, we write

|x|α =
n∏

j=1

|x j |α j and xβ =
n∏

j=1

x
β j
j ,

and if one component of x is zero and the corresponding exponent is negative, then
we set |x|α = ∞.

2.1 TheS-cone, SAGE and SONC

We explain that theS-cone generalizes the SAGE cone and the SONC cone and collect
some basic properties of the three cones.

The SAGE cone LetA be a non-empty, finite set. An exponential sum supported on
A is a function of the form

y 
→
∑

α∈A
cα exp(α

T y) (2.1)

with real coefficients cα . If B = ∅, then R[A,B] can be identified with the space of
exponential sums supported on A by means of the substitution |xi | = exp(yi ).

For finite A ⊆ R
n , A′

� A and β ∈ A\A′, the SAGE cone CSAGE(A) is defined
as

CSAGE(A) =
∑

β∈A
CAGE(A\{β}, β),
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where for A′ := A\{β}

CAGE(A′, β) =
{
c ∈ R

A : cα ≥ 0 for α ∈ A′,

∑

α∈A′
cα exp(α

T x) + cβ exp(βT x) ≥ 0 on R
n

}

(see Chandrasekaran and Shah 2016). We observe that the S-cone CS(A,∅) can be
identified with CSAGE(A) using the substitution (2.1). CSAGE(A) is a closed convex
cone in R

A. The membership problem for this convex cone can be formulated as a
relative entropy program (Murray et al. 2018, see also Proposition 2.2 below).

The SONC cone Here, let the non-empty finite set A be contained in N
n . Let

I (A) = {
(A, β) : A ⊆ (2N)n ∩ A affinely independent, β ∈ relint(conv A) ∩ A},

(2.2)

where relint denotes the relative interior of a set. For singleton sets A = {α}, the sets
(A, β) are formally of the form ({α}, α). By convention, we write these circuits simply
as (α), and with this convention, the set {(α) : α ∈ (2N)n} ∩A is contained in I (A).

For (A, β) ∈ I (A), let PA,β denote the set of polynomials in R[x1, . . . , xn] whose
supports are contained in A∪ {β} and which are non-negative on R

n . The Minkowski
sum

CSONC(A) =
∑

(A,β) ∈ I (A)

PA,β

defines the cone of SONC polynomials with support A (see Averkov 2019; Iliman and
de Wolff 2016).

The cone CSONC(A) is a closed convex cone, and it can be recognized as a special
case of a rational S-cone by observing

CSONC(A) = CS
(A ∩ (2N)n,A ∩ (Nn\(2N)n)

)

(see Katthän et al. 2019). Using the results from Murray et al. (2018), membership in
the SONC cone can also be formulated in terms of a relative entropy program.

The S-cone The S-cone from Definition 1.1 offers a uniform setting for the SAGE
and the SONC cones. We collect some further properties of the S-cone. For a non-
empty finite set A ⊆ R

n and β ∈ N
n\ ((2N)n ∪ A) let

Podd
A,β :=

{
f : f =

∑

α∈A
cα |x|α + cβxβ, f (x) ≥ 0 ∀ x ∈ R

n, c|A ∈ R
A+ , cβ ∈ R

}
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be the cone of non-negative odd AG functions supported on (A, β), and similarly for
β ∈ R

n\A let

Peven
A,β :=

{
f : f =

∑

α∈A
cα |x|α + cβ |x|β, f (x) ≥ 0 ∀ x ∈ R

n, c|A ∈ R
A+ , cβ ∈ R

}

(2.3)

be the cone of non-negative even AG functions supported on (A, β). By definition,

CS(A,B) =
∑

α∈A
Peven
A\{α},α +

∑

β∈B
Podd
A,β .

Note that non-negative even AG functions correspond exactly to the AGE functions
(arithmetic-geometric exponentials) in Chandrasekaran and Shah (2016) and Murray
et al. (2018).

The following alternative representation allows to express the S-cone in terms of
the SAGE cone. Here, |d| denotes the absolute value of the vector d ∈ R

B, taken
component-wise.

Proposition 2.1 (Katthän et al. 2019) Let ∅ �= A ⊆ R
n, B ⊆ N

n\(2N)n be finite and
disjoint. Then,

CS (A,B) =
⎧
⎨

⎩
∑

α∈A
cα |x |α +

∑

β∈B
dβ x

β : (c,−|d|) ∈ CSAGE(A ∪ B)

⎫
⎬

⎭ (2.4)

=
⎧
⎨

⎩
∑

α∈A
cα |x |α +

∑

β∈B
dβ x

β : ∃t ∈ R
B (c, t) ∈ CSAGE(A ∪ B), t ≤ −|d|

⎫
⎬

⎭ .

(2.5)

For a finite set ∅ �= A ⊆ R
n , we use the notion

CS(A) := CS(A,∅) = CSAGE(A)

and immediately observeCS (A) = ∑
α∈A Peven

A\{α},α . Hence, for our purpose it suffices
to study the cone Peven

A,β
of even AG functions and use the results of this cone for the

odd case in Sect. 4.
Using the relative entropy function and the circuit number, the cones Peven

A,β
and

Podd
A,β

can be characterized in terms of convex optimization problems. For a finite set

∅ �= A ⊆ R
n , denote by D : R

A
>0 × R

A
>0 → R,

D(ν, γ ) =
∑

α∈A
να ln

(
να

γα

)
,

the relative entropy function. D can also be extended to R
A+ ×R

A+ → R∪{∞} via the
conventions 0 · ln 0

y = 0 for y ≥ 0 and y · ln y
0 = ∞ for y > 0. Non-negativity of an
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(even or odd) AG function f with coefficients cα and cβ can be characterized through
the product

∏
α∈A (cα/λα)λα and cβ (see Katthän et al. 2019, Theorem 2.7). For an

affinely independent ground set A, this product is called the circuit number of f (see
Iliman and de Wolff 2016). In particular, for an even AG function, this non-negativity
characterization in terms of the circuit number is given by

∏

α∈A

(
cα

λα

)λα

≥ −cβ. (2.6)

The following characterization of Peven
A,β

and Podd
A,β

in terms of the relative entropy
function and in terms of the circuit number is a direct consequence of Theorem 2.7 of
Katthän et al. (2019).

Proposition 2.2 LetA ⊆ R
n be a non-empty finite set, β ∈ R

n\A and an AG function
f with coefficient vector c supported on A ∪ {β}.
1. If f is an even AG function, then

f ∈ Peven
A,β ⇐⇒ ∃ν ∈ R

A+
∑

α∈A
ναα =

(∑

α∈A
να

)
β, D(ν, e · c) ≤ cβ

⇐⇒ ∃λ ∈ R
A+

∑

α∈A
λαα = β,

∑

α∈A
λα = 1,

∏

α∈A

(
cα

λα

)λα

≥ −cβ.

2. If f is an odd AG function, then

f ∈ Podd
A,β ⇐⇒ ∃ν ∈ R

A+
∑

α∈A
ναα =

(∑

α∈A
να

)
β, D(ν, e · c) ≤ −|cβ |

⇐⇒ ∃λ ∈ R
A+

∑

α∈A
λαα = β,

∑

α∈A
λα = 1,

∏

α∈A

(
cα

λα

)λα

≥ |cβ |.

If A is a set of affinely independent vectors and β ∈ relintA, then λ is unique. We
call the corresponding AG function a circuit function, the tuple (A, β) the circuit and
identify the unique λ with the above declared characteristics λ = λ(A, β).

2.2 Duality theory

Studying the duality theory has been initiated in Chandrasekaran and Shah (2016)
(for SAGE), Dressler et al. (2018b) (for SONC) and Katthän et al. (2019) (for the S-
cone). See also the recent work of Papp (2019), who developed an alternative approach
for deriving the dual cones, by expressing the non-negativity of circuit polynomials in
terms of a power cone.We can identify the dual space ofR[A]withR

A. For f ∈ R[A]
with coefficients c ∈ R

A and an element v ∈ R
A, we consider the natural duality

pairing
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v( f ) =
∑

α∈A
vαcα. (2.7)

Using this notation, the dual cone (CS(A))∗ is defined as

(CS(A))∗ =
{
v ∈ R

A : v( f ) ≥ 0 for all f ∈ CS(A)
}

.

The following statement expresses the dualS-cone in terms of the dual SAGE cone.

Proposition 2.3 Let ∅ �= A ⊆ R
n and B ⊆ N

n\(2N)n disjoint and finite. The dual
cone of the S-cone CS(A,B) is

CS(A,B)∗ =
{
(v,w) ∈ R

A × R
B : (v, |w|) ∈ CSAGE(A ∪ B)∗

}
(2.8)

=
{
(v,w) ∈ R

A × R
B : ∃u ∈ R

B (v,u) ∈ CSAGE(A ∪ B)∗, u ≥ |w|
}

.

(2.9)

Proof We use (2.5), which provides a characterization for the primal cone CS(A,B)

in terms of an existential quantification. Consider its lifted cone

ĈS(A,B) := CSAGE(A ∪ B) × R
B ∩ {(c, t,d) : tβ ≤ −|dβ | for all β ∈ B}

= CSAGE(A ∪ B) × R
B ∩ {(c, t,d) : tβ ≤ dβ, tβ ≤ −dβ for all β ∈ B}

(2.10)

in the space R
A × R

B × R
B. The dual cone of the right-hand cone in (2.10) is the set

cone
{
(0, . . . , 0,−e(β),±e(β)) : β ∈ B

}
,

where e(β) denotes the unit vector with respect to β ∈ B. As intersection and
Minkowski sum are dual operations, we obtain

ĈS(A,B)∗ = CSAGE(A ∪ B)∗ × {0} + cone
{
(0, . . . , 0,−e(β),±e(β)) : β ∈ B

}
.

Identifying the S-cone with its coefficients, we can express CS(A,B)∗ in terms of
the lifted cone ĈS(A,B) by

CS(A,B)∗ = ĈS(A,B) ∩
{
(v, s,w) ∈ R

A × R
B × R

B : s = 0
}

.

Thus, (v,w) ∈ CS(A,B) whenever (v, |w|) ∈ CSAGE(A ∪ B)∗. Convexity then
implies the second characterization (2.9). ��

Hence, as in the primal case, it suffices to study even AG functions in the dual
situation. We will make use of a representation of the dual of the S-cone from Katthän
et al. (2019). For this, observe that similar to the SONC case in (2.2), one can also
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Fig. 1 Circuit (A, β) x
60 2

x

Fig. 2 Circuit (A′, β ′)

x

y

(4, 2)T

(0, 0)T

(2, 4)T

(1, 1)T

consider circuits in the case of the SAGE cone. In slight variation of (2.2), for a finite
set ∅ �= A ⊆ R

n , the set of circuits supported on A is the set

I (A) = {
(A, β) : A ⊆ A affinely independent, β ∈ relint(conv A) ∩ (A\A)

}
.

Two examples of circuits are the pairs (A, β) with A = {0, 6} and β = {2} (see
Fig. 1) and (A′, β ′)with A′ = {(0, 0)T , (4, 2)T , (2, 4)T } and β ′ = (1, 1)T (see Fig. 2).

Thereby, the dual S-cone CS(A) can be represented as follows.

Proposition 2.4 (Katthän et al. 2019, Theorem 3.5) Let ∅ �= A ⊆ R
n be finite. Then

a point v ∈ R
A is contained in CS(A)∗ if and only if v ≥ 0 and

ln(vβ) ≤
∑

α∈A

λα ln(vα) for every circuit (A, β) in I (A) and λ = λ(A, β).

2.3 Second-order formulations

Let [m] abbreviate the set {1, . . . ,m} and denote by ‖ · ‖ the Euclidean norm. A
second-order cone program (SOCP) is an optimization problem of the form

min
{
cT x : ||Aix + bi ||2 ≤ cTi b + di for all i ∈ [m]

}
(2.11)

with real symmetric matrices Ai , vectors bi , ci ,di and a vector c. A subset of R
n

is called second-order representable if it can be represented as a projection of the
feasible set of a second-order program.

For a symmetric 2 × 2-matrix, positive semidefiniteness can be formulated as a
second-order condition.
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Lemma 2.5 (See, e.g., Nesterov and Nemirovski 1994, §6.4.3.8, Wang and Magron

2019, Lemma 4.3) A symmetric 2 × 2 matrix A =
(
a b
b c

)
is positive semidefinite if

and only if the second-order condition

∣∣∣∣

∣∣∣∣

(
2b

a − c

)∣∣∣∣

∣∣∣∣
2

≤ a + c

is satisfied.

Let Sn+ be the subset of symmetric n × n-matrices which are positive semidefinite.
By Averkov (2019), there exists some m ∈ N so that the cone of SONC polynomials
CSONC(A) supported on A can be written as the projection of the spectrahedron
(S2+)m ∩ H for some affine space H .

3 A second-order representation for the cone of non-negative AG
functions and its dual

In order to provide a second-order representation for the S-cone and its dual, the
main task is to capture the cone of non-negative AG functions and its dual. For a
comprehensive collection of techniques for handling second-order cones, we refer to
Ben-Tal and Nemirovski (2001).

Throughout the section, let (A, β) be a fixed circuit and rational barycentric
coordinates λ ∈ R

A+, which represent β as a convex combination of A. That is,
β = ∑

α∈A λαα and
∑

α∈A λα = 1. Let p ∈ N denote the smallest common denom-
inator of the fractions λα for α ∈ A, i.e., λα = pα

p with pα ∈ N for all α ∈ A and p is
minimal.

With the given circuit (A, β) ∈ I (A), we associate a set of dual circuit variables

(yk,i )k,i , (3.1)

where k ∈ [�log2(p)� − 1] and i ∈ [2�log2(p)�−k]. The collection of these∑�log2(p)�−1
k=1 2�log2(p)�−k = 2�log2(p)� − 2 variables is denoted as yA,β or shortly as y.

Further, denote the restriction of a vector v ∈ R
A to the components of A ⊆ A by

v|A.

Definition 3.1 A dual circuit matrix C∗
A,β(v|A, vβ, y) is a block diagonal matrix con-

sisting of the blocks

(
yk−1,2i−1 yk,i

yk,i yk−1,2i

)
for k ∈ {2, . . . , �log2(p)� − 1} and i ∈

[
2�log2(p)�−k

]
,

(3.2)
(
y�log2(p)�−1,1 vβ

vβ y�log2(p)�−1,2

)
, (3.3)
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the singleton block (vβ), as well as 2�log2(p)�−1 blocks of the form

(
u y1,l
y1,l w

)
for l ∈ [2�log2(p)�−1], (3.4)

where in each of these blocksu andw represent a variable of the set {vα : α ∈ A}∪{vβ}
such that altogether each vα appears pα times and vβ appears 2�log2(p)� − p times.

In this definition, the exact order of appearances of the variables in {vα : α ∈
A} ∪ {vβ} is not uniquely determined. However, since this order of appearances will
not matter, we will speak of the dual circuit matrix.

Remark 3.2 Each block of the type (3.4) contains two (not necessarily identical) vari-
ables from the set {vα : α ∈ A} ∪ {vβ}. Since∑α∈A λα = 1, we have

∑
α∈A pα = p

and hence the total number of occurrences of variables from the set {vα : α ∈ A}∪{vβ}
in the blocks of type (3.4) is

∑

α∈A

pα + (2�log2(p)� − p) = 2�log2(p)�,

which is twice the number of blocks of type (3.4).

Note that every yk,i only serves as an auxiliary variable to make the non-linear
constraints ln(vβ) ≤ ∑

α∈A λα ln(vα) of the dual S-cone description from Proposi-
tion 2.4 linear. In the end, we will only multiply those constraints to obtain the original
ones. In particular, factors vβ serve to cover cases where p is not a power of 2. For
the purpose of the second-order descriptions, it does not matter in which order the
variables appear in the blocks (3.4), because only the product of these blocks will be
considered.

The goal of this subsection is to show the following characterization of the cone of
non-negative even AG functions Peven

A,β supported on the circuit (A, β). Here, positive
semidefiniteness of a symmetric matrix is denoted by � 0.

Theorem 3.3 The dual cone (Peven
A,β )∗ of the cone of non-negative even AG functions

Peven
A,β supported on the circuit (A, β) ∈ I (A) is the projection of the spectrahedron

{
(v, y) ∈ R

A × R
2�log2(p)�−2 : C∗

A,β(v|A, vβ, y) � 0
}

(3.5)

on (v|A, vβ). (Peven
A,β )∗ is second-order representable.

Here, the second-order representability follows immediately from the representa-
tion (3.5) in connection with Lemma 2.5. Let us consider an example for the theorem.

Example 3.4 Let A = {0, 6},B = {2} and consider the circuit (A, β) with A = A
and β = 2 (compare Fig. 1). We have p = 3, p0 = 2, p6 = 1 and y consists of the
components

y1,1, y1,2.
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A vector (v0, v2, v6) is contained in (Peven
A,β )∗ if and only if v2 ≥ 0 and the three

2 × 2-matrices

(
y1,1 v2
v2 y1,2

)
,

(
v0 y1,1
y1,1 v0

)
,

(
v6 y1,2
y1,2 v2

)

are positive semidefinite.

In Averkov (2019), Averkov considered the size of the blocks in the SDP-
representation of SONC-polynomials but does not give a number or bound on the
number of blocks. Here, for the S-cone, we provide a bound on the number of inequal-
ities of a second-order representation, which also gives a bound on the number of
2 × 2-blocks in a semidefinite representation. The bound depends on the smallest
common denominator of the barycentric coordinates representing the inner exponent
of a circuit as a convex combination of the outer ones.

Corollary 3.5 The matrix C∗
A,β(v|A, vβ, y) consists of 2�log2(p)� −1 blocks of size 2×2

and one block of size 1 × 1.

Proof Counting the number of 2 × 2-blocks, there are
∑�log2(p)�−1

k=2

(
2�log2(p)�−k

) =
2�log2(p)�−1 −2 blocks of type (3.2), a single block (3.3) and 2�log2(p)�−1 blocks of
type (3.4). ��
Remark 3.6 It is useful to record the set inequalities characterizing the positive
semidefiniteness of thematrixC∗

A,β(v|A, vβ, y). Besides the non-negativity conditions
for the variables,

v|A ≥ 0, vβ ≥ 0, (3.6)

and xk,i ≥ 0 for all k ∈ {2, . . . , �log2(p)� − 1
}
, i ∈

[
2�log2(p)� − k

]
, (3.7)

these are the determinantal conditions arising from the positive semidefiniteness of
the matrices in (3.2), (3.3) and (3.4):

v2β ≤ y�log2(p)�−1,1y�log2(p)�−1,2, (3.8)

y2k,i ≤ yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , �log2(p)� − 1
}
, i ∈

[
2�log2(p)�−k

]

(3.9)

and uw ≥ (
y1,l
)2 for l ∈

[
2�log2(p)�−1

]
(3.10)

for u, w ∈ {vα : α ∈ A} ∪ {vβ}, such that vα appears pα times for every α ∈ A and
vβ appears 2�log2(p)� − p times.

The next lemma prepares one inclusion of Theorem 3.3.
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Lemma 3.7 Letv ∈ R
A,β such that there existsy ∈ R

2�log2(p)�−2withC∗
A,β(v|A, vβ, y) �

0. Then v|A is non-negative and satisfies

v
p
β ≤

∏

α∈A

v pα
α .

Proof By (3.6), we have v|A ≥ 0 and vβ ≥ 0. Moreover, (3.8) and successively
applying (3.9) gives

vβ ≤ (
y�log2(p)�−1,1 y�log2(p)�−1,2

)1/2

≤ (
y�log2(p)�−2,1 y�log2(p)�−2,2

)1/4 (
y�log2(p)�−2,3 y�log2(p)�−2,4

)1/4

= (
y�log2(p)�−2,1 y�log2(p)�−2,2 y�log2(p)�−2,3 y�log2(p)�−2,4

) 1
2�log2(p)�−(�log2(p)�−2)

≤ · · · ≤
((∏

α∈A
v pα
α

)
· (vβ

)2�log2(p)�−p
) 1

2�log2(p)�
.

This is equivalent to

(
vβ

)2�log2(p)� · (vβ

)p−2�log2(p)� ≤
∏

α∈A
v pα
α ,

which implies v
p
β ≤ ∏

α∈A v
pα
α . ��

Now we prepare the converse inclusion of Theorem 3.3.

Lemma 3.8 For every v ∈ R
A,β with v|A∪{β} ≥ 0 and v

p
β ≤ ∏

α∈A v
pα
α , there exists

y ∈ R
2�log2(p)�−2 such that C∗

A,β(v|A, vβ, y) � 0.

Proof Define y inductively by

y1,l = √
uw for those u, w which occur in the block with y1,l ,

yk,i = √
yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , �log2(p)� − 1

}
, i ∈

[
2�log2(p)�−k

]
.

It suffices to show that the inequalities (3.6)–(3.10) in Remark 3.6 are satisfied. The
non-negativity conditions (3.6) and (3.7) hold by assumption andbydefinitionofy. The
construction of y also implies that a subchain of the chain of inequalities considered
in the previous proof even holds with equality,

(
y�log2(p)�−1,1 y�log2(p)�−1,2

)1/2

= (
y�log2(p)�−2,1 y�log2(p)�−2,2

)1/4 (
y�log2(p)�−2,3 y�log2(p)�−2,4

)1/4

= (
y�log2(p)�−2,1 y�log2(p)�−2,2 y�log2(p)�−2,3 y�log2(p)�−2,4

) 1
2�log2(p)�−(�log2(p)�−2)

= · · · =
((∏

α∈A
v pα
α

)
· (vβ

)2�log2(p)�−p
) 1

2�log2(p)�
.

123



Beitr Algebra Geom (2021) 62:229–249 241

By the assumption v
p
β ≤ ∏

α∈A v
pα
α , we obtain v2β ≤ y�log2(p)�−1,1y�log2(p)�−1,2,

which shows inequality (3.8). The remaining inequalities (3.9), (3.10) are satisfied
with equality by construction. ��

Finally, we can conclude the proof of Theorem 3.3.

Proof of Theorem 3.3 Let p be defined as in Definition 3.1 and λ ∈ R
A denote the

barycentric coordinates representing β as a convex combination of A, i.e., λα = pα

p
with pα ∈ N for all α ∈ A. By (2.3) and Proposition 2.4, we have

(Peven
A,β )∗ =

{
v ∈ R

A,β : v|A∪{β} ≥ 0, ln(vβ) ≤
∑

α∈A
λα ln(vα)

}

=
{
v ∈ R

A,β : v|A∪{β} ≥ 0, v
p
β ≤

∏
α∈A

v pα
α

}
.

Applying Lemmas 3.7 and 3.8, we obtain thatC∗
A,β(x, vβ) � 0 if and only if v ∈ P∗

A,β .��
Our derivation of the second-order representation of the dual cone (Peven

A,β )∗ also
suggests a simple way to derive a second-order cone representation of the primal cone
Peven
A,β . For the dual cone, Proposition 2.4 gives—besides non-negativity-constraints

on vα for α ∈ A and on vβ—the condition ln(vβ) ≤ ∑
α∈A λα ln(vα) for every circuit

(A, β) ∈ I (A). Those conditions can—as done in the previous proof – be stated as

v
p
β ≤

∏

α∈A

v pα
α , where λα = pα

p
.

The conditions for the primal cone can be reformulated similarly. Namely, by (2.6),
an even circuit function f with coefficient vector c is non-negative if and only if
−cβ ≤ ∏

α∈A (cα/λα)λα , which we write as

(−cβ)p ≤
∏

α∈A

(
cα

λα

)pα

.

This motivates to carry over the definition of the dual circuit matrix to the primal
case as follows. Since cβ may be negative (in contrast to the dual case), we introduce
the primal circuit variables, or simply circuit variables,

(xβ, (xk,i )k,i ),

where k ∈ [�log2(p)�] and i ∈ [2�log2(p)�−k]. As in the dual case, we refer to these

1 +∑�log2(p)�
k=1 2�log2(p)�−k = 2�log2(p)� variables as xA,β or shortly as x.

Definition 3.9 (Circuit matrix) The circuit matrix CA,β(c|A∪{β}, xβ, x) is the block
diagonal matrix consisting of the blocks

(
xk−1,2i−1 xk,i

xk,i xk−1,2i

)
for k ∈ {2, . . . , �log2(p)�

}
, i ∈ [2�log2(p)�−k

]
,
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the two singleton blocks

(
x�log2(p)�,1 − (∏α∈A(λα)λα

)
xβ

)
,
(
xβ + cβ

)
, (3.11)

as well as 2�log2(p)�−1 blocks of the form
(

u x1,l
x1,l w

)
for l ∈ [2�log2(p)�−1], (3.12)

where u, w ∈ {cα : α ∈ A} ∪ {(∏α∈A(λα)λα
)
xβ}, such that cα appears pα times for

every α ∈ A and
(∏

α∈A(λα)λα
)
xβ appears 2�log2(p)� − p times.

Note that for a circuit (A, β), the product
(∏

α∈A(λα)λα
)
is always non-zero,

because β ∈ relint conv A and A consists of affinely independent vectors.
In contrast to the dual cone, there is no sign constraint on cβ in the primal cone. If

p is not a power of 2, then xβ appears on the main diagonal of (3.12). In our coupling
of xβ with cβ , the constraint xβ + cβ ≥ 0 results in −cβ ≤ xβ and thus reflects these
sign considerations.

Note that the primal cone consists of circuit functions, whereas in our definition of
the dual cone, the elements are coefficient vectors. Therefore, the projection regarded
in Theorem 3.3 only delivers the coefficients of the circuit functions rather than the
cone itself.

Theorem 3.10 The set of coefficients of the cone Peven
A,β of non-negative even circuit

polynomials supported on the circuit (A, β) coincides with the projection of the spec-
trahedron

P̂even
A,β :=

{
(c, x) ∈ R

A × R
2�log2(p)� : CA,β(c|A∪{β}, xβ, x) � 0, c|A\(A∪{β}) = 0

}

(3.13)

on (c|A, cβ). The cone Peven
A,β is second-order representable.

The last equality constraint in (3.13) is redundant and can be omitted. We include
it here, because this formulation is needed in Sect. 4 for the description of the S-cone
supported on the full set A.

Proof First, let (c, x) ∈ P̂even
A,β . The positive semidefiniteness of the 2 × 2-blocks in

CA,β(c|A∪{β}, xβ, x) imply the inequalities

c|A ≥ 0 and (−xβ)p ·
(∏

α∈A
λα

λα

)
≤
∏

α∈A
cpα
α .

The two 1× 1-blocks from (3.11) give the inequalities x�log2(p)�,1 ≥
(∏

α∈A λ
λα
α

)
xβ

and xβ ≥ −cβ. They imply −cβ

(∏
α∈A λ

λα
α

)
≤ xβ

(∏
α∈A λ

λα
α

)
≤ x�log2(p)�,1.

Hence, similar to Lemma 3.7,

xβ

(∏
α∈A

λλα
α

)
≤ x�log2(p)�,1 ≤ (

x�log2(p)�−1,1 x�log2(p)�−1,2
)1/2
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≤ (
x�log2(p)�−2,1 x�log2(p)�−2,2

)1/4 (
x�log2(p)�−2,3 x�log2(p)�−2,4

)1/4

= (
x�log2(p)�−2,1 x�log2(p)�−2,2 x�log2(p)�−2,3 x�log2(p)�−2,4

) 1
2�log2(p)�−(�log2(p)�−2)

≤ · · · ≤
((∏

α∈A
cpα
α

)
· (xβ

)2�log2(p)�−p
(∏

α∈A
λλα

α

)2�log2(p)�−p
) 1

2�log2(p)�
.

This is equivalent to

(
xβ

)2�log2(p)� ·
(∏

α∈A
λλα

α

)2�log2(p)�
· (xβ

)p−2�log2(p)�

·
(∏

α∈A
λλα

α

)p−2�log2(p)�
≤
∏

α∈A
cpα
α ,

which, together with the considerations before the chain of inequalities, yields
(−cβ)p ≤ ∏

α∈A(cα/λα)pα and further c|A∪{β} ∈ Peven
A,β .

For the converse inclusion, we remind the reader that λα > 0 for all α ∈ A. We set

xβ := x�log2(p)�,1
(∏

α∈A

(
1
λα

)λα
)
and, similar to the proof of Lemma 3.8, define x

inductively by

x1,l = √
uw for those u, w which occur in the block with x1,l ,

xk,i = √
xk−1,2i−1xk−1,2i for all k ∈ {2, . . . , �log2(p)�}, i ∈

[
2�log2(p)�−k

]
.

Analogous to that proof, the construction of x gives CA,β(cA∪{β}, xβ, x) � 0.
Second-order representability is then an immediate consequence in view of

Lemma 2.5. ��
Example 3.11 Let A = {0, 2}, B = {1} and consider the circuit (A, β) with A = A
and β = 1. Since

1 = 1

2
· 0 + 1

2
· 2,

we have p1 = p2 = 1 and p = 2. Hence, �log2(p)� = log2(p) = 1, 2�log2(p)� − p =
2 − p = 0 as well as

∏

α∈A

λλα
α = 1

2
and x =

(
x1
x1,1

)
.

A given vector (c0, c1, c2) is contained in PA,β if and only if

x1,1 − 1

2
x1 ≥ 0, x1 + c1 ≥ 0 and

(
c0 x1,1
x1,1 c2

)
� 0.

Similar to Lemma 3.5, we can determine the number of blocks.
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Corollary 3.12 The matrix CA,β(c|A∪{β}, xβ, x) consists of 2�log2(p)� −1 blocks of size
2 × 2 and two blocks of size 1 × 1.

4 A second-order representation of theS-cone and its dual

In Sect. 3, we obtained second-order representations of the subcones of non-negative
even circuit functions and their duals, under the condition that the barycentric coor-
dinates are rational. We now assume that A and B are rational and derive an explicit
second-order representation of the rational S-cone CS(A,B) and its dual. In the pri-
mal case, those cones are obtained via projection and Minkowski sum, and in the dual
case, they arise from projection and intersection. First we consider the lifted cones for
the dual case.

Taking all circuits (A, β) into account would induce a highly redundant represen-
tation. To avoid those redundancies, we make use of the following characterization
from Katthän et al. (2019) of the extreme rays of the S-cone.

For finite and disjoint sets ∅ �= A,B ⊆ R
n , the set of reduced circuits contained

in A ∪ B is the set

R(A,B) = {
(A, β) : A ⊆ A affinely independent, β ∈ relint(conv A) ∩ (B\A),

A ∩ (conv(A))\(A ∪ {β}) = ∅}.

Less formally, this is the set of all circuits with outer exponents in A and inner
exponents in B without additional support points contained in the convex hull of the
circuit.

Note that for A ⊆ R
n and B ⊆ N

n\(2N)n disjoint and finite, the set R(A,A) is
exactly the set of even reduced circuits and the set R(A,B) the set of odd reduced
circuits. The set R(A,A∪B) denotes the set of all reduced circuits (A, β)with A ⊆ A
and β ∈ A ∪ B. A circuit function supported on a reduced circuit in R(A,A ∪ B)

has non-negative coefficients corresponding to exponents inA and a possibly negative
coefficient corresponding to a single exponent in A ∪ B.

The question whether a circuit is reduced or not depends on the ground set A.

For example, the circuit (A, β) with A =
{(

0
0

)
,

(
4
0

)
,

(
0
2

)}
and β =

(
1
1

)
is

reduced for the ground setA = A∪ {β} ∪
{(

4
2

)}
(compare Fig. 3), but not reduced

for A = A ∪ {β} ∪
{(

2
0

)}
(compare Fig. 4).

The following proposition is a direct consequence of Theorem 3.5(d) in Katthän
et al. (2019).

Proposition 4.1 Let ∅ �= A ⊆ R
n andB ⊆ N

n\(2N)n be finite and disjoint sets. Then

CS(A,B) =
∑

(A,β)∈R(A,A)

Peven
A,β +

∑

(A,β)∈R(A,B)

Podd
A,β .
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Fig. 3 The circuit is reduced, as
(4, 2)T /∈ conv(A)

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (4, 2)T

Fig. 4 The circuit is not reduced,
as (2, 0)T ∈ conv(A)

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (2, 0)T

Using this decomposition theorem, we can exclude many circuits from our consid-
eration. Thus, the second-order programwill bemuch smaller than the one considering
all circuits.

In Sect. 3, we only considered even circuits. To use Lemma 2.1 and obtain the
conditions for odd circuits as well, we extend the dual circuit variables for odd circuits
to

(yβ, (yk,i )k,i )

for k ∈ [2�log2(p)� −1] and i ∈ [2log2(p)−k]. We call them yA,β nevertheless for a fixed
circuit (A, β) ∈ R(A,B).

For the dual case, we consider the coordinates

yA,B =
{
(yA,β) : (A, β) ∈ R(A,A ∪ B)

}
,

which consist of
∑

(A,β)∈R(A,A∪B) 2
�log2(pA,β )� − 1 components, where pA,β denotes

the smallest common denominator of the barycentric coordinates λA,β of the circuit
(A, β) representing β as a convex combination of A.

For the primal case, we consider

xA,B =
{
(xA,β) : (A, β) ∈ R(A,A ∪ B)

}
,

which consist of
∑

(A,β)∈R(A,A∪B) 2
�log2(pA,β )� components.

Using Lemma 2.1, we can use our earlier characterizations of Peven
A,β to obtain the

following second-order characterization for Podd
A,β .

Corollary 4.2 Let (A, β) ∈ R(A,B)anodd reduced circuitwith rational A ⊆ A ⊆ Q
n

and β ∈ B.
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1. Let f be an oddAG function supported on (A, β)with coefficient vector c. f is non-
negative if and only if there exists x ∈ R

2�log2(p)�
such that CA,β(c|A, xβ, x) � 0

and
(
xβ cβ

cβ xβ

)
� 0. (4.1)

2. Avector v ∈ R
A,β is contained in

(
Podd
A,β

)∗
if and only if there exist y ∈ R

2�log2(p)�−2

and yβ ∈ R such that C∗
A,β(v|A, yβ, y) � 0 and

(
yβ vβ

vβ yβ

)
� 0. (4.2)

Note that, as a consequence of the application of Lemma 2.1, the second argument
of C∗

A,β(v|A, yβ, y) is yβ now instead of vβ that we had in Theorem 3.3.

Proof 1. The semidefinite condition on the matrix (4.1) is equivalent to xβ ≥
0 and |cβ | ≤ xβ. Hence, altogether we obtain

f ∈ Podd
A,β if and only if |cβ | ≤

∏

α∈A

(cα

λ

)λα

for barycentric coordinates λ ∈ R
A+ decomposing β as a convex combination of

A. This is exactly Proposition 2.2(b).
2. If v ∈ (Podd

A,β )∗, then, in the notation of Theorem 2.9, there exists some u such that
(v, u) ∈ (Peven

A,β )∗ and u ≥ |vβ |. In particular, u ≥ 0 is necessary for containment

in
(
Peven
A,β

)∗
. The semidefinite constraints (4.2) are equivalent to yβ ≥ 0 and the

latter inequality u ≥ |vβ |, and the constraint C∗
A,β(v|A, yβ, y) � 0 is equivalent to

(v, yβ) ∈
(
Peven
A,β

)∗
by Theorem 3.3.

��
For every odd reduced circuit (A, β) ∈ R(A,B), define the block diagonal matrix

Ĉ∗
A,β(v|A∪{β}, yβ, y) consisting of the dual circuit matrix C∗

A,β(v|A∪{β}, yβ, y) and
(4.1) for the dual cone. Considering all the reduced circuits, these lifting matrices
define the lifted cone

Ĉ∗(A,B) = {
(v, yA,B) : Ĉ∗

A,β(v|A∪{β}, yβ, y) � 0 for all (A, β) ∈ R(A,B),

C∗
A,β(v|A, vβ, y) � 0 for all (A, β) ∈ R(A,A)

}
,

where the variable vector v lives in the space R
A,B.

For a fixed odd reduced circuit (A, β) ∈ R(A,B), let

̂Podd
A,β =

{
(c, xA,B) : ĈA,β(c|A∪{β}, xβ, xA,β) � 0, c|A∪B\(A∪{β}) = 0

}
,
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where ĈA,β(c|A∪{β}, xβ, xA,β) is defined analogous to the dual case. We define the
lifted cone

Ĉ(A,B) =
∑

(A,β)∈R(A,A)

P̂even
A,β +

∑

(A,β)∈R(A,B)

̂Podd
A,β .

Here, for every (A, β) ∈ R(A,A), P̂even
A,β is the set from Theorem 3.10.

Corollary 4.3 1. The dual of the rational S-cone C∗
S(A,B) is the projection on the

coordinates v ∈ R
A,B of Ĉ∗(A,B).

2. The primal rational S-cone CS(A,B) is the projection on the coordinates v ∈
R
A,B of Ĉ(A,B).

Applying this lifting to the second-order representations of Theorems 3.10 and 3.3
in standard form also gives second-order representations of CS(A,B) and C∗

S(A,B)

in standard form.

Corollary 4.4 (Second-order representation of the dual rational S-cone) A vector v ∈
R

(A,B) is contained in the rationalS-cone (CS(A,B))∗ if and only if the circuit vector
yA,B satisfies for every reduced odd circuit (A, β) ∈ R(A,B)

1.

(
yA,β
k−1,2i−1 yA,β

k,i

y A,β
k,i y A,β

k−1,2i

)
� 0, 2 ≤ k ≤ �log2(pA,β)� − 1 ∀i ∈ [2�log2(pA,β )�−k],

2.

(
yA,β

�log2(pA,β )�−1,1 yA,β
β

yA,β
β yA,β

�log2(pA,β )�−1,2

)
� 0,

3.

(
u yA,β

1,l

y A,β
1,l w

)
� 0 for l ∈ [2�log2(pA,β )�−1] and u, w ∈ {vα : α ∈ A} ∪ {yA,β

β },

such that vα appears (pA,β)α times for eachα ∈ A and yA,β
β appears 2�log2(pA,β )�−

(pA,β)α times,

4.
∣∣∣∣vβ

∣∣∣∣
2 ≤ yA,β

β ,

and for every reduced even circuit (A, β) ∈ R(A,A) the conditions of Theorem 3.3.

We need to write yA,β instead of just writing y in the previous corollary, since
different yA,β for every reduced circuit (A, β) may appear.

For the primal case, we have to consider every reduced circuit as well. Here, sums
take the role of the intersections from the dual case.

Corollary 4.5 (A second-order representation of the rational S-cone) A function f ∈
R[A,B] with coefficient vector c is contained in the rational S-cone CS(A,B) if and
only if there exists cA,β for (A, β) ∈ R(A,A ∪ B) with c = ∑

(A,β)∈R(A,A∪B) c
A,β

and for the circuit vector xA,B and for every (A, β) ∈ R(A,A ∪ B) the following
inequalities hold.

1.

(
x A,β
k−1,2i−1 x A,β

k,i

x A,β
k,i x A,β

k−1,2i

)
� 0, 2 ≤ k ≤ �log2(pA,β)�, i ∈ [2�log2(pA,β )�−k],
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2. x A,β

�log2(pA,β )�,1 −
(∏

α∈A λ
(pA,β)α
α

)
x A,β
β ≥ 0,

3. x A,β
β + cβ ≥ 0,

4.
∣∣∣∣cβ

∣∣∣∣
2 ≤ x A,β

β if (A, β) is an odd circuit,
5. as well as in both the even and the odd case,

(
u x A,β

1,l

x A,β
1,l w

)
� 0 for l ∈ [2�log2(λA,β )�−1]

for u, w ∈ {cα : α ∈ A}∪ {(∏α∈A λ
(λA,β )α
α

)
x A,β
β

}
, such that cα appears (pA,β)α

times for every α ∈ A and
(∏

α∈A λ
(λA,β )α
α

)
x A,β
β appears 2�log2(pA,β )� − pA,β

times.

As already mentioned in Sect. 2, the SONC coneCSONC(A) and its dual are always
rational S-cones and thus occur as a special case of Corollaries 4.5 and 4.4.

Remark 4.6 The specific case of the primal SONC cone has also been studied in detail
byWang andMagron (2019). Their approach is based on different methods. In particu-
lar, it relies on mediated sets and intermediately uses sums of squares representations.
However, the resulting second-order programs are structurally similar. Notably, the
dependence of the size of the second-order program on the parameter p in our deriva-
tion relates to the dependency on the size of the rational mediated set in Wang and
Magron (2019). Note also that various amendments are integrated into the approaches
(such as the handling of denominators in Wang and Magron (2019) and the use of
extreme rays in our approach).

5 Conclusion and open question

We have provided second-order representations for primal and dual rational S-cones.
These statements remain valid also for non-rational sets A, as long as all the relevant
barycentric coordinates are still rational. It is an open question whether an S-cone and
its dual are also second-order representable in the general non-rational case.

Also, despite the use of the reduced circuits, the second-order representation of
the S-cone is still rather large. It remains the question whether smaller second-order
representations for the S-cone exist.
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