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Abstract
For even genus g = 2i ≥ 4 and the length g − 1 partition μ = (4, 2, . . . , 2,−2, . . . ,−2)
of 0, we compute the first coefficients of the class of D(μ) in PicQ(Rg), where D(μ) is the
divisor consisting of pairs [C, η] ∈ Rg with η ∼= OC (2x1+x2+· · ·+xi−1−xi −· · ·−x2i−1)

for some points x1, . . . , x2i−1 on C . We further provide several enumerative results that will
be used for this computation.

Keywords Prym curves · Hurwitz schemes · Admissible covers · Enumerative geometry

Mathematical subject classification 14H15 · 14H40 · 14H51

1 Introduction

The moduli space Rg parametrizing pairs [C, η] consisting of a curve C of genus g and a
2-torsion line bundle η on C received considerable attention following the influential papers
[5,24]. The description of Rg in [5] as a coarse moduli space of a stack, together with
the algebraic theory of Prym curves developed by Mumford in [24] brought this topic to the
attention of algebraic geometers. To outline its importance, we recall thatRg comes equipped
with a map Pg : Rg → Ag−1 to the moduli space of principally polarized abelian varieties
of dimension g − 1. This natural application relating curves to Prym varieties inside Ag−1

was used to provide an algebraic proof of the Schottky-Jung relations, see [24], and, among
others, to understand the birational geometry of the moduli of Prym varieties, see [6,12,16]
and the references therein.

LetRg be the compactificationofRg as considered in [4,5].When g = 2i+1 is odd, Farkas
and Ludwig considered an effective divisor D2i+1:2 = {[C, η] ∈ R2i+1 | η ∈ Ci − Ci }
describing the relative position of η with respect to the divisor Ci − Ci in Pic0(C), and
computed some relevant coefficients of its class in PicQ(Rg). As a consequence of their
computation, they obtained that Rg is of general type for g = 13, 14 and g ≥ 17. A natural
adaptation of their treatment to the case when g = 2i is even is to consider the divisor inRg

parametrizing pairs [C, η] satisfying η ∼= OC (2x1+x2+· · ·+xi−1−xi −xi+1−· · ·−xg−1)

for some points x1, . . . , xg−1 on C , and compute some of its coefficients in PicQ(Rg). In
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terms of the position of η with respect to a difference divisor in Pic0(C), the divisor we study
is {[C, η] ∈ R2i | η ∈ 2C + Ci−2 − Ci }.

Looking at this from another perspective, we can see the divisor D2i+1:2 as the image
in R2i+1 of some Hurwitz scheme. While for the moduli space of curves Mg several cases
when a Hurwitz locus is a divisor are studied, see [8,10,17,18,26], on the moduli space Rg

the only studied example is D2i+1:2. Such Hurwitz divisors are fundamental in proving that
Mg is of general type for g ≥ 24, see [9,17,18], and that Rg is of general type for g ≥ 17,
see [12].

Let μ = (2m1, 2m2, . . . , 2mg−1) a length g − 1 partition of 0. We can define a Hur-
witz divisor, denoted D(μ) as the locus parametrizing pairs [C, η] satisfying a line bundle
isomorphism η ∼= OC (m1x1 + · · · + mg−1xg−1) for some points x1, . . . , xg−1 of C . When
g = 2i + 1 and μ is (2, . . . , 2,−2, . . . ,−2) we recover the divisor D2i+1:2. In this article
we are interested in the case g = 2i with partition μ = (4, 2, . . . , 2,−2, . . . ,−2) and we
ask what is the class of the divisor D(μ) in PicQ(Rg). We consider the basis of PicQ(Rg)

consisting of the classes λ, δ′
0, δ

′′
0 , δ

ram
0 together with δi , δg−i , δi :g−i for 1 ≤ i ≤ [g/2]. In

this basis, we compute the first coefficients of our divisor D(μ) and we obtain:

Theorem 1.1 Let g = 2i ≥ 4 and μ the length g − 1 partition (4, 2, . . . , 2,−2, . . . ,−2) of
0. Then for the class in PicQ(Rg) of the divisor

[D(μ)] ≡ aλ − b′
0δ

′
0 − b′′

0δ
′′
0 − bram0 δram0 − b1δ1 − bg−1δg−1 − b1:g−1δ1:g−1 − · · ·

we have the equalities:

a = 12i2 + 10i − 2

2i − 1
·
(
2i − 1

i

)
, b′

0 = 2i2

2i − 1
·
(
2i − 1

i

)

b′′
0 = 4i3

2i − 1
·
(
2i − 1

i

)
− (3i − 1) · 22i−2, bram0 = 2i2 + 3i − 1

2i − 1
·
(
2i − 1

i

)

b1 = 2i(4i + 1) ·
(
2i − 1

i

)
− 6(2i − 1) · 22i−2,

bg−1 = (6i − 2)

(
2i − 1

i

)
, b1:g−1 = (2i + 2) ·

(
2i − 1

i

)

Due to results in [12,14], when g ≤ 23 all the other coefficients are irrelevant from the
point of view of birational geometry. As many interesting questions about the birational type
appear when g ≤ 23, no relevant information is lost in this way.

In order to prove this result, we will consider the compactification of Hurwitz schemes by
means of admissible covers, see [2,8,18]. Further, we intersect our divisor with some classical
test curves and compute the number of admissible covers above this intersection, along with
their multiplicities. We get in this way a system of 8 equations with 7 unknowns which will
be compatible and will conclude Theorem 1.1.

2 Admissible covers and enumerative geometry

Webegin by providing the setting, alongwith some important results about admissible covers.
Next, we present the enumerative results we need in order to compute the intersection of our
divisor with different test curves.

Let μ = (2m1, 2m2, . . . , 2mg−1) a length g − 1 partition of 0 and let μ− and μ+ be the
vectors of negative and positive entries ofμ. We denote by d the sum of the positive elements
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in μ and take the partitions of d given as b1 = μ+, b2 = −μ−, b3 = · · · = b3g−1 =
(2, 1 . . . , 1). We further consider the set B = {

b1, b2, . . . b3g−1
}
.

Following the notation in [8], we consider the moduli space Hd,B parametrizing degree d
maps [π : X → P

1] together with points q1, q2, . . . , q3g−1 on P
1 such that over qi the map

has ramification profile bi and is otherwise unramified. As previously mentioned, we have a
compactification Hd,B of Hd,B by means of admissible covers. We remark that the complete
local rings of the Hurwitz scheme Hd,B are determined as in [18].

LetS(μ) be the subgroup of Sg−1 generated by the transpositions
{
(i, j) | mi = m j

}
. This

group acts on Mg,g−1 by permuting the marked points, and we can consider the quotient
Mg,g−1/S(μ) of this action. We then have the map

aμ : Hd,B → Mg,g−1/S(μ)

sending [π : X → P
1]with branch points q1, q2, . . . , q3g−1 to the stablemodel of the pointed

curve [X , p1, . . . , pg−1] where p1, . . . , pg−1 are the points in the preimages of q1 and q2,
considered in the order given by μ

We consider the subspace of Mg,g−1 defined as

H0
g(μ) =

⎧⎨
⎩[X , p1, . . . , pg−1] ∈ Mg,g−1 | OX

⎛
⎝g−1∑

i=1

2mi pi

⎞
⎠ ∼= OX

⎫⎬
⎭

and we observe that the image of the map aμ is H0
g(μ)/S(μ).

We want to discount the componentsH0
g(

μ
2 ) in the spaceH0

g(μ) and hence, we will only

consider the components of Hd,B mapping to
(
H0

g(μ) \ H0
g(

μ
2 )
)

/S(μ). We will denote by

Hd,μ the space of these components.
This restriction enables us to consider a map

bμ :
(
H0

g(μ) \ H0
g(

μ

2
)
)

/S(μ) → Rg

given as

bμ

([X , p1, . . . , pg−1]
) = [X ,OX (

g−1∑
i=1

mi pi )]

Using the compactification of H0
g(μ) in terms of twists at the nodes, see [15], we are

able to extend the map bμ over curves of compact type: A pointed curve [X , p1, . . . , pg−1]
is sent to [stab(X), η] where if C is a component of the stabilization of X , we take ηC to
be OC (

∑
niqi ) where

∑
2niqi = 0 is the divisorial equivalence determined by the unique

possible twist on the component C .
Let cμ = bμ ◦aμ and D(μ) = cμ∗(Hd,μ). This is a divisor inRg and we want to compute

the class of its closure D(μ) inRg . Let πμ : Hd,μ → Mg be the map sending an admissible
cover [π : X → �] to the curve stab(X) ∈ Mg . We consider the divisor Z(μ) = πμ∗(Hd,μ).
Then it is obvious that the set-theoretical projection of D(μ) toMg is Z(μ). This observation
implies the following:

Lemma 2.1 Let [C, η] a point in the divisor D(μ). Then there exists an admissible cover
[π : X → �] in the Hurwitz scheme Hd,μ such that StMd(X) = StMd(C).

Our goal is to particularize to g = 2i and μ = (4, 2, . . . , 2,−2, . . . ,−2), and prove
Theorem 1.1. We make the following immediate observation which implies that we can
ignore the components of Hd,B \ Hd,μ in our computations.
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Remark 2.2 Let μ = (2m1, . . . , 2mg−1) a partition of 0 with all negative entries equal to
−2. If Z is a component of Hd,B mapped toH0

g(
μ
2 )/S(μ) by aμ, then the projection of Z to

Mg has at least codimension 2.

2.1 Various enumerative results

We provide here some enumerative results that will be used to compute the intersection of
the divisor D(μ) for μ = (4, 2, . . . , 2,−2, . . . ,−2) with various test curves. We start by
counting the number of maps to P

1 satisfying some ramification conditions on a special fibre.
Subsequently, we switch our attention to elliptic curves and compute the degrees of some
particular Hurwitz schemes over M1,1.

We state and prove a classical result generalizing Theorem B in [18], Theorem 2.1 in [17]
and Lemma 6.2 in [8].

Theorem 2.3 For m, n non-negative integers, let d ≤ g + 1 − m, [C, x1, . . . , xn] a generic
point in Mg,n and α1, . . . , αm, β1, . . . , βn positive integers satisfying

m∑
i=1

αi +
n∑
j=1

β j = 2d + m − 1 − g.

Then the number of pairs (L, y1, . . . , ym)with L a degree d line bundle on C and y1, . . . , ym
points on C satisfying

h0(C, L) ≥ 2 and h0(C, L(−
m∑
i=1

αi yi −
n∑
j=1

β j x j )) ≥ 1

is equal to Nα,β := g!
d!(g+1−d−m)! (2d + m − g − 1 − ∑m

i=1
1
αi

)
∏m

i=1 α2
i .

Moreover, due to the genericity of [C, x1, . . . , xn], for every such pair (L, y1, . . . , ym)

the line bundle L is globally generated, h0(C, L) = 2 and h0(C, L(−∑m
i=1 αi yi −∑n

j=1 β j x j )) = 1. Furthermore, the points x1, . . . , xn, y1, . . . , ym along with the points
in the support of the effective divisor D equivalent to div(L) −∑m

i=1 αi yi −∑n
j=1 β j x j are

pairwise distinct.

Proof First, observe that everything after “moreover” is true by dimension considerations.
Consider the map

ϕα,β : C × · · · × C︸ ︷︷ ︸
m times

×Cg+1−d−m → Cd

given as

(y1, . . . , ym, D) �→ D +
m∑
i=1

αi yi +
n∑
j=1

β j x j

Let C1
d ⊆ Cd be the locus of divisors D satisfying h0(C, D) ≥ 2. It is easy to observe that

the number of pairs (L, y1, . . . , ym) satisfying the desired properties is the number of points
in the intersection Im(ϕα,β) ∩ C1

d .
We will show that this intersection is transverse. Consider a point

E =
m∑
i=1

αi yi +
n∑
j=1

β j x j +
g+1−d−m∑

k=1

zk
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in the intersection Im(ϕα,β) ∩ C1
d . Because the points are all distinct and h0(C, E) = 2 it

follows that both Im(ϕα,β) and C1
d are smooth at the point E . Inside the tangent space

TE (Cd) = H0(C,OC (E)/OC ) = H0(C, ωC/ωC (−E))∨

we have the following identifications

TE (Im(ϕα,β)) = Annihilator of H0

⎛
⎝C, ωC

⎛
⎝−E +

m∑
i=1

(αi − 1)yi +
n∑
j=1

β j x j

⎞
⎠ /ωC (−E)

⎞
⎠

TE (C1
d ) = Annihilator of Im(μ̃0)

where μ̃0 is the composition

H0(C,OC (E)) ⊗ H0(C, ωC (−E)) → H0(C, ωC ) → H0 (C, ωC/ωC (−E))

It is clear that for any differential s ∈ H0(C, ωC (−E)) we have μ̃0(1⊗ s) = 0. Consider f
in H0(C,OC (E)) a global section with polar divisor E . Then we have

μ̃0( f ⊗ s) ∈ H0

⎛
⎝C, ωC

⎛
⎝−E +

m∑
i=1

(αi − 1)yi +
n∑
j=1

β j x j

⎞
⎠ /ωC (−E)

⎞
⎠

if and only if

s ∈ H0

⎛
⎝C, ωC

⎛
⎝−2E +

m∑
i=1

(αi − 1)yi +
n∑
j=1

β j x j

⎞
⎠
⎞
⎠

Since H0(C,OC (E)) is spanned by 1 and f , it follows that our loci are transverse if and
only if

h0

⎛
⎝C, ωC

⎛
⎝−2E +

m∑
i=1

(αi − 1)yi +
n∑
j=1

β j x j

⎞
⎠
⎞
⎠ = 0

From the Riemann–Roch theorem, this is equivalent to

h0(C, E +
m∑
i=1

yi +
g+1−d−m∑

k=1

zk) = 2

This follows immediately from Corollary 5 in [7]. Hence Im(ϕα,β) andC1
d are transverse and

the number of pairs (L, y1, . . . , ym)with the desired properties can be expressed as ϕ∗
α,β(c1d),

where c1d is the class of the cycle C1
d .

We know from [1], Chapter VII that

c1d = θ g−d+1

(g − d + 1)! − xθ g−d

(g − d)!
where x is the class of the divisor X p = {D ∈ Cd | D − p ≥ 0} and θ is the pullback from
the Jacobian of the theta divisor. Finally we use the formulas in [1], Chapter VIII to deduce

ϕ∗
α,β(c1d) = g!

d!(g + 1 − d − m)! (2d + m − g − 1 −
m∑
i=1

1

αi
)

m∏
i=1

α2
i
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In the case m = 0 the proposition still holds, using the convention that
∏m

i=1 αi = 1 and∑m
i=1

1
αi

= 0. ��
Next, we consider degree d holomorphic maps f : P

1 → P
1 with given ramification

profiles b1, b2 and b3 over the points 0, 1,∞ and unramified elsewhere and ask what is their
number up to isomorphism. We denote this number by N and count it for different choices
of b1, b2 and b3.

Proposition 2.4 We have the following table:

Ramification profiles Number N of maps

b1 = (m, n) with m �= n and b2 = b3 = (2, . . . , 2) 0
b1 = (k, k), b2 = b3 = (2, . . . , 2) 1
b1 = (2k), b2 = (4, 2, . . . , 2), b3 = (2, . . . , 2) k − 1
b1 = (2k), b2 = (2, 2, . . . , 2), b3 = (2, . . . , 2, 1, 1) 1
b1 = (2k − 1, 1), b2 = (4, 2, . . . , 2), b3 = (2, . . . , 2, 1, 1) k − 1
b1 = (2k − 1, 1), b2 = (3, 2, 2, . . . , 2, 1), b3 = (2, . . . , 2) 1
b1 = (2k − 1, 1), b2 = (4, 2, . . . , 2, 1, 1), b3 = (2, . . . , 2) k − 2
b1 = (m, n, 1) with |m − n| �= 1, b2 = (4, 2, 2, . . . , 2), b3 = (2, . . . , 2) 0
b1 = (k, k − 1, 1), b2 = (4, 2, 2, . . . , 2), b3 = (2, . . . , 2) 1
b1 = (2k + 1), b2 = b3 = (2, . . . , 2, 1) 1

Proof Using Corollary 4.10 in [21] this question translates into a purely combinatorial one:
the number of suchmaps is equal to the number of conjugacy classes of 3-tuples (σ1, σ2, σ3)of
permutations in Sd having cycle types b1, b2 and b3 respectively and satisfying σ1 ◦σ2 = σ3.
We give a proof for the third case in the table and claim that all other cases follow similarly.

Let us assume b1 = (2k), b2 = (4, 2, . . . , 2) and b3 = (2, . . . , 2). We want to compute
the number of solutions of σ1 ◦ σ2 = σ3 up to conjugacy, where σ1, σ2 and σ3 have cycle
types b1, b2 and b3. Since we are interested in solutions up to conjugacy, we can assume
σ1 = (1, 2, . . . , 2k). Moreover, we denote the 4-cycle in σ2 by (a, a + s, a + t, a + v).

The relation σ1 ◦ σ2 = σ3 implies that σ3 must contain the transposition (a, a + s + 1),
which in turn implies σ2(a + s + 1) = a − 1. If a − 1 is not in the 4-cycle, we further get
σ3(a − 1) = a + s + 2 and so on, until we ge get a condition for an element of the 4-cycle.

We split the problem into different cases depending on the order of the numbers 0 <

s, t, v < 2k.
Case I: The order is v < s < t . Then we apply repeatedly the reasoning outlined

previously and deduce σ2(a + s + t − s) = a + s − t . It then follows that t − s = 2k − v

which implies the contradiction s < v.
Case II:Theorder is s < t < v. In this case,weobtain as in thefirst case that t−s = 2k−v.

Moreover, the same argument implies a + (a + v) = (a + s) + (a + t). As a consequence,
t = k and v = k + s. By reasoning repeatedly as explained, for every s we get the unique
solution

σ2 = (a, a + s, a + k, a + k + s)
k−s−1∏
i=1

(a − i, a + i + s)
k−1∏

i=k−s+1

(a − i, a + k + s + i)

σ3 =
k−s−1∏
i=0

(a − i, a + i + s + 1)
k−1∏

i=k−s

(a − i, a + k + s + i + 1)
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This solution is up to conjugation the one where a = 1 and hence we get k − 1 possible
solutions depending on the value of s between 1 and k − 1.

Using the same method we conclude all other assumptions on the order yield no solution.
��

2.2 A Hurwitz space over the elliptic curves I

For an integer k ≥ 1, we are interested in degree 2k maps from an elliptic curve to P
1, having

ramification profiles b1 = (2k), b2 = b3 = (2, 2, . . . , 2) and b4 = (2, 1, 1, . . . , 1) over four
branch points q1, q2, q3 and q4. Let B:= {b1, b2, b3, b4} and consider the Hurwitz scheme
H2k,B . Following the method in [13] Section 5, we prove:

Proposition 2.5 For any k ≥ 1, the map πk : H2k,B → M1,1 remembering the point p of
total ramification over q1 and stabilizing the source curve has degree 6.

Proof The proposition is clear for k = 1 so we can assume k ≥ 2. We consider [E∞, p] the
singular curve ofM1,1 and we compute the length of the cycle π∗

k ([E∞, p])which we know
is equal to the degree of the map.

Let us denote by π : X → � an admissible cover mapped by πk to [E∞, p]. We denote
by R the rational component of X mapping to E∞ and by R1 the component collapsing to
the node of the curve E∞. Furthermore, we will denote by u and v the two nodes where R
and R1 are glued together. It follows from our notation that R contains the totally ramified
point p. As for the curve �, we denote by P1 the target of R, by P2 the target of R1 and by
q the node. Finally, we denote by f and f1 the restriction of π to R and R1 respectively.

In order to compute the length of the cycle, we distinguish three different cases for the
admissible cover π : X → � in π−1

k ([E∞, p]) depending on the position of the branch
points on the components of �. For each such admissible cover we compute its multiplicity
in π∗

k ([E∞, p]).
Case I: The points q1 and q4 are on P1. In this case, we apply the Riemann-Hurwitz

Theorem to f and deduce that there are exactly two points above the node q . This implies
that the degree of f1 is 2k. Hence the only two components of X are R and R1.

Let i and j be the ramification orders of f at the points u and v. The first two rows in the
table of Proposition 2.4 imply that i = j = k and there is a unique choice of the map f1 up
to the action of PGL(2) on R1 and P2. We are now ready to describe the maps f and f1 up
to the PGL(2)-action.

For f we assume that u = 0, v = 1 and p = ∞. Then the map can be given as

f (t) = tk(t − 1)k

and the simple ramification point is 1
2 . The only non-trivial automorphismof f is τ(t) = 1−t ,

permuting the nodes u and v.
For f1 we first provide an implicit description of it. Consider u = 0, v = ∞ and let τ1

and τ2 be the automorphisms τ1(t) = ξ
t and τ2(t) = ξ2t where ξ is a primitive root of order

2k. Let G be the group of automorphisms generated by τ1 and τ2. Clearly it has order 2k and
the map f1 can be taken to be the quotient

f1 : P
1 → P

1/G

Thedouble ramification points areη, η5, . . . , η4k−3 over a branchpoint andη3, η7, . . . , η4k−1

over another, where η is a primitive root of order 4k. Using this, we get an explicit description
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of such a map f1 to be

f1(t) = (tk − ηk)2

tk

It is simply checked that the morphisms of f1 are the elements of G.
We hence found a unique point in H2k,B over [E∞, p] having an automorphism group of

order 2k. We want now to compute its multiplicity in π∗
k ([E∞, p]).

For this, we look at the complete local ring of [π : X → �] in H2k,B . We know it is the
ring of invariants of

C[[t1, t1,1, t1,2]]/(t1=tk1,1=tk1,2)

with respect to the group Autπ (X) of automorphisms α of X satisfying π ◦ α = π . But this
is equal to the ring of invariants of

C[[t1, t1,1, t1,2]]/(t1=tk1,1=tk1,2)

with respect to the action of the subgroup AutRπ (X) ≤ Autπ (X) of automorphisms fixing the
component R. This happens because after a suitable change of coordinates, we can assume
that Autπ (C) acts linearly on the parameter space �.

In order to clarify this claim, let ∪k
j=1� = Spec(C[[t1, t1,1, t1,2]]/(t1=tk1,1=tk1,2)

) consisting

of k disks glued together at their respective origins and consider the universal deformation

C P

∪k
j=1�

π

where locally near the node u, the space C is given by x1 · y1 = t1,1 and locally near the
node v, the space C is given by x2 · y2 = t1,2. Because the action of Autπ (C) is linear on
∪k

j=1� and moreover extends analytically to an action on C, we see that it is enough to
understand how it acts at the level of coordinates of the central fibre X of C. In the standard
coordinates x1 = x2 = y1 = t at 0 and 1, and y2 = 1

t at ∞ we have the following action of
the automorphism group: Consider the automorphism fixing R and acting as multiplication
by ξ2 j on R1. This automorphism fixes the coordinates x1 and x2 on R, multiplies y1 by ξ2 j

and multiplies y2 by ξ−2 j . It follows that this automorphism sends t1,1 = x1y1 to ξ2 j t1,1 and
t1,2 to ξ−2 j t1,2. In particular, the ring of invariants with respect to the subgroup AutRπ (X) is

C[[t1, t1,1t1,2]]/(t1=tk1,1=tk1,2)
∼= C[[t1, t1,1t1,2]]/(t21=(t1,1t1,2)k )

We apply the same reasoning to deduce that the automorphism acting as τ(t) = 1 − t on R
and as τ1(t) = ξ

t on R1 sends t1,1 to −ξ t1,2 and t1,2 to −ξ−1t1,1. It simply follows that the
rings of invariants with respect to AutRπ (X) and Autπ (X) are the same.

Hence the local picture at such a point [π : X → �] is the following:

∪k
j=1� (∪k

j=1�)/Autπ (X) ⊆ H2k,B

M1,1

k:1
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The contribution of the point [π : X → �] to the length of π∗
k ([E∞, p]) is equal to the

local degree ofπk at the point.We see from the diagram that this is equal to 1
k ·deg(∪k

j=1� →
M1,1). For each disk, the multiplicity of the point over [π : X → �] can be computed using
curves in the universal deformation as exemplified in [8,13,18]. The multiplicity of each of
the k points in �k

j=1� over [E∞, p] is 2. It follows that the contribution of [π : X → �] to
π∗
k ([E∞, p]) is 2.
Case II: The points q1 and q2 are on P1. In this case, the Riemann-Hurwitz theorem

applied to f implies there are exactly k+1 points over q . It follows that f1 is a degree 2 map
and the ramified point above q4 is on R1. Furthermore, there are k − 1 rational components
R2, R3, . . . , Rk glued to R at the k − 1 points in f −1(q) \ {u, v}. For every j = 2, k the
degree of the map f j = π|R j is equal to 2.

Observe that each f j has a unique non-trivial automorphism and moreover for f1, this
automorphism permutes u and v.

We turn our attention to the map f : R → P1. We know it has ramification types
(2k), (2, 2, . . . , 2) and (2, 2, . . . , 2, 1, 1) over three branch points and is otherwise unrami-
fied.

Up to conjugacy, there is a unique solution σ1 = σ2 ◦σ3 in S2k for σ1, σ2, σ3 permutations
of cycle type (2k), (2, 2, . . . , 2), (2, 2, . . . , 2, 1, 1), hence f is unique up to the PGL(2)-
action on the curves R and P1.

We will show that f has a non-trivial automorphism. Such an automorphism is unique
since it fixes p and permutes u and v. To see it exists, observe that f can be written as a
composition

R
2:1−→ P

1 k:1−→ P1

This can be deduced from unicity, reasoning on the parity of k. The 2 : 1 map induces an
involution on R, which is our desired automorphism.

Consider τ1 an automorphism of X that is non-trivial on the components R and R1 and per-
mutes the components R2, . . . , Rk accordingly. For j = 2, k consider τ j the automorphism
of X that is non-trivial on R j and trivial on all other components. Then the automorphism
group Autπ (X) is the group of cardinality 2k generated by τ1, . . . , τk .

We know that the complete local ring of [π : X → �] in H2k,B is the ring of invariants
of

C[[t1, t1,1, t1,2, t1,3 . . . , t1,k+1]]/(t1=t1,1=t1,2=t21,3=···=t21,k+1)

with respect to Autπ (X). The same reasoning as in the first case implies the complete local
ring is isomorphic to

C[[t1]] ∼= C[[t1, t1,1 · t1,2, t21,3 . . . , t21,k+1]]/(t1=t1,1=t1,2=t21,3=···=t21,k+1)

Moreover for a local disk �t1 around [π : X → �] we have a universal family

C P

�t1

π

with central fibre π : X → � and with local equations xi yi = t1 at the nodes of X . We
see that by collapsing the components R1, . . . , Rk we get a family of genus 1 curves with
central fiber E∞ and with local equation at the node of the form xy = t21 . Hence this point
contributes with multiplicity 2 to the length of π∗

k ([E∞, p]).
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The third casewhen the points q1, q2 are inP1 is treated identically andwe thus get another
contribution of 2. To conclude, the length of π∗

k ([E∞, p]) = deg(πk) is 2 + 2 + 2 = 6.
��

2.3 A Hurwitz space over the elliptic curves II

Let again k ≥ 2 and consider the partitions of 2k: b1 = (2k−1, 1), b2 = (4, 2, . . . , 2), b3 =
(2, . . . , 2) and b4 = (2, 1, 1, . . . , 1). We denote by B the set {b1, b2, b3, b4} and we con-
sider H2k,B the Hurwitz scheme of admissible covers of degree 2k having ramification
profiles b1, b2, b3, b4 over four points q1, q2, q3 and q4. We want to compute the degree
of πk : H2k,B → M1,1 remembering only the point p of ramification order 2k − 1 and
stabilizing the source curve.

Proposition 2.6 The degree of πk : H2k,B → M1,1 is 6k − 3.

Proof We consider the singular point [E∞, p] of M1,1 and we compute the length of
π∗
k ([E∞, p]), which we know is equal to the degree of the map. Our approach is again

to consider all points in the preimage π−1
k ([E∞, p]) and compute their multiplicity.

Let π : X → � an admissible cover mapped by πk to [E∞, p]. In what follows, we
preserve the notations in Proposition 2.5 for the components and nodes of the source and
target.

Depending on the position of the branch points we distinguish again three different cases.
Case I: The points q1 and q2 are on P1. In this case, applying the Riemann–Roch theorem

to f : R → P1 we deduce there are k + 1 points in the fibre over q . This is possible if
and only if the ramification profile over q is (2, 2, . . . , 2, 1, 1). Hence f1 has degree 2 and
the ramified point over q4 is on R1. Furthermore X has another k − 1 rational components
R2, R3, . . . , Rk that are glued to R at the k − 1 points in f −1(q) \ {u, v}. For every j = 2, k
the degree of the map f j = π|R j is equal to 2.

Such an admissible cover admits no non-trivial automorphism except the ones on the
components R2, . . . , Rk . We see from Proposition 2.4 that there are k − 1 such admissible
covers. Moreover, the complete local ring at such a point in H2k,B is the ring of invariants
of

C[[t1, t1,1, t1,2, t1,3, . . . , t1,k+1]]/(t1=t1,1=t1,2=t21,3=···=t21,k+1)

with respect to Autπ (X). Using a similar argument as the one in Proposition 2.5, we deduce
that the ring of invariants is isomorphic to

C[[t1]] ∼= C[[t1, t1,1, t1,2, t21,3, . . . , t21,k+1]]/(t1=t1,1=t1,2=t21,3=···=t21,k+1)

and we also deduce that each such admissible cover is counted with multiplicity 2. Hence
the admissible covers in this case contribute with 2k − 2 to the count.

Case II: The points q1 and q3 are on P1. Applying the Riemann-Hurwitz theorem to
f : R → P1 we deduce that the number of points in the fibre over q is k. We have two
possibilities: either the point of ramification order 4 is on the rational component collapsing
to the node of E∞, or the point of ramification order 4 is on a rational component collapsing
to a smooth point of E∞ when we stabilize the curve.

For the first possibility, there is a unique choice for the admissible cover, as implied by
the first and sixth rows in Proposition 2.4. The map f : R → P1 has ramification profiles
(2k − 1, 1), (2, . . . , 2) and (3, 2, . . . , 2, 1) over q1, q3 and q . For the map f1 : R1 → P2 we
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know that the ramification profiles are (4), (2, 1, 1) and (3, 1) over q2, q4 and q . At each of
the other k−2 points over q , the curve X contains a rational curve glued to R that maps 2 : 1
to P2 with branch points q and q2.

The complete local ring at this point is

C[[t1,1]] ∼= C[[t1, t1,1, t1,2, t21,3, . . . , t21,k]]/(t1=t31,1=t1,2=t21,3=···=t21,k )

Hence at this point H2k,B is smooth and, as the ramification orders at u and v are 3 and 1,
the multiplicity of the point is 1 + 3 = 4.

For the second possibility, Proposition 2.4 implies there are k − 2 choices of the map
f : R → P1. The map f1 : R1 → P2 is 2 : 1 with branch points q2 and q4. At the point of
order 4 over q we have a rational component glued to R mapping 4 : 1 to P2 with two points
of total ramification over q and q2. At all the other points in the fibre over q there is a rational
component glued to R that maps 2 : 1 to P2 with branch points q and q2.

Again, we see that these points are smooth in H2k,B and they are all counted with multi-
plicity 2. Hence the contribution of Case II to the count is 4 + 2(k − 2) = 2k.

Case III: The points q1 and q4 are on P1. In this case the map f : R → P1 can have
degree 2k − 1 or 2k. If we assume the degree in 2k, the Riemann-Hurwitz theorem implies
there is a unique point in the fibre over q , which is false, as both u and v are there.

It follows that the degree of f is 2k−1 and, by the Riemann-Hurwitz theorem, that u and v

are the only points in the fibre over q . In this case, Proposition 2.4 implies that f1 : R1 → P2

is the unique map of degree 2k and ramification profile (4, 2, . . . , 2), (2, . . . , 2), (k, k−1, 1)
over q2, q3 and q . In this case, the same argument with the complete local ring implies this
cover should be counted with multiplicity k − 1 + k = 2k − 1.

Adding up the three cases, it follows that the degree of πk is 2k−2+2k+2k−1 = 6k−3.
��

2.4 Combinatorial identities

Another ingredient we will require is the computation of some combinatorial sums. We state
without proof the following identities

Proposition 2.7 We consider the sums Sk = ∑i−1
s=0 s

k
(2i
s

)
and compute the first terms to be

S0 = 2 · 22i−2 −
(
2i − 1

i

)
, S1 = 2i · 22i−2 − 2i ·

(
2i − 1

i

)
and

S2 = i(2i + 1) · 22i−2 − 3i2 ·
(
2i − 1

i

)

Similarly, let Tk = ∑i−1
s=0 s

k
(2i−1

s

)
. We compute the first terms to be

T0 = 22i−2, T1 = 2i − 1

2
· 22i−2 − i

2
·
(
2i − 1

i

)
,

T2 = (2i − 1)i

2
· 22i−2 − (2i − 1)i

2
·
(
2i − 1

i

)

T3 = (i3 − 3

4
i + 1

4
) · 22i−2 − (

3

2
i3 − i2)

(
2i − 1

i

)

and T4 = (i4 + i3 − 9

4
i2 + 3

4
i) · 22i−2 − (2i4 − i3 − i2 + 1

2
i)

(
2i − 1

i

)
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3 Test curves

We consider some classical examples of test curves onMg and take their pullbacks toRg in
order to obtain new ones. Using the projection formula and the description ofRg overMg in
[4,12], we compute their intersection numbers with all divisorial classes. All test curves on
Mg we are considering can be found in [19,23], while most test curves on Rg we consider
appear in more detail in [22].

Before providing the test curves we remark that PicQ(Rg) ∼= Q. This follows from
Theorem A and Theorem B in [25]. Consequently, the classes λ, δ′

0, δ
′′
0 , δ

ram
0 together with

δi , δg−i , δi :g−i for 1 ≤ i ≤ [g/2] form a basis of PicQ(Rg). In particular, describing the
intersection of the test curves with these classes is sufficient to describe their intersection
with any class.

3.1 Test curve A

Let A be the test curve in Mg consisting of a generic genus g − 1 curve C glued at a
generic point x to a pencil of elliptic curves along a base point. Taking the pullback of the
curve A toRg we obtain three test curves Ag−1, A1, A1:g−1, contained in the three divisorial
components�g−1,�1 and�1:g−1 respectively.We have the following intersection numbers,
where the omitted intersections are all 0:

Ag−1 · λ = 1, Ag−1 · δ′
0 = 12, Ag−1 · δg−1 = −1

A1 · λ = 3, A1 · δ′′
0 = 12, A1 · δram0 = 12, A1 · δ1 = −3

A1:g−1 · λ = 3, A1:g−1 · δ′
0 = 12, A1:g−1 · δram0 = 12, A1:g−1 · δ1:g−1 = −3

3.2 Test curve B

Consider a generic point [C, x] ∈ Mg−1,1. By glueing the point x to a point y moving on the
curve, we obtain a curve B onMg . Proceeding as before, the pullback provides 3 test curves
B ′, B ′′ and Bram lying in the divisors �′

0, �
′′
0 and �ram

0 . We have the following intersection
numbers, the ones omitted being 0:

B ′ · δ′
0 = (1 − g)(22g − 4), B ′ · δg−1 = 22g−2 − 1, B ′ · δ1:g−1 = 22g−2 − 1

B ′′ · δ1 = 1, B ′′ · δ′′
0 = 2 − 2g

Bram · δram0 = 22g−2(1 − g), Bram · δ1 = 1, Bram · δ1:g−1 = 22g−2 − 1

3.3 Test curves Ci

Let i an integer satisfying 2 ≤ i ≤ g − 1 and let [C] ∈ Mi and [D, y] ∈ Mg−i,1 be two
generic curves. Let ηC ∈ Pic(C)[2] \ {0} and ηD ∈Pic(D)[2] \ {0} and consider the test
curves in Rg

[C ∪x∼y D, (ηC ,OD)]x∈C
[C ∪x∼y D, (OC , ηD)]x∈C
[C ∪x∼y D, (ηC , ηD)]x∈C
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by varying x along C . We denote them Ci
i ,C

i
g−i and C

i
i :g−i respectively. It is clear they are

contained in the divisors �i ,�g−i and �i :g−i respectively. The intersection numbers are the
following, where all omitted intersection numbers are 0:

Ci
i · δi = 2 − 2i

Ci
g−i · δg−i = 2 − 2i

Ci
i :g−i · δi : g−i = 2 − 2i

4 Intersection numbers

Throughout this section, the genus g = 2i is even and the partition μ of length g − 1 is
taken to be (4, 2, 2, . . . , 2,−2, . . . ,−2). Our goal is to compute the intersection of D(μ)

with some of the test curves described in Sect. 3 and conclude Theorem 1.1.
We consider the normalization ν : H ν

g,μ → Hg,μ of the Hurwitz scheme Hg,μ. Our first

task is to extend themap cμ◦ν : H ν

g,μ ��� Rg over points in the preimage (πμ◦ν)−1([C/x∼y])
where [C, x] is a generic point ofMg−1,1. Our approach is to describe the admissible covers
in Hg,μ above such [C/x∼y] inMg and based on the description explain how the map cμ ◦ ν

is extended.

Proposition 4.1 Let [C, x] be a generic point ofMg−1,1 and y a point on the curve C. Then
the rational map cμ ◦ ν : H ν

g,μ ��� Rg can be extended over the fibre (πμ ◦ ν)−1([C/x∼y]).
Proof Consider an element [π : X → �] in Hg,μ above [C/x∼y] ∈ Mg . The genericity of
[C, x] and Lemma 5.3 in [8] imply that� has exactly two irreducible components.We denote
� = P1 ∪q P2 where C , seen as a component of X , is mapped to P1. We distinguish four
different possibilities for the admissible cover π : X → � depending on the position of the
points q1 and q2 on �.

Case I: The points q1 and q2 are on P1. In this case, it follows that deg(π|C ) = g.
Otherwise, the twist on C will correspond to a partition of length strictly smaller than g − 1,
contradicting the genericity of the curve. Moreover, as the map

H0
g−1(2, 1, 1, . . . , 1,−1, . . . ,−1) → Mg−1

corresponding to the length g − 1 partition (2, 1, 1, . . . , 1,−1, . . . ,−1) is not dominant, it
follows that

OC (
π∗(q1) − π∗(q2)

2
) � OC

Taking into account the genericity of the point x , we deduce that the curve X is as in the
following Fig. 1.

Here y is one of the other g − 1 points in the same fiber of π as x and there is a rational
component mapping 1 : 1 to P2 glued at the other g− 2 points of this fibre. The points x and
y are glueing C to a rational component R mapping 2 : 1 to P2.

As there exists no non-trivial automorphism α : X → X satisfying π ◦ α = π , the
complete local ring of [π : X → �] in Hg,μ has the form

C[[t1,1, . . . , t1,g, t1, . . . , t3g−4]]/(t1=t1,1=···=t1,g)
∼= C[[t1, . . . , t3g−4]]

This implies that Hg,μ is smooth at [π : X → �]. We then consider an open (3g − 4)-
dimensional polydisk �3g−4 centered at [π : X → �] and assume the equation t1 = 0
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Fig. 1 A curve X corresponding to an admissible cover in Hg,μ over [C/x∼y ]

parametrizes the locus of admissible covers with singular source curve. We have the com-
mutative diagram of maps

Rg

�3g−4 \ {t1 = 0} Mg
πμ

cμ

Consider a small enough neighbourhood U of [C/x∼y] in Mg such that its preimage in
Rg consists of disjoint open sets, each containing a unique element in the fibre over [C/x∼y].
We further shrink �3g−4 so that the image is contained inU . It follows that �3g−4 \ {t1 = 0}
is mapped by cμ to a unique open component of the preimage of U in Rg and the map cμ

can be analytically extended due to Hartogs’ extension theorem.
We want to determine the boundary divisor of Rg to which [π : X → �] is mapped by

this extension. For this we consider a 1-dimensional smoothing of the admissible cover

C P

�

π

together with the sections qi : � → P defining the branch points. By eventually shrinking
� we can assume that the preimages π−1(q1(�)) and π−1(q2(�)) are set-theoretically
unions of disjoint sections of C → �. We consider the divisor Z on C satisfying 2Z =
π∗(q1∗(�)) − π∗(q2∗(�)) and take the associated line bundle OC(Z). We then have that

OC(Z)|Ct = OCt (Zt ) ∈ Pic(Ct )[2] for all t �= 0

As C is smooth, it follows that there exist coefficients c, c1, . . . , cg−2 such that

OC(2Z) ∼= OC

⎛
⎝cR +

g−2∑
j=1

c j R j

⎞
⎠

where R, R1, . . . , Rg−2 are the rational components of the central fibre X . We know that
these rational components are disjoint with Z and the intersection numbers of the rational
components are R · R = −2, R · R j = 0 ∀ j = 1, g − 2 and R j · R j = −1 ∀ j = 1, g − 2.
As a consequence, it follows that c = c1 = · · · = cg−2 = 0. Hence the central fiber ofOC(Z)

is a 2-torsion point of Pic(X) and this line bundle is trivial on all the rational components.

123



Geometriae Dedicata (2022) 216 :6 Page 15 of 31 6

Hence, by collapsing the rational components we obtain an element of Rg over the central
fibre. Moreover, this element is in the divisor �′

0 of Rg because we have

OC

(
π∗(q1) − π∗(q2)

2

)
� OC

Case II: The points q1 and q2 are on P2. In order to treat this case, we need to introduce
some notations. Denote by x1, . . . , xs the points on C in the fibre π−1(q) that are different
from x and y. For each rational component P of X we are interested to which component
of � it is mapped and also, to which of the points x ∼ y, x1, . . . , xs it collapses when we
stabilize X . We introduce the following notations

c0,1 =
∑

P collapses to x∼y
P is mapped to P1

deg( f|P : P → P1)

c0,2 =
∑

P collapses to x∼y
P is mapped to P2

deg( f|P : P → P2)

We similarly define c j,1 and c j,2 for the points x j for j = 1, s. By double counting
the ramification orders at the nodes we deduce the following numerical conditions for the
admissible cover π :

ordx (π|C ) + ordy(π|C ) + c0,1 = c0,2

ordx1(π|C ) + c1,1 = c1,2

. . .

ordxs (π|C ) + cs,1 = cs,2

We claim that c j,1 ≥ 1 for all j = 1, s and moreover that c j,1 ≥ 2 if the point of
ramification order 4 is on a rational component collapsing to x j . We also have a description
for when equality holds. When c j,1 = 1 the only possibility is that c j,2 = 2. Moreover if
c j,1 = 2 and the point of ramification order 4 collapses to x j it follows that c j,2 = 4.

To see this, assume that c j,1 = 0 for some j . This implies that there exists a unique rational
component P that collapses to x j . This component is furthermore mapped by π to P2 and
is totally ramified at the point of P glued to x j . But the map π|P has only even ramification
orders over q1 and q2. By the Riemann-Hurwitz theorem, this is impossible. If c j,1 = 1 it
follows again that there is a unique component P collapsing to x j and mapped to P2. This
component P has ramification profiles (2k − 1, 1), (2, . . . , 2) and (2, . . . , 2) over q, q1 and
q2. Reasoning as in Proposition 2.4, this is only possible if k = 1 and hence c j,2 = 2.
The case when the point of ramification order 4 is on a rational component collapsing to x j
follows analogously.

We distinguish two different cases depending on whether this point of ramification order
4 is collapsing to x ∼ y or to one of the points x1, . . . , xs .

If this point collapses to x ∼ y we get by adding the equalities that

deg(π|C ) + s + c0,1 ≤ 2i

Furthermore the genericity of [C, x] implies that

deg(π|C ) + s ≥ g − 1 = 2i − 1

Because c0,1 ≤ 1 it follows that there is a unique rational component R mapping to
P2 that collapses to x ∼ y. The Riemann-Hurwitz theorem applied to π|R implies that
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the fibre π−1
|R (q) contains at least 3 distinct points. It follows that c0,1 = 1, deg(π|C ) +

s = 2i − 1 and the ramification profiles of π|R over the branch points q, q1 and q2 are
(m, n, 1), (4, 2, 2, . . . , 2) and (2, . . . , 2) where the entries add up to 2i − 2s.

Proposition 2.4 implies that m = i − s, n = i − s − 1 and in this case there is a unique
choice for the map π|R . We get two possible types of admissible covers π : X → � which
we will now describe.

For the first type, π|C has degree 2i − s − 1 and the ramification orders at x and y
are i − s and i − s − 1. Furthermore π|R is the unique map with ramification profiles
(i − s, i − s − 1, 1), (4, 2, 2, . . . , 2) and (2, 2, . . . , 2) over q, q1 and q2, where the points of
ramification orders i − s and i − s − 1 are x and respectively y.

For the second type, π|C has degree 2i − s − 1 and the ramification orders at x and
y are i − s − 1 and i − s. Furthermore π|R is the unique map with ramification profiles
(i − s, i − s − 1, 1), (4, 2, 2, . . . , 2) and (2, 2, . . . , 2) over q, q1 and q2, where the points of
ramification orders i − s − 1 and i − s are x and respectively y.

We see that for both types, there exists no non-trivial automorphism α : X → X which
satisfiesπ◦α = π .As a consequence the complete local ringofHg,μ at the point [π : X → �]
is isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t i−s
1,1 =t i−s−1

1,2 )

By considering [π : X → �] as a point in the normalization H
ν

g,μ of Hg,μ we see that

[π : X → �] is a smooth point of H
ν

g,μ. The same argument using Hartogs’ extension
theorem as in Case I implies that the map cμ ◦ ν can be extended over this point. As in Case
I, we deduce that [π : X → �] is mapped to �′′

0 in Rg .
We now treat the case when the point of order 4 is on a rational component collapsing to

a smooth point of C . In this case we get by adding the equalities that

deg(π|C ) + s + 1 + c0,1 ≤ 2i

Using the inequality

deg(π|C ) + s ≥ 2i − 1

implied by the genericity of [C, x] we deduce that deg(π|C ) = 2i − s − 1 and c0,1 = 0. It
follows that ordx (π|C )+ordy(π|C ) = 2i−2s−2. Proposition 2.4 implies that the ramification
profiles of π|R over q, q1 and q2 are (i − s − 1, i − s − 1), (2, . . . , 2) and (2, . . . , 2).

We see that the admissible cover π : X → � can be described as follows. The map π|C
has degree 2i − 1 − s containing in its fiber over q the points x, y of ramification order
i − s − 1 and another point of ramification order 2 to which the point of ramification order
4 over q1 collapses. For the rational component R, the map π|R has ramification profiles
(i − s − 1, i − s − 1), (2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

As a consequence, the complete local ring of Hg,μ at [π : X → �] is the ring of invariants
of

C[[t1,1, t1,2, t1,3, t2, . . . , t3g−4]]/(t i−s−1
1,1 =t i−s−1

1,2 =t21,3)

with respect to the group Autπ (X) of automorphisms α : X → X satisfying π ◦ α = π .
Denote by x1 the point of ramification order 2 in the same fibre as x and y and by R1 the

rational component of degree 4 over P2 collapsing to x1. Up to the PGL(2)-action on both
the source and the target we can describe π|R1 as

π|R1(t) = t2(t − 1)2
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In this description, observe that the point x1 corresponds to the point 1
2 and there is a non-

trivial automorphism τ given as τ(t) = 1 − t .
By first considering the ring of invariants with respect to the automorphism acting as τ

on R1 and fixing C and R we get that the complete local ring of Hg,μ at [π : X → �] is the
ring of invariants of

C[[t1,1, t1,2, t21,3, t2, . . . , t3g−4]]/(t i−s−1
1,1 =t i−s−1

1,2 =t21,3)
∼= C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t i−s−1

1,1 =t i−s−1
1,2 )

with respect to the automorphism subgroup AutR1
π (X) ≤ Autπ (X) of elements restricting to

the identity on R1. But AutR1
π (X) is the group of automorphisms of R fixing the points x, y

and all components of X different from R. A description of this group appears in the proof
of Proposition 2.5. We consider the parameter space of

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t i−s−1
1,1 =t i−s−1

1,2 )

consisting of i − s − 1 polydisks of dimension 3g − 4 glued together along t1,1 = 0. Then
AutR1

π (X) acts on this space by identifying the i − s − 1 components with one another. As
a consequence, the space Hg,μ is smooth at [π : X → �] and the method of Case I applies
again. By choosing a 1-dimensional smoothing we deduce that [π : X → �] is mapped by
cμ to �′′

0 in Rg .
Case III: The point q1 is on P1 and the point q2 is on P2. The image StMd(X , π−1(q1),

π−1(q2)) by aμ is an element ofH0
g(μ)/S(μ), hence there is a twist associated to this pointed

curve. The genericity of [C, x] implies that the partition on C determined by the twist has
length g. This imply that on C we have a divisorial equivalence of the form

4y1 + 2y2 + · · · + 2yi−1 − 2x1 − · · · − 2xi−1 − x − y ≡ 0

in Pic(C) where y1, . . . , yi−1, x1, . . . , xi−1 are points of C . In particular, this description
implies deg(π|C ) = g, deg(π|R) = 2 and at every point x j there is a rational component R j

glued to C that maps 2 : 1 to P2 with branch points q and q2.
From the above description it follows that the complete local ring of [π : X → �] in Hg,μ

is the ring of invariants of

C[[t1,1, t1,2, . . . , t1,i+1, t2, . . . , t3g−4]]/(t21,1=···=t21,i−1=t1,i=t1,i+1)

with respect to the action of Autπ (X). But Autπ (X) is the group of cardinality 2i−1 generated
by the automorphisms τ1, . . . , τi−1 where τ j for j = 1, i − 1 is the automorphism of X that
restricts to the identity on all components except R j . In particular, the complete local ring is
isomorphic to

C[[t21,1, . . . , t21,i−1, t1,i , t1,i+1, t2, . . . , t3g−4]]/(t21,1=···=t21,i−1=t1,i=t1,i+1)
∼= C[[t1,i , t2, . . . , t3g−4]]

hence the point is smooth and the map cμ can be extended to this point by Hartogs’ extension
theorem.

Next, we consider a 1-dimensional smoothing of π : X → �

C P

�

π
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together with the sections q1, q2 : � → P . We consider as in Case I the divisor Z on C
satisfying 2Z = π∗(q1∗(�)) − π∗(q2∗(�)). We see that

deg(OC(Z)|R) = −1, deg(OC(Z)|C ) = i and deg(OC(Z)|R j ) = −1 for all j = 1, i − 1

Because we have the self-intersection numbers R ·R = −2 and R j ·R j = −1we conclude
that by twisting with −R −∑i−1

j=1 R j and collapsing the rational components R1, . . . , Ri−1

we obtain an element of �ram
0 in Rg .

Indeed, when restricting OC(Z − R − ∑i−1
j=1 R j ) to C we obtain the line bundle

L ∼= OC (2y1 + y2 + · · · + yi−1 − x1 − · · · − xi−1 − x − y)

and it is clear that L2 ∼= OC (−x − y). Moreover the degree of OC(Z − R − ∑i−1
j=1 R j )

restricted to R is 1, hence we obtain an element in �ram
0 over the central fibre, as stated.

Case IV: The point q1 is on P2 and the point q2 is on P1. The image StMd(X , π−1(q1),

π−1(q2)) through aμ is an element ofH0
g(μ)/S(μ). Using again the genericity of [C, x] and

the existence of a twist we deduce that on C the twist determines a linear equivalence of one
of the following forms

4x1 + 2x2 + · · · + 2xi−2 + x + y − 2y1 − · · · − 2yi ≡ 0

2x2 + · · · + 2xi−1 + (4 − k)x + ky − 2y1 − · · · − 2yi ≡ 0

where all x j and y j are points of C and k ∈ {1, 2, 3}.
We claim that the map cμ◦ν : H ν

g,μ → Rg extends over the preimages of such admissible
covers [π : X → �] and the image of such a point is in �′

0 only if the linear equivalence
determined by the twist is of the second form and k = 2. If the linear equivalence is of any
of the other three forms, cμ maps such admissible covers to �ram

0 .
The case when the divisorial equivalence is of the first form follows analogously to Case

III. If the divisorial equivalence is of the second form with k = 2, we see that the complete
local ring of Hg,μ at the point [π : X → �] is isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t21,1=t21,2)

Hence the parameter space consists of two (3g − 4)-dimensional polydisks glued together
along the locus t1,1 = 0 where the coordinates of the polydisks are considered to be
t1,1, t2, . . . , t3g−4. In particular, both preimages of [π : X → �] are smooth in the nor-
malization H

ν

g,μ.
Over both polydisks we have a universal covering and hence the same approach as in Case

I can be applied to deduce that cμ ◦ ν maps the preimages of [π : X → �] to �′
0.

We are left to treat the case when the divisorial equivalence is of the second form and
k = 1 or k = 3. In both cases, the complete local ring of Hg,μ at the point [π : X → �] is
isomorphic to

C[[t1,1, t1,2, t2, . . . , t3g−4]]/(t31,1=t1,2)
∼= C[[t1,1, t2, . . . , t3g−4]]

Because the point is smooth, the map cμ extends over it.
Consider now the 1-dimensional smoothing family of π : X → � obtained by varying

the coordinate t1,1

C P

�t1,1

π
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Observe that C is smooth except for an A3-singularity at either x or y, depending on
whether k = 1 or k = 3. By blowing-up the singularity we obtain in the central fibre of the
new space C̃ a chain R ∪ R′ ∪ R′′ of rational components connecting the two points x and
y. We denote by R2, . . . Ri−1 the rational curves of X glued to C at the points x2, . . . , xi−1.
We take the line bundle OC̃(Z + ∑i−1

j=2 R j + R) on C̃ and see that its restriction to C is

L:=OC (x2 + · · · + xi−1 + 3 − k

2
x + k − 1

2
y − y1 − · · · − yi )

which satisfies L2 ∼= OC (−x − y). Moreover, this line bundle on C̃ has degree 0 when
restricted to a rational component of the central fibre except for the component R′ for which
the degree is 1. In particular, by collapsing all rational components but R′ we obtain an
element in �ram

0 over the central fibre. ��
We are now ready to compute the intersection of the divisor with different test curves.

4.1 Intersection with test curves of type A

Before starting our computations we make a remark about some admissible covers with
elliptic source curve. We do this because such covers will appear naturally in our study and
the next remark will be essential in our computation.

Remark 4.2 Let f1 : E → P
1 be a map of degree 2k ≥ 4 with ramification profiles

(2k), (4, 2, . . . , 2) and (2, . . . , 2) over three branch points. Then Aut(E, y) �= Z6 and
f1 ◦ j = f1 for any automorphism j : E → E fixing the point y of ramification order
2k.

Proof We split the problem into two cases depending on whether k is even or odd.
When k is even, we consider the unique map π : P

1 → P
1 with ramification profiles

(k), (2, . . . , 2) and (1, 1, 2, . . . , 2) over ∞, 1 and 0, where the point of ramification order k
is denoted x1 and the two unramified points over 0 are denoted x2 and x3. Let x4 be one of
the other k − 1 points of ramification order 2. If we take the degree 2 map g : E → P

1 with
branch points x1, x2, x3 and x4, the map π ◦ g has ramification profiles as in the hypothesis.
Hence all maps f1 are obtained in this way and it is clear that f1 ◦ j = f1 for the involution
j of the source curve (E, y).

Consider the map g : E → P
1 of degree 2 with branch points 0, 1,∞ and x . Then

Aut(E, y) = Z4 if and only if x = 1
2 . In particular, at most one of the k − 1 maps as in the

hypothesis has source curve satisfying Aut(E, y) = Z4. We prove that such a map exists.
We consider themapπ ′ : P

1 → P
1 branched over∞, 0 and 1, having ramification profiles

( k2 ), (1, 1, 2, . . . , 2) and (2, . . . , 2) if k
2 is even or ramification profiles ( k2 ), (1, 2, . . . , 2) and

(1, 2, . . . , 2) if k
2 is odd, where we take the point of total ramification to be ∞ and the two

unramified points to be 0 and 1.
Take the map g′ : E → P

1 of degree 4 having ramification profiles (4), (4) and (2, 2) over
the branch points ∞, 0 and 1. Then π ′ ◦ g′ : E → P

1 is a map with ramification profiles as
in the hypothesis and Aut(E, y) = Z4.

Let g : E → P
1 a degree 2 map ramified over the points 0, 1,∞ and x . Then Aut(E, y) =

Z6 if and only if x is a primitive root of order 6.
We consider again the map π : P

1 → P
1. We can describe it as

π(t) = t(t − 1)Q(t)2
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where Q(X) is given by the unique solution of the polynomial Pell equation

P(X)2 − X(X − 1)Q(X)2 = 1

with deg(P) = deg(Q) + 1 = k
2 . Observe that we have the initial solution P(X) = 2X −

1, Q(X) = 2 and hence our solution is given by

P(X) − Q(X)
√
X(X − 1) = (2X − 1 − 2

√
X(X − 1))

k
2

Let ξ a primitive root of order 6. Using the identity ξ2 − ξ = −1 and the binomial expansion
we deduce

P(ξ) = (2ξ − 1)
k
2

⌊
k
4

⌋
∑
s=0

4s

3s

( k
2
2s

)

In particular, it is clear that ξ(ξ − 1)Q(ξ)2 = P(ξ)2 − 1 is not 0 or 1 and hence ξ is not one
of the k − 1 ramification points.

The approach when k is odd is similar. We consider the unique map π : P
1 → P

1 with
branch points ∞, 0 and 1 having ramification profiles (k), (1, 2, . . . , 2) and (1, 2, . . . , 2)
where the point of ramification order k is∞ and the unramified points are 0 and 1 respectively.
The k−1 maps are obtained as in the previous case. Moreover, the unicity of the map implies
that if we take τ(t) = 1 − t the morphism fixing ∞ and permuting 0 and 1 we have

π ◦ τ(t) = 1 − π(t)

implying that none of the k−1 other ramification points is fixed by τ . HenceAut(E, y) �= Z4.
To see that Aut(E, y) �= Z6 it is enough to show that if ξ is a primitive root of order 6,

then π(ξ) is not 0 or 1. The map π can be described as

π(t) = t Q(t)

where Q(X) is given by the unique solution of the generalized polynomial Pell equation

XQ(X)2 − (X − 1)P(X)2 = 1

with deg(P) = deg(Q) = k−1
2 . We see that the solution is given by

XQ(X) − P(X)
√
X(X − 1) = (X − √

X(X − 1))(2X − 1 − 2
√
X(X − 1))

k−1
2

Hence we have

Q(X) =

⌊
k−1
4

⌋
∑
s=0

4s Xs(X − 1)s(2X − 1)
k−1
2 −2s

( k−1
2
2s

)

+ 2(X − 1)

⌊
k−3
4

⌋
∑
s=0

4s Xs(X − 1)s(2X − 1)
k−3
2 −2s

( k−1
2
2s

)

As before, we get that ξQ(ξ) is not 0 or 1 and hence ξ is not one of the k − 1 points of
ramification order 2 of π . Hence Aut(E, y) �= Z6.

��
Next, we compute the intersection of the divisor D(μ) with the test curves obtained by

pulling back to Rg the test curve A.
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Proposition 4.3 We have the following intersection numbers

D(μ) · A1:g−1 = D(μ) · Ag−1 = 0 and D(μ) · A1 = (3g − 3)! · 6 ·
(
22i−2 −

(
2i − 1

i

))

Proof We first show that an element [C ∪x∼y E, η] ∈ Rg with [C, x] ∈ Mg−1,1 generic, E
a smooth elliptic curve and ηC � OC is not contained in D(μ).

We assume by contradiction that it is. Due to the genericity of [C, x], the existence of a
twist implies that the partition on C determined by it has length g − 1. It follows that this
partition is μ. We know that the forgetful map

H0
g−1(μ) → Mg−1

is finite. It follows that x is not a ramification point for any of the maps f : C → P
1 with

ramification profiles μ+ and −μ− over 0 and ∞.
If [π : X → �] ∈ Hg,μ is mapped by cμ : Hg,μ → Rg to [C ∪x∼y E, η], the previous

remarks imply deg(π|C ) = g and ordx (π|C ) = 1. This would imply deg(π|E ) = 1, which is
impossible.

Next, we describe the admissible covers [π : X → �] that are mapped by cμ to a point of
the test curve A1. We denote by x1, . . . , xs the points of C in the same fibre of π|C as x . As
in Case II of Proposition 4.1 we define

c0,1 =
∑

P collapses to x∼y
P is mapped to P1

deg( f|P : P → P1)

c0,2 =
∑

P collapses to x∼y
P is mapped to P2

deg( f|P : P → P2)

and similarly c j,1 and c j,2 corresponding to x j for j = 1, s. Using the properties of admissible
covers we deduce the relations

ordx (π|C ) + c0,1 = ordy(π|E ) + c0,2

ordx1(π|C ) + c1,1 = c1,2

. . .

ordxs (π|C ) + cs,1 = cs,2

Adding them up and using that c j,1 ≥ 1 for every j = 1, s we get that

deg(π|C ) + s + c0,1 ≤ 2i

Together with the inequality

deg(π|C ) + s ≥ 2i

coming from the genericity of [C, x], this implies that c1,1 = · · · = cs,1 = 1, that c0,1 = 0 and
deg(π|C ) = 2i − s. This implies further that c1,2 = · · · = cs,2 = 2, that deg(π|E ) = 2i − 2s
and π|E has ramification profiles (2i − 2s), (4, 2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

Consequently, themapπ : X → � is uniquely determined by the choice of amap f : C →
P
1 of degree 2i − s with ramification order 2i −2s at x and the choice of a map f1 : E → P

1

of degree 2i − 2s having ramification profiles (2i − 2s), (4, 2, . . . , 2) and (2, . . . , 2) over
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three branch points. It follows from Theorem 2.3 and Proposition 2.4 that the number of such
maps π : X → � is equal to

i−1∑
s=0

(2i − 2s) · (2i − 1)!
(2i − s)!s! · (i − s − 1) = 1

i

i−1∑
s=0

(i − s)(i − s − 1)

(
2i

s

)

As a consequence of Proposition 2.7, the number of maps π : X → � with the desired

properties is 22i−2−(2i−1
i

)
.We observe that each choice of order for the 3g−3 simple branch

points produces a different admissible cover.We next show that each admissible cover should
be counted with multiplicity 6.

Using the description of the complete local ring, we deduce that the admissible cover
π : X → � admits a universal family

C P

�

π

where � is a (3g − 4)-dimensional polydisk. This induces a map from � to the universal
deformation of the curveC ∪x∼y E and the same method as in the proof of Theorem 6 in [18]
implies that the image intersect the singular locus �1 transversely at the point [C ∪x∼y E].
Moreover, Autπ (X) acts on � and �/Autπ (X) is an open neighbourhood of [π : X → �]
in Hg,μ.

By computing the intersection D(μ) · A1 at the level of the universal deformation of
C ∪x∼y E , we get that each admissible cover should be counted with multiplicity 1

2 · 12 ·
|Aut(C∪x∼y E)|

|Autπ (X)| . Here, the factor 1
2 appears because δ1 = 1

2�1 and the factor 12 appears as
each elliptic curve shows up 12 times in the pencil. Using Remark 4.2, we deduce that the
multiplicity is always 6. We conclude that

D(μ) · A1 = 6 · (3g − 3)!(22i−2 −
(
2i − 1

i

)
)

In order to conclude that the intersection is 0 with the two other test curves, we still need to
show that an element [C ∪x∼y E∞, η] ∈ Rg with [E∞, y] the singular curve in M1,1 does
not appear in the intersection. The methods we used for a smooth elliptic curve extend to this
case. ��

4.2 Intersection with test curves of type Cg−1

We can employ a similar approach as in the case of test curves of type A for the test curves
of type Cg−1.

Proposition 4.4 We have the intersection numbers

D(μ) · Cg−1
1:g−1 = (3g − 3)! · (4i − 4) · (2i + 2) ·

(
2i − 1

i

)
,

D(μ) · Cg−1
g−1 = (3g − 3)! · (4i − 4) · (6i − 2) ·

(
2i − 1

i

)

and D(μ) · Cg−1
1 = (3g − 3)! · (4i − 4) ·

(
2i(4i + 1) ·

(
2i − 1

i

)
− 6(2i − 1) · 22i−2

)
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Proof We start by computing the first intersection. Let [π : X → �] ∈ Hg,μ be an admissible

covermapped to a point [C∪x∼y E, η] onCg−1
1:g−1. Because cμ = bμ◦aμ and bμ was defined in

terms of the unique twist, we distinguish three different cases for the divisorial equivalences
on C and E implied by the twist.

Case I: The equivalence on E is OE (2x1 − 2y) ∼= ηE and the one on C is

OC (2x + x2 + · · · + xi−1 − xi − · · · − x2i−1) ∼= ηC

There are 4 choices of x1 for the first equivalence, 4 · (2i − 1)! solutions for the second
equivalence and one choice for each solution of a point x having coefficient 2. The choices
of x1 are two by two identified by the involution of E . Moreover, as the order of the points
having the same coefficient is irrelevant and as each ordering of the simple branch points
produces a different admissible cover, we get (3g − 3)! · 2 · 4·(2i−1)!

(i−2)!·i ! · 1 elements in Hg,μ

having a corresponding twist as above. If α : X → X is the automorphism acting as the
involution on E and fixing all other components of X , we get π ◦ α �= π .

The complete local ring of Hg,μ at such a point [π : X → �] is the ring of invariants of

C[[t1,1, t1,2, . . . , t1,i−1, t1, . . . , t3g−4]]/(t1=t41,1=t21,2=···=t21,i−1)

with respect to the group Autπ (X). This group has cardinality 2i−2 and consists only of
automorphisms that fix C and E and act non-trivially on the i − 2 rational components of
X . Assuming the action to be linear, we immediately get that the complete local ring is
isomorphic to

C[[t1,1, t21,2, . . . , t21,i−1, t1, . . . , t3g−4]]/(t1=t41,1=t21,2=···=t21,i−1)
∼= C[[t1,1, t2, . . . , t3g−4]]

We take� to be the parameter space of this ring and see it is a base for a universal deformation
of the map π : X → �. Consequently we get a map from � to the universal deformation of
the curve C ∪x∼y E .

The automorphism α : C ∪x∼y E → C ∪x∼y E lifts to an automorphism α : X → X
identifying two by two the admissible covers. It follows that at the level of the universal
deformation of the curve C ∪x∼y E , the branch of the image of � is simply tangent to the
locus �1 parametrizing singular curves. As a consequence, all such covers appear in the
count D(μ) · Cg−1

1:g−1 with multiplicity 2. A similar argument to this can be found in Lemma
3.4 in [17].

Case II: The equivalence on E is OE (x2 − y) ∼= ηE and the one on C is

OC (2x1 + x + x3 + · · · + xi−1 − xi − · · · − x2i−1) ∼= ηC

In this case, there is a unique choice of x2 for the first equivalence, 4 · (2i − 1)! solutions
for the second one and i − 2 choices for each solution of a point x having coefficient 1. The
order of the points having the same coefficient is irrelevant and each ordering of the simple
branch points produces a different admissible cover, hence we find (3g−3)! · 4·(2i−1)!

(i−2)!·i ! ·(i−2)

elements in Hg,μ having a corresponding twist as above.
Case III: The equivalence on E is OE (y − x2i−1) ∼= ηE and the one on C is

OC (2x1 + x2 + · · · + xi−1 − xi − · · · − x2i−2 − x) ∼= ηC

Reasoning as in the previous cases we get (3g − 3)! · 4·(2i−1)!
i !(i−1)! · i admissible covers in Hg,μ

with corresponding twist as above.
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Reasoning as in the proof of Theorem 6 in [18] we deduce that all admissible covers in
the Cases II and III appear with multiplicity 1. Hence we have

D(μ) · Cg−1
1:g−1 = (3g − 3)! · 4 · (2i − 1)!

i ! · (i − 2)! (2 · 2 + i − 2 + i)

We proceed to compute the intersection D(μ) · Cg−1
g−1 . In this case, there are only two

possibilities for the twist.
Case I: The equivalence on E induced by the twist is OE (2x1 − 2y) ∼= ηE and the one

on C is

OC (2x + x2 + · · · + xi−1 − xi − · · · − x2i−1) ∼= ηC

In this case, we have 3 choices for x1 and 4 · (2i − 1)! solutions on C . For each such solution
on C there is a unique choice of the point x with coefficient 2. As the order of the points
having the same coefficient is irrelevant and as each ordering of the branch points produces a
different admissible cover, we get (3g−3)! ·3 · 4·(2i−1)!

i !(i−2)! elements in Hg,μ with corresponding
twist as above.

Case II: The other possibility is when the equivalence on E is trivial and the one on C is

OC (2x1 + x2 + · · · + xi−1 − xi − · · · − x2i−1) ∼= ηC

In this situation we get deg(π|C ) = 2i and hence deg(π|E ) = ordx (π|C ). As C is generic, it
follows that deg(π|E ) = 2 and x is one of the 6i − 5 simple ramification points of π|C . The
order of the points having the same coefficient in the divisorial equivalence on C is irrelevant
and each ordering of the 3g − 3 simple branch points produces a different admissible cover.
We obtain in this way (3g − 3)! · 4·(2i−1)!

i !·(i−2)! · (6i − 5) admissible covers corresponding to this
case.

The method in the proof of Theorem 6 in [18] implies that all the admissible covers in the
two cases appear with multiplicity 1 in the intersection D(μ) · Cg−1

g−1 . Hence we have

D(μ) · Cg−1
g−1 = (3g − 3)! · 4 · (2i − 1)!

i ! · (i − 2)! · (3 + 6i − 5)

Finally we compute D(μ) · Cg−1
1 . In this case, the twist on C is trivial. Moreover, for an

admissible cover [π : X → �] mapped to Cg−1
1 we have that q1 and q2 are contained in the

component of � that is the target of the elliptic curve E . In the notations of Proposition 4.3
we have the relations

ordx (π|C ) + c0,1 = ordy(π|E ) + c0,2

ordx1(π|C ) + c1,1 = c1,2

. . .

ordxs (π|C ) + cs,1 = cs,2

We distinguish two different cases depending on the position of the point over q1 of ramifi-
cation order 4.

If this point is on E , by adding the relations we obtain that deg(π|C ) + s + c0,1 ≤
2i . The genericity of C implies deg(π|C ) + s ≥ 2i − 1 and the genericity of E implies
deg(π|C ) + s + c0,1 ≤ 2i − 1. It follows that c0,1 = 0, deg(π|C ) = 2i − 1 − s and
ordx (π|C ) = 2i − 2s − 1.

Consequently, the map π : X → � is uniquely determined by a map f : C → P
1 of

degree 2i − s − 1 with ramification order 2i − 2s − 1 at a point x and a map f1 : E → P
1
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having ramification profiles (2i − 2s − 1, 1), (4, 2, . . . , 2), (2, . . . , 2) and (2, 1, . . . , 1) over

q, q1, q2 and q3, satisfying OE (
f ∗
1 (q1)− f ∗

1 (q2)
2 ) ∼= ηE .

Using Theorem 2.3 and Proposition 2.6, we deduce that the number of suchmapsπ : X →
� is equal to

1

3

i−1∑
s=0

4(i − s − 1)(2i − 2s − 1)(i − s)

(
2i − 1

s

)
· (6i − 6s − 3)

It follows from Proposition 2.7 that this is equal to 6(i − 1)(2i − 1) · 22i−2 and hence the
number of admissible covers π : X → � of this form is (3g−3)! ·6(i −1)(2i −1) ·22i−2. If
we consider the automorphism α : X → X acting as the involution on E and fixing all other
components, we see that π ◦α �= π . Reasoning as in Case I of the computation D(μ) ·Cg−1

1:g−1,
we deduce that all the admissible covers above should be counted with multiplicity 2.

The other possible case is when the point of ramification order 4 is on a rational component
collapsing to x j whenwe stabilize X . In this casewehave c j,1 ≥ 2. This implies the inequality
deg(π|C ) + s + c0,1 ≤ 2i − 1. Using this and the inequality deg(π|C ) + s ≥ 2i − 1 coming
from the genericity of C we get c0,1 = 0 and deg(π|C ) = 2i − 1 − s. In this case the
ramification orders of π|C at x and x j are 2i − 2s − 2 and 2 respectively.

Consequently, the map π : X → P
1 is uniquely determined by a degree 2i − s − 1 map

f : C → P
1 having ramificationorders 2i−2s−2 and2 at twopoints x and x j in the samefibre

and a map f1 : E → P
1 having ramification profiles (2i−2s−2), (2, . . . , 2), (2, . . . , 2) and

(2, 1, . . . , 1) over four branch points q, q1, q2, q3 and satisfying OE (
f ∗
1 (q1)− f ∗

1 (q2)
2 ) ∼= ηE .

From Theorem 2.3, the number of such maps f : C → P
1 is 8s(i − s − 1)(i − s)(4i −

4s − 5) · (2i−1
s

)
. From Proposition 2.5, the number of such maps f1 : E → P

1 is 2. It follows
that the number of such maps π : X → � is equal to

16
i−1∑
s=0

s(i − s − 1)(i − s)(4i − 4s − 5) ·
(
2i − 1

s

)

which using Proposition 2.7 we compute to be

8i(i − 1)(4i + 1) ·
(
2i − 1

i

)
− 36(2i − 1)(i − 1) · 22i−2

Again, every ordering of the simple branch points produces a different point in Hg,μ and
hence the number of admissible covers in this case is the number we computed multiplied
by (3g− 3)!. We show that all such admissible covers should be counted with multiplicity 1.

The complete local ring of Hg,μ at the point [π : X → �] is the ring of invariants of

C[[t1,1, t1,2, t1, . . . , t3g−4]]/(t1=t2i−2s−2
1,1 =t21,2)

The method of Remark 4.2 can be employed to prove π ◦ α = π where α : X → X is
the automorphism acting as the involution on E and as identity on all other components.
The group Autπ (X) is generated by α and the automorphism τ acting non-trivially on the
components collapsing to the point of order 2 and fixing the other components.

By considering the ring of invariants with respect to τ we get that the complete local ring
of Hg,μ at the point [π : X → �] is the ring of invariants of

C[[t1,1, t21,2, t1, . . . , t3g−4]]/(t1=t2i−2s−2
1,1 =t21,2)

∼= C[[t1,1, t1, . . . , t3g−4]]/(t1=t2i−2s−2
1,1 )
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with respect to α. The same method of mapping the parameter space to the universal defor-
mation of C ∪x∼y E and proceeding as in [18] implies that all admissible covers appear with
multiplicity 1. It follows that

D(μ) · Cg−1
1 = ·(3g − 3)! ·

(
8i(i − 1)(4i + 1) ·

(
2i − 1

i

)
− 24(2i − 1)(i − 1) · 22i−2

)

��

4.3 Intersection with test curves of type B

Finally we compute the intersection of our divisor with the test curves B ′ and B ′′. The work
of understanding which admissible covers [π : X → �] map to these test curves already
appears implicitly in Proposition 4.1. We are left with the task of computing their number
and their multiplicities.

Proposition 4.5 We have the following intersection numbers:

D(μ) · B ′ = (3g − 3)! · 8(i2 − i) · (24i−2 − 1) ·
(
2i − 1

i

)
and

D(μ) · B ′′ = (3g − 3)!
[
(8i3 − 8i2 − 2i)

(
2i − 1

i

)
− (2i − 1)(6i − 8)22i−2

]

Proof We start by computing D(μ) · B ′. The admissible covers in Hg,μ mapping to �′
0 are

described in Case I and Case IV of Proposition 4.1.
Let [π : X → �] be an admissible cover as in Proposition 4.1, Case I, mapped to B ′. The

number of solutions for the divisorial equivalence

OC (2x1 + x2 + · · · + xi−1 − xi − · · · − x2i−1) ∼= ηC

is equal to 4 · (2i − 1)! for any of the 24i−2 − 1 elements ηC ∈ Pic(C)[2] \ {0}. It follows
there are (2i−1)!

i !(i−2)! (2
4i − 4) choices of a map π|C having degree 2i and ramification profiles

(4, 2, . . . , 2) and (2, . . . , 2) over two points q1 and q2. For the generic point x onC , there are
2i − 1 choices of a point y in the same fiber of π|C . Moreover, there is a rational component
R of X passing through x and y and mapping 2 : 1 to P2.

We fix a map π|C and a point y as just discussed. Two orderings of the (3g − 3) simple
branch points produce the same admissible cover if and only if they differ by transposing the
order of the two branch points on P2. Hence we get

(3g − 3)!
2

· (2i − 1)!
i !(i − 2)! · (2i − 1) · (24i − 4)

distinct admissible covers. It is immediate from the description in the proof of Proposition 4.1
that all these covers are counted with multiplicity 2.

For an admissible cover [π : X → �] as in case IV of Proposition 4.1, the map π|C has
degree 2i and ramification profiles (2, . . . , 2) and (2, . . . , 2) over q and q2, with the generic
point x one of the ramified points over q . Moreover, there is a rational component R mapping
4 : 1 to P2 connecting x with one of the other i − 1 points in the same fiber over q as x . The
component R contains the point of ramification order 4 over q1.

Every ordering of the (3g−3) simple branch points produces a different admissible cover.
We obtain in this way

(3g − 3)! · (2i − 1)!
i !(i − 1)! · (i − 1) · (24i−2 − 1)
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admissible covers and we deduce from Proposition 4.1, Case IV that all should be counted
with multiplicity 4.

It follows that

D(μ) · B ′ = (3g − 3)! · 8(i2 − i) · (24i−2 − 1) ·
(
2i − 1

i

)

Next we compute D(μ) · B ′′. In Case II of Proposition 4.1 we outlined three possible
types of admissible covers [π : X → �] mapping to B ′′.

The first type is when π|C has degree 2i − s − 1 and ramification order at x and y equal to
i − s and i − s − 1. In this case, for the rational component R joining x and y, the map π|R
has ramification profiles (i − s, i − s − 1), (4, 2, 2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

From Theorem 2.3, the number of choices of such a map π|C is

(i − s − 1) [(i − s − 1)(2i − 2s − 1) − 1] ·
(
2i − 1

s

)

Proposition 2.4 implies the choice of π|R is unique. Moreover, each ordering of the simple
branch points produces a different admissible cover and the discussion in Proposition 4.1
implies each of them should be counted with multiplicity 2i − 2s − 1.

The contribution to the count coming from this case is

(3g − 3)! ·
i−1∑
s=0

(2i − 2s − 1)(i − s − 1) [(i − s − 1)(2i − 2s − 1) − 1] ·
(
2i − 1

s

)

which we deduce from Proposition 2.7 to be equal to

(3g − 3)! ·
[
3

2
· (2i − 1)(i − 1) · 22i−2 − 2(i − 1)i ·

(
2i − 1

i

)]

The second type is when π|C has degree 2i − s − 1 and ramification orders x and y equal
to i − s − 1 and i − s. The number of such maps is

(i − s) [(i − s)(2i − 2s − 1) − 1] ·
(
2i − 1

s

)

Other than that, everything follows identically as in the previous case andweget a contribution
of

(3g − 3)! ·
i−1∑
s=0

(2i − 2s − 1)(i − s) [(i − s)(2i − 2s − 1) − 1] ·
(
2i − 1

s

)

which we deduce from Proposition 2.7 to be equal to

(3g − 3)! ·
[
3

2
· (2i − 1)(i − 1) · 22i−2 + 2(i − 1)i ·

(
2i − 1

i

)]

The third type is when π|C is a map of degree 2i − s − 1 having ramification orders
i − s − 1, i − s − 1 and 2 at x, y and another point in the same fiber of π|C as x and y.
For the rational component R joining x and y, we have that π|R has ramification profiles
(i − s − 1, i − s − 1), (2, . . . , 2) and (2, . . . , 2) over q, q1 and q2.

The number of maps π|C of this type is equal to

8s(i − s)(i − s − 1)2
(
2i − 1

s

)
− 2s(i − s − 1)(i − s + 1)

(
2i − 1

s

)
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Each ordering of the simple branch points produces a different admissible cover and each
appears in D(μ) · B ′′ with multiplicity 2. Hence the contribution in this case is

(3g−3)!
i−1∑
s=0

16s(i − s)(i − s − 1)2
(
2i − 1

s

)
−(3g−3)!

i−1∑
s=0

4s(i − s − 1)(i−s+1)

(
2i − 1

s

)

From Proposition 2.7 we deduce the identities

i−1∑
s=0

16s(i − s)(i − s − 1)2
(
2i − 1

s

)
= 8(i − 1)i2

(
2i − 1

i

)
− 8(i − 1)(2i − 1) · 22i−2

i−1∑
s=0

4s(i − s − 1)(i − s + 1)

(
2i − 1

s

)
= 2i ·

(
2i − 1

i

)
+ (2i − 1)(i − 3) · 22i−2

Putting everything together, we conclude that

D(μ) · B ′′ = (3g − 3)!
[
(8i3 − 8i2 − 2i)

(
2i − 1

i

)
− (2i − 1)(6i − 8)22i−2

]

��

4.4 Conclusions (Proof of Theorem 1.1)

We denote

D(μ)=(3g − 3)! · (aλ − b′
0δ

′
0 − b′′

0δ
′′
0 −bram0 δram0 −b1δ1−bg−1δg−1−b1:g−1δ1:g−1−· · · )

From the test curve computations we deduce we have the following system of equations

a − 4b′
0 − 4bram0 + b1:g−1 = a − 12b′

0 + bg−1 = 0,

a − 4b′′
0 − 4bram0 + b1 = 2 · 22i−2 − 2 ·

(
2i − 1

i

)

b1:g−1 = (2i + 2) ·
(
2i − 1

i

)
, bg−1 = (6i − 2)

(
2i − 1

i

)
,

b1 = 2i(4i + 1) ·
(
2i − 1

i

)
− 6(2i − 1) · 22i−2

(8i − 4)b′
0 − bg−1 − b1:g−1 = (8i2 − 8i) ·

(
2i − 1

i

)
and

(4i − 2)b′′
0 − b1 = (8i3 − 8i2 − 2i)

(
2i − 1

i

)
− (2i − 1)(6i − 8) · 22i−2

This is a solvable system of 8 equations in 7 unknowns. We compute the coefficients to
be

a = 12i2 + 10i − 2

2i − 1
·
(
2i − 1

i

)
, b′

0 = 2i2

2i − 1
·
(
2i − 1

i

)

bram0 = 2i2 + 3i − 1

2i − 1
·
(
2i − 1

i

)
and b′′

0 = 4i3

2i − 1
·
(
2i − 1

i

)
− (3i − 1) · 22i−2

We remark that in Theorem 1.1, the contribution coming from the order of the 3g − 3
simple branch points is not taken into account. ��
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4.5 A divisor inR2i+1

For genus g = 2i + 1 and partition μ = (2, . . . , 2,−2, . . . ,−2) of length g − 1, we can
apply the same procedure to compute the divisor D(μ). This is the divisor D2i+1:2 appearing
in [12]. By the method of test curves we deduce this divisor has the following coefficients:

a = 1

2i − 1

(
2i

i

)
· (3i + 1), b′

0 = 1

2i − 1

(
2i

i

)
· i
2
,

b′′
0 = 1

2i − 1

(
2i

i

)
· i2, bram0 = 1

2i − 1

(
2i

i

)
· 2i + 1

4

As a consequence, we get the intersection D(μ) · Bram
0 = (3g−3)! · (2ii ) · (22g−3 −2) and

by describing explicitly the points and their multiplicity as in the proof of Proposition 4.1 we
deduce

Corollary 4.6 The degree of the map

H0
2i (2, . . . , 2︸ ︷︷ ︸

i entries

,−2, . . . ,−2︸ ︷︷ ︸
i−1 entries

,−1,−1) → M2i,1

forgetting all but the last marking is equal to (2i)! · (24i−2 − 1).

We observe that the coefficient b′′
0 of the divisor D(μ) differs from the one computed in

[12]. This happens because the map

φ : ∧iH ⊗ A0,0 → Ai−1,1

used in [12] to compute this divisor degenerates above the locus�′′
0. We recall that fiberwise,

φ is given over a point [X , η] as
∧i H0(X , ωX ) ⊗ H0(X , ωX ⊗ η) → H0(X ,∧i−1MX ⊗ ω2

X ⊗ η)

where MX is the Lazarsfeld vector bundle of ωX and ML denotes the Lazarsfeld vector
bundle of the line bundle L , as in [20].

If [C/x∼y, η] is a generic point of �′′
0 it follows that

∧i H0(C, ωC (x + y)) ⊗ H0(C, ωC (x + y)) → H0(X ,∧i−1MωC+x+y ⊗ ω2
C (2x + 2y))

is not an isomorphism. We use the exact sequence

0 → ∧i MωC+x+y ⊗ ωC (x + y) → ∧i H0(C, ωC (x + y)) ⊗ ωC (x + y)

→ ∧i−1MωC+x+y ⊗ ω2
C (2x + 2y) → 0

to deduce that h0(C,∧i MωC+x+y ⊗ ωC (x + y)) and h1(C,∧i MωC+x+y ⊗ ωC (x + y)) are
not 0.

UsingProposition 1.3.3 in [20] regarding theGreen-Lazarsfeld property (Ni−1)wededuce

Proposition 4.7 Let g = 2i and [C, x, y] a generic element in Mg,2. Then ωC (x + y) fails
to satisfy the property (Ni−1).

While deriving this result using test curves is an interesting approach of Proposition 4.7,
this result is not new. It immediately follows from [3] Théorème 0.3 and [11] Theorem 3.7.
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